新邱区第二高级中学2018-2019学年高二上学期第二次月考试卷数学

合集下载

新邱区外国语学校2018-2019学年高二上学期第二次月考试卷数学

新邱区外国语学校2018-2019学年高二上学期第二次月考试卷数学

新邱区外国语学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 如图,空间四边形ABCD 中,M 、G 分别是BC 、CD 的中点,则等( )A .B .C .D .2. 已知集合A={x|x 是平行四边形},B={x|x 是矩形},C={x|x 是正方形},D={x|x 是菱形},则( ) A .A ⊆B B .C ⊆B C .D ⊆C D .A ⊆D3. “m=1”是“直线(m ﹣2)x ﹣3my ﹣1=0与直线(m+2)x+(m ﹣2)y+3=0相互垂直”的( )A .必要而不充分条件B .充分而不必要条件C .充分必要条件D .既不充分也不必要条件4. 如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A .B .C .D .5. 已知集合A={﹣1,0,1,2},集合B={0,2,4},则A ∪B 等于( )A .{﹣1,0,1,2,4}B .{﹣1,0,2,4}C .{0,2,4}D .{0,1,2,4}6. 抛物线x 2=4y 的焦点坐标是( )A .(1,0)B .(0,1)C .()D .()7. 若实数x ,y 满足不等式组则2x+4y 的最小值是( )A .6B .﹣6C .4D .28. 为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知C B A ,,三个社区分别有低收入家 庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从C 社 区抽取低收入家庭的户数为( )A .48B .36C .24D .18【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题. 9. 函数()log 1xa f x a x =-有两个不同的零点,则实数的取值范围是( )A .()1,10B .()1,+∞C .()0,1D .()10,+∞10.一个椭圆的半焦距为2,离心率e=,则它的短轴长是( )A .3B .C .2D .611.德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f (x )=被称为狄利克雷函数,其中R 为实数集,Q 为有理数集,则关于函数f (x )有如下四个命题:①f (f (x ))=1;②函数f (x )是偶函数;③任取一个不为零的有理数T ,f (x+T )=f (x )对任意的x=R 恒成立;④存在三个点A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 3,f (x 3)),使得△ABC 为等边三角形.其中真命题的个数有( ) A .1个 B .2个 C .3个 D .4个12.抛物线y=﹣8x 2的准线方程是( )A .y=B .y=2C .x=D .y=﹣2二、填空题13.在中,角、、所对应的边分别为、、,若,则_________14.设,则15.对于映射f :A →B ,若A 中的不同元素有不同的象,且B 中的每一个元素都有原象,则称f :A →B 为一一映射,若存在对应关系Φ,使A 到B 成为一一映射,则称A 到B 具有相同的势,给出下列命题: ①A 是奇数集,B 是偶数集,则A 和B 具有相同的势;②A 是平面直角坐标系内所有点形成的集合,B 是复数集,则A 和B 不具有相同的势; ③若区间A=(﹣1,1),B=R ,则A 和B 具有相同的势. 其中正确命题的序号是 .16.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i <m 中的整数m 的值是 .17.经过A (﹣3,1),且平行于y 轴的直线方程为 . 18.已知点E 、F 分别在正方体 的棱上,且, ,则面AEF 与面ABC 所成的二面角的正切值等于 .三、解答题19.(本小题满分10分)选修4-1:几何证明选讲选修41-:几何证明选讲 如图,,,A B C 为O 上的三个点,AD 是BAC ∠的平分线,交O 于点D ,过B 作O 的切线交AD 的延长线于点E . (Ⅰ)证明:BD 平分EBC ∠; (Ⅱ)证明:AE DC AB BE ⨯=⨯.20.(本小题满分12分)如图,在四棱锥ABCD S -中,底面ABCD 为菱形,Q P E 、、分别是棱AB SC AD 、、的中点,且⊥SE 平面ABCD .(1)求证://PQ 平面SAD ; (2)求证:平面⊥SAC 平面SEQ .21.某滨海旅游公司今年年初用49万元购进一艘游艇,并立即投入使用,预计每年的收入为25万元,此外每年都要花费一定的维护费用,计划第一年维护费用4万元,从第二年起,每年的维修费用比上一年多2万元,设使用x年后游艇的盈利为y万元.(1)写出y与x之间的函数关系式;(2)此游艇使用多少年,可使年平均盈利额最大?22.已知抛物线C:x2=2py(p>0),抛物线上一点Q(m,)到焦点的距离为1.(Ⅰ)求抛物线C的方程(Ⅱ)设过点M(0,2)的直线l与抛物线C交于A,B两点,且A点的横坐标为n(n∈N*)(ⅰ)记△AOB的面积为f(n),求f(n)的表达式(ⅱ)探究是否存在不同的点A,使对应不同的△AOB的面积相等?若存在,求点A点的坐标;若不存在,请说明理由.23.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的参数方程为⎩⎨⎧==ααsin cos 2y x (α为参数),过点)0,1(P 的直线交曲线C 于B A 、两点.(1)将曲线C 的参数方程化为普通方程; (2)求||||PB PA ⋅的最值.24.已知函数f (x )=x 3﹣x 2+cx+d 有极值.(Ⅰ)求c 的取值范围;(Ⅱ)若f (x )在x=2处取得极值,且当x <0时,f (x )<d 2+2d 恒成立,求d 的取值范围.新邱区外国语学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:∵M、G分别是BC、CD的中点,∴=,=∴=++=+=故选C【点评】本题考查的知识点是向量在几何中的应用,其中将化为++,是解答本题的关键.2.【答案】B【解析】解:因为菱形是平行四边形的特殊情形,所以D⊂A,矩形与正方形是平行四边形的特殊情形,所以B⊂A,C⊂A,正方形是矩形,所以C⊆B.故选B.3.【答案】B【解析】解:当m=0时,两条直线方程分别化为:﹣2x﹣1=0,2x﹣2y+3=0,此时两条直线不垂直,舍去;当m=2时,两条直线方程分别化为:﹣6y﹣1=0,4x+3=0,此时两条直线相互垂直;当m≠0,2时,两条直线相互垂直,则×=﹣1,解得m=1.综上可得:两条直线相互垂直的充要条件是:m=1,2.∴“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的充分不必要条件.故选:B.【点评】本题考查了直线相互垂直的充要条件、充要条件的判定,考查了分类讨论方法、推理能力与计算能力,属于中档题.4.【答案】C【解析】解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种,其中只有(3,4,5)为勾股数,故这3个数构成一组勾股数的概率为.故选:C5.【答案】A【解析】解:∵A={﹣1,0,1,2},B={0,2,4},∴A∪B={﹣1,0,1,2}∪{0,2,4}={﹣1,0,1,2,4}.故选:A.【点评】本题考查并集及其运算,是基础的会考题型.6.【答案】B【解析】解:∵抛物线x2=4y中,p=2,=1,焦点在y轴上,开口向上,∴焦点坐标为(0,1),故选:B.【点评】本题考查抛物线的标准方程和简单性质的应用,抛物线x2=2py的焦点坐标为(0,),属基础题.7.【答案】B【解析】解:作出不等式组对应的平面区域如图:设z=2x+4y得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点C时,直线y=﹣x+的截距最小,此时z最小,由,解得,即C(3,﹣3),此时z=2x+4y=2×3+4×(﹣3)=6﹣12=﹣6.故选:B【点评】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键.8. 【答案】C【解析】根据分层抽样的要求可知在C 社区抽取户数为2492108180270360180108=⨯=++⨯.9. 【答案】B 【解析】试题分析:函数()f x 有两个零点等价于1xy a ⎛⎫= ⎪⎝⎭与log a y x =的图象有两个交点,当01a <<时同一坐标系中做出两函数图象如图(2),由图知有一个交点,符合题意;当1a >时同一坐标系中做出两函数图象如图(1),由图知有两个交点,不符合题意,故选B.x(1) (2)考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.【方法点睛】本题主要考查指数函数与对数函数的图象、函数的零点与函数交点之间的关系.属于难题.判断方程()y f x =零点个数的常用方法:①直接法:可利用判别式的正负直接判定一元二次方程根的个数;②转化法:函数()y f x =零点个数就是方程()0f x =根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;③数形结合法:一是转化为两个函数()(),y g x y h x ==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为(),y a y g x ==的交点个数的图象的交点个数问题.本题的解答就利用了方法③. 10.【答案】C【解析】解:∵椭圆的半焦距为2,离心率e=,∴c=2,a=3,∴b=∴2b=2.故选:C .【点评】本题主要考查了椭圆的简单性质.属基础题.11.【答案】 D【解析】解:①∵当x 为有理数时,f (x )=1;当x 为无理数时,f (x )=0∴当x 为有理数时,f (f (x ))=f (1)=1; 当x 为无理数时,f (f (x ))=f (0)=1即不管x 是有理数还是无理数,均有f (f (x ))=1,故①正确; ②∵有理数的相反数还是有理数,无理数的相反数还是无理数, ∴对任意x ∈R ,都有f (﹣x )=f (x ),故②正确;③若x 是有理数,则x+T 也是有理数; 若x 是无理数,则x+T 也是无理数∴根据函数的表达式,任取一个不为零的有理数T ,f (x+T )=f (x )对x ∈R 恒成立,故③正确;④取x 1=﹣,x 2=0,x 3=,可得f (x 1)=0,f (x 2)=1,f (x 3)=0∴A (,0),B (0,1),C (﹣,0),恰好△ABC 为等边三角形,故④正确.故选:D .【点评】本题给出特殊函数表达式,求函数的值并讨论它的奇偶性,着重考查了有理数、无理数的性质和函数的奇偶性等知识,属于中档题.12.【答案】A【解析】解:整理抛物线方程得x 2=﹣y ,∴p=∵抛物线方程开口向下,∴准线方程是y=,故选:A.【点评】本题主要考查抛物线的基本性质.解决抛物线的题目时,一定要先判断焦点所在位置.二、填空题13.【答案】【解析】因为,所以,所以,所以答案:14.【答案】9【解析】由柯西不等式可知15.【答案】①③.【解析】解:根据一一映射的定义,集合A={奇数}→B={偶数},不妨给出对应法则加1.则A→B是一一映射,故①正确;对②设Z点的坐标(a,b),则Z点对应复数a+bi,a、b∈R,复合一一映射的定义,故②不正确;对③,给出对应法则y=tan x,对于A,B两集合可形成f:A→B的一一映射,则A、B具有相同的势;∴③正确.故选:①③【点评】本题借助考查命题的真假判断,考查一一映射的定义,属于基础题型,考查考生对新定义题的理解与应用能力.16.【答案】6.【解析】解:第一次循环:S=0+=,i=1+1=2;第二次循环:S=+=,i=2+1=3;第三次循环:S=+=,i=3+1=4;第四次循环:S=+=,i=4+1=5;第五次循环:S=+=,i=5+1=6;输出S ,不满足判断框中的条件;∴判断框中的条件为i <6?故答案为:6.【点评】本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题17.【答案】 x=﹣3 .【解析】解:经过A (﹣3,1),且平行于y 轴的直线方程为:x=﹣3. 故答案为:x=﹣3.18.【答案】【解析】延长EF 交BC 的延长线于P ,则AP 为面AEF 与面ABC 的交线,因为,所以为面AEF 与面ABC 所成的二面角的平面角。

新邱区高中2018-2019学年上学期高二数学12月月考试题含解析

新邱区高中2018-2019学年上学期高二数学12月月考试题含解析

新邱区高中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 定义在R 上的偶函数在[0,7]上是增函数,在[7,+∞)上是减函数,又f (7)=6,则f (x )( ) A .在[﹣7,0]上是增函数,且最大值是6 B .在[﹣7,0]上是增函数,且最小值是6 C .在[﹣7,0]上是减函数,且最小值是6 D .在[﹣7,0]上是减函数,且最大值是62. 复数z=(其中i 是虚数单位),则z 的共轭复数=( )A .﹣iB .﹣﹣iC . +iD .﹣ +i3. 函数f (x )=kx +bx +1,关于点(-1,2)对称,且f (-2)=3,则b 的值为( )A .-1B .1C .2D .44. 学校将5个参加知识竞赛的名额全部分配给高一年级的4个班级,其中甲班级至少分配2个名额,其它班级可以不分配或分配多个名额,则不同的分配方案共有( ) A .20种 B .24种 C .26种 D .30种5. 函数f (x )=2x ﹣的零点个数为( ) A .0B .1C .2D .36. 与﹣463°终边相同的角可以表示为(k ∈Z )( )A .k360°+463°B .k360°+103°C .k360°+257°D .k360°﹣257°7. 已知圆C 1:x 2+y 2=4和圆C 2:x 2+y 2+4x ﹣4y+4=0关于直线l 对称,则直线l 的方程为( ) A .x+y=0 B .x+y=2 C .x ﹣y=2 D .x ﹣y=﹣28. 已知在数轴上0和3之间任取一实数,则使“2log 1x ”的概率为( ) A .14 B .18 C .23 D .1129. 如图,已知平面=,.是直线上的两点,是平面内的两点,且,,,.是平面上的一动点,且有,则四棱锥体积的最大值是( )A. B. C. D.10.如图,在△ABC中,AB=6,AC=4,A=45°,O为△ABC的外心,则•等于()A.﹣2 B.﹣1 C.1 D.211.某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100 B.150 C.200 D.25012.已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为()A.24B.80C.64D.240二、填空题13.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为.14.已知A(1,0),P,Q是单位圆上的两动点且满足,则+的最大值为.15.如图,在平行四边形ABCD中,点E在边CD上,若在平行四边形ABCD内部随机取一个点Q,则点Q 取自△ABE内部的概率是.16.设A={x|x≤1或x≥3},B={x|a≤x≤a+1},A∩B=B,则a的取值范围是.17.设,则18.已知z是复数,且|z|=1,则|z﹣3+4i|的最大值为.三、解答题19.已知全集U=R,函数y=+的定义域为A,B={y|y=2x,1≤x≤2},求:(1)集合A,B;(2)(∁U A)∩B.20.函数f(x)=sin2x+sinxcosx.(1)求函数f(x)的递增区间;(2)当x∈[0,]时,求f(x)的值域.21.计算:(1)8+(﹣)0﹣;(2)lg25+lg2﹣log29×log32.22.巳知二次函数f(x)=ax2+bx+c和g(x)=ax2+bx+c•lnx(abc≠0).(Ⅰ)证明:当a <0时,无论b 为何值,函数g (x )在定义域内不可能总为增函数;(Ⅱ)在同一函数图象上取任意两个不同的点A (x 1,y 1),B (x 2,y 2),线段AB 的中点C (x 0,y 0),记直线AB 的斜率为k 若f (x )满足k=f ′(x 0),则称其为“K 函数”.判断函数f (x )=ax 2+bx+c 与g (x )=ax 2+bx+c •lnx 是否为“K 函数”?并证明你的结论.23.如图所示,两个全等的矩形ABCD 和ABEF 所在平面相交于AB ,M AC ∈,N FB ∈,且AM FN =,求证://MN 平面BCE .24.已知函数f (x )=ax 2+2x ﹣lnx (a ∈R ). (Ⅰ)若a=4,求函数f (x )的极值;(Ⅱ)若f ′(x )在(0,1)有唯一的零点x 0,求a 的取值范围;(Ⅲ)若a ∈(﹣,0),设g (x )=a (1﹣x )2﹣2x ﹣1﹣ln (1﹣x ),求证:g (x )在(0,1)内有唯一的零点x 1,且对(Ⅱ)中的x 0,满足x 0+x 1>1.新邱区高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】D【解析】解:∵函数在[0,7]上是增函数,在[7,+∞)上是减函数, ∴函数f (x )在x=7时,函数取得最大值f (7)=6, ∵函数f (x )是偶函数,∴在[﹣7,0]上是减函数,且最大值是6, 故选:D2. 【答案】C 【解析】解:∵z==,∴=.故选:C .【点评】本题考查了复数代数形式的乘除运算,是基础题.3. 【答案】【解析】解析:选B.设点P (m ,n )是函数图象上任一点,P 关于(-1,2)的对称点为Q (-2-m ,4-n ),则⎩⎪⎨⎪⎧n =km +b m +14-n =k (-2-m )+b-1-m,恒成立.由方程组得4m +4=2km +2k 恒成立, ∴4=2k ,即k =2,∴f (x )=2x +b x +1,又f (-2)=-4+b -1=3,∴b =1,故选B.4. 【答案】A【解析】解:甲班级分配2个名额,其它班级可以不分配名额或分配多个名额,有1+6+3=10种不同的分配方案;甲班级分配3个名额,其它班级可以不分配名额或分配多个名额,有3+3=6种不同的分配方案; 甲班级分配4个名额,其它班级可以不分配名额或分配多个名额,有3种不同的分配方案; 甲班级分配5个名额,有1种不同的分配方案.故共有10+6+3+1=20种不同的分配方案,故选:A.【点评】本题考查分类计数原理,注意分类时做到不重不漏,是一个中档题,解题时容易出错,本题应用分类讨论思想.5.【答案】C【解析】解:易知函数的定义域为{x|x≠1},∵>0,∴函数在(﹣∞,1)和(1,+∞)上都是增函数,又<0,f(0)=1﹣(﹣2)=3>0,故函数在区间(﹣4,0)上有一零点;又f(2)=4﹣4=0,∴函数在(1,+∞)上有一零点0,综上可得函数有两个零点.故选:C.【点评】本题考查函数零点的判断.解题关键是掌握函数零点的判断方法.利用函数单调性确定在相应区间的零点的唯一性.属于中档题.6.【答案】C【解析】解:与﹣463°终边相同的角可以表示为:k360°﹣463°,(k∈Z)即:k360°+257°,(k∈Z)故选C【点评】本题考查终边相同的角,是基础题.7.【答案】D【解析】【分析】由题意可得圆心C1和圆心C2,设直线l方程为y=kx+b,由对称性可得k和b的方程组,解方程组可得.【解答】解:由题意可得圆C1圆心为(0,0),圆C2的圆心为(﹣2,2),∵圆C1:x2+y2=4和圆C2:x2+y2+4x﹣4y+4=0关于直线l对称,∴点(0,0)与(﹣2,2)关于直线l对称,设直线l方程为y=kx+b,∴•k=﹣1且=k•+b,解得k=1,b=2,故直线方程为x﹣y=﹣2,故选:D.8. 【答案】C 【解析】试题分析:由2log 1x <得02x <<,由几何概型可得所求概率为202303-=-.故本题答案选C. 考点:几何概型. 9. 【答案】A【解析】【知识点】空间几何体的表面积与体积 【试题解析】由题知:是直角三角形,又,所以。

