盐城市盐都区2014-2015学年九年级数学(上)期末试题及答案
江苏省盐城市九年级(上)期末数学试卷(含答案)
江苏省盐城市九年级(上)期末数学试卷(含答案)一、选择题1.关于x 的一元一次方程122a x m -+=的解为1x =,则a m -的值为( )A .5B .4C .3D .22.在Rt △ABC 中,∠C=90°,BC=4,AC=3,CD ⊥AB 于D ,设∠ACD=α,则cosα的值为( ) A .45B .34C .43D .353.如图1,S 是矩形ABCD 的AD 边上一点,点E 以每秒k cm 的速度沿折线BS -SD -DC 匀速运动,同时点F 从点C 出发点,以每秒1cm 的速度沿边CB 匀速运动.已知点F 运动到点B 时,点E 也恰好运动到点C ,此时动点E ,F 同时停止运动.设点E ,F 出发t 秒时,△EBF 的面积为2ycm .已知y 与t 的函数图像如图2所示.其中曲线OM ,NP 为两段抛物线,MN 为线段.则下列说法:①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒; ②矩形ABCD 的两邻边长为BC =6cm ,CD =4cm ; ③sin ∠ABS =3; ④点E 的运动速度为每秒2cm .其中正确的是( )A .①②③B .①③④C .①②④D .②③④4.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( ) A .方差B .平均数C .众数D .中位数5.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上面的数字大于4的概率是( ) A .12B .13C .23D .166.为了考察某种小麦的长势,从中抽取了5株麦苗,测得苗高(单位:cm)为:10、16、8、17、19,则这组数据的极差是( ) A .8B .9C .10D .117.如图,已知等边△ABC 的边长为4,以AB 为直径的圆交BC 于点F ,CF 为半径作圆,D 是⊙C 上一动点,E 是BD 的中点,当AE 最大时,BD 的长为( )A .23B .25C .4D .68.已知反比例函数ky x=的图象经过点(m ,3m ),则此反比例函数的图象在( ) A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限9.如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .54C .53D .7510.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是A .B .C .D .11.将二次函数y =x 2的图象沿y 轴向上平移2个单位长度,再沿x 轴向左平移3个单位长度,所得图象对应的函数表达式为( ) A .y =(x +3)2+2B .y =(x ﹣3)2+2C .y =(x +2)2+3D .y =(x ﹣2)2+312.如图,△AOB 为等腰三角形,顶点A 的坐标(25),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A′O′B ,点A 的对应点A′在x 轴上,则点O′的坐标为( )A .(203,103) B .(163,453) C .(203,453) D .(163,43) 13.方程x 2=4的解是( )A .x=2B .x=﹣2C .x 1=1,x 2=4D .x 1=2,x 2=﹣214.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( ) A .开口向上 B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的15.袋中装有5个白球,3个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是( ) A .35B .38C .58D .34二、填空题16.将二次函数y=x 2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____. 17.若53x y x +=,则yx=______. 18.如图,若抛物线2y ax h =+与直线y kx b =+交于()3,A m ,()2,B n -两点,则不等式2ax b kx h -<-的解集是______.19.如图,边长为2的正方形ABCD ,以AB 为直径作⊙O ,CF 与⊙O 相切于点E ,与AD 交于点F ,则△CDF 的面积为________________20.若x 1,x 2是一元二次方程2x 2+x -3=0的两个实数根,则x 1+x 2=____. 21.一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为23,则袋中应再添加红球____个(以上球除颜色外其他都相同). 22.抛物线21(5)33y x =--+的顶点坐标是_______. 23.方程290x 的解为________.24.有一块三角板ABC ,C ∠为直角,30ABC ∠=︒,将它放置在O 中,如图,点A 、B 在圆上,边BC 经过圆心O ,劣弧AB 的度数等于_______︒25.如图,在△ABC 中,AD 是BC 上的高,tan B =cos ∠DAC ,若sin C =1213,BC =12,则AD 的长_____.26.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.27.一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m 个白球和4个黑球,使得摸到白球的概率为35,则m =__. 28.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.29.如图,边长为2的正方形ABCD ,以AB 为直径作O ,CF 与O 相切于点E ,与AD 交于点F ,则CDF ∆的面积为__________.30.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 … y…61-2-3-2m…下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,; ④=3m -.其中,正确的有___________________.三、解答题31.(1)x 2+2x ﹣3=0 (2)(x ﹣1)2=3(x ﹣1)32.如图,在平行四边形ABCD 中,过点B 作BE CD ⊥,垂足为E ,连接AE ,F 为AE 上一点,且BFE C ∠=∠. (1)求证:ABF EAD .(2)若4AB =,3BE =,72AD =,求BF 的长.33.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围. 34.如图,OA l ⊥于点,A B 是OA 上一点,O 是以O 为圆心,OB 为半径的圆.C 是O 上的点,连结CB 并延长,交l 于点D ,且AC AD =.(1)求证:AC 是O 的切线(证明过程中如可用数字表示的角,建议在图中用数字标注后用数字表示);(2)若O 的半径为5,6BC =,求线段AC 的长.35.如图,二次函数y =ax 2+bx +c 的图象与x 轴相交于点A (﹣1,0)、B (5,0),与y 轴相交于点C (0,533). (1)求该函数的表达式;(2)设E 为对称轴上一点,连接AE 、CE ; ①当AE +CE 取得最小值时,点E 的坐标为 ;②点P 从点A 出发,先以1个单位长度/的速度沿线段AE 到达点E ,再以2个单位长度的速度沿对称轴到达顶点D .当点P 到达顶点D 所用时间最短时,求出点E 的坐标.四、压轴题36.如图,等边ABC 内接于O ,P 是AB 上任一点(点P 不与点A 、B 重合),连接AP 、BP ,过点C 作CMBP 交PA 的延长线于点M .(1)求APC ∠和BPC ∠的度数; (2)求证:ACM BCP △≌△;(3)若1PA =,2PB =,求四边形PBCM 的面积; (4)在(3)的条件下,求AB 的长度. 37.如图①,O 经过等边ABC 的顶点A ,C (圆心O 在ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F . (1)求证:BD BE =.(2)当:3:2AF EF =,6AC =,求AE 的长.(3)当:3:2AF EF =,AC a =时,如图②,连结OF ,OB ,求OFB △的面积(用含a 的代数式表示).38.如图, AB 是⊙O 的直径,点D 、E 在⊙O 上,连接AE 、ED 、DA ,连接BD 并延长至点C ,使得DAC AED ∠=∠.(1)求证: AC 是⊙O 的切线;(2)若点E 是BC 的中点, AE 与BC 交于点F , ①求证: CA CF =;②若⊙O 的半径为3,BF =2,求AC 的长.39.如图,AB 是⊙O 的直径,AF 是⊙O 的弦,AE 平分BAF ∠,交⊙O 于点E ,过点E 作直线ED AF ⊥,交AF 的延长线于点D ,交AB 的延长线于点C .(1)求证:CD 是⊙O 的切线; (2)若10,6AB AF ==,求AE 的长.40.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的覆盖矩形.点A ,B ,C 的所有覆盖矩形中,面积最小的矩形称为点A ,B ,C 的最优覆盖矩形.例如,下图中的矩形A 1B 1C 1D 1,A 2B 2C 2D 2,AB 3C 3D 3都是点A,B,C的覆盖矩形,其中矩形AB3C3D3是点A,B,C的最优覆盖矩形.(1)已知A(﹣2,3),B(5,0),C(t,﹣2).①当t=2时,点A,B,C的最优覆盖矩形的面积为;②若点A,B,C的最优覆盖矩形的面积为40,求直线AC的表达式;(2)已知点D(1,1).E(m,n)是函数y=4x(x>0)的图象上一点,⊙P是点O,D,E的一个面积最小的最优覆盖矩形的外接圆,求出⊙P的半径r的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】满足题意的有两点,一是此方程为一元一次方程,即未知数x的次数为1;二是方程的解为x=1,即1使等式成立,根据两点列式求解.【详解】解:根据题意得,a-1=1,2+m=2,解得,a=2,m=0,∴a-m=2.故选:D.【点睛】本题考查一元一次方程的定义及方程解的定义,对定义的理解是解答此题的关键.2.A解析:A【解析】【分析】根据勾股定理求出AB的长,在求出∠ACD的等角∠B,即可得到答案.【详解】如图,在Rt △ABC 中,∠C=90°,BC=4,AC=3, ∴2222AB AC BC 345=+=+=, ∵CD ⊥AB, ∴∠ADC=∠C=90°, ∴∠A+∠ACD=∠A+∠B, ∴∠B=∠ACD=α, ∴4cos 5BC cos B AB α===. 故选:A.【点睛】此题考查解直角三角形,求一个角的三角函数值有时可以求等角的对应函数值.3.C解析:C 【解析】 【分析】①根据函数图像的拐点是运动规律的变化点由图象即可判断.②设AB CD acm ==,BC AD bcm ==,由函数图像利用△EBF 面积列出方程组即可解决问题.③由 2.5BS k =,1.5SD k =,得53BS SD =,设3SD x =,5BS x =,在RT ABS ∆中,由222AB AS BS +=列出方程求出x ,即可判断.④求出BS 即可解决问题. 【详解】解:函数图像的拐点时点运动的变化点根据由图象可知点E 运动到点S 时用了2.5秒,运动到点D 时共用了4秒.故①正确. 设AB CD acm ==,BC AD bcm ==,由题意,1··( 2.5)721·(4)42a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩解得46a b =⎧⎨=⎩, 所以4AB CD cm ==,6BC AD cm ==,故②正确, 2.5BS k =, 1.5SD k =,∴53BS SD =,设3SD x =,5BS x =, 在Rt ABS ∆中,222AB AS BS +=,2224(63)(5)x x ∴+-=,解得1x =或134-(舍), 5BS ∴=,3SD =,3AS =,3sin 5AS ABS BS ∴∠==故③错误, 5BS =,5 2.5k ∴=, 2/k cm s ∴=,故④正确,故选:C .【点睛】本题考查二次函数综合题、锐角三角函数、勾股定理、三角形面积、函数图象问题等知识,读懂图象信息是解决问题的关键,学会设未知数列方程组解决问题,把问题转化为方程去思考,是数形结合的好题目,属于中考选择题中的压轴题.4.A解析:A【解析】【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【详解】平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差故选A考点:方差5.B解析:B【解析】【分析】直接得出朝上面的数字大于4的个数,再利用概率公式求出答案.【详解】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次, ∴共有6种情况,其中朝上面的数字大于4的情况有2种,∴朝上一面的数字是朝上面的数字大于4的概率为:2163=, 故选:B .本题考查简单的概率求法,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键.6.D解析:D【解析】【分析】计算最大数19与最小数8的差即可.【详解】19-8=11,故选:D.【点睛】此题考查极差,即一组数据中最大值与最小值的差.7.B解析:B【解析】【分析】点E在以F为圆心的圆上运到,要使AE最大,则AE过F,根据等腰三角形的性质和圆周角定理证得F是BC的中点,从而得到EF为△BCD的中位线,根据平行线的性质证得CD⊥BC,根据勾股定理即可求得结论.【详解】解:点D在⊙C上运动时,点E在以F为圆心的圆上运到,要使AE最大,则AE过F,连接CD,∵△ABC是等边三角形,AB是直径,∴EF⊥BC,∴F是BC的中点,∵E为BD的中点,∴EF为△BCD的中位线,∴CD∥EF,∴CD⊥BC,BC=4,CD=2,故2216425+=+=BC CD故选:B.本题主要考查等边三角形的性质,圆周角定理,三角形中位线的性质以及勾股定理,熟练并正确的作出辅助圆是解题的关键.8.B解析:B【解析】【分析】【详解】解:将点(m,3m)代入反比例函数kyx=得,k=m•3m=3m2>0;故函数在第一、三象限,故选B.9.D解析:D【解析】【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.【详解】如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴2234+,∵CD=DB,∴AD=DC=DB=52,∵12•BC•AH=12•AB•AC,∴AH=125,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵12•AD•BO=12•BD•AH,∴OB=125,∴BE=2OB=245,在Rt△BCE中,75 ==.故选D.点睛:本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.10.C解析:C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.11.A解析:A【解析】【分析】直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.【详解】解:将二次函数y=x2的图象沿y轴向上平移2个单位长度,得到:y=x2+2,再沿x轴向左平移3个单位长度得到:y=(x+3)2+2.故选:A.【点睛】解决本题的关键是得到平移函数解析式的一般规律:上下平移,直接在函数解析式的后面上加,下减平移的单位;左右平移,比例系数不变,在自变量后左加右减平移的单位.12.C解析:C【解析】【分析】利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.【详解】解:过O′作O′F⊥x轴于点F,过A作AE⊥x轴于点E,∵A的坐标为(2,5),∴AE=5,OE=2.由等腰三角形底边上的三线合一得OB=2OE=4,在Rt△ABE中,由勾股定理可求AB=3,则A′B=3,由旋转前后三角形面积相等得OB AE A'B O'F22⋅⋅=,即453O'F2⋅⋅=,∴O′F=45.在Rt△O′FB中,由勾股定理可求BF=22458433⎛⎫-=⎪⎪⎝⎭,∴OF=820433+=.∴O′的坐标为(2045,33).故选C.【点睛】本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.13.D解析:D【解析】x2=4,x=±2.故选D.点睛:本题利用方程左右两边直接开平方求解.14.D解析:D【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y=﹣x2+x=﹣(x12)2+14,∴a=﹣1,该函数的图象开口向下,故选项A错误;对称轴是直线x=12,故选项B错误;当x=12时取得最大值14,该函数有最高点,故选项C错误;在对称轴右侧的部分从左往右是下降的,故选项D正确;故选:D.【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.15.B解析:B【解析】【分析】先求出球的总个数,根据概率公式解答即可.【详解】因为白球5个,黑球3个一共是8个球,所以从中随机摸出1个球,则摸出黑球的概率是38.故选B.【点睛】本题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.二、填空题16.y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解析:y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为y=x2+2.点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.17.【解析】【分析】将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.【详解】解:∵,∴3x+3y=5x,∴2x=3y,∴.故答案为:.【点睛】本题考查比例的解析:2 3【解析】【分析】将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.【详解】解:∵53x yx+=,∴3x+3y=5x,∴2x=3y,∴23 yx =.故答案为:2 3 .【点睛】本题考查比例的基本性质,解题关键是将比例式与等积式之间能相互转换.18.【解析】【分析】观察图象当时,直线在抛物线上方,此时二次函数值小于一次函数值,当或时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x的取值范围,即为不等式的解集.【解析:23x -<<【解析】【分析】观察图象当23x -<<时,直线在抛物线上方,此时二次函数值小于一次函数值,当2x <-或3x >时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.【详解】解:设21y ax h =+,2y kx b =+,∵2ax b kx h -<-∴2ax h kx b +<+,∴12y y <即二次函数值小于一次函数值,∵抛物线与直线交点为()3,A m ,()2,B n -,∴由图象可得,x 的取值范围是23x -<<.【点睛】本题考查不等式与函数的关系及函数图象交点问题,理解图象的点坐标特征和数形结合思想是解答此题的关键.19.【解析】【分析】首先判断出AB 、BC 是⊙O 的切线,进而得出FC=AF+DC ,设AF=x ,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB 、BC 是⊙O 的切线,∵C 解析:32【解析】【分析】首先判断出AB 、BC 是⊙O 的切线,进而得出FC=AF+DC ,设AF=x ,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB 、BC 是⊙O 的切线,∵CF 是⊙O 的切线,∴AF=EF ,BC=EC ,∴FC=AF+DC,设AF=x,则,DF=2-x,∴CF=2+x,在RT△DCF中,CF2=DF2+DC2,即(2+x)2=(2-x)2+22,解得x=12,∴DF=2-12=32,∴113322222 CDFS DF DC=⋅=⨯⨯=,故答案为:3 2 .【点睛】本题考查了正方形的性质,切线长定理的应用,勾股定理的应用,熟练掌握性质定理是解题的关键.20.【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═故答案为.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1解析:1 2 -【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═12 ba-=-故答案为12 -.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=ba-,x1•x2=ca.21.3【解析】【分析】首先设应在该盒子中再添加红球x个,根据题意得:,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x个,根据题意得:,解得:x=3,经检验,x=3是原分解析:3【解析】【分析】首先设应在该盒子中再添加红球x个,根据题意得:12123xx+=++,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x个,根据题意得:12123xx+=++,解得:x=3,经检验,x=3是原分式方程的解.故答案为:3.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.22.(5,3)【解析】【分析】根据二次函数顶点式的性质直接求解.【详解】解:抛物线的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质其顶点坐标为(h,k),题目比较解析:(5,3)【解析】【分析】根据二次函数顶点式2()y a x h k =-+的性质直接求解.【详解】 解:抛物线21(5)33y x =--+的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质2()y a x h k =-+其顶点坐标为(h ,k ),题目比较简单. 23.【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.故答案为.【点睛】本题考查了解一元二次方程-直接开平方法,解这解析:3x =±【解析】【分析】这个式子先移项,变成x 2=9,从而把问题转化为求9的平方根.【详解】解:移项得x 2=9,解得x =±3.故答案为3x =±.【点睛】本题考查了解一元二次方程-直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x 2=a (a ≥0)的形式,利用数的开方直接求解.注意:(1)用直接开方法求一元二次方程的解的类型有:x 2=a (a ≥0);ax 2=b (a ,b 同号且a ≠0);(x +a )2=b (b ≥0);a (x +b )2=c (a ,c 同号且a ≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.24.120°【解析】【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得,继而求得答案.【详解】如图,连接OA ,∵OA ,OB 为半径,∴,∴,∴劣弧的度数等于,故答案为:1解析:120°【解析】【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得AOB ∠,继而求得答案.【详解】如图,连接OA ,∵OA ,OB 为半径,∴30OAB ABO ∠=∠=︒,∴180120AOB OAB ABO ∠=︒-∠-∠=︒,∴劣弧AB 的度数等于120︒,故答案为:120.【点睛】本题考查了圆心角、弧、弦之间的关系以及圆周角定理,是基础知识要熟练掌握. 25.8【解析】【分析】在Rt△ADC 中,利用正弦的定义得sinC ==,则可设AD =12x ,所以AC =13x ,利用勾股定理计算出DC =5x ,由于cos∠DAC=sinC 得到tanB =,接着在Rt△A解析:8【解析】【分析】在Rt △ADC 中,利用正弦的定义得sin C =AD AC =1213,则可设AD =12x ,所以AC =13x ,利用勾股定理计算出DC=5x,由于cos∠DAC=sin C得到tan B=1213,接着在Rt△ABD中利用正切的定义得到BD=13x,所以13x+5x=12,解得x=23,然后利用AD=12x进行计算.