2017年【大师特稿】中考数学备考专题复习 阅读理解问题
浙江省2017年中考数学总复习专题5阅读理解型问题课件
答案
规律方法
解
∵AB2=AE· AD,
A1B1 A1E1 2 ∴A1B1=A1E1· A1D1,即 = , A1D1 A1B1
又∵∠B1A1E1=∠D1A1B1, ∴△B1A1E1∽△D1A1B1,∴∠A1B1E1=∠A1D1B1, ∵A1D1∥B1C1,∴∠A1E1B1=∠C1B1E1, ∴∠A1E1B1+∠A1D1B1=∠C1B1E1+∠A1B1E1=∠A1B1C1,
规律方法
规律方法
本题考查了特殊角的三角函数值,应用中要熟记特殊角的三角函数值, 一是按值的变化规律去记,正弦逐渐增大,余弦逐渐减小,正切逐渐增 大;二是按特殊直角三角形中各边特殊值规律去记.本题也考查了阅读理 解能力.
考查角度二
猜想型(阅读—理解—归纳—验证)
例2 (2016· 咸宁)阅读理解: 我们知道,四边形具有不稳定性,容易变形.如图1,一个矩形发生变形 后成为一个平行四边形.设这个平行四边形相邻两个内角中较小的一个 1 内角为α,我们把 的值叫做这个平行四边形的变形度. sinα (1)若矩形发生变形后的平行四边形有一个内角是120°,则这个平行四 边形的变形度是________;
考查角度三
概括型(阅读——理解——概括——表达)
例3 (2016· 烟台)探究证明: (1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻 边的数量关系进行探究,提出下列问题,请你给出证明. 如图1,矩形ABCD中,EF⊥GH,EF分别交AB,CD于点E,F, GH
分别交AD,BC于点G,H.求证:EF =AD. GH AB
的延长线于S,如答图3,则四边形ABSR是平行四边形. ∵∠ABC=90°,∴平行四边形ABSR是矩形, ∴∠R=∠S=90°,RS=AB=10,AR=BS, ∵AM⊥DN,
专题14 阅读理解问题 2017年中考数学分项汇编
一、选择题1.【沂水县】观察下列各数:1,1,57,715,931,…按你发现的规律计算这列数的第7个数为( ) A .15255 B .13127 C .11127 D .1163【答案】B .故选B .2.【德城区】一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为a 1,a 2,a 3,a 4,则下列关系中正确的是( )A .a 4>a 2>a 1B .a 4>a 3>a 2C .a 1>a 2>a 3D .a 2>a 3>a 4 【答案】B . 【解析】试题解析:设等边三角形的边长是a ,则等边三角形的周率a 1=3aa=3 设正方形的边长是x 2x ,则正方形的周率是a 22x2≈2.828, 设正六边形的边长是b ,过F 作FQ∥AB 交BE 于Q ,得到平行四边形ABQF 和等边三角形EFQ ,直径是b+b=2b ,∴正六边形的周率是a3=62bb=3,圆的周率是a4=22rr=π,∴a4>a3>a2.故选 B.3.【武城县】一组数2,1,1,x,3,y,…,满足“从第三个数起,每个数都等于它前面的两个数之差”,那么这组数中y表示的数为()A.-3 B.3 C.5 D.-5【答案】A.二、填空题1.【沂水县】在一个数列中,如果从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做该数列的公差,如1,3,5,7,9…,就是一个等差数列,其公差为2,已知数列a1,a2,…an是等差数列,且a1=2,公差为5,那么a32的值为.【答案】157.【解析】试题解析:由题意得,a1=2,a2=2+5=7,a3=a2+5=2+5+5=2+2×5,a4=2+3×5=17,…,同理可得,a32=2+31×5=157.2.【台儿庄六中】如图(1),在矩形ABCD中,将矩形折叠,使点B落在边AD上,这时折痕与边AD和BC 分别交于点E、点F.然后再展开铺平,以B、E、F为顶点的△BEF称为矩形ABCD的“折痕三角形”.如图(2),在矩形ABCD中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E的坐标为.【答案】(3 2,2).【解析】试题解析:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=52,∴BE=ED=52,AE=AD-ED=32,∴点E坐标(32,2).3.【潍坊市】式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为1001nn=∑,这里的符号“∑”是求和的符号,如“1+3+5+7+…+99”即从1开始的100以内的连续奇数的和,可表示为501(21)nn=-∑.通过对以上材料的阅读,请计算:201311(1)nn n=+∑= (填写最后的计算结果).【答案】20132014.4.【东昌府区】定义:给定关于x 的函数y ,对于该函数图象上任意两点(x 1,y 1),(x 2,y 2),当x 1<x 2时,都有y 1<y 2,称该函数为增函数,根据以上定义,可以判断下面所给的函数中,是增函数的有 (填上所有正确答案的序号)①y=2x;②y=-x+1;③y=x 2(x >0);④y=-1x. 【答案】①③. 【解析】试题解析:y=2x ,2>0,∴①是增函数; y=-x+1,-1<0,∴②不是增函数;y=x 2,当x >0时,是增函数,∴③是增函数; y=-1x,在每个象限是增函数,因为缺少条件,∴④不是增函数. 5.【德城区】如图,在平面直角坐标系中,已知直线l :y=-x-1,双曲线y=1x.在直线l 上取点A 1,过点A 1作x 轴的垂线交双曲线于点B 1,过点B 1作y 轴的垂线交直线l 于点A 2,继续操作:过点A 2作x 轴的垂线交双曲线于点B 2,过点B 2作y 轴的垂线交直线l 于点A 3,…,依次这样得到双曲线上的点B 1,B 2,B 3,B 4,…,B n .记点A 1的横坐标为2,则B 2016的坐标为 .【答案】(-13,-3).【解析】b 1=12,b2=-23,b3=- 3,b4=12,b5=-23,∵20163=671,∴a2016=a3=-13.故答案为:(-13,-3).三、解答题1.【武城县】我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD即为“准等腰梯形”.其中∠B=∠C.(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD中∠B=∠C.E为边BC上一点,若AB∥DE,AE∥DC,求证:AB BE AC EC;(3)在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,请问当点E在四边形ABCD内部时(即图3所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E 不在四边形ABCD 内部时,情况又将如何?写出你的结论.根据条件∠B=∠C 和梯形的定义就可以画出图形;【答案】(1)作图见解析;(2)证明见解析;(3)当∠BED 的角平分线与线段BC 的垂直平分线重合时,四边形ABCD 为“准等腰梯形”;当∠BED 的角平分线与线段BC 的垂直平分线相交时,四边形ABCD 不是“准等腰梯形”.三角形ADE ;(2)∵AB∥DE, ∴∠B=∠DEC, ∵AE∥DC, ∴∠AEB=∠C, ∵∠B=∠C, ∴∠B=∠AEB, ∴AB=AE.∵在△ABE 和△DEC 中,B DECAEB C ∠=∠⎧⎨∠=∠⎩, ∴△ABE∽△DEC,∴BE AEEC DC =, ∴AB BEAC EC=;BE CEEF EH =⎧⎨=⎩, ∴Rt△EFB≌Rt△EHC(HL ), ∴∠3=∠4. ∵BE=CE, ∴∠1=∠2. ∴∠1+∠3=∠2+∠4 即∠ABC=∠DCB,∵ABCD 为AD 截某三角形所得,且AD 不平行BC , ∴ABCD 是“准等腰梯形”.当点E 不在四边形AB CD 的内部时,有两种情况:如图4,当点E 在BC 边上时,同理可以证明△EFB≌△EHC,2.【邹城市八中】某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(2015•大庆校级模拟)设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m.n]上的“闭函数”.如函数y=-x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,有1≤y≤3,所以说函数y=-x+4是闭区间[1,3]上的“闭函数”.(1)反比例函数y=2015x是闭区间[1,2015]上的“闭函数”吗?请判断并说明理由;(2)若二次函数y=x2-2x-k是闭区间[1,2]上的“闭函数”,求k的值;(3)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的解析式(用含m,n的代数式表示).【答案】(1)反比例函数y=2015x是闭区间[1,2015]上的“闭函数”.理由见解析;(2)-2.(3)y=x或y=-x+m+n.【解析】(1)反比例函数y=2015x是闭区间[1,2015]上的“闭函数”.理由如下:反比例函数y=2015x在第一象限,y随x的增大而减小,当x=1时,y=2015;当x=2015时,y=1,即图象过点(1,2015)和(2015,1)根据一次函数的图象与性质,有:学科网(Ⅰ)当k >0时,即图象过点(m ,m )和(n ,n ),mk b mnk b n +=⎧⎨+=⎩, 解得1k b =⎧⎨=⎩,∴y=x;(Ⅱ)当k <0时,即图象过点(m ,n )和(n ,m ), 可得:mk b nnk b m+=⎧⎨+=⎩,解得1k b m n =⎧⎨=+⎩,∴y=-x+m+n ,∴一次函数的解析式为y=x 或y=-x+m+n .。
2017年中考数学复习考点解密 阅读理解型问题含11真题带解析
A B P 1 P 2 P 3 P 4阅读理解型问题一、专题诠释阅读理解型问题在近几年地全国中考试题中频频“亮相”,特别引起我们地重视.这类问题一般文字叙述较长,信息量较大,各种关系错综复杂,考查地知识也灵活多样,既考查学生地阅读能力,又考查学生地解题能力地新颖数学题. 二、解题策略与解法精讲解决阅读理解问题地关键是要认真仔细地阅读给定地材料,弄清材料中隐含了什么新地数学知识、结论,或揭示了什么数学规律,或暗示了什么新地解题方法,然后展开联想,将获得地新信息、新知识、新方法进行迁移,建模应用,解决题目中提出地问题.三、考点精讲考点一: 阅读试题提供新定义、新定理,解决新问题<2018连云港)某课题研究小组就图形面积问题进行专题研究,他们发现如下结论: <1)有一条边对应相等地两个三角形面积之比等于这条边上地对应高之比; <2)有一个角对应相等地两个三角形面积之比等于夹这个角地两边乘积之比;…现请你继续对下面问题进行探究,探究过程可直接应用上述结论.<S 表示面积) 问题1:如图1,现有一块三角形纸板ABC ,P1,P2三等分边AB ,R1,R2三等分边AC .经探究知=错误!S △ABC ,请证明. 问题2:若有另一块三角形纸板,可将其与问题1中地拼合成四边形ABCD ,如图2,Q1,Q2三等分边DC .请探究与S 四边形ABCD 之间地数量关系. 问题3:如图3,P1,P2,P3,P4五等分边AB ,Q1,Q2,Q3,Q4五等分边DC .若 S 四边形ABCD =1,求.问题4:如图4,P1,P2,P3四等分边AB ,Q1,Q2,Q3四等分边DC ,P1Q1,P2Q2,P3Q3将四边形ABCD 分成四个部分,面积分别为S1,S2,S3,S4.请直接写出含有S1,S2,S3,S4地一个等式.【分析】问题1:由平行和相似三角形地判定,再由相似三角形面积比是对应边地比地平方地性质可得.A B C 图1P 1 P 2 R 2 R 1 AB图2P 1 P 2R 2R 1D Q 1Q 2AP 1 P 2 P 3BS 1 S 2 S 3S 4问题2:由问题1地结果和所给结论<2)有一个角对应相等地两个三角形面积之比等于夹这个角地两边乘积之比,可得. 问题3:由问题2地结果经过等量代换可求.问题4:由问题2可知S1+S4=S2+S3=.解:问题1:∵P1,P2三等分边AB ,R1,R2三等分边AC ,∴P1R1∥P2R2∥BC .∴△AP1 R1∽△AP2R2∽△ABC ,且面积比为1:4:9. ∴=错误!S △ABC =错误!S △ABC 问题2:连接Q1R1,Q2R2,如图,由问题1地结论,可知∴=错误!S △ABC ,=错误!S △ACD∴+=错误!S 四边形ABCD由∵P1,P2三等分边AB ,R1,R2三等分边AC ,Q1,Q2三等分边DC , 可得P1R1:P2R2=Q2R2:Q1R1=1:2,且P1R1∥P2R2,Q2R2∥Q1R1. ∴∠P1R1A =∠P2R2A ,∠Q1R1A =∠Q2R2A .∴∠P1R1Q1=∠P2R2 Q2. 由结论<2),可知=. ∴=+=错误!S 四边形ABCD . 问题3:设=A ,=B ,设=C ,由问题2地结论,可知A =错误!,B =错误!.A +B =错误!(S 四边形ABCD +C>=错误!(1+C>. 又∵C =错误!(A +B +C>,即C =错误![错误!(1+C>+C]. 整理得C =错误!,即=错误!问题4:S1+S4=S2+S3.【点评】该种阅读理解题给出新地定理,学生需要学会新定理,借助于试题告诉地信息<结论1、2)来解决试题考点二、阅读试题信息,归纳总结提炼数学思想方法 <2018北京)阅读下面材料:小伟遇到这样一个问题,如图1,在梯形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点O.若梯形ABCD 地面积为1,试求以AC ,BD ,地长度为三边长地三角形地面积.ABC图2P 1 P 2R 2R 1DQ 1Q 2C小伟是这样思考地:要想解决这个问题,首先应想办法移动这些分散地线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折,旋转,平移地方法,发现通过平移可以解决这个问题.他地方法是过点D 作AC 地平行线交BC 地延长线于点E ,得到地△BDE 即是以AC ,BD ,地长度为三边长地三角形<如图2).参考小伟同学地思考问题地方法,解决下列问题: 如图3,△ABC 地三条中线分别为AD ,BE ,CF.<1)在图3中利用图形变换画出并指明以AD ,BE ,CF 地长度为三边长地一个三角形<保留画图痕迹);<2)若△ABC 地面积为1,则以AD ,BE ,CF 地长度为三边长地三角形地面积等于_______.【分析】:根据平移可知,△ADC ≌△ECD ,且由梯形地性质知△ADB 与△ADC 地面积相等,即△BDE 地面积等于梯形ABCD 地面积.<1)分别过点F 、C 作BE 、AD 地平行线交于点P ,得到地△CFP 即是以AD 、BE 、CF 地长度为三边长地一个三角形.<2)由平移地性质可得对应线段平行且相等,对应角相等.结合图形知以AD ,BE ,CF 地长度为三边长地三角形地面积等于△ABC 地面积地.解答:解:△BDE 地面积等于1.<1)如图.以AD、BE 、CF 地长度为三边长地一个三角形是△CFP .<2)以AD 、BE 、CF 地长度为三边长地三角形地面积等于.【点评】:本题考查平移地基本性质:①平移不改变图形地形状和大小;②经过平移,对应点所连地线段平行且相等,对应线段平行且相等,对应角相等.考点三、阅读相关信息,通过归纳探索,发现规律,得出结论<2009河北)如图9-1至图9-5,⊙O 均作无滑动滚动,⊙O 1、⊙O 2、⊙O 3、⊙O 4均表示⊙O 与线段AB 或BC 相切于端点时刻地位置,⊙O 地周长为c .阅读理解:<1)如图9-1,⊙O 从⊙O 1地位置出发,沿AB 滚动到⊙O 2地位置,当AB = c 时,⊙O 恰好自转1周.<2)如图9-2,∠ABC 相邻地补角是n °,⊙O 在∠ABC 外部沿A -B-C 滚动,在点B 处,必须由⊙O 1地位置旋转到图9-1 ABDAB C图9-3⊙O 2地位置,⊙O 绕点B 旋转地角∠O 1BO 2 =n °,⊙O 在点B 处自转周.实践应用:<1)在阅读理解地<1)中,若AB =2c ,则⊙O 自转周;若AB = l ,则⊙O 自转周.在阅读理解地<2)中,若∠ABC =120°,则⊙O 在点B 处自转周;若∠ABC =60°,则⊙O 在点B 处自转_____周.<2)如图9-3,∠ABC=90°,AB=BC=c .⊙O 从⊙O 1地位置出发,在∠ABC 外部沿A -B -C 滚动到⊙O 4地位置,⊙O 自转周.拓展联想:<1)如图9-4,△ABC 地周长为l ,⊙O 从与AB 相切于点D 地位置出发,在△ABC 外部,按顺时针方向沿三角形滚动,又回到与AB 相切于点D 地位置,⊙O 自转了多少周?请说明理由.<2)如图9-5,多边形地周长为l ,⊙O 从与某边相切于点D 地位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D 地位置,直接..写出⊙O 自转地周数.【分析】:<1)当AB = c 时,⊙O 恰好自转1周.<2)如图9-2,∠ABC 相邻地补角是n °,⊙O 在∠ABC 外部沿A -B -C 滚动,在点B 处,必须由⊙O 1地位置旋转到⊙O 2地位置,⊙O 绕点B 旋转地角∠O 1BO 2 =n °,⊙O 在点B 处自转周,通过上面可以知道圆地转动规律.解:实践应用<1)2;.;.<2).拓展联想<1)∵△ABC 地周长为l ,∴⊙O 在三边上自转了周.又∵三角形地外角和是360°, ∴在三个顶点处,⊙O 自转了<周).∴⊙O 共自转了<+1)周. <2)+1.【评析】:本题以课题学习地形式呈现,从简单地“圆在直线段和角外部滚动地周数”地数学事实出发,循序渐进,层层深入,引导学生在解决问题地过程中,不断产生认知发展,进而在不知不觉中提炼归纳出一般性地结论,使自己对知识地认识得到升华考点四、阅读试题信息,借助已有数学思想方法解决新问题<2018南京)问题情境:已知矩形地面积为a<a 为常数,a >0),当该矩形地长为多少时,它地周长最小?最小值是多少?数学模型:设该矩形地长为x ,周长为y ,则y 与x 地函数关系式为.A图9-4图9-5探索研究:⑴我们可以借鉴以前研究函数地经验,先探索函数地图象性质.②观察图象,写出该函数两条不同类型地性质;③在求二次函数y=ax2+bx+c<a≠0)地最大<小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数(x>0>地最小值.解决问题:⑵用上述方法解决“问题情境”中地问题,直接写出答案.【分析】⑴将x值代入函类数关系式求出y值, 描点作图即可. 然后分析函数图像.