新邱区实验中学2018-2019学年高二上学期第二次月考试卷数学

新邱区实验中学2018-2019学年高二上学期第二次月考试卷数学

新邱区实验中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 记集合{}22(,)1A x y x y =+?和集合{}(,)1,0,0B x y x y xy =+3?表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2内的概率为( ) A .12p B .1p C .2pD .13p【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力. 2. 设函数的集合,平面上点的集合,则在同一直角坐标系中,P 中函数的图象恰好经过Q 中两个点的函数的个数是 A4 B6 C8 D103. 在下面程序框图中,输入44N ,则输出的S 的值是( )A .251B .253C .255D .260【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是把正整数除以4后按余数分类.4.如图,四面体D﹣ABC的体积为,且满足∠ACB=60°,BC=1,AD+=2,则四面体D﹣ABC中最长棱的长度为()A.B.2 C.D.35. 棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积 为1S 、2S 、3S ,则( )A .123S S S <<B .123S S S >>C .213S S S <<D .213S S S >> 6. 已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}的元素个数为( ) A .4B .5C .6D .97. 已知i 为虚数单位,则复数所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 8. 直线在平面外是指( ) A .直线与平面没有公共点 B .直线与平面相交 C .直线与平面平行D .直线与平面最多只有一个公共点9. 一个骰子由1~6六个数字组成,请你根据图中三种状态所显示的数字,推出“”处的数字是( ) A .6 B .3 C .1 D .210.某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S 的值为( )A.9.6 B.7.68 C.6.144 D.4.915211.有下列四个命题:①“若a2+b2=0,则a,b全为0”的逆否命题;②“全等三角形的面积相等”的否命题;③“若“q≤1”,则x2+2x+q=0有实根”的逆否命题;④“矩形的对角线相等”的逆命题.其中真命题为()A.①②B.①③C.②③D.③④12.等比数列{a n}满足a1=3,a1+a3+a5=21,则a2a6=()A.6 B.9 C.36 D.72二、填空题13.已知双曲线x2﹣y2=1,点F1,F2为其两个焦点,点P为双曲线上一点,若PF1⊥PF2,则|PF1|+|PF2|的值为.14.若函数y=ln(﹣2x)为奇函数,则a=.15.在三棱柱ABC﹣A1B1C1中,底面为棱长为1的正三角形,侧棱AA1⊥底面ABC,点D在棱BB1上,且BD=1,若AD与平面AA1C1C所成的角为α,则sinα的值是.16.已知||=1,||=2,与的夹角为,那么|+||﹣|=.17.已知直线l过点P(﹣2,﹣2),且与以A(﹣1,1),B(3,0)为端点的线段AB相交,则直线l的斜率的取值范围是.18.已知定义域为(0,+∞)的函数f(x)满足:(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2﹣x.给出如下结论:①对任意m∈Z,有f(2m)=0;②函数f(x)的值域为[0,+∞);③存在n∈Z,使得f(2n+1)=9;④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在k∈Z,使得(a,b)⊆(2k,2k+1)”;其中所有正确结论的序号是.三、解答题19.已知﹣2≤x≤2,﹣2≤y≤2,点P的坐标为(x,y)(1)求当x,y∈Z时,点P满足(x﹣2)2+(y﹣2)2≤4的概率;(2)求当x,y∈R时,点P满足(x﹣2)2+(y﹣2)2≤4的概率.20.在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点.(Ⅰ)证明:AC⊥D1E;(Ⅱ)求DE与平面AD1E所成角的正弦值;(Ⅲ)在棱AD上是否存在一点P,使得BP∥平面AD1E?若存在,求DP的长;若不存在,说明理由.21.【南师附中2017届高三模拟二】已知函数()()323131,02f x x a x ax a =+--+>. (1)试讨论()()0f x x ≥的单调性;(2)证明:对于正数a ,存在正数p ,使得当[]0,x p ∈时,有()11f x -≤≤; (3)设(1)中的p 的最大值为()g a ,求()g a 得最大值.22.已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7}.(1)求A ∪B ;(2)求(∁U A )∩B ; (3)求∁U (A ∩B ).23.(本小题满分12分)已知向量,a b 满足:||1a =,||6b =,()2a b a ∙-=. (1)求向量与的夹角; (2)求|2|a b -.24.(本小题满分12分)某超市销售一种蔬菜,根据以往情况,得到每天销售量的频率分布直方图如下:(Ⅰ)求频率分布直方图中的a 的值,并估计每天销售量的中位数;(Ⅱ)这种蔬菜每天进货当天必须销售,否则只能作为垃圾处理.每售出1千克蔬菜获利4元,未售出的蔬菜,每千克亏损2元.假设同一组中的每个数据可用该组区间的中点值代替,估计当超市每天的进货量为75千克时获利的平均值.0.02a频率组距千克新邱区实验中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】A【解析】画出可行域,如图所示,Ω1表示以原点为圆心, 1为半径的圆及其内部,Ω2表示OAB D 及其内部,由几何概型得点M 落在区域Ω2内的概率为112P ==p 2p,故选A.2. 【答案】B【解析】本题考查了对数的计算、列举思想a =-时,不符;a =0时,y =log 2x 过点(,-1),(1,0),此时b =0,b =1符合;a =时,y =log2(x+)过点(0,-1),(,0),此时b=0,b =1符合;a =1时,y =log2(x+1)过点(-,-1),(0,0),(1,1),此时b =-1,b =1符合;共6个 3. 【答案】B4. 【答案】 B【解析】解:因为AD •(BC •AC •sin60°)≥V D ﹣ABC =,BC=1, 即AD •≥1,因为2=AD+≥2=2,当且仅当AD==1时,等号成立,这时AC=,AD=1,且AD⊥面ABC,所以CD=2,AB=,得BD=,故最长棱的长为2.故选B.【点评】本题考查四面体中最长的棱长,考查棱锥的体积公式的运用,同时考查基本不等式的运用,注意等号成立的条件,属于中档题.5.【答案】A【解析】考点:棱锥的结构特征.6.【答案】B【解析】解:①x=0时,y=0,1,2,∴x﹣y=0,﹣1,﹣2;②x=1时,y=0,1,2,∴x﹣y=1,0,﹣1;③x=2时,y=0,1,2,∴x﹣y=2,1,0;∴B={0,﹣1,﹣2,1,2},共5个元素.故选:B.7.【答案】A【解析】解:==1+i,其对应的点为(1,1),故选:A.8.【答案】D【解析】解:根据直线在平面外是指:直线平行于平面或直线与平面相交,∴直线在平面外,则直线与平面最多只有一个公共点.故选D.9.【答案】A【解析】试题分析:根据与相邻的数是1,4,3,而与相邻的数有1,2,5,所以1,3,5是相邻的数,故“?”表示的数是,故选A.考点:几何体的结构特征.10.【答案】C【解析】解:由题意可知,设汽车x年后的价值为S,则S=15(1﹣20%)x,结合程序框图易得当n=4时,S=15(1﹣20%)4=6.144.故选:C.11.【答案】B【解析】解:①由于“若a2+b2=0,则a,b全为0”是真命题,因此其逆否命题是真命题;②“全等三角形的面积相等”的否命题为“不全等的三角形的面积不相等”,不正确;③若x2+2x+q=0有实根,则△=4﹣4q≥0,解得q≤1,因此“若“q≤1”,则x2+2x+q=0有实根”的逆否命题是真命题;④“矩形的对角线相等”的逆命题为“对角线相等的四边形是矩形”,是假命题.综上可得:真命题为:①③.故选:B.【点评】本题考查了命题之间的关系及其真假判定方法,考查了推理能力,属于基础题.12.【答案】D【解析】解:设等比数列{a n}的公比为q,∵a1=3,a1+a3+a5=21,∴3(1+q2+q4)=21,解得q2=2.则a2a6=9×q6=72.故选:D.二、填空题13.【答案】.【解析】解:∵PF1⊥PF2,∴|PF1|2+|PF2|2=|F1F2|2.∵双曲线方程为x2﹣y2=1,∴a2=b2=1,c2=a2+b2=2,可得F1F2=2∴|PF1|2+|PF2|2=|F1F2|2=8又∵P为双曲线x2﹣y2=1上一点,∴|PF1|﹣|PF2|=±2a=±2,(|PF1|﹣|PF2|)2=4因此(|PF1|+|PF2|)2=2(|PF1|2+|PF2|2)﹣(|PF1|﹣|PF2|)2=12∴|PF1|+|PF2|的值为故答案为:【点评】本题根据已知双曲线上对两个焦点的张角为直角的两条焦半径,求它们长度的和,着重考查了双曲线的基本概念与简单性质,属于基础题.14.【答案】4.【解析】解:函数y=ln(﹣2x)为奇函数,可得f(﹣x)=﹣f(x),ln(+2x)=﹣ln(﹣2x).ln(+2x)=ln()=ln().可得1+ax2﹣4x2=1,解得a=4.故答案为:4.15.【答案】.【解析】解:如图所示,分别取AC,A1C1的中点O,O1,连接OO1,取OE=1,连接DE,B1O1,AE.∴BO⊥AC,∵侧棱AA1⊥底面ABC,∴三棱柱ABC﹣A1B1C1是直棱柱.由直棱柱的性质可得:BO⊥侧面ACC1A1.∴四边形BODE是矩形.∴DE⊥侧面ACC1A1.∴∠DAE是AD与平面AA1C1C所成的角,为α,∴DE==OB.AD==.在Rt△ADE中,sinα==.故答案为:.【点评】本题考查了直棱柱的性质、空间角、空间位置关系、等边三角形的性质,考查了推理能力与计算能力,属于中档题.16.【答案】.【解析】解:∵||=1,||=2,与的夹角为,∴==1×=1.∴|+||﹣|====.故答案为:.【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题.17.【答案】[,3].【解析】解:直线AP的斜率K==3,直线BP的斜率K′==由图象可知,则直线l的斜率的取值范围是[,3],故答案为:[,3],【点评】本题给出经过定点P的直线l与线段AB有公共点,求l的斜率取值范围.着重考查了直线的斜率与倾斜角及其应用的知识,属于中档题.18.【答案】①②④.【解析】解:∵x∈(1,2]时,f(x)=2﹣x.∴f(2)=0.f(1)=f(2)=0.∵f(2x)=2f(x),∴f(2k x)=2k f(x).①f(2m)=f(2•2m﹣1)=2f(2m﹣1)=…=2m﹣1f(2)=0,故正确;②设x∈(2,4]时,则x∈(1,2],∴f(x)=2f()=4﹣x≥0.若x∈(4,8]时,则x∈(2,4],∴f(x)=2f()=8﹣x≥0.…一般地当x∈(2m,2m+1),则∈(1,2],f(x)=2m+1﹣x≥0,从而f(x)∈[0,+∞),故正确;③由②知当x∈(2m,2m+1),f(x)=2m+1﹣x≥0,∴f(2n+1)=2n+1﹣2n﹣1=2n﹣1,假设存在n使f(2n+1)=9,即2n﹣1=9,∴2n=10,∵n∈Z,∴2n=10不成立,故错误;④由②知当x∈(2k,2k+1)时,f(x)=2k+1﹣x单调递减,为减函数,∴若(a,b)⊆(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确.故答案为:①②④.三、解答题19.【答案】【解析】解:如图,点P所在的区域为长方形ABCD的内部(含边界),满足(x﹣2)2+(y﹣2)2≤4的点的区域为以(2,2)为圆心,2为半径的圆面(含边界).(1)当x,y∈Z时,满足﹣2≤x≤2,﹣2≤y≤2的点有25个,满足x,y∈Z,且(x﹣2)2+(y﹣2)2≤4的点有6个,依次为(2,0)、(2,1)、(2,2)、(1,1)、(1,2)、(0,2);∴所求的概率P=.(2)当x,y∈R时,满足﹣2≤x≤2,﹣2≤y≤2的面积为:4×4=16,满足(x﹣2)2+(y﹣2)2≤4,且﹣2≤x≤2,﹣2≤y≤2的面积为:=π,∴所求的概率P==.【点评】本题考查的知识点是几何概型概率计算公式,计算出满足条件和所有基本事件对应的几何量,是解答的关键,难度中档.20.【答案】【解析】(Ⅰ)证明:连接BD∵ABCD﹣A1B1C1D1是长方体,∴D1D⊥平面ABCD,又AC⊂平面ABCD,∴D1D⊥AC…1分在长方形ABCD中,AB=BC,∴BD⊥AC…2分又BD∩D1D=D,∴AC⊥平面BB1D1D,…3分而D 1E ⊂平面BB 1D 1D ,∴AC ⊥D 1E …4分(Ⅱ)解:如图建立空间直角坐标系Dxyz ,则A (1,0,0),D 1(0,0,2),E (1,1,1),B (1,1,0),∴…5分设平面AD 1E 的法向量为,则,即令z=1,则…7分∴…8分∴DE 与平面AD 1E 所成角的正弦值为…9分 (Ⅲ)解:假设在棱AD 上存在一点P ,使得BP ∥平面AD 1E .设P 的坐标为(t ,0,0)(0≤t ≤1),则∵BP ∥平面AD 1E∴,即,∴2(t ﹣1)+1=0,解得,…12分∴在棱AD 上存在一点P ,使得BP ∥平面AD 1E ,此时DP 的长.…13分.21.【答案】(1)证明过程如解析;(2)对于正数a ,存在正数p ,使得当[]0,x p ∈时,有()11f x -≤≤;(3)()g a【解析】【试题分析】(1)先对函数()()323131,02f x x a x ax a =+--+>进行求导,再对导函数的值的 符号进行分析,进而做出判断;(2)先求出函数值()01,f =()3213122f a a a =--+=()()211212a a -+-,进而分()1f a ≥-和()1f a <-两种情形进行分析讨论,推断出存在()0,p a ∈使得()10f p +=,从而证得当[]0,x p ∈时,有()11f x -≤≤成立;(3)借助(2)的结论()f x :在[)0,+∞上有最小值为()f a ,然后分011a a ≤,两种情形探求()g a 的解析表达式和最大值。

新邱区三中2018-2019学年高二上学期第二次月考试卷数学

新邱区三中2018-2019学年高二上学期第二次月考试卷数学

新邱区三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则集合{0,1}可以表示为( ) A .M ∪NB .(∁U M )∩NC .M ∩(∁U N )D .(∁U M )∩(∁U N )2. 已知定义在实数集R 上的函数f (x )满足f (1)=3,且f (x )的导数f ′(x )在R 上恒有f ′(x )<2(x ∈R ),则不等式f (x )<2x+1的解集为( )A .(1,+∞)B .(﹣∞,﹣1)C .(﹣1,1)D .(﹣∞,﹣1)∪(1,+∞)3. 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈L 2h ,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V ≈L 2h 相当于将圆锥体积公式中的π近似取为( )A .B .C .D .4. 已知(2,1)a =-,(,3)b k =-,(1,2)c =(,2)k =-c ,若(2)a b c -⊥,则||b =( )A .B .C .D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.5. 设a ,b ∈R ,i 为虚数单位,若2+a i1+i =3+b i ,则a -b 为( )A .3B .2C .1D .06. 若动点),(),(2211y x B y x A 、分别在直线: 011=-+y x 和2l :01=-+y x 上移动,则AB 中点M 所在直线方程为( )A .06=--y xB .06=++y xC .06=+-y xD .06=-+y x7. 函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是( )A .2B .3C .7D .98. 已知空间四边形ABCD ,M 、N 分别是AB 、CD 的中点,且4AC =,6BD =,则( ) A .15MN << B .210MN << C .15MN ≤≤ D .25MN <<9. 已知x >0,y >0, +=1,不等式x+y ≥2m ﹣1恒成立,则m 的取值范围( )A .(﹣∞,]B .(﹣∞,]C .(﹣∞,] D .(﹣∞,]10.已知AC ⊥BC ,AC=BC ,D 满足=t+(1﹣t ),若∠ACD=60°,则t 的值为( )A .B .﹣C .﹣1D .11.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱线长为1,线段B 1D 1上有两个动点E ,F ,且EF=,则下列结论中错误的是( )A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A ﹣BEF 的体积为定值D .异面直线AE ,BF 所成的角为定值12.已知抛物线C :24y x =的焦点为F ,定点(0,2)A ,若射线FA 与抛物线C 交于点M ,与抛 物线C 的准线交于点N ,则||:||MN FN 的值是( )A .2)B .2C .1:D (1+二、填空题13.椭圆C : +=1(a >b >0)的右焦点为(2,0),且点(2,3)在椭圆上,则椭圆的短轴长为 .14.对任意实数x ,不等式ax 2﹣2ax ﹣4<0恒成立,则实数a 的取值范围是 .15.在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 .16.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=5,BC=4,AA 1=3,沿该长方体对角面ABC 1D 1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为 .17.已知(ax+1)5的展开式中x2的系数与的展开式中x3的系数相等,则a=.18.若全集,集合,则。