【详解】在Rt△ADC中,sin C=ADAC=1213,设AD=12x,则AC=13x,∴DC=5x,∵cos∠DAC=sin C=12 13,∴tan B=12 13,在Rt△ABD中,∵tan B=ADBD=1213,而AD=12x,∴BD=13x,∴13x+5x=12,解得x=23,∴AD=12x=8.故答案为8.【点睛】本题主要考查解直角三角形,熟练掌握锐角三角函数的定义,是解题的关键.26.【解析】【分析】利用勾股定理求出AC,证明△ABE∽△ADC,推出,由此即可解决问题.【详解】解:∵AD是△ABC的高,∴∠ADC=90°,∴,∵AE是直径,∴∠ABE=90°,【解析】【分析】利用勾股定理求出AC,证明△ABE∽△ADC,推出AB AEAD AC=,由此即可解决问题.【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴AC ==∵AE 是直径,∴∠ABE=90°,∴∠ABE=∠ADC ,∵∠E=∠C ,∴△ABE ∽△ADC , ∴AB AE AD AC=, ∴3AB =∴AB =【点睛】 本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.27.5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公解析:5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,10m 3610m 45+=+++ 解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公式列出方程是解题的关键.28.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π. 【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键. 29.【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵与相切于点,与交于点∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt △C 解析:32【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵CF 与O 相切于点E ,与AD 交于点F∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt △CDF 中,由勾股定理得:DF 2=CF 2-CD 2,即(2-x)2=(2+x)2-22解得:x=12,则DF=32∴CDF ∆的面积为13222⨯⨯=32 故答案为32. 【点睛】 本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.30.①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y =ax2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛解析:①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y =ax 2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x 轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;∴①抛物线y =ax 2+bx+c (a≠0)的顶点为(2,-3),结论正确;②b 2﹣4ac =0,结论错误,应该是b 2﹣4ac>0;③关于x 的方程ax 2+bx+c =﹣2的解为x 1=1,x 2=3,结论正确;④m =﹣3,结论错误,∴其中,正确的有. ①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.三、解答题31.(1)x=﹣3或x=1;(2)x=1或x=4.【解析】【分析】(1)用因式分解法求解即可;(2)先移项,再用因式分解法求解即可.【详解】解:(1)∵x2+2x﹣3=0,∴(x+3)(x﹣1)=0,∴x=﹣3或x=1;(2)∵(x﹣1)2=3(x﹣1),∴(x﹣1)[(x﹣1)﹣3]=0,∴(x﹣1)(x﹣4)=0,∴x=1或x=4;【点睛】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.32.(1)见解析;(2)14 5【解析】【分析】(1)求三角形相似就要得出两组对应的角相等,已知了∠BFE=∠C,根据等角的补角相等可得出∠ADE=∠AFB,根据AB∥CD可得出∠BAF=∠AED,这样就构成了两三角形相似的条件.(2)根据(1)的相似三角形可得出关于AB,AE,AD,BF的比例关系,有了AD,AB的长,只需求出AE的长即可.可在直角三角形ABE中用勾股定理求出AE的长,这样就能求出BF的长了.【详解】(1)证明:在平行四边形ABCD中,∵∠D+∠C=180°,AB∥CD,∴∠BAF=∠AED.∵∠AFB+∠BFE=180°,∠D+∠C=180°,∠BFE=∠C,∴∠AFB=∠D,∴△ABF∽△EAD.(2)解:∵BE⊥CD,AB∥CD,∴BE⊥AB.∴∠ABE=90°.∴2222345AE AB BE=+=+=.∵△ABF∽△EAD,BF ABAD EA∴=,4752BF∴=.145BF∴=.【点睛】本题主要考查了相似三角形的判定和性质,平行四边形的性质,等角的补角,熟练掌握相似三角形的判定和性质是解题的关键.33.(1)10700y x=-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.【详解】(1)由题意得:4030055150k bk b+=⎧⎨+=⎩10700kb=-⎧⇒⎨=⎩.故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,。
2014-2015学年九年级上数学期末试卷及答案解析
2014-2015九年级第一学期数学期末测试卷一.选择题(共10小题)1.已知实数a ,b 分别满足a 2﹣6a+4=0,b 2﹣6b+4=0,且a ≠b ,则的值是( )23.已知m ,n 是关于x 的一元二次方程x 2﹣3x+a=0的两个解,若(m ﹣1)(n ﹣1)4.如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有( )D . 7种5.如图,在△ABC 中,AC=BC ,点D 、E 分别是边AB 、AC 的中点,将△ADE 绕点E 旋转180°得△CFE ,则四边形ADCF 一定是( )4个黑球和若干个白球,它们除颜色外没有任何(m 为常数)的图象与x 轴的一个交点为(1,0),8.如图,二次函数y=ax 2+bx+c 的图象经过点(0,﹣2),与x 轴交点的横坐标分别为x 1,x 2,且﹣1<x 1<0,1<x 2<2,下列结论正确的是( )﹣9.如图,在平行四边形ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于E ,交DC 的延长线于F ,BG ⊥AE 于G ,BG=,则△EFC 的周长为( )D.810.如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是()二.填空题(共8小题)11.如果(2x+2y+1)(2x+2y﹣1)=63,那么x+y的值是_________.12.若,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是_________.13.如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为_________.14.一副扑克牌52张(不含鬼牌),分为黑桃、红心、方块、及梅花4种花色,每种花色各有13张,分别标有字母A、K、Q、J和数字10、9、8、7、6、5、4、3、2.从这副牌中任意抽取一张,则这张牌是标有字母的概率是_________.15.二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第16.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是_________.17.如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是_________.18.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF =4.其中正确的是_________(写出所有正确结论的序号).三.解答题(共10小题)19.随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)20如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.21.如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.22.如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O 于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若AB=9,BC=6.求PC的长.23.如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B 两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.24.)为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的(1)设A产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B 两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.25.如图①,若二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(3,0)两点,点A关于正比例函数y=x的图象的对称点为C.(1)求b、c的值;(2)证明:点C在所求的二次函数的图象上;(3)如图②,过点B作DB⊥x轴交正比例函数y=x的图象于点D,连结AC,交正比例函数y=x的图象于点E,连结AD、CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动.当其中一个点到达终点时,另一个点随之停止运动,连结PQ、QE、PE.设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC?若存在,求出t的值;若不存在,请说明理由.26.在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.27.如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x 轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(﹣1,﹣1﹣m).(1)求抛物线l的解析式(用含m的式子表示);(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC 的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.28.如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.2014-2015学年九年级[上]数学期末测试卷参考答案与试题解析一.选择题(共10小题)1.(2013•烟台)已知实数a ,b 分别满足a 2﹣6a+4=0,b 2﹣6b+4=0,且a ≠b ,则=此题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解本题的关键. 2.(2013•咸宁)关于x 的一元二次方程(a ﹣1)x 2﹣2x+3=0有实数根,则整数a D . ﹣1 ,3.(2013•鄂州)已知m ,n 是关于x 的一元二次方程x 2﹣3x+a=0的两个解,若(m的关键.6.(2013•资阳)在一个不透明的盒子里,装有色外没有任何其他区别,÷8.(2013•济南)如图,二次函数y=ax +bx+c 的图象经过点(0,﹣2),与x 轴交点的横坐标分别为x 1,x 2,且﹣1<x 1<0,1<x 2<2,下列结论正确的是( )﹣<最小值:<﹣9.(2013•自贡)如图,在平行四边形ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于E ,交DC 的延长线于F ,BG ⊥AE 于G ,BG=,则△EFC 的周长为( ),AG=10.(2013•日照)如图,在△ABC 中,以BC 为直径的圆分别交边AC 、AB 于D 、E 两点,连接BD 、DE .若BD 平分∠ABC ,则下列结论不一定成立的是( ) ∴===二.填空题(共8小题) 11.如果(2x+2y+1)(2x+2y ﹣1)=63,那么x+y 的值是 4或﹣4 .兰州)若,且一元二次方程解:∵,13.(2013•威海)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为(0,﹣2).∵=335从这副牌中任意抽取一张,则这张牌是标有字母的概率是=.故答案为:..15.(2013•营口)二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第四象限.x <联立消掉k=时,抛物线与的坐标为(,))时,×y=.17.(2011•湖州)如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的轴的交点的坐标特点是解此题的关=,连接E=.,根据垂径定理可得:,由,E=∴=,∵=,AG=== E=AD=,××=3∴(∴,,;足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,个月,则乙队施工个月,则乙队施工y≤20.(2013•潍坊)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD 绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;,=135﹣垂直于OC ,OB=OC ,利用为公共边,利用SAS ,即可得证;OA=OC 的长,即可确定出AE=CE=AF=AE=AC=2AE=.BC=3,根据等AM=6;r=6r=,则CE=2r=OM=6﹣BE=2OM=然后判断Rt △PCM BM=CM=BC=3=6,r=6﹣r=CE=2r=OM=6=BE=2OM=∠MCP ,∴=,=PC=.求出二次函数的解析式为的方程,解方程),则D 点坐标为(x ,长度的最大值.两点,∴∴××,解得),时,有最大值,且的值,函数关系式即可求>=11,y=xxy=y=CEQ ,根据y=∴﹣x ,FOB=,∴C 作CK y=x ×,×,﹣y=﹣,当AC===.y=xCD=AD=2,∠AC=∴,即:﹣t=或t=,故舍去)t=本题是二次函数压轴题,考查了二次函数的图象与性质、正比例函数的图象与性质、待定系数法、对称、解直角三角形、相似三角形的判定与性质、解一元二次方程等知识点.试题的难点在于第(3)问,图形中:EQ=BE AE 在△ACD 与△BEF 中,,:B==EQ=AEH==,EH=BE::DM=OM=x 点坐标,运用待定系数法得到直,解得,m N=N=m ON==m m x ﹣×解得≤,,)﹣当时,m=)=,到达最高位置时的坐标为(,)考点:二次函数综合题.分析:(1)过点D作DF⊥x轴于点根据相似三角形对应边成比例得出=,即AF=1,进而得到点A(2)先由抛物线过原点((﹣2,0),求出对称轴为直线可知当△OBC是等腰三角形时,可分两种情况讨论:①求出y1的值,将A,设C(2,y2),列出方程,解方程求出抛物线的解析式.∴====362)代入,解得x=36(负值舍去))代入,解得xx x y=x。
初中数学江苏省盐城市九年级上学期期末考试数学考试题.docx
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:下列运算结果等于1的是()A.-2+1 B.-12C.-(-1) D.—试题2:下列运算正确的是()A.(a3)2=a5 B.(-2x2)3=-8x6 C.a3·(-a)2=-a5 D. (-x)2÷x=-x试题3:盐城市旅游经济发展迅速,据盐城市统计局统计,2011年全年接待境内外游客约11 370 000人次,11 370 000用科学记数法表示为()A、1.137×107B、1.137×108C、0.1137×108D、1137×104试题4:某校公布了该校反映各年级学生体育达标情况的两张统计图,该校七、八、九三个年级共有学生800人。
甲、乙、丙三个同学看了这两张统计图后,甲说:“七年级的体育达标率最高。
”乙说:“八年级共有学生264人。
”丙说:“九年级的体育达标率最高。
”甲、乙、丙三个同学中,说法正确的是…………………………………………()评卷人得分A.甲和乙 B.乙和丙 C.甲和丙 D.甲和乙及丙试题5:函数在同一直角坐标系内的图象大致是()试题6:如图是由相同小正方体组成的立体图形,它的俯视图为()试题7:下列性质中,菱形具有而平行四边形不一定具有的是()A.对角线相等 B.对角线互相平分 C.对角线互相垂直 D.两组对边分别相等试题8:如图,斜坡的坡度,那么的值为()A. B. C. D.试题9:用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为()A.5cm B.5cm C.5cm D.7.5cm试题10:如图,抛物线y = x2 + 1与双曲线y = 的交点A的横坐标是1,则关于x的不等式 + x2 + 1 < 0的解集是( )A.x > 1 B.x < −1 C.0 < x < 1 D.−1 < x < 0试题11:25的算术平方根是.试题12:黄金比,这个比用四舍五入法精确到0.001的近似数是.试题13:函数中自变量x的取值范围是.试题14:分解因式:a3-16a=.试题15:九年级(5)班有男生27人,女生29人.班主任向全班发放准考证时,任意抽取一张准考证,恰好是女生准考证的概率是.试题16:已知,则代数式的值为_________.试题17:如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形.试题18:抛物线上部分点的横坐标,纵坐标的对应值如下表:x…-2 -1 0 1 2 …y…0 4 6 6 4 …从上表可知,下列说法中正确的是.(填写序号)①抛物线与轴的一个交点为(3,0);②函数的最大值为6;③抛物线的对称轴是;④在对称轴左侧,随增大而增大试题19:计算:(-1)2010×(-2)2+(-π)0+;试题20:试题21:先化简÷,然后从2,-2,0,这4个数中选取一个你喜欢的数作为x的值代入求值.试题22:已知:如图,中,,以为直径的⊙O 交于点,于点.(1)求证:是⊙O的切线;(2)若,求的值.试题23:如图,在一次数学课外活动中,小明同学在点P处测得教学楼A位于北偏东60°方向,办公楼B位于南偏东45°方向.小明沿正东方向前进60米到达C处,此时测得教学楼A恰好位于正北方向,办公楼B正好位于正南方向.求教学楼A与办公楼B 之间的距离≈1.732).(8分)(结果精确到0.1米,供选用的数据:≈1.414,在等腰△ABC中,三边分别为、、,其中,若关于的方程有两个相等的实数根,求△ABC的周长.(8分)试题25:在学习“轴对称现象”内容时,王老师让同学们寻找身边的轴对称图形,小明有一副三角尺和一个量角器(如图所示).(1)小明的这三件文具中,可以看做是轴对称图形的是(填字母代号);(2)请用这三个图形中的两个拼成一个轴对称图案,在答题卡的指定位置画出草图(只须画出一种);(3)小红也有同样的一副三角尺和一个量角器.若他们分别从自己这三件文具中随机取出一件,则可以拼成一个轴对称图案的概率是多少?(请画树状图或列表计算)试题26:某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.试题27:如图,已知直角梯形ABCD中,AD//BC,DC⊥BC,AB=5,BC=6,∠B=53°.点O为BC边上的一个点,连结OD,以O为圆心,BO为半径的⊙O分别交边AB于点P,交线段OD于点M,交射线BC于点N,连结M N.(1)当BO=AD时,求BP的长;(2)在点O运动的过程中,线段BP与MN能否相等?若能,请求出当BO为多长时BP=MN;若不能,请说明理由;(3)在点O运动的过程中,以点C为圆心,CN为半径作⊙C,请直接写出当⊙C存在时,⊙O与⊙C的位置关系,以及相应的⊙C半径CN的取值范围.(参考数据:c os53°≈0.6;sin53°≈0.8;tan74°3.5)试题28:已知抛物线经过点A(5,0)、B(6,-6)和原点.(12分)(1)求抛物线的函数关系式;(2)若过点B的直线与抛物线相交于点C(2,m),请求出OBC的面积S的值.(3)过点C作平行于x轴的直线交y轴于点D,在抛物线对称轴右侧位于直线DC下方的抛物线上,任取一点P,过点P作直线PF平行于y轴交x轴于点F,交直线DC于点E. 直线PF与直线DC及两坐标轴围成矩形OFED(如图),是否存在点P,使得OCD与CPE相似?若存在,求出点P的坐标;若不存在,请说明理由.试题29:如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D .(1)求抛物线的解析式.(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动. 设S=PQ2(cm2)①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;②当S取时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形? 如果存在,求出R点的坐标;如果不存在,请说明理由.(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.试题1答案:C试题2答案:B试题3答案:A试题4答案:B试题5答案:试题6答案: B试题7答案: C试题8答案: C试题9答案: A试题10答案: D试题11答案: 5试题12答案: 0.618试题13答案:试题14答案:试题15答案:试题16答案:试题17答案: 17试题18答案:试题19答案:试题20答案:试题21答案:试题22答案:v试题23答案:答:教学楼A与办公楼B之间的距离大约为94.6米试题24答案:解:根据题意得:△解得:或(不合题意,舍去)∴(1)当时,,不合题意试题25答案:试题26答案:试题27答案:试题28答案:解:(1)由题意得:解得试题29答案:解: (1)据题意知: A(0, -2), B(2, -2) ,D(4,—),则解得。
2014-2015年江苏省盐城市盐都区初三上学期期末数学试卷及参考答案