⑵仿⑴③===所以, 当=0,即时,函数地最小值为解答:⑴①函数地图象如图.②本题答案不唯一,下列解法供参考.当时,随增大而减小;当时,随增大而增大;当时函数地最小值为2.③===当=0,即时,函数地最小值为2.⑵仿⑴③===当=0,即时,函数地最小值为.⑵当该矩形地长为时,它地周长最小,最小值为.【点评】:画和分析函数地图象,借助图像分析函数性质.类比一元二次方程地配方法求函数地最大(小>值.考点五、阅读图表等统计资料,提供有关信息解决相关问题(2018无锡>十一届全国人大常委会第二十次会议审议地个人所得税法修正案草案(简称“个税法草案”>,拟将现行个人所得税地起征点由每月2000元提高到3000元,并将9级500注:“月应纳税额”为个人每月收入中超出起征点应该纳税部分地金额.“速算扣除数”是为快捷简便计算个人所得税而设定地一个数.例如:按现行个人所得税法地规定,某人今年3月地应纳税额为2600元,他应缴税款可以用下面两种方法之一来计算:方法一:按1~3级超额累进税率计算,即500×5%+1500×10%十600×15%=265(元>.方法二:用“月应纳税额x适用税率一速算扣除数”计算,即2600×15%一l25=265(元>.(1>请把表中空缺地“速算扣除数”填写完整;(2>甲今年3月缴了个人所得税1060元,若按“个税法草案”计算,则他应缴税款多少元?(3>乙今年3月缴了个人所得税3千多元,若按“个税法草案”计算,他应缴地税款恰好不变,那么乙今年3月所缴税款地具体数额为多少元?【分析】(1> 当1500<x≤4500时, 应缴个人所得税为当4500<x≤9000时, 应缴个人所得税为(2> 缴了个人所得税1060元, 要求应缴税款, 只要求出其适应哪一档玩税级, 直接计算即可.(3> 同(2>, 但应清楚“月应纳税额”为个人每月收入中超出起征点应该纳税部分地金额, 而“个税法草案”拟将现行个人所得税地起征点由每月2000元提高到3000元, 依据此可列式求解.解答:(1>75, 52575因为1060元在第3税级, 所以有20%x-525=1060, x=7925(元> 答: 他应缴税款7925元.(3>缴个人所得税3千多元地应缴税款适用第4级, 假设个人收入为k, 刚有20%(k-2000> -375=25%(k-3000>-975 k=19000所以乙今年3月所缴税款地具体数额为(19000-2000>×20%-375=3025(元>【考点】统计图表地分析,并借助于事例理解数量之间地关系,解决实际问题.一、真题演练1、(2018菏泽市>定义一种运算☆,其规则为a☆b=错误!+错误!,根据这个规则、计算2☆3地值是< ) A. B. C.5 D.62、<2018达州)18、<6分)给出下列命题:命题1:直线与双曲线有一个交点是<1,1);命题2:直线与双曲线有一个交点是<,4);命题3:直线与双曲线有一个交点是<,9);命题4:直线与双曲线有一个交点是<,16);……………………………………………………<1)请你阅读、观察上面命题,猜想出命题<为正整数);<2)请验证你猜想地命题是真命题.3、(2018德州>观察计算当,时,与地大小关系是_________________.当,时,与地大小关系是_________________.探究证明如图所示,为圆O地内接三角形,为直径,过C作于D,设,BD=b.<1)分别用表示线段OC,CD;<2)探求OC与CD表达式之间存在地关系<用含a,b地式子表示).归纳结论根据上面地观察计算、探究证明,你能得出与地大小关系是: ____________.实践应用要制作面积为1平方M地长方形镜框,直接利用探究得出地结论,求出镜框周长地最小值.第二部分练习部分一、选择题1.为了求地值,可令S =,则2S=,因此2S-S=,所以=仿照以上推理计算出地值是< )A. B. C. D.2.阅读材料,解答问题.例用图象法解一元二次不等式:.解:设,则是地二次函数.抛物线开口向上.又当时,,解得.由此得抛物线地大致图象如图所示.A BCO D观察函数图象可知:当或时,.地解集是:或.<1)观察图象,直接写出一元二次不等式:地解集是____________;<2)仿照上例,用图象法解一元二次不等式:.<大致图象画在答题卡上)3.阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰地距离分别为,腰上地高为h,连结AP ,则即:<定值)<1)理解与应用如图,在边长为3地正方形ABC中,点E为对角线BD上地一点,且BE=BC,F为CE上一点,FM⊥BC于M,FN⊥BD于N,试利用上述结论求出FM+FN地长.<2)类比与推理如果把“等腰三角形”改成“等到边三角形”,那么P地位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:已知等边△ABC内任意一点P 到各边地距离分别为,等边△ABC地高为h ,试证明:<定值).<3)拓展与延伸若正n边形A1A2…An内部任意一点P到各边地距离为,请问是否为定值,如果是,请合理猜测出这个定值.4.阅读材料:如图1,过△ABC 地三个顶点分别作出与水平线垂直地三条直线,外侧两条直线之间地距离叫△ABC 地“水平宽”(a>,中间地这条直线在△ABC 内部线段地长度叫△ABC 地“铅垂高(h>”.我们可得出一种计算三角形面积地新方法:,即三角形面积等于水平宽与铅垂高乘积地一半.xC Oy ABD11AB P Ch r 1r 2r 3 P B M C解答下列问题:如图2,抛物线顶点坐标为点C(1,4>,交x轴于点A(3,0>,交y轴于点B.<1)求抛物线和直线AB地解读式;<2)点P是抛物线(在第一象限内>上地一个动点,连结PA,PB,当P点运动到顶点C 时,求△CAB地铅垂高CD及;<3)是否存在一点P,使S△PAB=S△CAB,若存在,求出P点地坐标;若不存在,请说明理由.5.阅读下面地材料:在平面几何中,我们学过两条直线平行地定义.下面就两个一次函数地图象所确定地两条直线,给出它们平行地定义:设一次函数地图象为直线,一次函数地图象为直线,若,且,我们就称直线与直线互相平行.解答下面地问题:<1)求过点且与已知直线平行地直线地函数表达式,并画出直线地图象;<2)设直线分别与轴、轴交于点、,如果直线:与直线平行且交轴于点,求出△地面积关于地函数表达式.真题演练答案1、A2、解:<1)命题:直线与双曲线有一个交点是<,)…………………………………………3分<2)将<,)代入直线得:右边=,左边=,∴左边=右边,∴点<,)在直线上,同理可证:点<,)在双曲线上,∴直线与双曲线有一个交点是<,)3、观察计算:>,=. 探究证明: <1),∴AB 为⊙O 直径,∴.ABCO D,,∴∠A=∠BCD.∴△∽△.∴.即,∴.<2)当时,,=;时,,>.结论归纳:.实践应用设长方形一边长为M,则另一边长为M,设镜框周长为lM,则≥.当,即<M)时,镜框周长最小.此时四边形为正方形时,周长最小为4M.第二部分练习部分答案1、D2、<1).<2)解:设,则是地二次函数.抛物线开口向上.又当时,,解得.由此得抛物线地大致图象如图所示.观察函数图象可知:当或时,.地解集是:或.3、解:<1)如图,连接AC交BD于O,在正方形ABCD中,AC⊥BD∵BE=BC.∴CO为等腰△BCE腰上地高,∴根据上述结论可得 FM+FN=CO而CO=AC=∴FM+FN=<2)如图,设等边△ABC地边长为,连接PA,BP,PC,则S△BCP+S△ACP+S△ABP=S△ABC即∴<3)…+是定值.…+<为正边形地边心距)4、(1>设抛物线地解读式为:把A<3,0)代入解读式求得所以设直线AB地解读式为:由求得B点地坐标为把,代入中解得:所以(2>因为C点坐标为(1,4>所以当x=1时,y1=4,y2=2所以CD=4-2=2(平方单位>(3>假设存在符合条件地点P,设P点地横坐标为x,△PAB地铅垂高为h,则由S△PAB =S△CAB得:化简得:解得,将代入中,解得P 点坐标为5、解:<1)设直线l地函数表达式为y=k x+b.∵直线l与直线y=—2x—1平行,∴k=—2.∵直线l过点<1,4),∴—2+b =4,∴b =6.∴直线l地函数表达式为y=—2x+6.直线地图象如图.(2>∵直线分别与轴、轴交于点、,∴点、地坐标分别为<0,6)、<3,0).∵∥,∴直线为y=—2x+t.∴C 点地坐标为.∵t>0,∴.∴C点在x轴地正半轴上.当C点在B 点地左侧时,;当C点在B点地右侧时,.∴△地面积关于地函数表达式为<5题)申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途.。
2017年春中考数学总复习 第二轮 中考题型专题 专题复习(三)阅读理解题试题
专题复习(三) 阅读理解题1.(2016·湖州)定义:若点P(a ,b)在函数y =1x 的图象上,将以a 为二次项系数,b 为一次项系数构造的二次函数y =ax 2+bx 称为函数y =1x 的一个“派生函数”.例如:点(2,12)在函数y =1x 的图象上,则函数y =2x 2+12x 称为函数y =1x的一个“派生函数”.现给出以下两个命题:(1)存在函数y =1x 的一个“派生函数”,其图象的对称轴在y 轴的右侧;(2)函数y =1x 的所有“派生函数”的图象都经过同一点.下列判断正确的是(C)A .命题(1)与命题(2)都是真命题B .命题(1)与命题(2)都是假命题C .命题(1)是假命题,命题(2)是真命题D .命题(1)是真命题,命题(2)是假命题 提示:(1)∵P(a,b)在y =1x 上,∴a 和b 同号.∴对称轴在y 轴左侧.∴存在函数y =1x 的一个“派生函数”,其图象的对称轴在y 轴的右侧,是假命题;(2)∵函数y =1x 的所有“派生函数”为y =ax 2+bx ,∴x =0时,y =0.∴所有“派生函数”的图象都经过原点.∴函数y =1x的所有“派生函数”的图象都经过同一点,是真命题.故选C.2.(2016·永州)我们根据指数运算,得出了一种新的运算,下表是两种运算对应关系的一组实例:指数运算 21=222=423=8 (31)=332=933=27 … 新运算log 22=1 log 24=2 log 28=3 …log 33=1 log 39=2log 327=3…根据上表规律,某同学写出了三个式子:①log 216=4;②log 525=5;③log 212=-1.其中正确的是(B)A .①②B .①③C .②③D .①②③3.(2016·益阳)我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数y =-3x 的图象上有一些整点,请写出其中一个整点的坐标答案不唯一,如:(1,-3).4.(2016·雅安)P 为正整数,现规定P !=P(P -1)(P -2)×…×2×1,若m !=24,则正整数m =4. 5.(2016·凉山)阅读下列材料并回答问题:材料:如果一个三角形的三边长分别为a ,b ,c ,记p =a +b +c2,那么三角形的面积为S =p (p -a )(p -b )(p -c ).①古希腊几何学家海伦(Heron ,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202—约1261),曾提出利用三角形的三边求面积的秦九韶公式:S =14[a 2b 2-(a 2+b 2-c 22)2].②下面我们对公式②进行变形: 14[a 2b 2-(a 2+b 2-c 22)2] =(12ab )2-(a 2+b 2-c 24)2 =(12ab +a 2+b 2-c 24)(12ab -a 2+b 2-c 24) =2ab +a 2+b 2-c 24·2ab -a 2-b 2+c24=(a +b )2-c 24·c 2-(a -b )24=a +b +c 2·a +b -c 2·a +c -b 2·b +c -a 2=p (p -a )(p -b )(p -c ).这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦—秦九韶公式.问题:如图,在△ABC 中,AB =13,B C =12,AC =7,⊙O 内切于△ABC,切点分别是D 、E 、F.(1)求△ABC 的面积; (2)求⊙O 的半径.解:(1)∵AB=13,BC =12,AC =7, ∴p =13+12+72=16.∴S =p (p -a )(p -b )(p -c )=16×(16-12)×(16-7)×(16-13) =24 3.(2)连接OE 、OF 、OD 、OB 、OC 、OA.设⊙O 的半径为r. ∵BC 切⊙O 于E 点,∴OE ⊥BC. ∴S △OBC =12BC·OE=12ar.同理:S △OAC =12br ,S △OAB =12cr.∴S △ABC =S △OBC +S △OAC +S △OAB =12r(a +b +c).∴12r(12+7+13)=243,解得r =332.6.(2016·重庆)我们知道,任意一个正整数n 都可以进行这样的分解:n =p×q(p,q 是正整数,且p≤q),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p×q 是n 的最佳分解.并规定:F(n)=pq .例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所有3×4是12的最佳分解,所以F(12)=34.(1)如果一个正整数a 是另外一个正整数b 的平方,我们称正整数a 是完全平方数.求证:对任意一个完全平方数m ,总有F(m)=1;(2)如果一个两位正整数t ,t =10x +y(1≤x≤y≤9,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”中F(t)的最大值.解:(1)证明:对任意一个完全平方数m ,设m =n 2(n 为正整数), ∵|n -n|=0,∴n ×n 是m 的最佳分解. ∴对任意一个完全平方数m ,总有F(m)=nn=1.(2)设交换t 的个位上的数与十位上的数得到的新数为t′,则t′=10y +x , ∵t 为“吉祥数”,∴t ′-t =(10y +x)-(10x +y)=9(y -x)=18. ∴y -x =2,即y =x +2.∵1≤x ≤y ≤9,x ,y 为自然数,∴“吉祥数”有:13,24,35,46,57,68,79. ∴F(13)=113,F(24)=46=23,F(35)=57,F(46)=223,F(57)=319,F(68)=417,F(79)=179. ∵57>23>417>319>223>113>179, ∴所有“吉祥数”中,F(t)的最大值是57.7.(2015·遂宁改编)阅读下列材料,并用相关的思想方法解决问题. 计算:(1-12-13-14)×(12+13+14+15)-(1-12-13-14-15)×(12+13+14).令12+13+14=t ,则 原式=(1-t)×(t+15)-(1-t -15)×t=t +15-t 2-15t -t +t 2+15t=15. 问题:(1)计算:(1-12-13-14-…-12 015)×(12+13+14+…+12 016)-(1-12-13-14-…-12 016)×(12+13+14+…+12 015); (2)解方程:(x 2+5x +1)(x 2+5x +7)=7. 解:(1)令12+13+14…+12 015=t ,则原式=(1-t )×(t+12 016)-(1-t -12 016)×t=t +12 016-t 2-12 016t -t +t 2+12 016t=12 016. (2)令x 2+5x =t ,则原方程化为(t +1)(t +7)=7.整理,得t 2+8t =0,解得t =0或t =-8.①当t =0时,x 2+5x =0,解得x =0或x =-5;②当t =-8时,x 2+5x =-8,即x 2+5x +8=0.∵Δ=b 2-4ac =52-4×1×8=-7<0, ∴此方程无解.因此原方程的解是x =0或x =-5.8.(2016·郴州)设a 、b 是任意两个实数,规定a 与b 之间的一种运算“⊕”为:a⊕b=⎩⎪⎨⎪⎧b a (a >0),a -b (a≤0),例如:1⊕(-3)=-31=-3,(-3)⊕2=(-3)-2=-5,(x 2+1)⊕(x-1)=x -1x 2+1(因为x 2+1>0).参照上面材料,解答下列问题: (1)2⊕4=2,(-2)⊕4=-6;(2)若x >12,且满足(2x -1)⊕(4x 2-1)=(-4)⊕(1-4x),求x 的值.解:∵x>12,∴2x -1>0.∴(2x -1)⊕(4x 2-1)=4x 2-12x -1=(2x +1)(2x -1)2x -1=2x +1.∵-4<0,∴(-4)⊕(1-4x)=-4-(1-4x)=-4-1+4x =-5+4x.∴2x +1=-5+4x ,解得x =3.9.(2016·咸宁)阅读理解:我们知道,四边形具有不稳定性,容易变形.如图1,一个矩形发生变形后成为一个平行四边形.设这个平行四边形相邻两个内角中较小的一个内角为α,我们把1sin α的值叫做这个平行四边形的变形度.(1)若矩形发生变形后的平行四边形有一个内角是120°,则这个平行四边形的变形度是233;猜想证明:(2)若矩形的面积为S 1,其变形后的平行四边形面积为S 2,试猜想S 1,S 2,1sin α之间的数量关系,并说明理由;拓展探究:(3)如图2,在矩形ABCD 中,E 是AD 边上的一点,且AB 2=AE·AD,这个矩形发生变形后为平行四边形A 1B 1C 1D 1,E 1为E 的对应点,连接B 1E 1,B 1D 1,若矩形ABCD 的面积为4m(m >0),平行四边形A 1B 1C 1D 1的面积为2m(m >0),试求∠A 1E 1B 1+∠A 1D 1B 1的度数.图1 图2 图3解:(2)猜想:1sin α=S 1S 2.理由如下:如图3,设矩形的长和宽分别为a ,b ,其变形后的平行四边形的高为h. 则S 1=ab ,S 2=ah ,sin α=hb.∴S 1S 2=ab ah =b h ,1sin α=b h .∴1sin α=S 1S 2. (3)由AB 2=AE·AD,可得A 1B 21=A 1E 1·A 1D 1,即A 1B 1A 1D 1=A 1E 1A 1B 1.又∵∠B 1A 1E 1=∠D 1A 1B 1,∴△B 1A 1E 1∽△D 1A 1B 1.∴∠A 1B 1E 1=∠A 1D 1B 1. ∵A 1D 1∥B 1C 1,∴∠A 1E 1B 1=∠C 1B 1E 1.∴∠A 1E 1B 1+∠A 1D 1B 1=∠C 1B 1E 1+∠A 1B 1E 1=∠A 1B 1C 1.由(2)中1sin α=S 1S 2,可知1sin ∠A 1B 1C 1=4m2m =2.∴sin ∠A 1B 1C 1=12.∴∠A 1B 1C 1=30°.∴∠A 1E 1B 1+∠A 1D 1B 1=30°.10.