高中数学人教A版选修2-1高二数学(理)期末复习测试题(一)
2020秋高中数学人教A版选修2-1课时作业:本册学业质量标准检测1
本册学业质量标准检测(一)时间120分钟,满分150分。
一、选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中只有一个是符合题目要求的)1.在空间四边形OABC 中,OA →+AB →-CB →等于( C ) A .OA →B .AB →C .OC →D .AC →[解析] 根据向量的加法、减法法则,得OA →+AB →-CB →=OB →-CB →=OB →+BC →=OC →.故选C . 2.若命题p :0是偶数,命题q :2是3的约数.则下列命题中为真的是( B ) A .p 且q B .p 或q C .非pD .非p 且非q[解析] 命题p :0是偶数为真命题. 命题q :2是3的约数为假命题,则p 且q 为假命题,p 或q 为真命题,非p 为假命题,非p 且非q 为假命题, 故选B .3.下列说法中正确的是( B ) A .“x >5”是“x >3”的必要条件B .命题“∀x ∈R ,x 2+1>0”的否定是“∃x ∈R ,x 2+1≤0”C .∃m ∈R ,使函数f (x )=x 2+mx (x ∈R )是奇函数D .设p 、q 是简单命题,若p ∨q 是真命题,则p ∧q 也是真命题[解析] 命题“∀x ∈R ,x 2+1>0”的否定是“∃x ∈R ,x 2+1≤0”,故选B .4.(山西太原市2018-2019学年高二期末)已知空间直角坐标系中点P (2,1,3),若在z 轴上取一点Q ,使得|PQ |最小,则点Q 的坐标为( C )A .(0,0,1)B .(0,0,2)C .(0,0,3)D .(0,1,0) [解析] 因为P (2,1,3),若在z 轴上取一点Q ,使得|PQ |最小,只需PQ ⊥z 轴,所以Q 点竖坐标为3,故点Q 的坐标为(0,0,3).故选C .5.设p :2x 2-3x +1≤0,q :x 2-(2a +1)x +a (a +1)≤0,若¬p 是¬q 的必要不充分条件,则实数a 的取值范围是( A )A .[0,12]B .(0,12)C .(-∞,0]∪[12,+∞)D .(-∞,0)∪(12,+∞)[解析] 由2x 2-3x +1≤0,得12≤x ≤1,¬p 为x <12或x >1,由x 2-(2a +1)x +a (a +1)≤0得a ≤x ≤a +1,¬q 为x <a 或x >a +1.若¬p 是¬q 的必要不充分条件,应有⎩⎪⎨⎪⎧a ≤12,a +1>1或⎩⎪⎨⎪⎧a +1≥1,a <12,所以0≤a ≤12.故选A .6.如图所示,椭圆的中心在原点,焦点F 1、F 2在x 轴上,A 、B 是椭圆的顶点,P 是椭圆上一点,且PF 1⊥x 轴,PF 2∥AB ,则此椭圆的离心率是( B )A .12B .55C .13D .22[解析] 点P 的坐标(-c ,b 2a ),于是k AB =-b a ,kPF 2=-b 22ac ,由k AB =kPF 2得b =2c ,故e =c a =55. 7.已知a 、b 是两异面直线,A 、B ∈a ,C 、D ∈b ,AC ⊥b ,BD ⊥b 且AB =2,CD =1,则直线a 、b 所成的角为( B )A .30°B .60°C .90°D .45°[解析] 由于AB →=AC →+CD →+DB →, ∴AB →·CD →=(AC →+CD →+DB →)·CD →=CD →2=1.cos 〈AB →,CD →〉=AB →·CD →|AB →|·|CD →|=12⇒〈AB →,CD →〉=60°,故选B .8.在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =12P A ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值为( D )A .216 B .833C .21060D .21030 [解析] ∵OP ⊥平面ABC ,OA =OC ,AB =BC , ∴OA ⊥OB ,OA ⊥OP ,OB ⊥OP .以O 为原点,建立如图所示的空间直角坐标系O -xyz .设AB =a ,则A (22a,0,0)、B (0,22a,0)、C (-22a,0,0). 设OP =h ,则P (0,0,h ), ∵P A =2a ,∴h =142a . ∴OD →=(-24a,0,144a ).由条件可以求得平面PBC 的法向量n =(-1,1,77), ∴cos 〈OD →,n 〉=OD →·n |OD →||n |=21030.设OD 与平面PBC 所成的角为θ, 则sin θ=|cos 〈OD →,n 〉|=21030.二、多项选择题(本大题共4个小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.)9.已知A 、B 、C 三点不共线,对于平面ABC 外的任一点O ,下列条件中能确定点M 与点A 、B 、C 一定共面的是( BD )A .OM →=OA →+OB →+OC → B .OM →=3OA →-OB →-OC → C .OM →=OA →+12OB →+13OC →D .OM →=12OA →+13OB →+16OC →[解析] 若点M 与点A 、B 、C 一定共面,则OM →=xOA →+yOB →+zOC →且x +y +z =1,故选BD .10.已知曲线C 的方程为x 24-k +y 2k -3=1,给定下列两个命题:p :若k <3,则曲线C 为双曲线;q :若曲线C 是焦点在x 轴上的椭圆,则3<k <4,其中是假命题的是( ACD )A .p ∧qB .p ∧(¬q )C .(¬p )∧qD .(¬p )∧(¬q )[解析] 若k <3时,则⎩⎪⎨⎪⎧4-k >0k -3<0,曲线C 是焦点在x 轴上的双曲线,即命题p 是真命题.由4-k =k -3时,2k =7,得k =72时,方程不表示椭圆,即命题q 是假命题,则p ∧(¬q )为真命题,其余为假命题.故选ACD .11.过抛物线y 4x 的焦点F 的直线交抛物线于A ,B 两点,且|AF |=3|EF |,则直线AB 的斜率为( BD )A .2B .3C .-2D .- 3[解析] 如图所示,当点A 在x =-12第一象限时,过A ,B 分别向抛物线的准线作垂线,垂足分别为D ,E ,过A 作x 轴的垂线,与EB 交于点C ,则四边形ADEC 为矩形.由抛物线定义可知|AD |=|CE |=3m ,所以|AB |=4m ,在Rt △ABC 中,|BC |=2m ,所以∠ABC =60°,所以直线l 的斜率为3;当点B 在第一象限时,同理可知直线l 的斜率为- 3.12.已知双曲线C 过点(3,2)且渐近线为y =±33x ,则下列结论正确的是( ACD )A .双曲线C 的方程为x 23-y 2=1B .双曲线C 的离心率为63C .曲线y =e x +2-1经过C 的一个焦点 D .直线x -2y -1=0与C 有两个公共点[解析] A .点(3,2)的坐标满足双曲线C 的方程x 23-y 2=1,双曲线的渐近线方程为y =±33x ,所以该选项正确; B .双曲线C 的方程为x 23-y 2=1,所以双曲线离心率为e =23=233,所以该选项不正确;C .双曲线C 的方程为x 23-y 2=1,它的一个焦点为(-2,0),把(-2,0)代入y =e x +2-1成立,所以该选项正确;D .联立⎩⎪⎨⎪⎧x -2y -1=0,x 2-3y 2=3,得x 2+6x -15=0,Δ=96>0,所以直线和曲线有两个公共点,所以该选项正确.三、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线为y =34x ,则此双曲线的离心率为__54__.[解析] 由题意知b a =34,∴b 2a 2=916,∴c 2-a 2a 2=916,∴e 2=2516,∴e =54.14.已知在空间四边形OABC 中,OA →=a 、OB →=b 、OC →=c ,点M 在OA 上,且OM =3MA ,N 为BC 中点,用a 、b 、c 表示MN →,则MN →=__-34a +12b +12c __.[解析] 显然MN →=ON →-OM →=12(OB →+OC →)-34OA →=12b +12c -34a .15.椭圆x 212+y 24=1的左、右焦点分别为F 1,F 2,过焦点F 1的直线交该椭圆于A ,B 两点,若△ABF 2的内切圆面积为π,A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则△ABF 2的面积S =__43__,|y 1-y 2|的值为__6__.[解析] ∵椭圆x 212+y 24=1的左、右焦点分别为F 1,F 2,a =23,b =2,c =22,过焦点F 1的直线交该椭圆于A (x 1,y 1),B (x 2,y 2)两点,△ABF 2的内切圆面积为π, ∴△ABF 2内切圆半径r =1.△ABF 2面积S =12×1×(AB +AF 2+BF 2)=2a =43,∴ABF 2面积S =12|y 1-y 2|×2c =12|y 1-y 2|×2×22=43,∴|y 1-y 2|= 6.故答案为 6.16.过二面角α-l -β内一点P 作P A ⊥α于A ,作PB ⊥β于B ,若P A =5,PB =8,AB =7,则二面角α-l -β的度数为__120°__.[解析] 设P A →=a ,PB →=b ,由条件知|a |=5,|b |=8,|AB →|=7, ∴AB 2=|AB →|2=|b -a |2 =|b |2+|a |2-2a ·b =64+25-2a ·b =49,∴a ·b =20,∴cos 〈a ,b 〉=a ·b |a |·|b |=12, ∴〈a ,b 〉=60°,∴二面角α-l -β为120°.四、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知p :关于x 的方程x 2-2ax +a +2=0有实数根,q :m ≤a ≤m +2.(1)若p 是q 的必要非充分条件,求实数m 的取值范围; (2)若m =-1时,“p ∨q ”是真命题,求实数a 的取值范围.[解析] (1)p 为真⇔(-2a )2-4(a +2)≥0⇔a 2-a -2≥0⇔a ≥2或a ≤-1 由p 是q 的必要非充分条件可得[m ,m +2]是(-∞,-1]∪[2,+∞)的真子集, 所以m +2≤-1或m ≥2. 即m ≤-3或m ≥2.(2)当m =-1时,q :-1≤a ≤1, 由“p ∨q ”是真命题,可知p 真或q 真 即a ≥2或a ≤-1,或-1≤a ≤1 实数a 的取值范围是a ≥2或a ≤1.18.(本小题满分12分)(2019年黑龙江省学业水平考试)如图,已知直线l 与抛物线y 2=x 相交于A (x 1,y 1)B (x 2,y 2)两点,O 为坐标原点,直线l 与x 轴相交于点M ,且y 1y 2=-1.(1)求证:OA ⊥OB ; (2)求点M 的横坐标;(3)过A ,B 点分别作抛物线的切线,两条切线交于点Q ,求k QM ·k AB . [解析] 证明:(1)设直线的方程为:x =my +t , 代入抛物线y 2=x ,可得:y 2-my -t =0,由A (x 1,y 1),B (x 2,y 2),y 1y 2=-1, 可得y 1+y 2=m ,y 1y 2=-t =-1,t =1,由x 1x 2=(y 1y 2)2=1,可得x 1x 2+y 1y 2=(y 1y 2)2+y 1y 2=1-1=0, 可得OA →·OB →=0, 即:OA ⊥OB ;(2)由直线x =my +t ,令y =0, 可得x =1,即点M 的横坐标为1;(3)由y 2=x ,两边对x 求导,可得2yy ′=1,即y ′=12y,可得A 处切线的斜率为12y 1, 切线方程为:y -y 1=12y 1(x -x 1),由y 21=x 1,y 22=x 2,可得y 1y =12(x +x 1) ①同理可得:B 处切线方程为y 2y =12(x +x 2) ②由①②可得:y =x 1-x 22(y 1-y 2)=y 1+y 22=m2,xy 1y -x 1=my 1-y 21=(y 1+y 2)y 1-y 21=y 1y 2=-1,故Q (-1,m 2),可得:k QM ·k AB =0-m21+1×y 1-y 2x 1-x 2=-m 4×1y 1+y 2=-m 4×1m =-14.19.(本小题满分12分)设双曲线C :x 2a 2-y 2=1(a >0)与直线l :x +y =1相交于两个不同的点A 、B .(1)求双曲线C 的离心率e 的取值范围;(2)设直线l 与y 轴的交点为P ,且P A →=512PB →,求a 的值.[解析] (1)由C 与l 相交于两个不同的点,故知方程组⎩⎪⎨⎪⎧x 2a 2-y 2=1x +y =1,有两组不同的实数解,消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0.①所以⎩⎪⎨⎪⎧1-a 2≠04a 4+8a 2(1-a 2)>0,解得0<a <2且a ≠1,双曲线的离心率e =1+a 2a =1a 2+1, ∵0<a <2且a ≠1,∴e >62,且e ≠2,即离心率e 的取值范围为(62,2)∪(2,+∞) (2)设A (x 1,y 1)、B (x 2,y 2)、P (0,1),∵P A →=512PB →,∴(x 1,y 1-1)=512(x 2,y 2-1).由此得x 1=512x 2,由于x 1、x 2都是方程①的根,且1-a 2≠0,所以1712x 2=-2a 21-a 2,512x 22=-2a 21-a 2. 消去x 2得,-2a 21-a 2=28960. 由a >0,所以a =1713.20.(本小题满分12分)(2019·全国Ⅲ卷理,19)图①是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图②.(1)证明:图②中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图②中的二面角B -CG -A 的大小.①②[解析] (1)证明:由已知得AD ∥BE ,CG ∥BE ,所以AD ∥CG , 所以AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面. 由已知得AB ⊥BE ,AB ⊥BC ,且BE ∩BC =B , 所以AB ⊥平面BCGE .又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE . (2)解:作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,且交于BC 所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH = 3.以H 为坐标原点,HC →的方向为x 轴的正方向,建立如图所示的空间直角坐标系H -xyz ,则A (-1,1,0),C (1,0,0),G (2,0,3),CG →=(1,0,3),AC →=(2,-1,0). 设平面ACGD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧CG →·n =0,AC →·n =0,即⎩⎨⎧x +3z =0,2x -y =0.所以可取n =(3,6,-3).又平面BCGE 的法向量可取m =(0,1,0), 所以cos 〈n ,m 〉=n ·m |n ||m |=32.因此二面角B -CG -A 的大小为30°.21.(本小题满分12分)如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.(1)证明:BE ⊥DC ;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F -AB -P 的余弦值.[解析] 解法一:依题意,以点A 为原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2),由E 为棱PC 的中点, 得E (1,1,1).(1)BE →=(0,1,1)、DC →=(2,0,0),故BE →·DC →=0,所以BE ⊥DC .(2)BD →=(-1,2,0)、PB →=(1,0,-2),设n =(x ,y ,z )为平面PBD 的法向量, 则⎩⎪⎨⎪⎧n ·BD →=0n ·PB →=0,即⎩⎪⎨⎪⎧-x +2y =0x -2z =0,不妨令y =1,可得n =(2,1,1)为平面PBD 的一个法向量, 于是有cos 〈n ,BE →〉=n ·BE →|n |·|BE →|=26×2=33.所以,直线BE 与平面PBD 所成角的正弦值为33. (3)向量BC →=(1,2,0),CP →=(-2,-2,2),AC →=(2,2,0),AB →=(1,0,0),由点F 在棱PC 上,设CF →=λCP →,0≤λ≤1.故BF →=BC →+CF →=BC →+λCP →=(1-2λ,2-2λ,2λ),由BF ⊥AC ,得BF →·AC →=0,因此,2(1-2λ)+2(2-2λ)=0,解得λ=34,即BF →=(-12,12,32).设n 1=(x 1,y 1,z 1)为平面F AB 的法向量,则 ⎩⎪⎨⎪⎧ n 1·AB →=0n 1·B F →=0,即⎩⎪⎨⎪⎧x 1=0-12x 1+12y 1+32z 1=0,不妨令z 1=1,可得n 1=(0,-3,1)为平面F AB 的一个法向量,取平面ABP 的法向量n 2=(0,1,0),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-310×1=-31010.易知,二面角F -AB -P 是锐角, 所以其余弦值为31010.解法二:(1)证明:如图,取PD 中点M ,连接EM 、AM .由于E 、M 分别为PC 、PD 的中点,故EM ∥DC ,且EM =12DC ,又由已知,可得EM ∥AB 且EM =AB ,故四边形ABEM 为平行四边形,所以BE ∥AM .因为P A ⊥底面ABCD ,故P A ⊥CD ,又CD ⊥DA ,P A ∩DA =A ,从而CD ⊥平面P AD ,因为AM ⊂平面P AD ,于是CD ⊥AM ,又BE ∥AM ,所以BE ⊥CD .(2)连接BM ,由(1)有CD ⊥平面P AD ,得CD ⊥PD ,而EM ∥CD ,故PD ⊥EM ,又因为AD =AP ,M 为PD 的中点,故PD ⊥AM ,可得PD ⊥BE ,所以PD ⊥平面BEM ,故平面BEM ⊥平面PBD ,所以,直线BE 在平面PBD 内的射影为直线BM ,而BE ⊥EM ,可得∠EBM 为锐角,故∠EBM 为直线BE 与平面PBD 所成的角.依题意,有PD =22,而M 为PD 中点,可得AM =2,进而BE =2,故在直角三角形BEM 中,tan ∠EBM =EM BE =AB BE =12,因此sin ∠EBM =33.所以,直线BE 与平面PBD 所成角的正弦值为33. (3)如图,在△P AC 中,过点F 作FH ∥P A 交AC 于点H ,因为P A ⊥底面ABCD ,故FH ⊥底面ABCD ,从而FH ⊥AC ,又BF ⊥AC ,得AC ⊥平面FHB ,因此AC ⊥BH ,在底面ABCD 内,可得CH =3HA ,从而CF =3FP .在平面PDC 内,作FG ∥DC 交PD 于点G ,于是DG =3GP ,由于DC ∥AB ,故GF ∥AB ,所以A 、B 、F 、G 四点共面,由AB ⊥P A ,AB ⊥AD ,得AB ⊥平面P AD ,故AB ⊥AG ,所以∠P AG 为二面角F -AB -P 的平面角.在△P AG 中,P A =2,PG =14PD =22,∠APG =45°,由余弦定理可得AG =102,cos ∠P AG =31010. 所以,二面角F -AB -P 的余弦值为31010. 22.(本小题满分12分)(2019-2020学年湖南师大附中高二期中)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,离心率为32,P 是椭圆C 上位于第一象限内的任意一点,O 为坐标原点,P 关于O 的对称点为P ′,|P ′F |+|PF |=4,圆O :x 2+y 2=b 2.(1)求椭圆C 和圆O 的标准方程; (2)过点P 作PT 与圆O 相切于点T ,使得点F ,点T 在OP 的两侧.求四边形OFPT 面积的最大值.[解析] (1)设椭圆左焦点为F ′,连接PF ′,P ′F ′,因为|P ′O |=|PO |,|OF |=|OF ′|, 所以四边形P ′FPF ′为平行四边形,所以|PF |+|PF ′|=|PF |+|P ′F |=2a =4,所以a =2,又离心率为32,所以c =3,b =1.故所求椭圆C 的标准方程为x 24+y 2=1,圆O 的标准方程x 2+y 2=1. (2)设P (x 0,y 0)(x 0>0,y 0>0),则x 204+y 20=1,故y 20=1-x 204. 所以|TP |2=|OP |2-|OT |2=x 20+y 20-1=34x 20,所以|TP |=32x 0, 所以S △OTP =12|OT |·|TP |=34x 0. 又O (0,0),F (3,0),所以S △OFP =12|OF |·y 0=32y 0. 故S 四边形OFPT =S △OFP +S △OTP =32·⎝⎛⎭⎫x 02+y 0=32x 204+x 0y 0+y 20=321+x 0y 0. 由x 204+y 20=1,得2x 204·y 20≤1,即x 0·y 0≤1,所以S四边形OFPT=32·1+x0y0≤62,当且仅当x204=y2=12,即x0=2,y0=22时等号成立.。
人教版高中数学选修2-1知识讲解,巩固练习(教学资料,补习资料):第03章 章末检测高二数学(理)
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在空间四边形OABC 中,OA AB CB +-= A .OA B .AB C .OCD .AC2.已知a =(-3,2,5),b =(1,x ,-1),且a ·b =-2,则x 的值是 A .6 B .5 C .4D .33.与向量(2,3,6)=a 共线的单位向量是A .236(,,)777 B .236(,,)777--- C .236(,,)777--和236(,,)777-D .236(,,)777和236(,,)777---4.设l 1的方向向量为a =(1,2,-2),l 2的方向向量为b =(-2,3,m ),若l 1⊥l 2,则实数m 的值为A .3B .2C .1D .125.已知++=0a b c ,2=a ,3=b ,4=c ,则向量a 与b 之间的夹角,<>a b 为A .30︒B .45︒C .60︒D .以上都不对6.已知M 、N 分别是四面体OABC 的棱OA ,BC 的中点,点P 在线段MN 上,且2MP PN =,设OA =a ,OB =b ,OC =c ,则OP =A .111663++a b c B .111633++a b c C .111333++a b cD .111366++a b c7.设平面上有四个互异的点A ,B ,C ,D ,已知(2)()DB DC DA AB AC +-⋅-0=,则ABC △是 A .直角三角形 B .等腰三角形 C .等腰直角三角形D .等边三角形8.若正方体ABCD-A 1B 1C 1D 1的棱长为a ,则平面AB 1D 1与平面BDC 1的距离为 A .a B .a C .aD .a9.已知()()()2,1,3,1,4,2,7,5,,λ=-=--=a b c 若,,a b c 三个向量不能构成空间的一个基底,则实数λ的值为 A .0 B .357 C .9D .65710.正三棱柱ABC -A 1B 1C 1的各棱长都为2,E ,F 分别是AB ,A 1C 1的中点,则EF 的长是A .2B .3C .5D .711.已知空间四个点A (1,1,1),B (-4,0,2),C (-3,-1,0),D (-1,0,4),则直线AD 与平面ABC所成的角为 A .30° B .45° C .60°D .90°12.已知二面角α-l -β的大小为50°,P 为空间中任意一点,则过点P 且与平面α和平面β所成的角都是25°的直线的条数为 A .2 B .3 C .4D .5二、填空题:请将答案填在题中横线上.13.已知{i ,j ,k }为单位正交基底,且a =-i +j +3k ,b =2i -3j -2k ,则向量a +b 与向量a -2b 的坐标分别为_________________、_________________. 14.已知向量(4,,1)k k =-a ,3(2,1,)2=-b ,若ab ,则k =_________________.15.正方体ABCD -A 1B 1C 1D 1中,面ABD 1与面B 1BD 1所成角的大小为_________________. 16.在下列命题中:①若a ,b 共线,则a ,b 所在的直线平行;②若a ,b 所在的直线是异面直线,则a ,b 一定不共面; ③若a ,b ,c 三向量两两共面,则a ,b ,c 三向量一定也共面;④已知三向量a ,b ,c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c . 其中不正确的命题为_________________.(填序号) 三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知{,,}i j k 是单位正交基底,设a 1=2i -j +k ,a 2=i +3j -2k ,a 3=-2i +j -3k ,a 4=3i +2j +5k ,试问是否存在实数a ,b ,c 使a 4=a a 1+b a 2+c a 3成立?如果存在,求出a ,b ,c 的值;如果不存在,请说明理由.18.如图所示,四边形ABCD 、四边形ABEF 都是平行四边形且不共面,M ,N 分别是AC ,BF 的中点,试判断与是否共线.19.如图,在正方体1111ABCD A B C D 中,M ,N ,E ,F ,S 分别为1CC ,11B C ,BC ,11C D ,11A B的中点,求证:(1)直线SE ∥平面1A BD ; (2)平面MNF ∥平面1A BD .20.如图,已知P A 垂直于正方形ABCD 所成平面,M ,N 分别是AB ,PC 的中点,且P A =AD =2.(1)求M ,N 两点之间的距离; (2)求证:MN ⊥平面PCD ; (3)求直线P A 与MN 所成的角.21.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,2AF FD =,90AFD ∠=︒,且二面角D AF E --与二面角C BE F --都是60︒.(1)证明:平面ABEF ⊥平面EFDC ; (2)求二面角E BC A --的余弦值.22.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,且160,,BAD A A AB E ∠==为1BB 延长线上的一点,1D E ⊥面1D AC .设2AB =. (1)求二面角1E AC D --的大小;(2)在1D E 上是否存在一点P ,使1//A P 面EAC ?若存在,求1:D P PE 的值;若不存在,说明理由.参考答案1.【答案】C【解析】OA AB CB OB CB OB BC OC +-=-=+=.故选C . 2.【答案】D【解析】a ·b =-3+2x -5=-2,∴x =3.故选D . 3.【答案】D 【解析】2222367=++=a ,∴与a 共线的单位向量是17±(2,3,6),故选D . 4.【答案】B【解析】∵l 1⊥l 2,∴a ⊥b ,∴a ·b =0,∴-2+6-2m =0,∴m =2.故选B . 5.【答案】D【解析】由已知++=0a b c ,得+=-a b c ,则2222()2+=++⋅=a b a b a b c ,由此可得32⋅=a b . 从而1cos ,4⋅==<>a b a b a b .故选D . 6.【答案】B7.【答案】B【解析】∵2()()DB DC DA DB DA DC DA AB AC +-=-+-=+,∴22(2)()()()0DB DC DA AB AC AB AC AB AC AB AC +-⋅-=+⋅-=-=, ∴AB AC =,故ABC △是等腰三角形,故选B . 8.