新邱区第一中学2018-2019学年高二上学期第二次月考试卷数学

新邱区第一中学2018-2019学年高二上学期第二次月考试卷数学

新邱区第一中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有( ) A .90种 B .180种C .270种D .540种2. 已知等比数列{a n }的第5项是二项式(x+)4展开式的常数项,则a 3•a 7( ) A .5 B .18C .24D .363. 设集合3|01x A x x -⎧⎫=<⎨⎬+⎩⎭,集合(){}2|220B x x a x a =+++>,若 A B ⊆,则的取值范围 ( )A .1a ≥B .12a ≤≤ C.a 2≥ D .12a ≤< 4. 一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC E -的体积为1V ,多面体BCE ADF -的体积为2V ,则=21V V ( )1111] A .41 B .31 C .21D .不是定值,随点M 的变化而变化5. 高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛.由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.首发要求每个班至少1人,至多2人,则首发方案数为( ) A .720 B .270 C .390 D .3006. ∃x ∈R ,x 2﹣2x+3>0的否定是( )A .不存在x ∈R ,使∃x 2﹣2x+3≥0B .∃x ∈R ,x 2﹣2x+3≤0C .∀x ∈R ,x 2﹣2x+3≤0D .∀x ∈R ,x 2﹣2x+3>07. 已知函数f (x )是R 上的奇函数,且当x >0时,f (x )=x 3﹣2x 2,则x <0时,函数f (x )的表达式为f (x )=( ) A .x 3+2x 2B .x 3﹣2x 2C .﹣x 3+2x 2D .﹣x 3﹣2x 28.某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x 的值是( )A .2 B. C. D .39. 设变量x ,y满足约束条件,则目标函数z=4x+2y 的最大值为( )A .12B .10C .8D .210.随机变量x 1~N (2,1),x 2~N (4,1),若P (x 1<3)=P (x 2≥a ),则a=( )A .1B .2C .3D .411.已知e 是自然对数的底数,函数f (x )=e x +x ﹣2的零点为a ,函数g (x )=lnx+x ﹣2的零点为b ,则下列不等式中成立的是( )A .a <1<bB .a <b <1C .1<a <bD .b <1<a12.函数的最小正周期不大于2,则正整数k 的最小值应该是( )A .10B .11C .12D .13二、填空题13.若x 、y 满足约束条件⎩⎪⎨⎪⎧x -2y +1≤02x -y +2≥0x +y -2≤0,z =3x +y +m 的最小值为1,则m =________.14.在等差数列}{n a 中,20161-=a ,其前n 项和为n S ,若2810810=-S S ,则2016S 的值等于 . 【命题意图】本题考查等差数列的通项公式、前n 项和公式,对等差数列性质也有较高要求,属于中等难度. 15.二项式展开式中,仅有第五项的二项式系数最大,则其常数项为 .16.已知x ,y 为实数,代数式2222)3(9)2(1y x x y ++-++-+的最小值是 .【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力.17.设函数f (x )=的最大值为M ,最小值为m ,则M+m= .18.不等式的解集为 .三、解答题19.已知集合A={x|x 2﹣5x ﹣6<0},集合B={x|6x 2﹣5x+1≥0},集合C={x|(x ﹣m )(m+9﹣x )>0} (1)求A ∩B(2)若A ∪C=C ,求实数m 的取值范围.20.在平面直角坐标系xoy 中,已知圆C 1:(x+3)2+(y ﹣1)2=4和圆C 2:(x ﹣4)2+(y ﹣5)2=4 (1)若直线l 过点A (4,0),且被圆C 1截得的弦长为2,求直线l 的方程(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,求所有满足条件的点P 的坐标.21.如图,边长为2的等边△PCD 所在的平面垂直于矩形ABCD 所在的平面,BC=,M 为BC 的中点.(Ⅰ)证明:AM ⊥PM ; (Ⅱ)求点D 到平面AMP 的距离.22.已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)设,若函数在上(这里)恰有两个不同的零点,求实数的取值范围.23.如图,椭圆C:+=1(a>b>0)的离心率e=,且椭圆C的短轴长为2.(Ⅰ)求椭圆C的方程;(Ⅱ)设P,M,N椭圆C上的三个动点.(i)若直线MN过点D(0,﹣),且P点是椭圆C的上顶点,求△PMN面积的最大值;(ii)试探究:是否存在△PMN是以O为中心的等边三角形,若存在,请给出证明;若不存在,请说明理由.24.已知直线l:x﹣y+9=0,椭圆E:+=1,(1)过点M(,)且被M点平分的弦所在直线的方程;(2)P是椭圆E上的一点,F1、F2是椭圆E的两个焦点,当P在何位置时,∠F1PF2最大,并说明理由;(3)求与椭圆E有公共焦点,与直线l有公共点,且长轴长最小的椭圆方程.新邱区第一中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:三所学校依次选医生、护士,不同的分配方法共有:C31C62C21C42=540种.故选D.2.【答案】D【解析】解:二项式(x+)4展开式的通项公式为T r+1=•x4﹣2r,令4﹣2r=0,解得r=2,∴展开式的常数项为6=a5,∴a3a7=a52=36,故选:D.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.3.【答案】A【解析】考点:集合的包含关系的判断与应用.【方法点晴】本题主要考查了集合的包含关系的判定与应用,其中解答中涉及到分式不等式的求解,一元二次不等式的解法,集合的子集的相关的运算等知识点的综合考查,着重考查了转化与化归思想、分类讨论思想的应用,以及学生的推理与运算能力,属于中档试题,本题的解答中正确求解每个不等式的解集是解答的关键. 4.【答案】B【解析】考点:棱柱、棱锥、棱台的体积.5.【答案】C解析:高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.各个班的人数有5班的3人、16班的4人、33班的5人,首发共有1、2、2;2、1、2;2、2、1类型;所求方案有:++=390.故选:C.6.【答案】C【解析】解:因为特称命题的否定是全称命题,所以,∃x∈R,x2﹣2x+3>0的否定是:∀x∈R,x2﹣2x+3≤0.故选:C.7.【答案】A【解析】解:设x<0时,则﹣x>0,因为当x>0时,f(x)=x3﹣2x2所以f(﹣x)=(﹣x)3﹣2(﹣x)2=﹣x3﹣2x2,又因为f(x)是定义在R上的奇函数,所以f(﹣x)=﹣f(x),所以当x<0时,函数f(x)的表达式为f(x)=x3+2x2,故选A.8.【答案】C解析:由三视图可知:原几何体是一个四棱锥,其中底面是一个上、下、高分别为1、2、2的直角梯形,一条长为x的侧棱垂直于底面.则体积为=,解得x=.故选:C.9.【答案】B【解析】解:本题主要考查目标函数最值的求法,属于容易题,做出可行域,由图可知,当目标函数过直线y=1与x+y=3的交点(2,1)时,z取得最大值10.10.【答案】C【解析】解:随机变量x1~N(2,1),图象关于x=2对称,x2~N(4,1),图象关于x=4对称,因为P(x1<3)=P(x2≥a),所以3﹣2=4﹣a,所以a=3,故选:C.【点评】本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解.11.【答案】A【解析】解:由f(x)=e x+x﹣2=0得e x=2﹣x,由g(x)=lnx+x﹣2=0得lnx=2﹣x,作出计算y=e x,y=lnx,y=2﹣x的图象如图:∵函数f(x)=e x+x﹣2的零点为a,函数g(x)=lnx+x﹣2的零点为b,∴y=e x与y=2﹣x的交点的横坐标为a,y=lnx与y=2﹣x交点的横坐标为b,由图象知a<1<b,故选:A.【点评】本题主要考查函数与方程的应用,利用函数转化为两个图象的交点问题,结合数形结合是解决本题的关键.12.【答案】D【解析】解:∵函数y=cos (x+)的最小正周期不大于2,∴T=≤2,即|k|≥4π,则正整数k 的最小值为13.故选D【点评】此题考查了三角函数的周期性及其求法,熟练掌握周期公式是解本题的关键.二、填空题13.【答案】【解析】解析:可行域如图,当直线y =-3x +z +m 与直线y =-3x 平行,且在y 轴上的截距最小时,z 才能取最小值,此时l 经过直线2x -y +2=0与x -2y +1=0的交点A (-1,0),z min =3×(-1)+0+m =-3+m =1, ∴m =4.答案:414.【答案】201615.【答案】 70 .【解析】解:根据题意二项式展开式中,仅有第五项的二项式系数最大,则n=8,所以二项式=展开式的通项为T r+1=(﹣1)r C8r x8﹣2r令8﹣2r=0得r=4则其常数项为C84=70故答案为70.【点评】本题考查二项式定理的应用,涉及二项式系数的性质,要注意系数与二项式系数的区别.16.【答案】41.【解析】17.【答案】2.【解析】解:函数可化为f(x)==,令,则为奇函数,∴的最大值与最小值的和为0.∴函数f(x)=的最大值与最小值的和为1+1+0=2.即M+m=2.故答案为:2.18.【答案】(0,1].【解析】解:不等式,即,求得0<x≤1,故答案为:(0,1].【点评】本题主要考查分式不等式、一元二次不等式的解法,属于基础题.三、解答题19.【答案】【解析】解:由合A={x|x2﹣5x﹣6<0},集合B={x|6x2﹣5x+1≥0},集合C={x|(x﹣m)(m+9﹣x)>0}.∴A={x|﹣1<x<6},,C={x|m<x<m+9}.(1),(2)由A∪C=C,可得A⊆C.即,解得﹣3≤m≤﹣1.20.【答案】【解析】【分析】(1)因为直线l过点A(4,0),故可以设出直线l的点斜式方程,又由直线被圆C1截得的弦长为2,根据半弦长、半径、弦心距满足勾股定理,我们可以求出弦心距,即圆心到直线的距离,得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l的方程.(2)与(1)相同,我们可以设出过P点的直线l1与l2的点斜式方程,由于两直线斜率为1,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,故我们可以得到一个关于直线斜率k的方程,解方程求出k 值,代入即得直线l1与l2的方程.【解答】解:(1)由于直线x=4与圆C1不相交;∴直线l的斜率存在,设l方程为:y=k(x﹣4)(1分)圆C1的圆心到直线l的距离为d,∵l被⊙C1截得的弦长为2∴d==1(2分)d=从而k(24k+7)=0即k=0或k=﹣∴直线l的方程为:y=0或7x+24y﹣28=0(5分)(2)设点P(a,b)满足条件,由题意分析可得直线l1、l2的斜率均存在且不为0,不妨设直线l1的方程为y﹣b=k(x﹣a),k≠0则直线l2方程为:y﹣b=﹣(x﹣a)(6分)∵⊙C1和⊙C2的半径相等,及直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,∴⊙C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等即=(8分)整理得|1+3k+ak﹣b|=|5k+4﹣a﹣bk|∴1+3k+ak﹣b=±(5k+4﹣a﹣bk)即(a+b﹣2)k=b﹣a+3或(a﹣b+8)k=a+b﹣5因k的取值有无穷多个,所以或(10分)解得或这样的点只可能是点P1(,﹣)或点P2(﹣,)(12分)21.【答案】【解析】(Ⅰ)证明:取CD的中点E,连接PE、EM、EA∵△PCD为正三角形∴PE⊥CD,PE=PDsin∠PDE=2sin60°=∵平面PCD⊥平面ABCD∴PE⊥平面ABCD∵四边形ABCD是矩形∴△ADE、△ECM、△ABM均为直角三角形由勾股定理得EM=,AM=,AE=3∴EM2+AM2=AE2,∴∠AME=90°∴AM⊥PM(Ⅱ)解:设D点到平面PAM的距离为d,连接DM,则V P﹣ADM=V D﹣PAM∴而在Rt△PEM中,由勾股定理得PM=∴∴∴,即点D到平面PAM的距离为22.【答案】【解析】【知识点】利用导数求最值和极值利用导数研究函数的单调性导数的概念和几何意义【试题解析】(Ⅰ)函数定义域为,又,所求切线方程为,即(Ⅱ)函数在上恰有两个不同的零点,等价于在上恰有两个不同的实根等价于在上恰有两个不同的实根,令则当时,,在递减;当时,,在递增.故,又.,,即23.【答案】【解析】解:(Ⅰ)由题意得解得a=2,b=1,所以椭圆方程为.(Ⅱ)(i)由已知,直线MN的斜率存在,设直线MN方程为y=kx﹣,M(x1,y1),N(x2,y2).由得(1+4k2)x2﹣4kx﹣3=0,∴x1+x2=,x1x2=,又.所以S△PMN=|PD|•|x1﹣x2|==.令t=,则t≥,k2=所以S△PMN=,令h(t)=,t∈[,+∞),则h′(t)=1﹣=>0,所以h(t)在[,+∞),单调递增,则t=,即k=0时,h(t)的最小值,为h()=,所以△PMN面积的最大值为.(ii)假设存在△PMN是以O为中心的等边三角形.(1)当P在y轴上时,P的坐标为(0,1),则M,N关于y轴对称,MN的中点Q在y轴上.又O为△PMN的中心,所以,可知Q(0,﹣),M(﹣,),N(,).从而|MN|=,|PM|=,|MN|≠|PM|,与△PMN为等边三角形矛盾.(2)当P在x轴上时,同理可知,|MN|≠|PM|,与△PMN为等边三角形矛盾.(3)当P不在坐标轴时,设P(x0,y0),MN的中点为Q,则k OP=,又O为△PMN的中心,则,可知.设M(x1,y1),N(x2,y2),则x1+x2=2x Q=﹣x0,y1+y2=2y Q=﹣y0,又x12+4y12=4,x22+4y22=4,两式相减得k MN=,从而k MN=.所以k OP•k MN=•()=≠﹣1,所以OP与MN不垂直,与等边△PMN矛盾.综上所述,不存在△PMN是以O为中心的等边三角形.【点评】本小题考查点到直线的距离公式、椭圆的性质、直线与椭圆的位置关系等基础知识,考查运算求解能力、推理论证能力、分析解决问题能力,考查函数与方程思想、数形结合思想、特殊与一般思想、化归与转化思想24.【答案】【解析】解:(1)设以点M(,)为中点的弦的端点为A(x1,y1),B(x2,y2),∴x1+x2=1,y1+y2=1,把A(x1,y1),B(x2,y2)代入椭圆E:+=1,得,∴k AB==﹣=﹣,∴直线AB的方程为y﹣=﹣(x﹣),即2x+8y﹣5=0.(2)设|PF1|=r1,|PF2|=r1,则cos∠F1PF2==﹣1=﹣1=﹣1,又r1r2≤()2=a2(当且仅当r1=r2时取等号)∴当r1=r2=a,即P(0,)时,cos∠F1PF2最小,又∠F1PF2∈(0,π),∴当P为短轴端点时,∠F1PF2最大.(3)∵=12,=3,∴=9.则由题意,设所求的椭圆方程为+=1(a2>9),将y=x+9代入上述椭圆方程,消去y,得(2a2﹣9)x2+18a2x+90a2﹣a4=0,依题意△=(18a2)2﹣4(2a2﹣9)(90a2﹣a4)≥0,化简得(a2﹣45)(a2﹣9)≥0,∵a2﹣9>0,∴a2≥45,故所求的椭圆方程为=1.【点评】本题考查直线方程、椭圆方程的求法,考查当P在何位置时,∠F1PF2最大的判断与求法,是中档题,解题时要认真审题,注意根的判别式、余弦定理、椭圆性质的合理运用.。

新邱区第二中学2018-2019学年高二上学期第二次月考试卷数学(1)

新邱区第二中学2018-2019学年高二上学期第二次月考试卷数学(1)