(2016·邵阳)尤秀同学遇到了这样一个问题:如图1所示,已知AF ,BE 是△ABC 的中线,且AF⊥BE,垂足为P ,设BC =a ,A C =b ,AB =c.求证:a 2+b 2=5c 2. 该同学仔细分析后,得到如下解题思路:先连接EF ,利用EF 为△ABC 的中位线得到△EPF∽△BPA,故EP BP =PF PA =EF BA =12,设PF =m ,PE =n ,用m ,n 把PA ,PB分别表示出来,再在Rt △APE ,Rt △BPF 中利用勾股定理计算,消去m ,n 即可得证. (1)请你根据以上解题思路帮尤秀同学写出证明过程; (2)利用题中的结论,解答下列问题:在边长为3的菱形ABCD 中,O 为对角线AC ,BD 的交点,E ,F 分别为线段AO ,DO 的中点,连接BE ,CF 并延长交于点M ,BM ,CM 分别交AD 于点G ,H ,如图2所示,求MG 2+MH 2的值.解:(1)连接EF ,设PF =m ,PE =n. ∵AF ,BE 是△ABC 的中线,∴EF 为△ABC 的中位线,AE =12b ,BF =12a.∴EF ∥AB ,EF =12c.∴△EPF ∽△BPA. ∴EP BP =PF PA =EF BA =12,即n PB =m PA =12. ∴PB =2n ,PA =2m.在Rt △AEP 中,∵PE 2+PA 2=AE 2, ∴n 2+4m 2=14b 2.①在Rt △BFP 中,∵PF 2+PB 2=BF 2, ∴m 2+4n 2=14a 2.②①+②,得5(n 2+m 2)=14(a 2+b 2).在Rt △EFP 中,∵PE 2+PF 2=EF 2, ∴n 2+m 2=14c 2.∴5·14c 2=14(a 2+b 2),即a 2+b 2=5c 2.(2)连接EF.∵四边形ABCD 为菱形, ∴AD ∥BC ,AD =BC ,BD ⊥AC.∵E ,F 分别为线段AO ,DO 的中点, ∴EF ∥AD ,EF =12AD.∴EF ∥BC ,EF =12BC.∴E ,F 分别是BM ,CM 的中点.由(1)的结论得MB 2+MC 2=5BC 2=5×32=45. ∵AG ∥BC ,∴△AEG ∽△CEB. ∴AG BC =AE CE =13.∴AG=1. 同理可得DH =1.∴GH =AD -AG -DH =1. 又∵GH∥BC,∴MG MB =MH MC =GH BC =13.∴MB =3GM ,MC =3MH.∴9MG 2+9MH 2=45,即MG 2+MH 2=5.11.(2016·永州)问题探究: 1.新知学习若把将一个平面图形分为面积相等的两个部分的直线叫做该平面图形的“面线”,其“面线”被该平面图形截得的线段叫做该平面图形的“面径”(例如圆的直径就是圆的“面径”). 2.解决问题已知等边△ABC 的边长为2.(1)如图1,若AD⊥BC,垂足为D ,试说明AD 是△ABC 的一条面径,并求AD 的长; (2)如图2,若M E∥BC,且ME 是△ABC 的一条面径,求面径ME 的长;(3)如图3,已知D 为BC 的中点,连接AD ,M 为AB 上的一点(0<AM <1),E 是DC 上的一点,连接ME ,ME 与AD 交于点O ,且S △MOA =S △DOE .①求证:ME 是△ABC 的面径; ②连接AE ,求证:MD∥AE;(4)请你猜测等边三角形ABC 的面径长l 的取值范围(直接写出结果).提示:x 2+y 2≥2xy. 解:(1)∵AB=AC =BC =2,AD ⊥BC , ∴BD =DC =1,∴S △ABD =S △ACD . ∴线段AD 是△ABC 的面径. 又∵∠B=60°,∴AD =B D·tanB = 3.(2)∵ME∥BC,且ME 是△ABC 的一条面径, ∴△AME ∽△ABC ,S △AME S △ABC =12.∴ME BC =12. ∴ME = 2.(3)①证明:∵D 为BC 的中点,∴S △ABD =S △ACD . ∴S 四边形BDOM +S △MOA =S 四边形ACEO +S △DOE . 又S △MOA =S △DOE ,∴S 四边形BDOM +S △DOE =S 四边形ACEO +S △MOA , 即S △BME =S 四边形ACEM . ∴ME 是△ABC 的面径.②作MN⊥AE 于N ,DF ⊥AE 于F , 则MN∥DF. ∵S △MOA =S △DOE ,∴S △MOA +S △AOE =S △DOE +S △AOE , 即S △AEM =S △AED .∴12AE·MN=12AE·DF.∴MN=DF. 又∵MN∥DF,∴四边形MNFD 是平行四边形. ∴DM ∥AE.(4)作MH⊥BC 于H ,设BM =x ,BE =y , ∵DM ∥AE ,∴BM BA =BD BE .∴x 2=1y.∴xy=2.在Rt △MBH 中,∵∠MHB =90°,∠B =60°,BM =x , ∴BH =12x ,MH =32x.∴ME =MH 2+EH 2=(32x )2+(y -12x )2=x 2+y 2-xy ≥2xy -xy , 即ME≥ 2.∵ME 、AD 都是等边△ABC 的面径,∴等边△ABC 的面径长l 的取值范围是2≤l≤ 3.。
中考数学复习专题9:阅读理解型问题(含详细参考答案)
中考数学复习专题九:阅读理解型问题一、中考专题诠释阅读理解型问题在近几年的全国中考试题中频频“亮相”,特别引起我们的重视.这类问题一般文字叙述较长,信息量较大,各种关系错综复杂,考查的知识也灵活多样,既考查学生的阅读能力,又考查学生的解题能力的新颖数学题.二、解题策略与解法精讲解决阅读理解问题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含了什么新的数学知识、结论,或揭示了什么数学规律,或暗示了什么新的解题方法,然后展开联想,将获得的新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题.三、中考考点精讲 考点一: 阅读试题提供新定义、新定理,解决新问题例1 (•十堰)阅读材料:例:说明代数式221(3)4x x ++-+的几何意义,并求它的最小值.解:221(3)4x x ++-+=222(0)1(3)2x x -++-+,如图,建立平面直角坐标系,点P (x ,0)是x 轴上一点,则2(0)1x -+可以看成点P 与点A (0,1)的距离, 22(3)2x -+可以看成点P 与点B (3,2)的距离,所以原代数式的值可以看成线段PA 与PB 长度之和,它的最小值就是PA+PB 的最小值.设点A 关于x 轴的对称点为A′,则PA=PA′,因此,求PA+PB 的最小值,只需求PA′+PB 的最小值,而点A′、B 间的直线段距离最短,所以PA′+PB 的最小值为线段A′B 的长度.为此,构造直角三角形A′CB ,因为A′C=3,CB=3,所以A′B=32,即原式的最小值为32.根据以上阅读材料,解答下列问题:(1)代数式22(1)1(2)9x x -++-+的值可以看成平面直角坐标系中点P (x ,0)与点A (1,1)、点B 的距离之和.(填写点B 的坐标)(2)代数式22491237x x x ++-+的最小值为 .考点:轴对称-最短路线问题;坐标与图形性质.专题:探究型.解析:(1)先把原式化为222(1)1(2)3x x -++-+的形式,再根据题中所给的例子即可得出结论;(2)先把原式化为222(0)7(6)1x x -++-+的形式,故得出所求代数式的值可以看成平面直角坐标系中点P (x ,0)与点A (0,7)、点B (6,1)的距离之和,再根据在坐标系内描出各点,利用勾股定理得出结论即可.解答:解:(1)∵原式化为222(1)1(2)3x x -++-+的形式, ∴代数式222(1)1(2)3x x -++-+的值可以看成平面直角坐标系中点P (x ,0)与点A (1,1)、点B (2,3)的距离之和,故答案为(2,3);(2)∵原式化为222(0)7(6)1x x -++-+的形式, ∴所求代数式的值可以看成平面直角坐标系中点P (x ,0)与点A (0,7)、点B (6,1)的距离之和, 如图所示:设点A 关于x 轴的对称点为A′,则PA=P A′,∴PA+PB 的最小值,只需求PA′+PB 的最小值,而点A′、B 间的直线段距离最短,∴PA′+PB 的最小值为线段A′B 的长度,∵A (0,7),B (6,1)∴A′(0,-7),A′C=6,BC=8,∴A′B=222268A C BC '+=+=10,故答案为:10.点评:本题考查的是轴对称-最短路线问题,解答此题的关键是根据题中所给给的材料画出图形,再利用数形结合求解.考点二、阅读试题信息,归纳总结提炼数学思想方法例2 (•赤峰)阅读材料:(1)对于任意两个数a 、b 的大小比较,有下面的方法:当a-b >0时,一定有a >b ;当a-b=0时,一定有a=b ;当a-b <0时,一定有a <b .反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”.(2)对于比较两个正数a 、b 的大小时,我们还可以用它们的平方进行比较:∵a 2-b 2=(a+b )(a-b ),a+b >0∴(a 2-b 2)与(a-b )的符号相同当a 2-b 2>0时,a-b >0,得a >b当a 2-b 2=0时,a-b=0,得a=b当a 2-b 2<0时,a-b <0,得a <b解决下列实际问题:(1)课堂上,老师让同学们制作几种几何体,张丽同学用了3张A4纸,7张B5纸;李明同学用了2张A4纸,8张B5纸.设每张A4纸的面积为x ,每张B5纸的面积为y ,且x >y ,张丽同学的用纸总面积为W1,李明同学的用纸总面积为W2.回答下列问题:①W1= (用x、y的式子表示)W2= (用x、y的式子表示)②请你分析谁用的纸面积最大.(2)如图1所示,要在燃气管道l上修建一个泵站,分别向A、B两镇供气,已知A、B到l的距离分别是3km、4km(即AC=3km,BE=4km),AB=xkm,现设计两种方案:方案一:如图2所示,AP⊥l于点P,泵站修建在点P处,该方案中管道长度a1=AB+AP.方案二:如图3所示,点A′与点A关于l对称,A′B与l相交于点P,泵站修建在点P处,该方案中管道长度a2=AP+BP.①在方案一中,a1= km(用含x的式子表示);②在方案二中,a2= km(用含x的式子表示);③请你分析要使铺设的输气管道较短,应选择方案一还是方案二.考点:轴对称-最短路线问题;整式的混合运算.专题:计算题.分析:(1)①根据题意得出3x+7y和2x+8y,即得出答案;②求出W1-W2=x-y,根据x和y的大小比较即可;(2)①把AB和AP的值代入即可;②过B作BM⊥AC于M,求出AM,根据勾股定理求出BM.再根据勾股定理求出BA′,即可得出答案;③求出a12-a22=6x-39,分别求出6x-39>0,6x-39=0,6x-39<0,即可得出答案.解答:(1)解:①W1=3x+7y,W2=2x+8y,故答案为:3x+7y,2x+8y.②解:W1-W2=(3x+7y)-(2x+8y)=x-y,∵x>y,∴x-y>0,∴W1-W2>0,得W1>W2,所以张丽同学用纸的总面积大.(2)①解:a1=AB+AP=x+3,故答案为:x+3.②解:过B 作BM ⊥AC 于M ,则AM=4-3=1,在△ABM 中,由勾股定理得:BM 2=AB 2-12=x 2-1,在△A′MB 中,由勾股定理得:AP+BP=A′B=22248A M BM x '+=+,故答案为:248x +.③解:a 12-a 22=(x+3)2-(248x +)2=x 2+6x+9-(x 2+48)=6x-39,当a 12-a 22>0(即a 1-a 2>0,a 1>a 2)时,6x-39>0,解得x >6.5,当a 12-a 22=0(即a 1-a 2=0,a 1=a 2)时,6x-39=0,解得x=6.5,当a 12-a 22<0(即a 1-a 2<0,a 1<a 2)时,6x-39<0,解得x <6.5,综上所述当x >6.5时,选择方案二,输气管道较短,当x=6.5时,两种方案一样,当0<x <6.5时,选择方案一,输气管道较短.点评:本题考查了勾股定理,轴对称-最短路线问题,整式的运算等知识点的应用,通过做此题培养了学生的计算能力和阅读能力,题目具有一定的代表性,是一道比较好的题目.考点三、阅读相关信息,通过归纳探索,发现规律,得出结论例3 (•凉山州)在学习轴对称的时候,老师让同学们思考课本中的探究题.如图(1),要在燃气管道l 上修建一个泵站,分别向A 、B 两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l 上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l 看成一条直线(图(2)),问题就转化为,要在直线l 上找一点P ,使AP 与BP 的和最小.他的做法是这样的:①作点B 关于直线l 的对称点B′.②连接AB′交直线l 于点P ,则点P 为所求.请你参考小华的做法解决下列问题.如图在△ABC 中,点D 、E 分别是AB 、AC 边的中点,BC=6,BC 边上的高为4,请你在BC 边上确定一点P ,使△PDE 得周长最小.(1)在图中作出点P (保留作图痕迹,不写作法).(2)请直接写出△PDE 周长的最小值: .考点:轴对称-最短路线问题.分析:(1)根据提供材料DE 不变,只要求出DP+PE 的最小值即可,作D 点关于BC 的对称点D′,连接D′E ,与BC 交于点P ,P 点即为所求;(2)利用中位线性质以及勾股定理得出D′E 的值,即可得出答案.解答:解:(1)如图,作D 点关于BC 的对称点D′,连接D′E ,与BC 交于点P ,P 点即为所求;(2)∵点D 、E 分别是AB 、AC 边的中点,∴DE 为△ABC 中位线,∵BC=6,BC 边上的高为4,∴DE=3,DD′=4,∴D′E=222234DE DD '+=+=5,∴△PDE 周长的最小值为:DE+D′E=3+5=8,故答案为:8.点评:此题主要考查了利用轴对称求最短路径以及三角形中位线的知识,根据已知得出要求△PDE 周长的最小值,求出DP+PE 的最小值即可是解题关键.考点四、阅读试题信息,借助已有数学思想方法解决新问题例4 (•重庆)已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,AD=2,BC=6,AB=3.E 为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.考点:相似三角形的判定与性质;勾股定理;正方形的性质;直角梯形.专题:代数几何综合题.分析:(1)首先设正方形BEFG的边长为x,易得△AGF∽△ABC,根据相似三角形的对应边成比例,即可求得BE的长;(2)首先利用△MEC∽△ABC与勾股定理,求得B′M,DM与B′D的平方,然后分别从若∠DB′M=90°,则DM2=B′M2+B′D2,若∠DB′M=90°,则DM2=B′M2+B′D2,若∠B′DM=90°,则B′M2=B′D2+DM2去分析,即可得到方程,解方程即可求得答案;(3)分别从当0≤t≤43时,当43<t≤2时,当2<t≤103时,当103<t≤4时去分析求解即可求得答案.解答:解:(1)如图①,设正方形BEFG的边长为x,则BE=FG=BG=x,∵AB=3,BC=6,∴AG=AB-BG=3-x,∵GF∥BE,∴△AGF∽△ABC,∴AG GF AB BC=,即336x x -=,解得:x=2,即BE=2;(3)①如图③,当F在CD上时,EF:DH=CE:CH,即2:3=CE:4,∴CE=83,∴t=BB′=BC-B′E-EC=6-2-83=43,∵ME=2-12t,∴FM=12t,当0≤t≤43时,S=S△FMN=12×t×12t=14t2,②如图④,当G在AC上时,t=2,∵EK=EC•tan∠DCB=EC•DHCH=34(4-t)=3-34t,∴FK=2-EK=34t-1,∵NL=23AD=43,∴FL=t-43,∴当43<t≤2时,S=S△FMN-S△FKL=14t2-12(t-43)(34t-1)=-18t2+t-23;③如图⑤,当G在CD上时,B′C:CH=B′G:DH,即B′C:4=2:3,解得:B′C=83,∴EC=4-t=B′C-2=23,∴t=103,∵B′N=12B′C=12(6-t)=3-12t,∵GN=GB′-B′N=12t-1,∴当2<t≤103时,S=S梯形GNMF-S△FKL=12×2×(12t-1+12t)-12(t-43)(34t-1)=-38t2+2t-53,④如图⑥,当103<t≤4时,∵B′L=34B′C=34(6-t),EK=34EC=34(4-t),B′N=12B′C=12(6-t)EM=12EC=12(4-t),S=S梯形MNLK=S梯形B′EKL-S梯形B′EMN=-12t+52.综上所述:当0≤t≤43时,S=14t2,当43<t≤2时,S=-18t2+t-23;当2<t≤103时,S=-38t2+2t-53,当103<t≤4时,S=-12t+52.点评:此题考查了相似三角形的判定与性质、正方形的性质、直角梯形的性质以及勾股定理等知识.此题难度较大,注意数形结合思想、方程思想与分类讨论思想的应用,注意辅助线的作法.四、中考真题演练1.(•宁波)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图1,▱ABCD中,若AB=1,BC=2,则▱ABCD为1阶准菱形.(1)判断与推理:①邻边长分别为2和3的平行四边形是阶准菱形;②小明为了剪去一个菱形,进行了如下操作:如图2,把▱ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE.请证明四边形ABFE是菱形.(2)操作、探究与计算:①已知▱ABCD的邻边长分别为1,a(a>1),且是3阶准菱形,请画出▱ABCD及裁剪线的示意图,并在图形下方写出a的值;②已知▱ABCD的邻边长分别为a,b(a>b),满足a=6b+r,b=5r,请写出▱ABCD是几阶准菱形.考点:图形的剪拼;平行四边形的性质;菱形的性质;作图—应用与设计作图.分析:(1)①根据邻边长分别为2和3的平行四边形进过两次操作即可得出所剩四边形是菱形,即可得出答案;②根据平行四边形的性质得出AE∥BF,进而得出AE=BF,即可得出答案;(2)①利用3阶准菱形的定义,即可得出答案;②根据a=6b+r,b=5r,用r表示出各边长,进而利用图形得出▱ABCD是几阶准菱形.解答:解:(1)①利用邻边长分别为2和3的平行四边形进过两次操作,所剩四边形是边长为1的菱形,故邻边长分别为2和3的平行四边形是2阶准菱形;故答案为:2;②由折叠知:∠ABE=∠FBE,AB=BF,∵四边形ABCD是平行四边形,∴AE∥BF,∴∠AEB=∠FBE,∴∠AEB=∠ABE,∴AE=AB,∴AE=BF,∴四边形ABFE是平行四边形,∴四边形ABFE是菱形;(2)①如图所示:,②∵a=6b+r,b=5r,∴a=6×5r+r=31r;如图所示:故▱ABCD是10阶准菱形.