【答案】D【解析】由正方体的性质易得平面AB 1D 1∥平面BDC 1,则两平面间的距离可转化为点B 到平面AB 1D 1的距离.显然A 1C ⊥平面AB 1D 1,以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则易得平面AB 1D 1的一个法向量为n =(1,-1,1),A (a ,0,0),B (a ,a ,0),=(0,-a ,0),则两平面间的距离为d =|3|33a BA a ⋅==n n .9.【答案】D10.【答案】C【解析】因为11EF EA AA A F=++,所以222221111()2EF EA AA A F EA AA A F EA =++=+++⋅ 2221111221210211cos12005AA EA A F AA A F +⋅+⋅=++++⨯⨯⨯︒+=,所以||5EF =,即EF =5.故选C .11.【答案】A【解析】设平面ABC 的法向量为(,,)x y z =n ,∵()5,1,1AB =--,()4,2,1AC =---,由0AB ⋅=n 及0AC ⋅=n ,得50,420,x y z x y z --+=⎧⎨---=⎩ 令z =1,得12x =,32y =-,∴n =(12,32-,1).()2,1,3AD =--, 设AD 与平面ABC 所成的角为θ,则31312sin 214142AD AD θ-++⋅===⨯n n,∴θ=30°.故选A . 12.【答案】B【解析】过点P 分别作平面α,β的垂线l 1和l 2,则l 1与l 2所成的角为130°或50°,问题转化为过点P 与直线l 1,l 2成65°角的直线有几条,与l 1,l 2共面的有一条,不共面的有2条.因此,共有3条.故选B .13.【答案】(1,-2,1) (-5,7,7)【解析】依题意知,a =(-1,1,3),b =(2,-3,-2),则a +b =(1,-2,1),a -2b =(-1,1,3)-2(2,-3,-2)=(-5,7,7). 14.【答案】2-【解析】由(4,,1)kk =-a ,3(2,1,)2=-b 及a b ,可知存在实数λ满足λ=a b ,即(4,,1)k k-=3(2,1,)2λ-,即42λ=-且kλ=且312kλ-=,解得2k=-.故填2-.15.【答案】60°【解析】如图,建立空间直角坐标系D-xyz,16.【答案】①②③④【解析】①a,b所在的直线可能重合,所以①错;②空间任意两个向量均共面,所以②错;③以空间向量的一组基底{a,b,c}为例,知它们两两共面,但它们三个不共面,所以③错;④当a,b,c共面时,不成立,所以④错.故不正确的命题为①②③④.17.【解析】存在,理由如下:假设a4=a a1+b a2+c a3成立,由已知可得a1=(2,-1,1),a2=(1,3,-2),a3=(-2,1,-3),a4=(3,2,5),可得(2a+b-2c,-a+3b+c,a-2b-3c)=(3,2,5),∴22332235a b ca b ca b c+-=⎧⎪-++=⎨⎪--=⎩,解得a =-2,b =1,c =-3,故a 4=-2a 1+a 2-3a 3, 所以a ,b ,c 存在,且a =-2,b =1,c =-3.19.【解析】如图,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系Dxyz ,设正方体的棱长为2,则(0,0,0)D ,1(2,0,2)A ,(2,2,0)B ,(2,1,2)S ,(1,2,0)E ,(0,2,1)M ,(1,2,2)N ,(0,1,2)F .(1)易得1(0,2,2)A B =-,1(2,0,2)A D =--, 设平面1A BD 的法向量为(,,)x y z =n ,则11AB A D ⎧⎪⎨⎪⎩⊥⊥n n ,即11220220A B y z A D x z ⎧⋅=-=⎪⎨⋅=--=⎪⎩n n ,取1x =,得1y =-,1z =-,所以平面1A BD 的一个法向量为(1,1,1)=--n .又(1,1,2)SE =--,所以(1,1,2)(1,1,1)0SE ⋅=--⋅--=n , 所以SE ⊥n ,显然SE 不在平面1A BD 内,所以SE ∥平面1A BD .20.【解析】如图所示,建立空间直角坐标系Axyz .由题意易得(0,0,0)A ,(2,0,0)D -,(2,2,0)C -,(0,0,2)P ,(0,1,0)M ,(1,1,1)N -, (1)由题易得(1,0,1)MN =-,故M ,N 两点之间的距离为222||(1)012MN =-++=. (2)由题易得(2,0,2)PD =--,(0,2,0)CD =-. 因为0MN PD ⋅=,所以MN PD ⊥,即MN PD ⊥, 因为0MN CD ⋅=,所以MN CD ⊥,即MN CD ⊥, 又PDCD D =,所以MN ⊥平面PCD .(3)由题易得(0,0,2)AP =,因为(1,0,1)MN =-,所以22222cos ,2||||2(1)1AP MN AP MN AP MN ⋅===-+<>,所以,45AP MN =︒<>,故直线PA 与MN 所成的角为45︒.21.【解析】(1)由已知可得AF DF ⊥,AF FE ⊥,所以AF ⊥平面EFDC .又AF ⊂平面ABEF ,故平面ABEF⊥平面EFDC . (2)过D 作DG EF ⊥,垂足为G , 由(1)知DG ⊥平面ABEF .以G 为坐标原点,GF 的方向为x 轴正方向,||GF 为单位长度,建立如图所示的空间直角坐标系Gxyz .所以(1,0,3)EC =,(0,4,0)EB =,(3,4,3)AC =--,(4,0,0)AB =-.设(,,)x y z =n 是平面BCE 的法向量,则00EC EB ⎧⋅=⎪⎨⋅=⎪⎩n n ,即3040x z y ⎧+=⎪⎨=⎪⎩,所以可取(3,0,3)=-n . 设m 是平面ABCD 的法向量,同理可取(0,3,4)=m ,所以219cos ,19⋅==-<>m n m n |m ||n |,易知二面角E BC A --为钝角,故二面角E BC A --的余弦值为21919-. 22.【解析】(1)设AC 与BD 交于O ,设1B E h =,如图所示建立空间直角坐标系O xyz -,1112cos ,==2D ED E D E ⋅∴⋅m m m ,。
高中数学选修2-1练习题
常用逻辑用语一、选择题1.命题“如果x≥a 2+b 2,那么x≥2ab”的逆否命题是( ) A .如果x<a 2+b 2,那么x<2ab B .如果x≥2ab,那么x≥a 2+b 2 C .如果x<2ab,那么x<a 2+b 2 D .如果x≥a 2+b 2,那么x<2ab 2.三角形全等是三角形面积相等的( ) A .充分但不必要条件 B .必要但不充分条件 C .充要条件 D .既不充分又不必要条件 3.下列四个命题中,真命题是( ) A .2是偶数且是无理数 B .8≥10 C .有些梯形内接于圆 D .∀x ∈R,x 2-x+1≠0 4.命题“所有奇数的立方是奇数”的否定是( ) A .所有奇数的立方不是奇数 B .不存在一个奇数,它的立方是偶数 C .存在一个奇数,它的立方是偶数 D .不存在一个奇数,它的立方是奇数 二、填空题5.命题“若a=-1,则a 2=-1”的逆否命题是______________________. 6.b=0是函数f(x)=ax 2+bx+c 为偶函数的______________________.7.全称命题“∀a ∈Z,a 有一个正因数”的否定是________________________. 8.特称命题“有些三角形的三条中线相等”的否定是______________________. 9.设p :|5x -1|>4;2210231x x x x ++³-+,则非p 是非q 的______ ___条件.三、解答题10.求证:a+2b=0是直线ax+2y+3=0和直线x+by+2=0互相垂直的充要条件.11.已知集合A={x|x 2-3x+2=0},B={x|x 2-mx+2=0},若A 是B 的必要不充分条件,求实数m 范围.12.给定两个命题,P :对任意实数x 都有012>++ax ax 恒成立;Q :关于x 的方程02=+-a x x 有实数根;如果P 与Q 中有且仅有一个为真命题,求实数a 的取值范围.常用逻辑用语答案1-4 CACC5.如果a 2≠1,那么a≠-1 6.充分必要条件 7.∃a 0∈Z,a 0没有正因数 8.每个三角形的三条中线不相等 9.即不充分也不必要10.充分性:当b=0时,则a=0,此时两直线分别垂直坐标轴,显然垂直;当b≠0时,两直线的斜率分别是k 1=-a 2,k 2=-1b ,由a+2b=0,k 1⋅k 2=(-a 2-1b)=-1,两直线互相垂直.必要性:如果两直线互相垂直且斜率存在,则k 1⋅k 2=(-a 2)(-1b)=-1,∴a+2b=0;如果两直线中有直线的斜率不存在,且互相垂直,则b=0,且a=0,∴a+2b=0. 11、A={1,2},A 是B 的必要不充分条件,即B ⊂≠A .所以B=Φ、B={1}或{2},当B=φ时,△=m 2-8<0,∴22m 22<<-. 当B={1}或{2}时,⎩⎨⎧=+-=+-=∆02m 2402m 10或,m 无解.综上所述22m 22<<-.12.解:P 真:对任意实数x 都有012>++ax ax 恒成立⇔a=0或⎩⎨⎧a>0∆<0⇔0≤a<4; q 真:关于x 的方程02=+-a x x 有实数根⇔1-4a≥0⇔a≤14;如果P 正确,且Q 不正确,有0≤a<4,且a>14,∴14<a<4;如果Q 正确,且P 不正确,有a<0或a≥4,且a≤14,∴a<0.所以a ∈(-∞,0)∪(14,4).常用逻辑用语答案1-4 CACC5.如果a 2≠1,那么a≠-1 6.充分必要条件 7.∃a 0∈Z,a 0没有正因数 8.每个三角形的三条中线不相等 9.即不充分也不必要10.充分性:当b=0时,则a=0,此时两直线分别垂直坐标轴,显然垂直;当b≠0时,两直线的斜率分别是k 1=-a 2,k 2=-1b ,由a+2b=0,k 1⋅k 2=(-a 2-1b)=-1,两直线互相垂直.必要性:如果两直线互相垂直且斜率存在,则k 1⋅k 2=(-a 2)(-1b)=-1,∴a+2b=0;如果两直线中有直线的斜率不存在,且互相垂直,则b=0,且a=0,∴a+2b=0. 11、A={1,2},A 是B 的必要不充分条件,即B ⊂≠A .所以B=Φ、B={1}或{2},当B=φ时,△=m 2-8<0,∴22m 22<<-. 当B={1}或{2}时,⎩⎨⎧=+-=+-=∆02m 2402m 10或,m 无解.综上所述22m 22<<-.12.解:P 真:对任意实数x 都有012>++ax ax 恒成立⇔a=0或⎩⎨⎧a>0∆<0⇔0≤a<4;q 真:关于x 的方程02=+-a x x 有实数根⇔1-4a≥0⇔a≤14;如果P 正确,且Q 不正确,有0≤a<4,且a>14,∴14<a<4;如果Q 正确,且P 不正确,有a<0或a≥4,且a≤14,∴a<0.所以a ∈(-∞,0)∪(14,4).圆锥曲线练习题一.选择题1.若椭圆经过原点,且焦点分别为12(1,0),(3,0)F F ,则其离心率为( ) A.34 B.23 C.12 D.142.过抛物线y 2=4x 的焦点作直线l ,交抛物线于A ,B 两点,若线段AB 中点的横坐标为3,则|AB|等于( )A.10B.8C.6D.43.若双曲线x 24+y2k1的离心率(1,2)e ∈,则k 的取值范围是( )A.(),0-∞B.()3,0-C.()12,0-D.()60,12-- 4.与y 轴相切且和半圆x 2+y 2=4(0≤x ≤2)内切的动圆圆心的轨迹方程是( ) A.()()24101y x x =--<≤ B.()()24101y x x =-<≤C.()()24101y x x =+<≤ D.()()22101yx x =--<≤5.过点M(-2,0)的直线L 与椭圆2222x y +=交于12,P P 两点,设线段12P P 的中点为P ,若直线l 的斜率为11(0)k k ≠,直线OP 的斜率为2k ,则12k k 等于( )A.2-B.2C.12D.-126.如果方程x 2-p +y2q =1表示双曲线,那么下列椭圆中,与这个双曲线共焦点的是( )A.2212xyq pq+=+ B.2212xyq pp+=-+ C.2212xyp qq+=+ D.2212xyp qp+=-+二.填空题7.椭圆x 212+y 23=1的焦点分别是12F ,F ,点P 在椭圆上,如果线段1P F 的中点在y 轴上,那么1PF 是2PF 的 倍.8.椭圆x 245+y 220=1的焦点分别是12F ,F ,过原点O 做直线与椭圆交于A ,B 两点,若∆ABF 2的面积是20,则直线AB 的方程是 .9.与双曲线2244x y -=有共同的渐近线,并且经过点(2的双曲线方程是10.已知直线y=kx+2与双曲线x 2-y 2=6的右支相交于不同的两点,则k 的取值范围是 .三.解答题11.抛物线y=-12x 2与过点M(0,-1)的直线L 相交于A ,B 两点,O 为原点,若OA 和OB 的斜率之和为1,求直线L 的方程.12.已知中心在原点,一焦点为F(0,50)的椭圆被直线:32l y x =-截得的弦的中点横坐标为12,求此椭圆的方程.13.21,F F 是椭圆x 29+y27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45︒,求∆12AF F 的面积.圆锥曲线练习题答案一.选择题:CBCADD 二.填空题:7. 7倍 8.y=±43x 9. y 24x 216=1 10.-153<k<-1三.解答题11. 解:斜率不存在不合题意,设直线1y kx =-代入抛物线得2220x kx +-=2480k =+> 有k ∈R 设点1122(,),(,)A x y B x y 则y 1x 1+y 2x 2=1,由根与系数关系,解得直线方程1y x =-.12. 解:设所求的椭圆为x 2a 2+y2b2=1,则222c a b =-=50椭圆与直线联立有()222222(9)1240a b x b x b a +-+-=,由已知x 1+x 22=12,根与系数关系带入得223a b =解得a 2=75,b 2=25.所以所求椭圆方程为y 225+x 275=1.13.解:1212216,6F F AF AF AF AF =+==-222022112112112cos 4548AF AF F F AF F F AF AF =+-⋅=-+2211117(6)48,,2A F A F A F A F -=-+=1772222S =⨯⨯=.圆锥曲线练习题答案一.选择题:CBCADD 二.填空题:7. 7倍 8.y=±43x 9. y 24x 216=1 10.-153<k<-1三.解答题13. 解:斜率不存在不合题意,设直线1y kx =-代入抛物线得2220x kx +-=2480k =+> 有k ∈R 设点1122(,),(,)A x y B x y 则y 1x 1+y 2x 2=1,由根与系数关系,解得直线方程1y x =-.14. 解:设所求的椭圆为x 2a 2+y 2b2=1,则222c a b =-=50椭圆与直线联立有()222222(9)1240a b x b x b a +-+-=,由已知x 1+x 22=12,根与系数关系带入得223a b =解得a 2=75,b 2=25.所以所求椭圆方程为y 225+x 275=1.13.解:1212216,6F F AF AF AF AF =+==-222022112112112cos 4548AF AF F F AF F F AF AF =+-⋅=-+2211117(6)48,,2A F A F A F A F -=-+=1772222S =⨯⨯=.空间向量练习题一.选择题1.直棱柱ABC -A 1B 1C 1中,若CA →=a →,CB →=b →,CC 1→=c →,则A 1B →=( )A .a →+b →-c →B .a →-b →+c →C .-a →+b →+c →D .-a →+b →-c →2.已知A ,B ,C 三点不共线,对平面ABC 外的任意一点O ,下列条件中能确定点M 与A ,B ,C 一定共面的是( )A .OM →=OA →+OB →+OC → C .OM →=2OA →-OB →-OC →C .OM →=OA →+12OB →+13→D .OM →=13OA →+13OB →+13OC →3.若向量m →同时垂直向量a →和b →,向量n →=λa →+μb →(λ,μ∈R, λ,μ≠0),则( )A .m →∥n →B .m →⊥n → C.m →与n →不平行也不垂直 D .以上均有可能 4.以下四个命题中,正确的是( )A .若OP →=12OA →+13OB →,则P ,A ,B 三点共线B .若{a →,b →,c →}为空间一个基底,则{a →+b →,b →+c →,c →+a →}构成空间的另一个基底 C .|(a →⋅b →)c →|=|a →|⋅|b →|⋅|c →|D .∆ABC 为直角三角形的充要条件是AB →⋅AC →=05.已知a →=(λ+1,0,2λ),b →=(6,2μ-1,2),a →∥b →,则λ和μ的值分别为( ) A .15,12B .5,2C .-15,-12D .-5,-2二.填空题6.若a →=(2,-3,1),b →=(2,0,3),c →=(0,2,2),则a →⋅(b →+c →)=________.7.已知G 是∆ABC 的重心,O 是空间任一点,若OA →+OB →+OC →=λOG →,则λ的值为_______. 8.已知|a →|=1,|b →|=2,<a →,b →>=60︒,则|a →-25(a →+2b →)|=________.三.解答题9.若向量(a →+3b →)⊥(7a →-5b →),(a →-4b →)⊥(7a →-2b →),求a →与b →的夹角.10.设123423223325=-+=+-=-+-=++,,,a i j k a i j k a i j k a i j k ,试求实数λμν,,,使4123a a a a λμν=++成立.11.正三棱柱111-ABC A B C 的底面边长为a ,求1AC 与侧面11ABB A 所成的角. 12.在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动,问AE 等于何值时,二面角1D EC D --的大小为π4.空间向量练习题答案一.选择题 DDBBA二.填空题 6.3 7.3 8.65三.解答题9.由已知向量垂直列方程,解得a →2=b →2=2a →⋅b →,∴cos<a →,b →>=12,∴a →与b →夹角为60︒.10.由4123a a a a λμν=++成立,可建立方程组,解得213v λμ=-==-,,.11.以A 为原点,分别以CA →,AB →,AA 1→为x,y ,z 轴建立空间直角坐标系,则A(0,0,0),B(0,a,0),A 1(0,0,2a),C 1(-32a,12a,2a),由于n →=(-1,0,0)是面11ABB A 的法向量,计算得cos<AC 1→,n →>=12,∴<AC 1→,n →>=60︒.故1AC 与侧面11ABB A 所成的角为30︒.12.设A E x =,以D 为原点,分别以DA →,DC →,DD 1→为x y z ,,轴建立空间直角坐标系,可求得平面1D EC 的法向量为n →=(2-x ,1,2).依题意πcos 422=⇒=.2x =-∴2x =+.2AE =-∴空间向量练习题答案一.选择题 DDBBA二.填空题 6.3 7.3 8.65三.解答题9.由已知向量垂直列方程,解得a →2=b →2=2a →⋅b →,∴cos<a →,b →>=12,∴a →与b →夹角为60︒.10.由4123a a a a λμν=++成立,可建立方程组,解得213v λμ=-==-,,.11.以A 为原点,分别以CA →,AB →,AA 1→为x,y ,z 轴建立空间直角坐标系,则A(0,0,0),B(0,a,0),A 1(0,0,2a),C 1(-32a,12a,2a),由于n →=(-1,0,0)是面11ABB A 的法向量,计算得cos<AC 1→,n →>=12,∴<AC 1→,n →>=60︒.故1AC 与侧面11ABB A 所成的角为30︒.12.设A E x =,以D 为原点,分别以DA →,DC →,DD 1→为x y z ,,轴建立空间直角坐标系,可求得平面1D EC 的法向量为n →=(2-x,1,2).依题意πcos 422=⇒=2x =-∴2x =+.2AE =-∴。
人教版高中数学同步解析与测评 学考练 数学A版 选修2-1 1.1.1
答案:②③⑤
学习目标导引 基础知识梳理 核心要点解析 典型例题领悟 -15-
题型一 题型二 题型三 题型四
判断命题的真假 【例2】 判断下列命题的真假: (1)已知a,b,c,d∈R,若a≠c或b≠d,则a+b≠c+d; (2)若m>1,则方程x2-2x+m=0无实数根; (3)空集是任何集合的真子集; (4)垂直于同一个平面的两个平面互相平行. 分析:根据真命题、假命题的定义进行判断. 解:(1)假命题.反例:1≠4或5≠2,而1+5=4+2. (2)真命题.因为m>1⇒Δ=4-4m<0⇒方程x2-2x+m=0无实数根. (3)假命题.空集是任何非空集合的真子集. (4)假命题.反例:有可能互相垂直,如墙角. 反思要判断一个命题是不是真命题,一般要有严格的证明;而要 判断一个命题是不是假命题,只要举出一个反例即可.
学习目标导引 基础知识梳理 核心要点解析 典型例题领悟 -14-
题型一 题型二 题型三 题型四
【变式训练1】 下列语句:
①垂直于同一条直线的两条直线平行吗?
②一个数不是正数就是负数;
③若x,y都是无理数,则x+y也是无理数;
④请把门关上;
⑤若直线l不在平面α内,则直线l与平面α平行.
其中为命题的是
核心要点解析
典型例题领悟 -5-
1.一般地,在数学中,我们把用语言、符号或式子表达的,可以判 断真假的陈述句叫做命题.
2.判断为真的语句叫做真命题,判断为假的语句叫做假命题. 3.在数学中,“若p,则q”是命题的常见形式,其中p叫做命题的条 件,q叫做命题的结论.
知识清单 预习自测
学习ቤተ መጻሕፍቲ ባይዱ标导引
2021人教版高中数学同步a版选修2-1(理科必考)模块练习题--第1课时椭圆的简单几何性质及其应用
2.2.2 椭圆的简单几何性质第1课时 椭圆的简单几何性质及其应用基础过关练题组一 椭圆的性质及应用1.焦点在x 轴上,右焦点到短轴端点的距离为2,到左顶点的距离为3的椭圆的标准方程是( )A.x 24+y 23=1B.x 24+y 2=1 C.y 24+x 23=1 D.x 2+y24=1 2.过椭圆x 24+y 23=1的焦点的最长弦和最短弦的长分别为()A.8,6B.4,3C.2,√3D.4,2√3 3.(2019陕西宝鸡高二上学期期末)把椭圆x 225+y 216=1的长轴AB 分成8等份,过每个分点作x 轴的垂线分别交椭圆的上半部分于点P 1,P 2,…,P 7,F 是左焦点,则|P 1F|+|P 2F|+…+|P 7F|等于( ) A.21 B.28 C.35 D.424.设AB 是椭圆的长轴,点C 在椭圆上,且∠CBA=π4,若AB=4,BC=√2,则椭圆的两个焦点之间的距离为 .题组二 与椭圆离心率有关的问题5.已知椭圆的两个焦点和短轴的两个端点恰好是一个正方形的四个顶点,则该椭圆的离心率为( ) A.13 B.12C.√33D.√226.已知焦点在y 轴上的椭圆mx 2+y 2=1的离心率为√32,则m 的值为( )A.1B.2C.3D.4 7.已知焦点在x轴上的椭圆方程为x 2a2+y 2=1(a>0),过焦点作垂直于x轴的直线交椭圆于A,B 两点,且|AB|=1,则该椭圆的离心率为( ) A.√32B.12C.√154D.√338.已知椭圆x 2a 2+y 2b2=1(a>b>0)的左焦点为F 1,右顶点为A,点B 在椭圆上,且BF 1⊥x 轴,直线AB 与y 轴交于点P,其中AP ⃗⃗⃗⃗⃗ =2PB ⃗⃗⃗⃗⃗ ,则椭圆的离心率为 .题组三 与椭圆有关的范围问题 9.若点O 和点F分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP ⃗⃗⃗⃗⃗ ·FP ⃗⃗⃗⃗⃗ 的最大值为( ) A.2 B.3 C.6 D.8 10.已知F 1,F 2是椭圆x 2a 2+y 2b2=1(a>b>0)的两个焦点,若椭圆上存在一点P,使得∠F 1PF 2=60°,则椭圆的离心率e 的取值范围是( ) A.[√22,1) B.(0,√22)C.[12,1) D.[12,√22) 11.已知点P 为椭圆x 2+2y 2=98上的一个动点,点A 的坐标为(0,5),则|PA|的最小值为 .12.已知椭圆C:x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1,F 2,离心率e=√22,连接椭圆的四个顶点所得四边形的面积为4√2. (1)求椭圆C 的标准方程;(2)设A,B 是直线l:x=2√2上的不同两点,若AF 1⃗⃗⃗⃗⃗⃗⃗ ·BF 2⃗⃗⃗⃗⃗⃗⃗ =0,求|AB|的最小值.能力提升练一、选择题1.(2019辽宁抚顺六校期末联考,★★☆)已知椭圆x 2+y 2b 2+1=1(b>0)的离心率为√1010,则b 等于( )A.3B.13C.910D.3√10102.(2019山西大同高三开学考试,★★☆)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为√22,过F 1的直线l交C 于A,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为( )A.x 236+y 218=1B.x 216+y 210=1 C.x 24+y 22=1 D.x 216+y 28=1 3.(2020重庆沙坪坝高二期末,★★☆)已知F 是椭圆E:x 2a 2+y 2b2=1(a>b>0)的左焦点,经过原点的直线l 与椭圆E 交于P,Q 两点,若|PF|=2|QF|,且∠PFQ=120°,则椭圆E 的离心率为( ) A.√33 B.12C.13D.√224.(2019黑龙江大庆四中高二上学期期中,★★★)已知点P(x,y)(x≠0,y≠0)是椭圆x 216+y 28=1上的一个动点,F 1,F 2分别为椭圆的左、右焦点,O 是坐标原点,若M 是∠F 1PF 2的平分线上的一点,且F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ·PM ⃗⃗⃗⃗⃗⃗ =0,则|OM ⃗⃗⃗⃗⃗⃗ |的取值范围为( ) A.[0,3) B.(0,2√2) C.[2√2,3) D.[0,4]二、填空题5.(2019皖西南联盟高二期末联考,★★☆)阿基米德不仅是著名的物理学家,也是著名的数学家,他最早利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C 的对称轴为坐标轴,焦点在y轴上,且椭圆C的离心率为35,面积为20π,则椭圆C的标准方程为.6.(2019河北石家庄二中高二月考,★★☆)已知椭圆x 2a2+y2b2=1(a>b>0),点P是椭圆上且在第一象限的点,F1,F2分别为椭圆的左、右焦点,O是坐标原点,过F2作∠F1PF2的外角的平分线的垂线,垂足为A,若|OA|=2b,则椭圆的离心率为.三、解答题7.(2019河北张家口高三开学考试,★★☆)设F1,F2分别是椭圆C:x 2a2+y2b2=1(a>b>0)的左、右焦点,M是C上且在第一象限内的一点,且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为34,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b的值.8.(★★★)如图,F1,F2分别是椭圆C:x 2a2+y2b2=1(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,AF1=F1F2.(1)求椭圆C的离心率;(2)已知△AF1B的面积为40√3,求a,b的值.答案全解全析 基础过关练1.A 依题意得a=2,a+c=3,故c=1,b=√22-12=√3,故所求椭圆的标准方程是x 24+y 23=1.2.B 过椭圆焦点的最长弦为长轴,其长度为4,最短弦为垂直于长轴的弦.易知c=1,将x=1代入x 24+y 23=1,得124+y 23=1,解得y 2=94,即y=±32,所以最短弦的长为2×32=3.故选B.3.C 设椭圆的右焦点为F',则由椭圆的定义得|P 1F|+|P 1F'|=10,由椭圆的对称性,知|P 1F'|=|P 7F|,∴|P 1F|+|P 7F|=10.