2014-2015学年江苏省盐城市盐都区初三上学期期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)数据1,3,3,4,5的众数为()A.1B.3C.4D.52.(3分)⊙O的半径为8,圆心O到直线l的距离为4,则直线l与⊙O的位置关系是()A.相切B.相交C.相离D.不能确定3.(3分)一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是()A.B.C.D.4.(3分)若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A.1:2B.2:1C.1:4D.4:15.(3分)下列关于x的方程有实数根的是()A.x2﹣x+1=0B.x2+x+1=0C.x2﹣x﹣1=0D.(x﹣1)2+1=0 6.(3分)将抛物线y=﹣x2向上平移2个单位后,得到的函数表达式是()A.y=﹣x2+2B.y=﹣(x+2)2C.y=﹣(x﹣1)2D.y=﹣x2﹣2 7.(3分)如图,AB是⊙O的直径,C,D是⊙O上两点,CD⊥AB.若∠DAB=65°,则∠BOC=()A.25°B.50°C.130°D.155°8.(3分)阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox 上,则正六边形的顶点C的极坐标应记为()A.(60°,4)B.(45°,4)C.(60°,2)D.(50°,2)二、填空题(共10小题,每小题3分,满分30分)9.(3分)如图,四边形ABCD内接于⊙O,∠A=62°,则∠C=°.10.(3分)在Rt△ABC中,∠C=90°,BC:AC=3:4,则cosA=.11.(3分)一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是.12.(3分)若关于x的一元二次方程ax2+bx+5=0(a≠0)的一个解是x=1,则a+b+2015的值是.13.(3分)如果在比例尺为1:1 000 000的地图上,A、B两地的图上距离是3.4厘米,那么A、B两地的实际距离是千米.14.(3分)如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为m.15.(3分)请写出一个开口向上,与y轴交点的纵坐标为2的抛物线的函数表达式.16.(3分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.17.(3分)在二次函数y=﹣x2+bx+c中,函数y与自变量x的部分对应值如下表:x﹣3﹣2﹣1123456y﹣14﹣7﹣22m n﹣7﹣14﹣23则m、n的大小关系为m n.(填“<”,“=”或“>”)18.(3分)已知Rt△ABC中,∠C=90°,BC=1,AC=4,如图把边长分别为x1,x2,x3,…,x n的n个正方形依次放入△ABC中,则第2015个正方形的边长为.三、解答题(共10小题,满分96分)19.(8分)(1)解方程:x2﹣x=0;(2)计算:2sin30°﹣tan60°+20150.20.(8分)如图,在平面直角坐标系中,△ABC的三个顶点坐标系分别为A(﹣2,1),B(﹣1,4),C(﹣3,﹣2).(1)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A1B1C1,并直接写出C1点坐标;(2)如果点D(a,b)在线段AB上,请直接写出经过(1)的变化后点D的对应点D1的坐标.21.(8分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选处的5名选手的决赛成绩如图所示.(1)计算两队决赛成绩的平均数;(2)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.22.(8分)甲、乙两人用如图的两个分格均匀的转盘A、B做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:(1)用列表格或画树状图的方法表示游戏所有可能出现的结果.(2)求甲、乙两人获胜的概率.23.(10分)盐城公共自行车项目现已全部建成,盐城市区250个站点,累计投放6000辆自行车,为人们的生活带来了方便,图(1)所示的是自行车的实物图.图(2)是一辆自行车的部分几何示意图.其中车架档AC的长为45cm,且∠CAB=75°,∠CBA=50°.(参考数据:sin75°≈0.96,cos75°≈0.26,tan75°≈3.73,sin50°≈0.76,cos50°≈0.64,tan50°≈1.19).(1)求车座固定点C到车架档AB的距离;(2)求车架档AB的长.(结果精确到1cm).24.(10分)已知二次函数y=﹣x2+2x+3.(1)求函数图象的顶点坐标,并画出这个函数的图象;(2)根据图象,直接写出:①当函数值y为正数时,自变量x的取值范围;②当﹣2<x<2时,函数值y的取值范围.25.(10分)如图,在Rt△ABC中,∠C=90°,点E在斜边AB上,以AE为直径的⊙O与BC相切于点D,若BE=6,BD=6.(1)求⊙O的半径;(2)求图中阴影部分的面积.26.(10分)某商店将成本为30元的文化衫标价50元出售.(1)为了搞促销活动经过两次降价调至每件40.5元,若两次降价的百分率相同,求每次降价的百分率;(2)经调查,该文化衫每降5元,每月可多售出100件,若该品牌文化衫按原标价出售,每月可销售200件,那么销售价定为多少元,可以使该商品获得最大的利润?最大的利润是多少?27.(12分)【问题背景】已知:l1∥l2∥l3∥l4,平行线l1与l2、l2与l3、l3与l4之间的距离分别为d1、d2、d3,且d1=d3=1,d2=2,我们把四个顶点分别在l1、l2、l3、l4这四条平行线上的四边形称为“格线四边形”.【问题探究】(1)如图1,正方形ABCD为“格线四边形”,则正方形ABCD的边长为.(2)矩形ABCD为“格线四边形”,其长:宽=2:1,求矩形ABCD的宽.【问题拓展】(3)如图1,EG过正方形ABCD的顶点D且垂直l1于点E,分别交l2,l4于点F,G,将∠AEG绕点A顺时针旋转30°,得到∠AE′D′(如图2),点D′在直线l3上,以AD′为边在E′D′左侧作菱形AB′C′D′,使B′C′,分别在直线l2,l4上,求菱形AB′C′D′的边长.28.(12分)如图,二次函数y=x2﹣x﹣2的图象与x轴交于点A,B,点M,N在x轴上,点N在点M右侧,MN=2,以MN为直角边向上作等腰直角三角形CMN,∠CMN=90°,设点M的横坐标为m.(1)当点C在这条抛物线上时,求m的值.(2)将线段CN绕点N逆时针旋转90°后,得到对应线段DN.①当点D在这条抛物线的对称轴上时,求点D的坐标.②以DN为直角边作等腰直角三角形DNE,当点E在这条抛物线的对称轴上时,求m的值.2014-2015学年江苏省盐城市盐都区初三上学期期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)数据1,3,3,4,5的众数为()A.1B.3C.4D.5【解答】解:该组数据中,3出现的次数最多,故3为众数.故选:B.2.(3分)⊙O的半径为8,圆心O到直线l的距离为4,则直线l与⊙O的位置关系是()A.相切B.相交C.相离D.不能确定【解答】解:∵⊙O的半径为8,圆心O到直线L的距离为4,∵8>4,即:d<r,∴直线L与⊙O的位置关系是相交.故选:B.3.(3分)一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是()A.B.C.D.【解答】解:∵布袋里装有5个球,其中3个红球,2个白球,∴从中任意摸出一个球,则摸出的球是红球的概率是:.故选:D.4.(3分)若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A.1:2B.2:1C.1:4D.4:1【解答】解:∵△ABC∽△A′B′C′,相似比为1:2,∴△ABC与△A′B′C′的面积的比为1:4.故选:C.5.(3分)下列关于x的方程有实数根的是()A.x2﹣x+1=0B.x2+x+1=0C.x2﹣x﹣1=0D.(x﹣1)2+1=0【解答】解:A、△=b2﹣4ac=1﹣4=﹣3<0,此方程没有实数根;B、△=b2﹣4ac=1﹣4=﹣3<0,此方程没有实数根;C、△=b2﹣4ac=1+4=5>0,此方程有两个不相等的实数根;D、△=b2﹣4ac=4﹣8=﹣4<0,此方程没有实数根.故选:C.6.(3分)将抛物线y=﹣x2向上平移2个单位后,得到的函数表达式是()A.y=﹣x2+2B.y=﹣(x+2)2C.y=﹣(x﹣1)2D.y=﹣x2﹣2【解答】解:∵抛物线y=﹣x2的顶点坐标是(0,0),∴平移后的抛物线的顶点坐标是(0,2),∴得到的抛物线解析式是y=﹣x2+2.故选:A.7.(3分)如图,AB是⊙O的直径,C,D是⊙O上两点,CD⊥AB.若∠DAB=65°,则∠BOC=()A.25°B.50°C.130°D.155°【解答】解:∵CD⊥AB.∠DAB=65°,∴∠ADC=90°﹣∠DAB=25°,∴∠AOC=2∠ADC=50°,∴∠BOC=180°﹣∠AOC=130°.故选:C.8.(3分)阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox 上,则正六边形的顶点C的极坐标应记为()A.(60°,4)B.(45°,4)C.(60°,2)D.(50°,2)【解答】解:如图,设正六边形的中心为D,连接AD,∵∠ADO=360°÷6=60°,OD=AD,∴△AOD是等边三角形,∴OD=OA=2,∠AOD=60°,∴OC=2OD=2×2=4,∴正六边形的顶点C的极坐标应记为(60°,4).故选:A.二、填空题(共10小题,每小题3分,满分30分)9.(3分)如图,四边形ABCD内接于⊙O,∠A=62°,则∠C=118°.【解答】解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∴∠C=180°﹣62°=118°.故答案为118.10.(3分)在Rt△ABC中,∠C=90°,BC:AC=3:4,则cosA=.【解答】解:∵Rt△ABC中,∠C=90°,BC:AC=3:4,∴设BC=3x,则AC=4x,∴AB=5x,∴cosA===.11.(3分)一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是8.【解答】解:这组数据按从小到大的顺序排列为:6,7,8,9,9,则中位数为:8.故答案为:8.12.(3分)若关于x的一元二次方程ax2+bx+5=0(a≠0)的一个解是x=1,则a+b+2015的值是2010.【解答】解:∵关于x的一元二次方程ax2+bx+5=0(a≠0)的解是x=1,∴a+b+5=0,则a+b=﹣5,∴a+b+2015=(a+b)+2015=﹣5+2015=2010.故答案是:2010.13.(3分)如果在比例尺为1:1 000 000的地图上,A、B两地的图上距离是3.4厘米,那么A、B两地的实际距离是34千米.【解答】解:根据题意,3.4÷=3400000厘米=34千米.即实际距离是34千米.故答案为:34.14.(3分)如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为9m.【解答】解:由题意得,CD∥AB,∴△OCD∽△OAB,∴=,即=,解得AB=9.故答案为:9.15.(3分)请写出一个开口向上,与y轴交点的纵坐标为2的抛物线的函数表达式y=x2+2(答案不唯一).【解答】解:由题意得,抛物线解析式为y=x2+2(答案不唯一).故答案为:y=x2+2(答案不唯一).16.(3分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为6 cm.【解答】解:圆锥的底面周长=2π×2=4πcm,设圆锥的母线长为R,则:=4π,解得R=6.故答案为:6.17.(3分)在二次函数y=﹣x2+bx+c中,函数y与自变量x的部分对应值如下表:x﹣3﹣2﹣1123456y﹣14﹣7﹣22m n﹣7﹣14﹣23则m、n的大小关系为m>n.(填“<”,“=”或“>”)【解答】解:∵x=﹣1时,y=﹣2;x=1时,y=2,∴,解得,∴二次函数的解析式为y=﹣x2+2x+1,∴当x=2时,m=﹣4+4+1=1;x=3时,n=﹣9+6+1=﹣2,∴m>n.故答案为>.18.(3分)已知Rt△ABC中,∠C=90°,BC=1,AC=4,如图把边长分别为x1,x2,x3,…,x n的n个正方形依次放入△ABC中,则第2015个正方形的边长为.【解答】解:如图所示:根据题意得:DE∥CA,∴△BDE∽△BCA,∴,即,解得,∴EN=,NA=4﹣,EF=,∵FG∥CA,∴△EFG∽△ENA,∴,即,解得,…,∴第2015个正方形的边长为.故答案为:.三、解答题(共10小题,满分96分)19.(8分)(1)解方程:x2﹣x=0;(2)计算:2sin30°﹣tan60°+20150.【解答】解:(1)方程分解因式得:x(x﹣1)=0,解得:x1=0,x2=1;(2)原式=1﹣3+1=﹣1.20.(8分)如图,在平面直角坐标系中,△ABC的三个顶点坐标系分别为A(﹣2,1),B(﹣1,4),C(﹣3,﹣2).(1)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A1B1C1,并直接写出C1点坐标;(2)如果点D(a,b)在线段AB上,请直接写出经过(1)的变化后点D的对应点D1的坐标.【解答】解:(1)如图所示:△A1B1C1即为所求,C1点坐标为(﹣6,4);(2)如果点D(a,b)在线段AB上,经过(1)的变化后点D的对应点D1的坐标为;(2a,2b).21.(8分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选处的5名选手的决赛成绩如图所示.(1)计算两队决赛成绩的平均数;(2)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.【解答】解:(1)初中部的选手的得分分别为75,80,85,85,100,∴初中部的平均数=(75+80+85+85+100)÷5=85(分),高中部的选手的得分分别为70,100,100,75,80,高中部平均数=(70+100+100+75+80)÷5=85(分),2=[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(2)初中部的方差S初(100﹣85)2]÷5=70;2=[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80高中部的方差S高﹣85)2]÷5=160;因为平均数一样的情况下,初中部方差小,所以初中部成绩比较稳定.22.(8分)甲、乙两人用如图的两个分格均匀的转盘A、B做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:(1)用列表格或画树状图的方法表示游戏所有可能出现的结果.(2)求甲、乙两人获胜的概率.【解答】解:(1)所有可能出现的结果如图:4567 1(1,4)(1,5)(1,6)(1,7)2(2,4)(2,5)(2,6)(2,7)3(3,4)(3,5)(3,6)(3,7)(2)从上面的表格(或树状图)可以看出,所有可能出现的结果共有12种,且每种结果出现的可能性相同,其中积是奇数的结果有4种,即5、7、15、21,积是偶数的结果有8种,即4、6、8、10、12、14、12、18,∴甲、乙两人获胜的概率分别为:P(甲获胜)==,P(乙获胜)==.23.(10分)盐城公共自行车项目现已全部建成,盐城市区250个站点,累计投放6000辆自行车,为人们的生活带来了方便,图(1)所示的是自行车的实物图.图(2)是一辆自行车的部分几何示意图.其中车架档AC的长为45cm,且∠CAB=75°,∠CBA=50°.(参考数据:sin75°≈0.96,cos75°≈0.26,tan75°≈3.73,sin50°≈0.76,cos50°≈0.64,tan50°≈1.19).(1)求车座固定点C到车架档AB的距离;(2)求车架档AB的长.(结果精确到1cm).【解答】解:(1)过点C作CD⊥AB,垂足为D,在Rt△CAD中,CD=ACsin75°=45×sin75°≈45×0.96=43.2(cm).答:车座固定点C到车架档AB的距离约为43.2cm;(2)在Rt△CAD中,AD=ACcos75°=45×cos75°≈45×0.26=11.7(cm),在Rt△CBD中BD===36.3(cm),则AB=AD+BD=11.7+36.3≈48(cm).答:车架档AB的长约为48cm.24.(10分)已知二次函数y=﹣x2+2x+3.(1)求函数图象的顶点坐标,并画出这个函数的图象;(2)根据图象,直接写出:①当函数值y为正数时,自变量x的取值范围;②当﹣2<x<2时,函数值y的取值范围.【解答】解;(1)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴函数图象的顶点坐标(1,4);函数的图象如图:(2)根据图象可知:①当﹣1<x<3时,函数值y为正数;②当﹣2<x<2时,函数值y的取值范围﹣5<y<4.25.(10分)如图,在Rt△ABC中,∠C=90°,点E在斜边AB上,以AE为直径的⊙O与BC相切于点D,若BE=6,BD=6.(1)求⊙O的半径;(2)求图中阴影部分的面积.【解答】解:(1)连接OD,∵⊙O与BC相切于点D,∴OD⊥BC,设⊙O的半径为r,在直角三角形ODB中,r2+(6)2=(r+6)2解得:r=6;(2)连接DE,过点O作OH⊥DE于点H,由(1)知,OE=BE,则DE=OB=6,故△ODE为等边三角形,则∠DOE=60°,S△EOD=×OH×DE=×EO•sin60°×DE=×6××6=9,则∠AOD=120°,∵O是AE中点,∴S△AOD=S△EOD=9,∴S阴影=S扇形AOD﹣S△AOD=﹣9=12π﹣9.26.(10分)某商店将成本为30元的文化衫标价50元出售.(1)为了搞促销活动经过两次降价调至每件40.5元,若两次降价的百分率相同,求每次降价的百分率;(2)经调查,该文化衫每降5元,每月可多售出100件,若该品牌文化衫按原标价出售,每月可销售200件,那么销售价定为多少元,可以使该商品获得最大的利润?最大的利润是多少?【解答】解:(1)设每次降价率为n,则50(1﹣n)2=40.5,解得:n1=0.1=10%,n2=1.9(不合,舍去).故每次降价的百分率为10%;(2)设销售定价为每件x元,每月利润为y元,则y=(x﹣30)(200+×100)=﹣20(x﹣45)2+4500,∵a=﹣20<0,∴当x=45时,y取最大值为4500元.27.(12分)【问题背景】已知:l1∥l2∥l3∥l4,平行线l1与l2、l2与l3、l3与l4之间的距离分别为d1、d2、d3,且d1=d3=1,d2=2,我们把四个顶点分别在l1、l2、l3、l4这四条平行线上的四边形称为“格线四边形”.【问题探究】(1)如图1,正方形ABCD为“格线四边形”,则正方形ABCD的边长为.(2)矩形ABCD为“格线四边形”,其长:宽=2:1,求矩形ABCD的宽.【问题拓展】(3)如图1,EG过正方形ABCD的顶点D且垂直l1于点E,分别交l2,l4于点F,G,将∠AEG绕点A顺时针旋转30°,得到∠AE′D′(如图2),点D′在直线l3上,以AD′为边在E′D′左侧作菱形AB′C′D′,使B′C′,分别在直线l2,l4上,求菱形AB′C′D′的边长.【解答】解:(1)∵l1∥l2∥l3∥l4,∠AED=90°,∴∠DGC=90°∵四边形ABCD为正方形,∴∠ADC=90°,AD=CD,∵∠ADE+∠2=90°,∴∠1+∠2=90°,∴∠1=∠ADE,∵l3∥l4∴∠1=∠DCG,∠ADE=∠DCG,在△AED与△DGC中,,∴△AED≌△GDC(AAS),∴AE=GD=1,ED=GC=3,∴AD==,故答案为:;(2)如图2过点B作BE⊥L1于点E,反向延长BE交L4于点F,则BE=1,BF=3,∵四边形ABCD是矩形,∴∠ABC=90°,∴∠ABE+∠FBC=90°,∵∠ABE+∠EAB=90°,∴∠FBC=∠EAB,∴△BAE∽△CBF,∴=,当AB<BC时,AB=BC,∴AE=BF=,∴AB==;如图3当AB>BC时,同理可得:BC=,∴矩形的宽为:,;(3)如图4,过点E′作ON垂直于l1,分别交l1,l3于点O,N,∵∠OAE′=30°,则∠E′FN=60°∵AE′=AE=1,故E′O=,E′N=,E′D′=,由勾股定理可知菱形的边长为:==,28.(12分)如图,二次函数y=x2﹣x﹣2的图象与x轴交于点A,B,点M,N在x轴上,点N在点M右侧,MN=2,以MN为直角边向上作等腰直角三角形CMN,∠CMN=90°,设点M的横坐标为m.(1)当点C在这条抛物线上时,求m的值.(2)将线段CN绕点N逆时针旋转90°后,得到对应线段DN.①当点D在这条抛物线的对称轴上时,求点D的坐标.②以DN为直角边作等腰直角三角形DNE,当点E在这条抛物线的对称轴上时,求m的值.【解答】解:(1)∵△CMN是等腰直角三角形CMN,∠CMN=90°,∴CM=MN=2,∴点C的坐标为(m,2),∵点C(m,2)在抛物线上,∴m2﹣m﹣2=2,解得:m1=,m2=.∴点C在这条抛物线上时,m的值为或;(2)①∵将线段CN绕点N逆时针旋转90°后,得到对应线段DN,∴∠CND=90°,DN=CN=CM=MN,∴CD=CN=2CM=2MN,∴DM=CM=MN,∠DMN=90°,∴点D的坐标为(m,﹣2).又∵抛物线y=x2﹣x﹣2的对称轴为直线x=,点D在这条抛物线的对称轴上,∴点D的坐标为(,﹣2);②如图,以DN为直角边作等腰直角三角形DNE,E点的位置有四种情况:如果E点在E1的位置时,∵点D的坐标为(m,﹣2),MN=ME1=2,点N的坐标为(m+2,0),∴点E1的(m﹣2,0),∵点E1在抛物线y=x2﹣x﹣2的对称轴直线x=上,∴m﹣2=,解得m=;如果E点在E2的位置时,∵点D的坐标为(m,﹣2),点N的坐标为(m+2,0),∴点E2的(m+2,﹣4),∵点E2在抛物线y=x2﹣x﹣2的对称轴直线x=上,∴m+2=,解得m=﹣;如果E点在E3的位置时,∵点D的坐标为(m,﹣2),∴点E3的(m,2),∵点E3在抛物线y=x2﹣x﹣2的对称轴直线x=上,∴m=;如果E点在E4的位置时,∵点D的坐标为(m,﹣2),点N的坐标为(m+2,0),∴点E4的(m+4,﹣2),∵点E4在抛物线y=x2﹣x﹣2的对称轴直线x=上,∴m+4=,解得:m=﹣;综上可知,当点E在这条抛物线的对称轴上时,所有符合条件的m的值为m=﹣或m=﹣或m=或m=.。
盐城市九年级上册期末测试数学试题(含答案)
盐城市九年级上册期末测试数学试题(含答案)一、选择题1.如图,四边形ABCD 内接于O ,若40A ∠=︒,则C ∠=( )A .110︒B .120︒C .135︒D .140︒2.要得到函数y =2(x -1)2+3的图像,可以将函数y =2x 2的图像( ) A .向左平移1个单位长度,再向上平移3个单位长度 B .向左平移1个单位长度,再向下平移3个单位长度 C .向右平移1个单位长度,再向上平移3个单位长度 D .向右平移1个单位长度,再向下平移3个单位长度3.下图是甲、乙两人2019年上半年每月电费支出的统计,则他们2019年上半年月电费支出的方差2S 甲和2S 乙的大小关系是( )A .2S 甲>2S 乙B .2S 甲=2S 乙C .2S 甲<2S 乙D .无法确定4.已知圆锥的底面半径为3cm ,母线为5cm ,则圆锥的侧面积是 ( ) A .30πcm 2B .15πcm 2C .152πcm 2 D .10πcm 25.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据: 组 别 1 2 3 4 5 6 7 分 值90959088909285这组数据的中位数和众数分别是A.88,90 B.90,90 C.88,95 D.90,956.如图,某水库堤坝横断面迎水坡AB的坡比是1:3,堤坝高BC=50m,则应水坡面AB的长度是()A.100m B.1003m C.150m D.503m7.如图1,S是矩形ABCD的AD边上一点,点E以每秒k cm的速度沿折线BS-SD-DC匀速运动,同时点F从点C出发点,以每秒1cm的速度沿边CB匀速运动.已知点F运动到点B时,点E也恰好运动到点C,此时动点E,F同时停止运动.设点E,F出发t秒时,△EBF的面积为2ycm.已知y与t的函数图像如图2所示.其中曲线OM,NP为两段抛物线,MN为线段.则下列说法:①点E运动到点S时,用了2.5秒,运动到点D时共用了4秒;②矩形ABCD的两邻边长为BC=6cm,CD=4cm;③sin∠ABS=32;④点E的运动速度为每秒2cm.其中正确的是()A.①②③B.①③④C.①②④D.②③④8.如图,△ABC内接于⊙O,连接OA、OB,若∠ABO=35°,则∠C的度数为()A.70°B.65°C.55°D.45°9.如图,AB是⊙O的弦,∠BAC=30°,BC=2,则⊙O的直径等于()A .2B .3C .4D .6 10.一元二次方程230x x k -+=的一个根为2x =,则k 的值为( ) A .1B .2C .3D .411.用配方法解方程2890x x ++=,变形后的结果正确的是( ) A .()249x +=- B .()247x +=-C .()2425x +=D .()247x +=12.如图,随意向水平放置的大⊙O 内部区域抛一个小球,则小球落在小⊙O 内部(阴影)区域的概率为( )A .12B .14C .13D .1913.如图,点P (x ,y )(x >0)是反比例函数y=kx(k >0)的图象上的一个动点,以点P 为圆心,OP 为半径的圆与x 轴的正半轴交于点A ,若△OPA 的面积为S ,则当x 增大时,S 的变化情况是( )A .S 的值增大B .S 的值减小C .S 的值先增大,后减小D .S 的值不变14.如图物体由两个圆锥组成,其主视图中,90,105A ABC ︒︒∠=∠=.若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )A.2 B.3C.32D.215.下表是二次函数y=ax2+bx+c的部分x,y的对应值:x…﹣1﹣12121322523…y…2m﹣1﹣74﹣2﹣74﹣1142…可以推断m的值为()A.﹣2 B.0 C.14D.2二、填空题16.如图,已知正六边形内接于O,若正六边形的边长为2,则图中涂色部分的面积为______.17.