点评:此题主要考查了图形的剪拼以及菱形的判定,根据已知n阶准菱形定义正确将平行四边形分割是解题关键.2.(•淮安)阅读理解如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠B n A n C的平分线A n B n+1折叠,点B n与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.探究发现(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?(填“是”或“不是”).(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为.应用提升(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.考点:翻折变换(折叠问题).专题:压轴题;规律型.分析:(1)在小丽展示的情形二中,如图3,根据根据三角形的外角定理、折叠的性质推知∠B=2∠C;(2)根据折叠的性质、根据三角形的外角定理知∠A1A2B2=∠C+∠A2B2C=2∠C;根据四边形的外角定理知∠BAC+2∠B-2C=180°①,根据三角形ABC的内角和定理知∠BAC+∠B+∠C=180°②,由①②可以求得∠B=3∠C;利用数学归纳法,根据小丽展示的三种情形得出结论:∠B=n∠C;(3)利用(2)的结论知∠B=n∠C,∠BAC是△ABC的好角,∠C=n∠A,∠ABC是△ABC的好角,∠A=n∠B,∠BCA是△ABC的好角;然后三角形内角和定理可以求得另外两个角的度数可以是88°、88°.解答:解:(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是△ABC的好角;理由如下:小丽展示的情形二中,如图3,∵沿∠BAC的平分线AB1折叠,∴∠B=∠AA1B1;又∵将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合,∴∠A1B1C=∠C;∵∠AA1B1=∠C+∠A1B1C(外角定理),∴∠B=2∠C;故答案是:是;(2)∠B=3∠C;如图所示,在△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分,将余下部分沿∠B2A2C的平分线A2B3折叠,点B2与点C 重合,则∠BAC是△ABC的好角.证明如下:∵根据折叠的性质知,∠B=∠AA1B1,∠C=∠A2B2C,∠A1 B1C=∠A1A2B2,∴根据三角形的外角定理知,∠A1A2B2=∠C+∠A2B2C=2∠C;∵根据四边形的外角定理知,∠BAC+∠B+∠AA1B1-∠A1 B1C=∠BAC+2∠B-2C=180°,根据三角形ABC的内角和定理知,∠BAC+∠B+∠C=180°,∴∠B=3∠C;由小丽展示的情形一知,当∠B=∠C时,∠BAC是△ABC的好角;由小丽展示的情形二知,当∠B=2∠C时,∠BAC是△ABC的好角;由小丽展示的情形三知,当∠B=3∠C时,∠BAC是△ABC的好角;故若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为∠B=n∠C;(3)由(2)知,∠B=n∠C,∠BAC是△ABC的好角,∴∠C=n∠A,∠ABC是△ABC的好角,∠A=n∠B,∠BCA是△ABC的好角,∴如果一个三角形的最小角是4°,三角形另外两个角的度数是4、172;8、168;16、160;44、132;88°、88°.点评:本题考查了翻折变换(折叠问题).解答此题时,充分利用了三角形内角和定理、三角形外角定理以及折叠的性质.难度较大.3.(•南京)下框中是小明对一道题目的解答以及老师的批改.题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1,在温室内,沿前侧内墙保留3m 的空地,其他三侧内墙各保留1m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288m2?解:设矩形蔬菜种植区域的宽为xm,则长为2xm,根据题意,得x•2x=288.解这个方程,得x1=-12(不合题意,舍去),x2=12所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)答:当温室的长为28m,宽为14m时,矩形蔬菜种植区域的面积是288m2.我的结果也正确!小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程: 变化一下会怎样…(2)如图,矩形A′B′C′D′在矩形ABCD 的内部,AB ∥A′B′,AD ∥A′D′,且AD :AB=2:1,设AB 与A′B′、BC 与B′C′、CD 与C′D′、DA 与D′A′之间的距离分别为a 、b 、c 、d ,要使矩形A′B′C′D′∽矩形ABCD ,a 、b 、c 、d 应满足什么条件?请说明理由.考点:相似多边形的性质;一元二次方程的应用.分析:(1)根据题意可得小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由,所以应设矩形蔬菜种植区域的宽为xm ,则长为2xm ,然后由题意得方程23124112y y y y ---=--- =2,矩形蔬菜种植区域的长与宽之比为2:1,再利用小明的解法求解即可;(2)由使矩形A′B′C′D′∽矩形ABCD ,利用相似多边形的性质,可得A D ADA B AB''='',即 ()2()1AD a c AB b d -+=-+,然后利用比例的性质,即可求得答案.解答:解:(1)小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由. 在“设矩形蔬菜种植区域的宽为xm ,则长为2xm .”前补充以下过程: 设温室的宽为ym ,则长为2ym .则矩形蔬菜种植区域的宽为(y-1-1)m ,长为(2y-3-1)m . ∵23124112y y y y ---=--- =2,∴矩形蔬菜种植区域的长与宽之比为2:1;(2)要使矩形A′B′C′D′∽矩形ABCD , 就要A D ADA B AB''='',即()2()1AD a c AB b d -+=-+, 即2()2()1AB a c AB b d -+=-+,即a cb d++=2. 点评:此题考查了相似多边形的性质.此题属于阅读性题目,注意理解题意,读懂题目是解此题的关键.4.(•鸡西)如图,在平面直角坐标系中,已知Rt△AOB的两条直角边OA、OB分别在y轴和x轴上,并且OA、OB的长分别是方程x2-7x+12=0的两根(OA<OB),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点0运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.(1)求A、B两点的坐标.(2)求当t为何值时,△APQ与△AOB相似,并直接写出此时点Q的坐标.(3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.考点:相似形综合题;解一元二次方程-因式分解法;平行四边形的判定;矩形的性质;相似三角形的判定与性质.分析:(1)解一元二次方程,求出OA、OB的长度,从而得到A、B点的坐标;(2)△APQ与△AOB相似时,存在两种情况,需要分类讨论,不要遗漏,如图(2)所示;(3)本问关键是找齐平行四边形的各种位置与性质,如图(3)所示.在求M1,M2坐标时,注意到M1,M2与Q点坐标的对应关系,则容易求解;在求M3坐标时,可以利用全等三角形,得到线段之间关系.解答:解:(1)解方程x2-7x+12=0,得x1=3,x2=4,∵OA<OB,∴OA=3,OB=4.∴A(0,3),B(4,0).(2)在Rt△AOB中,OA=3,OB=4,∴AB=5,∴AP=t,QB=2t,AQ=5-2t.△APQ与△AOB相似,可能有两种情况:(I)△APQ∽△AOB,如图(2)a所示.则有AP AQAO AB=,即5235t t-=,解得t=1511.此时OP=OA-AP=1811,PQ=AP•tanA=2011,∴Q(2011,1811);(II)△APQ∽△ABO,如图(2)b所示.则有AP AQAB AO=,即5253t t-=,解得t=2513.此时AQ=2513,AH=AQ•cosA=913,HQ=AQ•sinA=1213,OH=OA-AH=3013,∴Q(1213,3013).综上所述,当t=1511秒或t=2513秒时,△APQ与△AOB相似,所对应的Q点坐标分别为(2011,1811)或(1213,3013).(3)结论:存在.如图(3)所示.∵t=2,∴AP=2,AQ=1,OP=1.过Q点作QE⊥y轴于点E,则QE=AQ•sin∠QAP=45,AE=AQ•cos∠QAP=35,∴OE=OA-AE=125,∴Q(45,125).∵▱APQM1,∴QM1⊥x轴,且QM1=AP=2,∴M1(45,25);∵▱APQM2,∴QM2⊥x轴,且QM2=AP=2,∴M2(45,225);如图(3),过M3点作M3F⊥y轴于点F,∵▱AQPM3,∴M3P=AQ,∠QAE=∠M3PF,∴∠PM3F=∠AQE;在△M3PF与△QAE中,∵∠QAE=∠M3PF,M3P=AQ,∠PM3F=∠AQE,∴△M3PF≌△QAE,∴M3F=QE=45,PF=AE=35,∴OF=OP+PF=85,∴M3(-45,85).∴当t=2时,在坐标平面内,存在点M,使以A、P、Q、M为顶点的四边形是平行四边形.点M的坐标为:M1(45,25),M2(45,225),M3(-45,85).点评:本题是动点型压轴题,综合考查了相似三角形的判定与性质、全等三角形的判定与性质、解一元二次方程、平行四边形等知识点.本题难点在于分类讨论思想的应用,第(2)(3)问中,均涉及到多种情况,需要逐一分析不能遗漏;另外注意解答中求动点时刻t和点的坐标的过程中,全等三角形、相似三角形、三角函数等知识发挥了重要作用,这是解答压轴题的常见技巧,需要熟练掌握.5.(•长春)如图,在Rt △ABC 中,∠ACB=90°,AC=8cm ,BC=4cm .D 、E 分别为边AB 、BC 的中点,连接DE .点P 从点A 出发,沿折线AD-DE-EB 运动,到点B 停止.点P 在线段AD 上以5cm/s 的速度运动,在折线DE-EB 上以1cm/s 的速度运动.当点P 与点A 不重合时,过点P 作PQ ⊥AC 于点Q ,以PQ 为边作正方形PQMN ,使点M 在线段AQ 上.设点P 的运动时间为t (s ).(1)当点P 在线段DE 上运动时,线段DP 的长为 cm (用含t 的代数式表示). (2)当点N 落在AB 边上时,求t 的值.(3)当正方形PQMN 与△ABC 重叠部分图形为五边形时,设五边形的面积为S (cm 2),求S 与t 的函数关系式.(4)连接CD ,当点N 与点D 重合时,有一点H 从点M 出发,在线段MN 上以2.5cm/s 的速度沿M-N-M 连续做往返运动,直至点P 与点E 重合时,点H 停止往返运动;当点P 在线段EB 上运动时,点H 始终在线段MN 的中点处,直接写出在点P 的整个运动过程中,点H 落在线段CD 上时t 的取值范围.考点:相似形综合题.分析:(1)点P 在AD 段的运动时间为2s ,则DP 的长度为(t-2)cm ;(2)当点N 落在AB 边上时,有两种情况,如图(2)所示.利用运动线段之间的数量关系求出时间t 的值;(3)当正方形PQMN 与△ABC 重叠部分图形为五边形时,有两种情况,如图(3)所示.分别用时间t 表示各相关运动线段的长度,然后利用“S=S 梯形AQPD -S △AMF =12(PG+AC )•PC -12AM•FM”求出面积S 的表达式;(4)本问涉及双点的运动,首先需要正确理解题意,然后弄清点H 、点P 的运动过程:当4<t <6时,此时点P 在线段DE 上运动,如图(4)a 所示.此时点H 将两次落在线段CD 上;当6≤t≤8时,此时点P 在线段EB 上运动,如图(4)b 所示.此时MN 与CD 的交点始终是线段MN 的中点,即点H .解答:解:(1)∵在Rt △ABC 中,AC=8cm ,BC=4cm , ∴AB=22228445AC BC +=+=,D 为AB 中点,∴AD=25,∴点P 在AD 段的运动时间为255=2s . 当点P 在线段DE 上运动时,DP 段的运动时间为(t-2)s , ∵DE 段运动速度为1cm/s ,∴DP=(t-2)cm .(2)当点N 落在AB 边上时,有两种情况,如下图所示:①如图(2)a,此时点D与点N重合,P位于线段DE上.由三角形中位线定理可知,DM=12BC=2,∴DP=DM=2.由(1)知,DP=t-2,∴t-2=2,∴t=4;②如图(2)b,此时点P位于线段EB上.∵DE=12AC=4,∴点P在DE段的运动时间为4s,∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4.∵PN∥AC,∴PN:PB=AC:BC=2,∴PN=2PB=16-2t.由PN=PC,得16-2t=t-4,解得t=203.所以,当点N落在AB边上时,t=4或t=203.(3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况,如下图所示:①当2<t<4时,如图(3)a所示.DP=t-2,PQ=2,∴CQ=PE=DE-DP=4-(t-2)=6-t,AQ=AC-CQ=2+t,AM=AQ-MQ=t.∵MN∥BC,∴FM:AM=BC:AC=1:2,∴FM=12AM=12t.S=S梯形AQPD-S△AMF=12(DP+AQ)•PQ-12AM•FM=12[(t-2)+(2+t)]×2-12t•12t=-14t2+2t;②当203<t<8时,如图(3)b所示.PE=t-6,∴PC=CM=PE+CE=t-4,AM=AC-CM=12-t,PB=BE-PE=8-t,∴FM=12AM=6-12t,PG=2PB=16-2t,S=S梯形AQPD-S△AMF=12(PG+AC)•PC-12AM•FM=12[(16-2t)+8]×(t-4)-12(12-t)•(6-12t)=-54t2+22t-84.综上所述,S与t的关系式为:S=2212(24)45202284(8)43t t tt t t⎧-+<<⎪⎪⎨⎪-+-<<⎪⎩。
2017中考数学阅读理解型问题专题复习
2017中考数学阅读理解型问题专题复习一、中考专题诠释阅读理解型问题在近几年的全国中考试题中频频“亮相”,特别引起我们的重视.这类问题一般文字叙述较长,信息量较大,各种关系错综复杂,考查的知识也灵活多样,既考查学生的阅读能力,又考查学生的解题能力的新颖数学题.二、解题策略与解法精讲解决阅读理解问题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含了什么新的数学知识、结论,或揭示了什么数学规律,或暗示了什么新的解题方法,然后展开联想,将获得的新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题.谈谈一般阅读理解题的解题技巧。
例1(南通市2003年中考试卷第29题):某果品公司急需将一批不易存放的水果从A市运到B市销售。
现有三家运输公司可供选择,这三家公司提供的信息如下:解答下列问题:(1)若乙、丙公司的包装与装卸及运输的费用总和恰好是甲公司的2倍,求A、B两市的距离(精确到个位);(2)如果A、B两市的距离为S千米,且这批水果在包装与装卸以及运输过程中的损耗为300元/小时,那么要使果品公司支付的总费用(包装与装卸及费用、运输费用及损耗三项之和)最小,应选择哪家公司?分析:本题主要考查函数的应用以及分析问题和解决问题的能力,本题的得分率为0.38。
主要错误有:(1)没有完全理解表中各元素之间的关系就开始解题,(2)第2问中的距离S用第1问的结果代替,失误的原因:看图识表的能力及对情境的理解较差,对问题的探究能力较弱。
例2 某市出租车的起步价是7元(起步价是指不超过3km行程的出租车价格)。
超过3km行程后,其中3km的行程按起步价计费,超过部分按每公理1.6元计费,如果仅去时乘出租车而回程时不乘坐,那么顾客还需付回程的空驶费,按每公理0.8元计算(即实际按每公理2.4元计费)。
例如:小文从市中心A处乘出租车去相距5km的B 镇,如果他仅去时乘出租车(回程另行考虑),则应付出租车的车资为:7+(5-3)×2.4=11.8(元);如果他往返都乘同一辆出租车,则实际行程为10km,应付车资为:7+(5×2-3)×1.6=18.2(元)。
2017年中考数学真题分类解析 阅读理解型问题