同理,|P 2F|+|P 6F|=10,|P 3F|+|P 5F|=10.又|P 4F|=5,∴|P 1F|+|P 2F|+…+|P 7F|=35. 4.答案4√63解析 不妨设椭圆的标准方程为x 2a 2+y 2b 2=1(a>b>0),由题意知2a=4,∴a=2. ∵∠CBA=π4,BC=√2,∴不妨设点C 的坐标为(-1,1). ∵点C 在椭圆上,∴14+1b 2=1,∴b 2=43,∴c 2=a 2-b 2=4-43=83,c=2√63,则椭圆的两个焦点之间的距离为4√63. 5.D 依题意得椭圆的焦距和短轴长相等,故b=c,∴a 2-c 2=c 2,∴e=√22. 6.D 将椭圆的方程化为标准形式为y 2+x 21m=1,由题意得a 2=1,b 2=1m ,∴c 2=a 2-b 2=1-1m ,∴离心率e=ca =√1-1m =√32,∴m=4.7.A 易知椭圆的焦点坐标为(±√a 2-1,0),∵|AB|=1,∴当x=±√a 2-1时,y=±12.不妨设A (√a 2-1,12),则a 2-1a 2+14=1,解得a=2,∴椭圆的离心率为e=√a 2-1a=√32.故选A.8.答案 12解析 如图,易知△ABF 1∽△APO, 则|AP ||AB |=|AO ||AF 1|,即23=aa+c ,所以a=2c,所以e=c a =12.9.C 由题意得F(-1,0),设点P(x 0,y 0),则y 02=3(1-x 024)(-2≤x 0≤2),OP ⃗⃗⃗⃗⃗ ·FP ⃗⃗⃗⃗⃗ =x 0(x 0+1)+y 02=x 02+x 0+y 02=x 02+x 0+3(1-x 024)=14(x 0+2)2+2,当x 0=2时,OP⃗⃗⃗⃗⃗ ·FP ⃗⃗⃗⃗⃗ 取得最大值,最大值为6. 10. C 在△PF 1F 2中,设|PF 1|=m,|PF 2|=n,则m+n=2a,根据余弦定理,得(2c)2=m 2+n 2-2mncos 60°,整理得(m+n)2-3mn=4c 2,所以3mn=4a 2-4c 2, 所以4a 2-4c 2=3mn≤3(m+n 2)2=3a 2(当且仅当m=n 时,等号成立),即a 2≤4c 2,故e 2=c 2a 2≥14,又0<e<1, 所以12≤e<1.11.答案 2解析 设P(x,y),则|PA|=√x 2+(y -5)2=√x 2+y 2-10y +25. 因为点P 为椭圆x 2+2y 2=98上的一点,所以x 2=98-2y 2,-7≤y≤7,则|PA|=√98-2y 2+y 2-10y +25 =√-(y +5)2+148, 因为-7≤y≤7,所以当y=7时,|PA|min =2. 12.解析 (1)由题意得{ e =c a =√22,a 2=b 2+c 2,12×2a ×2b =4√2,解得{a =2,b =√2,c =√2.所以椭圆的标准方程为x 24+y 22=1.(2)由(1)知,F 1(-√2,0),F 2(√2,0),设直线l:x=2√2上的不同两点A,B 的坐标分别为(2√2,y 1),(2√2,y 2),则AF 1⃗⃗⃗⃗⃗⃗⃗ =(-3√2,-y 1),BF 2⃗⃗⃗⃗⃗⃗⃗ =(-√2,-y 2),由AF 1⃗⃗⃗⃗⃗⃗⃗ ·BF 2⃗⃗⃗⃗⃗⃗⃗ =0,得y 1y 2+6=0, 即y 2=-6y 1,不妨设y 1>0,则|AB|=|y 1-y 2|=y 1+6y 1≥2√6,当且仅当y 1=√6,y 2=-√6时等号成立,所以|AB|的最小值是2√6.能力提升练一、选择题1.B 易知b 2+1>1,由题意得(b 2+1)-1b 2+1=b 2b 2+1=110,解得b=13或b=-13(舍去),故选B.2.D 由△ABF 2的周长为16,得|BF 2|+|AF 2|+|BF 1|+|AF 1|=16,根据椭圆的性质,得4a=16,即a=4.又椭圆的离心率为√22,即c a =√22,所以c=2√2,b 2=a 2-c 2=8,则椭圆C 的方程为x 216+y 28=1.3.A 如图,设椭圆的右焦点为F',连接PF',QF',根据椭圆的对称性知,线段FF'与线段PQ 在点O 处互相平分,所以四边形PFQF'为平行四边形,∴|FQ|=|PF'|,∠FPF'=60°.根据椭圆的定义,得|PF|+|PF'|=2a,又|PF|=2|QF|,∴|PF'|=23a,|PF|=43a,而|FF'|=2c.在△F'PF 中,由余弦定理,得(2c)2=(23a)2+(43a)2-2×23a×43a×cos 60°,即c 2a2=13,∴椭圆的离心率e=c a =√33.4.B 如图,延长PF 2,F 1M 交于点N,则△PF 1N 为等腰三角形,M 为F 1N 的中点,|OM ⃗⃗⃗⃗⃗⃗ |=12|F 2N ⃗⃗⃗⃗⃗⃗⃗ |=12(|PN ⃗⃗⃗⃗⃗⃗ |-|PF 2⃗⃗⃗⃗⃗⃗⃗ |)=12·||PF 1⃗⃗⃗⃗⃗⃗⃗ |-|PF 2⃗⃗⃗⃗⃗⃗⃗ ||.由图可知,当P 在短轴端点时,|OM ⃗⃗⃗⃗⃗⃗ |取得最小值,此时|OM⃗⃗⃗⃗⃗⃗ |=0,当P 在长轴端点时,|OM ⃗⃗⃗⃗⃗⃗ |取得最大值,此时|OM ⃗⃗⃗⃗⃗⃗ |=2√2,但点P 不能在坐标轴上,所以|OM⃗⃗⃗⃗⃗⃗ |的取值范围为(0,2√2).二、填空题 5.答案y 225+x 216=1解析 设椭圆C 的标准方程为y 2a 2+x 2b 2=1(a>b>0),则椭圆C 的面积为S=πab=20π,又e=√1-b 2a 2=35,解得a 2=25,b 2=16.所以椭圆C 的标准方程为y 225+x 216=1.6.答案√32解析 如图,延长F 2A 交F 1P 的延长线于点M.由题意可知|PM|=|PF 2|,由椭圆的定义可知|PF 1|+|PF 2|=2a, 则|PF 1|+|PM|=|MF 1|=2a. 易知OA 是△F 1F 2M 的中位线, ∴|OA|=12|MF 1|=a. 又|OA|=2b,∴2b=a,则a 2=4b 2=4(a 2-c 2), 即c 2=34a 2,∴e 2=34,又e∈(0,1),∴e=√32.三、解答题 7.解析 (1)根据c=√a 2-b 2及题设知M (c ,b 2a ),由k MN =k MF 1=34,得b 2a-0c -(-c )=34,即2b 2=3ac.将b 2=a 2-c 2代入,得2c 2+3ac-2a 2=0,即2e 2+3e-2=0,解得e=12或e=-2(舍去).故C 的离心率为12.(2)由题意知,原点O 为F 1F 2的中点,MF 2∥y 轴,设直线MF 1与y 轴的交点为D,则D(0,2)是线段MF 1的中点,故b 2a =4,即b 2=4a.①由|MN|=5|F 1N|,得|DF 1|=2|F 1N|, 则F 1D ⃗⃗⃗⃗⃗⃗⃗ =2NF 1⃗⃗⃗⃗⃗⃗⃗ .设N(x 1,y 1),由题意知y 1<0,则{2(-c -x 1)=c ,-2y 1=2,即{x 1=-32c ,y 1=-1, 代入C 的方程,得9c 24a 2+1b 2=1.② 由①②及a 2=b 2+c 2得9(a 2-4a )4a 2+14a =1,解得a=7,则b=√4a =2√7. 8.解析 (1)∵AF 1=F 1F 2, ∴a=2c,∴e=c a =12.(2)设|BF 2|=m,则|BF 1|=2a-m.∵AF 1=F 1F 2=AF 2,∴△AF 1F 2是等边三角形, ∴∠F 1F 2B=180°-∠F 1F 2A=180°-60°=120°.在△BF 1F 2中,|BF 1|2=|BF 2|2+|F 1F 2|2-2|BF 2||F 1F 2|cos∠F 1F 2B,即(2a-m)2=m 2+a 2-2am×(-12), ∴m=35a. ∵△AF 1B 的面积S=12|BA||F 1A|sin 60° =12×(a +35a)×a×√32=40√3,∴a=10,∴c=5,b=5√3.。
(人教A版)高中数学选修2-1(全册)同步练习汇总
(人教A版)高中数学选修2-1(全册)同步练习汇总课堂效果落实1.下列语句中是命题的是()A.周期函数的和是周期函数吗B.sin45°=1C.x2+2x-1>0D.梯形是平面图形吗解析:A、D是疑问句, 不是命题, C不能判断真假, 故B为正确答案.答案:B2.[2014·大连高二检测]若M、N是两个集合, 则下列命题中真命题是()A.如果M⊆N, 那么M∩N=MB.如果M∩N=N, 那么M⊆NC.如果M⊆N, 那么M∪N=MD.如果M∪N=N, 那么N⊆M解析:用集合的定义理解.答案:A3.在下列4个命题中, 是真命题的序号为()①3≥3;②100或50是10的倍数;③有两个角是锐角的三角形是锐角三角形;④等腰三角形至少有两个内角相等.A.①B.①②C.①②③D.①②④解析:对于③, 举一反例, 若A=15°, B=15°, 则C为150°, 三角形为钝角三角形.答案:D4.[2014·辽宁高二检测]下列命题:①若xy=1, 则x、y互为倒数;②对角线垂直的平行四边形是正方形;③平行四边形是梯形;④若ac2>bc2, 则a>b.其中真命题的序号是________.解析:①④是真命题, ②四条边相等的四边形也可以是菱形, ③平行四边形不是梯形.答案:①④5.[2014·武汉高二测试]判断下列语句是不是命题, 如果是命题, 指出是真命题还是假命题.(1)任何负数都大于零;(2)△ABC与△A1B1C1是全等三角形;(3)x2+x>0;(4)∅A;(5)6是方程(x-5)(x-6)=0的解;(6)方程x2-2x+5=0无解.解:(1)负数都是小于零的, 因此“任何负数都大于零”是不正确的;它能构成命题, 而且这个命题是个假命题.(2)两个三角形为全等三角形是有条件的, 本题无法判定△ABC 与△A1B1C1是否为全等三角形, 所以它不是命题.(3)因为x是未知数, 无法判断x2+x是否大于零, 所以“x2+x>0”这一语句不是命题.(4)空集是任何非空集合的真子集, 集合A是不是非空集合我们无法判断, 所以无法判断“∅A”是否成立, 因此, 它不是命题.(5)6确实是所给方程的解, 所以它是命题, 且是真命题.(6)由于给定方程x2-2x+5=0, 我们就可以用其判别式来判断它是否有解.由Δ=4-4×5=-16<0知, 方程x2-2x+5=0无解, 是命题, 且是真命题.04课后课时精练一、选择题1.“红豆生南国, 春来发几枝?愿君多采撷, 此物最相思.”这是唐代诗人王维的《相思》诗, 在这4句诗中, 可作为命题的是()A. 红豆生南国B. 春来发几枝C. 愿君多采撷D. 此物最相思解析:“红豆生南国”是陈述句, 意思是“红豆生长在中国南方”, 这在唐代是事实, 故本语句是命题, 且是真命题;“春来发几枝”是疑问句, “愿君多采撷”是祈使句, “此物最相思”是感叹句, 都不是命题.答案:A2.[2013·安徽高考]在下列命题中, 不是..公理的是()A. 平行于同一个平面的两个平面相互平行B. 过不在同一条直线上的三点, 有且只有一个平面C. 如果一条直线上的两点在一个平面内, 那么这条直线上所有的点都在此平面内D. 如果两个不重合的平面有一个公共点, 那么它们有且只有一条过该点的公共直线解析:本题考查了立体几何中的公理与定理, 意在要考生注意回归课本, 明白最基本的公理与定理.注意公理是不用证明的, 定理是要求证明的.选项A是面面平行的性质定理, 是由公理推证出来的, 而公理是不需要证明的.答案:A3.下列命题中()①a·b=a·c且a≠0时, 必有b=c②如a∥b时, 必存在唯一实数λ使a=λb③a, b, c互不共线时, a-b必与c不共线④a与b共线且c与b也共线时, 则a与c必共线其中真命题的个数有()A. 0个B. 1个C. 2个D. 3个解析:对于①, 由a·b=a·c且a≠0, 得a·(b-c)=0, 未必有b=c;对于②, 若b=0时, 不成立;对于③, 如图△ABC中, E, F分别为AB, AC的中点,AB →=a , AC →=b , 则CB →=AB →-AC →.又因为EF →=12BC →.即c =-12(a -b ), 故③不正确.④若b =0时, a 与c 不一定共线, 故选A.答案:A4.[2014·辽宁高考]已知m , n 表示两条不同直线, α表示平面.下列说法正确的是( )A. 若m ∥α, n ∥α, 则m ∥nB. 若m ⊥α, n ⊂α, 则m ⊥nC. 若m ⊥α, m ⊥n , 则n ∥αD. 若m ∥α, m ⊥n , 则n ⊥α解析:本题主要考查空间线面位置关系的判断, 意在考查考生的逻辑推理能力.对于选项A, 若m ∥α, n ∥α, 则m 与n 可能相交、平行或异面, A 错误;显然选项B 正确;对于选项C, 若m ⊥α, m ⊥n , 则n ⊂α或n ∥α, C 错误;对于选项D, 若m ∥α, m ⊥n , 则n ∥α或n ⊂α或n 与α相交, D 错误.故选B.答案:B5.[2014·海南高二检测]设U为全集, 下列命题是真命题的有()①若A∩B=∅, 则(∁U A)∪(∁U B)=U;②若A∪B=U, 则(∁U A)∩(∁B)=∅;③若A∪B=∅, 则A=B=∅.UA.0个B.1个C.2个D.3个解析:由Venn图容易判断, ①②③均为真命题.答案:D6.设l1、l2表示两条直线, α表示平面.若有:①l1⊥l2;②l1⊥α;③l2⊂α, 则以其中两个为条件, 另一个为结论, 可以构造的所有命题中, 正确命题的个数为()A.0 B.1C.2 D.3解析:由题意得三个命题, 即②③⇒①、①③⇒②和①②⇒③.由②③⇒①正确, ①③⇒②错误, ①②⇒③错误, 故选B.答案:B二、填空题7.下列语句是命题的有________.①地球是太阳的一个行星;②数列是函数吗?③x, y都是无理数, 则x+y是无理数;④若直线l不在平面α内, 则直线l与平面α平行;⑤60x+9>4;⑥求证3是无理数.解析:根据命题的定义进行判断.因为②是疑问句, 所以②不是命题;因为⑤中自变量x的值不确定, 所以无法判断其真假;因为⑥是祈使句, 所以不是命题.故填①③④.答案:①③④8.命题“一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根”, 条件p:________________, 结论q:________________, 是________________(填“真”或“假”)命题.解析:根据命题的结构形式填空.答案:方程ax2+bx+c=0(a≠0)是一元二次方程此方程有两个不相等的实数根假9.把下列不完整的命题补充完整, 并使之成为真命题:若函数f(x)=log3x的图象与g(x)的图象关于原点对称, 则g(x)=________.解析:设g(x)上任意一点坐标为P(x, y), 则点P关于原点的对称点坐标为P1(-x, -y), 点P1在函数f(x)=log3x的图象上, 将对称点P1坐标直接代入f(x),即得:g(x)=-log3(-x).答案:-log3(-x)三、解答题10.判断下列语句是否为命题.(1)若a⊥b, 则a·b=0;(2)2是无限循环小数;(3)三角形的三条中线交于一点;(4)x2-4x+4≥0(x∈R);(5)非典型肺炎是怎样传染的?(6)2014年北京的高考题真难!答案:(1)是(2)是(3)是(4)是(5)不是(6)不是11.把下列命题写成“若p, 则q”的形式, 并判断其真假:(1)等腰三角形的两个底角相等.(2)当x=2或x=4时, x2-6x+8=0;(3)正方形是矩形又是菱形;(4)方程x 2-x +1=0有两个实数根.解:(1)若一个三角形是等腰三角形, 则两个底角相等, 真命题.(2)若x =2或x =4, 则x 2-6x +8=0, 真命题.(3)若一个四边形是正方形, 则它既是矩形, 又是菱形, 为真命题.(4)若一个方程为x 2-x +1=0, 则这个方程有两个实数根, 为假命题.12.[2014·南昌高二检测]已知命题p :|x 2-x |≥6, q :x ∈Z , 若p 假q 真, 求x 的值.解:因为p 假q 真, 所以可得⎩⎪⎨⎪⎧ |x 2-x |<6,x ∈Z , 所以⎩⎪⎨⎪⎧ x 2-x <6,x 2-x >-6,x ∈Z ,即⎩⎪⎨⎪⎧ -2<x <3,x ∈R ,x ∈Z ,故x 的值为-1,0,1,2.03课堂效果落实1.下列命题:①今天有人请假;②中国所有的江河都流入太平洋;③中国公民都有受教育的权力;④每一个中学生都要接受爱国主义教育;⑤有人既能写小说, 也能搞发明创造⑥任何一个数除0都等于0.其中是全称命题的有( )A.1个B.2个C.3个D.不少于4个解析:②、③、④、⑥都含有全称量词.答案:D2.下列全称命题中真命题的个数为()①末位是0的整数, 可以被2整除;②角平分线上的点到这个角的两边的距离相等;③正四面体中两侧面的夹角相等.A.1 B.2C.3 D.0解析:①②③均为全称命题且均为真命题, 故选C.答案:C3.[2014·温州高二检测]下列命题不是“存在x0∈R, x20>3”的表述方法的是()A.有一个x0∈R, 使得x20>3成立B.对有些x0∈R, 使得x20>3成立C.任选一个x∈R, 使得x2>3成立D.至少有一个x0∈R, 使得x20>3成立解析:C答案已经是全称命题了.答案:C4.命题“有些负数满足不等式(1+x)(1-9x2)>0”用“∃”写成特称命题为__________________.解析:“有些”即存在.答案:∃x0∈R, x0<0, (1+x0)(1-9x20)>05.判断下列命题是全称命题还是特称命题?并判断其真假.(1)存在一个实数, 使等式x2+x+8=0成立;(2)每个二次函数的图象都与x 轴相交;(3)若对所有的正实数, 不等式m ≤x +1x 都成立, 则m ≤2; (4)如果对任意的正整数n , 数列{a n }的前n 项和S n =an 2+bn (a , b 为常数), 那么数列{a n }为等差数列.解:(1)特称命题.∵x 2+x +8=(x +12)2+314>0,∴命题为假命题. (2)全称命题, 假命题.如存在y =x 2+x +1与x 轴不相交. (3)全称命题. ∵x 是正实数, ∴x +1x ≥2x ·1x =2(当且仅当x =1时“=”成立).即x +1x 的最小值是2, 而m ≤x +1x , 从而m ≤2. 所以这个全称命题是真命题. (4)全称命题.∵S n =an 2+bn , ∴a 1=a +b .当n ≥2时, a n =S n -S n -1=an 2+bn -a (n -1)2-b (n -1)=2na +b -a ,又n =1时, a 1=a +b 也满足上式, 所以a n =2an +b -a (n ∈N *).从而数列{a n }是等差数列, 即这个全称命题也是真命题.04课后课时精练一、选择题1.给出下列命题:①存在实数x0>1, 使x20>1;②全等的三角形必相似;③有些相似三角形全等;④至少有一个实数a, 使关于x的方程ax2-ax+1=0的根为负数.其中特称命题的个数是()A.1B.2C.3 D.4解析:只有②是全称命题.答案:C2.“存在集合A, 使∅A”, 对这个命题, 下面说法中正确的是()A.全称命题、真命题B.全称命题、假命题C.特称命题、真命题D.特称命题、假命题解析:当A≠∅时, ∅A, 是特称命题, 且为真命题.答案:C3.下列命题中是全称命题并且是真命题的是()A.每个二次函数的图象都开口向上B.对任意非正数c, 若a≤b+c, 则a≤bC.存在一条直线与两个相交平面都垂直D.存在一个实数x0使不等式x20-3x0+6<0成立解析:C、D是特称命题, A是假命题.答案:B4.特称命题“存在实数x0使x20+1<0”可写成()A.若x∈R, 则x2+1<0B.∀x∈R, x2+1<0C.∃x0∈R, x20+1<0D.以上都不正确解析:特称命题“存在一个x0∈R, 使p(x0)成立”简记为“∃x0∈R, 使p(x0)成立”.答案:C5.[2014·大连高二检测]下列命题中假命题的个数为()①∀x∈R,2x-1>0 ②∀x∈N*, (x-1)2>0③∃x0∈R, lg x0>1 ④∃x0∈R, tan x0=2⑤∃x0∈R, sin2x0+sin x0+1=0A.1 B.2C.3 D.4解析:本题考查全称命题和特称命题的真假判断.①中命题是全称命题, 易知2x-1>0恒成立, 故是真命题;②中命题是全称命题, 当x=1时, (x-1)2=0, 故是假命题;③中命题是特称命题, 当x=100时, lg x=2, 故是真命题;④中命题是特称命题, 依据正切函数定义, 可知是真命题.⑤(sin x0+12)2+34≥34>0成立, 可知为假命题.答案:B6.若对于∀x∈R, x2≥a+2|x|恒成立, 则实数a的取值范围是()A.a<-1 B.a≤-1C.a>-1 D.a≥-1解析:对于∀x∈R, x2≥a+2|x|恒成立,即a≤x2-2|x|恒成立.令f(x)=x2-2|x|, x∈R,则f(-x)=f(x).当x ≥0时, f (x )=x 2-2x =(x -1)2-1≥-1, 故a ≤-1. 答案:B 二、填空题7.“任意一个不大于0的数的立方不大于0”用“∃”或“∀”符号表示为__________________________.答案:∀x ≤0, x 3≤08.[2014·西安高二检测]若∃x ∈R , 使x +1x =m 成立, 则实数m 的取值范围是________.解析:依题意, 关于x 的方程x +1x =m 有实数解, 由基本不等式得x +1x ≥2或x +1x ≤-2, ∴m ≥2或m ≤-2. 答案:(-∞, -2]∪[2, +∞)9.下列命题中, 是全称命题或特称命题的是________. ①正方形的四条边相等;②所有有两个角是45°的三角形是等腰直角三角形;③正数的平方根不等于0;④至少有一个正整数是偶数;⑤所有正数都是实数吗?解析:④为特称命题, ①②③为全称命题, 而⑤不是命题. 答案:①②③④ 三、解答题10.判断下列命题是否是全称命题或特称命题, 若是, 用符号表示, 并判断其真假.(1)任何一个平行四边形的对边都平行; (2)存在一条直线, 其斜率不存在;(3)对所有的实数a , b , 方程ax +b =0都有唯一解;(4)存在实数x0, 使得1x20-x0+1=2.解:(1)是全称命题, 是真命题;(2)是特称命题, 用符号表示为“∃直线l, l的斜率不存在”, 是真命题;(3)是全称命题, 用符号表示为“∀a, b∈R, 方程ax+b=0都有唯一解”, 是假命题.(4)是特称命题, 用符号表示为“∃x0∈R,1x20-x0+1=2”, 是假命题.11. [2014·唐山高二检测]已知函数f(x)=x2-2x+5.(1)是否存在实数m, 使不等式m+f(x)>0对于任意x∈R恒成立?并说明理由;(2)若存在实数x, 使不等式m-f(x)>0成立, 求实数m的取值范围.解:(1)不等式m+f(x)>0可化为m>-f(x), 即m>-x2+2x-5=-(x-1)2-4.要使m>-(x-1)2-4对于任意x∈R恒成立, 只需m>-4即可.故存在实数m使不等式m+f(x)>0对于任意x∈R恒成立, 此时m>-4.(2)不等式m-f(x)>0可化为m>f(x).若存在实数x使不等式m>f(x)成立, 只需m>f(x)min.又f(x)=(x-1)2+4, ∴f(x)min=4,∴m>4.故所求实数m的取值范围是(4, +∞).12.(1)若全称命题“任意x∈[-1, +∞), x2-2ax+2≥0恒成立”为真命题, 求a的取值范围;(2)若特称命题“存在x 0∈R , 使log 2(ax 20+x 0+2)<0”为真命题, 求a 的取值范围.解:(1)当x ∈[-1, +∞)时, x 2-2ax +2≥0恒成立, 等价于二次函数y =x 2-2ax +2的图象在x 轴的上方, 只需满足Δ<0或⎩⎪⎨⎪⎧Δ≥0,a ≤-1,f (-1)≥0,即4a 2-8<0或⎩⎪⎨⎪⎧4a 2-8≥0,a ≤-1,2a +3≥0,所以-2<a <2或-32≤a ≤-2,所以a 的取值范围是[-32, 2).(2)log 2(ax 20+x 0+2)<0⇔0<ax 20+x 0+2<1, 即存在x 0∈R , 使0<ax 2+x 0+2<1成立.当a =0时, -2<x 0<-1满足题意, 即存在实数x 0满足题意;当a ≠0时, ⎩⎪⎨⎪⎧ a >0,4a -1<0,或⎩⎪⎨⎪⎧a <0,8a -1<0,即0<a <14或a <0. 综上所述, a <14, 即所求a 的取值范围是(-∞, 14).03课堂效果落实1.命题“x =±1是方程|x |=1的解”中, 使用逻辑联结词的情况是( )A .没有使用逻辑联结词B .使用了逻辑联结词“或”C .使用了逻辑联结词“且”D .使用了逻辑联结词“或”与“且” 答案:B2.以下判断正确的是()A.命题p是真命题时, 命题“p∧q”一定是真命题B.命题“p∧q”为真命题时, 命题p一定是真命题C.命题“p∧q”为假命题时, 命题p一定是假命题D.命题p是假命题时, 命题“p∧q”不一定是假命题解析:若“p∧q”为真, 则p、q二者皆真, 若“p∧q”为假, 则p、q中至少有一个为假, 故选B.答案:B3.已知命题p:∅⊆{0}, q:{1}∈{1,2}.由它们构成的“p或q”“p 且q”形式的命题中真命题有________个.解析:p为真命题, q为假命题, “p或q”为真命题, “p且q”为假命题.答案:14.分别用“p∧q”“p∨q”填空.(1)命题“6是自然数且是偶数”是________形式.(2)命题“5小于或等于7”是________形式.(3)命题“正数或0的平方根是实数”是________形式.答案:(1)p∧q(2)p∨q(3)p∨q5.已知命题p:0不是自然数, q:π是无理数, 写出命题“p∨q”, “p∧q”, 并判断其真假.解:p∧q:0不是自然数且π是无理数.假命题;p∨q:0不是自然数或π是无理数.真命题.04课后课时精练一、选择题1.“xy ≠0”是指( )A .x ≠0且y ≠0B .x ≠0或y ≠0C .x , y 至少一个不为0D .x , y 不都是0解析:xy ≠0当且仅当x ≠0且y ≠0. 答案:A2.已知命题p :2+2=5, 命题q :3>2, 则下列判断正确的是( ) A .“p 或q ”为假 B .“p 或q ”为真C .“p 且q ”为真, “p 或q ”为假D .以上均不对解析:显然p 假q 真, 故“p 或q ”为真, “p 且q ”为假, 故选B.答案:B3.p :点P 在直线y =2x -3上, q :点P 在抛物线y =-x 2上, 则使“P ∧q ”为真命题的一个点P (x , y )是( )A .(0, -3)B .(1,2)C .(1, -1)D .(-1,1)解析:点P (x , y )满足⎩⎪⎨⎪⎧y =2x -3,y =-x 2.可验证各选项中, 只有C 正确. 答案:C4.下列命题中既是p ∧q 形式的命题, 又是真命题的是( ) A .10或15是5的倍数B .方程x 2-3x -4=0的两根是4和-1C .集合A 是A ∩B 的子集或是A ∪B 的子集D .有两个角为45°的三角形是等腰直角三角形解析:“有两个角是45°的三角形是等腰三角形, 而且是直角三角形”, 是“p且q”的形式且为真.答案:D5.若命题p:∃x∈R, x2+2x+5<0, 命题q;∀a, b∈R, a2+b2≥2ab, 则下列结论正确的是()A.“p∨q”为假B.“p∨q”为真C.“p∧q”为真D.以上都不对解析:p是假命题, q是真命题, 故p∨q为真.答案:B6.[2014·南宁高二检测]下列命题, 其中假命题的个数为()①5>4或4>5;②9≥3;③命题“若a>b, 则a+c>b+c”;④命题“菱形的两条对角线互相垂直”A.0个B.1个C.2个D.3个解析:①“5>4”为真, 故“5>4或4>5”为真命题;②“9≥3”表示为“9>3(真)或9=3”, 故“9≥3”为真命题;③若“a >b, 则a+c>b+c”也是真命题;④也是真命题.答案:A二、填空题7.若p:2是8的约数, q:2是12的约数.则“p∨q”为________;“p∧q”为________.(填具体的语句内容).答案:2是8的约数, 或者是12的约数'2既是8的约数, 又是12的约数8.[2014·郑州高二检测]已知p(x):x2+2x-m>0, 如果p(1)是假命题, p (2)是真命题, 则实数m 的取值范围是________.解析:∵p (1)是假命题, p (2)是真命题,∴⎩⎪⎨⎪⎧3-m ≤0,8-m >0,解得3≤m <8. 答案:[3,8)9.对于函数①f (x )=|x +2|;②f (x )=(x -2)2;③f (x )=cos(x -2).有命题p :f (x +2)是偶函数;命题q :f (x )在(-∞, 2)上是减函数, 在(2, +∞)上是增函数, 能使p ∧q 为真命题的所有函数的序号是________.解析:对于①, f (x +2)=|x +4|不是偶函数, 故p 为假命题.