新邱区第二中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 下列正方体或四面体中,P 、Q 、R 、S 分别是所在棱的中点,这四个点不共面的一个图形是 ( )2. 设1m >,在约束条件,,1.y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C. (1,3) D .(3,)+∞ 3. 设集合A={x|x+2=0},集合B={x|x 2﹣4=0},则A ∩B=( )A .{﹣2}B .{2}C .{﹣2,2}D .∅4. 在ABC ∆中,角A ,B ,C 的对边分别是,,,BH 为AC 边上的高,5BH =,若2015120aBC bCA cAB ++=,则H 到AB 边的距离为( )A .2B .3 C.1 D .4 5. 如果函数f (x )的图象关于原点对称,在区间上是减函数,且最小值为3,那么f (x )在区间上是( ) A .增函数且最小值为3B .增函数且最大值为3C .减函数且最小值为﹣3D .减函数且最大值为﹣36. 已知定义在实数集R 上的函数f (x )满足f (1)=3,且f (x )的导数f ′(x )在R 上恒有f ′(x )<2(x ∈R ),则不等式f (x )<2x+1的解集为( ) A .(1,+∞) B .(﹣∞,﹣1)C .(﹣1,1)D .(﹣∞,﹣1)∪(1,+∞)7. 已知F 1,F 2是椭圆和双曲线的公共焦点,M 是它们的一个公共点,且∠F 1MF 2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A .2B .C .D .48. 已知全集为R ,集合{}|23A x x x =<->或,{}2,0,2,4B =-,则()R A B =ð( )A .{}2,0,2-B .{}2,2,4-C .{}2,0,3-D .{}0,2,4 9. 在复平面上,复数z=a+bi (a ,b ∈R )与复数i (i ﹣2)关于实轴对称,则a+b 的值为( ) A .1B .﹣3C .3D .210.已知集合A={y|y=x 2+2x ﹣3},,则有( )A .A ⊆BB .B ⊆AC .A=BD .A ∩B=φ 11.有下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适.②相关指数R 2来刻画回归的效果,R 2值越小,说明模型的拟合效果越好.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.其中正确命题的个数是( )A .0B .1C .2D .312.已知抛物线C :y x 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若2=,则=QF ( ) A .6B .3C .38D .34 第Ⅱ卷(非选择题,共100分)二、填空题13.1785与840的最大约数为 .14.已知a ,b 是互异的负数,A 是a ,b 的等差中项,G 是a ,b 的等比中项,则A 与G 的大小关系为 .15.二项式展开式中,仅有第五项的二项式系数最大,则其常数项为 .16.在ABC ∆中,角A B C 、、的对边分别为a b c 、、,若1cos 2c B a b ⋅=+,ABC ∆的面积S =, 则边c 的最小值为_______.【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能力.17.设p:实数x满足不等式x2﹣4ax+3a2<0(a<0),q:实数x满足不等式x2﹣x﹣6≤0,已知¬p是¬q的必要非充分条件,则实数a的取值范围是.18.设向量=(1,﹣3),=(﹣2,4),=(﹣1,﹣2),若表示向量4,4﹣2,2(﹣),的有向线段首尾相接能构成四边形,则向量的坐标是.三、解答题19.已知f(x)=x3+3ax2+bx在x=﹣1时有极值为0.(1)求常数a,b的值;(2)求f(x)在[﹣2,﹣]的最值.20.如图,边长为2的正方形ABCD绕AB边所在直线旋转一定的角度(小于180°)到ABEF的位置.(Ⅰ)求证:CE∥平面ADF;(Ⅱ)若K为线段BE上异于B,E的点,CE=2.设直线AK与平面BDF所成角为φ,当30°≤φ≤45°时,求BK的取值范围.21.【启东中学2018届高三上学期第一次月考(10月)】设1a >,函数()()21xf x x e a =+-.(1)证明在(上仅有一个零点;(2)若曲线在点处的切线与轴平行,且在点处的切线与直线平行,(O 是坐标原点),证明:1m ≤22.(本小题满分12分)在多面体ABCDEFG 中,四边形ABCD 与CDEF 均为正方形,CF ⊥平面ABCD ,BG ⊥平面ABCD ,且24AB BG BH ==.(1)求证:平面AGH ⊥平面EFG ; (2)求二面角D FG E --的大小的余弦值.23.已知在△ABC 中,A (2,4),B (﹣1,﹣2),C (4,3),BC 边上的高为AD .(1)求证:AB ⊥AC ;(2)求向量.24.已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.(1)求椭圆C的方程;(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由.新邱区第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】考点:平面的基本公理与推论.2.【答案】A【解析】考点:线性规划.【方法点晴】本题是一道关于线性规划求最值的题目,采用线性规划的知识进行求解;关键是弄清楚的几何意义直线z x my =+截距为zm,作0my x :L =+,向可行域内平移,越向上,则的值越大,从而可得当直线直线z x my =+过点A 时取最大值,⎩⎨⎧==+00001m x y y x 可求得点A 的坐标可求的最大值,然后由z 2,>解不等式可求m的范围.3.【答案】A【解析】解:由A中的方程x+2=0,解得x=﹣2,即A={﹣2};由B中的方程x2﹣4=0,解得x=2或﹣2,即B={﹣2,2},则A∩B={﹣2}.故选A【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.4.【答案】D【解析】考点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差OA OB OD+=(D点是AB的中点),另外,要选好基底-=,这是一个易错点,两个向量的和2OA OB BAAB AC,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几向量,如本题就要灵活使用向量,何意义等.5.【答案】D【解析】解:由奇函数的性质可知,若奇函数f(x)在区间上是减函数,且最小值3,则那么f(x)在区间上为减函数,且有最大值为﹣3,故选:D【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,比较基础.6.【答案】A【解析】解:令F(x)=f(x)﹣2x﹣1,则F′(x)=f′(x)﹣2,又∵f(x)的导数f′(x)在R上恒有f′(x)<2,∴F′(x)=f′(x)﹣2<0恒成立,∴F(x)=f(x)﹣2x﹣1是R上的减函数,又∵F(1)=f(1)﹣2﹣1=0,∴当x>1时,F(x)<F(1)=0,即f(x)﹣2x﹣1<0,即不等式f(x)<2x+1的解集为(1,+∞);故选A.【点评】本题考查了导数的综合应用及利用函数求解不等式的方法应用,属于中档题.7.【答案】C【解析】解:设椭圆的长半轴为a,双曲线的实半轴为a1,(a>a1),半焦距为c,由椭圆和双曲线的定义可知,设|MF1|=r1,|MF2|=r2,|F1F2|=2c,椭圆和双曲线的离心率分别为e1,e2∵∠F1MF2=,∴由余弦定理可得4c2=(r1)2+(r2)2﹣2r1r2cos,①在椭圆中,①化简为即4c2=4a2﹣3r1r2,即=﹣1,②在双曲线中,①化简为即4c2=4a12+r1r2,即=1﹣,③联立②③得,+=4,由柯西不等式得(1+)(+)≥(1×+×)2,即(+)2≤×4=,即+≤,当且仅当e=,e2=时取等号.即取得最大值且为.1故选C.【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大.8.【答案】A【解析】考点:1、集合的表示方法;2、集合的补集及交集.9.【答案】A【解析】解:∵z=a+bi(a,b∈R)与复数i(i﹣2)=﹣1﹣2i关于实轴对称,∴,∴a+b=2﹣1=1,故选:A.【点评】本题考查复数的运算,注意解题方法的积累,属于基础题.10.【答案】B【解析】解:∵y=x2+2x﹣3=(x+1)2﹣4,∴y≥﹣4.则A={y|y≥﹣4}.∵x>0,∴x+≥2=2(当x=,即x=1时取“=”),∴B={y|y≥2},∴B⊆A.故选:B.【点评】本题考查子集与真子集,求解本题,关键是将两个集合进行化简,由子集的定义得出两个集合之间的关系,再对比选项得出正确选项.11.【答案】C【解析】解:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,正确.②相关指数R2来刻画回归的效果,R2值越大,说明模型的拟合效果越好,因此②不正确.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好,正确.综上可知:其中正确命题的是①③.故选:C.【点评】本题考查了“残差”的意义、相关指数的意义,考查了理解能力和推理能力,属于中档题.12.【答案】A解析:抛物线C :y x 82 的焦点为F (0,2),准线为l :y=﹣2,设P (a ,﹣2),B (m ,),则=(﹣a ,4),=(m ,﹣2),∵,∴2m=﹣a ,4=﹣4,∴m 2=32,由抛物线的定义可得|QF|=+2=4+2=6.故选A .二、填空题13.【答案】 105 .【解析】解:1785=840×2+105,840=105×8+0. ∴840与1785的最大公约数是105. 故答案为10514.【答案】 A <G .【解析】解:由题意可得A=,G=±,由基本不等式可得A ≥G ,当且仅当a=b 取等号,由题意a ,b 是互异的负数,故A <G .故答案是:A <G .【点评】本题考查等差中项和等比中项,涉及基本不等式的应用,属基础题.15.【答案】 70 .【解析】解:根据题意二项式展开式中,仅有第五项的二项式系数最大,则n=8,所以二项式=展开式的通项为T r+1=(﹣1)r C 8r x 8﹣2r 令8﹣2r=0得r=4 则其常数项为C 84=70故答案为70.【点评】本题考查二项式定理的应用,涉及二项式系数的性质,要注意系数与二项式系数的区别.16.【答案】117.【答案】.【解析】解:∵x2﹣4ax+3a2<0(a<0),∴(x﹣a)(x﹣3a)<0,则3a<x<a,(a<0),由x2﹣x﹣6≤0得﹣2≤x≤3,∵¬p是¬q的必要非充分条件,∴q是p的必要非充分条件,即,即≤a<0,故答案为:18.【答案】(﹣2,﹣6).【解析】解:向量4,4﹣2,2(﹣),的有向线段首尾相接能构成四边形,则向量=﹣[4+4﹣2+2(﹣)]=﹣(6+4﹣4)=﹣[6(1,﹣3)+4(﹣2,4)﹣4(﹣1,﹣2)]=﹣(2,6)=(﹣2,﹣6),故答案为:(﹣2,﹣6).【点评】本题考查了向量的多边形法则、向量坐标运算、线性运算,考查了计算能力,属于基础题.三、解答题19.【答案】【解析】解:(1)∵f(x)=x3+3ax2+bx,∴f'(x)=3x2+6ax+b,又∵f(x)在x=﹣1时有极值0,∴f'(﹣1)=0且f(﹣1)=0,即3﹣6a+b=0且﹣1+3a﹣b=0,解得:a=,b=1 经检验,合题意.(2)由(1)得f'(x)=3x2+4x+1,令f'(x)=0得x=﹣或x=﹣1,又∵f(﹣2)=﹣2,f(﹣)=﹣,f(﹣1)=0,f(﹣)=﹣,∴f(x)max=0,f(x)min=﹣2.20.【答案】【解析】解:(Ⅰ)证明:正方形ABCD中,CD BA,正方形ABEF中,EF BA.…∴EF CD,∴四边形EFDC为平行四边形,∴CE∥DF.…又DF⊂平面ADF,CE⊄平面ADF,∴CE∥平面ADF.…(Ⅱ)解:∵BE=BC=2,CE=,∴CE2=BC2+BE2.∴△BCE为直角三角形,BE⊥BC,…又BE⊥BA,BC∩BA=B,BC、BA⊂平面ABCD,∴BE⊥平面ABCD.…以B为原点,、、的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系,则B(0,0,0),F(0,2,2),A(0,2,0),=(2,2,0),=(0,2,2).设K(0,0,m),平面BDF的一个法向量为=(x,y,z).由,,得可取=(1,﹣1,1),…又=(0,﹣2,m),于是sinφ==,∵30°≤φ≤45°,∴,即…结合0<m<2,解得0,即BK的取值范围为(0,4﹣].…【点评】本小题主要考查空间直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、抽象概括能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想.21.【答案】(1)f x ()在∞+∞(﹣,)上有且只有一个零点(2)证明见解析 【解析】试题分析:试题解析:(1)()()()22211xx f x exx e x +='=++,()0f x ∴'≥,()()21xf x x ea ∴=+-在(),-∞+∞上为增函数.1a >,()010f a ∴=-<,又()1fa a =-=-,10,1a ->∴>,即0f>,由零点存在性定理可知,()f x 在(),-∞+∞上为增函数,且()00f f⋅<,()f x ∴在(上仅有一个零点。

新邱区高级中学2018-2019学年上学期高二数学12月月考试题含解析

新邱区高级中学2018-2019学年上学期高二数学12月月考试题含解析

新邱区高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设l ,m ,n 表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题: ①若m ∥l ,m ⊥α,则l ⊥α; ②若m ∥l ,m ∥α,则l ∥α;③若α∩β=l ,β∩γ=m ,γ∩α=n ,则l ∥m ∥n ; ④若α∩β=l ,β∩γ=m ,γ∩α=n ,n ∥β,则l ∥m . 其中正确命题的个数是( )A .1B .2C .3D .42. 现准备将7台型号相同的健身设备全部分配给5个不同的社区,其中甲、乙两个社区每个社区至少2台,其它社区允许1台也没有,则不同的分配方案共有( )A .27种B .35种C .29种D .125种3. 记集合{}22(,)1A x y x y =+?和集合{}(,)1,0,0B x y x y xy =+3?表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2内的概率为( ) A .12p B .1p C .2pD .13p【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力. 4. 如图,棱长为的正方体1111D ABC A B C D -中,,E F 是侧面对角线11,BC AD 上一点,若 1BED F 是菱形,则其在底面ABCD 上投影的四边形面积( ) A .12 B .34C. 22 D .324-5. 若tan α>0,则( )A .sin α>0B .cos α>0C .sin2α>0D .cos2α>0 6. 方程x= 所表示的曲线是( )A .双曲线B .椭圆C .双曲线的一部分D .椭圆的一部分7. 高三(1)班从4名男生和3名女生中推荐4人参加学校组织社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( )A .34种B .35种C .120种D .140种8. 如果点P (sin θcos θ,2cos θ)位于第二象限,那么角θ所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9. 已知在数轴上0和3之间任取一实数,则使“2log 1x <”的概率为( ) A .14 B .18 C .23 D .11210.已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}中元素的个数是( ) A .1B .3C .5D .911.下列函数中,为偶函数的是( )A .y=x+1B .y=C .y=x 4D .y=x 512.函数f (x )=lnx ﹣+1的图象大致为( ) A .B .C .D .二、填空题13.抛物线y 2=8x 上一点P 到焦点的距离为10,则P 点的横坐标为 .14.已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )>f (x )g ′(x ),且f (x )=a x g (x )(a >0且a ≠1),+=.若数列{}的前n 项和大于62,则n 的最小值为 .15.x 为实数,[x]表示不超过x 的最大整数,则函数f (x )=x ﹣[x]的最小正周期是 . 16.图中的三个直角三角形是一个体积为20的几何体的三视图,则h =__________.17.设集合 {}{}22|27150,|0A x x x B x x ax b =+-<=++≤,满足A B =∅I ,{}|52A B x x =-<≤U ,求实数a =__________.18.在各项为正数的等比数列{a n }中,若a 6=a 5+2a 4,则公比q= .三、解答题19.【南师附中2017届高三模拟一】已知,a b 是正实数,设函数()()ln ,ln f x x x g x a x b ==-+. (1)设()()()h x f x g x =- ,求 ()h x 的单调区间; (2)若存在0x ,使03,45a b a b x ++⎡⎤∈⎢⎥⎣⎦且()()00f x g x ≤成立,求b a 的取值范围.20.(本小题满分10分) 已知函数()2f x x a x =++-.(1)若4a =-求不等式()6f x ≥的解集; (2)若()3f x x ≤-的解集包含[]0,1,求实数的取值范围.21.在平面直角坐标系xOy 中,过点(2,0)C 的直线与抛物线24y x =相交于点A 、B 两点,设11(,)A x y ,22(,)B x y .(1)求证:12y y 为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线方程 和弦长,如果不存在,说明理由.22.(本小题满分10分)已知函数f (x )=|x -a |+|x +b |,(a ≥0,b ≥0). (1)求f (x )的最小值,并求取最小值时x 的范围; (2)若f (x )的最小值为2,求证:f (x )≥a +b .23.已知椭圆的左焦点为F,离心率为,过点M(0,1)且与x轴平行的直线被椭圆G截得的线段长为.(I)求椭圆G的方程;(II)设动点P在椭圆G上(P不是顶点),若直线FP的斜率大于,求直线OP(O是坐标原点)的斜率的取值范围.24.在平面直角坐标系xOy中.己知直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=4.(1)写出直线l的普通方程与曲线C的直角坐标系方程;(2)直线l与曲线C相交于A、B两点,求∠AOB的值.新邱区高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:∵①若m∥l,m⊥α,则由直线与平面垂直的判定定理,得l⊥α,故①正确;②若m∥l,m∥α,则l∥α或l⊂α,故②错误;③如图,在正方体ABCD﹣A1B1C1D1中,平面ABB1A1∩平面ABCD=AB,平面ABB1A1∩平面BCC1B1=BB1,平面ABCD∩平面BCC1B1=BC,由AB、BC、BB1两两相交,得:若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n不成立,故③是假命题;④若α∩β=l,β∩γ=m,γ∩α=n,n∥β,则由α∩γ=n知,n⊂α且n⊂γ,由n⊂α及n∥β,α∩β=m,得n∥m,同理n∥l,故m∥l,故命题④正确.故选:B.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.2.【答案】B【解析】排列、组合及简单计数问题.【专题】计算题.【分析】根据题意,可将7台型号相同的健身设备看成是相同的元素,首先分给甲、乙两个社区各台设备,再将余下的三台设备任意分给五个社区,分三种情况讨论分配方案,①当三台设备都给一个社区,②当三台设备分为1和2两份分给2个社区,③当三台设备按1、1、1分成三份时分给三个社区,分别求出其分配方案数目,将其相加即可得答案.【解答】解:根据题意,7台型号相同的健身设备是相同的元素,首先要满足甲、乙两个社区至少2台,可以先分给甲、乙两个社区各2台设备,余下的三台设备任意分给五个社区,分三种情况讨论:①当三台设备都给一个社区时,有5种结果,②当三台设备分为1和2两份分给2个社区时,有2×C52=20种结果,③当三台设备按1、1、1分成三份时分给三个社区时,有C53=10种结果,∴不同的分配方案有5+20+10=35种结果;故选B.【点评】本题考查分类计数原理,注意分类时做到不重不漏,其次注意型号相同的健身设备是相同的元素.3.【答案】A【解析】画出可行域,如图所示,Ω1表示以原点为圆心,1为半径的圆及其内部,Ω2表示OABD及其内部,由几何概型得点M落在区域Ω2内的概率为112P==p2p,故选A.4.【答案】B 【解析】试题分析:在棱长为的正方体1111DABC A B C D-中,11BC AD==AF x=x=解得4x=,即菱形1BED F44=,则1BED F在底面ABCD上的投影四边形是底边为34,高为的平行四边形,其面积为34,故选B.考点:平面图形的投影及其作法.5.【答案】C【解析】解:∵tan α>0, ∴,则sin2α=2sin αcos α>0. 故选:C .6. 【答案】C【解析】解:x=两边平方,可变为3y 2﹣x 2=1(x ≥0),表示的曲线为双曲线的一部分;故选C .【点评】本题主要考查了曲线与方程.解题的过程中注意x 的范围,注意数形结合的思想.7. 【答案】A【解析】解:从7个人中选4人共种选法,只有男生的选法有种,所以既有男生又有女生的选法有﹣=34种. 故选:A .【点评】本题考查了排列组合题,间接法是常用的一种方法,属于基础题8. 【答案】D 【解析】解:∵P (sin θcos θ,2cos θ)位于第二象限,∴sin θcos θ<0,cos θ>0,∴sin θ<0, ∴θ是第四象限角. 故选:D .【点评】本题考查了象限角的三角函数符号,属于基础题.9. 【答案】C 【解析】试题分析:由2log 1x <得02x <<,由几何概型可得所求概率为202303-=-.故本题答案选C. 考点:几何概型. 10.【答案】C【解析】解:∵A={0,1,2},B={x ﹣y|x ∈A ,y ∈A}, ∴当x=0,y 分别取0,1,2时,x ﹣y 的值分别为0,﹣1,﹣2; 当x=1,y 分别取0,1,2时,x ﹣y 的值分别为1,0,﹣1;当x=2,y分别取0,1,2时,x﹣y的值分别为2,1,0;∴B={﹣2,﹣1,0,1,2},∴集合B={x﹣y|x∈A,y∈A}中元素的个数是5个.故选C.11.【答案】C【解析】解:对于A,既不是奇函数,也不是偶函数,对于B,满足f(﹣x)=﹣f(x),是奇函数,对于C,定义域为R,满足f(x)=f(﹣x),则是偶函数,对于D,满足f(﹣x)=﹣f(x),是奇函数,故选:C.【点评】本题主要考查了偶函数的定义,同时考查了解决问题、分析问题的能力,属于基础题.12.【答案】A【解析】解:∵f(x)=lnx﹣+1,∴f′(x)=﹣=,∴f(x)在(0,4)上单调递增,在(4,+∞)上单调递减;且f(4)=ln4﹣2+1=ln4﹣1>0;故选A.【点评】本题考查了导数的综合应用及函数的图象的应用.二、填空题13.【答案】8.【解析】解:∵抛物线y2=8x=2px,∴p=4,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|MF|=x+=x+2=10,∴x=8,故答案为:8.【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.14.【答案】1.【解析】解:∵x为实数,[x]表示不超过x的最大整数,∴如图,当x∈[0,1)时,画出函数f(x)=x﹣[x]的图象,再左右扩展知f(x)为周期函数.结合图象得到函数f(x)=x﹣[x]的最小正周期是1.故答案为:1.【点评】本题考查函数的最小正周期的求法,是基础题,解题时要认真审题,注意数形结合思想的合理运用.15.【答案】[1,)∪(9,25].【解析】解:∵集合,得(ax﹣5)(x2﹣a)<0,当a=0时,显然不成立,当a>0时,原不等式可化为,若时,只需满足,解得;若,只需满足,解得9<a≤25,当a<0时,不符合条件,综上,故答案为[1,)∪(9,25].【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题.16.【答案】【解析】试题分析:由三视图可知该几何体为三棱锥,其中侧棱VA⊥底面ABC,且ABC∆为直角三角形,且5,,6AB VA h AC===,所以三棱锥的体积为115652032V h h=⨯⨯⨯==,解得4h=.考点:几何体的三视图与体积.17.【答案】7,32a b=-=【解析】考点:一元二次不等式的解法;集合的运算.【方法点晴】本题主要考查了集合的综合运算问题,其中解答中涉及到一元二次不等式的解法、集合的交集和集合的并集的运算、以及一元二次方程中韦达定理的应用,试题有一定的难度,属于中档试题,着重考查了学生分析问题和解答问题的能力,同时考查了转化与化归思想的应用,其中一元二次不等式的求解是解答的关键. 18.【答案】 2 .【解析】解:由a 6=a 5+2a 4得,a 4q 2=a 4q+2a 4, 即q 2﹣q ﹣2=0,解得q=2或q=﹣1, 又各项为正数,则q=2, 故答案为:2.【点评】本题考查等比数列的通项公式,注意公比的符号,属于基础题.三、解答题19.【答案】(1)在0,b e ⎛⎫ ⎪⎝⎭上单调递减,在,b e ⎛⎫∞⎪⎝⎭上单调递增.(2)7b e a ≤<【解析】【试题分析】(1)先对函数()()ln ln ,0,h x x x x b a x =-+∈∞求导得()'ln 1ln h x x b =+-,再解不等式()'0h x >得b x e >求出单调增区间;解不等式()'0h x <得bx e<求出单调减区间;(2)先依据题设345a b a b ++<得7b a <,由(1)知()min 0h x ≤,然后分345a b b a b e ++≤≤、4b a b e +<、35b a be +>三种情形,分别研究函数()()ln ln ,0,h x x x x b a x =-+∈∞的最小值,然后建立不等式进行分类讨论进行求解出其取值范围7be a≤<: 解:(1)()()()ln ln ,0,,'ln 1ln h x x x x b a x h x x b =-+∈∞=+-,由()'0h x >得b x e >,()'h x ∴在0,b e ⎛⎫ ⎪⎝⎭上单调递减,在,b e ⎛⎫∞⎪⎝⎭上单调递增. (2)由345a b a b ++<得7ba<,由条件得()min 0h x ≤. ①当345a b b a b e ++≤≤,即345e b e e a e ≤≤--时,()min b b h x h a e e ⎛⎫==-+ ⎪⎝⎭,由0b a e -+≤得 3,5b b ee e a a e≥∴≤≤-. ②当4b a b e +<时,()4,e a b h x a ->∴在3,45a b a b ++⎡⎤⎢⎥⎣⎦上单调递增, ()min ln ln ln ln 4444a b a b a b a b b h x h b a b ae ++++⎛⎫⎛⎫⎛⎫==-+≥-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭43?3044e b ba b e e b e --+-=>=>,矛盾,∴不成立. 由0ba e-+≤得.③当35b a b e +>,即35b e a e >-时,53e a b e ->,()h x ∴在3,45a b a b ++⎡⎤⎢⎥⎣⎦上单调递减, ()min 3333ln ln ln ln 5555a b a b a b a b b h x h b a b ae ++++⎛⎫⎛⎫⎛⎫==-+≥-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭52?2230553e b ba b e e b e----=>=>,∴当35b e a e >-时恒成立,综上所述,7be a ≤<. 20.【答案】(1)(][),06,-∞+∞U ;(2)[]1,0-.【解析】试题分析:(1)当4a =-时,()6f x ≥,利用零点分段法将表达式分成三种情况,分别解不等式组,求得解集为(][),06,-∞+∞U ;(2)()3f x x ≤-等价于23x a x x ++-≤-,即11x a x --≤≤-在[]0,1上恒成立,即10a -≤≤. 试题解析:(1)当4a =-时,()6f x ≥,即2426x x x ≤⎧⎨-+-≥⎩或24426x x x <<⎧⎨-+-≥⎩或4426x x x ≥⎧⎨-+-≥⎩,解得0x ≤或6x ≥,不等式的解集为(][),06,-∞+∞U ;考点:不等式选讲.21.【答案】(1)证明见解析;(2)弦长为定值,直线方程为1x =. 【解析】(2214(1)84a x a a --+- ,进而得1a =时为定值.试题解析:(1)设直线AB 的方程为2my x =-,由22,4,my x y x =-⎧⎨=⎩得2480y my --=,∴128y y =-,因此有128y y =-为定值.111](2)设存在直线:x a =满足条件,则AC 的中点112(,)22x y E +,2211(2)AC x y =-+, 因此以AC 为直径圆的半径221111(2)22r AC x y ==-+21142x =+,E 点到直线x a =的距离12||2x d a +=-,所以所截弦长为2222112122(4)()42x r d x a +-=+--22114(22)x x a =+-+- 214(1)84a x a a =--+-.当10a -=,即1a =时,弦长为定值2,这时直线方程为1x =.考点:1、直线与圆、直线与抛物线的位置关系的性质;2、韦达定理、点到直线距离公式及定值问题. 22.【答案】【解析】解:(1)由|x -a |+|x +b |≥|(x -a )-(x +b )| =|a +b |得,当且仅当(x -a )(x +b )≤0,即-b ≤x ≤a 时,f (x )取得最小值, ∴当x ∈[-b ,a ]时,f (x )min =|a +b |=a +b . (2)证明:由(1)知a +b =2,(a +b )2=a +b +2ab ≤2(a +b )=4, ∴a +b ≤2,∴f (x )≥a +b =2≥a +b , 即f (x )≥a +b . 23.【答案】【解析】解:(I )∵椭圆的左焦点为F ,离心率为,过点M (0,1)且与x 轴平行的直线被椭圆G 截得的线段长为.∴点在椭圆G 上,又离心率为,∴,解得∴椭圆G的方程为.(II)由(I)可知,椭圆G的方程为.∴点F的坐标为(﹣1,0).设点P的坐标为(x0,y0)(x0≠﹣1,x0≠0),直线FP的斜率为k,则直线FP的方程为y=k(x+1),由方程组消去y0,并整理得.又由已知,得,解得或﹣1<x0<0.设直线OP的斜率为m,则直线OP的方程为y=mx.由方程组消去y0,并整理得.由﹣1<x0<0,得m2>,∵x0<0,y0>0,∴m<0,∴m∈(﹣∞,﹣),由﹣<x0<﹣1,得,∵x0<0,y0>0,得m<0,∴﹣<m<﹣.∴直线OP(O是坐标原点)的斜率的取值范围是(﹣∞,﹣)∪(﹣,﹣).【点评】本题考查椭圆方程的求法,考查直线的斜率的取值范围的求法,是中档题,解题时要认真审题,注意椭圆与直线的位置关系的合理运用.24.【答案】【解析】解:(1)∵直线l的参数方程为(t为参数),∴直线l的普通方程为.∵曲线C的极坐标方程是ρ=4,∴ρ2=16,∴曲线C的直角坐标系方程为x2+y2=16.(2)⊙C的圆心C(0,0)到直线l:+y﹣4=0的距离:d==2,∴cos,∵0,∴,∴.。