一、选择题1. (2017甘肃庆阳,10,3分)如图①,在边长为4的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止,过点P 作PQ BD ∥,PQ 与边AD (或边CD )交于点Q ,PQ 的长度y (cm)与点P 的运动时间x (秒)的函数图象如图②所示,当点P 运动2.5秒时,PQ 的长是( ) A.22cmB.32cmC.42cmD.52cm答案:B ,解析:当点P 运动2.5秒时,如图所示:AB CDPQ则PB =1 cm ,因为BC =4 cm ,所以PC =3 cm ;由题意可知,CQ =3 cm ,所以PQ =32cm .故选:B .二、填空题1. (2017广西百色,18,3分)阅读理解:用“十字相乘法”分解因式的方法. (1)二次项系数212=⨯;(2)常数项3131(3)-=-⨯=⨯-,验算:“交叉相乘之和”;ABCD Q Px (秒)y (cm )O 2图②图① 第10题图(3)发现第③个“交叉相乘之和”的结果1(3)211⨯-+⨯=,等于一次项系数-1,即:22(x 1)(2x 3)232323x x x x x +-=-+-=--,则223(x 1)(2x 3)x x --=+-,像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法,仿照以上方法,分解因式:23512x x +-=______. 答案:(x+3)(3x -4).解析:如图.2. (2017贵州毕节)观察下列运算过程: 计算:1+2+22+...+210.. 解:设S =1+2+22+ (210)①①⨯2得2S =2+22+23+…+211,②②-①,得 S =211-1.所以,1+2+22+…+210=211-1.运用上面的计算方法计算:1+3+32+…+32017=______________.答案:2018312-,解析:设S =1+3+32+ (32017)①①⨯3得3S =3+32+33+…+32018,②②-①,得 2S =32018-1.所以,1+3+32+ (32017)2018312-.3. (2017湖南湘潭,16,3分)阅读材料:设),,(),,(2211y x b y x a ==如果b a //,则x 1·y 2=x 2·y 1.根据该材料填空:已知),4(),3,2(m ==,且b a //,则m=_________.答案:6,由材料可以得到:2m=3×4,从而求得m=6.三、解答题1. 20.(2017湖南张家界)(本小题满分6分)阅读理解题:i.2.△ABC2S△ABC=12ac sin∠B,aDBC+S 4.60°S 4S 3S 2S 1B'A'ABC3. (2017•日照,21,12分)阅读材料:在平面直角坐标系xOy 中,点P (x 0,y 0)到直线Ax +By +C =0的距离公式为:d =0022Ax By C A B+++.例如:求点P 0(0,0)到直线4x +3y -3=0的距离. 解:由直线4x +3y -3=0知,A =4,B =3,C =-3, ∴点P 0(0,0)到直线4x +3y -3=0的距离为d =224030343⨯+⨯-+=35. 根据以上材料,解决下列问题: 问题1:点P 1(3,4)到直线y =-34x +54的距离为 4 ; 问题2:已知:⊙C 是以点C (2,1)为圆心,1为半径的圆,⊙C 与直线y =-34x +b 相切,求实数b 的值; 问题3:如图,设点P 为问题2中⊙C 上的任意一点,点A ,B 为直线3x +4y +5=0上的两点,且AB =2,请求出S △ABP 的最大值和最小值.【思路分析】(1)根据点到直线的距离公式就是即可; (2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C 到直线3x +4y +5=0的距离,求出⊙C 上点P 到直线3x +4y +5=0的距离的最大值以及最小值即可解决问题.解:(1)点P 1(3,4)到直线3x +4y -5=0的距离d 223344534⨯+⨯-+,故答案为4.(2)∵⊙C 与直线y =-34x +b 相切,⊙C 的半径为1, ∴C (2,1)到直线3x +4y -b =0的距离d =1,解得b =5或15.(3)点C (2,1)到直线3x +4y +5=0的距离d,∴4.- ((为图1思路分析:(1)将tan75°转化为tan (45°+30°),根据公式计算即可; (2)根据(1)中tan75°的值及AC 的值,先求出BE ,然后加上AE 的值也就是CD 即可.解:(1)tan75°= tan (45°+30°)= tan45tan301tan45tan30+-ooo o g 1+33=2(2)依题有DE=CA=5.7,∴BE=DE×tan75°=5.7×(2 5.7×3.732≈21.3,∴AB=BE+AE=BE +CD=21.27+1.72≈23(米)。
中考数学复习《阅读理解问题》经典题型及测试题(含答案)
中考数学复习《阅读理解问题》经典题型及测试题(含答案)阅读与理解阅读理解问题是通过阅读材料,理解其实质,揭示其方法规律从而解决新问题.既考查学生的阅读能力、自学能力,又考查学生的解题能力和数学应用能力.这类题目能够帮助学生实现从模仿到创造的思维过程,符合学生的认知规律.该类问题一般是提供一定的材料或介绍一个概念或给出一种解法等,让考生在理解材料的基础上,获得探索解决问题的途径,用于解决后面的问题.基本思路是“阅读→分析→理解→解决问题”.类型一新概念学习型新概念学习型是指在题目中先构建一个新数学概念(或定义),然后再根据新概念提出要解决的相关问题.主要目的是考查学生的自学能力和对新知识的理解与运用能力.解决这类问题:要求学生准确理解题目中所构建的新概念,将学习的新概念和已有的知识相结合,并进行运用.例1 (2017·枣庄) 我们知道,任意一个正整数n都可以进行这样的分解:n=p ×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【分析】(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m的最佳分解,确定出F(m)的值即可;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,根据“吉祥数”的定义确定出x与y的关系式,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可.【自主解答】解:(1)证明:对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”的有:15,26,37,48,59;(3)F(15)=,F(26)=,F(37)=,F(48)==,F(59)=,∵>>>>,∴所有“吉祥数”中,F(t)的最大值为.变式训练1.(2016·常德)平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O 与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”.现有点A(2,5),B(-1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是 ______________2.(2016·荆州) 阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?解:(1)∵点D(m,n),∴点D(m,n)的特征线是x=m,y=n,y=x+n﹣m,y=﹣x+m+n;(2)点D有一条特征线是y=x+1,∴n﹣m=1,∴n=m+1∵抛物线解析式为,∴y=(x﹣m)2+m+1,∵四边形OABC是正方形,且D点为正方形的对称轴,D(m,n),∴B(2m,2m),∴(2m﹣m)2+n=2m,将n=m+1带入得到m=2,n=3;∴D(2,3),∴抛物线解析式为y=(x﹣2)2+3(3)如图,当点A′在平行于y轴的D点的特征线时,根据题意可得,D(2,3),∴OA′=OA=4,OM=2,∴∠A′OM=60°,∴∠A′OP=∠AOP=30°,∴MN==,∴抛物线需要向下平移的距离=3﹣=.乳头,当点A′在平行于x轴的D点的特征线时,∵顶点落在OP上,∴A′与D重合,∴A′(2,3),设P(4,c)(c>0),由折叠有,PD=PA,∴=c,∴c=,∴P(4,)∴直线OP解析式为y=,∴N(2,),∴抛物线需要向下平移的距离=3﹣=,即:抛物线向下平移或距离,其顶点落在OP上.类型二新公式应用型新公式应用型是指通过对所给材料的阅读,从中获取新的数学公式、定理、运算法则或解题思路等,进而运用这些知识和已有知识解决题目中提出的数学问题.解决这类问题,一是要所运用的思想方法、数学公式、性质、运算法则或解题思路与阅读材料保持一致;二是要创造条件,准确、规范、灵活地解答.例2(2017•日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.(0,0)到直线4x+3y﹣3=0的距离.例如:求点P解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,(0,0)到直线4x+3y﹣3=0的距离为d==.∴点P根据以上材料,解决下列问题:问题1:点P(3,4)到直线y=﹣x+的距离为 4 ;1问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S的最大值和最小值.△ABP【分析】(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C到直线3x+4y+5=0的距离,求出⊙C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.(3,4)到直线3x+4y﹣5=0的距离d=【自主解答】解:(1)点P1=4,故答案为4.(2)∵⊙C与直线y=﹣x+b相切,⊙C的半径为1,∴C(2,1)到直线3x+4y﹣4b=0的距离d=1,∴=1, 解得b=或.(3)点C (2,1)到直线3x+4y+5=0的距离d==3, ∴⊙C 上点P 到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S △ABP 的最大值=×2×4=4,S △ABP 的最小值=×2×2=2.变式训练3.一般地,如果在一次实验中,结果落在区域D 中每一个点都是等可能的,用A 表示“实验结果落在D 中的某个小区域M 中”这个事件,那么事件A 发生的概率P(A)= .如图,现在等边△ABC 内射入一个点,则该点落在△ABC 内切圆中的概率是____ .4.(2016·随州)如图1,PT 与⊙O 1相切于点T ,PB 与⊙O 1相交于A ,B 两点,可证明△PTA ∽△PBT ,从而有PT 2=PA ·PB .请应用以上结论解决下列问题:如图2,PAB ,PCD 分别与⊙O 2相交于A ,B ,C ,D 四点,已知PA =2,PB =7,PC=3,则CD =______.类型三 新方法应用型新方法应用型是指通过对所给材料的阅读,从中获取新的思想、方法或解题途径,进而运用这些知识和已有的知识解决题目中提出的问题.例3 (2017·毕节)D M 93 35)观察下列运算过程:计算:1+2+22+ (210)解:设S=1+2+22+…+210,①①×2得2S=2+22+23+…+211,②②﹣①得S=211﹣1.所以,1+2+22+…+210=211﹣1运用上面的计算方法计算:1+3+32+…+32017= .【分析】令s=1+3+32+33+…+32017,然后在等式的两边同时乘以3,接下来,依据材料中的方程进行计算即可.【自主解答】解:令s=1+3+32+33+…+32017等式两边同时乘以3得:3s=3+32+33+…+32018两式相减得:2s=32018﹣1,∴s=,故答案为:.变式训练5、仔细阅读下面例题,解答问题:例题:已知二次三项式x2-4x+m有一个因式是(x+3),求另一个因式以及m的值.设另一个因式为(x+n),得x2-4x+m=(x+3)(x+n),则x2-4x+m=x2+(n+3)x+3n ∴n+3=-4m=3n 解得:n=-7,m=-21∴另一个因式为(x-7),m的值为-21.问题:(1)若二次三项式x2-5x+6可分解为(x-2)(x+a),则a=______;(2)若二次三项式2x2+bx-5可分解为(2x-1)(x+5),则b=______;(3)仿照以上方法解答下面问题:已知二次三项式2x2+5x-k有一个因式是(2x-3),求另一个因式以及k的值.解:(1)∵(x-2)(x+a)=x2+(a-2)x-2a=x2-5x+6,∴a-2=-5,解得:a=-3;(2)∵(2x-1)(x+5)=2x2+9x-5=2x2+bx-5,∴b=9;(3)设另一个因式为(x+n),得2x2+5x-k=(2x-3)(x+n)=2x2+(2n-3)x-3n,则2n-3=5,k=3n,解得:n=4,k=12,故另一个因式为(x+4),k 的值为12.故答案为:(1)-3;(2分)(2)9;(2分)(3)另一个因式是x+4,k=12(6分). 6、(2015遂宁)阅读下列材料,并用相关的思想方法解决问题.计算:11111111111111(1)()(1)()23423452345234---⨯+++-----⨯++. 令111234t ++=,则 原式=11(1)()(1)55t t t t -+--- =22114555t t t t t +---+ =15 问题:(1)计算1111111111111111111(1...)(...)(1...)(...)2342014234520152345201420152342014-----⨯+++++--------⨯++++。
2017年中考数学备考专题复习 阅读理解问题(含解析)
2017年中考备考专题复习:阅读理解问题一、单选题1、(2016•岳阳)对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b 时,max{a,b]=b,如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A、0B、2C、3D、42、(2016•梅州)对于实数a、b,定义一种新运算“⊗”为:a⊗b= ,这里等式右边是实数运算.例如:1⊗3= .则方程x⊗(﹣2)= ﹣1的解是()A、x=4B、x=5C、x=6D、x=73、(2016•杭州)设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A、②③④B、①③④C、①②④D、①②③4、(2016•济南)定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”.例如:M(1,1),N(﹣2,﹣2)都是“平衡点”.当﹣1≤x≤3时,直线y=2x+m上有“平衡点”,则m的取值范围是()A、0≤m≤1B、﹣3≤m≤1C、﹣3≤m≤3D、﹣1≤m≤0二、填空题5、(2016•黔西南州)阅读材料并解决问题:求1+2+22+23+…+22014的值,令S=1+2+22+23+…+22014等式两边同时乘以2,则2S=2+22+23+…+22014+22015两式相减:得2S﹣S=22015﹣1所以,S=22015﹣1依据以上计算方法,计算1+3+32+33+…+32015=________.三、解答题6、(2015•绥化)自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:(1)若a>0,b>0,则>0;若a<0,b<0,则>0;(2)若a>0,b<0,则<0;若a<0,b>0,则<0.反之:(1)若>0,则或(2)<0,则____________ .根据上述规律,求不等式>0的解集.7、(2015•山西)阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[()n﹣()n]表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.8、先阅读下列材料,然后解答问题:材料1 从3张不同的卡片中选取2张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同元素中选取2个元素的排列,排列数记为A32=3×2=6.一般地,从n个不同元素中选取m个元素的排列数记作A n m,A n m=n(n-1)(n-2)…(n-m+1)(m≤n).例:从5个不同元素中选3个元素排成一列的排列数为:A53=5×4×3=60.材料2 从3张不同的卡片中选取2张,有3种不同的选法,抽象成数学问题就是从3个元素中选取2个元素的组合,组合数记为C32==3.一般地,从n个不同元素中选取m个元素的组合数记作C n m,C n m=(m≤n).例:从6个不同元素中选3个元素的组合数为:C63==20.问:(1)从7个人中选取4人排成一排,有多少种不同的排法?(2)从某个学习小组8人中选取3人参加活动,有多少种不同的选法?9、(2016•巴中)定义新运算:对于任意实数m、n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:﹣3☆2=(﹣3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0,请判断方程:2x2﹣bx+a=0的根的情况.四、综合题10、(2015•济宁)阅读材料:在一个三角形中,各边和它所对角的正弦的比相等,==,利用上述结论可以求解如下题目:在△ABC中,∠A、∠B、∠C的对边分别为a,b,c.若∠A=45°,∠B=30°,a=6,求b.解:在△ABC中,∵=∴b====3.理解应用:如图,甲船以每小时30海里的速度向正北方向航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,且乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟到达A2时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10海里.(1)判断△A1A2B2的形状,并给出证明(2)求乙船每小时航行多少海里?11、(2015•北京)阅读下列材料:2015年清明小长假,北京市属公园开展以“清明踏青,春色满园”为主题的游园活动,虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次.其中,玉渊潭公园的樱花、北京植物园的桃花受到了游客的热捧,两公园的游客接待量分别为38万人次、21.75万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次、20万人次、17.6万人次;北京动物园游客接待量为18万人次,熊猫馆的游客密集度较高.2014年清明小长假,天气晴好,北京市属公园游客接待量约为200万人次,其中,玉渊潭公园游客接待量比2013 年清明小长假增长了25%;颐和园游客接待量为26.2万人次,2013 年清明小长假增加了4.6万人次;北京动物园游客接待量为22万人次.2013年清明小长假,玉渊潭公园、陶然亭公园、北京动物园游客接待量分别为32万人次、13万人次、14.9 万人次.根据以上材料解答下列问题:(1)2014年清明小长假,玉渊潭公园游客接待量为________ 万人次(2)选择统计表或统计图,将2013﹣2015年清明小长假玉渊潭公园、颐和园和北京动物园的游客接待量表示出来.12、(2015•遂宁)阅读下列材料,并用相关的思想方法解决问题.计算:(1﹣﹣﹣)×(+++)﹣(1﹣﹣﹣﹣)×(++).令++=t,则原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣t﹣t+t2=问题:(1)计算(1﹣﹣﹣﹣…﹣)×(++++…++)﹣(1﹣﹣﹣﹣﹣…﹣﹣)×(+++…+);(2)解方程(x2+5x+1)(x2+5x+7)=7.13、(2015•张家界)阅读下列材料,并解决相关的问题.按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为a1,依此类推,排在第n位的数称为第n项,记为an.一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0).如:数列1,3,9,27,…为等比数列,其中a1=1,公比为q=3.(1)等比数列3,6,12,…的公比q为________ ,第4项是________(2)如果一个数列a1, a2, a3, a4,…是等比数列,且公比为q,那么根据定义可得到:=q,=q,=q,…=q.所以:a2=a1•q,a3=a2•q=(a1•q)•q=a1•q2, a4=a3•q=(a1•q2)•q=a1•q3,…由此可得:an =________(用a1和q的代数式表示).