一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为23,则袋中应再添加红球____个(以上球除颜色外其他都相同).18.在△ABC中,∠C=90°,若AC=6,BC=8,则△ABC外接圆半径为________;19.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=-1,x2=2 ,则二次函数y=x2+mx+n中,当y<0时,x的取值范围是________;20.若点C是线段AB的黄金分割点且AC>BC,则AC=_____AB(用含无理数式子表示).21.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是__________________________.22.如图,直线l经过⊙O的圆心O,与⊙O交于A、B两点,点C在⊙O上,∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q,且PQ=OQ,则满足条件的∠OCP的大小为_______.23.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为35,则袋中共有小球_____只. 24.已知圆锥的侧面积为20πcm 2,母线长为5cm ,则圆锥底面半径为______cm . 25.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为_______米.26.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 … y…61-2-3-2m…下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,; ④=3m -.其中,正确的有___________________. 27.如图,将二次函数y =12(x -2)2+1的图像沿y 轴向上平移得到一条新的二次函数图像,其中A (1,m ),B (4,n )平移后对应点分别是A′、B′,若曲线AB 所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.28.已知二次函数y =3x 2+2x ,当﹣1≤x ≤0时,函数值y 的取值范围是_____.29.如图,在△ABC 中,AC :BC :AB =3:4:5,⊙O 沿着△ABC 的内部边缘滚动一圈,若⊙O 的半径为1,且圆心O 运动的路径长为18,则△ABC 的周长为_____.30.若二次函数24y x x =-的图像在x 轴下方的部分沿x 轴翻折到x 轴上方,图像的其余部分保持不变,翻折后的图像与原图像x 轴上方的部分组成一个形如“W ”的新图像,若直线y =-2x +b 与该新图像有两个交点,则实数b 的取值范围是__________三、解答题31.我们定义:如果圆的两条弦互相垂直,那么这两条弦互为“十字弦”,也把其中的一条弦叫做另一条弦的“十字弦”.如:如图,已知O 的两条弦AB CD ⊥,则AB 、CD 互为“十字弦”,AB 是CD 的“十字弦”,CD 也是AB 的“十字弦”.(1)若O 的半径为5,一条弦8AB =,则弦AB 的“十字弦”CD 的最大值为______,最小值为______. (2)如图1,若O 的弦CD 恰好是O 的直径,弦AB 与CD 相交于H ,连接AC ,若12AC =,7DH =,9CH =,求证:AB 、CD 互为“十字弦”;(3)如图2,若O 的半径为5,一条弦8AB =,弦CD 是AB 的“十字弦”,连接AD ,若60ADC ∠=︒,求弦CD 的长.32.如图,以AB 边为直径的⊙O 经过点P ,C 是⊙O 上一点,连结PC 交AB 于点E ,且∠ACP =60°,PA =PD .(1)试判断PD 与⊙O 的位置关系,并说明理由; (2)若点C 是弧AB 的中点,已知AB =4,求CE •CP 的值.33.如图1,水平放置一个三角板和一个量角器,三角板的边AB 和量角器的直径DE 在一条直线上,∠ACB=90°,∠BAC=30°,OD=3cm ,开始的时候BD=1cm ,现在三角板以2cm/s 的速度向右移动.(1)当点B于点O重合的时候,求三角板运动的时间;(2)三角板继续向右运动,当B点和E点重合时,AC与半圆相切于点F,连接EF,如图2所示.①求证:EF平分∠AEC;②求EF的长.34.已知二次函数y=a2x−4x+c的图象过点(−1,0)和点(2,−9),(1)求该二次函数的解析式并写出其对称轴;(2)当x满足什么条件时,函数值大于0?(不写求解过程),35.(问题呈现)阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,点M是ABC的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=DB+BA.下面是运用“截长法”证明CD=DB+BA的部分证明过程.证明:如图2,在CD上截取CG=AB,连接MA、MB、MC和MG.∵M是ABC的中点,∴MA=MC①又∵∠A=∠C②∴△MAB≌△MCG③∴MB=MG又∵MD⊥BC∴BD=DG∴AB+BD=CG+DG即CD=DB+BA根据证明过程,分别写出下列步骤的理由:①,②,③;(理解运用)如图1,AB 、BC 是⊙O 的两条弦,AB =4,BC =6,点M 是ABC 的中点,MD ⊥BC 于点D ,则BD = ;(变式探究)如图3,若点M 是AC 的中点,(问题呈现)中的其他条件不变,判断CD 、DB 、BA 之间存在怎样的数量关系?并加以证明.(实践应用)根据你对阿基米德折弦定理的理解完成下列问题:如图4,BC 是⊙O 的直径,点A 圆上一定点,点D 圆上一动点,且满足∠DAC =45°,若AB =6,⊙O 的半径为5,求AD 长.四、压轴题36.如图,已知AB 是⊙O 的直径,AB =8,点C 在半径OA 上(点C 与点O 、A 不重合),过点C 作AB 的垂线交⊙O 于点D ,连结OD ,过点B 作OD 的平行线交⊙O 于点E 、交射线CD 于点F .(1)若ED =BE ,求∠F 的度数:(2)设线段OC =a ,求线段BE 和EF 的长(用含a 的代数式表示); (3)设点C 关于直线OD 的对称点为P ,若△PBE 为等腰三角形,求OC 的长. 37.某校网球队教练对球员进行接球训练,教练每次发球的高度、位置都一致.教练站在球场正中间端点A 的水平距离为x 米,与地面的距离为y 米,运行时间为t 秒,经过多次测试,得到如下部分数据: t 秒 0 1.5 2.5 4 6.5 7.5 9 … x 米 0 4 8 10 12 16 20 … y 米24.565.8465.844.562…(2)网球落在地面时,与端点A 的水平距离是多少? (3)网球落在地面上弹起后,y 与x 满足(256y a x k =-+①用含a 的代数式表示k ;②球网高度为1.2米,球场长24米,弹起后是否存在唯一击球点,可以将球沿直线扣杀到A 点,若有请求出a 的值,若没有请说明理由.38.如图1,已知菱形ABCD 的边长为23,点A 在x 轴负半轴上,点B 在坐标原点.点D 的坐标为(−3,3),抛物线y=ax 2+b(a≠0)经过AB 、CD 两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD 以每秒1个单位长度的速度沿x 轴正方向匀速平移(如图2),过点B 作BE ⊥CD 于点E,交抛物线于点F,连接DF.设菱形ABCD 平移的时间为t 秒(0<t<3.....) ①是否存在这样的t ,使DF=7FB?若存在,求出t 的值;若不存在,请说明理由; ②连接FC,以点F 为旋转中心,将△FEC 按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x .轴与..抛物线在....x .轴上方的部分围成的图形中............(.包括边界....).时,求t 的取值范围.(直接写出答案即可) 39.如图,已知抛物线234y x bx c =++与坐标轴交于A 、B 、C 三点,A 点的坐标为(1,0)-,过点C 的直线334y x t=-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH OB ⊥于点H .若5PB t =,且01t <<.(1)点C 的坐标是________,b =________; (2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与COQ 相似?若存在,直接写出所有t 的值;若不存在,说明理由. 40.如图,在边长为5的菱形OABC 中,sin∠AOC=45,O 为坐标原点,A 点在x 轴的正半轴上,B ,C 两点都在第一象限.点P 以每秒1个单位的速度沿O→A→B→C→O 运动一周,设运动时间为t (秒).请解答下列问题:(1)当CP⊥OA时,求t的值;(2)当t<10时,求点P的坐标(结果用含t的代数式表示);(3)以点P为圆心,以OP为半径画圆,当⊙P与菱形OABC的一边所在直线相切时,请直接写出t的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】直接利用圆内接四边形的对角互补计算∠C的度数.【详解】∵四边形ABCD内接于⊙O,∠A=400,∴∠C=1800-400=1400,故选D.【点睛】此题考查圆内接四边形的性质,解题关键在于利用圆内接四边形的对角互补2.C解析:C【解析】【分析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.【详解】解:∵y=2(x-1)2+3的顶点坐标为(1,3),y=2x2的顶点坐标为(0,0),∴将抛物线y=2x2向右平移1个单位,再向上平移3个单位,可得到抛物线y=2(x-1)2+3故选:C.【点睛】本题考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标.解析:A【解析】【分析】方差的大小反映数据的波动大小,方差越小,数据越稳定,根据题意可判断乙的数据比甲稳定,所以乙的方差小于甲.【详解】解:由题意可知,乙的数据比甲稳定,所以2S 甲>2S 乙故选:A【点睛】本题考查方差的定义与意义,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 4.B解析:B【解析】试题解析:∵底面半径为3cm ,∴底面周长6πcm ∴圆锥的侧面积是12×6π×5=15π(cm 2), 故选B . 5.B解析:B【解析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为85,88,90,90,90,92,95,∴中位数是按从小到大排列后第4个数为:90.众数是在一组数据中,出现次数最多的数据,这组数据中90出现三次,出现的次数最多,故这组数据的众数为90.故选B .6.A解析:A【解析】∵堤坝横断面迎水坡AB 的坡比是1,∴BCAC ,∵BC=50,∴,∴100==(m ).故选A 7.C解析:C【分析】①根据函数图像的拐点是运动规律的变化点由图象即可判断.②设AB CD acm ==,BC AD bcm ==,由函数图像利用△EBF 面积列出方程组即可解决问题.③由 2.5BS k =,1.5SD k =,得53BS SD =,设3SD x =,5BS x =,在RT ABS ∆中,由222AB AS BS +=列出方程求出x ,即可判断.④求出BS 即可解决问题.【详解】解:函数图像的拐点时点运动的变化点根据由图象可知点E 运动到点S 时用了2.5秒,运动到点D 时共用了4秒.故①正确.设AB CD acm ==,BC AD bcm ==, 由题意,1··( 2.5)721·(4)42a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩ 解得46a b =⎧⎨=⎩, 所以4AB CD cm ==,6BC AD cm ==,故②正确,2.5BS k =, 1.5SD k =, ∴53BS SD =,设3SD x =,5BS x =, 在Rt ABS ∆中,222AB AS BS +=,2224(63)(5)x x ∴+-=,解得1x =或134-(舍), 5BS ∴=,3SD =,3AS =,3sin 5AS ABS BS ∴∠==故③错误, 5BS =,5 2.5k ∴=,2/k cm s ∴=,故④正确,故选:C .【点睛】本题考查二次函数综合题、锐角三角函数、勾股定理、三角形面积、函数图象问题等知识,读懂图象信息是解决问题的关键,学会设未知数列方程组解决问题,把问题转化为方程去思考,是数形结合的好题目,属于中考选择题中的压轴题.8.C解析:C【解析】根据三角形的内角和定理和等腰三角形等边对等角求得∠O的度数,再进一步根据圆周角定理求解.【详解】解:∵OA=OB,∠ABO=35°,∴∠BAO=∠ABO=35°,∴∠O=180°-35°×2=110°,∴∠C=12∠O=55°.故选:C.【点睛】本题考查三角形的内角和定理、等腰三角形的性质,圆周角定理.能理解同弧所对的圆周角等于圆心角的一半是解决此题的关键.9.C解析:C【解析】【分析】如图,作直径BD,连接CD,根据圆周角定理得到∠D=∠BAC=30°,∠BCD=90°,根据直角三角形的性质解答.【详解】如图,作直径BD,连接CD,∵∠BDC和∠BAC是BC所对的圆周角,∠BAC=30°,∴∠BDC=∠BAC=30°,∵BD是直径,∠BCD是BD所对的圆周角,∴∠BCD=90°,∴BD=2BC=4,故选:C.【点睛】本题考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角;90°圆周角所对的弦是直径;熟练掌握圆周角定理是解题关键.10.B解析:B【解析】将x=2代入方程即可求得k 的值,从而得到正确选项.【详解】解:∵一元二次方程x 2-3x+k=0的一个根为x=2,∴22-3×2+k=0,解得,k=2,故选:B .【点睛】本题考查一元二次方程的解,解题的关键是明确一元二次方程的解一定使得原方程成立.11.D解析:D【解析】【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】2890x x ++=,289x x +=-,2228494x x ++=-+,所以()247x +=,故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键. 12.B解析:B【解析】【分析】针扎到内切圆区域的概率就是内切圆的面积与外切圆面积的比.【详解】解:∵如图所示的正三角形,∴∠CAB =60°,∴∠OAB =30°,∠OBA =90°,设OB =a ,则OA =2a ,则小球落在小⊙O 内部(阴影)区域的概率为()22142a a ππ=. 故选:B .【点睛】本题考查了概率问题,掌握圆的面积公式是解题的关键.13.D解析:D【解析】【分析】作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=12|k|,所以S=2k,为定值.【详解】作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.∵S△POB=12|k|,∴S=2k,∴S的值为定值.故选D.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.14.D解析:D【解析】【分析】先证明△ABD为等腰直角三角形得到∠ABD=45°,BD2AB,再证明△CBD为等边三角形得到BC=BD2AB,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,从而得到下面圆锥的侧面积.【详解】∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BDAB,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BDAB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,×1.故选D.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰直角三角形和等边三角形的性质.15.C解析:C【解析】【分析】首先根据表中的x、y的值确定抛物线的对称轴,然后根据对称性确定m的值即可.【详解】解:观察表格发现该二次函数的图象经过点(12,﹣74)和(32,﹣74),所以对称轴为x=13222+=1,∵511122⎛⎫-=--⎪⎝⎭,∴点(﹣12,m)和(52,14)关于对称轴对称,∴m=14,故选:C.【点睛】本题考查了二次函数的图象与性质,解题的关键是通过表格信息确定抛物线的对称轴.二、填空题16.【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正解析:2 3π【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正六边形内接于O,∴∠BOA=∠AOC=60°,OA=OB=OC=4,∴∠BOC=120°,OD⊥BC,BD=CD∴∠OCB=∠OBC=30°,∴OD=1122OB OA DA ,∵∠CDA=∠BDO,∴△CDA≌△BDO,∴S△CDA=S△BDO,∴图中涂色部分的面积等于扇形AOB的面积为:26022 3603ππ⨯=.故答案为:23π.【点睛】本题考查圆的内接正多边形的性质,根据圆的性质结合正六边形的性质将涂色部分转化成扇形面积是解答此题的关键.17.3【解析】【分析】首先设应在该盒子中再添加红球x个,根据题意得:,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x个,根据题意得:,解得:x=3,经检验,x=3是原分解析:3【解析】【分析】首先设应在该盒子中再添加红球x个,根据题意得:12123xx+=++,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x个,根据题意得:12123xx+=++,解得:x=3,经检验,x=3是原分式方程的解.故答案为:3.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.18.5【解析】【分析】先确定外接圆的半径是AB,圆心在AB的中点,再计算AB的长,由此求出外接圆的半径为5.【详解】∵在△ABC中,∠C=90°,∴△ABC外接圆直径为斜边AB、圆心是AB的解析:5【解析】【分析】先确定外接圆的半径是AB,圆心在AB的中点,再计算AB的长,由此求出外接圆的半径为5.【详解】∵在△ABC中,∠C=90°,∴△ABC外接圆直径为斜边AB、圆心是AB的中点,∵∠C=90°,AC=6,BC=8,∴2222AB AC BC,6810∴△ABC外接圆半径为5.故答案为:5.【点睛】此题考查勾股定理的运用、三角形外接圆的确定.根据圆周角定理,直角三角形的直角所对的边为直径,即可确定圆的位置及大小.19.-1<x<2【解析】【分析】根据方程的解确定抛物线与x轴的交点坐标,即可确定y<0时,x的取值范围. 【详解】由题意得:二次函数y=x2+mx+n与x轴的交点坐标为(-1,0),(2,0),解析:-1<x<2【解析】【分析】根据方程的解确定抛物线与x轴的交点坐标,即可确定y<0时,x的取值范围.【详解】由题意得:二次函数y=x2+mx+n与x轴的交点坐标为(-1,0),(2,0),>,开口向上,∵a=10∴y<0时,x的取值范围是-1<x<2.【点睛】此题考查二次函数与一元二次方程的关系,函数图象与x轴的交点横坐标即为一元二次方程的解,掌握两者的关系是解此题的关键.20.【解析】【分析】直接利用黄金分割的定义求解.【详解】解:∵点C是线段AB的黄金分割点且AC>BC,∴AC=AB.故答案为:.【点睛】本题考查了黄金分割的定义,点C是线段AB的黄金分【解析】【分析】直接利用黄金分割的定义求解.【详解】解:∵点C是线段AB的黄金分割点且AC>BC,∴AC=12AB.故答案为:12.【点睛】本题考查了黄金分割的定义,点C是线段AB的黄金分割点且AC>BC,则12ACBC=,正确理解黄金分割的定义是解题的关键.21.50(1﹣x)2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.解析:50(1﹣x)2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.22.40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠解析:40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°23.【解析】【分析】直接利用概率公式计算.【详解】解:设袋中共有小球只,根据题意得,解得x=10,经检验,x=10是原方程的解,所以袋中共有小球10只.故答案为10.【点睛】此题主解析:【解析】【分析】直接利用概率公式计算.【详解】解:设袋中共有小球只,根据题意得635x,解得x=10,经检验,x=10是原方程的解,所以袋中共有小球10只.故答案为10.【点睛】此题主要考查概率公式,解题的关键是熟知概率公式的运用.24.4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积解析:4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积是20πcm2,根据圆锥的侧面展开扇形的弧长为:2405S l r π===8π, 再根据锥的侧面展开扇形的弧长等于圆锥的底面周长, 可得822l r πππ===4cm . 故答案为:4.【点睛】 本题考查圆锥的计算,掌握公式正确计算是解题关键.25.10【解析】【分析】根据铅球落地时,高度,把实际问题可理解为当时,求x 的值即可.【详解】解:当时,,解得,(舍去),.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自解析:10【解析】【分析】根据铅球落地时,高度0y =,把实际问题可理解为当0y =时,求x 的值即可.【详解】解:当0y =时,212501233y x x =-++=, 解得,2x =-(舍去),10x =.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键.26.①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y =ax2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛解析:①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;∴①抛物线y=ax2+bx+c(a≠0)的顶点为(2,-3),结论正确;②b2﹣4ac=0,结论错误,应该是b2﹣4ac>0;③关于x的方程ax2+bx+c=﹣2的解为x1=1,x2=3,结论正确;④m=﹣3,结论错误,∴其中,正确的有. ①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.27.y=0.5(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC解析:y=0.5(x-2)2+5【解析】解:∵函数y=12(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=12(1﹣2)2+1=112,n=12(4﹣2)2+1=3,∴A(1,112),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,112),∴AC=4﹣1=3.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=3AA′=12,∴AA′=4,即将函数y=12(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=12(x﹣2)2+5.故答案为y=0.5(x﹣2)2+5.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题的关键.28.﹣≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y=3x2+2x=3(x+)2﹣,∴函数的对称轴为x=﹣,∴当﹣1≤x≤0时,函数有最解析:﹣13≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y=3x2+2x=3(x+13)2﹣13,∴函数的对称轴为x=﹣13,∴当﹣1≤x≤0时,函数有最小值﹣13,当x=﹣1时,有最大值1,∴y的取值范围是﹣13≤y≤1,故答案为﹣13≤y≤1.