新邱区第二中学校2018-2019学年高二上学期第二次月考试卷数学

新邱区第二中学校2018-2019学年高二上学期第二次月考试卷数学

新邱区第二中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.已知直线x+y+a=0与圆x2+y2=1交于不同的两点A、B,O是坐标原点,且,那么实数a的取值范围是()A.B.C.D.2.如图,程序框图的运算结果为()A.6 B.24 C.20 D.1203.曲线y=x3﹣2x+4在点(1,3)处的切线的倾斜角为()A.30°B.45°C.60°D.120°4.如图,正方体ABCD﹣A1B1C1D1中,点E,F分别是AA1,AD的中点,则CD1与EF所成角为()A.0°B.45°C.60°D.90°5.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限6. (2015秋新乡校级期中)已知x+x ﹣1=3,则x 2+x ﹣2等于( )A .7B .9C .11D .137. 如果向量满足,且,则的夹角大小为( ) A .30° B .45° C .75° D .135°8. 设m 、n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n ∥α,则m ⊥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若m ⊥α,n ⊥α,则m ∥n ;④若α⊥β,m ⊥β,则m ∥α; 其中正确命题的序号是( ) A .①②③④ B .①②③ C .②④D .①③9. 高三年上学期期末考试中,某班级数学成绩的频率分布直方图如图所示,数据分组依次如下:[70,90),[90,110),[100,130),[130,150),估计该班级数学成绩的平均分等于( )A .112B .114C .116D .12010.与命题“若x ∈A ,则y ∉A ”等价的命题是( )A .若x ∉A ,则y ∉AB .若y ∉A ,则x ∈AC .若x ∉A ,则y ∈AD .若y ∈A ,则x ∉A 11.若,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列为真命题的是( ) A .若,m βαβ⊂⊥,则m α⊥ B .若,//m m n αγ=,则//αβC .若,//m m βα⊥,则αβ⊥D .若,αγαβ⊥⊥,则βγ⊥12.设=(1,2),=(1,1),=+k ,若,则实数k 的值等于( )A .﹣B .﹣C .D .二、填空题13.若不等式组表示的平面区域是一个锐角三角形,则k 的取值范围是 .14.8名支教名额分配到三所学校,每个学校至少一个名额,且甲学校至少分到两个名额的分配方案为(用数字作答)15.设a抛掷一枚骰子得到的点数,则方程x2+ax+a=0有两个不等实数根的概率为.16.求函数在区间[]上的最大值.17.若等比数列{a n}的前n项和为S n,且,则=.18.【徐州市2018届高三上学期期中】已知函数(为自然对数的底数),若,则实数的取值范围为______.三、解答题19.已知函数f(x)=lnx﹣ax﹣b(a,b∈R)(Ⅰ)若函数f(x)在x=1处取得极值1,求a,b的值(Ⅱ)讨论函数f(x)在区间(1,+∞)上的单调性(Ⅲ)对于函数f(x)图象上任意两点A(x1,y1),B(x2,y2)(x1<x2),不等式f′(x0)<k恒成立,其中k为直线AB的斜率,x0=λx1+(1﹣λ)x2,0<λ<1,求λ的取值范围.20.已知函数f(x)=和直线l:y=m(x﹣1).(1)当曲线y=f(x)在点(1,f(1))处的切线与直线l垂直时,求原点O到直线l的距离;(2)若对于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求m的取值范围;(3)求证:ln<(n∈N+)21.已知定义在[]3,2-的一次函数()f x 为单调增函数,且值域为[]2,7. (1)求()f x 的解析式;(2)求函数[()]f f x 的解析式并确定其定义域.22.已知集合A={x|2≤x ≤6},集合B={x|x ≥3}. (1)求C R (A ∩B );(2)若C={x|x ≤a},且A ⊆C ,求实数a 的取值范围.23.已知函数y=3﹣4cos (2x+),x ∈[﹣,],求该函数的最大值,最小值及相应的x 值.24.(本小题满分12分)求下列函数的定义域:(1)()f x=;(2)()f x=.新邱区第二中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:设AB的中点为C,则因为,所以|OC|≥|AC|,因为|OC|=,|AC|2=1﹣|OC|2,所以2()2≥1,所以a≤﹣1或a≥1,因为<1,所以﹣<a<,所以实数a的取值范围是,故选:A.【点评】本题考查直线与圆的位置关系,考查点到直线的距离公式,考查学生的计算能力,属于中档题.2.【答案】B【解析】解:∵循环体中S=S×n可知程序的功能是:计算并输出循环变量n的累乘值,∵循环变量n的初值为1,终值为4,累乘器S的初值为1,故输出S=1×2×3×4=24,故选:B.【点评】本题考查的知识点是程序框图,其中根据已知分析出程序的功能是解答的关键.3.【答案】B【解析】解:y/=3x2﹣2,切线的斜率k=3×12﹣2=1.故倾斜角为45°.故选B.【点评】本题考查了导数的几何意义,以及利用正切函数的图象求倾斜角,本题属于容易题.4.【答案】C【解析】解:连结A1D、BD、A1B,∵正方体ABCD﹣A1B1C1D1中,点E,F分别是AA1,AD的中点,∴EF∥A1D,∵A1B∥D1C,∴∠DA1B是CD1与EF所成角,∵A1D=A1B=BD,∴∠DA1B=60°.∴CD1与EF所成角为60°.故选:C.【点评】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.5.【答案】D【解析】解:∵P(sinθcosθ,2cosθ)位于第二象限,∴sinθcosθ<0,cosθ>0,∴sinθ<0,∴θ是第四象限角.故选:D.【点评】本题考查了象限角的三角函数符号,属于基础题.6.【答案】A【解析】解:∵x+x﹣1=3,则x2+x﹣2=(x+x﹣1)2﹣2=32﹣2=7.故选:A.【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题.7.【答案】B【解析】解:由题意故,即故两向量夹角的余弦值为=故两向量夹角的取值范围是45°故选B【点评】本题考点是数量积表示两个向量的夹角,考查利用向量内积公式的变形形式求向量夹角的余弦,并进而求出两向量的夹角.属于基础公式应用题.8.【答案】B【解析】解:由m、n是两条不同的直线,α,β,γ是三个不同的平面:在①中:若m⊥α,n∥α,则由直线与平面垂直得m⊥n,故①正确;在②中:若α∥β,β∥γ,则α∥γ,∵m⊥α,∴由直线垂直于平面的性质定理得m⊥γ,故②正确;在③中:若m⊥α,n⊥α,则由直线与平面垂直的性质定理得m∥n,故③正确;在④中:若α⊥β,m⊥β,则m∥α或m⊂α,故④错误.故选:B.9.【答案】B【解析】解:根据频率分布直方图,得;该班级数学成绩的平均分是=80×0.005×20+100×0.015×20+120×0.02×20+140×0.01×20=114.故选:B.【点评】本题考查了根据频率分布直方图,求数据的平均数的应用问题,是基础题目.10.【答案】D【解析】解:由命题和其逆否命题等价,所以根据原命题写出其逆否命题即可.与命题“若x∈A,则y∉A”等价的命题是若y∈A,则x∉A.故选D.11.【答案】C【解析】试题分析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以A不正确;两个平面平行,两个平面内的直线不一定平行,所以B不正确;垂直于同一平面的两个平面不一定垂直,可能相交,也可能平行,所以D不正确;根据面面垂直的判定定理知C正确.故选C.考点:空间直线、平面间的位置关系.12.【答案】A【解析】解:∵=(1,2),=(1,1),∴=+k=(1+k,2+k)∵,∴=0,∴1+k+2+k=0,解得k=﹣故选:A【点评】本题考查数量积和向量的垂直关系,属基础题.二、填空题13.【答案】(﹣1,0).【解析】解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(0,5),B(2,7),C(2,2k+5)△ABC的形状随着直线AC:y=kx+5斜率的变化而变化,将直线AC绕A点旋转,可得当C点与C1(2,5)重合或与C2(2,3)重合时,△ABC是直角三角形,当点C位于B、C1之间,或在C1C2的延长线上时,△ABC是钝角三角形,当点C位于C1、C2之间时,△ABC是锐角三角形,而点C在其它的位置不能构成三角形综上所述,可得3<2k+5<5,解之得﹣1<k<0即k的取值范围是(﹣1,0)故答案为:(﹣1,0)【点评】本题给出二元一次不等式组,在表示的图形为锐角三角形的情况下,求参数k的取值范围,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.14.【答案】15【解析】解:8名支教名额分配到三所学校,每个学校至少一个名额,则8人可以分为(6,1,1),(5,2,1),(4,3,1),(4,2,2),(3,3,2),∵甲学校至少分到两个名额,第一类是1种,第二类有4种,第三类有4种,第四类有3种,第五类也有3种,根据分类计数原理可得,甲学校至少分到两个名额的分配方案为1+4+4+3+3=15种故答案为:15.【点评】本题考查了分类计数原理得应用,关键是分类,属于基础题.15.【答案】.【解析】解:∵a是甲抛掷一枚骰子得到的点数,∴试验发生包含的事件数6,∵方程x2+ax+a=0 有两个不等实根,∴a2﹣4a>0,解得a>4,∵a是正整数,∴a=5,6,即满足条件的事件有2种结果,∴所求的概率是=,故答案为:【点评】本题考查等可能事件的概率,在解题过程中应用列举法来列举出所有的满足条件的事件数,是解题的关键.16.【答案】.【解析】解:∵f(x)=sin2x+sinxcosx=+sin2x=sin(2x﹣)+.又x∈[,],∴2x﹣∈[,],∴sin(2x﹣)∈[,1],∴sin(2x﹣)+∈[1,].即f(x)∈[1,].故f(x)在区间[,]上的最大值为.故答案为:.【点评】本题考查二倍角的正弦与余弦,考查辅助角公式,着重考查正弦函数的单调性与最值,属于中档题.17.【答案】.【解析】解:∵等比数列{a n}的前n项和为S n,且,∴S4=5S2,又S2,S4﹣S2,S6﹣S4成等比数列,∴(S4﹣S2)2=S2(S6﹣S4),∴(5S2﹣S2)2=S2(S6﹣5S2),解得S6=21S2,∴==.故答案为:.【点评】本题考查等比数列的求和公式和等比数列的性质,用S2表示S4和S6是解决问题的关键,属中档题.18.【答案】【解析】令,则所以为奇函数且单调递增,因此即点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内三、解答题19.【答案】【解析】解:(Ⅰ)f(x)的导数为f′(x)=﹣a,由题意可得f′(1)=0,且f(1)=1,即为1﹣a=0,且﹣a﹣b=1,解得a=1.b=﹣2,经检验符合题意.故a=1,b=﹣2;(Ⅱ)由(Ⅰ)可得f′(x)=﹣a,x>1,0<<1,①若a≤0,f′(x)>0,f(x)在(1,+∞)递增;②0<a<1,x∈(1,),f′(x)>0,x∈(,+∞),f′(x)<0;③a≥1,f′(x)<0.f(x)在(1,+∞)递减.综上可得,a≤0,f(x)在(1,+∞)递增;0<a<1,f(x)在(1,)递增,在(,+∞)递减;a≥1,f(x)在(1,+∞)递减.(Ⅲ)f′(x0)=﹣a=﹣a,直线AB的斜率为k===﹣a,f′(x0)<k⇔<,即x2﹣x1<ln[λx1+(1﹣λ)x2],即为﹣1<ln[λ+(1﹣λ)],令t=>1,t﹣1<lnt[λ+(1﹣λ)t],即t﹣1﹣tlnt+λ(tlnt﹣lnt)<0恒成立,令函数g(t)=t﹣1﹣tlnt+λ(tlnt﹣lnt),t>1,①当0<λ时,g′(t)=﹣lnt+λ(lnt+1﹣)=,令φ(t)=﹣tlnt+λ(tlnt+t﹣1),t>1,φ′(t)=﹣1﹣lnt+λ(2+lnt)=(λ﹣1)lnt+2λ﹣1,当0<λ≤时,φ′(t)<0,φ(t)在(1,+∞)递减,则φ(t)<φ(1)=0,故当t>1时,g′(t)<0,则g(t)在(1,+∞)递减,g(t)<g(1)=0符合题意;②当<λ<1时,φ′(t)=(λ﹣1)lnt+2λ﹣1>0,解得1<t<,当t∈(1,),φ′(t)>0,φ(t)在(1,)递增,φ(t)>φ(1)=0;当t∈(1,),g′(t)>0,g(t)在(1,)递增,g(t)>g(1)=0,则有当t∈(1,),g(t)>0不合题意.即有0<λ≤.【点评】本题考查导数的运用:求单调区间和极值、最值,同时考查函数的单调性的运用,不等式恒成立思想的运用,运用分类讨论的思想方法是解题的关键.20.【答案】【解析】(Ⅰ)解:由f(x)=,得,∴,于是m=﹣2,直线l的方程为2x+y﹣2=0.原点O到直线l的距离为;(Ⅱ)解:对于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,即,也就是,设,即∀x∈[1,+∞),g(x)≤0成立..①若m≤0,∃x使g′(x)>0,g(x)≥g(1)=0,这与题设g(x)≤0矛盾;②若m>0,方程﹣mx2+x﹣m=0的判别式△=1﹣4m2,当△≤0,即m时,g′(x)≤0,∴g(x)在(1,+∞)上单调递减,∴g(x)≤g(1)=0,即不等式成立.当0<m<时,方程﹣mx2+x﹣m=0的两根为x1,x2(x1<x2),,,当x∈(x1,x2)时,g′(x)>0,g(x)单调递增,g(x)>g(1)=0与题设矛盾.综上所述,m;(Ⅲ)证明:由(Ⅱ)知,当x >1,m=时,成立.不妨令,∴ln,(k ∈N *).∴..….累加可得:,(n ∈N *).即ln<(n ∈N *).【点评】本题考查了利用导数研究过曲线上某点处的切线方程,考查了利用导数求函数的最值,训练了利用导数证明函数表达式,对于(Ⅲ)的证明,引入不等式是关键,要求考生具有较强的逻辑思维能力和灵活变形能力,是压轴题.21.【答案】(1)()5f x x =+,[]3,2x ∈-;(2)[]()10f f x x =+,{}3x ∈-. 【解析】试题解析:(1)设()(0)f x kx b k =+>,111] 由题意有:32,27,k b k b -+=⎧⎨+=⎩解得1,5,k b =⎧⎨=⎩∴()5f x x =+,[]3,2x ∈-. (2)(())(5)10f f x f x x =+=+,{}3x ∈-.考点:待定系数法. 22.【答案】【解析】解:(1)由题意:集合A={x|2≤x ≤6},集合B={x|x ≥3}. 那么:A ∩B={x|6≥x ≥3}. ∴C R (A ∩B )={x|x <3或x >6}. (2)C={x|x ≤a}, ∵A ⊆C , ∴a ≥6∴故得实数a 的取值范围是[6,+∞).【点评】本题主要考查集合的基本运算,比较基础.23.【答案】【解析】解:函数y=3﹣4cos (2x+),由于x ∈[﹣,],所以:当x=0时,函数y min =﹣1 当x=﹣π时,函数y max =7【点评】本题考查的知识要点:利用余弦函数的定义域求函数的值域.属于基础题型.24.【答案】(1)()[),11,-∞-+∞;(2)[)(]1,23,4-. 【解析】考点:函数的定义域. 1【方法点晴】本题主要考查了函数的定义域的求解,其中解答中涉及到分式不等式的求解、一元二次不等式的求解、集合的交集运算等综合考查,着重考查了学生的推理与运算能力,属于中档试题,本题的解答中正确把握函数的定义域,列出相应的不等式或不等式组是解答的关键,同时理解函数的定义域的概念,也是解答的一个重要一环.。