(3)若一等比数列的公比q=2,第2项是10,请求它的第1项与第4项.14、(2015•珠海)阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5 即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴y=﹣1把y=﹣1代入①得x=4,∴方程组的解为.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组;(2)已知x,y满足方程组(i)求x2+4y2的值;(ii)求+的值.15、(2015•凉山州)阅读理解材料一:一组对边平行,另一组对边不平行的四边形叫梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.梯形的中位线具有以下性质:梯形的中位线平行于两底,并且等于两底和的一半.如图(1):在梯形ABCD中:AD∥BC∵E、F是AB、CD的中点∴EF∥AD∥BCEF=(AD+BC)材料二:经过三角形一边的中点与另一边平行的直线必平分第三边如图(2):在△ABC中:∵E是AB的中点,EF∥BC∴F是AC的中点如图(3)在梯形ABCD中,AD∥BC,AC⊥BD于O,E、F分别为AB、CD的中点,∠DBC=30°请你运用所学知识,结合上述材料,解答下列问题.(1)求证:EF=AC;(2)若OD=,OC=5,求MN的长.16、(2016•德州)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)17、(2016•济宁)已知点P(x0, y)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d= = = = .根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y= x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.18、(2016•台州)定义:有三个内角相等的四边形叫三等角四边形.(1)三等角四边形ABCD中,∠A=∠B=∠C,求∠A的取值范围;(2)如图,折叠平行四边形纸片DEBF,使顶点E,F分别落在边BE,BF上的点A,C处,折痕分别为DG,DH.求证:四边形ABCD是三等角四边形.(3)三等角四边形ABCD中,∠A=∠B=∠C,若CB=CD=4,则当AD的长为何值时,AB的长最大,其最大值是多少?并求此时对角线AC的长.19、(2016•舟山)我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究;如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展;如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.20、(2016•北京)阅读下列材料:北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.2%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2749.3亿元,占地区生产总值的13.1%,创历史新高,2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.根据以上材料解答下列问题:(1)用折线图将2011﹣2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约________亿元,你的预估理由________.21、(2016•铜仁市)阅读材料:关于三角函数还有如下的公式:sin(α±β)=sinαcosβ±cosαsinβtan(α±β)=利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.例:tan75°=tan(45°+30°)= = =2+根据以上阅读材料,请选择适当的公式解答下面问题(1)计算:sin15°;(2)某校在开展爱国主义教育活动中,来到烈士纪念碑前缅怀和纪念为国捐躯的红军战士.李三同学想用所学知识来测量如图纪念碑的高度.已知李三站在离纪念碑底7米的C处,在D点测得纪念碑碑顶的仰角为75°,DC为米,请你帮助李三求出纪念碑的高度.22、(2016•大连)阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).答案解析部分一、单选题1、【答案】B【考点】分段函数【解析】【解答】解:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,故选B【分析】分x≥﹣1和x<﹣1两种情况进行讨论计算,此题是分段函数题,主要考查了新定义,解本题的关键是分段.2、【答案】B【考点】分式方程的解,定义新运算【解析】【解答】解:根据题意,得= ﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选B.【分析】所求方程利用题中的新定义化简,求出解即可.此题考查了解分式方程,弄清题中的新定义是解本题的关键.3、【答案】C【考点】整式的混合运算,因式分解的应用,二次函数的最值【解析】【解答】解:①根据题意得:a@b=(a+b)2﹣(a﹣b)2∴(a+b)2﹣(a﹣b)2=0,整理得:(a+b+a﹣b)(a+b﹣a+b)=0,即4ab=0,解得:a=0或b=0,正确;②∵a@(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4aca@b+a@c=(a+b)2﹣(a﹣b)2+(a+c)2﹣(a﹣c)2=4ab+4ac,∴a@(b+c)=a@b+a@c正确;③a@b=a2+5b2, a@b=(a+b)2﹣(a﹣b)2,令a2+5b2=(a+b)2﹣(a﹣b)2,解得,a=0,b=0,故错误;④∵a@b=(a+b)2﹣(a﹣b)2=4ab,(a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,∴a2+b2+2ab≥4ab,∴4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab,解得,a=b,∴a@b最大时,a=b,故④正确,故选C.【分析】根据新定义可以计算出啊各个小题中的结论是否成立,从而可以判断各个小题中的说法是否正确,从而可以得到哪个选项是正确的.本题考查因式分解的应用、整式的混合运算、二次函数的最值,解题的关键是明确题意,找出所求问题需要的条件.4、【答案】 B【考点】一元一次不等式组的应用【解析】【解答】解:∵x=y,∴x=2x+m,即x=﹣m.∵﹣1≤x≤3,∴﹣1≤﹣m≤3,∴﹣3≤m≤1.故选B.【分析】根据x=y,﹣1≤x≤3可得出关于m的不等式,求出m的取值范围即可.本题考查的是一次函数图象上点的坐标特点,根据题意得出关于m的不等式是解答此题的关键.二、填空题5、【答案】【考点】探索数与式的规律【解析】【解答】解:令s=1+3+32+33+ (32015)等式两边同时乘以3得:3s=3+32+33+ (32016)两式相减得:2s=32016﹣1.所以S= .【分析】令s=1+3+32+33+…+32015,然后再等式的两边同时乘以2,接下来,依据材料中的方程进行计算即可.本题主要考查的是数字的变化规律,依据材料找出解决问题的方法和步骤是解题的关键.三、解答题6、【答案】解:(2)若<0,则或;故答案为:或;由上述规律可知,不等式转化为或,所以,x>2或x<﹣1.【考点】一元一次不等式组的应用【解析】【分析】根据两数相除,异号得负解答;先根据同号得正把不等式转化成不等式组,然后根据一元一次不等式组的解法求解即可.7、【答案】【解答】解:第1个数,当n=1时,[()n﹣()n]=(﹣)=×=1.第2个数,当n=2时,[()n﹣()n]=[()2﹣()2]=×(+)(﹣)=×1×=1.【考点】二次根式的应用【解析】【分析】分别把1、2代入式子化简求得答案即可.8、【答案】解:(1)A74=7×6×5×4=840(种).(2)C83==56(种)【考点】探索数与式的规律【解析】【分析】探索数与式的规律。
中考备战策略 2017中考数学(人教)复习:第二部分 专题突破 专题五 阅读理解问题
2 2
【点拨】本题考查了用换元法求值和解方程,正 确换元是解题的关键. 1 1 1 解: (1)设 + +…+ = t, 2 3 2 015
1 1 则原式= (1- t)· t+ -1- t- t 2 016 2 016
2 2 5
6. (2016· 随州 )如图 1, PT 与⊙O1 相切于点 T, PAB 与⊙ O1 相交于 A,B 两点,可证明△ PTA∽△ PBT,从 而有 PT = PA· PB.请应用以上结论解决下列问题:如 图 2, PAB, PCD 分别与⊙ O2 相交于 A, B, C, D 四 点,已知 PA= 2, PB= 7, PC= 3,则 CD= .
(1)如图 1,在△ ABC 中,CD 为角平分线,∠ A= 40° ,∠ B= 60° ,求证: CD 为△ ABC 的完美分割线.
(2)在△ ABC 中,∠ A= 48° ,CD 是△ ABC 的完美 分割线,且△ ACD 为等腰三角形,求∠ ACB 的度数.
(3)如图 2,在△ ABC 中, AC= 2, BC= 2, CD 是△ ABC 的完美分割线,且△ ACD 是以 CD 为底边的 等腰三角形.求完美分割线 CD 的长.
y( x≥ 0), y′),给出如下定义:若 y′= 则称点 Q 为 - y( x< 0)
点 P 的 “可控变点 ”. 【导学号 90280427】 例如:点 (1,2)的 “可控变点 ”为点(1,2),点(- 1, 3)的 “可控变点 ”为点(- 1,- 3).
(1)若点 (- 1, - 2)是一次函数 y= x+ 3 图象上点 M 的 “可控变点 ”,则点 M 的坐标为 (- 1, 2) ; 【解析】根据 “可控变点 ”的定义可知点 M 的坐标 为 (- 1, 2);
2017年人教版中考数学《阅读理解》专题复习(含答案)
b
b
( 2)若 a>0 , b<0 ,则 a < 0 ,若 a< 0, b> 0 ,则 a < 0.
b
b
反之,( 1)若 a > 0,则
a>0, a<0, 或
b
b>0, b<0;
( 2)若 a < 0 ,则 __________ 或 _____________ . b
根据上述规律,求不等式
x2
﹙A﹚
> 0,
x1
﹙ B﹚ 2x2-3x+2019 <2018 的解集 .
分析: 对于( 2),根据两数相除,异号得负解答;
先根据同号得正把不等式转化成不等式组,然后解一元一次不等式组即可.
对于( A ),据分式不等式大于零可以得到其分子、分母同号,从而转化为两个一元一
次不等式组求解即可;
对于( B ),将一元二次不等 式的左边因式分解后化为两个一元一次不等式组求解即可
3 或- 3. .
本题容易忽视讨论思想,会少一种情况
. [ 来源:学科网 ]
评注: 本题需要学生先通过阅读掌握新定义公式, 再利用类似方法解决问题. 考查了学
生观察问题,分析问题,解决问题的能力.
跟踪训练:
1. 若定义: f(a,b)=(-a,b) , g(m,n)=(m,-n) , 例如 f (1,2) ( 1,2) , g( 4, 5) ( 4,5) , 则
.
解 :( 2)若 < 0,则
或
故答案为
或
;
由上述规律可知,不等式﹙ A﹚转化为
或
所以 x> 2 或 x<﹣ 1.
不等式 ﹙ B﹚ 即为 2x2-3x+1< 0. ∵2x 2-3x+1= ﹙ x- 1﹚( 2x-1 ),∴ 2x2-3x+1 < 0 可化为﹙ x- 1﹚( 2x-1)< 0.由上述规律可
2017中考数学复习:中考数学阅读理解题常考题型_答题技巧
2017中考数学复习:中考数学阅读理解题常考题型_答题技巧
这类题贴近实际,可以引导学生关心社会,对促进中学数学教学改革,强化学生的数学应用意识,优化学生的思维品质,提高学生的数学思维能力,培养学生的个性品质具有重要意义。
阅读理解型问题在近年的全国各地的中考试题中频频出现,特别引人注目,这些试题不再囿于教材的内容及其方法,以新颖别致的取材、富有层次和创造力的设问独树一帜.这些试题中还常常出现新的概念和方法,不仅要求学生理解这些新的概念和方法,而且要灵活运用这些新的概念和方法去分析、解决一些简单的问题.在阅读理解型问题中,除了考查学生的分析分析、综合、抽象、概括等演绎推理能力,即逻辑推理能力外,还经常考查学生的观察、猜想、不完全归纳、类比、联想等合情推理能力,考查学生的直觉思维.因此,这类问题需要学生通过对阅读材料的阅读理解,然后进行合情推理,就其本质进行归纳加工、猜想、类比和联想,作出合情判断和推理。
中考数学专题14阅读理解问题(第01期)-2017年中考数学试题分项版解析汇编(原卷版)
专题14 阅读理解问题一、选择题目1.(2017山东德州第12题)观察下列图形,它是把一个三角形分别连接这个三角形的中点,构成4个小三角形,挖去中间的小三角形(如题1);对剩下的三角形再分别重复以上做法,……,将这种做法继续下去(如图2,图3……),则图6中挖去三角形的个数为()A.121 B.362 C.364 D.7292.(2017贵州黔东南州第10题)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2017 B.2016 C.191 D.1903.(2017四川泸州第10题)已知三角形的三边长分别为a、b、c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron,约公元50年)给出求其面积的海伦公式S=,其中p=2a b c++;我国南宋时期数学家秦九韶(约1202-1261)曾提出利用三角形的三边求其面积的秦九韶公式S=12,若一个三角形的三边长分别为2,3,4,则其面积是( )二、填空题目1.(2017四川宜宾第16题)规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n +0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是 .(写出所有正确说法的序号) ①当x=1.7时,[x]+(x )+[x )=6; ②当x=﹣2.1时,[x]+(x )+[x )=﹣7; ③方程4[x]+3(x )+[x )=11的解为1<x <1.5;④当﹣1<x <1时,函数y=[x]+(x )+x 的图象与正比例函数y=4x 的图象有两个交点. 三、解答题1.(2017浙江衢州第22题)定义:如图1,抛物线与轴交于A ,B 两点,点P 在抛物线上(点P 与A ,B 两点不重合),如果△ABP 的三边满足,则称点P 为抛物线的勾股点。
中考数学复习专题3+阅读理解问题
专题三阅读理解问题专题透视■ 典例解析■ 专题实训专题透视阅读理解型问题是通过阅读材料,理解其实质,揭示其方法规律从而解决新问题.既考查学生的阅读能力、自学能力,又考查学生的解题能力和数学应用能力.这类题目能够帮助学生实现从模仿到创造的思维过程,符合学生的认知规律.阅读理解题一般是提供一定的材料,或介绍一个概念,或给出一种解法等,让你在理解材料的基础上,获得探索解决问题的途径,用于解决后面的问题.基本思路是:“阅读f分析一理解-解决问题典例解析一、新概念学习型新概念学习型是指在题目中先构建一个新数学概念(或 定义),然后再根据新概念提出要解决的相关问题.主要目的 是考査学生的自学能力和对新知识的理解与运用能力.解决这 类问题:要求学生准确理解题目中所构建的新概念,将学习 的新概念和已有的知识相结合,并进行运用. nm (2015 -临沂)定义:给定关于x 的函数y,对于该函 数图象;n ;n上任意两点(x p y。
, (x2, y2).当Xi%时,都Wy1<y2>称该函数为增函数.根据上述定义,可以判断下面所给的函数中,是增函数的有(填上所有正确答案的序号).①y=2x;②y=-x+l; @y=x2 (x>0) ; @y =【分析】结合一次函数、二次函数、反比例函数的性质,严格按照新定义的要求验证即可.【解答】假设点(X1,y T) , (x2, y2)在y=2x上, 当X]〈X2时,y?-y 1=2x2-2xi=2 g-x】)>0.则y=2x是增函数.同理可证y=x2 (x>0)是增函数,y=-x+l不是增函数.y =--在每个象限内是增函数,但当x1<0<x2W,有yi>y2,则v y = -l 不是增函数.1=1【答彙]①③【点评】本题考查了一次函数、二次函数及反比例函数的性质,正确理解增函数的定义是解题的关键.翼②(2014・四川舟山)类比梯形的定义,我们定义:有 一组对角相等而另一组对角不相等的凸四边形叫作“等对 角四边形”.(1)已知:如图1,四边形ABCD 是“等对角四边形”, /AUNC, ZA=70° , ZB=80° .求NC, ND 的度数.(2)在探究“等对角四边形”性质时:!1! !1! !1! U!①小红画了一个“等对角四边形"ABCD (如图2),其中!1!ZABC=ZADC, AB=AD,此时她发现CB=CD成立.请你证明此结论;②由此小红猜想:“对于任意'等对角四边形',当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗 ?若正确,请证明;若不正确,请举出反例.在“等对角四边形力ABCD 中,ZDAB=60° , AB=5, AD=4.求对角线AC 的长. (3)已知:ZABC=90°U!【分析】(1)利用“等对角四边形”这个概念来计算.!1!(2)①利用等边对等角和等角对等边来证明;②举例画图.(3)①当ZADC=ZABC=90°时,延长AD, BC相交于点E, 利用勾股定理求解;②当ZBCD=ZDAB=60°时,过点D作DE1AB于点E, DF丄专题三阅读理解问题BC 于点F,求线段利用勾股定理求解.【解答】(1)如图IL.等对角四边形ABCD, ZA^ZC,A ZD=ZB=80° ,A ZC=360° -70° -80° -80° =130° .专题三阅读理解问题①如図Z,连核BD,VAB=AD,•I ZABD=ZADB.•/ ZABC=ZADC,:.Z ABC- ZABD= Z ADC- Z ADB,:.ZCBD=ZCDB,ACB=CD.②不正确,AB=AD,但 CB^CD,反例:如图3, ZA=ZC=90° ,C 图(3)①如图4,当ZADC=ZABC=90°时,延长AD, BC相交于点E, V ZABC=90° , ZDAB=60° ,AB=5,AAE=10,ADE=AE-AD=10-4=6.VZEDC=90° , ZE=30° ,二CD = 2>/3,•I AC = V A D2+CD2=M +(2构2 = 2^7.②如图5,当NBCD二NDAB二60。