【点睛】本题考查二次函数的性质、一般式和顶点式之间的转化,解题的关键是熟练掌握二次函数的性质.29.30【解析】【分析】如图,首先利用勾股定理判定△ABC 是直角三角形,由题意得圆心O 所能达到的区域是△DEG,且与△ABC 三边相切,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ解析:30【解析】【分析】如图,首先利用勾股定理判定△ABC 是直角三角形,由题意得圆心O 所能达到的区域是△DEG ,且与△ABC 三边相切,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ 、FM 、FN ,根据切线性质可得:AG =AH ,PC =CQ ,BN =BM ,DG 、EP 分别垂直于AC ,EQ 、FN 分别垂直于BC ,FM 、DH 分别垂直于AB ,继而则有矩形DEPG 、矩形EQNF 、矩形DFMH ,从而可知DE =GP ,EF =QN ,DF =HM ,DE ∥GP ,DF ∥HM ,EF ∥QN ,∠PEF =90°,根据题意可知四边形CPEQ 是边长为1的正方形,根据相似三角形的判定可得△DEF ∽△ACB ,根据相似三角形的性质可知:DE ∶EF ∶FD =AC ∶CB ∶BA =3∶4∶5,进而根据圆心O 运动的路径长列出方程,求解算出DE 、EF 、FD 的长,根据矩形的性质可得:GP 、QN 、MH 的长,根据切线长定理可设:AG =AH =x ,BN =BM =y ,根据线段的和差表示出AC 、BC 、AB 的长,进而根据AC ∶CB ∶BA =3∶4∶5列出比例式,继而求出x 、y 的值,进而即可求解△ABC 的周长.【详解】∵AC ∶CB ∶BA =3∶4∶5,设AC =3a ,CB =4a ,BA =5a (a >0)∴()()()222222=345AC CB a a a BA ++==∴△ABC 是直角三角形,设⊙O 沿着△ABC 的内部边缘滚动一圈,如图所示,连接DE 、EF 、DF ,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ 、FM 、FN ,根据切线性质可得:AG =AH ,PC =CQ ,BN =BMDG 、EP 分别垂直于AC ,EQ 、FN 分别垂直于BC ,FM 、DH 分别垂直于AB ,∴DG ∥EP ,EQ ∥FN ,FM ∥DH ,∵⊙O 的半径为1∴DG =DH =PE =QE =FN =FM =1,则有矩形DEPG 、矩形EQNF 、矩形DFMH ,∴DE =GP ,EF =QN ,DF =HM ,DE ∥GP ,DF ∥HM ,EF ∥QN,∠PEF =90°又∵∠CPE =∠CQE =90°, PE =QE =1∴四边形CPEQ 是正方形,∴PC =PE =EQ =CQ =1,∵⊙O的半径为1,且圆心O运动的路径长为18,∴DE+EF+DF=18,∵DE∥AC,DF∥AB,EF∥BC,∴∠DEF=∠ACB,∠DFE=∠ABC,∴△DEF∽△ABC,∴DE:EF:DF=AC:BC:AB=3:4:5,设DE=3k(k>0),则EF=4k,DF=5k,∵DE+EF+DF=18,∴3k+4k+5k=18,解得k=32,∴DE=3k=92,EF=4k=6,DF=5k=152,根据切线长定理,设AG=AH=x,BN=BM=y,则AC=AG+GP+CP=x+92+1=x+5.5,BC=CQ+QN+BN=1+6+y=y+7,AB=AH+HM+BM=x+152+y=x+y+7.5,∵AC:BC:AB=3:4:5,∴(x+5.5):(y+7):(x+y+7.5)=3:4:5,解得x=2,y=3,∴AC=7.5,BC=10,AB=12.5,∴AC+BC+AB=30.所以△ABC的周长为30.故答案为30.【点睛】本题是一道动图形问题,考查切线的性质定理、相似三角形的判定与性质、矩形的判定与性质、解直角三角形等知识点,解题的关键是确定圆心O的轨迹,学会作辅助线构造相似三角形,综合运用上述知识点.30.【解析】【分析】。
2014~2015学年度第一学期期末考试九年级数学试卷答案
2014——2015学年度第一学期期末测试九 年 级 数 学参考答案一、选择题:本大题共 小题,每小题 分,共 分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的代号填入题后括号内.. . .C . . . . . . . 二、填空题:本大题共 小题,每小题 分,共 分.请把最后结果填在题中横线上.. . . .52 .277.( , ) .- < < .②④三、解答题:本大题共 小题,共 分.解答时应写出文字说明、证明过程或演算步骤..(本小题满分 分)每图 分 .(本小题满分 分)解:由表可以看出,随机地摸取一个小球然后放回,再随机地摸出一个小球,可能出现的结果有 个,它们出现的可.能性相等.………… 分( )满足两次取的小球的标号相同的结果有 个,所以 ( ) 164 41.…… 分( )满足两次取的小球的标号的和等于 的结果有 个,所以 ( ) 163.… 分.(本小题满分 分)( ) π ( 分) ( )( 分)( )③( 分) .(本小题满分 分)证明:连接 .……………………………………………… 分 , .……………………… 分 切 于点 , .…………………… 分,,即 + , ∥ ,…………………………………………… 分 ,…………………………… 分 平分∠ .…………………………………… 分.(本小题满分 分)解:设所围成圆锥的底面半径和高分别为 和 .∵扇形半径为 ㎝,圆心角为 °, 12032180r ππ⋅⋅=,…………………………………………………………………… 分BCDO.(第,…………………………………………………………………………………… 分h ==.………………………………………………………………… 分.(本小题满分 分)解:( )令 ,得2230x x --=,……………………………………………………… 分解得 , - ,……………………………………………………………… 分 ∴抛物线与 轴交点坐标为( , )和(- , ).…………………………… 分 ( )令 ,得 - ,∴抛物线与 轴交点坐标为( ,- ),………………………………………… 分 ∴将此抛物线向上平移 个单位后可以经过原点.…………………………… 分 平移后抛物线解析式为22y x x =-.……………………………………… 分.(本小题满分 分)( )证明: , , , ,…………… 分 .……………………………………………………………… 分( )解: ,AD DEEF FC=.………………………… 分 , , , 52.…………………………………… 分, , 四边形 是平行四边形, ,…… 分 52 152.……………………………………………………… 分.(本小题满分 分)( )证明: 四边形 是正方形, , .…分, , ,…………………………… 分 ,…………………………………………………………………… 分 .…………………………………………………………………… 分 ( )解: 正方形的边长为 , x , -x . , DA AEEB BF=,…………………………………………… 分 44x x y =-, 2(4)144x x y x x -==-+,………………………………… 分.(本小题满分 分) 解:( )由题意得1060xy -=.………………………………………………………… 分( )由题意得1200040101)200)(1060()200(2++-=+-=+=x x x x x y z . 分 ( )由题意得)1060(201200040101202xx x y z w --++-=-=10800421012++-=x x .………………………………………… 分当每个房间的定价2102=-=abx (元)时, 有最大值,最大值是 .………分.(本小题满分 分)解:( )∵点 坐标为( , ),∴ .∵矩形 面积为 ,∴ ,…… 分∴抛物线的对称轴为直线 .………………………………………………… 分 ( ) , , ,MOMD MD AM =, MO AM MD ⋅=2.设 ,则 - . )3(4-=x x , 41=x ,12-=x , , 点坐标为( , ).… 分设抛物线的解析式为4)2(2+-=x a y . 将点 ( , )代入得443+=a , 41-=a , 抛物线的解析式为4)2(412+--=x y .…………………………… 分 ( )∵⊙ 在 轴上截得线段长为 , , 点纵坐标为 或 .…… 分在4)2(412+--=x y 中,令 或 得 4)2(4122+--=x 或4)2(4142+--=x ,……………………………… 分解得2221+=x ,2222-=x ,23=x ,点坐标为(222+, )、(222-, )或( , ).……………… 分。
苏科版2014-2015年九年级上学期期末考试名校联考数学试题及答案
苏科版2014~2015年九年级上学期期末考试名校联考数学试题时间120分钟满分130分2015、2、17一、选择题(每题3分,共30分.)1.一元二次方程x2-x-2=0的解是…………………………………………………().A.x1=1,x2=2 B.x1=1,x2=-2 C.x1=-1,x2=-2 D.x1=-1,x2=2 2.已知点A在半径为r的⊙O内,点A与点O的距离为6,则r的取值范围是…………().A.r> 6 B.r≥ 6 C.r< 6 D.r≤ 6 3.如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔60海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为………………………………………………………………………………().A.302海里 B.303海里 C.60海里 D.306海里4.某机械厂七月份生产零件50万个,第三季度共生产零件196万个,设该厂八、九月份平均每月的增长率为x,那么x满足的方程是……………………………………………().A.50(1+x)2=196 B.50+50(1+x)2=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196 5.学校组织才艺表演比赛,前6名获奖.有13位同学参加比赛且他们所得的分数互不相同.某同学知道自己的比赛分数后,要判断自己能否获奖,在这13名同学成绩的统计量中只需知道一个量,它是……………………………………………………………………………().A.众数 B.方差 C.中位数 D.平均数6.如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为6m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是………………………………………().A.AB=12m B.MN∥AB C.△CMN∽△CAB D.CM∶MA=1∶2 7.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列有4个结论:①b2-4ac>0;②abc<0;③b<a+c;④4a+b=1,其中正确的结论为……………………().A.①② B.①②③ C.①②④ D.①③④(第9题) 8.如图,⊙O 的半径为1,△ABC 是⊙O 的内接等边三角形,点D 、E 在圆上,四边形BCDE 为矩形,这个矩形的面积是……………………………………………………………( ).A .2B . 3C . 32D . 329.如图,点A (a ,b )是抛物线y =12x 2上位于第二象限的一动点,OB ⊥OA交抛物线于点B (c ,d ).当点A 在抛物线上运动的过程中,以下结论: ①ac 为定值;②ac =-bd ;③△AOB 的面积为定值;④直线AB 必过一定点.其中正确的结论有………………………………………( ). A .4个 B .3个 C .2个 D .1个10.现定义一种变换:对于一个由任意5个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1.例如序列S 0:(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2).则下面序列可以作为S 1的是……………………………………………………( ).A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2)二、填空题(每题2分,共16分.)11.抛物线y =x 2-2x +3的顶点坐标是 .12.将“定理”的英文单词theorem 中的7个字母分别写在7张相同的卡片上,字面朝下洗匀后放在桌子上,任取一张,那么取到字母e 的概率为 .13.已知命题“关于x 的一元二次方程x 2+bx +14=0,当b <0时必有实数解”,能说明这个命题是假命题的一个反例可以是 . 14.如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为 .15.如图,添加一个条件: ,使△ADE ∽△ACB .16.已知y 是关于x 的函数,函数图象如图所示,则当y >0时,自变量x 的取值范围是 .(第7题)(第8题)(第3题)(第6题)(第17题)(第18题)C17.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,⊙O 为△ABC 的内切圆,点D 是斜边AB 的中点,则tan ∠ODA 等于 .18.如图,在Rt △ABC 中,∠B=90°, sin ∠BAC =13,点D 是AC 上一点,且BC =BD=2,将Rt △ABC 绕点C 旋转到Rt △FEC 的位置,并使点E 在射线BD 上,连接AF 交射线BD 于点G ,则AG 的长为 .三、解答题(本大题共10小题,共84分.)19.(本题8分)解方程:(1) (4x -1)2-9=0 (2) x 2-3x -2=020.(本题8分)如图,在△ABC 中,AB =AC =5,BC =6,P 是BC 上一点,且BP =2,将一个大小与∠B 相等的角的顶点放在P 点,然后将这个角绕P 点转动,使角的两边始终分别与AB 、AC 相交,交点为D 、E . (1)求证△BPD ∽△CEP .(2)是否存在这样的位置,使PD ⊥DE ?若存在,求出BD 的长; 若不存在,说明理由.(第14题)(第15题)(第16题)A BCDE O 21.(本题8分)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线.(2)若圆心O到弦DB的距离为1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)22.(本题8分)2014年12月31日晚23时35分许,上海外滩陈毅广场发生拥挤踩踏事故.为了排除安全隐患,因此无锡市政府决定改造蠡湖公园的一处观景平台.如图,一平台的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使平台更加牢固,欲改变平台的坡面,使得坡面的坡角∠ADB=50°,则此时应将平台底部向外拓宽多少米?(结果保留到0.01米)(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)23.(本题8分)有七张除所标数值外完全相同的卡片,把所标数值分别为-2、-1、3、4的四张卡片放入甲袋,把所标数值分别为-3、0、2的三张卡片放入乙袋.现在先后从甲、乙两袋中各随机取出一张卡片,按照顺序分别用x、y表示取出的卡片上标的数值,并把x、y分别作为点A的横坐标、纵坐标.(1)请用树状图或列表法写出点A(x,y)的所有情况.(2)求点A属于第一象限的点的概率.24.(本题8分)学校冬季趣味运动会开设了“抢收抢种”项目,八(5)班甲、乙两个小组都想代表班级参赛,为了选择一个比较好的队伍,八(5)班的班委组织了一次选拔赛,甲、乙两组各10人的比赛成绩如下表:甲组7 8 9 7 10 10 9 10 10 10乙组10 8 7 9 8 10 10 9 10 9甲组成绩的中位数是分,乙组成绩的众数是分.(2)计算乙组的平均成绩和方差.(3)已知甲组成绩的方差是1.4,则选择组代表八(5)班参加学校比赛.25.(本题8分)在“美化校园”活动中,某兴趣小组想借助如图所示的直角墙角(两边DA、DC足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB、BC两边),设AB=x (m).(1)若花园的面积为192m2,求x的值.(2)若在P处有一棵树与墙DC、DA的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细).求花园面积S的最大值.26.(本题8分)如图,矩形OABC在平面直角坐标系xoy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O、A两点,直线AC交抛物线于点D(1,n).(1)求抛物线的函数表达式.(2)若点M在抛物线上,点N在x轴上,是否存在以点A、D、M、N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.27.(本题10分)如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm.动点P、Q分别从点A、点B同时出发,相向而行,速度都为1cm/s.以AP为一边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设运动时间为t (0≤t≤2,单位:s),正方形APDE 和梯形BCFQ重合部分的面积为S (cm2) .(1)当t= s时,点P与点Q重合.(2)当t= s时,点D在QF上.(3)当点P在Q,B两点之间(不包括Q,B两点)时,求S与t之间的函数表达式.28.(本题10分)木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径.(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x<1),当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.答案及评分标准一、选择题:(本大题共10小题,每小题3分,共30分.)1.D 2.A 3. A 4. C 5. C 6 . D 7. B 8.B 9. B 10. D 二、填空题:(本大题共8小题,每小题2分,共16分.)11.(1,2) 12.27 13.当b =-12时,方程无解(答案不唯一) 14.300π15.∠AED =∠B (答案不唯一) 16.x <-1或1<x <2 17.2 18.143三、解答题:(本大题共10小题,共84分.)19.(1) (4x -1)2-9=0 (2)x 2―3x ―2=0 4x -1=±3 ……… 2分 Δ=17 ………2分x 1=1,x 2=-12 ……… 4分 x 1=3+172,x 2=3-172……4分 20.解:(1)∵AB =AC ∴∠B =∠C ……………………1分∵∠DPC =∠DPE +∠EPC =∠B +∠BDP ……2分 ∴∠EPC =∠BDP …………………………3分 ∴△ABD ∽△DCE ……………………………4分 (2)作AH ⊥BC在Rt △ABH 和Rt △PDE 中 ∴cos ∠ABH =cos ∠DPE =BH AB =PD PE =35………………… 6分 ∴PD PE =BD PC =35 又∵PC =4 ∴BD =125……………8分 21.(1)证明:连接OD ∵BC 是⊙O 的切线 ∴∠ABC =90°………………1分∵CD =CB ,OB =OD ∴∠CBD =∠CDB ,∠OBD =∠ODB ……………2分 ∴∠ODC =∠ABC =90°即OD ⊥CD ∴CD 为⊙O 的切线 ……………4分 (2)解:作OF ⊥DB ,在Rt △OBF 中,∵∠ABD =30°,OF =1, ∴∠BOF =60°,OB =2,BF = 3 ……… 5分H……3分∵OF ⊥BD , ∴BD =2BF =23, ∠BOD =2∠BOF =120° …………6分 ∴S 阴影=43π-3. …………………………………………………………8分22.解:过A 点作AE ⊥CD 于E .在Rt △ABE 中,∠ABE =62°.∴AE =AB •sin62°=25×0.88=22米, ……2分 BE =AB •cos62°=25×0.47=11.75米,………4分 在Rt △ADE 中,∠ADB =50°, ∴DE =AE tan50°=553…………………6分 ∴DB =DC -BE ≈6.58米.………………7分 答:向外拓宽大约6.58米. ……………8分23.(1)-2 -1 3 4 -3 (-2, -3) (-1, -3) (3, -3) (4, -3) 0 (-2, 0) (-1, 0) (3, 0) (4, 0) 2(-2, 2)(-1, 2)(3, 2)(4, 2)∴如表所示,所有情况共有12种 …………………………………………………4分(2)因为属于第一象限的点的坐标有(3, 2)和(4, 2)共2种,…………………………6分所以概率P =16 ……………………………………………………………………8分24.(1)9.5 10 ……2分 (2)x —=9,方差=1 ……6分 (3)乙 ……8分 25.(1)根据题意,得x (28-x )=192 ………………………………………………2分解得x =12或x =16 ………………………………………………3分 ∴x 的值为12m 或16m ………………………………………………4分(2)∵根据题意,得6≤x ≤13 …………………………………………………5分 又∵S =x (28-x )=-(x -14)2+196 ……………………………………………6分∴当x ≤14时,S 随x 的增大而增大所以当x =13时,花园面积S 最大,最大值为195m 2 ……………………………8分 26.解:(1)设抛物线顶点为E ,根据题意OA =4,OC =3,得:E (2,3),………1分则可求得抛物线函数关系式为y=-34(x-2)2+3=-34x2+3x;………………………3分(2)可得点D坐标为(1,94) (4)分存在,分两种情况考虑:①当点M在x轴上方时,如答图1所示:四边形ADMN为平行四边形,DM∥AN,DM=AN,∵DM=2,∴AN=2,∴N1(2,0),N2(6,0)………………………………………6分②当点M在x轴下方时,如答图2所示:过点D作DQ⊥x轴于点Q,过点M作MP⊥x轴于点P,可得△ADQ≌△NMP,∴MP=DQ=94,NP=AQ=3,∴N3(-7-1,0),N4(7-1,0).………………8分27.解:(1)1 ……1分(2)45……2分(3)当1<t≤43时,如图②,设DE交FQ于点H,则重合部分为梯形DHQP可求得:PQ=2t-2,HD=52t-2 ……3分∴S=12(PQ+HD)·DP=12(2t-2+52t-2)·t=94t2-2t(1<t≤43) ……5分当43<t<2时,如图③,设DE交BC于点M,DP交BC于点N,则重合部分为六边形EFQPNM可求得:AQ=2-t,AF=4-2t∴S△FAQ=12AQ·AF=(2-t)2 ………………………………………7分同样可求得:DN=3t-4,DM=12(3t-4)初三数学期终试卷2015.2 第 11 页 共 11 页 ∴S △DMN =12 DM ·DN =12 ·12 ( 3t -4 )( 3t -4 )=14( 3t -4 )2………………8分 ∴S =S 正方形APDE -S △FAQ -S △DMN =-94t 2+10t -8……………………9分 综上所述,S =⎩⎪⎨⎪⎧94t 2-2t (1<t ≤43)-94t 2+10t -8(43<t <2) ……………………10分 28.解:(1)方案一中的最大半径为1.………………………2分(2)设半径为r ,方案二:在Rt △O 1O 2E 中, (2r )2=22+(3-2r )2,解得 r =1312 …4分 方案三:∵△AOM ∽△OFN , ∴r3-r =2-r r ,解得r =65…6分 ∵1312<65,∴方案三半径较大 ……………………………………7分 (3)方案四所拼得的图形水平方向跨度为3-x ,竖直方向跨度为2+x .所以所截出圆的直径最大为(3-x )或(2+x )两者之中较小的.……………………………8分当3-x <2+x 时,即当x >12时,r =12(3-x );此时r 随x 的增大而减小,所以r <12(3-12)=54; 当3-x =2+x 时,即当x =12时,r =12(3-12)=54; 当3-x >2+x 时,即当x <12时,r =12(2+x ).此时r 随x 的增大而增大,所以r <12(2+12)=54; ∴方案四,当x =12时,r 最大为54.………………………………………………………………9分 ∵1<1312<65<54, ∴方案四中所得到的圆形桌面的半径最大.……………………………10分。
2014-2015学年九年级上学期期末考试数学试卷
()
1A、. 2方程 x x 2
B. -2,1
2、抛物线 y 2x 3 2 3 的顶点坐标是
C. -1
D. 2,-1 ()
A. 4, 3
B.