对于②, f (x +2)=x 2是偶函数, 则p 为真命题:f (x )=(x -2)2在(-∞, 2)上是减函数, 在(2, +∞)上是增函数, 则q 为真命题, 故“p ∧q ”为真命题.对于③, f (x )=cos(x -2)显然不是(2, +∞)上的增函数, 故q 为假命题.故填②.答案:② 三、解答题10.分别指出由下列各组命题构成的“p ∨q ”“p ∧q ”形式的复合命题的真假.(1)P :3>3 q :3=3; (2)p :∅{0} q :0∈∅;(3)p :A ⊆A q :A ∩A =A ;(4)p :函数y =x 2+3x +4的图象与x 轴有公共点; q :方程x 2+3x -4=0没有实根.解:(1)∵p 假q 真, ∴“p ∨q ”为真, “p ∧q ”为假; (2)∵p 真q 假, ∴“p ∨q ”为真, “p ∧q ”为假; (3)∵p 真q 真, ∴“p ∨q ”为真, “p ∧q ”为真;(4)∵p 假q 假, ∴“p ∨q ”为假, “p ∧q ”为假.11.[2014·沈阳高二检测]对命题p :“1是集合{x |x 2<a }中的元素”, q :“2是集合{x |x 2<a }中的元素”, 则a 为何值时, “p 或q ”是真命题?a 为何值时, “p 且q ”是真命题?解:由1是集合{x |x 2<a }中的元素, 可得a >1, 由2是集合{x |x 2<a }中的元素, 可得a >4, 即使得p , q 为真命题的a 的取值集合分别为P ={a |a >1}, T ={a |a >4}.当p , q 至少一个为真命题时, “p 或q ”为真命题, 则使“p 或q ”为真命题的a 的取值范围是P ∪T ={a |a >1};当p , q 都为真命题时, “p 且q ”才是真命题, 则使“p 且q ”为真命题的a 的取值范围是P ∩T ={a |a >4}.12.已知P :函数y =x 2+mx +1在(-1, +∞)上单调递增, q :函数y =4x 2+4(m -2)x +1大于零恒成立.若p 或q 为真, p 且q 为假, 求m 的取值范围.解:若函数y =x 2+mx +1在(-1, +∞)上单调递增, 则-m 2≤-1, ∴m ≥2, 即p :m ≥2;若函数y =4x 2+4(m -2)x +1恒大于零, 则Δ=16(m -2)2-16<0, 解得1<m <3, 即q :1<m <3.因为“p 或q ”为真, “p 且q ”为假, 所以p 、q 一真一假,当p 真q 假时, 由⎩⎪⎨⎪⎧m ≥2m ≥3或m ≤1, 得m ≥3,当p 假q 真时, 由⎩⎨⎧m <21<m <3, 得1<m <2.综上, m的取值范围是{m|m≥3或1<m<2}.03课堂效果落实1. [2014·福建高考]命题“∀x∈[0, +∞), x3+x≥0”的否定是()A. ∀x∈(-∞, 0), x3+x<0B. ∀x∈(-∞, 0), x3+x≥0C. ∃x0∈[0, +∞), x30+x0<0D. ∃x0∈[0, +∞), x30+x0≥0解析:本题考查含有量词的命题的否定, 意在考查考生的逻辑推理能力.把全称量词“∀”改为存在量词“∃”, 并把结论加以否定, 故选C.答案:C2.全称命题“所有能被5整除的整数都是奇数”的否定是() A.所有能被5整除的整数都不是奇数B.所有奇数都不能被5整除C.存在一个能被5整除的整数不是奇数D.存在一个奇数, 不能被5整除解析:全称命题的否定是特称命题, 而A, B是全称命题, 所以A, B错.因为“所有能被5整除的整数”的否定是“存在一个能被5整除的整数”, 所以D错, C正确, 故选C.答案:C3.如果命题“p或q”与命题“非p”都是真命题, 那么() A.命题p不一定是假命题B.命题q一定是真命题C .命题q 不一定是真命题D .p 与q 的真假相同解析:∵“非p ”为真命题, ∴p 为假命题.又∵p 或q 为真命题, ∴q 为真命题.故选B.答案:B4.若命题p :不等式ax +b >0的解集为{x |x >-b a }, 命题q :关于x 的不等式(x -a )(x -b )<0的解集为{x |a <x <b }, 则“p ∧q ”“p ∨q ”“綈p ”形式的复合命题中的假命题的个数是________.解析:因命题p 、q 均为假命题, 所以“p ∨q ”“p ∧q ”为假命题, “綈p ”为真命题.答案:25.写出下列命题的否定, 并判断其真假:(1)三角形的内角和为180°;(2)∃x 0∈R , x 20+1=0;(3)∀x ∈R , x 2-3x +2=0.(4)至少有两个实数x 0, 使x 30+1=0.(5)∃x 0, y 0∈N , 如果x 0+|y 0|=0, 则x 0=0且y 0=0.解:(1)此命题为全称命题, 其否定为:存在一个三角形, 它的内角和不等于180°, 是假命题.(2)此命题为特称命题, 其否定为:∀x ∈R , x 2+1≠0, 是真命题.(3)此命题为全称命题, 其否定为:∃x 0∈R , x 20-3x 0+2≠0, 是真命题.(4)此命题为特称命题, 其否定为:至多有一个实数x 0, 使x 30+1≠0, 是假命题.(5)此命题为特称命题, 其否定为:∀x, y∈N, 如果x+|y|=0, 则x=0或y=0, 是假命题.04课后课时精练一、选择题1.“至多有三个”的否定为()A.至少有三个B.至少有四个C.有三个D.有四个解析:“至多有三个”包括“0个、1个、2个、3个”四种情况, 其反面为“4个、5个……”即至少四个.答案:B2.[2014·湖北高考]命题“∀x∈R, x2≠x”的否定是()A. ∀x∉R, x2≠xB. ∀x∈R, x2=xC. ∃x∉R, x2≠xD. ∃x∈R, x2=x解析:本题考查全称命题的否定, 意在考查考生对基本概念的掌握情况.全称命题的否定是特称命题:∃x∈R, x2=x, 选D.答案:D3.[2014·西安高二检测]如果命题“綈(p∨q)”为假命题, 则()A.p、q均为真命题B.p、q均为假命题C.p、q中至少有一个为真命题D.p、q中至多有一个为真命题解析:因为命题“綈(p∨q)”为假命题, 所以p∨q为真命题, 所以p、q一真一假或都是真命题.答案:C4.[2014·天津高考]已知命题p:∀x>0, 总有(x+1)e x>1, 则綈p 为()A. ∃x0≤0, 使得(x0+1)e x0≤1B. ∃x0>0, 使得(x0+1)e x0≤1C. ∀x>0, 总有(x+1)e x≤1D. ∀x≤0, 总有(x+1)e x≤1解析:命题p为全称命题, 所以綈p为∃x0>0, 使得(x0+1)e x0≤1.故选B.答案:B5.[2014·重庆高考]已知命题p:对任意x∈R, 总有|x|≥0;q:x =1是方程x+2=0的根.则下列命题为真命题的是()A. p∧綈qB. 綈p∧qC. 綈p∧綈qD. p∧q解析:由题意知, 命题p为真命题, 命题q为假命题, 故綈q为真命题, 所以p∧綈q为真命题.答案:A6.已知全集S=R, A⊆S, B⊆S, 若命题p:2∈(A∪B), 则命题“綈p”是()A. 2∉AB. 2∈∁S BC. 2∉A∩BD. 2∈(∁S A)∩(∁S B)解析:∵p=2∈(A∪B), ∴2∈A或2∈B,∴綈p:2∉A且2∉B, 即2∈∁S A∩∁S B.答案:D二、填空题7. 已知命题p:“∀x∈[1,2], x2-a≥0”, 命题q:“∃x0∈R, x20+2ax0+2-a=0”, 若命题“p且q”是真命题, 则实数a的取值范围是________.解析:命题p:“∀x∈[1,2], x2-a≥0”为真, 则a≤x2, x∈[1,2]恒成立, ∴a≤1;命题q:“∃x0∈R, x20+2ax0+2-a=0”为真, 则“4a2-4(2-a)≥0, 即a2+a-2≥0”, 解得a≤-2或a≥1.若命题“p且q”是真命题, 则实数a的取值范围是{a|a≤-2或a=1}.答案:{a|a≤-2或a=1}8. 已知命题p:∃x∈R, 使sin x=52;命题q:∀x∈R, 都有x2+x+1>0.给出下列结论:①命题“p∧q”是真命题;②命题“p∧綈q”是假命题;③命题“綈p∨q”是真命题;④命题“綈p∨綈q”是假命题, 其中正确的是________.解析:因为对任意实数x, |sin x|≤1, 而sin x=52>1, 所以p为假;因为x2+x+1=0的判别式Δ<0, 所以q为真.因而②③正确.答案:②③9.[2014·青岛高二检测]若命题“∃x0∈R, x20+(a-1)x0+1<0”是假命题, 则实数a的取值范围为________.解析:依题意可得“∀x∈R, x2+(a-1)x+1≥0”为真命题, 所以Δ=(a-1)2-4≤0, 所以-1≤a≤3.答案:[-1,3]三、解答题10.写出下列含有一个量词的命题p的否定綈p, 并判断它们的真假:(1)p:关于x的方程ax=b都有实数根;(2)p:有些正整数没有1和它本身以外的约数;(3)对任意实数x1, x2, 若x1<x2, 则tan x1<tan x2;(4)∃T0∈R, 使|sin(x+T0)|=|sin x|.解:(1)綈p:有些关于x的方程ax=b无实数根, 如0x=1, 所以p为假命题, 綈p为真命题.(2)綈p:任意正整数都有1和它本身以外的约数, 如2只有1和它本身这两个约数, 所以p为真命题, 綈p为假命题.(3)綈p:存在实数x1, x2, 若x1<x2, 则tan x1≥tan x2.原命题中若x1=0, x2=π, 有tan x1=tan x2, 故为假命题, 所以綈p 为真命题.(4)綈p:∀T∈R, 有|sin(x+T)|=|sin x|.原命题为真命题, 如T0=2kπ(k∈Z), 所以綈p为假命题.11.已知命题p:∀m∈[-1,1], 不等式a2-5a-3≥m2+8;命题q:∃x, 使不等式x2+ax+2<0.若p或q是真命题, 綈q是真命题, 求a的取值范围.解:根据p或q是真命题, 綈q是真命题, 得p是真命题, q是假命题.∵m ∈[-1,1], ∴m 2+8∈[22, 3].因为∀m ∈[-1,1], 不等式a 2-5a -3≥m 2+8,所以a 2-5a -3≥3, ∴a ≥6或a ≤-1.故命题p 为真命题时, a ≥6或a ≤-1.又命题q :∃x , 使不等式x 2+ax +2<0,∴Δ=a 2-8>0, ∴a >22或a <-22,从而命题q 为假命题时, -22≤a ≤22,所以命题p 为真命题, q 为假命题时, a 的取值范围为-22≤a ≤-1.12.[2014·衡水高二测试]已知命题p :“∀x ∈R , ∃m 0∈R 使4x +2x ·m 0+1=0”, 若命题綈p 是假命题, 求实数m 0的取值范围.解:该题可利用綈p 假, 则p 为真, 求原命题为真时m 0的取值范围.令t =2x >0, 则方程4x +2x ·m 0+1=0变为t 2+m 0·t +1=0有正解, 假设方程有两个正根t 1, t 2.∵t 1·t 2=1>0, t 1、t 2同号,∴t 1+t 2>0, 故有⎩⎪⎨⎪⎧Δ=m 20-4≥0,-m 0>0, 即⎩⎪⎨⎪⎧m 0≤-2或m 0≥2,m 0<0, ∴m 0≤-2, 即实数m 0的取值范围是(-∞, -2].03课堂效果落实1.[2014·长春高二检测]x >3的一个充分不必要条件是( )A. x >0B. x <0C. x>5D. x<5解析:x>5⇒x>3,x>3D⇒/x>5.答案:C2.“x2+(y-2)2=0”是“x(y-2)=0”的()A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件解析:x2+(y-2)2=0, 即x=0且y=2, ∴x(y-2)=0.反之, x(y-2)=0, 即x=0或y=2, x2+(y-2)2=0不一定成立.答案:B3.对任意实数a、b、c, 给出下列命题:①“x<-1”是“x2-1>0”的充分条件;②“a+5是无理数”是“a是无理数”的充要条件;③“a>b”是“a2>b2”的充分条件;④“a<5”是“a<3”的必要条件.其中真命题的个数是()A.1B.2C.3 D.4解析:①中, x<-1⇒x2-1>0;x2-1>0D⇒/x<-1, 故①为真命题.②中, a与a+5同为无理数或同为有理数, 故②为真命题.③中, 显然a>bD⇒/a2>b2, 故③为假命题.④中, a<5D⇒/a<3, 而a<3⇒a<5, 故④为真命题.答案:C4.[2014·福州高二测试]若“x2-2x-8>0”是x<m的必要不充分条件, 则m的最大值为________.解析:不等式解集为(-∞, -2)∪(4, +∞), 题目等价于(-∞, m)是其真子集, 故有m≤-2, 即m的最大值为-2.答案:-25.设命题p:x>1或x<-3, q:5x-6>x2, 则綈p是綈q的什么条件?解:∵p:x>1或x<-3,∴綈p:-3≤x≤1.又∵q:5x-6>x2即2<x<3, ∴綈q:x≤2或x≥3,∴綈p⇒綈q, 但綈q⇒/綈p,∴綈p是綈q的充分不必要条件.04课后课时精练一、选择题1.[2013·福建高考]已知集合A={1, a}, B={1,2,3}, 则“a=3”是“A⊆B”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件解析:当a=3时, A={1,3}, A⊆B;反之, 当A⊆B时, a=2或3, 所以“a=3”是“A⊆B”的充分而不必要条件, 选A.答案:A2. [2014·湖北高考]设U为全集.A, B是集合, 则“存在集合C使得A⊆C, B⊆∁U C”是“A∩B=∅”的()A. 充分而不必要的条件B. 必要而不充分的条件C. 充要条件D. 既不充分也不必要的条件解析:由韦恩图易知充分性成立.反之, A ∩B =∅时, 不妨取C =∁U B , 此时A ⊆C .必要性成立.故选C.答案:C3. [2013·浙江高考]已知函数f (x )=A cos(ωx +φ)(A >0, ω>0, φ∈R ), 则“f (x )是奇函数”是“φ=π2”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件解析:f (x )是奇函数时, φ=π2+k π(k ∈Z );φ=π2时, f (x )=A cos(ωx +π2)=-A sin ωx , 为奇函数.所以“f (x )是奇函数”是“φ=π2”的必要不充分条件, 选B.答案:B4.已知不等式|x -m |<1成立的充分不必要条件是13<x <12, 则实数m 的取值范围是( )A. [-43, 12] B. [-12, 43] C. (-∞, -12)D. [43, +∞)解析:由题易知不等式|x -m |<1的解集为{m |m -1<x <m +1}, 从而有{m |m -1<x <m +1}(13, 12),∴⎩⎪⎨⎪⎧m +1≥12m -1<13或⎩⎪⎨⎪⎧m +1>12m -1≤13解得-12≤m ≤43, 故选B. 答案:B5.[2014·广东高考]在△ABC 中, 角A , B , C 所对应的边分别为a , b , c , 则“a ≤b ”是“sin A ≤sin B ”的( )A. 充分必要条件B. 充分非必要条件C. 必要非充分条件D. 非充分非必要条件解析:设R 为△ABC 外接圆的半径.由正弦定理可知, 若a ≤b , 则2R sin A ≤2R sin B ⇒sin A ≤sin B , 故“a ≤b ”是“sin A ≤sin B ”的充分条件;若sin A ≤sin B , 则a 2R ≤b 2R ⇒a ≤b , 故“a ≤b ”是“sin A ≤sin B ”的必要条件.综上所述, “a ≤b ”是“sin A ≤sin B ”的充要条件.故答案为A.答案:A6. [2014·唐山模拟]已知命题p :“a >b ”是“2a >2b ”的充要条件;q :∃x ∈R , |x +1|≤x , 则( )A .(綈p )∨q 为真命题B .p ∧(綈q )为假命题C .p ∧q 为真命题D .p ∨q 为真命题解析:由于函数y =2x 是单调递增函数, ∴a >b 时, 2a >2b , 反之2a >2b 时, a >b , 故p 是真命题, 而不存在实数x , 使|x +1|≤x , 故q 是假命题.∴p ∨q 为真命题.答案:D 二、填空题7. 下列不等式:①x<1;②0<x<1;③-1<x<0;④-2<x<1.其中, 可以为x2<1的一个充分条件的所有序号为________.解析:由于x2<1即-1<x<1, ①显然不能使-1<x<1一定成立, ②③满足题意.④中当x=-1.5时, x2显然大于1, ∴④不行.答案:②③8.设p、r都是q的充分条件, s是q的充分必要条件, t是s的必要条件, t是r的充分条件, 那么p是t的________条件, r是t的________条件.解析:由题意有:s⇔q⇐p⇓⇑t⇒r答案:充分不必要充要9.有以下四组命题:(1)p:(x-2)(x-3)=0, q:x-2=0;(2)p:同位角相等;q:两直线平行;(3)p:x<-3;q:x2>9;(4)p:0<a<1;q:y=a x为减函数.其中p是q的充分不必要条件的是_______, p是q的必要不充分条件是________, p是q的充要条件的是________.解析:(1)x-2=0⇒(x-2)(x-3)=0, 但(x-2)(x-3)=0D⇒/x-2=0, 所以p是q的必要不充分条件.(2)同位角相等⇔两直线平行, 所以p是q的充要条件,(3)x<-3⇒x2>9, 但x2>9D⇒/x<-3,所以p是q的充分不必要条件.(4)0<a<1⇔y=a x是减函数, 所以p是q的充要条件.答案:(3) (1) (2)(4) 三、解答题10.下列各题中, p 是q 的什么条件? (1)p :lg x 2=0, q :x =1;(2)p :b =c , q :a ·b =a ·c (a , b , c ≠0); (3)p :x ≥1且y ≥1, q :x +y ≥2; (4)p :x , y 不全为0, q :x +y ≠0.解:(1)当lg x 2=0时, x 2=1, 即x =±1, 则p ⇒/q , q ⇒p , 所以p 是q 的必要不充分条件.(2)易知p ⇒q .而a ·b =a ·c (a , b , c ≠0), 即a ·(b -c )=0, 可得b =c 或a ⊥(b -c ), 即q ⇒/p , 所以p 是q 的充分不必要条件.(3)∵p ⇒q , 而q ⇒/ p , ∴p 是q 的充分不必要条件.(4)綈p :x =0且y =0, 綈q :x +y =0, ∵綈p ⇒綈q , 而綈q ⇒/ 綈p , ∴p ⇐q 且p ⇒/ q , ∴p 是q 的必要不充分条件.11.[2014·江苏高二检测]已知集合A ={y |y =x 2-32x +1, x ∈[34, 2]}, B ={x |x +m 2≥1};命题p :x ∈A , 命题q :x ∈B , 并且命题p 是命题q 的充分条件, 求实数m 的取值范围.解:化简集合A ,由y =x 2-32x +1=(x -34)2+716,∵x ∈[34, 2], ∴y min =716, y max =2. ∴y ∈[716, 2], ∴A ={y |716≤y ≤2}. 化简集合B , 由x +m 2≥1, ∴x ≥1-m 2, B ={x |x ≥1-m 2}.∵命题p 是命题q 的充分条件, ∴A ⊆B . ∴1-m 2≤716, ∴m ≥34或m ≤-34.∴实数m 的取值范围是(-∞, -34]∪[34, +∞).12.证明:函数f (x )=a ·2x +a -22x +1(x ∈R )是奇函数的充要条件是a=1.证明:先证充分性:若a =1, 则函数化为f (x )=2x -12x +1.∵f (x )的定义域为R , 且f (-x )=2-x -12-x +1=12x -112x +1=1-2x 1+2x =-2x -12x+1=-f (x ).∴函数f (x )是奇函数.再证必要性:①若函数f (x )是奇函数, 则f (-x )=-f (x ). ∴a ·2-x +a -22-x +1=-a ·2x +a -22x +1,∴a +(a -2)·2x 2x +1=-a ·2x +a -22x +1,∴a +(a -2)·2x =-a ·2x -a +2, ∴2(a -1)(2x +1)=0, ∴a =1.综上所述:函数f (x )=a ·2x +a -22x +1(x ∈R )是奇函数的充要条件是a=1.03课堂效果落实。
高二数学选修2-1期末综合测试卷
高二数学选修2-1期末综合测试卷高二数学选修2-1期末综合试题(卷)一、选择题:本大题共12小题,每小题4分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.命题“若a<b,则a+c<b+c”的逆否命题是()A。
若a+c≥b+c,则a≥bB。
若a+c>b+c,则a>bC。
若a+c≤b+c,则a≤bD。
若a+c<b+c,则a≥b2.以下四组向量中,互相平行的有()组。
1) a=(1,2,1)。
b=(1,-2,3);2) a=(8,4,-6)。
b=(4,2,-3);3) a=(0,1,-1)。
b=(0,-3,3);4) a=(-3,2,0)。
b=(4,-3,3)A。
一B。
二C。
三D。
四3.若平面α的法向量为n1=(3,2,1),平面β的法向量为n2=(2,0,-1),则平面α与β夹角的余弦是()A。
7/10B。
-7/10C。
7/14D。
-7/144.“α=kπ+π。
k∈Z”是“sin2α=”的()A。
充分不必要条件B。
必要不充分条件C。
充要条件D。
既不充分又不必要条件5.“直线l与平面α内无数条直线都垂直”是“直线l与平面α垂直”的()条件A。
充要B。
充分非必要C。
必要非充分D。
既非充分又非必要6.在正方体ABCD-A' B' C' D'中,E是棱A'B'的中点,则A'B与D'E所成角的余弦值为()A。
5/10B。
5/√10C。
10/√22D。
√2/27.顶点在原点,且过点(-4,4)的抛物线的标准方程是()A。
y=-4xB。
x=4yC。
y=-4x或x=4yD。
y=4x或x=-4y8.设椭圆(2/m)^2+(2/n)^2=1(m>0,n>0)的右焦点与抛物线y=8x的焦点相同,离心率为e,则此椭圆的方程为()A。
x^2/4+y^2/16=1B。
x^2/16+y^2/4=1C。
x^2/9+y^2/25=1D。
人教A版高中数学选修2-1习题:1.2充分条件与必要条件(含答案)
1.2充分条件与必要条件A组1.“四边形是平行四边形”是“四边形是正方形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由“四边形是平行四边形”不一定得出“四边形是正方形”,但当“四边形是正方形”时必有“四边形是平行四边形”,故“四边形是平行四边形”是“四边形是正方形”的必要不充分条件.答案:B2.“x≤2或x≥5”是“x2-7x+10>0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:x2-7x+10>0,解得x>5或x<2.∴“x≤2或x≥5”是“x2-7x+10>0”的必要不充分条件.故选B.答案:B3.“a=2”是“直线ax+2y=0平行于直线x+y=1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:若a=2,则ax+2y=0即为x+y=0与直线x+y=1平行,反之若ax+2y=0与x+y=1平行,则-=-1,a=2,故选C.答案:C4.给出下列3个结论:①x2>4是x3<-8的必要不充分条件;②在△ABC中,AB2+AC2=BC2是△ABC 为直角三角形的充要条件;③若a,b∈R,则“a2+b2≠0”是“a,b不全为0”的充要条件.其中正确的是()A.①②B.②③C.①③D.①②③解析:由x2>4可得x>2或x<-2,而由x3<-8可得x<-2,所以x2>4是x3<-8的必要不充分条件,①正确;在△ABC中,若AB2+AC2=BC2,则△ABC一定为直角三角形,反之不成立,AB2+AC2=BC2是△ABC为直角三角形的充分不必要条件,故②不正确;容易判断③正确.答案:C5.“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:当φ=π时,y=sin(2x+π)=-sin 2x,此时曲线过原点;而当曲线过原点时,φ=kπ,k∈Z.答案:A6.指数函数f(x)=(3-a)x是单调递增函数的充要条件是.解析:由指数函数的性质可得,要使该函数为增函数,只要3-a>1,即a<2.答案:a<27.已知a,b是两个命题,如果a是b的充分条件,那么¬a是¬b的条件.解析:由已知条件可知a⇒b,∴¬b⇒¬a.∴¬a是¬b的必要条件.答案:必要8.下面两个命题中,p是q的什么条件?(1)p:在△ABC中,角A,B,C的对边分别为a,b,c,b2>a2+c2,q:△ABC为钝角三角形;(2)a,b∈R,p:x>a2+b2,q:x>2ab.解(1)在△ABC中,因为b2>a2+c2,所以cos B=<0,所以B为钝角,即△ABC为钝角三角形.反之,若△ABC为钝角三角形,B可能为锐角,这时b2<a2+c2.所以p⇒q,q p,故p是q的充分不必要条件.(2)因为当a,b∈R时,有a2+b2≥2ab,所以p⇒q.反之,若x>2ab,则不一定有x>a2+b2,即p⇒q,q p,故p是q的充分不必要条件. 9.指出下列各组命题中,p是q的什么条件(用“充分不必要条件”“必要不充分条件”“充要条件”作答).(1)向量a=(x1,y1),b=(x2,y2),p:,q:a∥b;(2)p:|x|=|y|,q:x=-y;(3)p:直线l与平面α内两条平行直线垂直,q:直线l与平面α垂直;(4)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),p:f(x),g(x)均为偶函数,q:h(x)为偶函数.解(1)由向量平行公式可知p⇒q,但当b=0时,a∥b不能推出,即q p,故p是q的充分不必要条件.(2)因为|x|=|y|⇒x=±y,所以p q,但q⇒p,故p是q的必要不充分条件.(3)由线面垂直的判定定理可知:p q,但由线面垂直的定义可知:q⇒p,故p是q的必要不充分条件.(4)若f(x),g(x)均为偶函数,则h(-x)=f(-x)+g(-x)=f(x)+g(x)=h(x),所以p⇒q,但q p,故p是q的充分不必要条件.10.已知实数p:x2-4x-12≤0,q:(x-m)(x-m-1)≤0.(1)若m=2,则p是q的什么条件;(1)若q是p的充分不必要条件,求实数m的取值范围.解实数p:x2-4x-12≤0,解得-2≤x≤6,q:(x-m)(x-m-1)≤0,解得m≤x≤m+1,令A=[-2,6],B=[m,m+1],(1)若m=2,则B=[2,3],所以p是q的必要不充分条件;(2)若q是p的充分不必要条件,即B⫋A,则解得-2≤m≤5,∴m∈[-2,5].B组1.m=是直线x-y+m=0与圆x2+y2-2x-2=0相切的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由圆心(1,0)到直线x-y+m=0距离d=,得m=或m=-3,故选A.答案:A2.若向量a=(x,3)(x∈R),则“x=4”是“|a|=5”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:若x=4,则a=(4,3),所以|a|==5;若|a|=5,则=5,所以x=±4,故“x=4”是“|a|=5”的充分不必要条件.答案:A3.以q为公比的等比数列{a n}中,a1>0,则“a1<a3”是“q>1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:在等比数列中,若a1<a3,则a1<a1q2.∵a1>0,∴q2>1,即q>1或q<-1.若q>1,则a1q2>a1,即a1<a3成立.∴“a1<a3”是“q>1”成立的必要不充分条件,故选B.答案:B4.设l,m,n均为直线,其中m,n在平面α内,则“l⊥α”是“l⊥m且l⊥n”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:因为l⊥α,m⊂α,n⊂α,所以l⊥m且l⊥n,故充分性成立;当l⊥m且l⊥n时,m,n⊂α,不一定有m与n相交,所以l⊥α不一定成立,故必要性不成立.答案:A5.“0≤m≤1”是“函数f(x)=cos x+m-1有零点”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:令f(x)=cos x+m-1=0,得cos x=-m+1,若函数有零点,则-1≤-m+1≤1,解得0≤m≤2,因此“0≤m≤1”是“函数f(x)=cos x+m-1有零点”的充分不必要条件.答案:A6.在△ABC中,设命题p:,命题q:△ABC是等边三角形,那么命题p是命题q的条件.解析:由,得,因此b2=ac,a2=bc,c2=ab,可得a=b=c,故△ABC是等边三角形;反之,若△ABC是等边三角形,则一定有.故命题p是命题q的充要条件.答案:充要7.给出下列命题:①“a>b”是“a2>b2”的充分不必要条件;②“lg a=lg b”是“a=b”的必要不充分条件;③若x,y∈R,则“|x|=|y|”是“x2=y2”的充要条件;④在△ABC中,“sin A>sin B”是“A>B”的充要条件.其中真命题是.(写出所有真命题的序号)解析:∵a=-2,b=-3时,a>b,而a2<b2,∴a>b对a2>b2不具备充分性,故①错误;∵lg a=lg b⇒a=b,∴具备充分性,故②错误;∵|x|=|y|⇒x2=y2,x2=y2⇒|x|=|y|,∴“|x|=|y|”是“x2=y2”的充要条件,③正确;∵在△ABC中,(1)当A,B均为锐角或一个为锐角一个为直角时,sin A>sin B⇔A>B.(2)当A,B有一个为钝角时,假设B为钝角,∵A+B<π⇒A<π-B⇒sin A<sin B,与sin A>sin B矛盾,∴只能A为钝角.∴sin A>sin B⇒A>B;反过来A>B,A为钝角时,π-A>B⇒sin A>sin B,∴④正确.答案:③④8.已知数列{a n}的前n项和S n=p n+q(p≠0且p≠1),求证:数列{a n}为等比数列的充要条件为q=-1.证明充分性:当q=-1时,a1=p-1,当n≥2时,a n=S n-S n-1=(p-1),当n=1时也成立.于是=p(p≠0且p≠1),即数列{a n}为等比数列.必要性:当n=1时,a1=S1=p+q.当n≥2时,a n=S n-S n-1=p n-1(p-1),因为p≠0且p≠1,所以=p.因为{a n}为等比数列,所以=p,即=p,即p-1=p+q,故q=-1.综上所述,q=-1是数列{a n}为等比数列的充要条件.。