专题14 阅读理解问题 2017年中考数学分项汇编
一、选择题1.【2016广东省深圳市二模,2016广东省汕头市潮南区模拟(B卷】两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=12AC•BD,其中正确的结论有()A.0个 B.1个 C.2个 D.3个【答案】D∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故②正确;四边形ABCD的面积=1122ADB BDCS S DB OA DB OC+=⋅+⋅V V=12AC•BD,故③正确;故选D.考点:全等三角形的判定二、解答题1.【2016广东省广州市华师附中一模】类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.(2)问题探究:①小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由.②如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并将Rt△ABC沿∠ABC的平分线BB′方向平移得到△A′B′C′,连结AA′,BC′,小红要使平移后的四边形ABC′A′是“等邻边四边形”,应平移多少距离(即线段BB′的长)?(3)拓展应用:如图3,“等邻边四边形”ABCD中,AB=AD,∠BAD+∠BCD=90°,AC,BD为对角线,AC=2AB,试探究BC,CD,BD的数量关系.【答案】(1)AB=BC或BC=CD或CD=AD或AD=AB(任写一个即可);(2)①正确(3)BC2+CD2=2BD2如图1,当AA′=AB时,BB′=AA′=AB=2;(I)如图2,当AA′=A′C′时,BB′=AA′=A′C′=5;(III)当A′C′=BC′=5时,如图3,延长C′B′交AB于点D,则C′B′⊥AB,∵BB′平分∠ABC,∴∠ABB′=12∠ABC=45°,∴∠BB′D=′∠ABB′=45°∴B′D=B, 设B′D=BD=x,则C′D=x +1,BB′=2x ,(Ⅳ)当BC′=AB=2时,如图4,与(Ⅲ)方法一同理可得:BD 2+(C′D)2=(BC′)2, 设B′D=BD=x, 则x 2+(x+1)2=22,解得:x 1=17-+,x 2=17--(不合题意,舍去),∴BB′=2x=1422-;(3)BC ,CD ,BD 的数量关系为:BC 2+CD 2=2BD 2,如图5, ∵AB=AD ,∴将△ADC 绕点A 旋转到△ABF ,连接CF , ∴△ABF ≌△ADC ,考点:四边形综合题2.【2016广东省揭阳市普宁市二模】已知函数y1=23x+2的图象分别与坐标轴相交于A,B两点(如图所示),与反比例函数y2=kx(x>0)的图象相交于C点.(1)写出A、B两点的坐标;(2)作CD⊥x轴,垂足为D,如果OB是△ACD的中位线,求反比例函数y=kx(x>0)的关系式;(3)根据图象(x>0)直接写出y1>y2时的取值范围.【答案】(1)B(0,2),A(﹣3,0)(2)12yx(3)x>3【解析】试题分析:(1)分别令一次函数解析式中x=0、y=0求出y、x的值,从而得出点A、B的坐标;(2)由A、B点的坐标结合中位线的性质,找出线段OD、DC的长度,从而找出点C的坐标,再由点C的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数的系数k,从而得出结论;(3)观察函数图象,根据两函数图象的上下关系结合交点的坐标,即可得出结论.(3)观察函数图象,发现:当x>3时,一次函数图象在反比例函数图象的上方,∴不等式y1>y2时的取值范围为x>3.考点:1、反比例函数,2、一次函数,3、三角形的中位线3.【2016广东省深圳市南山区二模】【阅读发现】如图①,在正方形ABCD的外侧,作两个等边三角形ABE 和ADF,连结ED与FC交于点M,则图中△ADE≌△DFC,可知ED=FC,求得∠DMC=.【拓展应用】如图②,在矩形ABCD(AB>BC)的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.(1)求证:ED=FC.(2)若∠ADE=20°,求∠DMC的度数.【答案】90°;(1)证明见解析(2)100°(1)∵△ABE为等边三角形,∴∠EAB=60°,EA=AB.∵△ADF为等边三角形,∴∠FDA=60°,AD=FD.考点:1、正方形的性质;2、全等三角形的判定与性质;3、矩形的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年中考备考专题复习:阅读理解问题一、单选题1、(2016•岳阳)对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b 时,max{a,b]=b,如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A、0B、2C、3D、42、(2016•梅州)对于实数a、b,定义一种新运算“⊗”为:a⊗b= ,这里等式右边是实数运算.例如:1⊗3= .则方程x⊗(﹣2)= ﹣1的解是()A、x=4B、x=5C、x=6D、x=73、(2016•杭州)设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A、②③④B、①③④C、①②④D、①②③4、(2016•济南)定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”.例如:M(1,1),N(﹣2,﹣2)都是“平衡点”.当﹣1≤x≤3时,直线y=2x+m上有“平衡点”,则m的取值范围是()A、0≤m≤1B、﹣3≤m≤1C、﹣3≤m≤3D、﹣1≤m≤0二、填空题5、(2016•黔西南州)阅读材料并解决问题:求1+2+22+23+…+22014的值,令S=1+2+22+23+…+22014等式两边同时乘以2,则2S=2+22+23+…+22014+22015两式相减:得2S﹣S=22015﹣1所以,S=22015﹣1依据以上计算方法,计算1+3+32+33+…+32015=________.三、解答题6、(2015•绥化)自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:(1)若a>0,b>0,则>0;若a<0,b<0,则>0;(2)若a>0,b<0,则<0;若a<0,b>0,则<0.反之:(1)若>0,则或(2)<0,则____________ .根据上述规律,求不等式>0的解集.7、(2015•山西)阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[()n﹣()n]表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.8、先阅读下列材料,然后解答问题:材料1 从3张不同的卡片中选取2张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同元素中选取2个元素的排列,排列数记为A32=3×2=6.一般地,从n个不同元素中选取m个元素的排列数记作A n m,A n m=n(n-1)(n-2)…(n-m+1)(m≤n).例:从5个不同元素中选3个元素排成一列的排列数为:A53=5×4×3=60.材料2 从3张不同的卡片中选取2张,有3种不同的选法,抽象成数学问题就是从3个元素中选取2个元素的组合,组合数记为C32==3.一般地,从n个不同元素中选取m个元素的组合数记作C n m,C n m=(m≤n).例:从6个不同元素中选3个元素的组合数为:C63==20.问:(1)从7个人中选取4人排成一排,有多少种不同的排法?(2)从某个学习小组8人中选取3人参加活动,有多少种不同的选法?9、(2016•巴中)定义新运算:对于任意实数m、n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:﹣3☆2=(﹣3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0,请判断方程:2x2﹣bx+a=0的根的情况.四、综合题10、(2015•济宁)阅读材料:在一个三角形中,各边和它所对角的正弦的比相等,==,利用上述结论可以求解如下题目:在△ABC中,∠A、∠B、∠C的对边分别为a,b,c.若∠A=45°,∠B=30°,a=6,求b.解:在△ABC中,∵=∴b====3.理解应用:如图,甲船以每小时30海里的速度向正北方向航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,且乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟到达A2时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10海里.(1)判断△A1A2B2的形状,并给出证明(2)求乙船每小时航行多少海里?11、(2015•北京)阅读下列材料:2015年清明小长假,北京市属公园开展以“清明踏青,春色满园”为主题的游园活动,虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次.其中,玉渊潭公园的樱花、北京植物园的桃花受到了游客的热捧,两公园的游客接待量分别为38万人次、21.75万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次、20万人次、17.6万人次;北京动物园游客接待量为18万人次,熊猫馆的游客密集度较高.2014年清明小长假,天气晴好,北京市属公园游客接待量约为200万人次,其中,玉渊潭公园游客接待量比2013 年清明小长假增长了25%;颐和园游客接待量为26.2万人次,2013 年清明小长假增加了4.6万人次;北京动物园游客接待量为22万人次.2013年清明小长假,玉渊潭公园、陶然亭公园、北京动物园游客接待量分别为32万人次、13万人次、14.9 万人次.根据以上材料解答下列问题:(1)2014年清明小长假,玉渊潭公园游客接待量为________ 万人次(2)选择统计表或统计图,将2013﹣2015年清明小长假玉渊潭公园、颐和园和北京动物园的游客接待量表示出来.12、(2015•遂宁)阅读下列材料,并用相关的思想方法解决问题.计算:(1﹣﹣﹣)×(+++)﹣(1﹣﹣﹣﹣)×(++).令++=t,则原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣t﹣t+t2=问题:(1)计算(1﹣﹣﹣﹣…﹣)×(++++…++)﹣(1﹣﹣﹣﹣﹣…﹣﹣)×(+++…+);(2)解方程(x2+5x+1)(x2+5x+7)=7.13、(2015•张家界)阅读下列材料,并解决相关的问题.按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为a1,依此类推,排在第n位的数称为第n项,记为an.一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0).如:数列1,3,9,27,…为等比数列,其中a1=1,公比为q=3.(1)等比数列3,6,12,…的公比q为________ ,第4项是________(2)如果一个数列a1, a2, a3, a4,…是等比数列,且公比为q,那么根据定义可得到:=q,=q,=q,…=q.所以:a2=a1•q,a3=a2•q=(a1•q)•q=a1•q2, a4=a3•q=(a1•q2)•q=a1•q3,…由此可得:an =________(用a1和q的代数式表示).(3)若一等比数列的公比q=2,第2项是10,请求它的第1项与第4项.14、(2015•珠海)阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5 即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴y=﹣1把y=﹣1代入①得x=4,∴方程组的解为.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组;(2)已知x,y满足方程组(i)求x2+4y2的值;(ii)求+的值.15、(2015•凉山州)阅读理解材料一:一组对边平行,另一组对边不平行的四边形叫梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.梯形的中位线具有以下性质:梯形的中位线平行于两底,并且等于两底和的一半.如图(1):在梯形ABCD中:AD∥BC∵E、F是AB、CD的中点∴EF∥AD∥BCEF=(AD+BC)材料二:经过三角形一边的中点与另一边平行的直线必平分第三边如图(2):在△ABC中:∵E是AB的中点,EF∥BC∴F是AC的中点如图(3)在梯形ABCD中,AD∥BC,AC⊥BD于O,E、F分别为AB、CD的中点,∠DBC=30°请你运用所学知识,结合上述材料,解答下列问题.(1)求证:EF=AC;(2)若OD=,OC=5,求MN的长.16、(2016•德州)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)17、(2016•济宁)已知点P(x0, y)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d= = = = .根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y= x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.18、(2016•台州)定义:有三个内角相等的四边形叫三等角四边形.(1)三等角四边形ABCD中,∠A=∠B=∠C,求∠A的取值范围;(2)如图,折叠平行四边形纸片DEBF,使顶点E,F分别落在边BE,BF上的点A,C处,折痕分别为DG,DH.求证:四边形ABCD是三等角四边形.(3)三等角四边形ABCD中,∠A=∠B=∠C,若CB=CD=4,则当AD的长为何值时,AB的长最大,其最大值是多少?并求此时对角线AC的长.19、(2016•舟山)我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究;如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展;如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.20、(2016•北京)阅读下列材料:北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.2%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2749.3亿元,占地区生产总值的13.1%,创历史新高,2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.根据以上材料解答下列问题:(1)用折线图将2011﹣2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约________亿元,你的预估理由________.21、(2016•铜仁市)阅读材料:关于三角函数还有如下的公式:sin(α±β)=sinαcosβ±cosαsinβtan(α±β)=利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.例:tan75°=tan(45°+30°)= = =2+根据以上阅读材料,请选择适当的公式解答下面问题(1)计算:sin15°;(2)某校在开展爱国主义教育活动中,来到烈士纪念碑前缅怀和纪念为国捐躯的红军战士.李三同学想用所学知识来测量如图纪念碑的高度.已知李三站在离纪念碑底7米的C处,在D点测得纪念碑碑顶的仰角为75°,DC为米,请你帮助李三求出纪念碑的高度.22、(2016•大连)阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).答案解析部分一、单选题1、【答案】B【考点】分段函数【解析】【解答】解:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,故选B【分析】分x≥﹣1和x<﹣1两种情况进行讨论计算,此题是分段函数题,主要考查了新定义,解本题的关键是分段.2、【答案】B【考点】分式方程的解,定义新运算【解析】【解答】解:根据题意,得= ﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选B.【分析】所求方程利用题中的新定义化简,求出解即可.此题考查了解分式方程,弄清题中的新定义是解本题的关键.3、【答案】C【考点】整式的混合运算,因式分解的应用,二次函数的最值【解析】【解答】解:①根据题意得:a@b=(a+b)2﹣(a﹣b)2∴(a+b)2﹣(a﹣b)2=0,整理得:(a+b+a﹣b)(a+b﹣a+b)=0,即4ab=0,解得:a=0或b=0,正确;②∵a@(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4aca@b+a@c=(a+b)2﹣(a﹣b)2+(a+c)2﹣(a﹣c)2=4ab+4ac,∴a@(b+c)=a@b+a@c正确;③a@b=a2+5b2, a@b=(a+b)2﹣(a﹣b)2,令a2+5b2=(a+b)2﹣(a﹣b)2,解得,a=0,b=0,故错误;④∵a@b=(a+b)2﹣(a﹣b)2=4ab,(a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,∴a2+b2+2ab≥4ab,∴4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab,解得,a=b,∴a@b最大时,a=b,故④正确,故选C.【分析】根据新定义可以计算出啊各个小题中的结论是否成立,从而可以判断各个小题中的说法是否正确,从而可以得到哪个选项是正确的.本题考查因式分解的应用、整式的混合运算、二次函数的最值,解题的关键是明确题意,找出所求问题需要的条件.4、【答案】 B【考点】一元一次不等式组的应用【解析】【解答】解:∵x=y,∴x=2x+m,即x=﹣m.∵﹣1≤x≤3,∴﹣1≤﹣m≤3,∴﹣3≤m≤1.故选B.【分析】根据x=y,﹣1≤x≤3可得出关于m的不等式,求出m的取值范围即可.本题考查的是一次函数图象上点的坐标特点,根据题意得出关于m的不等式是解答此题的关键.