32,
3
C.3, 3
D. 3, 3
3、关于 x 的一元二次方程 x2 - 2x a 0 有两个不相等的实数根,则 a 的取值范围是
B.45°
C 均在⊙CO. 上x,6A2BC12 AOC o90 ,则 ()
C.60°
D..给任意实数 n ,得到不同的抛物线 y x2 n ,当 n 0, 1 时,关于这些抛物线有以下
结论:①.开口方向不同;②.对称轴不同;③.都有最低点;④.可以通过一个抛物线平移
秘密★启用前〖考试时间:2014年 1 月 20日上午 9:00-11:00 共 120分钟〗
2014-2015学年九年级上学期期末考试
数学试卷
重新制版:赵化中学 郑宗平
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 150分. 注意事项:
1、答题前,考生务必将自己的姓名、班级、考号(用 0.5毫米的黑色签字笔)填写在答题卡上,并检 查条形码粘贴是否正确.
⑵.当△ ABC 为等腰边三角形时,求b2 4ac 的值.
七、解答题(本题满分 12 分)
23、如图,三角板 ABC 中, ACB 90o 、、 AB 2 A o 30 ,三角板 ABC 绕直角顶点C 顺
时针旋转 90°,得到△ A B1 C1.
求:⑴. A¼ A 1的长;
A
⑵.在这个旋转过程中,三角板 ABC 的边 AC 所扫过的扇形 ACA1 的面积;
不超出答题区域作答. 不折叠答题卡,不用涂改
2014—2015学年度第一学期期末学业质量评估九年级数学试题(含答案)
2014—2015学年度第⼀学期期末学业质量评估九年级数学试题(含答案)九年级数学试题注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页,为选择题,共36分.第Ⅱ卷2页,为⾮选择题,共84分.全卷满分120分,考试时间120分钟.2.答卷前,务必将答题卡上⾯的项⽬填涂清楚.所有答案都必须涂、写在答题卡相应的位置,答在本试卷上⼀律⽆效.第Ⅰ卷⼀、选择题(本题共12⼩题,在每⼩题给出的四个选项中,只有⼀个是正确的,请把正确的选项选出来,每⼩题选对得3分,多选、不选、错选均记零分.)1. 下列说法中正确的是()A. 平分弦的直径垂直于弦,并且平分弦所对的两条弧;B. 圆是轴对称图形,每⼀条直径都是它的对称轴;C. 弦的垂直平分线过圆⼼;D. 相等的圆⼼⾓所对的弧也相等.2. 如图,A、B、P是⊙O上的三点,∠APB=40°,则弧AB的度数为()A.50°B.80°C.280°D.80°或280°3. 如图,在直径为AB的半圆O上有⼀动点P从O点出发,以相同的速度沿O-A-B-O的路线运动,线段OP的长度d与运动时间t之间的函数关系⽤图象描述⼤致是()4. 下列命题中的假命题是()A. 正⽅形的半径等于正⽅形的边⼼距的2倍;B. 三⾓形任意两边的垂直平分线的交点是三⾓形的外⼼;C. ⽤反证法证明命题“三⾓形中⾄少有⼀个内⾓不⼩于60°”时,第⼀步应该“假设每⼀个内⾓都⼩于60°”;D. 过三点能且只能作⼀个圆.5. 如图,⊙O的半径是4,点P是弦AB延长线上的⼀点,连接OP,若OP=6,∠APO=30°,则弦AB的长为()A .27B .7C .5D .526. 如图所⽰,在△ABC 中D 为AC 边上⼀点,若∠DBC =∠A ,BC =3,AC =6,则CD 的长为() A .1 B .2 C .23 D .25 7. 下列⽅程中:①x 2-2x -1=0, ②2x 2-7x +2=0, ③x 2-x +1=0 两根互为倒数有() A. 0个 B. 1个 C. 2个 D. 3个8. ⼀次函数y 1=3x +3与y 2=-2x +8在同⼀直⾓坐标系内的交点坐标为(1,6).则当y 1>y 2时,x 的取值范围是()A. x ≥1B. x =1C. x <1D. x >1 9. 在△ABC 中,若()21cosA 1tanB 02-+-=,则∠C 的度数是() A. 45° B. 60° C. 75° D. 105°10. 如图,热⽓球的探测器显⽰,从热⽓球A 看⼀栋⾼楼顶部B 的仰⾓为30°,看这栋⾼楼底部C 的俯⾓为60°,热⽓球A 与⾼楼的⽔平距离为120m ,这栋⾼楼BC 的⾼度为() A .1603m B .803 m C .()12031- m D .()12031+m11. 已知反⽐例函数y =xk的图像经过点P (-1,2),则这个函数图像位于() A .第⼆、三象限 B .第⼀、三象限 C .第三、四象限 D .第⼆、四象限 12. 已知⼆次函数y =ax 2+bx +c (a ≠0)的图象如图所⽰,有下列4个结论:①abc <0;②b >a +c ;③2a -b =0;④b 2-4ac <0.其中正确的结论个数是() A.1个 B.2个 C.3个 D.4个第Ⅱ卷⼆、填空题(本题共6⼩题,要求将每⼩题的最后结果填写在横线上. 每⼩题3分,满分18分) 13. 已知⼀元⼆次⽅程ax 2+bx +c =0的两根为x 1=2,x 2=-3,则⼆次三项式ax 2+bx +c 可分解因式为 .14. ⊙O 的半径为10cm ,AB ,CD 是⊙O 的两条弦,且AB ∥CD ,AB =16cm ,CD =12cm .则AB 与CD 之间的距离是 cm .15. 如图所⽰,△ABC 中,E 、F 、D 分别是边AB 、AC 、BC 上的点,且满⾜12AE AF EB FC ==,则△EFD 与△ABC 的⾯积⽐为.16. 如图,M 是Rt △ABC 的斜边BC 上异于B 、C 的⼀定点,过M 点作直线MN 截△ABC交AC 于点N ,使截得的△CMN 与△ABC 相似. 已知AB =6,AC =8,CM =4,则CN = .17. ⼀个⾜球从地⾯上被踢出,它距地⾯⾼度y (⽶)可以⽤⼆次函数x x y 6.199.42+-=刻画,其中x (秒)表⽰⾜球被踢出后经过的时间. 则⾜球被踢出后到离开地⾯达到最⾼点所⽤的时间是秒. 18. 在△ABC 中,AB =AC =5,tanB =34.若⊙O 的半径为10,且⊙O 经过点B 、C ,那么线段OA 的长等于 .三、解答题(本题共6⼩题,解答应写出⽂字说明、证明过程或推演步骤. 共66分) 19. (本题满分10分)市某楼盘准备以每平⽅⽶6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资⾦周转,对价格经过两次下调后,决定以每平⽅⽶4 860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某⼈准备以开盘价均价购买⼀套100平⽅⽶的住房,开发商给予以下两种优惠⽅案以供选择:①打9.8折销售;②不打折,⼀次性送装修费每平⽅⽶80元,试问哪种⽅案更优惠?如图,晚上⼩明站在路灯P的底下观察⾃⼰的影⼦时发现,当他站在F点的位置时,在地⾯上的影⼦为BF,⼩明向前⾛2⽶到D 点时,在地⾯上的影⼦为AD,若AB=4⽶,∠PBF=60°,∠PAB=30°,通过计算,求出⼩明的⾝⾼.(结果保留根号).21. (本题满分11分)如图,四边形ABCD内接于⊙O,BC是直径,∠BAD=120°,AB=AD.(1)求证:四边形ABCD是等腰梯形;(2)已知AC=6,求阴影部分的⾯积.如图,在平⾏四边形ABCD 中,过点A 作AE ⊥BC ,垂⾜为E ,连接DE ,F 为线段DE 上⼀点,且∠AFE =∠B .(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求sinB 的值.23. (本题满分12分)已知关于x 的⼀元⼆次⽅程()2kx 4k 1x 3k 30-+++=. (1)试说明:⽆论k 取何值,⽅程总有两个实数根;(2)若△ABC 的两边AB 、AC 的长是⽅程的两个实数根,第三边BC 的长为5. 当△ABC 是等腰三⾓形时,求k 的值.AB是⊙O的直径,AD与⊙O相交,点C是⊙O上⼀点,经过点C的直线交AD于点E.⑴如图1 ,若AC平分∠BAD,CE⊥AD于点E,求证:CE是⊙O的切线;⑵如图2,若CE是⊙O的切线,CE⊥AD于点E,AC是∠BAD的平分线吗?说明理由;⑶如图3,若CE是⊙O的切线,AC平分∠BAD,AB=8,AC=6,求AE的长度.试题答案及评分标准⼀、选择题(每⼩题选对得3分,满分36分. 多选、不选、错选均记零分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBBDACBDCADB⼆、填空题(每⼩题3分,满分18分)13. a (x -2)(x +3) 14. 214或 15. 2:9 16. 1655或17.2 18. 3或5 三、解答题(本题共6⼩题,解答应写出⽂字说明、证明过程或推演步骤.共66分) 19. (本题满分10分)解:解:(1)设平均每次下调的百分率为x ,则6000(1-x )2=4860,解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………6分(2)⽅案1优惠:4860×100×(1-0.98)=9720(元);⽅案2可优惠:80×100=8000(元). 故⽅案1优惠.…………………………10分20. (本题满分10分)解:设⼩明的⾝⾼为x ⽶,则CD =EF =x ⽶.在Rt △ACD 中,∠ADC =90°,tan ∠CAD =ADCD,即tan 30°=x /AD ,AD =3x --2分在Rt △BEF 中,∠BFE =90°,tan ∠EBF =EF /BF ,即tan 60°=x /BF ,BF =x 33---4分由题意得DF =2,∴BD =DF -BF =2-x 33,∵AB =AD +BD =4,∴3x +2-x 33=4 --8分即x =3.答:⼩明的⾝⾼为3⽶.------------------------------------------------------------------------10分 21. (本题满分11分)⑴证明:∵∠BAD =120°,AB =AD ∴∠ABD =∠ADB =30°∴弧AB 和弧AD 的度数都等于60°⼜∵BC 是直径∴弧CD 的度数也是60° ------------------ --------------2分∴AB =CD 且∠CAD =∠ACB =30° ∴BC ∥AD∴四边形ABCD 是等腰梯形. --------------------------------------------------5分⑵∵BC 是直径∴∠BAC =90°∵∠ACB =30°,AC =6 ∴06433cos 230AC BC === 23R = ∵弧AB 和弧AD 的度数都等于60° ∴∠BOD =120° ---------------------------6分连接OA 交BD 于点E ,则OA ⊥BD 在Rt △BOE 中:0sin330OE OB =?=,0cos 330BE OB =?=,BD =2BE =6----------------------------------------------------8分∴()21201-63=4-33360223BOD BOD S S S ??=-=阴影扇形ππ ----------------------------------------------------11分 22. (本题满分11分)⑴证明:∵∠AFE =∠B ,∠AFE 与∠AFD 互补,∠B 与∠C 互补∴∠AFD =∠C --------------------------------------------------2分∵AD ∥BC ∴∠ADF =∠DEC -------------------------------------------4分∴△ADF ∽△DEC ----------------------------------------------------5分⑵解:∵△ADF ∽△DEC ∴AD AFDE CD= ∴63438DE = 解得:DE =12 ----------------------------------------------------7分∵AE ⊥BC , AD ∥BC ∴AE ⊥AD ∴221441086AE DEAD =-=-=----9分在Rt △ABE 中,63sin 84AE B AB === -------------------------------------------------11分 23. (本题满分12分)解:⑴△=()()243341k k k -++ =2216181212k k k k ++--=2441k k -+ =()221k -≥0 --------------------------------------------------4分∴⽆论k 取何值,⽅程总有两个实数根. -------------------------------------------------5分⑵若AB =AC 则⽅程()2kx 4k 1x 3k 30-+++=有两个相等的实数根此时△=0,即:()221k -=0 解得:12k =当12k =时,AB =AC =3,此时AB 、AC 、BC 满⾜三边关系. -------------------------8分若BC =5为△ABC 的⼀腰,则⽅程()2kx 4k 1x 3k 30-+++=有⼀根是5,将5x =代⼊⽅程()2kx 4k 1x 3k 30-+++=解得:14k = 当14k =时,解得⽅程两根为5和3,此时AB 、AC 、BC 满⾜三边关系. ----------11分综上:当△ABC 是等腰三⾓形时,k 的值为1124或. -----------------------------12分24. (本题满分12分)⑴证明:连接OC∵OA =OC ∴∠OAC =∠OCA ∵AC 平分∠BAD ∴∠OCA =∠CAD ∴OC ∥AD∵CE ⊥AD ∴CE ⊥OC -----------------------------------------------3分⼜OC 是半径∴CE 是⊙O 的切线。
2014-2015年江苏省盐城市盐都区九年级(上)期中数学试卷及参考答案
2014-2015学年江苏省盐城市盐都区九年级(上)期中数学试卷一、选择题(本大题共8个小题,每小题3分,共24分,在每小题所给的选项中,只有一项是符合要求的,请将正确选项的字母填在答案卡的相应位置.)1.(3分)一元二次方程x2﹣9=0的根为()A.x=3 B.x=﹣3 C.x1=3,x2=﹣3 D.x1=0,x2=32.(3分)一元二次方程x2﹣6x+4=0的根的情况是()A.有两个不等实根 B.有两个相等实根C.没有根D.无法判断3.(3分)如图,⊙O是△ABC的外接圆,连接OA、OB,∠AOB=80°,则∠C的度数为()A.30°B.40°C.50°D.80°4.(3分)已知关于x的方程x2﹣kx﹣6=0的一个根为x=3,则实数k的值为()A.1 B.﹣1 C.2 D.﹣25.(3分)如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,∠BAC=35°,∠P的度数为()A.35°B.45°C.60°D.70°6.(3分)正六边形的边长为,则它的半径是()A.B.2 C.3 D.27.(3分)矩形ABCD中,AB=8,BC=3,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD为半径的圆,那么下列判断正确的是()A.点B、C均在圆P外 B.点B在圆P外、点C在圆P内C.点B在圆P内、点C在圆P外D.点B、C均在圆P内8.(3分)如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,⊙O2的半径为1,O1O2⊥AB于点P,O1O2=6.若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边只有一个公共点的情况一共出现()A.3次 B.4次 C.5次 D.6次二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接写在答题卡相应的位置上.)9.(3分)方程x2﹣2x=0的解是.10.(3分)若扇形的圆心角是60°扇形半径为6,则弧长为.11.(3分)若一元二次方程2x2﹣2x+m=0有实数根,则m的取值范围是.12.(3分)已知四边形ABCD内接于⊙O,且∠A:∠C=1:2,则∠A=.13.(3分)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O 上,∠ADC=54°,则∠BAC的度数等于.14.(3分)某小区2014年绿化面积为2000平方米,计划2016年绿化面积达到2880平方米,如果每年绿化面积的增长率相同.设平均增长率为x,根据题意列方程得.15.(3分)将多项式x2﹣6x﹣5配方成(x+m)2+n(m,n是常数)的形式为.16.(3分)已知⊙O的直径为6cm,点A在直线l上,且AO=3cm,那么直线l 与⊙O的位置关系是.17.(3分)如图,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从A点出发绕侧面一周,再回到A点的最短的路线长是.18.(3分)如图,已知直线y=﹣x+6与x轴交于点A,与y轴交于点B,点P为x轴上可以移动的点,且点P在点A的左侧,PM⊥x轴,交直线y=﹣x+6于点M,有一个动圆O′,它与x轴、直线PM和直线y=﹣x+6都相切,且在x轴的上方.当⊙O'与y轴也相切时,点P的坐标是.三、解答题(本大题共10小题,共96分,请在答题纸指定区域内作答,解释时写出必要的文字说明,说理步骤或演算步骤.)19.(8分)(1)解方程:x2﹣5x+6=0(2)解方程:x2﹣6=﹣2(x+1)20.(8分)已知:x=1时,代数式3x2﹣2mx﹣1的值等于0.(1)求m的值;(2)当x为何值时,这个代数式的值是﹣1?21.(8分)如图,扇形OAB的圆心角∠AOB=120°,半径OA=6cm,若将此扇形围成一个圆锥的侧面,求圆锥的底面面积的半径.22.(8分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D 点,连接CD.(1)求证:∠A=∠BCD;(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.23.(10分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由.24.(10分)如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA,OB分别在x轴、y轴的正半轴上(OA<OB﹚,且AO,OB的长分别是一元二次方程x2﹣14x+48=0的两个根,线段AB的垂直平分线CD交AB于点C,交x轴于点D,D的坐标为(﹣,0).(1)求A,B两点坐标;(2)求直线CD的函数关系式.25.(10分)已知如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC 边于D,(1)用尺规在AB边上作点O,并以点O为圆心作⊙O,使它过A,D两点(不写作法,保留作图痕迹),并判断直线BC与⊙O的位置关系(不需要说明理由).(2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=2.求线段BD、BE与劣弧DE所围成的图形的面积.(结果保留根号和π)26.(10分)楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y 万元/辆,求y与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价﹣进价)27.(12分)如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A沿边向点B以1cm/s的速度移动;同时,点Q从点B沿边向点C以2cm/s的速度移动.(1)几秒后△PBQ的面积等于8cm2?(2)几秒后DQ⊥PQ?28.(12分)如图,在平面直角坐标系中半径为3的⊙O分别交坐标轴A、B、C、D.圆上点M在第一象限,且∠MOA=30°,点P(a,0)在x轴上,且a>3(1)若直线PM与⊙O相切于点M,如图1,则a=;(2)若直线PM恰好过点B,如图2,求阴影部分的面积;(3)若直线PM与⊙O相交,另一个交点为N①是否存在满足条件的实数a使PM与MN的长相等?若存在,求出a的值;不存在,说明理由;②若N在第一象限内,设y=MN2,求y关于a的函数关系式,并直接写出a的取值范围.2014-2015学年江苏省盐城市盐都区九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,共24分,在每小题所给的选项中,只有一项是符合要求的,请将正确选项的字母填在答案卡的相应位置.)1.(3分)一元二次方程x2﹣9=0的根为()A.x=3 B.x=﹣3 C.x1=3,x2=﹣3 D.x1=0,x2=3【解答】解:x2﹣9=0,(x﹣3)(x+3)=0,x﹣3=0或x+3=0,解得:x1=3,x2=﹣3.故选:C.2.(3分)一元二次方程x2﹣6x+4=0的根的情况是()A.有两个不等实根 B.有两个相等实根C.没有根D.无法判断【解答】解:△=(﹣6)2﹣4×1×4=20>0,所以方程有两个不相等的两个实数根.故选:A.3.(3分)如图,⊙O是△ABC的外接圆,连接OA、OB,∠AOB=80°,则∠C的度数为()A.30°B.40°C.50°D.80°【解答】解:∵⊙O是△ABC的外接圆,∠AOB=80°,∴∠ACB=∠AOB=×80°=40°.故选:B.4.(3分)已知关于x的方程x2﹣kx﹣6=0的一个根为x=3,则实数k的值为()A.1 B.﹣1 C.2 D.﹣2【解答】解:因为x=3是原方程的根,所以将x=3代入原方程,即32﹣3k﹣6=0成立,解得k=1.故选:A.5.(3分)如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,∠BAC=35°,∠P的度数为()A.35°B.45°C.60°D.70°【解答】解:∵PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,∴∠CAP=90°,PA=PB,又∵∠BAC=35°,∴∠PAB=55°,∴∠PBA=∠PAB=55°,∴∠P=180°﹣55°﹣55°=70°.故选:D.6.(3分)正六边形的边长为,则它的半径是()A.B.2 C.3 D.2【解答】解:如图:∵∠AOB=60°,AO=BO,∴△OAB是正三角形,∴OA=AB=,故选:A.7.(3分)矩形ABCD中,AB=8,BC=3,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD为半径的圆,那么下列判断正确的是()A.点B、C均在圆P外 B.点B在圆P外、点C在圆P内C.点B在圆P内、点C在圆P外D.点B、C均在圆P内【解答】解:∵AB=8,点P在边AB上,且BP=3AP,∴AP=2,∴r=PD==7,PC===9,∵PB=6<7,PC=9>7∴点B在圆P内、点C在圆P外故选:C.8.(3分)如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,⊙O2的半径为1,O1O2⊥AB于点P,O1O2=6.若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边只有一个公共点的情况一共出现()A.3次 B.4次 C.5次 D.6次【解答】解:如图,⊙O2与矩形的边只有一个公共点的情况一共出现4次,故选:B.二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接写在答题卡相应的位置上.)9.