高中数学选修2-1试题及答案
数学选修模块测试样题选修2-1 (人教A 版)考试时间:90分钟 试卷满分:100分一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的. 1.1x >是2x >的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分又不必要条件2.已知命题p q ,,若命题“p ⌝”与命题“p q ∨”都是真命题,则( )A .p 为真命题,q 为假命题B .p 为假命题,q 为真命题C .p ,q 均为真命题D .p ,q 均为假命题3. 设M 是椭圆22194x y +=上的任意一点,若12,F F 是椭圆的两个焦点,则12||||MF MF + 等于( )A . 2B . 3C . 4D . 64.命题0p x x ∀∈≥R :,的否定是( )A .0p x x ⌝∀∈<R :,B .0p x x ⌝∃∈≤R :,C .0p x x ⌝∃∈<R :,D .0p x x ⌝∀∈≤R :,5. 抛物线24y x =的焦点到其准线的距离是( )A . 4B . 3C . 2D . 16. 两个焦点坐标分别是12(5,0)(5,0)F F -,,离心率为45的双曲线方程是( ) A . 22143x y -= B . 22153x y -= C . 221259x y -= D . 221169x y -= 7. 下列各组向量平行的是( )8. 在空间四边形OABC 中,OA AB CB +-等于( )A .OAB .ABC .OCD .AC9. 已知向量(2,3,1)=a ,(1,2,0)=b ,则-a b 等于 ( )A .1B 3C .3D .910. 如图,在三棱锥A BCD -中,DA ,DB ,DC 两两垂直,且DB DC =,E 为BC 中点,则AE BC ⋅ 等于( )A .3B .2C .1D .011. 已知抛物线28y x =上一点A 的横坐标为2,则点A 到抛物线焦点的距离为( ) A .2B .4C .6D .812.设1k >,则关于x ,y 的方程222(1)1k x y k -+=-所表示的曲线是( )A .长轴在x 轴上的椭圆B .长轴在y 轴上的椭圆C .实轴在x 轴上的双曲线D .实轴在y 轴上的双曲线13. 一位运动员投掷铅球的成绩是14m ,当铅球运行的水平距离是6m 时,达到最大高度4m .若铅球运行的路线是抛物线,则铅球出手时距地面的高度是( )A . 1.75mB . 1.85mC . 2.15mD . 2.25m14.正方体1111ABCD A B C D -中,M 为侧面11ABB A 所在平面上的一个动点,且M到平面11ADD A 的距离是M 到直线BC 距离的2倍,则动点M 的轨迹为( )AEDCBA.椭圆B.双曲线C.抛物线D.圆二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.15.命题“若0a >,则1a >”的逆命题是_____________________.16.双曲线22194x y -=的渐近线方程是_____________________. 17.已知点(2,0),(3,0)A B -,动点(,)P x y 满足2AP BP x ⋅=,则动点P 的轨迹方程是 .18. 已知椭圆12222=+b y a x 的左、右焦点分别为21,F F ,点P 为椭圆上一点,且3021=∠F PF , 6012=∠F PF ,则椭圆的离心率e 等于 .三、解答题:本大题共3小题,共28分.解答应写出文字说明,证明过程或演算步骤.19.(本小题满分8分)设直线y x b =+与椭圆2212x y +=相交于A B ,两个不同的点.(1)求实数b 的取值范围; (2)当1b =时,求AB .20.(本小题满分10分)如图,正方体1111ABCD A B C D -的棱长为2,E 为棱1CC 的中点. (1)求1AD 与DB 所成角的大小; (2)求AE 与平面ABCD 所成角的正弦值.ABCA 1B 1C 1DDE21.(本小题满分10分)已知直线y x m =-与抛物线x y 22=相交于),(11y x A ,),(22y x B 两点,O 为坐标原点.(1)当2=m 时,证明:OB OA ⊥;(2)若m y y 221-=,是否存在实数m ,使得1-=⋅?若存在,求出m 的值;若不存在,请说明理由.数学模块测试样题参考答案数学选修2-1(人教A 版)一、选择题(每小题4分,共56分)1. B 2. B 3.D 4.C 5.C 6.D 7. A 8. C 9. B10.D11.B12.D13.A14.A二、填空题(每小题4分,共16分)15.若1a >,则0a > 16.23y x =±17. 26y x =+ 181三、解答题(解答题共28分) 19.(本小题满分8分)解:(1)将y x b =+代入2212x y +=,消去y ,整理得2234220x bx b ++-=.①因为直线y x b =+与椭圆2212x y +=相交于A B ,两个不同的点,所以2221612(22)2480b b b ∆=--=->, 解得b <<所以b 的取值范围为(. (2)设11()A x y ,,22()B x y ,, 当1b =时,方程①为2340x x +=.解得1240,3x x ==-.相应地1211,3y y ==-.所以(AB x ==.20.(本小题满分10分)解:(1) 如图建立空间直角坐标系D xyz -,则(000)D ,,,(200)A ,,,(220)B ,,,1(00D 则(2,2,0)DB =,1(2,0,2)D A =-. 故1111cos ,22DB D A DB D A DB D A⋅〈〉===⋅所以1AD 与DB 所成角的大小为60. (2) 易得(021)E ,,,所以(2,2,1)AE =-.又1(0,0,2)DD =是平面ABCD 的一个法向量,且11121cos ,323AE DD AE DD AE DD ⋅〈〉===⨯⋅. 所以AE 与平面ABCD 所成角的正弦值为13.21.(本小题满分10分)解:(1)当2=m 时,由⎩⎨⎧=-=,,x y x y 222得0462=+-x x ,解得 53,5321-=+=x x , 因此 51,5121-=+=y y .于是 )51)(51()53)(53(2121-++-+=+y y x x 0=, 即0OA OB ⋅=. 所以 OB OA ⊥.(2)假设存在实数m满足题意,由于BA,两点在抛物线上,故希望对大家有所帮助,多谢您的浏览!授课:XXX ⎪⎩⎪⎨⎧==,,22212122x y x y 因此222121)(41m y y x x ==. 所以m m y y x x OB OA 222121-=+=⋅. 由1-=⋅,即122-=-m m ,得1=m .又当1=m 时,经验证直线与抛物线有两个交点,所以存在实数1=m ,使得1-=⋅(注:可编辑下载,若有不当之处,请指正,谢谢!)。
高中数学选修2-1课时作业3:章末复习课
章末复习课一、选择题1.命题“∀x∈R,x2≠x”的否定是()A.∀x∉R,x2≠x B.∀x∈R,x2=xC.∃x0∉R,x20≠x0D.∃x0∈R,x20=x02.命题“若a2+b2=0(a,b∈R),则a=b=0”的逆否命题是()A.若a≠b≠0(a,b∈R),则a2+b2≠0B.若a=b≠0(a,b∈R),则a2+b2≠0C.若a≠0且b≠0(a,b∈R),则a2+b2≠0D.若a≠0或b≠0(a,b∈R),则a2+b2≠03.有下列命题:①垂直于同一条直线的两个平面互相平行;②垂直于同一个平面的两个平面互相平行;③若直线m,n与同一个平面所成的角相等,则m,n互相平行;④若直线m,n是异面直线,则与m,n都相交的两条直线是异面直线.其中假命题的个数是()A.1B.2C.3D.44.已知直线l1:ax+y=1和直线l2:9x+ay=1,则“a+3=0”是“l1∥l2”的() A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件5.下列有关命题的叙述,①若p∨q为真命题,则p∧q为真命题;②“x>5”是“x2-4x-5>0”的充分不必要条件;③命题p:∃x∈R,使得x2+x-1<0,则綈p:∀x∈R,使得x2+x-1≥0;④命题“若x2-3x+2=0,则x=1或x=2”的逆否命题为“若x≠1或x≠2,则x2-3x+2≠0”.其中错误的个数为()A.1B.2C.3D.46.下列命题中的真命题是()A.对于实数a、b、c,若a>b,则ac2>bc2B.x2>1是x>1的充分不必要条件C.∃α,β∈R,使得sin(α+β)=sinα+sinβ成立D .∀α,β∈R ,tan(α+β)=tan α+tan β1-tan α·tan β成立 二、填空题7.若命题p :常数列是等差数列,则綈p :____________________________________________.8.把“奇函数的图象关于原点对称”改写成“若p ,则q ”的形式为_____________________ __________________________.9.命题p :若ac =b ,则a ,b ,c 成等比数列,则命题p 的否命题是________命题.(填“真”或“假”)10.定义f (x )={x }({x }表示不小于x 的最小整数)为“取上整函数”,例如{1.2}=2,{4}=4.“取上整函数”在现实生活中有着广泛的应用,诸如停车收费,出租车收费等都是按照“取上整函数”进行计费的.以下关于“取上整函数”的性质是真命题的序号是________.(请写出所有真命题的序号)①f (2x )=2f (x );②若f (x )=f (y ),则x -y <1;③任意x ,y ∈R ,f (x +y )≤f (x )+f (y );④f (x )+f (x +12)=f (2x ); ⑤函数f (x )为奇函数.三、解答题11.求证:函数f (x )=x 2+|x +a |+1是偶函数的充要条件是a =0.12.已知命题p :“存在a >0,使函数f (x )=ax 2-4x 在(-∞,2]上单调递减”,命题q :“存在a ∈R ,使∀x ∈R,16x 2-16(a -1)x +1≠0”.若命题“p ∧q ”为真命题,求实数a 的取值范围.13.求实数a 的取值范围,使得关于x 的方程x 2+2(a -1)x +2a +6=0.(1)有两个都大于1的实数根;(2)至少有一个正实数根.[答案]精析1.D 2.D 3.C 4.C 5.B 6.C7.存在一个常数列,不是等差数列8.若一个函数是奇函数,则这个函数的图象关于原点对称9.假 10.②③11.证明 先证充分性,若a =0,则函数f (x )=x 2+|x +a |+1是偶函数. 因为a =0,所以f (x )=x 2+|x |+1(x ∈R ).因为f (-x )=(-x )2+|-x |+1=x 2+|x |+1,所以f (x )是偶函数.再证必要性,若f (x )=x 2+|x +a |+1是偶函数,则a =0.因为f (x )是偶函数,所以f (-x )=f (x ),即(-x )2+|-x +a |+1=x 2+|x +a |+1,从而|x -a |=|x +a |,即(x -a )2=(x +a )2,展开并整理,得ax =0.因为x ∈R ,所以a =0.12.解 若p 为真,则对称轴x =--42a =2a 在区间(-∞,2]的右侧,即2a≥2, ∴0<a ≤1.若q 为真,则方程16x 2-16(a -1)x +1=0无实数根,∴Δ=[-16(a -1)]2-4×16<0,∴12<a <32. ∵命题“p ∧q ”为真命题,∴命题p 、q 都为真,∴⎩⎪⎨⎪⎧ 0<a ≤1,12<a <32,∴12<a ≤1. 故实数a 的取值范围为(12,1]. 13.解 (1)方程x 2+2(a -1)x +2a +6=0的两实根x 1,x 2均大于1的充要条件是 ⎩⎨⎧ Δ≥0,x 1>1,x 2>1⇔⎩⎪⎨⎪⎧ Δ≥0,(x 1-1)+(x 2-1)>0,(x 1-1)(x 2-1)>0⇔⎩⎪⎨⎪⎧ Δ≥0,x 1+x 2>2,(x 1+x 2)-x 1x 2<1⇔⎩⎪⎨⎪⎧ 4(a -1)2-4(2a +6)≥0,-2(a -1)>2,-2(a -1)-(2a +6)<1⇔⎩⎪⎨⎪⎧a ≤-1或a ≥5,a <0,a >-54.∴-54<a ≤-1.(2)由题意①当一根为正,一根为负时,⎩⎪⎨⎪⎧ 2a +6<0,Δ>0,∴a <-3; ②当一根为正,一根为零时,⎩⎪⎨⎪⎧ 2a +6=0,-2(a -1)>0,Δ>0,∴a=-3;③当两根均为正时,⎩⎪⎨⎪⎧ Δ≥0,x 1+x 2=-2(a -1)>0,x 1x 2=2a +6>0,∴⎩⎪⎨⎪⎧ a ≤-1或a ≥5,a <1,a >-3.即-3<a ≤-1.综上所述,方程至少有一个正实数根时,a 的取值范围是(-∞,-1].。
高二数学选修2-1综合测试题(带答案)
高二数学选修2-1测试题(120分钟150分)班级姓名成绩一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知命题“如果-1≤a≤1,那么关于x的不等式(a2-4)x2+(a+2)x-1≥0的解集为 ”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A.0个B.1个C.2个D.4个【变式训练】命题“若C=90°,则△ABC是直角三角形”与它的逆命题、否命题、逆否命题这4个命题中,真命题的个数是( )A.0B.1C.2D.32.设m,n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( )A.m∥β且l1∥αB.m∥l1且n∥l2C.m ∥β且n ∥βD.m∥β且n∥l2【变式训练】有下述说法:①a>b>0是a2>b2的充要条件;②a>b>0是<的充要条件;③a>b>0是a3>b3的充要条件.其中正确的说法有( )A.0个B.1个C.2个D.3个3. “1<m<3”是“方程+=1表示椭圆”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知抛物线y2=2px(p>0)与双曲线-=1(a>0,b>0)有相同的焦点F,点A是两曲线的交点,且AF⊥x轴,则双曲线的离心率为( )A. B.+1 C.+1 D.【变式训练】若双曲线C:x 2-=1(b>0)的顶点到渐近线的距离为,则双曲线的离心率e=( )A.2B.C.3D.5.已知命题p:∀x∈R,x ≥2,那么下列结论正确的是( )A.命题p:∀x∈R,x≤2B.命题p:∃x0∈R,x0<2C.命题p:∀x∈R,x≤-2D.命题p:∃x0∈R,x0<-26.已知矩形ABCD中,AB=1,BC=,将矩形ABCD沿对角线AC折起,使平面ABC与平面ACD垂直,则B与D之间的距离为( )A.1B.C.D.7.过抛物线y2=4x焦点的直线交抛物线于A,B两点,若=10,则AB的中点到y轴的距离等于( )A.1B.2C.3D.48.在四边形ABCD中,“∃λ∈R ,使得=λ,=λ”是“四边形ABCD为平行四边形”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件9.已知在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成角的大小为( )A.60°B.90°C.45°D.以上都不正确10.设F1,F2是双曲线x2-4y2=4a(a>0)的两个焦点,点P在双曲线上,且满足:·=0,||·||=2,则a的值为( )A.2B.C.1D.11.点P是棱长为1的正方体ABCD-A1B1C1D1的底面A1B1C1D1上一点,则·的取值范围是( )A. B.C.[-1,0]D.12.已知正六边形ABCDEF的边长是2,一条抛物线恰好经过该六边形的四个顶点,则抛物线的焦点到准线的距离是( )A. B. C. D.2二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.抛物线焦点在y轴上,且被y=x+1截得的弦长为5,则抛物线的标准方程为.14.在△ABC中,若∠ACB=90°,∠BAC=60°,AB=8,PC⊥平面ABC,PC=4,M是AB上一点,则PM的最小值为.15.在四棱锥P-ABCD中,ABCD为平行四边形,AC与BD交于O,G为BD上一点,BG=2GD,=a,=b,=c,试用基底{a,b,c}表示向量= .16.曲线C是平面内到直线l1:x=-1和直线l2:y=1的距离之积等于常数k2的点的轨迹.给出下列四个结论:①曲线C过点(-1,1);②曲线C关于点(-1,1)对称;③若点P在曲线C上,点A,B分别在直线l1,l2上,则+不小于2k.④设P0为曲线C上任意一点,则点P0关于直线x=-1、点(-1,1)及直线y=1对称的点分别为P1,P2,P3,则四边形P0P1P2P3的面积为定值4k2.其中,所有正确结论的序号是.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(10分)设p:关于x的不等式a x>1(a>0且a ≠1)的解集为{x|x<0},q:函数y=l g(ax2-x+a)的定义域为R.如果p和q有且仅有一个正确,求a的取值范围. 18.(12分)如图,正方体ABCD-A1B1C1D1中,M,N分别为AB,B1C的中点.(1)用向量法证明平面A1BD∥平面B1CD1.(2)用向量法证明MN⊥平面A1BD.19.(12分)已知抛物线C:y2=2px(p>0)过点A(1,-2).(1)求抛物线C的方程,并求其准线方程.(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于?若存在,求直线l的方程;若不存在,说明理由.20.(12分)设F1,F2为椭圆+=1的两个焦点,P是椭圆上一点,已知P,F1,F2是一个直角三角形的三个顶点,且|PF1|>|PF2|.(1)求|PF1|的长度.(2)求的值. 21.(12分)如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.(1)求直线BE和平面ABB1A1所成角的正弦值.(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.22.(12分)如图,四棱柱ABCD -A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明B1C1⊥CE.(2)求二面角B1-CE-C1的正弦值.(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.高二数学选修2-1测试题答案一、选择题1、【解析】选C.当-1≤a≤1时,Δ=(a+2)2+4(a2-4)=5--12≤5--12<0,所以原命题为真,逆否命题亦为真.反之,如a=-2时,所给不等式的解集即为空集,但a∉[-1,1],所以逆命题为假,故否命题亦为假.【变式训练】【解析】选C.原命题是真命题.其逆命题为“若△ABC是直角三角形,则C=90°”,这是一个假命题,因为当△ABC为直角三角形时,也可能A或B为直角.这样,否命题是假命题,逆否命题是真命题.因此真命题的个数是2.2.【解析】选B.对于选项A,α,β也可能相交,此时,l1,m都平行于交线,是必要不充分条件;对于选项B,由于l1与l2是相交直线,而且由l1∥m可得l1∥α,同理可得l2∥α,故可得α∥β,充分性成立,而由α∥β不一定能得到l1∥m,它们也可以异面,故必要性不成立,故选项B符合题意;对于选项C,由于m,n不一定相交,故是必要不充分条件;对于选项D,由n∥l2可转化为n∥β,同选项C,故不符合题意,【变式训练】【解析】选 A.a>b>0⇒a2>b2,a2>b2⇒|a|>|b|⇒a>b>0,故①错.a>b>0⇒<,但<⇒a>b>0,故②错.a>b>0⇒a3>b3,但a3>b 3⇒a>b>0故③错故选A.3. 【解析】选 B.当方程+=1表示椭圆时,必有所以1<m<3;但当1<m<3时,该方程不一定表示椭圆,如当m=2时,方程变为x 2+y2=1,它表示一个圆.4【解析】选B.如图,由双曲线-=1,且AF⊥x轴得-=1得|y|=,由抛物线y2=2px的定义得AF=p,即=2c.得b2=2ac,所以=,e2-1=2e,所以e=+1.【拓展延伸】求离心率的方法(1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x轴上还是在y轴上都有关系式a2-b2=c2(a2+b2=c2)以及e=.已知其中的任意两个参数,可以求其他的参数.这是基本且常用的方法.(2)方程法:建立参数a与c之间的齐次关系式,从而求出其离心率.这是求离心率的十分重要的思路及方法.(3)几何法:求与过焦点的三角形有关的离心率问题,根据平面几何性质以及椭圆(双曲线)的定义、几何性质,建立参数之间的关系,通过画出图形,观察线段之间的关系,使问题更形象、直观.【变式训练】【解析】选B.由双曲线方程知a=1,所以c=,所以一条渐近线的方程为y=bx,即bx-y=0.所以=,解得b=1,所以c=,所以e==.5.【解析】选B.全称命题的否定是特称命题,所以命题p:∃x0∈R,x0<2.6. 【解析】选B.过B,D分别向AC作垂线,垂足分别为M,N.则可求得AM=,BM=,CN=,DN=,MN=1.由于=++,所以||2=(++)2=||2+||2+||2+ 2(·+ ·+·)=+12++2(0+0+0)=,所以||=.7.【解析】选D.抛物线y2=4x的焦点(1,0),准线为l:x=-1,设AB的中点为E,过A,E,B分别作准线的垂线,垂足分别为C,F,D,EF交纵轴于点H,如图所示,则由EF为直角梯形的中位线知,|EF|===5,所以EH=EF-1=5-1=4,即AB的中点到y 轴的距离等于4.8. 【解析】选C.若=λ,=λ,则∥,∥,即AB∥DC,AD∥BC,所以四边形ABCD为平行四边形.反之,若四边形ABCD为平行四边形,则有AB∥DC,AD∥BC且AB=DC,AD=BC ,即=,=,此时λ=1,所以∃λ∈R ,使得=λ,=λ成立.所以“∃λ∈R ,使得=λ,=λ”是“四边形ABCD为平行四边形”的充分必要条件.9. 【解析】选B.以点D为原点,直线DA,DC,DD 1分别为x轴,y轴,z轴,建立空间直角坐标系,如图.由题意知,A1(1,0,2),E(1,1,1),D1(0,0,2),A(1,0,0),所以=(0,1,-1),=(1,1,-1),=(0,-1,-1).设平面A1ED1的一个法向量为n=(x,y,z).则⇒令z=1,得y=1,x=0.所以n=(0,1,1),cos<n ,>===-1.所以<n ,>=180°.所以直线AE与平面A1ED1所成的角的大小为90°.10. 【解析】选C.双曲线方程化为-=1(a>0),因为·=0,所以PF1⊥PF2.所以||2+||2=4c2=20a. ①由双曲线定义||-||=±4,②又已知||·||=2,③由①②③得20a-2×2=16a,所以a=1.11. 【解析】选D.如图所示建立空间直角坐标系,则A(1,0,1),C1(0,1,0).设P(x,y,0)其中0≤x≤1,0≤y≤1.则=(1-x,-y,1) =(-x,1-y,0)所以·=(1-x,-y,1)·(-x,1-y,0)=+-,因为+的几何意义是平面区域到点的距离的平方,所以当x=y=时,+有最小值0,当x=y=0或x=y=1或x=1,y=0或x=0,y=1时,+有最大值,所以-≤+-≤0,即·的取值范围是.12. 【解析】选B.设抛物线方程为y2=2px(p>0),根据对称性可知,正六边形ABCDEF的顶点A,B,C,F在抛物线y2=2px上,设A(x1,1),F(x2,2),则即x2=4x1,又AF==2,即(x1-x2)2=(x1-4x1)2=3,所以=,x1=,即p===.二、填空题13.【解析】设抛物线方程为x2=my,联立抛物线方程与直线方程y=x+1并消元,得:2x2-mx-2m=0,所以x1+x2=,x1x2=-m,所以5=,把x1+x2=,x1x2=-m代入解得m=4或m=-20.所以抛物线的标准方程为x2=4y或x2=-20y. 答案:x2=4y或x2=-20y 14.【解析】由条件知PC,AC,BC 两两垂直,设=a ,=b ,=c,则a·b=b·c=c·a=0,因为∠BAC=60°,AB=8,所以|a |=||=8cos60°=4,|b |=||=8sin60°=4,|c |=||=4.设=x=x(b -a),其中x∈[0,1],则=++=-c+a+x(b-a)=(1-x)a+x b-c,||2=(1-x)2|a|2+x2|b|2+|c|2+2(1-x)x a·b-2x b·c-2(1-x)a·c=16(1-x) 2+48x2+16=32(2x2-x+1)=64+28,所以当x=时,||2取最小值28,所以||min =2. 答案:215. 【解析】因为BG=2GD ,所以=.又=+=-+-=a+c-2b,所以=+=b +(a+c-2b)=a -b +c.答案:a -b +c16.【解析】设动点为(x,y),则由条件可知·=k2,①,将(-1,1)代入得0=k2,因为k>0,所以不成立,故方程不过点(-1,1),①错误.②,把方程中的x用-2-x代换,y用2-y代换,方程不变,故此曲线关于点(-1,1)对称,②正确.③,由题意知点P在曲线C上,点A,B分别在直线l1,l2上,则≥,≥,所以+≥2=2k,故③正确.④,由题意知点P0在曲线C上,根据对称性,则四边形P0P1P2P3的面积为2·2=4·=4k2,所以④正确.综上所述,正确结论的序号是②③④.答案:②③④三、解答题17.【解析】当p真时,0<a<1,当q 真时,即a>,所以p假时,a>1,q假时,a ≤.又p和q有且仅有一个正确,当p真q假时,0<a ≤;当p假q真时,a>1. 综上a 的取值范围为∪(1,+∞). 18.【证明】(1)在正方体ABCD-A1B1C1D1中,=-,=-,又因为=,=,所以=,所以BD∥B1D1.又B1D1⊂平面B1CD1,BD⊄平面B1CD1,所以BD∥平面B1CD1,同理可证A1B∥平面B1CD1.又BD∩A1B=B,所以平面A1BD∥平面B1CD1.(2)=++=++(+)=++(-+)=++.设=a ,=b ,=c,则=(a+b+c).又=-=b-a,所以·=(a+b+c)·(b-a)=(b2-a2+c·b-c·a).又因为⊥,⊥,所以c·b=0,c·a=0.又|b|=|a|,所以b2=a2.所以b2-a2=0.所以·=0.所以MN⊥BD.