新邱区第二中学2018-2019学年高二上学期第二次月考试卷数学

新邱区第二中学2018-2019学年高二上学期第二次月考试卷数学

新邱区第二中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 若关于的不等式2043x ax x +>++的解集为31x -<<-或2x >,则的取值为( )A .B .12C .12- D .2-2. 在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2﹣b 2=bc ,sinC=2sinB ,则A=( )A .30°B .60°C .120°D .150°3. 若函数f (x )=﹣a (x ﹣x 3)的递减区间为(,),则a 的取值范围是( )A .a >0B .﹣1<a <0C .a >1D .0<a <14. 函数f (x )=Asin (ωx+θ)(A >0,ω>0)的部分图象如图所示,则f ()的值为( )A .B .0C .D .5. 下列4个命题:①命题“若x 2﹣x=0,则x=1”的逆否命题为“若x ≠1,则x 2﹣x ≠0”; ②若“¬p 或q ”是假命题,则“p 且¬q ”是真命题;③若p :x (x ﹣2)≤0,q :log 2x ≤1,则p 是q 的充要条件;④若命题p :存在x ∈R ,使得2x <x 2,则¬p :任意x ∈R ,均有2x ≥x 2; 其中正确命题的个数是( ) A .1个 B .2个 C .3个 D .4个6. 已知点A (0,1),B (﹣2,3)C (﹣1,2),D (1,5),则向量在方向上的投影为( )A .B .﹣C .D .﹣7. 已知i 为虚数单位,则复数所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限8. 执行下面的程序框图,若输入2016x =-,则输出的结果为( )A .2015B .2016C .2116D .20489. 在等差数列{a n }中,a 3=5,a 4+a 8=22,则{}的前20项和为( )A .B .C .D .10.设m ,n 是两条不同直线,α,β是两个不同的平面,下列命题正确的是( ) A .m ∥α,n ∥β且α∥β,则m ∥n B .m ⊥α,n ⊥β且α⊥β,则m ⊥nC .m ⊥α,n ⊂β,m ⊥n ,则α⊥βD .m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β11.在复平面内,复数(﹣4+5i )i (i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限12.过点(﹣1,3)且平行于直线x ﹣2y+3=0的直线方程为( )A .x ﹣2y+7=0B .2x+y ﹣1=0C .x ﹣2y ﹣5=0D .2x+y ﹣5=0二、填空题13.已知函数f (x )=x m 过点(2,),则m= .14.已知x ,y 为实数,代数式2222)3(9)2(1y x x y ++-++-+的最小值是 .【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力. 15.袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为 .16.在中,角、、所对应的边分别为、、,若,则_________ 17.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是.18.如图,在长方体ABCD﹣A1B1C1D1中,AB=5,BC=4,AA1=3,沿该长方体对角面ABC1D1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为.三、解答题19.请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.20.【镇江2018届高三10月月考文科】已知函数,其中实数为常数,为自然对数的底数. (1)当时,求函数的单调区间;(2)当时,解关于的不等式;(3)当时,如果函数不存在极值点,求的取值范围.21.如图,在四边形ABCD 中,,,3,2,45AD DC AD BC AD CD AB DAB ⊥===∠=, 四 边形绕着直线AD 旋转一周.(1)求所成的封闭几何体的表面积; (2)求所成的封闭几何体的体积.22.已知函数.(1)求f (x )的周期和及其图象的对称中心;(2)在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,满足(2a ﹣c )cosB=bcosC ,求函数f (A )的取值范围.23.已知向量,满足||=1,||=2,与的夹角为120°.(1)求及|+|;(2)设向量+与﹣的夹角为θ,求cosθ的值.24.已知椭圆x2+4y2=4,直线l:y=x+m(1)若l与椭圆有一个公共点,求m的值;(2)若l与椭圆相交于P、Q两点,且|PQ|等于椭圆的短轴长,求m的值.新邱区第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D 【解析】试题分析:由题意得,根据不等式与方程的关系可知,不等式解集的端点就是对应的方程的根,可得方程2043x ax x +=++,解得3,1,x x x a =-=-=-,其对应的根分别为3,1,2x x x =-=-=,所以2a =-,故选D.考点:不等式与方程的关系. 2. 【答案】A【解析】解:∵sinC=2sinB ,∴c=2b ,∵a 2﹣b 2=bc ,∴cosA===∵A 是三角形的内角 ∴A=30° 故选A .【点评】本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题.3. 【答案】A【解析】解:∵函数f (x )=﹣a (x ﹣x 3)的递减区间为(,)∴f ′(x )≤0,x ∈(,)恒成立即:﹣a (1﹣3x 2)≤0,,x ∈(,)恒成立∵1﹣3x 2≥0成立∴a >0 故选A【点评】本题主要考查函数单调性的应用,一般来讲已知单调性,则往往转化为恒成立问题去解决.4. 【答案】C【解析】解:由图象可得A=,=﹣(﹣),解得T=π,ω==2.再由五点法作图可得2×(﹣)+θ=﹣π,解得:θ=﹣,故f (x )=sin (2x ﹣),故f ()=sin (﹣)=sin=,故选:C .【点评】本题主要考查由函数y=Asin (ωx+θ)的部分图象求函数的解析式,属于中档题.5. 【答案】C【解析】解:①命题“若x 2﹣x=0,则x=1”的逆否命题为“若x ≠1,则x 2﹣x ≠0”,①正确; ②若“¬p 或q ”是假命题,则¬p 、q 均为假命题,∴p 、¬q 均为真命题,“p 且¬q ”是真命题,②正确; ③由p :x (x ﹣2)≤0,得0≤x ≤2,由q :log 2x ≤1,得0<x ≤2,则p 是q 的必要不充分条件,③错误;④若命题p :存在x ∈R ,使得2x <x 2,则¬p :任意x ∈R ,均有2x ≥x 2,④正确. ∴正确的命题有3个. 故选:C .6. 【答案】D【解析】解:∵;∴在方向上的投影为==.故选D .【点评】考查由点的坐标求向量的坐标,一个向量在另一个向量方向上的投影的定义,向量夹角的余弦的计算公式,数量积的坐标运算.7. 【答案】A【解析】解: ==1+i ,其对应的点为(1,1),故选:A .8. 【答案】D 【解析】试题分析:由于20160-<,由程序框图可得对循环进行加运算,可以得到2x =,从而可得1y =,由于20151>,则进行2y y =循环,最终可得输出结果为2048.1考点:程序框图. 9. 【答案】B【解析】解:在等差数列{a n}中,由a4+a8=22,得2a6=22,a6=11.又a3=5,得d=,∴a1=a3﹣2d=5﹣4=1.{}的前20项和为:==.故选:B.10.【答案】B【解析】解:对于A,若m∥α,n∥β且α∥β,说明m、n是分别在平行平面内的直线,它们的位置关系应该是平行或异面,故A错;对于B,由m⊥α,n⊥β且α⊥β,则m与n一定不平行,否则有α∥β,与已知α⊥β矛盾,通过平移使得m 与n相交,且设m与n确定的平面为γ,则γ与α和β的交线所成的角即为α与β所成的角,因为α⊥β,所以m与n所成的角为90°,故命题B正确.对于C,根据面面垂直的性质,可知m⊥α,n⊂β,m⊥n,∴n∥α,∴α∥β也可能α∩β=l,也可能α⊥β,故C 不正确;对于D,若“m⊂α,n⊂α,m∥β,n∥β”,则“α∥β”也可能α∩β=l,所以D不成立.故选B.【点评】本题考查直线与平面平行与垂直,面面垂直的性质和判断的应用,考查逻辑推理能力,基本知识的应用题目.11.【答案】B【解析】解:∵(﹣4+5i)i=﹣5﹣4i,∴复数(﹣4+5i)i的共轭复数为:﹣5+4i,∴在复平面内,复数(﹣4+5i)i的共轭复数对应的点的坐标为:(﹣5,4),位于第二象限.故选:B.12.【答案】A【解析】解:由题意可设所求的直线方程为x﹣2y+c=0∵过点(﹣1,3)代入可得﹣1﹣6+c=0 则c=7∴x﹣2y+7=0故选A.【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x﹣2y+c=0.二、填空题13.【答案】﹣1.【解析】解:将(2,)代入函数f(x)得:=2m,解得:m=﹣1;故答案为:﹣1.【点评】本题考查了待定系数法求函数的解析式问题,是一道基础题.14.【解析】15.【答案】.【解析】解:方法一:由题意,第1次摸出红球,由于不放回,所以袋中还有5个不同的红球和4个不同的白球故在第1次摸出红球的条件下,第2次摸出的也是红球的概率为=,方法二:先求出“第一次摸到红球”的概率为:P1=,设“在第一次摸出红球的条件下,第二次也摸到红球”的概率是P2再求“第一次摸到红球且第二次也摸到红球”的概率为P==,根据条件概率公式,得:P2==,故答案为:【点评】本题考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,属于中档题.看准确事件之间的联系,正确运用公式,是解决本题的关键.16.【答案】【解析】因为,所以,所以,所以答案:17.【答案】.【解析】解:在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥,8个三棱锥的体积为:=.剩下的凸多面体的体积是1﹣=.故答案为:.【点评】本题考查几何体的体积的求法,转化思想的应用,考查空间想象能力计算能力.18.【答案】114.【解析】解:根据题目要求得出:当5×3的两个面叠合时,所得新的四棱柱的表面积最大,其表面积为(5×4+5×5+3×4)×2=114.故答案为:114【点评】本题考查了空间几何体的性质,运算公式,学生的空间想象能力,属于中档题,难度不大,学会分析判断解决问题.三、解答题19.【答案】【解析】解:设包装盒的高为h(cm),底面边长为a(cm),则a=x,h=(30﹣x),0<x<30.(1)S=4ah=8x(30﹣x)=﹣8(x﹣15)2+1800,∴当x=15时,S取最大值.(2)V=a2h=2(﹣x3+30x2),V′=6x(20﹣x),由V′=0得x=20,当x∈(0,20)时,V′>0;当x∈(20,30)时,V′<0;∴当x=20时,包装盒容积V(cm3)最大,此时,.即此时包装盒的高与底面边长的比值是.20.【答案】(1)单调递增区间为;单调递减区间为.(2)(3)【解析】试题分析:把代入由于对数的真数为正数,函数定义域为,所以函数化为,求导后在定义域下研究函数的单调性给出单调区间;代入,,分和两种情况解不等式;当时,,求导,函数不存在极值点,只需恒成立,根据这个要求得出的范围.试题解析:(2)时,.当时,原不等式可化为.记,则,当时,,所以在单调递增,又,故不等式解为;当时,原不等式可化为,显然不成立,综上,原不等式的解集为.21.【答案】(1)(8π+;(2)203π. 【解析】考点:旋转体的概念;旋转体的表面积、体积.22.【答案】【解析】解:(1)由,∴f(x)的周期为4π.由,故f(x)图象的对称中心为.(2)由(2a﹣c)cosB=bcosC,得(2sinA﹣sinC)cosB=sinBcosC,∴2sinAcosB﹣cosBsinC=sinBcosC,∴2sinAcosB=sin(B+C),∵A+B+C=π,∴sin(B+C)=sinA,且sinA≠0,∴.∴,故函数f(A)的取值范围是.23.【答案】【解析】解:(1)=;∴=;∴;(2)同理可求得;;∴=.【点评】考查向量数量积的运算及其计算公式,根据求的方法,以及向量夹角余弦的计算公式.24.【答案】【解析】解:(1)把直线y=x+m代入椭圆方程得:x2+4(x+m)2=4,即:5x2+8mx+4m2﹣4=0,△=(8m)2﹣4×5×(4m2﹣4)=﹣16m2+80=0解得:m=.(2)设该直线与椭圆相交于两点A(x1,y1),B(x2,y2),则x1,x2是方程5x2+8mx+4m2﹣4=0的两根,由韦达定理可得:x1+x2=﹣,x1•x2=,∴|AB|====2;∴m=±.【点评】本题考查直线与圆锥曲线的位置关系与弦长问题,难点在于弦长公式的灵活应用,属于中档题.。