(3分)方程x2﹣2x=0的解是x1=0,x2=2.【解答】解:x2﹣2x=0,x(x﹣2)=0,则x=0,x﹣2=0,x1=0,x2=2.故答案为:x1=0,x2=2.10.(3分)若扇形的圆心角是60°扇形半径为6,则弧长为2π.【解答】解:依题意,n=60,R=6,∴扇形的弧长l===2π.故答案为:2π.11.(3分)若一元二次方程2x2﹣2x+m=0有实数根,则m的取值范围是.【解答】解:∵方程有实数根,∴△=b2﹣4ac=(﹣2)2﹣4×2×m=4﹣8m≥0,解得:m≤.12.(3分)已知四边形ABCD内接于⊙O,且∠A:∠C=1:2,则∠A=60°.【解答】解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∵∠A:∠C=1:2,∴∠A=180°×=60°.故答案为:60°.13.(3分)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O 上,∠ADC=54°,则∠BAC的度数等于36°.【解答】解:∵∠ABC与∠ADC是所对的圆周角,∴∠ABC=∠ADC=54°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠BAC=90°﹣∠ABC=90°﹣54°=36°.故答案为:36°.14.(3分)某小区2014年绿化面积为2000平方米,计划2016年绿化面积达到2880平方米,如果每年绿化面积的增长率相同.设平均增长率为x,根据题意列方程得2000(1+x)2=2880.【解答】解:设平均增长率为x,根据题意可列出方程为:2000(1+x)2=2880.故答案为:2000(1+x)2=2880.15.(3分)将多项式x2﹣6x﹣5配方成(x+m)2+n(m,n是常数)的形式为(x ﹣3)2﹣14.【解答】解:x2﹣6x﹣5=(x﹣3)2﹣9﹣5=(x﹣3)2﹣14,故答案是:(x﹣3)2﹣14.16.(3分)已知⊙O的直径为6cm,点A在直线l上,且AO=3cm,那么直线l 与⊙O的位置关系是相交或相切.【解答】解:已知⊙O的直径为6cm,则半径为3cm,又已知AO=3cm,所以AO 为半径,则A在⊙O上.当AO⊥L时,有1个公共点,即相切.当圆心O到直线L的距离小于AO时,有2个公共点,即相交.故答案为:相交或相切.17.(3分)如图,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从A点出发绕侧面一周,再回到A点的最短的路线长是3.【解答】解:∵图中扇形的弧长是2π,根据弧长公式得到2π=∴n=120°即扇形的圆心角是120°∴弧所对的弦长是2×3sin60°=318.(3分)如图,已知直线y=﹣x+6与x轴交于点A,与y轴交于点B,点P为x轴上可以移动的点,且点P在点A的左侧,PM⊥x轴,交直线y=﹣x+6于点M,有一个动圆O′,它与x轴、直线PM和直线y=﹣x+6都相切,且在x轴的上方.当⊙O'与y轴也相切时,点P的坐标是(0,0),(12﹣6,0),(﹣6,0).【解答】解:①如图,当⊙O′在y轴的右侧时,MP在圆的左侧,此时点P和点O重合,坐标是(0,0);②当⊙O′在y轴的右侧时,MP在圆的右侧,∵直线y=﹣x+6与x轴交于点A,与y轴交于点B,∴A(6,0),B(0,6),∴OA=OB=6,∴△AOB是等腰直角三角形,连接OC,OD,则四边形O'COD是正方形,∴圆的半径是=6﹣3,则点P的坐标是(12﹣6,0);③当圆在y轴左侧时,设圆的半径是x,如图,则AP=PM=6+2x,连接O'E,O'F,则四边形O'EPF是正方形,∴ME=MS=6+x,BH=BS=6﹣x则根据切线长定理得AM=MS+AS=MS+AF=12+6,∴12+6=(6+2x),∴x=3,则P点的坐标是(﹣6,0).故填空答案:(0,0),(﹣6,0),(12﹣6,0).三、解答题(本大题共10小题,共96分,请在答题纸指定区域内作答,解释时写出必要的文字说明,说理步骤或演算步骤.)19.(8分)(1)解方程:x2﹣5x+6=0(2)解方程:x2﹣6=﹣2(x+1)【解答】解:(1)(x﹣2)(x﹣3)=0,则x﹣2=0,x﹣3=0,故x1=2,x2=3;(2)x2﹣6=﹣2(x+1),x2﹣6=﹣2x﹣2,x2+2x﹣4=0,a=1,b=2,c=﹣4,△=4+16=20,x===﹣1,故x1=﹣1+,x2﹣1﹣.20.(8分)已知:x=1时,代数式3x2﹣2mx﹣1的值等于0.(1)求m的值;(2)当x为何值时,这个代数式的值是﹣1?【解答】解:(1)把x=1代入3x2﹣2mx﹣1=0中可得:3×1﹣2m﹣1=0,解得:m=1;(2)3x2﹣2x﹣1=﹣1,3x2﹣2x=0,x(3x﹣2)=0,x1=0,x2=.21.(8分)如图,扇形OAB的圆心角∠AOB=120°,半径OA=6cm,若将此扇形围成一个圆锥的侧面,求圆锥的底面面积的半径.【解答】解:设圆锥的底面圆的半径为rcm,根据题意得2πr=,解得r=2.答:圆锥的底面圆的半径为2cm.22.(8分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D 点,连接CD.(1)求证:∠A=∠BCD;(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.【解答】(1)证明:∵AC为直径,∴∠ADC=90°,∴∠A+∠DCA=90°,∵∠ACB=90°,∴∠DCB+∠ACD=90°,∴∠DCB=∠A;(2)当MC=MD(或点M是BC的中点)时,直线DM与⊙O相切;解:连接DO,∵DO=CO,∴∠1=∠2,∵DM=CM,∴∠4=∠3,∵∠2+∠4=90°,∴∠1+∠3=90°,∴直线DM与⊙O相切,故当MC=MD(或点M是BC的中点)时,直线DM与⊙O相切.23.(10分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由.【解答】解:(1)△ABC是等腰三角形.理由如下:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)△ABC是直角三角形.理由如下:∵方程有两个相等的实数根,∴△=(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形.24.(10分)如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA,OB分别在x轴、y轴的正半轴上(OA<OB﹚,且AO,OB的长分别是一元二次方程x2﹣14x+48=0的两个根,线段AB的垂直平分线CD交AB于点C,交x轴于点D,D的坐标为(﹣,0).(1)求A,B两点坐标;(2)求直线CD的函数关系式.【解答】解:(1)解方程x2﹣14x+48=0,解得:x1=6,x2=8,则A的坐标是(6,0),B的坐标是(0,8);(2)令CD交y轴于点E,连接AE,设OE=x,∵CD是线段AB的垂直平分线,∴BE=AE=8﹣x,在直角△PBQ中,OE2+AO2=AE2,则62+x2=(8﹣x)2,解得:x=,则E的坐标是(0,).设直线CD的函数解析式是y=kx+b,则﹣k+b=0,b=,∴k=,b=,则函数的解析式是:y=x+.25.(10分)已知如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC 边于D,(1)用尺规在AB边上作点O,并以点O为圆心作⊙O,使它过A,D两点(不写作法,保留作图痕迹),并判断直线BC与⊙O的位置关系(不需要说明理由).(2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=2.求线段BD、BE与劣弧DE所围成的图形的面积.(结果保留根号和π)【解答】解:(1)如图:连接OD,∵OA=OD,∴∠OAD=∠ADO,∵∠BAC的角平分线AD交BC边于D,∴∠CAD=∠OAD ,∴∠CAD=∠ADO ,∴AC ∥OD ,∵∠C=90°,∴∠ODB=90°,∴OD ⊥BC ,即直线BC 与⊙O 的切线,∴直线BC 与⊙O 的位置关系为相切;(2)设⊙O 的半径为r ,则OB=6﹣r ,又∵BD=2,在Rt △OBD 中,OD 2+BD 2=OB 2,即r 2+(2)2=(6﹣r )2,解得r=2,OB=6﹣r=4,∴∠DOB=60°,∴S 扇形ODE ==π,S △ODB =OD•BD=×2×2=2,∴线段BD 、BE 与劣弧DE 所围成的图形面积为:S △ODB ﹣S 扇形ODE =2﹣π.26.(10分)楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y 万元/辆,求y与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价﹣进价)【解答】解:(1)由题意,得当0<x≤5时y=30.当5<x≤30时,y=30﹣0.1(x﹣5)=﹣0.1x+30.5.∴y=;(2)当0<x≤5时,(32﹣30)×5=10<25,不符合题意,当5<x≤30时,[32﹣(﹣0.1x+30.5)]x=25,解得:x1=﹣25(舍去),x2=10.答:该月需售出10辆汽车.27.(12分)如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A沿边向点B以1cm/s的速度移动;同时,点Q从点B沿边向点C以2cm/s的速度移动.(1)几秒后△PBQ的面积等于8cm2?(2)几秒后DQ⊥PQ?【解答】解:(1)设x秒后△PBQ的面积等于8cm2,∵AP=x,QB=2x.∴PB=6﹣x.∴×(6﹣x)2x=8,解得x1=2,x2=4,答:2秒或4秒后△PBQ的面积等于8cm2;(2)设t秒后DQ⊥PQ,PB=6﹣t,AP=t,QB=2t,CQ=12﹣2t,在Rt△PBQ中,PB2+QB2=PQ2,即:PQ2=(12﹣2t)2+62,同理:PD2=t2+122,QD2=(12﹣2t)2﹣62,∵PQ2+QD2=PD2,∴122+t2=(6﹣t)2+4t2+(12﹣2t)2+62,解得:t=1.5或t=6,答:1.5或6秒后DQ⊥PQ.28.(12分)如图,在平面直角坐标系中半径为3的⊙O分别交坐标轴A、B、C、D.圆上点M在第一象限,且∠MOA=30°,点P(a,0)在x轴上,且a>3(1)若直线PM与⊙O相切于点M,如图1,则a=2;(2)若直线PM恰好过点B,如图2,求阴影部分的面积;(3)若直线PM与⊙O相交,另一个交点为N①是否存在满足条件的实数a使PM与MN的长相等?若存在,求出a的值;不存在,说明理由;②若N在第一象限内,设y=MN2,求y关于a的函数关系式,并直接写出a的取值范围.【解答】解:(1)∵直线PM与⊙O相切于点M,∴∠OMP=90°,∵∠MOA=30°,∴=sin30°,∴=,∴OP=2,∴a=,故答案为:2;(2)∵∠MOA=30°,∴∠BOM=60°,且OB=OM,∴△BOM为等边三角形,∴∠BPO=30°,∴BO=BM=MP=3,由勾股定理可得OP=3,∴S△OMP =S△BOP=××3×3=,∵∠MOA=30°,∴S扇形MOA=π×32=,∴S阴影=S△OMP﹣S扇形MOA=;(3)①存在,a=,理由如下:当N点在B点位置时,由(2)可知△BOM为等边三角形,∠BPO=30°,∴NM=PM=OM,在Rt△NOP中,ON=3,可求得OP=3,即a=3,所以当a=3时,PM=MN;②如图,过M点作MF⊥OP,交OP于点F,则MF=OM=,OF=,PF=OP﹣OF=a﹣,在Rt△PFM中,由勾股定理可得PM==,又由切割线定理可知PM•PN=PA•PC,即PM(PM+MN)=(a﹣3)(a+3),∴(+MN)=a2﹣9,整理可得:MN=,∴y=MN2=.。
2014~2015学年度 最新 江苏省2015届九年级上期末数学试题及答案
3l 2l1l F E DC B A 2015学年度第一学期初三质量调研数 学 试 卷(时间:100分钟,满分:150分)一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1.如图1,直线1l ∥2l ∥3l ,两直线AC 和DF 与1l ,2l ,3l 分别相交于点A 、B 、C 和点D 、E 、F .下列各式中,不一定成立的是( ▲ )(A ) EF DE BC AB =; (B )DF DEAC AB = ;(C )CF BE BE AD =; (D )CA BCFD EF =.2.用一个2倍放大镜照一个△ABC ,下面说法中错误的是(▲ )(A )△ABC 放大后,∠A 是原来的2倍; (B )△ABC 放大后,各边长是原来的2倍; (C )△ABC 放大后,周长是原来的2倍; (D )△ABC 放大后,面积是原来的4倍.3.在Rt ABC △中,已知ACB ∠=90°,1BC =,2AB =,那么下列结论正确的是( ▲ ) (A)sin A =; (B )1tan 2A =; (C)cos B = (D)cot B =4.如果二次函数2(0)y ax bx c a =++≠的图像如右图2所示, 那么 ( ▲ )(A )a <0,b >0,c >0; (B )a >0,b <0,c >0; (C )a >0,b <0,c <0; (D )a >0,b >0,c <0. 5.下列命题中,正确的是个数是( ▲ )(1)三点确定一个圆; (2)平分弦的直径垂直于弦; (3)相等的圆心角所对的弧相等; (4)正五边形是轴对称图形. (A )1个; (B )2个; (C )3个; (D )4个. 6.下列判断错误的是( ▲ )图1图2(A )00a =; (B )如果12a b =(b 为非零向量),那么a ∥b ;(C )设为单位向量,1=;(D )=,那么 =或 -=.二、填空题:(本大题共12题,每题4分,满分48分) 7.已知:5:2x y =,那么():x y y += ▲ .8.计算:523()3a ab --= ▲ .9.如图3,在△ABC 中,DE ∥BC ,DE 与边AB 相交于点D ,与边AC 相交于点E . 如果3AD =,4BD =,2AE =,那么AC = ▲ .10.已知线段MN 的长为2厘米,点P 是线段MN的黄金分割点,那么较长的线段MP 的长是 ▲ 厘米.11.二次函数322--=x x y 的图像与y 轴的交点坐标是 ▲ . 12.如果将抛物线22y x =-平移,使顶点移到点(3,1)P -的位置,那么所得新抛物线的表达式是 ▲ .13.正八边形的中心角为 ▲ 度.14.用一根长50厘米的铁丝,把它弯成一个矩形框,设矩形框的一边长为x 厘米,面积为y 平方厘米,写出y 关于x 的函数解析式: ▲ . 15.在地面上离旗杆底部20米处的地方用测角仪测得旗杆顶端的仰角为α,如果测角仪的高为 1.5米,那么旗杆的高为 ▲ 米(用含α的三角比表示).16.如图4,已知⊙O 的半径为5,⊙O 的一条弦AB 长为8,那么以3为半径的同心圆与弦AB 位置关系是 ▲ .图4图3B17.我们定义:如果一个图形上的点'A 、'B 、…、'P 和另一个图形上的点A 、B 、…、P 分别对应,并且满足:(1)直线'A A 、'B B 、…、'P P 都经过同一点O ;(2)'''===OA OB OP k OA OB OP=…,那么这两个图形叫做位似图形,点O 叫做位似中心,k 叫做位似比.如图5,在平面直角坐标系中,△ABC 和△'''C B A 是以坐标原点O 为位似中心的位似图形,且'OB BB =.如果点A (25,3),那么点'A 的坐标为 ▲ .D C图5 图618.如图6,已知△ABC 中,AB =AC ,tan B =2,AD ⊥BC 于点D ,点G 是△ABC 的重心. 将△ABC 绕着重心G 旋转,得到△111C B A ,并且点1B 在直线AD 上,联结1CC ,那么tan ∠11B CC 的值等于 ▲.三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:4sin3060︒︒︒.20.(本题满分10分)如图7,已知AB ∥CD ,AD 与BC 相交于点O ,且32=CD AB(1)求ADAO的值; (2)如果a AO =,请用a 表示.21.(本题满分10分)BC图7如图8,已知二次函数的图像与x 轴交于点A (1,0)和点B ,与y 轴交于点C (0,6),对称轴为直线2=x ,求二次函数的解析式并写出图像最低点的坐标.22.(本题满分10分)如图9,某新建公园有一个圆形人工湖,湖中心O 处有一座喷泉.小明为测量湖的半径,在湖边选择A 、B 两个点,在A 处测得45OAB ∠=,在AB 延长线上的C 处测得30OCA ∠=,已知50BC =米,求人工湖的半径.(结果保留根号)23.(本题满分12分)如图10,已知在△ABC 中,∠ACB =90°,点D 在边BC 上,CE ⊥AB ,CF ⊥AD ,E 、F 分别是垂足. (1)求证:2AC AF AD=;(2)联结EF ,求证:AE DB AD EF =.C图9EABOCBAy xx =2图824.(本题满分12分)如图11,在平面直角坐标系xOy中,点(),0B m(m>0),点C0,2A m-和点()在x轴上(不与点A重合),(1)当△BOC与△AOB相似时,请直接写出点C的坐标(用m表示);(2)当△BOC与△AOB全等时,二次函数2=-++的图像经过A、B、y x bx cC三点,求m的值,并求点C的坐标;(3)P是(2)的二次函数的图像上一点,90∠=,求点P的坐标及∠ACPAPC的度数.图11 备用图25.(本题满分14分)如图12,等边△ABC,4AB=,点P是射线AC上的一动点,联结BP,作BP的垂直平分线交线段BC于点D,交射线BA于点Q,分别联结PD,PQ.(1)当点P在线段AC的延长线上时,①求DPQ∠的度数并求证△DCP∽△PAQ;②设CP x=,AQ y=,求y关于x的函数解析式,并写出它的定义域;(2)如果△PCD是等腰三角形,求△APQ的面积.2015学年度第一学期九年级数学期终考试试卷参考答案及评分说明一、选择题:(本大题共6题,每题4分,满分24分)1.(C); 2.(A); 3.(D); 4.(C); 5.(A); 6.(D).二、填空题:(本大题共12题,每题4分,满分48分)7. 7:2(或72); 8. 5a b-+; 9.143;10. 1;11.(0,-3);12.()2231y x=-++;13.45; 14.225y x x=-+; 15.1.520tanα+;16.相切; 17.(5,6); 18.三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.解:原式=142⨯+………………………………………………(6分)=21-+………………………………………………………………(3分)图12QPDCBA备用图ABC=1+.……………………………………………………………………(1分) 20.解(1)∵AB ∥CD , ∴AO ABOD CD=. ………………………………………………………………(2分) ∵23AB CD =, ∴错误!未找到引用源。
【2014】江苏省盐城市盐都区2014届九年级上期末统考数学试题及答案【苏科版】
注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1. 若式子2 x 在实数范围内有意义,则x 的取值范围是A .x ≥2B .x ≤2C .x >2D .x <22.要判断小明同学的数学考试成绩是否稳定,那么需要知道他最近几次数学考试成绩的A .方差B .众数C .平均数D .中位数3. 如图,两圆位置关系是A .内含B .内切C .相交D .外切4.⊙O 半径是6cm ,点A 到圆心O 距离是5.6cm ,则点A 与⊙O 的位置关系是A .点A 在⊙O 上B .点A 在⊙O 内C .点A 在⊙O 外D .不能确定5.在平行四边形ABCD 中,对角线AC 、BD 相交于点O,下列结论一定正确的是A .∠A =∠BB .OA =OBC .AB =AD D .∠A +∠B =180°6.若关于x 的一元二次方程为ax 2+bx -5=0(a ≠0)的一个解是x =1,则2019-a -b 的值是A .2018B .2013C .2014D . 2012 7.下列说法中正确的个数共有①如果圆心角相等,那么它们所对的弦一定相等.②平面内任意三点确定一个圆.③半圆所对的圆周角是直角.④半圆是弧.A .1个B .2个C .3个D .4个8.如图,已知二次函数y =x 2+bx +c 的图象如图所示,若y <0,则x 的取值范围是A .-1<x <4B .-1<x <3C .x <-1或x >4D .x <-1或x >3二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.数据 -2,-1,0,3,5的极差是 ▲ . 10.计算: 312÷= ▲ .12.如果一个扇形的弧长是π3,半径是6,那么此扇形的圆心角为 ▲ °.13.如图,四边形ABCD 是对角线互相垂直的四边形,且OB =OD ,请你添加一个适当的条件 ▲ ,使四边形ABCD 成为菱形(只需添加一个即可)14. 已知一个扇形的半径为2,面积为πcm 2,用这个扇形围成一个圆锥的侧面,这个圆锥的底面半径为 ▲ .15. 某县政府2012年投资0.5亿元用于保障性房建设,计划到2014年投资保障性房建设的资金为0.98亿元.如果从2012年到2014年投资此项目资金的年增长率相同,那么年增长率是 ▲ .16. 教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为y =-121 (x -4)2+3,由此可知小明的铅球成绩为 ▲ m .17. 如图,AB、AC是⊙O切线,切点为B、C,连接BC,若△ABC是等边三角形,弦BC所对的圆周角为▲°.18. 如图,点O(0,0)、B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,…,依次下去,则点B2014的坐标是▲ .三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)19.(本题满分8分)(1)计算:;(2)解方程: x2-2x-1=0.20.(本题满分8分)已知:如图,E为正方形ABCD的边BC延长线上的点,F是CD边上一点,且CE=CF,连接DE、BF.(1)求证:DE=BF;(2)判断BF与DE的位置关系,并说明理由.21.(本题满分8分)已知:关于x的方程x2+kx-2=0(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是-1,求另一个根及k值.22. (本题满分10分)二次函数y=x2+bx+c的图象经过点(4,3),(3,0).(1)b= ,c= ;(2)选取适当的数据填写下表,并在右图的直角坐标系中画出该函数的图像;(3)若将此图象沿x轴向左平移3个单位,直接写出平移后图象所对应的函数关系式 .23. (本题满分8分)如图,破残的圆形轮片上,弦AB 的垂直平分线交弧AB 于C ,交弦AB 于D .(1)求作此残片所在的圆的圆心(不写作法,保留作图痕迹); (2)若AB =8cm ,CD =2cm ,求(1)中所作圆的半径.24. (本题满分10分)一场篮球赛中,小明跳起投篮,已知球出手时离地面高920米,与篮圈中心的水平距离为8米,当球出手后水平距离为4米时到达最大高度4米,若篮球运行的轨迹为抛物线,篮圈中心距离地面3米。
2014-2015学年江苏省盐城市建湖县九年级(上)期末数学试卷与答案
第 3 页(共 26 页)
三、解答题(本题共 10 小题,共 96 分) 19. (8 分)计算: ﹣tan45°+cos245°.