同理可证,MN⊥A1B.又A1B∩BD=B,所以MN⊥平面A1BD.19.【解析】(1)将A(1,-2)代入y2=2px,得(-2)2=2p·1,所以p=2.故所求抛物线C的方程为y2=4x,其准线方程为x=-1.(2)假设存在符合题意的直线l,其方程为y=-2x+t.由得y2+2y-2t=0.因为直线l与抛物线C有公共点,所以Δ=4+8t≥0,解得t≥-.由直线OA与l的距离d=,可得=,解得t=±1.因为-1∉,1∈,所以符合题意的直线l存在,其方程为2x+y-1=0.20.【解析】(1)若∠PF2F1是直角,则|PF1|2=|PF2|2+|F1F2|2,即|PF1|2=(12-|PF1|)2+80,得|PF1|=,若∠F1PF2是直角,则|PF1|2+(12-|PF1|)2=80,即2|PF1|2-24|PF1|+64=0,得|PF1|=8.(2)若∠PF2F1是直角,则|PF1|2=|PF2|2+|F1F2|2,即|PF1|2=(12-|PF1|)2+80,得|PF1|=,|PF2|=,所以=.若∠F1PF2是直角,则|PF1|2+(12-|PF1|)2=80,即2|PF1|2-24|PF1|+64=0,得|PF1|=8,|PF2|=4,所以=2,综上,=2或.21.【解析】设正方体的棱长为1.如图所示,以,,为单位正交基底建立空间直角坐标系Axyz.(1)依题意,得B(1,0,0),E,A(0,0,0),D(0,1,0),所以=,=(0,1,0).在正方体ABCD-A1B1C1D1中,因为AD⊥平面ABB1A1,所以是平面ABB1A1的一个法向量.设直线BE和平面ABB1A1所成的角为θ,则sinθ===.故直线BE和平面ABB1A1所成的角的正弦值为.(2)在棱C1D1上存在点F,使B1F∥平面A1BE.证明如下:依题意,得A1(0,0,1),=(-1,0,1),=.设n=(x,y,z)是平面A1BE的一个法向量,则由n ·=0,n ·=0,得所以x=z,y=z.取z=2,得n=(2,1,2).因为F是棱C1D1上的点,则F(t,1,1)(0≤t≤1). 又B1(1,0,1),所以=(t-1,1,0).而B1F⊄平面A1BE,于是B1F∥平面A1BE ⇒·n=0⇔(t-1,1,0)·(2,1,2)=0⇔2(t-1)+1=0⇔t=⇔F为棱C1D1的中点.这说明在棱C1D1上存在点F(C1D1的中点),使B1F∥平面A1BE.22.【解题指南】方法一:(1)建立空间直角坐标系,写出,的坐标,利用数量积证明.(2)求出平面B1CE与平面CEC1的法向量,由法向量的夹角余弦值求二面角的正弦值.(3)用直线AM的方向向量与平面ADD1A1的法向量表示直线AM与平面ADD1A1所成角的正弦,确定向量的坐标,由向量的模求线段AM的长.方法二:(1)要证明线线垂直,先证明线面垂直,关键是找出与线B1C1垂直的平面CC1E,然后进行证明.(2)要求二面角B1-CE-C1的正弦值,关键是构造出二面角B1-CE-C1的平面角,然后在三角形中求解.(3)首先构造三角形,设AM=x,在直角三角形AHM,C1D1E中用x表示出AH,EH的长度,最后在三角形AEH中利用余弦定理求解.【解析】如图,以点A为坐标原点建立空间直角坐标系,依题意得A(0,0,0),B(0,0,2),C(1,0,1),B1(0,2,2),C1(1,2,1),E(0,1,0).(1)易得=(1,0,-1),=(-1,1,-1),于是·=0,所以B1C1⊥CE.(2)=(1,-2,-1),设平面B1CE的法向量m=(x,y,z),则即消去x,得y+2z=0,不妨设z=1,可得一个法向量为m=(-3,-2,1).由(1)知B1C1⊥CE,又CC1⊥B1C1,可得B1C1⊥平面CEC1,故=(1,0,-1)为平面CEC1的一个法向量.于是cos<m ,>===-,从而sin<m ,>=.所以二面角B1-CE-C1的正弦值为.(3)=(0,1,0),=(1,1,1),设=λ=(λ,λ,λ),0≤λ≤1,有=+=(λ,λ+1,λ).可取=(0,0,2)为平面ADD1A1的一个法向量.设θ为直线AM与平面ADD1A1所成的角,则sinθ====.于是=,解得λ=,所以AM=.【一题多解】(1)因为侧棱CC1⊥底面A1B1C1D1,B1C1⊂平面A1B1C1D1,所以CC1⊥B1C1,经计算可得B1E=,B1C1=,EC1=,从而B1E2=B 1+E,所以在△B1EC1中,B1C1⊥C1E,又CC1,C1E⊂平面CC1E,CC1∩C1E=C1,所以B1C1⊥平面CC1E,又CE⊂平面CC1E,故B1C1⊥CE.(2)过B1作B1G⊥CE于点G,连接C1G,由(1)知,B1C1⊥CE,B1C1,B1G⊂平面B1C1G,B1C1∩B1G=B1,故CE⊥平面B1C1G,又C1G⊂平面B1C1G ,得CE⊥C1G,所以∠B1GC1为二面角B1-CE-C1的平面角.在△CC1E中,由CE=C1E=,CC1=2,可得C1G=.在Rt△B1C1G中,B1G=,所以sin∠B1GC1=,即二面角B1-CE-C1的正弦值为.(3)连接D1E,过点M作MH⊥ED1于点H,可得MH⊥平面ADD1A1,连接AH,AM,则∠MAH为直线AM与平面ADD1A1所成的角.设AM=x,从而在Rt△AHM中,有MH=x,AH=x,在Rt△C1D1E中,C1D1=1,ED1=,得EH=MH=x,在△AEH中,∠AEH=135°,AE=1,由AH2=AE2+EH2-2AE·EHcos135°,得x2=1+x2+x,整理得5x2-2x-6=0,解得x=.所以线段AM的长为.。
2021人教版高中数学同步a版选修2-1(理科必考)模块练习题--2.1.1 曲线与方程
第二章圆锥曲线与方程2.1 曲线与方程*2.1.1 曲线与方程2.1.2 求曲线的方程基础过关练题组一曲线与方程的概念1.已知曲线C的方程为x3+x+y-1=0,则下列各点中在曲线C上的点是( )A.(0,0)B.(-1,3)C.(1,1)D.(-1,1)2.(2018天津耀华中学高二上学期月考)直线x-y=0与曲线xy=1的交点坐标是( )A.(1,1)B.(-1,-1)C.(1,1),(-1,-1)D.(0,0)3.已知0≤α<2π,点P(cos α,sin α)在曲线(x-2)2+y2=3上,则α的值为( )A.π3 B.5π3C.π3或5π3D.π3或π64.“点M在曲线y2=4x上”是“点M的坐标满足方程y=-2√x”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件题组二 方程的曲线5.方程4x 2-y 2+6x-3y=0表示的图形是( ) A.直线2x-y=0 B.直线2x+y+3=0C.直线2x-y=0和直线2x+y+3=0D.直线2x+y=0和直线2x-y+3=06.下列四个选项中,方程与曲线相符合的是( )7.方程|x|+|y|=1表示的曲线所围成图形的面积为 .题组三 求曲线的方程8.设A 为圆(x-1)2+y 2=1上的动点,PA 是圆的切线,且|PA|=1,则点P 的轨迹方程是( )A.(x-1)2+y 2=2B.(x-1)2+y 2=4C.y 2=2xD.y 2=-2x9.在平面直角坐标系中,O 为坐标原点,点A(1,0),B(2,2).若点C 满足OC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +t(OB ⃗⃗⃗⃗⃗ -OA ⃗⃗⃗⃗⃗ ),其中t∈R ,则点C 的轨迹方程为 .10.(2018湖南岳阳一中高二上学期期末)已知M 为直线l:2x-y+3=0上的一动点,A(4,2)为一定点,点P 在直线AM 上运动,且AP ⃗⃗⃗⃗⃗ =3PM ⃗⃗⃗⃗⃗⃗ ,求动点P 的轨迹方程.11.已知△ABC 中,AB=2,AC=√2BC. (1)求点C 的轨迹方程; (2)求△ABC 的面积的最大值.能力提升练一、选择题1.(2018海南海口一中高二上学期月考,★★☆)方程xy 2+x 2y=1所表示的曲线( )A.关于x 轴对称B.关于y 轴对称C.关于原点中心对称D.关于直线y=x 对称 2.(2020鄂东南九校高二期中联考,★★☆)方程(3x-y+1)(y-√1-x 2)=0表示的曲线为( ) A.一条线段和半个圆 B.一条线段和一个圆 C.一条直线和半个圆 D.两条线段3.(2020北京朝阳高三期末,★★☆)笛卡儿、牛顿都研究过方程(x-1)(x-2)(x-3)=xy,关于这个方程的曲线有下列说法:①该曲线关于y 轴对称;②该曲线关于原点对称;③该曲线不经过第三象限;④该曲线上有且只有三个点的横、纵坐标都是整数.其中正确的是( ) A.②③ B.①④ C.③ D.③④4.(2019江西南昌高三开学摸底考试,★★☆)在平面直角坐标系xOy 中,已知M(-1,2),N(1,0),动点P 满足|PM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗⃗ |=|PN ⃗⃗⃗⃗⃗⃗ |,则动点P 的轨迹方程是( )A.y 2=4xB.x 2=4yC.y 2=-4xD.x 2=-4y5.(★★☆)方程x 2+y 2=1(xy<0)表示的曲线形状是( )6.(2018吉林长春五县期末,★★★)已知定点M(-3,0),N(2,0),若动点P满足|PM|=2|PN|,则点P的轨迹所包围的图形的面积等于( )A.100π9 B.142π9C.10π3D.9π二、填空题7.(2020贵州贵阳高二期末,★★☆)以古希腊数学家阿波罗尼斯命名的阿波罗尼斯圆,是指到两定点的距离之比为常数λ(λ>0,λ≠1)的动点M的轨迹.已知A(-2,0),B(2,0),动点M满足|MA||MB|=√2,此时阿波罗尼斯圆的方程为.8.(2020北京房山高二期末,★★☆)已知曲线W的方程为|y|+x2-5x=0.①请写出曲线W的一条对称轴方程: ;②曲线W上的点的横坐标的取值范围是.三、解答题9.(2019贵州铜仁一中高二入学考试,★★☆)已知动点M到点A(-1,0)与点B(2,0)的距离之比为2∶1,记动点M的轨迹为曲线C.(1)求曲线C的方程;(2)过点P(5,-4)作曲线C的切线,求切线方程.10.(2019上海七宝中学高二期末,★★★)在平面直角坐标系xOy中,曲线Γ:x2+y2=1(y≥0).(1)如图1,点B为曲线Γ上的动点,点A(2,0),求线段AB的中点的轨迹方程;(2)如图2,点B为曲线Γ上的动点,点A(2,0),将△OAB绕点A顺时针旋转90°得到△DAC,求线段OC长度的最大值.答案全解全析 基础过关练1.B 点P(x 0,y 0)在曲线f(x,y)=0上⇔f(x 0,y 0)=0.经验证知点(-1,3)在曲线C 上.2.C 由{x -y =0,xy =1,得{x =1,y =1或{x =-1,y =-1.故选C.3.C 将点P 的坐标代入方程(x-2)2+y 2=3,得(cos α-2)2+sin 2α=3,解得cos α=12.又0≤α<2π,所以α=π3或5π3.4.B 设M(x 0,y 0),由点M 的坐标满足方程y=-2√x ,得y 0=-2√x 0,∴y 02=4x 0,∴点M 在曲线y 2=4x 上.反之不成立,故选B.5.C ∵4x 2-y 2+6x-3y=(2x+y)(2x-y)+3(2x-y)=(2x-y)(2x+y+3)=0, ∴原方程表示直线2x-y=0和2x+y+3=0.6.D 对于A,点(0,-1)满足方程,但不在曲线上,排除A;对于B,点(1,-1)满足方程,但不在曲线上,排除B;对于C,由于曲线上第三象限的点的横、纵坐标均小于0,不满足方程,排除C.故选D.7.答案 2解析 方程表示的图形是边长为√2的正方形(如图所示),其面积为(√2)2=2.8.A 设圆(x-1)2+y 2=1的圆心为C,半径为r,则C(1,0),r=1,依题意得|PC|2=r 2+|PA|2,即|PC|2=2,所以点P 的轨迹是以C 为圆心,√2为半径的圆,因此点P 的轨迹方程是(x-1)2+y 2=2. 9.答案 y=2x-2解析 设点C(x,y),则OC ⃗⃗⃗⃗⃗ =(x,y).因为点A(1,0),B(2,2),所以OA ⃗⃗⃗⃗⃗ +t(OB ⃗⃗⃗⃗⃗ -OA ⃗⃗⃗⃗⃗ )=(1+t,2t),所以{x =t +1,y =2t ,消去t,得点C 的轨迹方程为y=2x-2. 10.解析 设M(x 0,y 0),P(x,y), 则AP⃗⃗⃗⃗⃗ =(x-4,y-2),PM ⃗⃗⃗⃗⃗⃗ =(x 0-x,y 0-y), 由题意可得{x -4=3(x 0-x ),y -2=3(y 0-y ),所以{x 0=4x -43,y 0=4y -23.因为点M(x 0,y 0)在直线2x-y+3=0上, 所以2×4x -43-4y -23+3=0,即8x-4y+3=0,所以点P 的轨迹方程为8x-4y+3=0.11.解析 (1)以直线AB 为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系,则A(-1,0),B(1,0).设C(x,y),由AC=√2BC,得(x+1)2+y 2=2[(x-1)2+y 2],即(x-3)2+y 2=8,又在△ABC 中,y≠0,所以点C 的轨迹方程为(x-3)2+y 2=8(y≠0).(2)因为AB=2,所以S △ABC =12×2×|y|=|y|.因为(x-3)2+y 2=8(y≠0), 所以0<|y|≤2√2,所以S △ABC ≤2√2,即△ABC 的面积的最大值为2√2.能力提升练一、选择题1.D 设P(x 0,y 0)是曲线xy 2+x 2y=1上的任意一点,则x 0y 02+x 02y 0=1.设点P 关于直线y=x 的对称点为P',则P'(y 0,x 0),因为y 0x 02+y 02x 0=x 0y 02+x 02y 0=1,所以P'在曲线xy 2+x 2y=1上,故该曲线关于直线y=x 对称.2.A 由方程(3x-y+1)(y-√1-x 2)=0得y=√1-x 2(y≥0)或3x-y+1=0,且满足-1≤x≤1,即x 2+y 2=1(y≥0)或3x-y+1=0(-1≤x≤1),∴方程(3x-y+1)(y-√1-x 2)=0表示一条线段和半个圆.3.C 将x=-x 代入得到(x+1)(x+2)(x+3)=xy,方程改变,故该曲线不关于y 轴对称; 将x=-x,y=-y 代入得到(x+1)(x+2)(x+3)=-xy,方程改变,故该曲线不关于原点对称; 当x<0,y<0时,(x-1)(x-2)(x-3)<0,xy>0,显然方程不成立,∴该曲线不经过第三象限;令x=-1,易得y=24,即(-1,24)在曲线上,同理可得(1,0),(2,0),(3,0)也在曲线上,∴该曲线上有且只有三个点的横、纵坐标都是整数是错误的.4.A 设P(x,y),因为M(-1,2),N(1,0),所以PM ⃗⃗⃗⃗⃗⃗ =(-1-x,2-y),ON ⃗⃗⃗⃗⃗⃗ =(1,0),PN ⃗⃗⃗⃗⃗⃗ =(1-x,-y),因为|PM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗⃗ |=|PN⃗⃗⃗⃗⃗⃗ |,所以|1+x|=√(1-x )2+(-y )2, 整理得y 2=4x.5.C 方程x 2+y 2=1(xy<0)表示以原点为圆心,1为半径的圆在第二、四象限的部分,故选C. 6.A 设P(x,y),则由|PM|=2|PN|,得(x+3)2+y 2=4[(x-2)2+y 2],化简,得3x 2+3y 2-22x+7=0, 即(x -113)2+y 2=1009,所以所求图形的面积S=100π9.二、填空题7.答案 x 2+y 2-12x+4=0 解析 设M(x,y),因为|MA ||MB |=√2, 所以√(x+2)2+y 2√(x -2)+y 2=√2,整理得x 2+y 2-12x+4=0.8.答案 ①y=0(或x =52) ②[0,5]解析 ①由W 的方程知,若(x,y)是曲线上的点,则(x,-y)也是曲线上的点,因此直线y=0是曲线W的一条对称轴.同理,点(52-x,y)与(52+x,y)也都是曲线上的点,因此直线x=52也是曲线W的一条对称轴.②由|y|+x2-5x=0得|y|=-x2+5x,因为|y|≥0,所以-x2+5x≥0,解得0≤x≤5.三、解答题9.解析(1)设动点M的坐标为(x,y),则|MA|=√(x+1)2+y2,|MB|=√(x-2)2+y2所以√(x+1)2+y2√(x-2)+y2=2,化简得(x-3)2+y2=4.因此,动点M的轨迹方程为(x-3)2+y2=4.(2)当过点P的直线斜率不存在时,直线方程为x-5=0,圆心C(3,0)到直线x-5=0的距离等于2,此时直线x-5=0与曲线C相切; 当过点P的切线斜率存在时,不妨设斜率为k,则切线方程为y+4=k(x-5),即kx-y-5k-4=0,由圆心到切线的距离等于半径,得√k2+1=2,解得k=-34.所以切线方程为3x+4y+1=0.综上所述,切线方程为x-5=0和3x+4y+1=0.10.解析(1)设点B的坐标为(x0,y0),则y0≥0,设线段AB的中点为M(x,y), 因为点B在曲线Γ上,所以x02+y02=1.①因为M为线段AB的中点,所以{x=x0+22,y=y02,则{x0=2x-2,y0=2y,代入①式得(2x-2)2+4y2=1,化简得(x-1)2+y2=14,其中y≥0.则线段AB的中点的轨迹方程为(x-1)2+y2=14(y≥0).(2)如图所示,将△OAB绕点A顺时针旋转90°得到△DAC,易知点D(2,2),结合图形可知,点C在曲线(x-2)2+(y-2)2=1(x≥2)上运动,则问题转化为求原点O到曲线(x-2)2+(y-2)2=1(x≥2)上一点C的距离的最大值,连接OD并延长交曲线(x-2)2+(y-2)2=1(x≥2)于点C',当点C与C'重合时,|OC|取得最大值,且|OC|max=|OD|+1=2√2+1.。
高二数学人教A版选修2-1(第3.2 立体几何中的向量方法) Word版含解析
绝密★启用前人教版选修2-1 课时3.2立体几何中的向量方法一、选择题1.【题文】已知三条直线l 1,l 2,l 3的一个方向向量分别为a =(4,-1,0),b =(1,4,5),c =(-3,12,-9),则 ( )A .l 1⊥l 2,但l 1与l 3不垂直B .l 1⊥l 3,但l 1与l 2不垂直C .l 2⊥l 3,但l 2与l 1不垂直D .l 1,l 2,l 3两两互相垂直2.【题文】已知直线l 1的方向向量为a =(2,4,x ),直线l 2的方向向量为b =(2,y,2),若|a |=6,且a ⊥b ,则x +y 的值是( ) A .-3或1 B .3或-1 C .-3 D .13.【题文】已知(2,2,5)u =-,(6,4,4)v =-,u ,分别是平面α,β的法向量,则平面α,β的位置关系式( )A .平行B .垂直C .所成的二面角为锐角D .所成的二面角为钝角4.【题文】在空间直角坐标系中,点B 是()1,2,3A 在yOz 坐标平面内的射影,O 为坐标原点,则OB 等于( )A .14B .13C .23D .115.【题文】长方体1111ABCD A BC D -中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为 ( ) A. 1010B.3010 C. 21510D.310106.【题文】在棱长为的正方体1111ABCD A B C D -中,平面1AB C 与平面11A C D 间的 距离为( )A .63B .33 C .332 D .237.【题文】如图,在四面体OABC 中,G 是底面△ABC 的重心,则OG 等于()GCABOA.OC OB OA ++B.111222OA OB OC ++C.111236OA OB OC ++ D.111333OA OB OC ++8.【题文】在直三棱柱111C B A ABC -中,底面是等腰直角三角形, 90=∠ACB ,侧棱21=AA ,D ,E 分别是1CC 与B A 1的中点,点E 在平面ABD 上的射影是ABD ∆的重心G .则B A 1与平面AB D 所成角的余弦值 ()A .32 B .37C .23D .73二、填空题9.【题文】如图,在直三棱柱111ABC A B C -中,∠ACB =90°,AA 1=2,AC =BC =1,则异面直线A 1B 与AC 所成角的余弦值是________.10.【题文】已知正四棱锥P ABCD -的侧棱与底面所成角为60°,M 为PA 的中点,连接DM ,则DM 与平面PAC 所成角的大小是________.11.【题文】如图所示,正方体1111ABCD A BC D -的棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =23a ,则MN 与平面BB 1C 1C 的位置关系是______.三、解答题12.【题文】如图,AB 是圆的直径,PA 垂直于圆所在的平面,C 是圆上异于A 、B 的点.(1)求证:平面PAC ⊥平面PBC ;(2)若AB =2,AC =1,PA =1,求二面角C PB A --的余弦值.13.【题文】如图,直三棱柱111ABC A B C -中,△ABC 是等边三角形,D 是BC 的中点.(1)求证:A 1B ∥平面ADC 1;(2)若AB =BB 1=2,求A 1D 与平面AC 1D 所成角的正弦值.14.【题文】直四棱柱1111ABCD A BC D -中,底面A B C D为菱形,且160,,BAD A A AB E ∠==为1BB 延长线上的一点,1D E ⊥面1D AC .设2AB =. (1)求二面角1E AC D --的大小;(2)在1D E 上是否存在一点P ,使1//A P 面EAC ?若存在,求1:D P PE 的值;若不存在,说明理由.人教版选修2-1 课时3.2立体几何中的向量方法参考答案与解析一、选择题 1. 【答案】A【解析】∵a ·b =(4,-1,0)·(1,4,5)=4-4+0=0,a ·c =(4,-1,0)·( -3,12,-9)=-12-12+0=-24≠0.b ·c =(1,4,5)·(-3,12,-9)=-3+48-45=0,∴a ⊥b ,a 与c 不垂直,b ⊥c . ∴l 1⊥l 2,l 2⊥l 3,但l 1不垂直于l 3. 考点:直线的方向向量. 【题型】选择题 【难度】较易 2. 【答案】A【解析】|a |=2222+4+6x =,∴x =±4,又∵a ⊥b ,∴a ·b =2×2+4y +2x =0, ∴y =-1-12x ,∴当x =4时,y =-3,当x =-4时,y =1,∴x +y =1或-3. 考点:直线的方向向量. 【题型】选择题 【难度】较易 3. 【答案】B【解析】由(2,2,5)u =-,(6,4,4)v =-,可得262(4)540u v ⋅=-⨯+⨯-+⨯=,所以u v ⊥,又u ,分别是平面α,β的法向量,所以αβ⊥,故选B. 考点:空间向量在解决空间垂直中的应用. 【题型】选择题【难度】较易 4. 【答案】B【解析】因为点B 是()1,2,3A 在yOz 坐标平面内的射影,所以(0,2,3)B ,22202313∴=++=OB .故选B . 考点:空间中两点间的距离. 【题型】选择题 【难度】较易 5. 【答案】B【解析】建立坐标系如图所示,则A (1, 0, 0),E (0, 2, 1),B (1, 2, 0),C 1(0, 2, 2),则1BC =(-1, 0, 2),AE =(-1,2, 1).cos 〈1BC ,AE 〉=11AE BC AE BC ⋅⋅=3010. 所以异面直线BC 1与AE所成角的余弦值为3010.故选B.考点:异面直线所成角的向量求法. 【题型】选择题 【难度】较易 6.【答案】B【解析】建立如图所示的直角坐标系,设平面11A C D 的法向量(,,1)n x y =,则1100n DA n DC ⎧⋅=⎪⎨⋅=⎪⎩,即()()()(),,11,0,10,,,10,1,10x y x y ⋅-=⎧⎪⎨⋅-=⎪⎩()1,1,1,1,1,x n y =⎧⇒∴=⎨=⎩又(1,0,0)AD =-,∴平面1AB C 与平面11A C D 间的距离()()2221,0,01,1,133111AD n d n⋅-⋅===++,故选B.考点:面与面间的距离的向量求法. 【题型】选择题 【难度】一般 7. 【答案】D【解析】由题意知,()()11=+=+=33OG OA AG OA AC AB OA OC OA OB OA ++-+- =111333OA OB OC ++,故选D. 考点:空间向量的运算. 【题型】选择题 【难度】一般 8. 【答案】B【解析】以C 为坐标原点,CA 所在直线为轴,CB 所在直线为y 轴,1CC 所在直线为轴,建立直角坐标系,设a CB CA ==,则(),0,0A a ,()0,,0B a ,)(2,0,1a A ,)(1,0,0D ,则)(1,2,2a a E ,)(31,3,3a a G ,则)(32,6,6a a GE =,)(1,,0a BD -=, ∵点E 在平面ABD 上的射影是ABD ∆的重心G , ∴⊥GE 平面ABD ,∴0=⋅BD GE ,解得2=a .∴)(32,31,31=GE ,)(2,2,21-=BA , ∵⊥GE 平面ABD ,∴GE 为平面ABD 的一个法向量.32323634||||,cos 111=⋅=⋅⋅>=<BA GE BA GE BA GE , ∴B A 1与平面ABD 所成的角的余弦值为37,故选B.考点:线面角的空间向量求法. 【题型】选择题 【难度】较难二、填空题 9. 【答案】66【解析】以C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则A 1(1, 0, 2),B (0, 1, 0),A (1, 0, 0),C (0, 0, 0),则1A B =(-1, 1,-2),AC =(-1, 0, 0),cos 〈1A B ,AC 〉=11A B AC A B AC⋅⋅=1114++=66. 考点:异面直线夹角的向量求法. 【题型】填空题 【难度】较易 10. 【答案】45°【解析】设底面正方形的边长为a ,由已知可得正四棱锥的高为62a ,建立如图所示的空间直角坐标系,则平面PAC 的一个法向量为n =(1,0,0),D 2,0,02a ⎛⎫- ⎪ ⎪⎝⎭,P 60,0,2a ⎛⎫ ⎪ ⎪⎝⎭,M 260,,44a a ⎛⎫- ⎪ ⎪⎝⎭,则DM =226,,244a a a ⎛⎫- ⎪ ⎪⎝⎭,所以cos 〈DM ,n 〉=n DM n DM⋅⋅=22,所以DM 与平面PAC 所成的角为45°.考点:线面角的空间向量求法. 【题型】填空题 【难度】一般 11. 【答案】平行【解析】分别以C 1B 1、C 1D 1、C 1C 所在直线为x ,y ,z 轴,建立空间直角坐标系, 如图所示.∵A 1M =AN =23a ,∴M 2(,,)33a a a ,N 22(,,)33a a a ,∴MN =2(,0,)33a a .又C 1(0,0,0),D 1(0,a,0),∴11C D =(0,a,0),∴MN ·11C D =0,∴MN ⊥11C D .∵11C D 是平面BB 1C 1C 的一个法向量,且MN ⊄平面BB 1C 1C ,∴MN ∥平面BB 1C 1C .考点:向量法求线面关系. 【题型】填空题 【难度】一般三、解答题 12.【答案】(1)见解析(2)64【解析】(1)证明:由AB 是圆的直径,得AC ⊥BC ,由PA ⊥平面ABC ,BC ⊂平面ABC ,得PA ⊥BC .又PA ∩AC =A ,PA ⊂平面PAC ,AC ⊂平面PAC , 所以BC ⊥平面PAC .又BC ⊂平面PBC ,所以平面PBC ⊥平面PAC . (2)过C 作CM ∥AP ,则CM ⊥平面ABC .如图,以点C 为坐标原点,分别以直线CB ,CA ,CM 为x 轴、y 轴、z 轴建立空间直角坐标系.在Rt △ABC 中,因为AB =2,AC =1,所以BC =3.又因为PA =1,所以A (0,1,0),B (3,0,0),P (0,1,1),故CB =(3,0,0),CP =(0,1,1),设平面BCP 的法向量为1n =(x 1,y 1,z 1),则110,0,n CB n CP ⎧⋅=⎪⎨⋅=⎪⎩所以111300x y z ⎧⎪⎨⎪⎩=,+=,令y 1=1,则1n =(0,1,-1).AP =(0,0,1),AB =(3,-1,0),设平面ABP 的法向量为2n =(x 2,y 2,z 2),则220,0,n AP n AB ⎧⋅=⎪⎨⋅=⎪⎩所以222300x y z ⎧⎪⎨⎪⎩-=,=,令x 2=1,则2n =(1,3,0).于是cos 〈1n ,2n 〉=322=64.由题意可知二面角C PB A --的余弦值为64. 考点:空间二面角的向量求法. 【题型】解答题 【难度】一般 13.【答案】(1)见解析(2)23535【解析】(1)证明:因为三棱柱111ABC A B C -是直三棱柱,所以四边形A 1ACC 1是矩形.连接A 1C 交AC 1于O ,连接OD ,则O 是A 1C 的中点,又D 是BC 的中点,所以在△A 1BC 中,OD ∥A 1B ,因为A 1B ⊄平面ADC 1,OD ⊂平面ADC 1,所以A 1B ∥平面ADC 1. (2)因为△ABC 是等边三角形,D 是BC 的中点,所以AD ⊥BC .以D 为原点,建立如图所示空间坐标系D xyz -.由已知AB =BB 1=2,得D (0,0,0),A (3,0, 0),A 1(3,0, 2),C 1(0,-1, 2),则DA =(3,0, 0),1DC =(0,-1,2),设平面AC 1D 的法向量为=(x ,y ,z ),则10,0,n DA n DC ⎧⋅=⎪⎨⋅=⎪⎩即30,20,x y z ⎧=⎪⎨-+=⎪⎩取z =1,则x =0,y =2,∴=(0,2,1), 又1DA =(3,0,2),∴cos 〈1DA ,〉=257⋅=23535,设A 1D 与平面ADC 1所成角为θ,则sin θ=|cos 〈1DA ,〉|=23535, 故A 1D 与平面ADC 1所成角的正弦值为23535.考点:线面角的向量求法. 【题型】解答题 【难度】一般 14.【答案】(1)45︒(2)存在点P 使1//A P 面,EAC 此时1:3:2D P PE = 【解析】(1)设AC 与BD 交于O ,设1B E h =,如图所示建立空间直角坐标系O xyz -,则1(3,0,0),(0,1,0),(3,0,0),(0,1,0),(0,1,2),A B C D D --- (0,1,2),E h +则11(0,2,),(23,0,0),(3,1,2),D E h CA D A ===-1D E ⊥平面1D AC ,111,D E AC D E D A ∴⊥⊥,220,1,h h ∴-=∴=即(0,1,3)E .1(0,2,1),(3,1,3)D E AE ∴==-,设平面EAC 的法向量为(,,)m x y z =, 则,,m CA m AE ⎧⊥⎪⎨⊥⎪⎩即230,330,x x y z ⎧=⎪⎨-++=⎪⎩令1z =-,则0,3x y ==,()0,3,1m ∴=-. 又平面1D AC 的一个法向量为()10,2,1D E =,1112cos ,==2m D E m D E m D E⋅∴⋅, ∴二面角1E AC D --大小为45.(2)设111(),D P PE D E D P λλ==-得112(0,,),111D P D E λλλλλλ==+++ 111121(3,1,0)(0,,)(3,,)1111A P A D D P λλλλλλλλ-∴=+==--+=-++++,1//A P 面113,,303(1)0,,112EAC A P m λλλλλ-∴⊥∴-⨯+⨯+-⨯=∴=++ ∴存在点P 使1//A P 面,EAC 此时1:3:2D P PE =考点:空间向量法求二面角. 【题型】解答题 【难度】一般。