新邱区二中2018-2019学年高二上学期第二次月考试卷数学

新邱区二中2018-2019学年高二上学期第二次月考试卷数学

新邱区二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 下列命题的说法错误的是( )A .若复合命题p ∧q 为假命题,则p ,q 都是假命题B .“x=1”是“x 2﹣3x+2=0”的充分不必要条件C .对于命题p :∀x ∈R ,x 2+x+1>0 则¬p :∃x ∈R ,x 2+x+1≤0D .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为:“若x ≠1,则x 2﹣3x+2≠0”2. 已知f (x )为偶函数,且f (x+2)=﹣f (x ),当﹣2≤x ≤0时,f (x )=2x ;若n ∈N *,a n =f (n ),则a 2017等于( )A .2017B .﹣8C .D .3. 已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线( )A .只有一条,不在平面α内B .只有一条,在平面α内C .有两条,不一定都在平面α内D .有无数条,不一定都在平面α内4. 函数y=|a|x ﹣(a ≠0且a ≠1)的图象可能是( )A .B .C .D .5. 在△ABC 中,已知a=2,b=6,A=30°,则B=( )A .60°B .120°C .120°或60°D .45°6. 若关于x 的不等式07|2||1|>-+-++m x x 的解集为R ,则参数m 的取值范围为( ) A .),4(+∞ B .),4[+∞ C .)4,(-∞ D .]4,(-∞【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.7. 已知正三棱柱111ABC A B C -的底面边长为4cm ,高为10cm ,则一质点自点A 出发,沿着三棱 柱的侧面,绕行两周到达点1A 的最短路线的长为( )A .16cmB .C .D .26cm8. 有以下四个命题:①若=,则x=y . ②若lgx 有意义,则x >0.③若x=y ,则=.④若x >y ,则 x 2<y 2. 则是真命题的序号为( ) A .①②B .①③C .②③D .③④9. 若函数f (x )是奇函数,且在(0,+∞)上是增函数,又f (﹣3)=0,则(x ﹣2)f (x )<0的解集是( ) A .(﹣3,0)∪(2,3) B .(﹣∞,﹣3)∪(0,3) C .(﹣∞,﹣3)∪(3,+∞) D .(﹣3,0)∪(2,+∞)10.四面体ABCD 中,截面 PQMN 是正方形, 则在下列结论中,下列说法错误的是( )A .AC BD ⊥B .AC BD =C.AC PQMN D .异面直线PM 与BD 所成的角为4511.已知f (x )=x 3﹣6x 2+9x ﹣abc ,a <b <c ,且f (a )=f (b )=f (c )=0.现给出如下结论: ①f (0)f (1)>0; ②f (0)f (1)<0; ③f (0)f (3)>0; ④f (0)f (3)<0.其中正确结论的序号是( ) A .①③B .①④C .②③D .②④12.某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( )A.80 B.40 C.60 D.20二、填空题13.下图是某算法的程序框图,则程序运行后输出的结果是____.14.已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则=.15.当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测的线性回归方程为附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.16.若全集,集合,则17.设f(x)是(x2+)6展开式的中间项,若f(x)≤mx在区间[,]上恒成立,则实数m的取值范围是.18.已知奇函数f(x)的定义域为[﹣2,2],且在定义域上单调递减,则满足不等式f(1﹣m)+f(1﹣2m)<0的实数m的取值范围是.三、解答题19.已知函数f(x)=lnx+ax2+b(a,b∈R).(Ⅰ)若曲线y=f(x)在x=1处的切线为y=﹣1,求函数f(x)的单调区间;(Ⅱ)求证:对任意给定的正数m,总存在实数a,使函数f(x)在区间(m,+∞)上不单调;(Ⅲ)若点A(x1,y1),B(x2,y2)(x2>x1>0)是曲线f(x)上的两点,试探究:当a<0时,是否存在实数x0∈(x1,x2),使直线AB的斜率等于f'(x0)?若存在,给予证明;若不存在,说明理由.20.已知等差数列{a n}中,其前n项和S n=n2+c(其中c为常数),(1)求{a n}的通项公式;(2)设b1=1,{a n+b n}是公比为a2等比数列,求数列{b n}的前n项和T n.21.已知函数f(x)=2cosx(sinx+cosx)﹣1(Ⅰ)求f(x)在区间[0,]上的最大值;(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,且f(B)=1,a+c=2,求b的取值范围.22.衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取100名后按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第3,4,5组各抽取多少名志愿者?(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.23.已知函数.(1)求f(x)的周期和及其图象的对称中心;(2)在△ABC中,角A、B、C的对边分别是a、b、c,满足(2a﹣c)cosB=bcosC,求函数f(A)的取值范围.24.设f(x)=x2﹣ax+2.当x∈,使得关于x的方程f(x)﹣tf(2a)=0有三个不相等的实数根,求实数t 的取值范围.新邱区二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:A.复合命题p∧q为假命题,则p,q至少有一个命题为假命题,因此不正确;B.由x2﹣3x+2=0,解得x=1,2,因此“x=1”是“x2﹣3x+2=0”的充分不必要条件,正确;C.对于命题p:∀x∈R,x2+x+1>0 则¬p:∃x∈R,x2+x+1≤0,正确;D.命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”,正确.故选:A.2.【答案】D【解析】解:∵f(x+2)=﹣f(x),∴f(x+4)=﹣f(x+2)=f(x),即f(x+4)=f(x),即函数的周期是4.∴a2017=f(2017)=f(504×4+1)=f(1),∵f(x)为偶函数,当﹣2≤x≤0时,f(x)=2x,∴f(1)=f(﹣1)=,∴a2017=f(1)=,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性和周期性之间的关系是解决本题的关键.3.【答案】B【解析】解:假设过点P且平行于l的直线有两条m与n∴m∥l且n∥l由平行公理4得m∥n这与两条直线m与n相交与点P相矛盾又因为点P在平面内所以点P且平行于l的直线有一条且在平面内所以假设错误.故选B.【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型.4.【答案】D【解析】解:当|a|>1时,函数为增函数,且过定点(0,1﹣),因为0<1﹣<1,故排除A,B当|a|<1时且a≠0时,函数为减函数,且过定点(0,1﹣),因为1﹣<0,故排除C.故选:D.5.【答案】C【解析】解:∵a=2,b=6,A=30°,∴由正弦定理可得:sinB===,∵B∈(0°,180°),∴B=120°或60°.故选:C.6.【答案】A7.【答案】D【解析】考点:多面体的表面上最短距离问题.【方法点晴】本题主要考查了多面体和旋转体的表面上的最短距离问题,其中解答中涉及到多面体与旋转体的侧面展开图的应用、直角三角形的勾股定理的应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,学生的空间想象能力、以及转化与化归思想的应用,试题属于基础题. 8. 【答案】A【解析】解:①若=,则,则x=y ,即①对;②若lgx 有意义,则x >0,即②对;③若x=y >0,则=,若x=y <0,则不成立,即③错;④若x >y >0,则 x 2>y 2,即④错. 故真命题的序号为①② 故选:A .9. 【答案】A【解析】解:∵f (x )是R 上的奇函数,且在(0,+∞)内是增函数, ∴在(﹣∞,0)内f (x )也是增函数, 又∵f (﹣3)=0, ∴f (3)=0∴当x ∈(﹣∞,﹣3)∪(0,3)时,f (x )<0;当x ∈(﹣3,0)∪(3,+∞)时,f (x )>0; ∴(x ﹣2)•f (x )<0的解集是(﹣3,0)∪(2,3) 故选:A .10.【答案】B 【解析】试题分析:因为截面PQMN 是正方形,所以//,//PQ MN QM PN ,则//PQ 平面,//ACD QM 平面BDA ,所以//,//PQ AC QM BD ,由PQ QM ⊥可得AC BD ⊥,所以A 正确;由于//PQ AC 可得//AC 截面PQMN ,所以C 正确;因为PN PQ ⊥,所以AC BD ⊥,由//BD PN ,所以MPN ∠是异面直线PM 与BD所成的角,且为045,所以D 正确;由上面可知//,//BD PN PQ AC ,所以,PN AN MN DN BD AD AC AD==,而,AN DN PN MN ≠=,所以BD AC ≠,所以B 是错误的,故选B. 1考点:空间直线与平面的位置关系的判定与证明.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与平面平行的判定定理和性质定理、正方形的性质、异面直线所成的角等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,此类问题的解答中熟记点、线、面的位置关系的判定定理和性质定理是解答的关键. 11.【答案】C【解析】解:求导函数可得f′(x)=3x2﹣12x+9=3(x﹣1)(x﹣3),∵a<b<c,且f(a)=f(b)=f(c)=0.∴a<1<b<3<c,设f(x)=(x﹣a)(x﹣b)(x﹣c)=x3﹣(a+b+c)x2+(ab+ac+bc)x﹣abc,∵f(x)=x3﹣6x2+9x﹣abc,∴a+b+c=6,ab+ac+bc=9,∴b+c=6﹣a,∴bc=9﹣a(6﹣a)<,∴a2﹣4a<0,∴0<a<4,∴0<a<1<b<3<c,∴f(0)<0,f(1)>0,f(3)<0,∴f(0)f(1)<0,f(0)f(3)>0.故选:C.12.【答案】B【解析】解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,∴三年级要抽取的学生是×200=40,故选:B.【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果.二、填空题13.【答案】27【解析】由程序框图可知:43符合,跳出循环.14.【答案】﹣5.【解析】解:求导得:f′(x)=3ax2+2bx+c,结合图象可得x=﹣1,2为导函数的零点,即f′(﹣1)=f′(2)=0,故,解得故==﹣5故答案为:﹣515.【答案】y=﹣1.7t+68.7【解析】解:=,==63.6.=(﹣2)×4.4+(﹣1)×1.4+0+1×(﹣1.6)+2×(﹣2.6)=﹣17.=4+1+0+1+2=10.∴=﹣=﹣1.7.=63.6+1.7×3=68.7.∴y关于t的线性回归方程为y=﹣1.7t+68.7.故答案为y=﹣1.7t+68.7.【点评】本题考查了线性回归方程的解法,属于基础题.16.【答案】{|0<<1}【解析】∵,∴{|0<<1}。

新邱区民族中学2018-2019学年高二上学期第二次月考试卷数学

新邱区民族中学2018-2019学年高二上学期第二次月考试卷数学

新邱区民族中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. S n 是等差数列{a n }的前n 项和,若3a 8-2a 7=4,则下列结论正确的是( ) A .S 18=72 B .S 19=76 C .S 20=80D .S 21=842. 已知集合{| lg 0}A x x =≤,1={|3}2B x x ≤≤,则A B =( ) A .(0,3] B .(1,2]C .(1,3]D .1[,1]2【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力. 3. 设a ∈R ,且(a ﹣i )•2i (i 为虚数单位)为正实数,则a 等于( ) A .1 B .0C .﹣1D .0或﹣14. 已知f (x )为定义在(0,+∞)上的可导函数,且f (x )>xf ′(x )恒成立,则不等式x 2f ()﹣f (x )>0的解集为( )A .(0,1)B .(1,2)C .(1,+∞)D .(2,+∞)5. 在等差数列中,已知,则( )A .12B .24C .36D .486. 三个数60.5,0.56,log 0.56的大小顺序为( ) A .log 0.56<0.56<60.5 B .log 0.56<60.5<0.56 C .0.56<60.5<log 0.56 D .0.56<log 0.56<60.57. 下列各组函数为同一函数的是( )A .f (x )=1;g (x )=B .f (x )=x ﹣2;g (x )=C .f (x )=|x|;g (x )=D .f (x )=•;g (x )=8. 已知集合A={﹣1,0,1,2},集合B={0,2,4},则A ∪B 等于( )A .{﹣1,0,1,2,4}B .{﹣1,0,2,4}C .{0,2,4}D .{0,1,2,4}9. 某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过2个小时,这种细菌由1个可繁殖成( )A .512个B .256个C .128个D .64个10.,AD BE 分别是ABC ∆的中线,若1AD BE ==,且AD 与BE 的夹角为120,则AB AC ⋅=( ) (A ) 13 ( B ) 49 (C ) 23 (D ) 8911.记,那么ABC D12.对于复数,若集合具有性质“对任意,必有”,则当时,等于 ( )A1 B-1 C0 D二、填空题13.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{52128lnx x xf x m x mx x +>=-++≤,,,,若()()g x f x m =-有三个零点,则实数m 的取值范围是________.14.如图,函数f (x )的图象为折线 AC B ,则不等式f (x )≥log 2(x+1)的解集是 .15.直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,则实数a 的值为 .16.一质点从正四面体A ﹣BCD 的顶点A 出发沿正四面体的棱运动,每经过一条棱称为一次运动.第1次运动经过棱AB 由A 到B ,第2次运动经过棱BC 由B 到C ,第3次运动经过棱CA 由C 到A ,第4次经过棱AD 由A 到D ,…对于N ∈n *,第3n 次运动回到点A ,第3n+1次运动经过的棱与3n ﹣1次运动经过的棱异面,第3n+2次运动经过的棱与第3n 次运动经过的棱异面.按此运动规律,质点经过2015次运动到达的点为 . 17.若函数f (x )=x 2﹣2x (x ∈[2,4]),则f (x )的最小值是 .18.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系xOy 中,直线l 与函数()()2220f x x a x =+>和()()3220g x x a x =+>均相切(其中a 为常数),切点分别为()11,A x y 和()22,B x y ,则12x x +的值为__________. 三、解答题19.已知函数f (x )=在(,f ())处的切线方程为8x ﹣9y+t=0(m ∈N ,t ∈R )(1)求m 和t 的值;(2)若关于x 的不等式f (x )≤ax+在[,+∞)恒成立,求实数a 的取值范围.20.为了了解湖南各景点在大众中的熟知度,随机对15~65岁的人群抽样了n 人,回答问题“湖南省有哪几个(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?(Ⅲ)在(Ⅱ)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.21.如图,在四棱锥中,等边所在的平面与正方形所在的平面互相垂直,为的中点,为的中点,且(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在点,使线段与所在平面成角.若存在,求出的长,若不存在,请说明理由.22.某市出租车的计价标准是4km以内10元(含4km),超过4km且不超过18km的部分1.5元/km,超出18km的部分2元/km.(1)如果不计等待时间的费用,建立车费y元与行车里程x km的函数关系式;(2)如果某人乘车行驶了30km,他要付多少车费?23.(本小题满分12分)设f(x)=-x2+ax+a2ln x(a≠0).(1)讨论f(x)的单调性;(2)是否存在a>0,使f(x)∈[e-1,e2]对于x∈[1,e]时恒成立,若存在求出a的值,若不存在说明理由.24.已知函数f(x)=log2(m+)(m∈R,且m>0).(1)求函数f(x)的定义域;(2)若函数f(x)在(4,+∞)上单调递增,求m的取值范围.新邱区民族中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】【解析】选B.∵3a 8-2a 7=4, ∴3(a 1+7d )-2(a 1+6d )=4,即a 1+9d =4,S 18=18a 1+18×17d 2=18(a 1+172d )不恒为常数.S 19=19a 1+19×18d2=19(a 1+9d )=76,同理S 20,S 21均不恒为常数,故选B. 2. 【答案】D【解析】由已知得{}=01A x x <?,故AB 1[,1]2,故选D .3. 【答案】B【解析】解:∵(a ﹣i )•2i=2ai+2为正实数, ∴2a=0, 解得a=0. 故选:B .【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题.4. 【答案】C【解析】解:令F (x )=,(x >0),则F ′(x )=,∵f (x )>xf ′(x ),∴F ′(x )<0, ∴F (x )为定义域上的减函数,由不等式x 2f ()﹣f (x )>0,得:>,∴<x ,∴x >1, 故选:C .5.【答案】B【解析】,所以,故选B答案:B6.【答案】A【解析】解:∵60.5>60=1,0<0.56<0.50=1,log0.56<log0.51=0.∴log0.56<0.56<60.5.故选:A【点评】本题考查了不等关系与不等式,考查了指数函数和对数函数的性质,对于此类大小比较问题,有时借助于0和1为媒介,能起到事半功倍的效果,是基础题.7.【答案】C【解析】解:A、函数f(x)的定义域为R,函数g(x)的定义域为{x|x≠0},定义域不同,故不是相同函数;B、函数f(x)的定义域为R,g(x)的定义域为{x|x≠﹣2},定义域不同,故不是相同函数;C、因为,故两函数相同;D、函数f(x)的定义域为{x|x≥1},函数g(x)的定义域为{x|x≤1或x≥1},定义域不同,故不是相同函数.综上可得,C项正确.故选:C.8.【答案】A【解析】解:∵A={﹣1,0,1,2},B={0,2,4},∴A∪B={﹣1,0,1,2}∪{0,2,4}={﹣1,0,1,2,4}.故选:A.【点评】本题考查并集及其运算,是基础的会考题型.9.【答案】D【解析】解:经过2个小时,总共分裂了=6次,则经过2小时,这种细菌能由1个繁殖到26=64个.故选:D.【点评】本题考查数列的应用,考查了等比数列的通项公式,是基础的计算题.10.【答案】C【解析】由1(),21(2),2AD AB ACBE AB AC⎧=+⎪⎪⎨⎪=-+⎪⎩解得2233,4233AB AD BEAC AD BE⎧=-⎪⎪⎨⎪=+⎪⎩22422()()33333AB AC AD BE AD BE⋅=-⋅+=.11.【答案】B【解析】【解析1】,所以【解析2】,12.【答案】B【解析】由题意,可取,所以二、填空题13.【答案】714⎛⎤⎥⎝⎦,【解析】14.【答案】(﹣1,1].【解析】解:在同一坐标系中画出函数f(x)和函数y=log2(x+1)的图象,如图所示:由图可得不等式f(x)≥log2(x+1)的解集是:(﹣1,1],.故答案为:(﹣1,1]15.【答案】1【解析】【分析】利用两直线平行的条件,一次项系数之比相等,但不等于常数项之比,求得实数a的值.【解答】解:直线ax﹣2y+2=0与直线x+(a﹣3)y+1=0平行,∴,解得a=1.故答案为1.16.【答案】D.【解析】解:根据题意,质点运动的轨迹为:A→B→C→A→D→B→A→C→D→A接着是→B→C→A→D→B→A→C→D→A…周期为9.∵质点经过2015次运动,2015=223×9+8,∴质点到达点D.故答案为:D.【点评】本题考查了函数的周期性,本题难度不大,属于基础题.17.【答案】0.【解析】解:f(x))=x2﹣2x=(x﹣1)2﹣1,其图象开口向上,对称抽为:x=1,所以函数f(x)在[2,4]上单调递增,所以f(x)的最小值为:f(2)=22﹣2×2=0.故答案为:0.【点评】本题考查二次函数在闭区间上的最值问题,一般运用数形结合思想进行处理.18.【答案】56 27【解析】三、解答题19.【答案】【解析】解:(1)函数f(x)的导数为f′(x)=,由题意可得,f()=,f′()=,即=,且=,由m∈N,则m=1,t=8;(2)设h(x)=ax+﹣,x≥.h()=﹣≥0,即a≥,h′(x)=a﹣,当a≥时,若x>,h′(x)>0,①若≤x≤,设g(x)=a﹣,g′(x)=﹣<0,g(x)在[,]上递减,且g()≥0,则g(x)≥0,即h′(x)≥0在[,]上恒成立.②由①②可得,a≥时,h′(x)>0,h(x)在[,+∞)上递增,h(x)≥h()=≥0,则当a≥时,不等式f(x)≤ax+在[,+∞)恒成立;当a<时,h()<0,不合题意.综上可得a≥.【点评】本题考查导数的运用:求切线方程和求单调区间,主要考查不等式恒成立问题转化为求函数最值,正确求导和分类讨论是解题的关键.20.【答案】【解析】解:(Ⅰ)由频率表中第4组数据可知,第4组总人数为,再结合频率分布直方图可知n=,∴a=100×0.01×10×0.5=5,b=100×0.03×10×0.9=27,;(Ⅱ)因为第2,3,4组回答正确的人数共有54人,∴利用分层抽样在54人中抽取6人,每组分别抽取的人数为:第2组:人;第3组:人;第4组:人(Ⅲ)设第2组2人为:A1,A2;第3组3人为:B1,B2,B3;第4组1人为:C1.则从6人中随机抽取2人的所有可能的结果为:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C1),(A2,B1),(A2,B2),(A2,B3),(A2,C1),(B1,B2),(B1,B3),(B1,C1),(B2,B3),(B2,C1),(B3,C1)共15个基本事件,其中恰好没有第3组人共3个基本事件,∴所抽取的人中恰好没有第3组人的概率是:.【点评】本题考查了频率分布表与频率分布直方图,考查了古典概型的概率计算,解题的关键是读懂频率分布直方图.21.【答案】【解析】【知识点】空间的角利用直线方向向量与平面法向量解决计算问题垂直【试题解析】(Ⅰ)是等边三角形,为的中点,平面平面,是交线,平面平面.(Ⅱ)取的中点,底面是正方形,,两两垂直.分别以的方向为轴、轴、轴的正方向建立空间直角坐标系,则,,,设平面的法向量为,,,,平面的法向量即为平面的法向量.由图形可知所求二面角为锐角,(Ⅲ)设在线段上存在点,,使线段与所在平面成角,平面的法向量为,,,解得,适合在线段上存在点,当线段时,与所在平面成角.22.【答案】【解析】解:(1)依题意得:当0<x≤4时,y=10;…(2分)当4<x≤18时,y=10+1.5(x﹣4)=1.5x+4…当x>18时,y=10+1.5×14+2(x﹣18)=2x﹣5…(8分)∴…(9分)(2)x=30,y=2×30﹣5=55…(12分)【点评】本题考查函数模型的建立,考查利用数学知识解决实际问题,考查学生的计算能力,属于中档题.23.【答案】【解析】解:(1)f(x)=-x2+ax+a2ln x的定义域为{x|x>0},f′(x)=-2x+a+a 2x=-2(x+a2)(x-a)x.①当a<0时,由f′(x)<0得x>-a2,由f′(x)>0得0<x<-a2.此时f(x)在(0,-a2)上单调递增,在(-a2,+∞)上单调递减;②当a>0时,由f′(x)<0得x>a,由f′(x)>0得0<x<a,此时f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.(2)假设存在满足条件的实数a,∵x∈[1,e]时,f(x)∈[e-1,e2],∴f(1)=-1+a≥e-1,即a≥e,①由(1)知f(x)在(0,a)上单调递增,∴f(x)在[1,e]上单调递增,∴f(e)=-e2+a e+e2≤e2,即a≤e,②由①②可得a=e,故存在a=e,满足条件.24.【答案】【解析】解:(1)由m+>0,(x﹣1)(mx﹣1)>0,∵m>0,∴(x﹣1)(x﹣)>0,若>1,即0<m<1时,x∈(﹣∞,1)∪(,+∞);若=1,即m=1时,x∈(﹣∞,1)∪(1,+∞);若<1,即m>1时,x∈(﹣∞,)∪(1,+∞).(2)若函数f(x)在(4,+∞)上单调递增,则函数g(x)=m+在(4,+∞)上单调递增且恒正.所以,解得:.【点评】本题考查的知识点是函数的定义域及单调性,不等关系,是函数与不等式的简单综合应用,难度中档.。