20. (8 分)如图,∠DAB=∠EAC,AD=6,AE=4,DE=9,AB=12,AC=8. (1)求证:△ADE∽△ABC; (2)求 BC 的长.
21. (8 分)某射击队为了从甲、乙两名运动员中选拔一人参加全国比赛,对他 们进行了 6 次测试,测试成绩如下表(单位:环) 第一次 甲 乙 10 10 第二次 第三次 第四次 第五次 第六次 8 7 9 10 8 10 10 9 9 8
2014-2015 学年江苏省盐城市建湖县九年级(上)期末数学试卷
一、选择题(本题共 8 小题,每小题 3 分,共 24 分) 1. (3 分)下列正多边形中,既是轴对称图形又是中心对称图形的是( A.正三角形 B.正五边形 C.正六边形 D.正九边形 ) )
2. (3 分) 一组数据为 2、 3、 5、 7、 3、 4, 对于这组数据, 下列说法错误的是 ( A.平均数是 4 B.极差是 5 C.众数是 3 D.中位数是 6
第 2 页(共 26 页)
BD=
m.
15. (3 分)某广场有一喷水池,水从地面喷出,如图,以水平地面为 x 轴,出 水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线是抛物线 y=﹣x2+4x(单位:米)的一部分.则水喷出的最大高度y1) ,B(1,y2) ,C(2,y3)是抛物线 y=﹣(x+1)2+a 上的三点,则 y1,y2,y3 的大小关系为 . ,
3. (3 分)把抛物线 y=(x﹣1)2+2 向左平移 1 个单位,再向下平移 2 个单位, 所得抛物线是( A.y=x2 ) B.y=(x﹣2)2 C.y=(x﹣2)2+4 D.y=x2+4 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014/2015学年度第一学期期末质量检测九年级数学试卷(时间:120分钟;满分:150分)1.本卷是试题卷,考试结束不上交.2.请在答题卡相应题号的区域内答题,超出无效....! 一、选择题(本大题共8小题,每小题3分,共24分,在每小题所给的选项中,只有一项是符合题目要求的,请将正确选项的字母代号填在答题卡相应的位置.)1.数据1,3,3,4,5的众数为 【 ▲ 】 A .1 B .3 C .4 D .52.⊙O 的半径为8,圆心O 到直线l 的距离为4,则直线l 与⊙O 的位置关系是 【 ▲ 】 A .相切 B. 相交 C. 相离 D. 不能确定3.一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是 【 ▲ 】A .16B .15C .25D .354.若△ABC ∽△A ′B ′C ′,相似比为1:2,则△ABC 与△A ′B ′C ′的面积的比为 【 ▲ 】 A .1:2 B .2:1 C .1:4 D .4:1 5.下列关于x 的方程有实数根的是 【 ▲ 】 A .x 2-x +1=0 B .x 2+x +1=0 C .x 2-x -1=0 D .(x -1) 2+1=0 6.将抛物线y =-x 2向上平移2个单位后,得到的函数表达式是 【 ▲ 】 A .22y x =-+ B .2(2)y x =-+ C .2(2)y x =-- D .22y x =-- 7.如图,AB 是⊙O 的直径,C 、D 是⊙O 上两点,CD ⊥AB .若∠DAB =65°,则∠BOC = 【 ▲ 】 A . 25° B . 50° C . 130° D . 155°第7题图 第8题图 第9题图8.如图1,在平面内选一定点O ,引一条有方向的射线Ox ,再选定一个单位长度,那么平面上任一点M 的位置可由∠MOx 的度数θ与OM 的长度m 确定,有序数对(θ,m )称为M 点的“极坐标”,这样建立的坐标系称为“极坐标系”.在图2的极坐标系下,如果正六边形的边长为2,有一边OA 在射线Ox 上,则正六边形的顶点C 的极坐标应记为 【 ▲ 】 A .(60°,4) B .(45°,4) C .(60°,22) D .(50°,22)二、填空题 (本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接写在注意:答题卡相应的位置上.)9.如图,四边形ABCD 内接于⊙O ,∠A =62°,则∠C = ▲ °. 10.在Rt △ABC 中,∠C =90°,BC =3,AC =4,那么cos A 的值等于 ▲ .11.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是 ▲ . 12.若关于x 的一元二次方程ax 2+bx +5=0(a ≠0)的一个解是x =1,则a +b +2015的值是 ▲ . 13.如果在比例尺为1:1 000 000的地图上,A 、B 两地的图上距离是3.4cm ,那么A 、B 两地的实际距离是 ▲ km .14.如图,小明用长为3m 的竹竿CD 做测量工具,测量学校旗杆AB 的高度,移动竹竿,使竹竿与旗杆的距离DB =12m ,则旗杆AB 的高为 ▲ _m .15.请写出一个开口向上,与y 轴交点的纵坐标为2的抛物线的函数表达式 ▲ .第15题图 第16题图 第18题图16.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r =2cm ,扇形的圆心角θ=120°,则该圆锥的母线长l 为 ▲_ cm .172则m 、n 的大小关系为 m _ ▲_n .(填“<”,“=”或“>”)18.已知Rt △ABC 中,∠C =90°,BC =1,AC =4,如图把边长分别为x 1,x 2,x 3,…,x n 的n个正方形依次放入△ABC 中,则第2015个正方形的边长为_▲_.三、解答题(本大题共有10小题,共96分.请在答题纸指定区域内作答,解题时写出必要的文字说明、说理步骤或演算步骤.) 19.(本题满分8分)(1)解方程:x 2-x =0; (2)计算: 02sin303tan 602015-+如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (―2,1),B (-1,4), C (-3,2).(1) 以原点O 为位似中心,位似比为1:2,在y 轴的左侧,画出△ABC 放大后的图形△A 1B 1C 1,并直接写出C 1点坐标;(2)如果点D (a ,b )在线段AB 上,请直接写出经过(1)的变化后点D 的对应点D 1的坐标.21.(本题满分8分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示. (1)计算两队决赛成绩的平均数;(2)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.22. (本题满分8分)甲、乙两人用如图的两个分格均匀的转盘A 、B 做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:(1)用列表格或画树状图的方法表示游戏所有可能出现的结果. (2)求甲、乙两人获胜的概率.第20题图第22题图第21题图盐城公共自行车项目现已全部建成,盐城市区250个站点,累计投放6000辆自行车,为人们的生活带来了方便.图(1)所示的是自行车的实物图.图(2)是一辆自行车的部分几何示意图,其中车架档AC的长为45cm,且∠CAB=75°,∠CBA=50°.(参考数据:sin75°≈0.96,cos75°≈0.26,tan75°≈3.73 ,sin50°≈0.76,cos50°≈0.64,tan50°≈1.19)(1)求车座固定点C到车架档AB的距离;(2)求车架档AB的长(结果精确到1cm).24.(本题满分10分)已知二次函数y=-x2+2x+3.(1)求函数图像的顶点坐标,并画出这个函数的图像;(2)根据图像,直接写出:①当函数值y为正数时,自变量x的取值范围;②当―2<x<2时,函数值y的取值范围.ABC第23题图第24题图如图,在Rt △ABC 中,∠C =90°,点E 在斜边AB 上,以AE 为直径的⊙O 与BC 相切于点D .若BE =6,BD =36. (1)求⊙O 的半径;(2)求图中阴影部分的面积.26.(本题满分10分)某商店将成本为30元的文化衫标价50元出售.(1) 为了搞促销活动经过两次降价调至每件40.5元,若两次降价的百分率相同,求每次降价的百分率;(2) 经调查,该文化衫每降5元,每月可多售出100件,若该品牌文化衫按原标价出售,每月可销售200件,那么销售价定为多少元,可以使该商店获得最大的利润?最大利润是多少?27.(本题满分12分)【问题背景】 已知:l 1∥l 2∥l 3∥l 4,平行线l 1与l 2、l 2与l 3、l 3与l 4之间的距离分别为d 1、d 2、d 3,且d 1=d 3=1,d 2=2.我们把四个顶点分别在l 1、l 2、l 3、l 4这四条平行线上的四边形称为“格线四边形”. 【问题探究】(1)如图1,正方形ABCD 为“格线四边形”,则正方形ABCD 的边长为_▲_. (2)矩形ABCD 为“格线四边形”,其长:宽=2:1,求矩形ABCD 的宽. 【问题拓展】 (3)如图1,EG 过正方形ABCD 的顶点D 且垂直l 1于点E ,分别交l 2,l 4于点F ,G .将∠AEG绕点A 顺时针旋转30°得到∠AE ′D ′(如图2),点D ′在直线l 3上,以AD ′为边在E ′D ′左侧作菱形AB ′C ′D ′,使B ′,C ′分别在直线l 2,l 4上,求菱形AB ′C ′D ′的边长.第25题图 第27题图如图,二次函数y=12x2-32x-2的图像与x轴交于点A,B.点M、N在x轴上,点N在点M右侧,MN=2.以MN为直角边向上作等腰直角三角形CMN,∠CMN=90°.设点M的横坐标为m.(1)当点C在这条抛物线上时,求m的值.(2)将线段CN绕点N逆时针旋转90°后,得到对应线段DN.①当点D在这条抛物线的对称轴上时,求点D的坐标.②以DN为直角边作等腰直角三角形DNE,当点E在这条抛物线的对称轴上时,求m的值.第28题图九年级数学参考答案及评分标准(阅卷前请认真校对,以防答案有误!)一、选择题(每小题3分,共24分)二、填空题(每小题3分,共30分) 9.118 10.4511.8 12.2010 13.34 14.9 15.答案不唯一 16.6 17.> 18.201545⎛⎫⎪⎝⎭三、解答题19.(1)解方程:x 2-x =0;x (x -1)=0…………………………………………………..……………….2分 x =0 或x -1=0x 1=0,x 2=1……………………………………………………….....……..….4分 (2)计算: 02sin303tan 602015-+=2×12--3+1…………………………….…3分(每个1分)=-1………………………………………………………………...….…. 4分20.(1)画图 ………………………………………...….....................…. 3分点C 1的坐标为(-6,4)………………………………………5分(2)变化后D 的对应点D 1的坐标为:(2a ,2b )…….................…….……….........8分 21.(1)初中部平均数为:(75+80+85+85+100)÷5=85(分),高中部平均数为:(70+100+100+75+80)÷5=85(分). ……..........…....4分 (2)∵2=S 初15[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+ (100﹣85)2]=70,C 12=S 高15[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160. ∴2S 初<2S 高,因此,初中代表队选手成绩较为稳定………………………………8分22.(1 4 5 6 7 1 (1,4)4 (1,5)5 (1,6)6 (1,7)7 2 (2,4)8 (2,5)10 (2,6)12 (2,7)14 3 (3,4)12 (3,5)15 (3,6)18 (3,7)21 (2)从上面的表格(或树状图)可以看出,所有可能出现的结果共有12种,且每种结果出现的可能性相同,其中积是奇数的结果有4种,即5、7、15、21,积是偶数的结果有8种,即4、6、8、10、12、14、12、18, ∴甲、乙 两人获胜的概率分别为:P (甲获胜)==,……………………………………………………………….. .................6分 P (乙获胜)==. …………………………………………............…8分23.(1) 过点C 作CD ⊥AB ,垂足为D , 在Rt △CAD 中CD =AC sin75°=45×sin75°=45×0.96=43.2(cm ),…………………………............…4分 ∴车座固定点C 到车架档AB 的距离约是43.2cm . (2)在Rt △CAD 中AD =AC cos75°=45×cos75°=45×0.26=11.7(cm ),…………………................. 7分 在Rt △CBD 中BD =tan 50CD =43.21.19=36.3. ..................................................9分∴AB =AD +BD =11.7+36.3≈48( cm) …………………………...............10分24.(1)y =-x 2+2x +3=-(x -1)2+4……………………………………….......….2分顶点坐标(1,4) ………………………………………………………….......…..4分 图像 ……………………..……..............................................................…......6分DCBAyx11O第23题图第24题图第25题图(2)当―1<x <3时,函数值y 为正数 …………………………………….....….8分 当―2<x <2时,函数值y 的取值范围―5<y ≤4………………...….....…10分25.(1)连接OD ,因为⊙O 与BC 相切于点D .所以OD ⊥BC …………………………………………………………………...……1分设⊙O 的半径为r ,在直角三角形ODB 中由勾股定理得r 2+(36)2=(r +6)2.4分r=6…………………..……5分(2) 连DE ,由(1)知OE =BE∴DE=12OB=6, ∴△ODE 为等边三角形∴∠DOE =60°,S △EOD =12×6∴∠AOD =120°, (6)∵O 是AE 中点∴S △AOD =S △EOD= ………………………………………………………………... 8分∴S 阴影=S 扇形AOD ﹣S △AOD =21206360p -p -.....……. ...10分(方法不唯一)26.(1)设每次降价率为n ,则50(1﹣n )2=40.5解得:n 1=0.1=10%,n 2=1.9(不合,舍去)………………………………................ 4分 (2)设销售定价为每件x 元,每月利润为y 元,则y =(x ﹣30)(200+501005x-´)......................................….........................7分 =﹣20(x ﹣45)2+4500…………………......................................….......................9分 ∵a =﹣20<0,.∴当x =45时,y 取最大值为4500元.………...…….............................….10分27.(1)正方形的边长是……………………..........................................................….…3分(2)过B 作BE ⊥l 1于点E ,反向延长BE 交l 4于点F . 则BE =1,BF =3,∵四边形ABCD 是矩形, ∴∠ABC =90°, ∴∠ABE +∠FBC =90°, 又∵直角△ABE 中,∠ABE +∠EAB =90°,l 1 l 2 l 3 l 4∴∠FBC=∠EAB,∴△AEB∽△BFC,当AB是较短的边时,如图(a),AB =BC,则AE =BF =,在直角△ABE中,AB ==;.........................................................................……6分当AB是长边时,如图(b),同理可得:BC =;故答案为:或……………………………………………………………….…….......…….9分(3)过点E作ON垂直于l1分别交l1,l3于点O,N,由题意得∠OAE=30°,则∠ED′N=60°,由图1知,△AED≌△DGC∴AE=DG=1,故EO =,EN =,ED′=,由勾股定理可知菱形的边长为:==.....…..….….….12分28.(1)由题意知,点C的坐标为(m,2)∵点C(m,2)在抛物线上,∴12m2-32m-2=2...............…….………2分解得m1=3+412,m2=3-412∴点C在这条抛物线上时,m的值为3+412或3-412............................3分(2)①由旋转得,点D的坐标为(m,-2)抛物线y=12x2-32x-2的对称轴为直线x=32∵点D在这条抛物线的对称轴上l43 l2l1(b)∴点D 的坐标为(32,-2) ……………………………………………….6分②m =-52或m =-1 2 或m = 3 2 或m =7 2提示:如图,有有四种情况当∠DNE =90°时,分两种情况:当23=m 时,点D (23,-2),E (23,2),N (25,0),△DNE 是以x 轴为对称轴的等腰直角三角形;…………………………………………………….8分 当25-=m 时,点D (25-,-2),E (23,-2),N (21-,0),△DNE 是以直线21-=x 为对称轴的等腰直角三角形; …………………………………..9分 当∠NDE =90°时,分两种情况: 当27=m 时,点D (27,-2),E (23,0),N (211,0),△DNE 是以直线27=x 为对称轴的等腰直角三角形;……………………………………………….11分 当21-=m 时,点D (21-,-2),E (23,-4),N (23,0),△DNE 是以过D 且平行于x轴的直线为对称轴的等腰直角三角形………;;;;;;;;;;;;;;;……12分。