2021人教版高中数学同步a版选修2-1(理科必考)模块练习题--1.4 全称量词与存在量词
1.4 全称量词与存在量词1.4.1 全称量词1.4.2 存在量词基础过关练题组一对全称命题、特称命题的理解1.下列命题中全称命题的个数是( )①任意一个自然数都是正整数;②所有的素数都是奇数;③有的等差数列也是等比数列;④三角形的内角和是180°.A.0B.1C.2D.32.下列命题不是“∃x∈R,x2>3”的另一种表述的是( )A.有一个x∈R,使得x2>3成立B.对有些x∈R,使得x2>3成立C.任选一个x∈R,使得x2>3成立D.至少有一个x∈R,使得x2>3成立3.“a∥α,则a平行于平面α内的任一直线”是( )A.全称命题B.特称命题C.不是命题D.真命题4.命题“有些负数满足不等式(1+x)(1-9x)>0”用“∃”或“∀”可表述为.5.用全称量词或存在量词表示下列语句:①不等式x 2+x+1>0恒成立;②当x 为有理数时,13x 2+12x+1也是有理数;③方程3x-2y=10有整数解.题组二 全称命题、特称命题的真假判定6.下列命题中,既是真命题又是全称命题的是() A.对任意实数a,b,都有a 2+b 2-2a-2b+2<0B.梯形的对角线不相等C.∃x 0∈R ,√x 02=x 0D.对数函数在定义域上是单调函数7.已知a>0,函数f(x)=ax2+bx+c.若x0满足关于x的方程2ax+b=0,则下列命题中为假命题的是( )A.存在x∈R, f(x)≤f(x0)B.存在x∈R, f(x)≥f(x0)C.任意x∈R, f(x)≤f(x0)D.任意x∈R, f(x)≥f(x0)8.下列命题为真命题的是( )A.∀x∈R,cos x<2B.∃x∈Z,log2(3x-1)<0C.∀x>0,3x>3D.∃x∈Q,方程√2x-2=0有解9.命题p:∃x0∈R,x02+2x0+5<0是(填“全称命题”或“特称命题”),它是命题(填“真”或“假”).10.下列命题:①存在x<0,使|x|>x;②对于一切x<0,都有|x|>x;③已知a n=2n,b n=3n,对于任意n∈N*,都有a n≠b n;④已知A={a|a=2n},B={b|b=3n},对于任意n∈N*,都有A∩B=⌀.其中,所有真命题的序号为.题组三根据命题的真假求参数的取值范围=m,则实数m的取值范围是.11.若∃x∈R,x+1x12.已知函数f(x)=x2+mx+1,若命题“∃x>0, f(x)<0”为真,则m的取值范围是.13.(2019湖北武汉部分市级示范性高中高三联考)已知命题p:∀x∈R,ax2+ax+1≥0,命题q:|2a-1|≤3.(1)若命题p是真命题,求实数a的取值范围;(2)若p∨q是真命题,p∧q是假命题,求实数a的取值范围.能力提升练一、选择题1.(2019福建莆田高二期中,★★☆)下列命题中的假命题是( )A.∀x∈R,2x-1>0B.∀x∈N*,(x-1)2>0C.∃x0∈R,ln x0<1D.∃x0∈R,tan x0=22.(★★☆)下列命题中的假命题是( )A.∃x0∈R,3x02-8x0+9=0B.∃x0∈(0,1),lg x0>ln x0C.∀x∈(0,+∞),(12)x>(13)xD.∀x∈R,x2-3x+4>03.(2018宁夏育才中学高二期末,★★☆)若命题“∀x∈R,kx2-kx-1<0”是真命题,则k的取值范围是( )A.-4≤k≤0B.-4≤k<0C.-4<k≤0D.-4<k<04.(★★★)若命题“存在x∈R,使x2+(a-1)x+1<0”是假命题,则实数a的取值范围是( )A.a>3或a<-1B.a≥3或a≤-1C.-1<a<3D.-1≤a≤3二、填空题5.(2019广东潮州高三第二次模拟,★★☆)已知a∈R,命题p:∀x∈[1,2],x2-a≥0,命题q:∃x∈R,x2+2ax+2-a=0,若命题p∧q为真命题,则实数a的取值范围是.6.(★★☆)已知函数f(x)=x2+m,g(x)=(12)x,若对任意x1∈[-1,3],存在x2∈[0,2],使f(x1)≥g(x2),则实数m的取值范围是.7.(2020广东东莞高二期末,★★☆)已知命题“∀x∈[1,3],不等式x2-ax+4≥0”为真命题,则a的取值范围为.三、解答题8.(2019内蒙古赤峰高二期末,★★☆)设命题p:对任意x∈[0,1],不等式2x-2≥m2-3m恒成立,命题q:存在x∈[-1,1],使得不等式x2-x+m-1≤0成立.(1)若p为真命题,求实数m的取值范围;(2)若p∧q为假命题,p∨q为真命题,求实数m的取值范围.9.(★★★)已知a>1且a≠1,命题p:函数f(x)=log(2a-1)x在其定义域2上是减函数;命题q:函数g(x)=√x+|x-a|-2的定义域为R,如果p∨q 为真,试求a的取值范围.10.(★★★)设集合A={(x,y)|(x-4)2+y2=1},B={(x,y)|(x-t)2+(y-at+2)2=1},若命题“∃t0∈R,A∩B≠⌀”是真命题,求实数a的取值范围.答案全解全析基础过关练1.D 命题①②含有全称量词,而命题④可以叙述为“所有的三角形的内角和都是180°”,故有三个全称命题,命题③是特称命题.2.C 选项C 是全称命题,故错误.3.A 该命题是全称命题,且是假命题.4.答案 ∃x 0<0,使得(1+x 0)(1-9x 0)>05.解析 ①对任意实数x,不等式x 2+x+1>0恒成立.②对任意有理数x,13x 2+12x+1是有理数. ③存在一对整数x 0,y 0,使3x 0-2y 0=10成立.6.D A 是全称命题,且a 2+b 2-2a-2b+2=(a-1)2+(b-1)2≥0,故A 是假命题;B 中隐含量词“所有的”,是全称命题,但梯形中只有等腰梯形的对角线相等,故B 是假命题;C 是特称命题;D 是全称命题且是真命题.7.C f(x)=ax 2+bx+c=a (x +b 2a )2+4ac -b 24a (a>0), 由题意知2ax 0+b=0,∴x 0=-b 2a ,当x=x 0时,函数f(x)取得最小值,∴∀x∈R , f(x)≥f(x 0),从而A,B,D 为真命题,C 为假命题.8.A A 中,由于函数y=cos x 的最大值是1,所以A 是真命题;B中,log 2(3x-1)<0⇔0<3x-1<1⇔13<x<23,所以B 是假命题;C 中,当x=1时,31=3,所以C 是假命题;D 中,√2x-2=0⇔x=√2∉Q,所以D 是假命题.故选A.9.答案 特称命题;假解析 命题p:∃x 0∈R ,x 02+2x 0+5<0是特称命题.因为x 02+2x 0+5=(x 0+1)2+4>0恒成立,所以命题p为假命题.10.答案 ①②③解析 命题①②显然为真命题;③由于a n -b n =2n-3n=-n<0,所以∀n∈N *,都有a n <b n ,即a n ≠b n ,故为真命题;④已知A={a|a=2n},B={b|b=3n},如n=1,2,3时,A∩B={6},故为假命题.11.答案 (-∞,-2]∪[2,+∞)解析 依题意得,关于x 的方程x+1x =m 有实数解,设f(x)=x+1x , 由基本不等式,得当x>0时, f(x)≥2,当x<0时, f(x)≤-2,故f(x)的值域为(-∞,-2]∪[2,+∞),故实数m 的取值范围是(-∞,-2]∪[2,+∞).12.答案 (-∞,-2)解析 易知函数f(x)=x 2+mx+1的图象过点(0,1),若命题“∃x>0, f(x)<0”为真,则函数f(x)=x 2+mx+1的图象的对称轴必在y 轴的右侧,且与x 轴有两个交点,所以Δ=m 2-4>0,且-m 2>0,即m<-2,所以m 的取值范围是(-∞,-2).13.解析 (1)命题p 是真命题时,ax 2+ax+1≥0在R 上恒成立,∴①当a=0时,有1≥0恒成立;②当a≠0时,有{a >0,Δ=a 2-4a ≤0,解得0<a≤4,∴a 的取值范围为[0,4].(2)∵p∨q 是真命题,p∧q 是假命题,∴p、q 一真一假,当q 为真时,-1≤a≤2,故①p 真q 假时,有{0≤a ≤4,a <-1或a >2,∴2<a≤4;②p 假q 真时,有{a <0或a >4,-1≤a ≤2,∴-1≤a<0.∴a 的取值范围为[-1,0)∪(2,4].能力提升练一、选择题1.B A.2x-1>0在x∈R 上恒成立,是真命题;B.当x=1时,(x-1)2=0,是假命题;C.当x 0=1时,ln x 0=0<1,是真命题;D.y=tan x 在[0,π2]上的值域为[0,+∞),所以∃x 0∈R ,tan x 0=2是真命题.2.A 选项A 中,Δ=64-4×3×9=-44,则方程3x 2-8x+9=0无实数根,故选A.3.C 当k=0时,有-1<0恒成立;当k≠0时,令y=kx 2-kx-1,∵y<0恒成立,∴抛物线y=kx 2-kx-1开口向下,且与x 轴没有公共点,∴k<0,且Δ=k 2+4k<0,解得-4<k<0.综上所述,k 的取值范围为-4<k≤0.4.D 因为命题是假命题,所以方程x 2+(a-1)x+1=0没有实数根或有两个相等实数根,所以Δ=(a -1)2-4≤0,解得-1≤a≤3.二、填空题5.答案 a≤-2或a=1解析 若命题p:“∀x∈[1,2],x 2-a≥0”为真命题,则1-a≥0,解得a≤1.若命题q:“∃x∈R ,x 2+2ax+2-a=0”为真命题,则Δ=4a 2-4(2-a)≥0,解得a≤-2或a≥1.因为p∧q 是真命题,所以a≤-2或a=1.6.答案 [14,+∞)解析 因为对任意x 1∈[-1,3],f(x 1)∈[m,9+m],所以f(x)的最小值为m.存在x 2∈[0,2],使f(x 1)≥g(x 2)成立,只要满足g(x)在[0,2]上的最小值小于或等于m 即可,而g(x)是单调递减函数,故g(x)的最小值为g(2)=(12)2=14,得m≥14.7.答案 (-∞,4]解析 令f(x)=x 2-ax+4,则其图象的对称轴为直线x=a 2, 要使∀x∈[1,3],不等式x 2-ax+4≥0恒成立,即∀x∈[1,3], f(x)min ≥0.当a 2≤1,即a≤2时, f(x)min =f(1)=12-a+4≥0,解得a≤2; 当1<a 2<3,即2<a<6时, f(x)min =f (a 2)=(a 2)2-a×a 2+4≥0,解得2<a≤4;当a 2≥3,即a≥6时, f(x)min =f(3)=32-3a+4≥0,无解. 综上可得a∈(-∞,4].三、解答题8.解析 对于p,∵2x -2≥m 2-3m 对任意x∈[0,1]恒成立,y=2x-2在[0,1]上的最小值为-2,∴m 2-3m≤-2,解得1≤m≤2.对于q,存在x∈[-1,1],使x 2-x+m-1≤0成立,所以y=x 2-x+m-1在[-1,1]上的最小值小于等于0,即-54+m≤0,∴m≤54. (1)若p 为真命题,则1≤m≤2.(2)若p∧q 为假命题,p ∨q 为真命题,则p,q 一真一假.若p 为真命题,q 为假命题,则{1≤m ≤2,m >54, ∴54<m≤2; 若p 为假命题,q 为真命题,则{m <1或m >2,m ≤54,∴m<1. 综上,m<1或54<m≤2. 9.解析 若p 为真,则0<2a-1<1,得12<a<1.若q 为真,则x+|x-a|-2≥0对任意x∈R 恒成立.记h(x)=x+|x-a|-2,则h(x)={2x -a -2,x ≥a ,a -2,x <a ,所以h(x)的最小值为a-2,即q 为真时,a-2≥0,即a≥2.由p∨q 为真,得12<a<1或a≥2,故a 的取值范围为(12,1)∪[2,+∞). 10.解析 易知A={(x,y)|(x-4)2+y 2=1}表示平面直角坐标系中以M(4,0)为圆心,1为半径的圆,B={(x,y)|(x-t)2+(y-at+2)2=1}表示以N(t,at-2)为圆心,1为半径的圆,且其圆心N 在直线ax-y-2=0上,如图.若命题“∃t0∈R,A∩B≠⌀”是真命题,即两圆有公共点,则圆心M(4,0)到直线ax-y-2=0的距离不大于2,即√a2+1≤2,解得0≤a≤43.所以实数a的取值范围是0≤a≤43.。
高中数学 1.2充分条件与必要条件课后习题 新人教A版高二选修2-1数学试题
【优化设计】2015-2016学年高中数学 1.2充分条件与必要条件课后习题新人教A版选修2-1课时演练·促提升A组1.“数列{a n}为等比数列”是“a n=3n(n∈N*)”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当a n=3n时,{a n}一定为等比数列,但当{a n}为等比数列时,不一定有a n=3n,故应为必要不充分条件.答案:B2.对于非零向量a,b,“a+b=0”是“a∥b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由a+b=0可知a,b是相反向量,它们一定平行;但当a∥b时,不一定有a+b=0,故应为充分不必要条件.答案:A3.“实数a=0”是“直线x-2ay=1和2x-2ay=1平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当a=0时,两直线方程分别为x=1和2x=1,显然两直线平行;反之,若两直线平行,必有1×(-2a)=(-2a)×2,解得a=0,故应为充要条件.答案:C4.函数y=(2-a)x(a<2且a≠1)是增函数的充要条件是()A.1<a<2B.<a<2C.a<1D.a<0解析:由指数函数性质得,当y=(2-a)x(a<2且a≠1)是增函数时,2-a>1,解得a<1.故选C.答案:C5.设p:|x|>1,q:x<-2或x>1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由已知p:x<-1或x>1,则q是p的充分不必要条件.由互为逆否命题的两个命题同真,得p是q的充分不必要条件.答案:A6.“关于x的不等式x2-2ax+a>0对x∈R恒成立”的一个必要不充分条件是()A.0<a<1B.0≤a≤1C.0<a<D.a≥1或a≤0解析:当关于x的不等式x2-2ax+a>0对x∈R恒成立时,应有Δ=4a2-4a<0,解得0<a<1.因此一个必要不充分条件是0≤a≤1.答案:B7.“sin A=”是“A=”的条件.解析:由sin A=不一定能推得A=,例如A=等;但由A=一定可推得sin A=,所以“sin A=”是“A=”的必要不充分条件.答案:必要不充分8.在平面直角坐标系中,点(x2+5x,1-x2)在第一象限的充要条件是.解析:由解得0<x<1,所以点(x2+5x,1-x2)在第一象限的充要条件是0<x<1.答案:0<x<19.求证:关于x的方程ax2+bx+c=0有一个根为1的充要条件是a+b+c=0.证明:充分性:∵a+b+c=0,∴c=-a-b,代入方程ax2+bx+c=0,得ax2+bx-a-b=0,即(x-1)(ax+a+b)=0.∴方程ax2+bx+c=0有一个根为1.必要性:∵方程ax2+bx+c=0有一个根为1,∴x=1满足方程ax2+bx+c=0.∴a×12+b×1+c=0,即a+b+c=0.故关于x的方程ax2+bx+c=0有一个根为1的充要条件是a+b+c=0.10.若f(x)是R上的增函数,且f(-1)=-4,f(2)=2,设P={x|f(x+t)+1<3},Q={x|f(x)<-4},若“x∈P”是“x∈Q”的充分不必要条件,某某数t的取值X围.解:因为f(x)是R上的增函数,且f(-1)=-4,f(2)=2,所以P={x|f(x+t)+1<3}={x|f(x+t)<2}={x|f(x+t)<f(2)}={x|x+t<2}={x|x<2-t},Q={x|f(x)<-4}={x|f(x)<f(-1)}={x|x<-1}.因为“x∈P”是“x∈Q”的充分不必要条件,所以P⫋Q,所以2-t<-1,解得t>3.即实数t的取值X围是t>3.B组1.在△ABC中,“△ABC为钝角三角形”是“<0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当△ABC为钝角三角形时,A,B,C中的任何一个都有可能是钝角,不一定有<0;但当<0时,A为钝角,△ABC一定是钝角三角形.故选B.答案:B2.已知a>1,f(x)=,则使f(x)<1成立的一个充分不必要条件是()A.-1<x<0B.-2<x<1C.-2<x<0D.0<x<1解析:由a>1,<1可得x2+2x<0,即-2<x<0,因此使f(x)<1成立,即-2<x<0成立的一个充分不必要条件是-1<x<0.答案:A3.已知p是r的充分不必要条件,s是r的必要条件,q是r的充分条件,q是s的必要条件.现有下列命题:①s是q的充要条件;②p是q的充分不必要条件;③r是q的必要不充分条件;④ p是 s的必要不充分条件;⑤r是s的充分不必要条件.则正确命题的序号是.解析:由已知可得,p⇒r,r p,r⇒s,q⇒r,s⇒q.因此必有q⇒r⇒s,又s⇒q,故s是q的充要条件.又p⇒r⇒s⇒q,但q p,故p是q的充分不必要条件.又r⇒s⇒q,q⇒r,故r是q的充要条件.又p⇒r⇒s,但s p,故p是s的充分不必要条件,从而 p是 s的必要不充分条件.又r⇒s,s⇒q⇒r,故r是s的充要条件.故正确命题的序号是①②④.答案:①②④4.是否存在实数p,使4x+p<0是x2-x-2>0的充分条件?如果存在,求出p的取值X围;否则,说明理由.解:由x2-x-2>0,解得x>2或x<-1,令A={x|x>2或x<-1}.由4x+p<0,解得x<-,令B=.当B⊆A时,即-≤-1,即p≥4,此时x<-≤-1⇒x2-2x-2>0,故当p≥4时,4x+p<0是x2-x-2>0的充分条件.5.求证:关于x的方程x2+mx+1=0有两个负实根的充要条件是m≥2.证明:(1)充分性:因为m≥2,所以Δ=m2-4≥0,方程x2+mx+1=0有实根.设x2+mx+1=0的两个实根分别为x1,x2,由根与系数的关系,知x1x2=1>0,所以x1,x2同号.又因为x1+x2=-m≤-2,所以x1,x2均为负根.(2)必要性:因为x2+mx+1=0的两个实根x1,x2均为负,且x1x2=1,所以m-2=-(x1+x2)-2=--2=-=-≥0.所以m≥2.综合(1)(2)可知命题得证.6.已知p:2x2-3x-2≥0,q:x2-2(a-1)x+a(a-2)≥0,若p是q的充分不必要条件,某某数a的取值X围.解:令M={x|2x2-3x-2≥0}={x|(2x+1)(x-2)≥0}=,N={x|x2-2(a-1)x+a(a-2)≥0}={x|(x-a)[x-(a-2)]≥0}={x|x≤a-2或x≥a}.由已知p⇒q且q p,得M⫋N,即解得≤a<2或<a≤2,即≤a≤2.故实数a的取值X围是≤a≤2.。
20081223高二数学选修2-1、2-2复习自测1-10答案
二、填空题1、39- ;2、 1350 ;3、 -6 ;三、解答题13=②1030=③略 2、a=-3;b=-1 3、⊿=72k 2-48 ①⊿›0时,3636k k 或-②⊿=0时,36±=k ③⊿‹0时,3636 k - 高二数学选修2-1及2-2期末自测2一、选择题二、填空题1、()1,1,2-=n;2、510 ;3、i i -2 ;4、454-或 ;5、181222=-y x ;三、解答题1、33cos =ϑ 2、(点差法)01=+-y x 3、5643--='x x y 高二数学选修2-1及2-2期末自测3一、选择题二、填空题1、 平行四边形不一定是菱形 ;2、 4 ;3、36;4、4;25==y x ;5、 20 ;6、1322=-y x ;7、 1 ; 三、解答题1、()()DB EF DB FE 得0,2,2;0,1,1=--=;2、1422=+x y ;3、34--y x二、填空题1、1± ;2、 三 ;3、 若不都是锐角,则B A C ∠∠≠∠,900;4、144922=-y x ;5、 -212 ;6、 (4,2) ; 三、解答题1、93sin cos ==ϕϑ 2、332332-k k 或 3、443+-y x 高二数学选修2-1及2-2期末自测5一、选择题二、填空题1、55 ;2、 2 ;3、377;4、310 ;5、54 ;三、解答题1、①略 ②31=d ③32-=AE ;2、13422=+y x ;3、01=--y x 高二数学选修2-1及2-2期末自测6一、选择题二、填空题1、13622=+y x ;2、 600 ;3、i z 2121-= ; 三、解答题1、①31sin cos ==ϕϑ ②3210=d ;2、022=--y x l :;3、94182+-='x x y二、填空题1、i z +=1 ;2、x y 32±= ;3、 2:3:(-4) ;4、034=--y x ;5、 20 ; 三、解答题13=②略; 2、x y 782-=; 3、063=++y x高二数学选修2-1及2-2期末自测8一、选择题二、填空题1、 1或2 ;2、 -1 ;3、 -1 ;三、解答题1、161022=+x y ; 2、①略 ②900; 3、()x x f b a 3131-===;; 高二数学选修2-1及2-2期末自测9一、选择题二、填空题1、23-=x ;2、 1 ;3、⎥⎦⎤⎢⎣⎡-∈530,530k ;4、⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-32323132,32,31,-,-或 ; 5、 3 ;6、 5 ;7、 此题不做 ; 三、解答题1、()2,2--∈k ;2、①1473cos =ϑ②63=d二、填空题1、x y 82-= ;2、45- ;3、042=+-y x ; 三、解答题1、①101=⇒=-m m ;②101≠⇒≠-m m ;③10101-=⇒⎩⎨⎧≠-=+m m m ;2、增加条件:DF=2。
高中数学人教A版选修2-1高二理科数学尖子班期末试卷.docx
高中数学学习材料马鸣风萧萧*整理制作西安新东方学校高二理科数学尖子班期末试卷命题人:何超世 审核:徐加启考试范围:必修五、选修2-1 时间:60分钟第I 卷一、选择题(本题共10小题,每题5分,共计50分,请将正确答案填写在答题卡上)1.设x R ∈,则1x =是3x x =的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.在△ABC 中,若2=a ,23b =,060B = ,则角A 的大小为( ) A .30B .60C .30或150D .60或 1203.若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b +≥ D .22111a b+≤4. 已知0a >,,x y 满足约束条件1,3,(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩若2z x y =+的最小值为1,则a =( )A .14B .12C .1D .25.已知数列{}n a 中,11a =,12(1)n n na n a +=+,则数列{}n a 的通项公式为( )A .2n n B .12n n - C .21n n - D .12nn + 6.已知数列{}n a 是递增数列,且对*N n ∈,都有n n a n λ+=2,则实数λ的取值范围是( ) A .),27(+∞- B .[)+∞,0C .[)+∞-,2D .),3(+∞-7.已知数列{}n a 中,12a =,11ln(1)n n a a n+=++ *()n N ∈,则n a =( )A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++ 8.如图8-218,直三棱柱111ABC A B C -中,若∠BAC =90°,AB =AC =1AA ,则异面直线1BA 与1AC 所成的角等于( )A .30°B .45°C .60°D .90°9.过点(2,-2)且与双曲线1222=-y x 有相同渐近 线的双曲线的方程是( )A .12422=-y x B .12422=-x yC .14222=-y x D .14222=-x y 10.过抛物线2y ax =(a>0)的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF与FQ 的长分别为p 、q ,则11p q+等于( )A .2aB .12aC .4aD .4a二、填空题(本题共4小题,每题5分,共计20分,请将正确答案填写在答题卡上)11.将全体正整数排成一个三角形数阵,如下所示,则第n 行(3n ≥)从左到右的第3个数为__________ 12 34 5 67 8 9 1012.在 ABC ∆中,若12,7,cos 4,a b c B =+==-,则______.b = 13.过抛物线22(0)y px p =>的焦点F 作倾斜角为45°的直线交抛物线于A ,B 两点,若线段AB 的长为8,则p =_____.14.椭圆22221(0)x y a b a b +=>>的两个焦点1F ,2F ,若P 为其上一点,且12||2||PF PF =,则此椭圆离心率的取值范围为____________第Ⅱ卷三、解答题(本题共2小题,每题15分,共计30分,请将正确答案及必要的演算过程填写在答题卡上)15.如图,在直三棱柱111ABC A B C -中, AB=1,13AC AA ==,∠ABC=600.(Ⅰ)证明:1AB A C ⊥;(Ⅱ)求二面角A —1A C —B 的余弦值。
高中数学 模块综合测评(含解析)新人教A版高二选修2-1数学试题