二、填空题5、【答案】【考点】探索数与式的规律【解析】【解答】解:令s=1+3+32+33+ (32015)等式两边同时乘以3得:3s=3+32+33+ (32016)两式相减得:2s=32016﹣1.所以S= .【分析】令s=1+3+32+33+…+32015,然后再等式的两边同时乘以2,接下来,依据材料中的方程进行计算即可.本题主要考查的是数字的变化规律,依据材料找出解决问题的方法和步骤是解题的关键.三、解答题6、【答案】解:(2)若<0,则或;故答案为:或;由上述规律可知,不等式转化为或,所以,x>2或x<﹣1.【考点】一元一次不等式组的应用【解析】【分析】根据两数相除,异号得负解答;先根据同号得正把不等式转化成不等式组,然后根据一元一次不等式组的解法求解即可.7、【答案】【解答】解:第1个数,当n=1时,[()n﹣()n]=(﹣)=×=1.第2个数,当n=2时,[()n﹣()n]=[()2﹣()2]=×(+)(﹣)=×1×=1.【考点】二次根式的应用【解析】【分析】分别把1、2代入式子化简求得答案即可.8、【答案】解:(1)A74=7×6×5×4=840(种).(2)C83==56(种)【考点】探索数与式的规律【解析】【分析】探索数与式的规律.9、【答案】解:∵2☆a的值小于0,∴22a+a=5a<0,解得:a<0.在方程2x2﹣bx+a=0中,△=(﹣b)2﹣8a≥﹣8a>0,∴方程2x2﹣bx+a=0有两个不相等的实数根【考点】根的判别式【解析】【分析】根据2☆a的值小于0结合新运算可得出关于a的一元一次不等式,解不等式可得出a 的取值范围,再由根的判别式得出△=(﹣b)2﹣8a,结合a的取值范围即可得知△的正负,由此即可得出结论.本题考查了根的判别式以及新运算,解题的关键是找出△>0.本题属于基础题,难度不大,解决该题型题目时,根据根的判别式的正负确定根的个数是关键.四、综合题10、【答案】(1)解:△A1A2B2是等边三角形,理由如下:连结A1B2.∵甲船以每小时30海里的速度向正北方向航行,航行20分钟到达A2,∴A1A2=30×=10,又∵A2B2=10,∠A1A2B2=60°,∴△A1A2B2是等边三角形(2)解:如图,∵B1N∥A1A2,∴∠A1B1N=180°﹣∠B1A1A2=180°﹣105°=75°,∴∠A1B1B2=75°﹣15°=60°.∵△A1A2B2是等边三角形,∴∠A2A1B2=60°,A1B2=A1A2=10,∴∠B1A1B2=105°﹣60°=45°.在△B1A1B2中,∵A1B2=10,∠B1A1B2=105°﹣60°=45°,∠A2A1B2=60°,由阅读材料可知,=,解得B1B2==,所以乙船每小时航行:÷=20海里.【考点】解直角三角形的应用-方向角问题【解析】【解答】(1)先根据路程=速度×时间求出A1A2=30×=10,又A2B2=10,∠A1A2B2=60°,根据有一个角是60°的等腰三角形是等边三角形即可得出△A1A2B2是等边三角形;(2)先由平行线的性质及方向角的定义求出∠A1B1B2=75°﹣15°=60°,由等边三角形的性质得出∠A2A1B2=60°,A1B2=A1A2=10,那么∠B1A1B2=105°﹣60°=45°.然后在△B1A1B2中,根据阅读材料可知,=,求出B1B2的距离,再由时间求出乙船航行的速度.【分析】此题考查了解直角三角形中方向角的问题,涉及知识点有等边三角形判定与性质,平行线性质,三角函数的应用等.11、【答案】(1)40(2)2013年颐和园的游客接待量是:26.2﹣4.6=21.6(万元).【考点】统计表,条形统计图【解析】【解答】(1)2014年,玉渊潭公园的游客接待量是:32×(1+25%)=40(万人).故答案是:40;(2)2013年颐和园的游客接待量是:26.2﹣4.6=21.6(万元).【分析】(1)2013年的人数乘以(1+25%)即可求解;(2)求出2014年颐和园的游客接待量,然后利用统计表即可表示.12、【答案】(1)解:设++…+=t,则原式=(1﹣t)×(t+)﹣(1﹣t﹣)×t=t+﹣t2﹣t﹣t+t2+t=;(2)解:设x2+5x+1=t,则原方程化为:t(t+6)=7,t2+6t﹣7=0,解得:t=﹣7或1,当t=1时,x2+5x+1=1,x2+5x=0,x(x+5)=0,x=0,x+5=0,x1=0,x2=﹣5;当t=﹣7时,x2+5x+1=﹣7,x2+5x+8=0,b2﹣4ac=52﹣4×1×8<0,此时方程无解;即原方程的解为:x1=0,x2=﹣5.【考点】有理数的混合运算,换元法解分式方程【解析】【分析】(1)设++…+=t,则原式=(1﹣t)×(t+)﹣(1﹣t﹣)×t,进行计算即可;(2)设x2+5x+1=t,则原方程化为:t(t+6)=7,求出t的值,再解一元二次方程即可.13、【答案】(1)2;24(2)a•q n﹣11(3)解:∵等比数列的公比q=2,第二项为10,∴a1==5,a4=a1•q3=5×23=40.【考点】探索数与式的规律【解析】【分析】(1)由第二项除以第一项求出公比q的值,确定出第4项即可;(2)根据题中的定义归纳总结得到通项公式即可;(3)由公比q与第二项的值求出第一项的值,进而确定出第4项的值.14、【答案】(1)【解答】解:把方程②变形:3(3x﹣2y)+2y=19③,把①代入③得:15+2y=19,即y=2,把y=2代入①得:x=3,则方程组的解为;(2)【解答】(i)由①得:3(x2+4y2)=47+2xy,即x2+4y2=③,把③代入②得:2×=36﹣xy,解得:xy=2,则x2+4y2=17;(ii)∵x2+4y2=17,∴(x+2y)2=x2+4y2+4xy=17+8=25,∴x+2y=5或x+2y=﹣5,则+==±.【考点】解二元一次方程组【解析】【分析】(1)模仿小军的“整体代换”法,求出方程组的解即可;(2)方程组整理后,模仿小军的“整体代换”法,求出所求式子的值即可.15、【答案】(1)证明:∵AD∥BC,∴∠ADO=∠DBC=30°,∴在Rt△AOD和Rt△BOC中,OA=AD,OC=BC,∴AC=OA+OC=(AD+BC),∵EF=(AD+BC),∴AC=EF;(2)解:∵AD∥BC,∴∠ADO=∠DBC=30°,∴在Rt△AOD和Rt△BOC中,OA=AD,OC=BC,∵OD=,OC=5,∴OA=3,∵AD∥EF,∴∠ADO=∠OMN=30°,∴ON=MN,∵AN=AC=(OA+OC)=4,∴ON=AN﹣OA=4﹣3=1,∴MN=2ON=2.【考点】含30度角的直角三角形,梯形中位线定理【解析】【分析】(1)由直角三角形中30°的锐角所对的直角边是斜边的一半,可得OA=AD,OC=BC,即可证明;(2)直角三角形中30°的锐角所对的直角边是斜边的一半,得出OA=3,利用平行线得出ON=MN,再根据AN=AC=4,得出ON=4﹣3=1,进而得出MN的值.16、【答案】(1)证明:如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH= BD,∵点F,G分别为边BC,CD的中点,∴FG∥BD,FG= BD,∴EH∥FG,EH=GF,∴中点四边形EFGH是平行四边形(2)四边形EFGH是菱形.证明:如图2中,连接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD即∠APC=∠BPD,在△APC和△BPD中,,∴△APC≌△BPD,∴AC=BD∵点E,F,G分别为边AB,BC,CD的中点,∴EF= AC,FG= BD,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形.(3)解:四边形EFGH是正方形.证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.【考点】全等三角形的判定与性质,平行四边形的判定与性质,菱形的判定与性质,正方形的判定与性质【解析】【分析】(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.(2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.(3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.本题考查平行四边形的判定和性质、全等三角形的判定和性质、菱形的判定和性质、正方形的判定和性质等知识,解题的关键是灵活应用三角形中位线定理,学会添加常用辅助线,属于中考常考题型.17、【答案】(1)解:因为直线y=x﹣1,其中k=1,b=﹣1,所以点P(1,﹣1)到直线y=x﹣1的距离为:d= = = =(2)解:⊙Q与直线y= x+9的位置关系为相切.理由如下:圆心Q(0,5)到直线y= x+9的距离为:d= = =2,而⊙O的半径r为2,即d=r,所以⊙Q与直线y= x+9相切(3)解:当x=0时,y=﹣2x+4=4,即点(0,4)在直线y=﹣2x+4,因为点(0,4)到直线y=﹣2x﹣6的距离为:d= = =2 ,因为直线y=﹣2x+4与y=﹣2x﹣6平行,所以这两条直线之间的距离为2【考点】一次函数的图象,切线的性质,一次函数的性质【解析】【分析】(1)根据点P到直线y=kx+b的距离公式直接计算即可;(2)先利用点到直线的距离公式计算出圆心Q到直线y= x+9,然后根据切线的判定方法可判断⊙Q与直线y= x+9相切;(3)利用两平行线间的距离定义,在直线y=﹣2x+4上任意取一点,然后计算这个点到直线y=﹣2x﹣6的距离即可.本题考查了一次函数的综合题:熟练掌握一次函数图象上点的坐标特征、切线的判定方法和两平行线间的距离的定义;提高阅读理解能力.18、【答案】(1)解:∵∠A=∠B=∠C,∴3∠A+∠ADC=360°,∴∠ADC=360°﹣3∠A.∵0<∠ADC<180°,∴0°<360°﹣3∠A<180°,∴60°<∠A<120°;(2)证明:∵四边形DEBF为平行四边形,∴∠E=∠F,且∠E+∠EBF=180°.∵DE=DA,DF=DC,∴∠E=∠DAE=∠F=∠DCF,∵∠DAE+∠DAB=180°,∠DCF+∠DCB=180°,∠E+∠EBF=180°,∴∠DAB=∠DCB=∠ABC,∴四边形ABCD是三等角四边形(3)①当60°<∠A<90°时,如图1,过点D作DF∥AB,DE∥BC,∴四边形BEDF是平行四边形,∠DFC=∠B=∠DEA,∴EB=DF,DE=FB,∵∠A=∠B=∠C,∠DFC=∠B=∠DEA,∴△DAE∽△DCF,AD=DE,DC=DF=4,设AD=x,AB=y,∴AE=y﹣4,CF=4﹣x,∵△DAE∽△DCF,∴,∴,∴y= x2+x+4=﹣(x﹣2)2+5,∴当x=2时,y的最大值是5,即:当AD=2时,AB的最大值为5,②当∠A=90°时,三等角四边形是正方形,∴AD=AB=CD=4,③当90°<∠A<120°时,∠D为锐角,如图2,∵AE=4﹣AB>0,∴AB<4,综上所述,当AD=2时,AB的长最大,最大值是5;此时,AE=1,如图3,过点C作CM⊥AB于M,DN⊥AB,∵DA=DE,DN⊥AB,∴AN= AE= ,∵∠DAN=∠CBM,∠DNA=∠CMB=90°,∴△DAN∽△CBM,∴,∴BM=1,∴AM=4,CM= = ,∴AC= = =【考点】勾股定理,平行四边形的性质,正方形的性质,相似三角形的判定与性质【解析】【分析】(1)根据四边形的内角和是360°,确定出∠A的范围;(2)由四边形DEBF为平行四边形,得到∠E=∠F,且∠E+∠EBF=180°,再根据等角的补角相等,判断出∠DAB=∠DCB=∠ABC,即可;(3)分三种情况分别讨论计算AB的长,从而得出当AD=2时,AB最长,最后计算出对角线AC的长.此题是四边形综合题,主要考查了四边形的内角和是360°,平行四边形的性质,正方形的性质,相似三角形的性质和判定,勾股定理,解本题的关键是分类画出图形,也是解本题的难点.19、【答案】(1)矩形或正方形(2)解:AC=BD,理由为:连接PD,PC,如图1所示:∵PE是AD的垂直平分线,PF是BC的垂直平分线,∴PA=PD,PC=PB,∴∠PAD=∠PDA,∠PBC=∠PCB,∴∠DPB=2∠PAD,∠APC=2∠PBC,即∠PAD=∠PBC,∴∠APC=∠DPB,∴△APC≌△DPB(SAS),∴AC=BD;(3)解:分两种情况考虑:(i)当∠AD′B=∠D′BC时,延长AD′,CB交于点E,如图3(i)所示,∴∠ED′B=∠EBD′,∴EB=ED′,设EB=ED′=x,由勾股定理得:42+(3+x)2=(4+x)2,解得:x=4.5,过点D′作D′F⊥CE于F,∴D′F∥AC,∴△ED′F∽△EAC,∴,即,解得:D′F= ,∴S△ACE= AC×EC= ×4×(3+4.5)=15;S△BED′= BE×D′F= ×4.5× = ,则S四边形ACBD′=S△ACE﹣S△BED′=15﹣=10 ;(ii)当∠D′BC=∠ACB=90°时,过点D′作D′E⊥AC于点E,如图3(ii)所示,∴四边形ECBD′是矩形,∴ED′=BC=3,在Rt△AED′中,根据勾股定理得:AE= = ,∴S△AED′= AE×ED′= × ×3= ,S矩形ECBD′=CE×CB=(4﹣)×3=12﹣3 ,则S四边形ACBD′=S△AED′+S矩形ECBD′= +12﹣3 =12﹣.【考点】全等三角形的判定与性质,等腰三角形的性质,矩形的判定与性质,相似三角形的判定与性质【解析】【分析】(1)矩形或正方形邻角相等,满足“等邻角四边形”条件;(2)AC=BD,理由为:连接PD,PC,如图1所示,根据PE、PF分别为AD、BC的垂直平分线,得到两对角相等,利用等角对等角得到两对角相等,进而确定出∠APC=∠DPB,利用SAS得到三角形ACB与三角形DPB全等,利用全等三角形对应边相等即可得证;(3)分两种情况考虑:(i)当∠AD′B=∠D′BC时,延长AD′,CB交于点E,如图3(i)所示,由S四边形ACBD′=S△ACE﹣S△BED′,求出四边形ACBD′面积;(ii)当∠D′BC=∠ACB=90°时,过点D′作D′E⊥AC于点E,如图3(ii)所示,由S四边形ACBD′=S△AED′+S矩形ECBD′,求出四边形ACBD′面积即可.此题属于几何变换综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定与性质,垂直平分线定理,等腰三角形性质,以及矩形的判定与性质,熟练掌握判定与性质是解本题的关键.20、【答案】(1)解:(1)2011﹣2015年北京市文化创意产业实现增加值如图所示,(2)3471.7;用近3年的平均增长率估计2016年的增长率【考点】用样本估计总体,折线统计图【解析】【解答】(2)解:设2013到2015的平均增长率为x,则2406.7(1+x)2=3072.3,解得x≈13%,用近3年的平均增长率估计2016年的增长率,∴2016年的增长率为3072.3×(1+13%)≈3471.7亿元.故答案分别为3471.7,用近3年的平均增长率估计2016年的增长率.【分析】本题考查折线图、样本估计总体的思想,解题的关键是用近3年的平均增长率估计2016年的增长率,属于中考常考题型.(1)画出2011﹣2015的北京市文化创意产业实现增加值折线图即可.(2)设2013到2015的平均增长率为x,列出方程求出x,用近3年的平均增长率估计2016年的增长率即可解决问题.21、【答案】(1)解:sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°= ×﹣× =(2)解:在Rt△BDE中,∵∠BED=90°,∠BDE=75°,DE=AC=7米,∴BE=DE•tan∠BDE=DE•tan75°.∵tan75°=2+ ,∴BE=7(2+ )=14+7 ,∴AB=AE+BE= +14+7 =14+8 (米).答:纪念碑的高度为(14+8 )米.【考点】解直角三角形的应用-仰角俯角问题【解析】【分析】(1)把15°化为45°﹣30°以后,再利用公式sin(α±β)=sinαcosβ±cosasin β计算,即可求出sin15°的值;(2)先根据锐角三角函数的定义求出BE的长,再根据AB=AE+BE即可得出结论.本题考查了:(1)特殊角的三角函数值的应用,属于新题型,解题的关键是根据题目中所给信息结合特殊角的三角函数值来求解.(2)解直角三角形的应用﹣仰角俯角问题,先根据锐角三角函数的定义得出BE的长是解题的关键.22、【答案】(1):如图2,作AF⊥BC,∵BE⊥AD,∴∠AFB=∠BEA,在△ABF和△BAE中,,∴△ABF≌△BAE(AAS),∴BF=AE∵AB=AC,AF⊥BC,∴BF= BC,∴BC=2AE,故答案为AAS(2)解:如图3,连接AD,作CG⊥AF,在Rt△ABC中,AB=AC,点D是BC中点,∵点E是DC中点,∴DE= CD= AD,∴tan∠DAE= = ,∵AB=AC,∠BAC=90°,点D为BC中点,∴∠ADC=90°,∠ACB=∠DAC=45°,∴∠F+∠CDF=∠ACB=45°,∵∠CDF=∠EAC,∴∠F+∠EAC=45°,∵∠DAE+∠EAC=45°,∴∠F=∠DAE,∴tan∠F=tan∠DAE= ,∴,∴CG= ×2=1,∵∠ACG=90°,∠ACB=45°,∴∠DCG=45°,∵∠CDF=∠EAC,∴△DCG∽△ACE,∴,∵CD= AC,CE= CD= AC,∴,∴AC=4;∴AB=4;(3)解:如图4,过点D作DG⊥BC,设DG=a,在Rt△BGD中,∠B=30°,∴BD=2a,BG= a,∴AD=2ka,AB=BD+AD=2a+2ka=2a(k+1),过点A作AH⊥BC,在Rt△ABH中,∠B=30°.∴BH= a(k+1),∵AB=AC,AH⊥BC,∴BC=2BH=2 a(k+1),∴CG=BC﹣BG= a(2k+1),过D作DN⊥AC交CA延长线与N,∵∠BAC=120°,∴∠DAN=60°,∴∠ADN=30°,∴AN=ka,DN= ka,∵∠DGC=∠AN D=90°,∠AED=∠BCD,∴△NDE∽△GDC.∴,∴,∴NE=3ak(2k+1),∴EC=AC﹣AE=AB﹣AE=2a(k+1)﹣2ak(3k+1)=2a(1﹣3k2),∴.【考点】全等三角形的判定,全等三角形的判定与性质【解析】【分析】(1)作AF⊥BC,判断出△ABF≌△BAE(AAS),得出BF=AE,即可;(2)先求出tan∠DAE= ,再由tan∠F=tan∠DAE,求出CG,最后用△DCG∽△ACE求出AC;(3)构造含30°角的直角三角形,设出DG,在Rt△ABH,Rt△ADN,Rt△ABH中分别用a,k表示出AB=2a(k+1),BH= a(k+1),BC=2BH=2 a(k+1),CG= a(2k+1),DN= ka,最后用△NDE∽△GDC,求出AE,EC即可.此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的性质和判定,等腰三角形的性质,等腰直角三角形的性质,中点的定义,解本题的关键是作出辅助线,也是本题的难点.。