模块综合测评(满分:150分 时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a ∈R ,则“a <2”是“a 2<2a ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件B [∵a 2<2a ⇔a (a -2)<0⇔0<a <2. ∴“a <2”是“a 2<2a ”的必要不充分条件.] 2.已知命题p :∀x >0,总有(x +1)e x >1,则p 为( )A .∃x 0≤0,使得(x 0+1)e x 0≤1B .∃x 0>0,使得(x 0+1)e x 0≤1C .∀x >0,总有(x +1)e x 0≤1D .∀x ≤0,总有(x +1)e x 0≤1 B [命题p 为全称命题,所以p 为∃x 0>0,使得(x 0+1)e x 0≤1.故选B .]3.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的离心率为( )A .54B .52C .32D .54B [由题意,1-b 2a 2=⎝⎛⎭⎫322=34,∴b 2a 2=14,而双曲线的离心率e 2=1+b 2a 2=1+14=54,∴e =52.]4.已知空间向量a =(t,1,t ),b =(t -2,t,1),则|a -b |的最小值为( ) A . 2 B . 3 C .2D .4C [|a -b |=2(t -1)2+4≥2,故选C .] 5.椭圆x 225+y 29=1与椭圆x 2a 2+y 29=1有()A .相同短轴B .相同长轴C .相同离心率D .以上都不对D [对于x 2a 2+y 29=1,有a 2>9或a 2<9,因此这两个椭圆可能长轴相同,也可能短轴相同,离心率是不确定的,因此A ,B ,C 均不正确,故选D .]6.长方体ABCD -A 1B 1C 1D 1中,AB =2,AD =AA 1=1,则二面角C 1-AB -C 为( ) A .π3B .2π3C .3π4D .π4D [以A 为原点,直线AB ,AD ,AA 1分别为x 轴、y 轴、z 轴建立空间直角坐标系,则平面ABC 的一个法向量为AA 1→=(0,0,1),平面ABC 1的一个法向量为A 1D →=(0,1,-1),∴cos 〈AA 1→,A 1D →〉=-12=-22,∴〈AA 1→,A 1D →〉=3π4,又二面角C 1-AB -C 为锐角,即π-34π=π4,故选D .]7.命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( ) A .a ≥4 B .a ≤4 C .a ≥5D .a ≤5C [∵∀x ∈[1,2],1≤x 2≤4,∴要使x 2-a ≤0为真,则a ≥x 2,即a ≥4,本题求的是充分不必要条件,结合选项,只有C 符合,故选C .]8.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线的方程为( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8xB [由已知可得,抛物线的焦点坐标为⎝⎛⎭⎫a 4,0.又直线l 的斜率为2,故直线l 的方程为y =2⎝⎛⎭⎫x -a 4,则|OA |=|a |2,故S △OAF =12·|a |4·|a |2=4,解得a =±8,故抛物线的方程为y 2=±8x .] 9.已知A (1,2,3),B (2,1,2),C (1,1,2),O 为坐标原点,点D 在直线OC 上运动,则当DA →·DB →取最小值时,点D 的坐标为( )A .⎝⎛⎭⎫43,43,43B .⎝⎛⎭⎫83,43,83 C .⎝⎛⎭⎫43,43,83D .⎝⎛⎭⎫83,83,43C [点D 在直线OC 上运动,因而可设OD →=(a ,a,2a ),则DA →=(1-a,2-a,3-2a ),DB →=(2-a,1-a,2-2a ),DA →·DB →=(1-a )(2-a )+(2-a )(1-a )+(3-2a )(2-2a )=6a 2-16a +10,所以a =43时DA →·DB →取最小值,此时OD →=⎝⎛⎭⎫43,43,83.] 10.过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 的斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰好为右焦点F ,若椭圆的离心率为23,则k 的值为( )A .-13B .13C .±13D .±12C [由题意知点B 的横坐标是c ,故点B 的坐标为⎝⎛⎭⎫c ,±b 2a ,则斜率k =±b 2ac +a =±b 2ac +a 2=±a 2-c 2ac +a 2=±1-e 2e +1=±(1-e )=±13,故选C .]11.若F 1,F 2为双曲线C :x 24-y 2=1的左、右焦点,点P 在双曲线C 上,∠F 1PF 2=60°,则点P 到x 轴的距离为( )A .55B .155C .2155D .1520B [设|PF 1|=r 1,|PF 2|=r 2,点P 到x 轴的距离为|y P |,则S △F 1PF 2=12r 1r 2sin 60°=34r 1r 2,又4c 2=r 21+r 22-2r 1r 2cos 60°=(r 1-r 2)2+2r 1r 2-r 1r 2=4a 2+r 1r 2,得r 1r 2=4c 2-4a 2=4b 2=4,所以S △F 1PF 2=12r 1r 2sin 60°=3=12·2c ·|y P |=5|y P |,得|y P |=155,故选B .]12.抛物线y 2=2px (p >0)的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足∠AFB =2π3.设线段AB 的中点M 在l 上的投影为N ,则|MN ||AB |的最大值是( ) A . 3 B .32 C .33D .34C [如图.设|AF |=r 1,|BF |=r 2,则|MN |=r 1+r 22.在△AFB 中,因为|AF |=r 1,|BF |=r 2且∠AFB =2π3,所以由余弦定理,得|AB |=r 21+r 22-2r 1r 2cos 2π3=r 21+r 22+r 1r 2,所以|MN ||AB |=r 1+r 22r 21+r 22+r 1r 2=12×(r 1+r 2)2r 21+r 22+r 1r 2=12×1+r 1r 2r 21+r 22+r 1r 2≤12×1+r 1r 23r 1r 2=33,当且仅当r 1=r 2时取等号.故选C .] 二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.已知点P 是平行四边形ABCD 所在平面外的一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于下列结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.(填序号)①②③[∵AB →·AP →=-2-2+4=0,∴AB →⊥AP →,即AP ⊥AB ,①正确;∵AP →·AD →=-4+4=0,∴AP →⊥AD →,即AP ⊥AD ,②正确;由①②可得AP →是平面ABCD 的法向量,③正确;由③可得AP →⊥BD →,④错误.]14.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为________.x 25-y 220=1[由已知得ba =2,所以b =2a .在y =2x +10中令y =0得x =-5,故c =5,从而a 2+b 2=5a 2=c 2=25,所以a 2=5,b 2=20,所以双曲线的方程为x 25-y 220=1.] 15.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =23,且椭圆C 上的点到点Q (0,2)的距离的最大值为3,则椭圆C 的方程为________.x 23+y 2=1[由e =c a=23,得c 2=23a 2,所以b 2=a 2-c 2=13a 2, 设P (x ,y )是椭圆C 上任意一点,则x 2a 2+y 2b 2=1,所以x 2=a 2⎝⎛⎭⎫1-y 2b 2=a 2-3y 2.|PQ |=x 2+(y -2)2=a 2-3y 2+(y -2)2=-2(y +1)2+a 2+6,当y =-1时,|PQ |有最大值a 2+6.由a 2+6=3,可得a 2=3,所以b 2=1,故椭圆C 的方程为x 23+y 2=1.]16.四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 是正方形,且PD =AB =1,G 为△ABC 的重心,则PG 与底面ABCD 所成的角θ的正弦值为________.31717[如图,分别以DA ,DC ,DP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,由已知P (0,0,1),A (1,0,0),B (1,1,0),C (0,1,0),则重心G ⎝⎛⎭⎫23,23,0,因此DP →=(0,0,1),GP →=⎝⎛⎭⎫-23,-23,1,所以sin θ=|cos 〈DP →,GP →〉|=|DP →·GP →||DP →|·|GP →|=31717.]三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)设集合A ={x |x 2-3x +2=0},B ={x |ax =1}.“x ∈B ”是“x ∈A ”的充分不必要条件,试求满足条件的实数a 组成的集合.[解]∵A ={x |x 2-3x +2=0}={1,2},由于“x ∈B ”是“x ∈A ”的充分不必要条件,∴B A .当B =∅时,得a =0;当B ≠∅时,由题意得B ={1}或B ={2}.则当B ={1}时,得a =1;当B ={2}时,得a =12.综上所述,实数a 组成的集合是⎩⎨⎧⎭⎬⎫0,1,12.18.(本小题满分12分)已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10).(1)求双曲线的方程;(2)若点M (3,m )在双曲线上,求证:MF 1→·MF 2→=0.[解](1)由双曲线的离心率为2,可知双曲线为等轴双曲线,设双曲线的方程为x 2-y 2=λ,又双曲线过点(4,-10),代入解得λ=6,故双曲线的方程为x 2-y 2=6.(2)证明:由双曲线的方程为x 2-y 2=6,可得a =b =6,c =23,所以F 1(-23,0),F 2(23,0).由点M (3,m ),得MF 1→=(-23-3,-m ),MF 2→=(23-3,-m ),又点M (3,m )在双曲线上,所以9-m 2=6,解得m 2=3,所以MF 1→·MF 2→=m 2-3=0.19.(本小题满分12分)如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).(1)求证:CD ⊥平面ADD 1A 1;(2)若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值.[解] (1)证明:取CD 的中点E ,连接BE ,如图①.①∵AB ∥DE ,AB =DE =3k , ∴四边形ABED 为平行四边形, ∴BE ∥AD 且BE =AD =4k . 在△BCE 中,∵BE =4k ,CE =3k ,BC =5k ,∴BE 2+CE 2=BC 2,∴∠BEC =90°,即BE ⊥CD . 又∵BE ∥AD ,∴CD ⊥AD .∵AA 1⊥平面ABCD ,CD ⊂平面ABCD ,∴AA 1⊥CD . 又AA 1∩AD =A ,∴CD ⊥平面ADD 1A 1.(2)以D 为原点,DA →,DC →,DD 1→的方向为x ,y ,z 轴的正方向建立如图②所示的空间直角坐标系,则A (4k,0,0),C (0,6k,0),B 1(4k,3k,1),A 1(4k,0,1),②∴AC →=(-4k,6k,0),AB 1→=(0,3k,1),AA 1→=(0,0,1).设平面AB 1C 的法向量n =(x ,y ,z ),则由⎩⎪⎨⎪⎧AC →·n =0,AB 1→·n =0,得⎩⎪⎨⎪⎧-4kx +6ky =0,3ky +z =0.取y =2,得n =(3,2,-6k ). 设AA 1与平面AB 1C 所成的角为θ,则sin θ=|cos 〈AA 1→,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪AA 1→·n |AA 1→||n |=6k 36k 2+13=67,解得k =1,故所求k 的值为1. 20.(本小题满分12分)如图,过抛物线y 2=2px (p >0)的焦点F 作一条倾斜角为π4的直线与抛物线相交于A ,B 两点.(1)用p 表示|AB |;(2)若OA →·OB →=-3,求这个抛物线的方程.[解](1)抛物线的焦点为F ⎝⎛⎭⎫p 2,0,过点F 且倾斜角为π4的直线方程为y =x -p2. 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y 2=2px ,y =x -p 2,得x 2-3px +p 24=0, ∴x 1+x 2=3p ,x 1x 2=p 24,∴|AB |=x 1+x 2+p =4p .(2)由(1)知,x 1x 2=p 24,x 1+x 2=3p ,∴y 1y 2=⎝⎛⎭⎫x 1-p 2⎝⎛⎭⎫x 2-p 2=x 1x 2-p 2(x 1+x 2)+p 24=p 24-3p 22+p 24=-p 2,∴OA →·OB →=x 1x 2+y 1y 2=p 24-p 2=-3p 24=-3,解得p 2=4,∴p =2. ∴这个抛物线的方程为y 2=4x .21.(本小题满分12分)如图所示,四棱锥P -ABCD 的底面是边长为1的正方形,P A ⊥CD ,P A =1,PD =2,E 为PD 上一点,PE =2ED .(1)求证:P A ⊥平面ABCD ;(2)在侧棱PC 上是否存在一点F ,使得BF ∥平面AEC ?若存在,指出F 点的位置,并证明;若不存在,说明理由.[解](1)证明:∵P A =AD =1,PD =2,∴P A 2+AD 2=PD 2, 即P A ⊥AD .又P A ⊥CD ,AD ∩CD =D , ∴P A ⊥平面ABCD .(2)以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系. 则A (0,0,0),B (1,0,0),C (1,1,0),P (0,0,1),E ⎝⎛⎭⎫0,23,13,AC →=(1,1,0),AE →=⎝⎛⎭⎫0,23,13.设平面AEC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AE →=0,即⎩⎪⎨⎪⎧x +y =0,2y +z =0,令y =1,则n =(-1,1,-2).假设侧棱PC 上存在一点F ,且CF →=λCP →(0≤λ≤1), 使得BF ∥平面AEC ,则BF →·n =0.又∵BF →=BC →+CF →=(0,1,0)+(-λ,-λ,λ)=(-λ,1-λ,λ), ∴BF →·n =λ+1-λ-2λ=0,∴λ=12,∴存在点F ,使得BF ∥平面AEC ,且F 为PC 的中点.22.(本小题满分12分)如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝⎛⎭⎫43,13,且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值.[解](1)∵BF 2=2,而BF 22=OB 2+OF 22=b 2+c 2=2=a 2,∵点C 在椭圆上,C ⎝⎛⎭⎫43,13, ∴169a 2+19b2=1, ∴b 2=1,∴椭圆的方程为x 22+y 2=1. (2)直线BF 2的方程为x c +y b =1,与椭圆方程x 2a 2+y 2b2=1联立方程组,解得A 点坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,-b 3a 2+c 2,则C 点的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b 3a 2+c 2,又F 1为(-c,0),kF 1C =b 3a 2+c 22a 2c a 2+c 2+c=b 33a 2c +c 3, 又k AB =-b c ,由F 1C ⊥AB ,得b 33a 2c +c 3·⎝⎛⎭⎫-b c =-1, 即b 4=3a 2c 2+c 4,所以(a 2-c 2)2=3a 2c 2+c 4,化简得e =c a =55.。
高二数学选修2-1测试题
高二数学选修2-1测试题1.“x1”是“x23x2”的(必要不充分条件)。
2.若p q是假命题,则(p是真命题,q是假命题)。
3.F1,F2是距离为6的两定点,动点M满足∣MF1∣+∣MF2∣=6,则M点的轨迹是(椭圆)。
4.双曲线x2y21=0的渐近线方程为(y=±x/√3)。
5.中心在原点的双曲线,一个焦点为F(0,3),一个焦点到最近顶点的距离是31,则双曲线的方程是(y2/4-x2/3=1)。
6.已知正方形ABCD的顶点A,B为椭圆的焦点,顶点C,D 在椭圆上,则此椭圆的离心率为(2-√2)。
7.椭圆4a2x2+a2y2=4a2与双曲线x2/a2-y2/b2=1有相同的焦点,则a的值为(2)。
8.与双曲线y2/9-x2/16=1有共同的渐近线,且过点(2,2)的双曲线标准方程为(9y2-16x2=144)。
9.已知A(-1,-2,6),B(1,2,-6)O为坐标原点,则向量OA,与OB的夹角是(cosθ=0)。
10.与向量a(1,3,2)平行的一个向量的坐标是(2,-6,4)。
11.已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为(x+1)²+(y-1)²=2)。
12.若直线x+y=m与圆x²+y²=m²相切,则m的值为(1)。
解析】解题分析:设圆心为O,则由题意可知O在直线y=x上,又因为圆心到直线x+y=2的距离为2,所以O到直线y=x的距离为2.由于直线y=x与直线x+y=2的距离为$\frac{\sqrt{2}}{2}$,所以O到直线y=x的距离也为$\frac{\sqrt{2}}{2}$。
因此,O的坐标为$(\frac{3}{2},\frac{3}{2})$,半径为$\sqrt{2}$,圆的方程为$(x-\frac{3}{2})^2+(y-\frac{3}{2})^2=2$。
故选C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学学习材料金戈铁骑整理制作2014-2015年度衡阳县四中高二数学(理)期末复习测试题(一)一、选择题:本题共10小题,每小题5分,共50分. 1.下列命题中的假命题...是( C ) A.,lg 0x R x ∃∈= B.,tan 1x R x ∃∈= C. 3,0x R x ∀∈> D.,20x x R ∀∈>2. ”“1>x 是”“1||>x 的( A ) A .充分不必要条件 B.必要不充分条件C .充分必要条件D .既不充分又不必要条件3. 已知a ,b ,c ∈R ,命题“若a b c ++=3,则222a b c ++≥3”,的否命题是( A )A 若a +b +c ≠3,则222a b c ++<3B 若a +b +c =3,则222a b c ++<3C 若a +b +c ≠3,则222a b c ++≥3D 若222a b c ++≥3,则a +b +c =34. 双曲线2214x y -=的渐近线的方程为( A ) A .2xy =±B .y x =±C .2y x =±D .4y x =± 5. 设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为( C )A .4B .3C .2D .16.如图,已知平行六面体1111OABC O A B C -,点G 是上底面1111O A B C 的中心,且a OA =, b OC =,c OO =1,则用a ,b ,c 表示向量OG 为( ) GB AC B 1O 1C 1A 1OA .)2(21c b a ++ B .)2(21c b a ++ C .)2(21c b a ++ D .)(21c b a ++7. 设圆C 与圆1)3(22=-+y x 外切,与直线0=y 相切,则C 的圆心轨迹为( B )A 双曲线B 抛物线C 椭圆D 圆 8. 以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( D )A.x 216+y 212=1 B.x 212+y 216=1C.x 216+y 24=1D.x 24+y 216=1 9.已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是( A )A.2B.3C.115 D.371610. ABC ∆的顶点(5,0),(5,0)A B -,ABC ∆的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是( C )A.221916x y -= B. 221169x y -= C.)3(116922>=-x y x D.221(4)169x y x -=> 二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡...中对应题号后的横线上.11.已知向量)0,3,2(-=a ,)3,0,(k b =,若b a ,成1200的角,则k= .39-12.已知)3,1,2(-=a ,)2,4(,y b -=,且)(b a a +⊥,则y 的值为 . 13.若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题,则x 的取值范围是 。
[1,2) 14. 过点M (2,4)作与抛物线y 2=8x 只有一个公共点的直线有 条。
2;15. 已知以下四个命题:①如果12,x x 是一元二次方程20ax bx c ++=的两个实根,且12x x <,那么不等式20ax bx c ++< 的解集为{}12x x x x <<;②若102x x -≤-,则(1)(2)0x x --≤; ③“若2m >,则220x x m -+>的解集是实数集R ”的逆否命题;④若命题“P Q ∨”与“P Q ∧”中一真一假,则可能是P 真Q 假其中为真命题的是 (填上你认为正确的序号).③④三.解答题:本大题共6小题,共75分。
解答应写出文字说明、证明过程或演算步骤。
16.(本小题满分12分)求双曲线221169y x -=的实轴和虚轴的长、顶点和焦点的坐标、离心率. 16解:由题意,得双曲线的焦点在y 轴上,4,3a b ==,………2分则225c a b =+= ……………4分 所以双曲线的实轴、虚轴的长分别为8,6, ………………6分 顶点坐标为()0,4,(0,4)-, ………………8分 焦点坐标为()()0,5,0,5-, ………………10分 离心率为54c e a == ………………12分17.(本小题满分12分)命题p :x 2-4mx +1=0有实数解,命题q :∃x 0∈R ,使得mx 20-2x 0-1>0成立.(1)若命题p 为真命题,求实数m 的取值范围;(2)若命题¬p ∨¬q 为真命题,且命题p ∨q 为真命题,求实数m 的取值范围.17. 解:(1)∵x 2-4mx +1=0有实根,∴Δ=16m 2-4≥0,∴m ≤-12或m ≥12.∴m 的取值范围是(-∞,-12]∪[12,+∞).(2)设f (x )=mx 2-2x -1.当m =0时,f (x )=-2x -1,q 为真命题;当m >0时,q为真命题;当m <0时,需有Δ=4+4m >0,∴m >-1,故若q 为真命题,有:m >-1.∵¬p ∨¬q 为真,p ∨q 为真,∴p 、q 为一真一假.p 、q 范围在数轴上表示为∴满足条件的m 的取值范围是(-∞,-1]∪⎝ ⎛⎭⎪⎫-12,12. 18.(本小题满分12分)在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是矩形,已知24PA AD AB ===,Q 是线段PD 上一点, PC AQ ⊥.( 1 )求证AQ PCD ⊥面;(2)求PC 与平面ABQ 所成角的正弦值大小..PAQBCD第18题图(1)略 (2)解:如图,以A 为坐标原点,建立空间直角坐标系,则 ()0,0,0A ,()2,0,0B ,()2,4,0C ,()0,4,0D ,()0,0,4P .设()()0,,404Q a a a -≤≤,则()2,4,4PC =-,()0,,4AQ a a =- 02PC AQ PC AQ a ⊥⇒⋅=⇒= 设平面ABQ 的一个法向量为(),,n x y z =()0022010,1,12001x AQ n y z y n x AB n z =⎧⎧⋅=+=⎧⎪⎪∴⇒⇒=-⇒=-⎨⎨⎨=⋅=⎩⎪⎪⎩=⎩设PC 与平面ABQ 所成角为θ,则22sin 3PC n PC nθ⋅==⋅ PC ∴与平面ABQ 所成角的正弦值为22319.(本小题满分13分)在四棱锥P OABC -中,PO ⊥底面OABC ,60OCB ∠=︒,90AOC ABC ∠=∠=︒, 且2OP OC BC ===. (1)若D 是PC 的中点,求证://BD 平面AOP ; (2)求二面角P AB O --的余弦值. 19 解:(1)如图,建立空间直角坐标系O xyz -.连接OB ,易知OBC ∆为等边三角形,(0,0,2),(0,2,0),(3,1,0)P C B ,则(0,1,1),D(3,0,1)BD =-.又易知平面AOP 的法向量为 (0,2,0)OC =,由3002100BD OC ⋅=-⨯+⨯+⨯=,得 BD OC ⊥,所以//BD 平面AOP ………………………6分 (2)在OAB ∆中,2,30OB AOB ABO =∠=∠=︒,则120OAB ∠=︒,由正弦定理,得233OA =,即23(,0,0)3A ,所以3(,1,0)3AB =,(3,1,2)PB =-. 设平面PAB 的法向量为(,,)m x y z =,由303320m AB m AB x y m PB m PB x y z ⎧⎧⊥⋅=+=⎪⎪⇒⎨⎨⊥⎪⎪⎩⋅=+-=⎩, 令3x =,则1,1y z =-=,即(3,1,1)m =-…………………10分PAQB C D第18题图 DO CABPyxz DOCA BP又平面OABC 的法向量为(0,0,2)n OP ==,所以,||25cos ,5||||52m n m n m n ⋅<>===⨯. 即二面角P AB O --的余弦值为55………………………13分 20.(本小题满分13分)已知平面内一动点P 到点)0,1(F 的距离与点P 到y 轴的距离的差等于1.(I )求动点P 的轨迹C 的方程;(II )过点F 作两条斜率存在且互相垂直的直线12,l l ,设1l 与轨迹C 相交于点,A B ,2l 与轨迹C 相交于点,D E ,求EB AD ⋅的最小值.20.解:(I )设动点P 的坐标为(,)x y ,由题意为22(1)|| 1.x y x -+-=化简得222||,y x x =+当20,4;0x y x x ≥=<时当时,y=0.、所以动点P 的轨迹C 的方程为2,4(0)0)y x x x =≥<和y=0(.(II )由题意知,直线1l 的斜率存在且不为0,设为k ,则1l 的方程为(1)y k x =-.由2(1)4y k x y x=-⎧⎨=⎩,得2222(24)0.k x k x k -++= 设1122(,),(,),A x y B x y 则12,x x 是上述方程的两个实根,于是:1212242,1x x x x k +=+=. 因为12l l ⊥,所以2l 的斜率为1k-.设3344(,),(,),D x y B x y 则同理可得2343424,1x x k x x +=+=故12342222()()||||||||(1)(1)(1)(1)41(2)11(24)1184()AD EB AF FD EF FB AF EF AF FB FD EF FD FB AF FB FD EF x x x x k k k k ∙=++=+++=+=+++++=+++++++=++≥22184216k k +⨯=当且仅当221k k=即1k =±时,AD EB ∙取最小值16.21.(本小题满分13分)已知椭圆2222:1(0)x y C a b a b +=>>经过点3(1,)2M ,且离心率为12(1)求椭圆C 的方程;(2)设直线1:()2l y kx m k =+≤与椭圆C 相较于,A B 两点, 以线段,OA OB 为邻边作平行四边形OPAB ,顶点P 恰好在椭 圆C 上,O 为坐标原点,求OP 的取值范围。