新邱区高中2018-2019学年高二上学期第二次月考试卷数学

新邱区高中2018-2019学年高二上学期第二次月考试卷数学

新邱区高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设等比数列{a n }的公比q=2,前n 项和为S n,则=( )A .2B .4C.D.2. 若方程C :x 2+=1(a 是常数)则下列结论正确的是( )A .∀a ∈R +,方程C 表示椭圆B .∀a ∈R ﹣,方程C 表示双曲线C .∃a ∈R ﹣,方程C 表示椭圆D .∃a ∈R ,方程C 表示抛物线3. 已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x>},则f (10x )>0的解集为( ) A .{x|x <﹣1或x >﹣lg2} B .{x|﹣1<x <﹣lg2} C .{x|x >﹣lg2} D .{x|x <﹣lg2}4. 已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题: (1)α∥β⇒l ⊥m ,(2)α⊥β⇒l ∥m , (3)l ∥m ⇒α⊥β,(4)l ⊥m ⇒α∥β, 其中正确命题是( )A .(1)与(2)B .(1)与(3)C .(2)与(4)D .(3)与(4)5. 已知函数211,[0,)22()13,[,1]2x x f x x x ⎧+∈⎪⎪=⎨⎪∈⎪⎩,若存在常数使得方程()f x t =有两个不等的实根12,x x(12x x <),那么12()x f x ∙的取值范围为( )A .3[,1)4B.1[,86 C .31[,)162 D .3[,3)86. 已知e 为自然对数的底数,若对任意的1[,1]x e∈,总存在唯一的[1,1]y ∈-,使得2ln 1yx x a y e -++=成立,则实数a 的取值范围是( )A.1[,]e eB.2(,]e eC.2(,)e+∞ D.21(,)e e e +【命题意图】本题考查导数与函数的单调性,函数的最值的关系,函数与方程的关系等基础知识,意在考查运用转化与化归思想、综合分析问题与解决问题的能力.7. 1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆的内切圆半径与外接圆半径之比为31-,则该双曲线的离心率为( )A.2B.3C. 21+D. 31+【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.8. 设集合{}|||2A x R x =∈≤,{}|10B x Z x =∈-≥,则A B =( )A.{}|12x x <≤B.{}|21x x -≤≤C. {}2,1,1,2--D. {}1,2【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题.9. 已知22(0)()|log |(0)x x f x x x ⎧≤=⎨>⎩,则方程[()]2f f x =的根的个数是( )A .3个B .4个C .5个D .6个10.如图,△ABC 所在平面上的点P n (n ∈N *)均满足△P n AB 与△P n AC 的面积比为3;1, =﹣(2x n +1)(其中,{x n }是首项为1的正项数列),则x 5等于( )A .65B .63C .33D .3111.复数Z=(i 为虚数单位)在复平面内对应点的坐标是( )A .(1,3)B .(﹣1,3)C .(3,﹣1)D .(2,4)12.某个几何体的三视图如图所示,其中正(主)视图中的圆弧是半径为2的半圆,则该几何体的表面积为( )A .π1492+B .π1482+C .π2492+D .π2482+【命题意图】本题考查三视图的还原以及特殊几何体的面积度量.重点考查空间想象能力及对基本面积公式的运用,难度中等.二、填空题13.已知sin α+cos α=,且<α<,则sin α﹣cos α的值为 .14.设,则15.若直线:012=--ay x 与直线2l :02=+y x 垂直,则=a .16.不等式的解集为R ,则实数m 的范围是.17.在极坐标系中,直线l 的方程为ρcos θ=5,则点(4,)到直线l 的距离为 .18.球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S ﹣ABC 的体积的最大值为 .三、解答题19.已知命题p :方程表示焦点在x 轴上的双曲线.命题q :曲线y=x 2+(2m ﹣3)x+1与x 轴交于不同的两点,若p ∧q 为假命题,p ∨q 为真命题,求实数m 的取值范围.20.全集U=R,若集合A={x|3≤x<10},B={x|2<x≤7},(1)求A∪B,(∁U A)∩(∁U B);(2)若集合C={x|x>a},A⊆C,求a的取值范围.21.已知函数f(x)=2cosx(sinx+cosx)﹣1(Ⅰ)求f(x)在区间[0,]上的最大值;(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,且f(B)=1,a+c=2,求b的取值范围.22.已知函数f(x)=alnx﹣x(a>0).(Ⅰ)求函数f(x)的最大值;(Ⅱ)若x∈(0,a),证明:f(a+x)>f(a﹣x);(Ⅲ)若α,β∈(0,+∞),f(α)=f(β),且α<β,证明:α+β>2α23.(1)求z=2x+y 的最大值,使式中的x 、y 满足约束条件(2)求z=2x+y 的最大值,使式中的x 、y 满足约束条件+=1.24.(本小题满分10分)选修4-1:几何证明选讲选修41-:几何证明选讲 如图,,,A B C 为O 上的三个点,AD 是BAC ∠的平分线,交O 于 点D ,过B 作O 的切线交AD 的延长线于点E .(Ⅰ)证明:BD 平分EBC ∠; (Ⅱ)证明:AE DC AB BE ⨯=⨯.新邱区高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:由于q=2,∴∴;故选:C.2.【答案】B【解析】解:∵当a=1时,方程C:即x2+y2=1,表示单位圆∴∃a∈R+,使方程C不表示椭圆.故A项不正确;∵当a<0时,方程C:表示焦点在x轴上的双曲线∴∀a∈R﹣,方程C表示双曲线,得B项正确;∀a∈R﹣,方程C不表示椭圆,得C项不正确∵不论a取何值,方程C:中没有一次项∴∀a∈R,方程C不能表示抛物线,故D项不正确综上所述,可得B为正确答案故选:B3.【答案】D【解析】解:由题意可知f(x)>0的解集为{x|﹣1<x<},故可得f(10x)>0等价于﹣1<10x<,由指数函数的值域为(0,+∞)一定有10x>﹣1,而10x<可化为10x<,即10x<10﹣lg2,由指数函数的单调性可知:x<﹣lg2故选:D4.【答案】B【解析】解:∵直线l⊥平面α,α∥β,∴l⊥平面β,又∵直线m⊂平面β,∴l⊥m,故(1)正确;∵直线l ⊥平面α,α⊥β,∴l ∥平面β,或l ⊂平面β,又∵直线m ⊂平面β,∴l 与m 可能平行也可能相交,还可以异面,故(2)错误;∵直线l ⊥平面α,l ∥m ,∴m ⊥α,∵直线m ⊂平面β,∴α⊥β,故(3)正确;∵直线l ⊥平面α,l ⊥m ,∴m ∥α或m ⊂α,又∵直线m ⊂平面β,则α与β可能平行也可能相交,故(4)错误; 故选B .【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键.5. 【答案】C 【解析】试题分析:由图可知存在常数,使得方程()f x t =有两上不等的实根,则314t <<,由1324x +=,可得14x =,由213x =,可得33x =(负舍),即有121113,4223x x ≤<≤≤,即221143x ≤≤,则()212123133,162x f x x x ⎡⎫=⋅∈⎪⎢⎣⎭.故本题答案选C.考点:数形结合.【规律点睛】本题主要考查函数的图象与性质,及数形结合的数学思想方法.方程解的个数问题一般转化为两个常见的函数图象的交点个数问题来解决.要能熟练掌握几种基本函数图象,如二次函数,反比例函数,指数函数,对数函数,幂函数等.掌握平移变换,伸缩变换,对称变换,翻折变换,周期变换等常用的方法技巧来快速处理图象.6. 【答案】B【解析】7. 【答案】D【解析】∵120PF PF ⋅=,∴12PFPF ⊥,即12PF F ∆为直角三角形,∴222212124PF PF F F c +==,12||2PF PF a -=,则222221212122()4()PF PF PF PF PF PF c a ⋅=+--=-, 2222121212()()484PF PF PF PF PF PF c a +=-+⋅=-.所以12PF F ∆内切圆半径12122PF PF F F r c +-==,外接圆半径R c =.12c c =,整理,得2()4ca=+1e =,故选D. 8. 【答案】D【解析】由绝对值的定义及||2x ≤,得22x -≤≤,则{}|22A x x =-≤≤,所以{}1,2A B =,故选D.9. 【答案】C【解析】由[()]2f f x =,设f (A )=2,则f (x )=A,则2log 2x =,则A=4或A=14,作出f (x )的图像,由数型结合,当A=14时3个根,A=4时有两个交点,所以[()]2f f x =的根的个数是5个。

新邱区第二高级中学2018-2019学年上学期高二数学12月月考试题含解析

新邱区第二高级中学2018-2019学年上学期高二数学12月月考试题含解析

新邱区第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(acosB+bcosA )=2csinC ,a+b=8,且△ABC 的面积的最大值为4,则此时△ABC 的形状为( )A .等腰三角形B .正三角形C .直角三角形D .钝角三角形2. 若双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=2相切,则此双曲线的离心率等于( )A .B .C .D .23. 3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有( ) A .90种 B .180种C .270种D .540种4. 设m 、n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n ∥α,则m ⊥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若m ⊥α,n ⊥α,则m ∥n ;④若α⊥β,m ⊥β,则m ∥α; 其中正确命题的序号是( ) A .①②③④ B .①②③ C .②④D .①③5. 方程(x 2﹣4)2+(y 2﹣4)2=0表示的图形是( )A .两个点B .四个点C .两条直线D .四条直线6. 某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽 车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘 坐甲车的4名同学中恰有2名同学是来自同一年级的乘坐方式共有( )种. A .24 B .18 C .48 D .36【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力. 7. 在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( ) A .725B .725- C. 725± D .24258. 设函数y=的定义域为M ,集合N={y|y=x 2,x ∈R},则M ∩N=( )A .∅B .NC .[1,+∞)D .M9. 已知双曲线和离心率为4sinπ的椭圆有相同的焦点21F F 、,P 是两曲线的一个公共点,若21cos 21=∠PF F ,则双曲线的离心率等于( )A .B .25 C .26 D .27 10.已知点P (x ,y )的坐标满足条件,(k 为常数),若z=3x+y 的最大值为8,则k 的值为( )A .B .C .﹣6D .611.若命题p :∀x ∈R ,2x 2﹣1>0,则该命题的否定是( )A .∀x ∈R ,2x 2﹣1<0B .∀x ∈R ,2x 2﹣1≤0C .∃x ∈R ,2x 2﹣1≤0D .∃x ∈R ,2x 2﹣1>012.某程序框图如图所示,则输出的S 的值为( )A .11B .19C .26D .57二、填空题13.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率P 的取值范围是 .14.函数f (x )=2a x+1﹣3(a >0,且a ≠1)的图象经过的定点坐标是 .15.为了近似估计π的值,用计算机分别产生90个在[﹣1,1]的均匀随机数x 1,x 2,…,x 90和y 1,y 2,…,y 90,在90组数对(x i ,y i )(1≤i ≤90,i ∈N *)中,经统计有25组数对满足,则以此估计的π值为 .16.已知关于 的不等式在上恒成立,则实数的取值范围是__________17.设()x xf x e=,在区间[0,3]上任取一个实数0x ,曲线()f x 在点()00,()x f x 处的切线斜率为k ,则随机事件“0k <”的概率为_________.18.若命题“∃x ∈R ,x 2﹣2x+m ≤0”是假命题,则m 的取值范围是 .三、解答题19.如图,已知几何体的底面ABCD 为正方形,AC ∩BD=N ,PD ⊥平面ABCD , PD=AD=2EC ,EC ∥PD .(Ⅰ)求异面直线BD 与AE 所成角: (Ⅱ)求证:BE ∥平面PAD ;(Ⅲ)判断平面PAD 与平面PAE 是否垂直?若垂直,请加以证明;若不垂直,请说明理由.20.已知集合A={x|x2+2x<0},B={x|y=}(1)求(∁R A)∩B;(2)若集合C={x|a<x<2a+1}且C⊆A,求a的取值范围.21.已知f(x)=(1+x)m+(1+2x)n(m,n∈N*)的展开式中x的系数为11.(1)求x2的系数取最小值时n的值.(2)当x2的系数取得最小值时,求f(x)展开式中x的奇次幂项的系数之和.22.已知函数(a≠0)是奇函数,并且函数f(x)的图象经过点(1,3),(1)求实数a,b的值;(2)求函数f(x)的值域.23.(本小题满分12分)成都市某中学计划举办“国学”经典知识讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试成绩(百分制)的茎叶图如图所示.(1)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩;(2)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)24.已知矩阵A=,向量=.求向量,使得A2=.新邱区第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:∵(acosB+bcosA)=2csinC,∴(sinAcosB+sinBcosA)=2sin2C,∴sinC=2sin2C,且sinC>0,∴sinC=,∵a+b=8,可得:8≥2,解得:ab≤16,(当且仅当a=b=4成立)∵△ABC的面积的最大值S△ABC=absinC≤=4,∴a=b=4,则此时△ABC的形状为等腰三角形.故选:A.2.【答案】B【解析】解:由题意可知双曲线的渐近线方程之一为:bx+ay=0,圆(x﹣2)2+y2=2的圆心(2,0),半径为,双曲线﹣=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相切,可得:,可得a2=b2,c=a,e==.故选:B.【点评】本题考查双曲线的简单性质的应用,双曲线的渐近线与圆的位置关系的应用,考查计算能力.3.【答案】D【解析】解:三所学校依次选医生、护士,不同的分配方法共有:C31C62C21C42=540种.故选D.4.【答案】B【解析】解:由m、n是两条不同的直线,α,β,γ是三个不同的平面:在①中:若m⊥α,n∥α,则由直线与平面垂直得m⊥n,故①正确;在②中:若α∥β,β∥γ,则α∥γ,∵m ⊥α,∴由直线垂直于平面的性质定理得m ⊥γ,故②正确;在③中:若m ⊥α,n ⊥α,则由直线与平面垂直的性质定理得m ∥n ,故③正确; 在④中:若α⊥β,m ⊥β,则m ∥α或m ⊂α,故④错误. 故选:B .5. 【答案】B【解析】解:方程(x 2﹣4)2+(y 2﹣4)2=0则x 2﹣4=0并且y 2﹣4=0,即,解得:,,,,得到4个点. 故选:B .【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力.6. 【答案】A【解析】分类讨论,有2种情形.孪生姐妹乘坐甲车,则有12121223=C C C 种. 孪生姐妹不乘坐甲车,则有12121213=C C C 种. 共有24种. 选A.7. 【答案】A 【解析】考点:正弦定理及二倍角公式.【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如θθθθθ2222sin cos 2cos ,1cos sin -==+,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定理R CcB b A 2sin sin sin a ===,余弦定理A bc c b a cos 2222-+=, 实现边与角的互相转化.8. 【答案】B【解析】解:根据题意得:x+1≥0,解得x ≥﹣1, ∴函数的定义域M={x|x ≥﹣1};∵集合N 中的函数y=x 2≥0,∴集合N={y|y ≥0}, 则M ∩N={y|y ≥0}=N . 故选B9. 【答案】C 【解析】试题分析:设椭圆的长半轴长为1a ,双曲线的实半轴长为2a ,焦距为c 2,m PF =1,n PF =2,且不妨设n m >,由12a n m =+,22a n m =-得21a a m +=,21a a n -=,又21cos 21=∠PF F ,∴由余弦定理可知:mn n m c -+=2224,2221234a a c +=∴,432221=+∴c a c a ,设双曲线的离心率为,则4322122=+e)(,解得26=e .故答案选C .考点:椭圆的简单性质.【思路点晴】本题主要考查圆锥曲线的定义和离心率.根据椭圆和双曲线的定义,由P 为公共点,可把焦半径1PF 、2PF 的长度用椭圆的半长轴以及双曲线的半实轴21,a a 来表示,接着用余弦定理表示21cos 21=∠PF F ,成为一个关于21,a a 以及的齐次式,等式两边同时除以2c ,即可求得离心率.圆锥曲线问题在选择填空中以考查定义和几何性质为主. 10.【答案】 B【解析】解:画出x ,y 满足的可行域如下图:z=3x+y 的最大值为8,由,解得y=0,x=,(,0)代入2x+y+k=0,∴k=﹣,故选B .【点评】如果约束条件中含有参数,可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组),代入另一条直线方程,消去x,y后,即可求出参数的值.11.【答案】C【解析】解:命题p:∀x∈R,2x2﹣1>0,则其否命题为:∃x∈R,2x2﹣1≤0,故选C;【点评】此题主要考查命题否定的定义,是一道基础题;12.【答案】C【解析】解:模拟执行程序框图,可得S=1,k=1k=2,S=4不满足条件k>3,k=3,S=11不满足条件k>3,k=4,S=26满足条件k>3,退出循环,输出S的值为26.故选:C.【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的k,S的值是解题的关键,属于基本知识的考查.二、填空题13.【答案】[].【解析】解:由题设知C41p(1﹣p)3≤C42p2(1﹣p)2,解得p,∵0≤p≤1,∴,故答案为:[].14.【答案】(﹣1,﹣1).【解析】解:由指数幂的性质可知,令x+1=0得x=﹣1,此时f(﹣1)=2﹣3=﹣1,即函数f(x)的图象经过的定点坐标是(﹣1,﹣1),故答案为:(﹣1,﹣1).15.【答案】.【解析】设A(1,1),B(﹣1,﹣1),则直线AB过原点,且阴影面积等于直线AB与圆弧所围成的弓形面积S1,由图知,,又,所以【点评】本题考查了随机数的应用及弓形面积公式,属于中档题.16.【答案】【解析】因为在上恒成立,所以,解得答案:17.【答案】3 5【解析】解析:本题考查几何概率的计算与切线斜率的计算.001()x x k f x e -'==,由0()0f x '<得,01x >,∴随机事件“0k <”的概率为23. 18.【答案】 m >1 .【解析】解:若命题“∃x ∈R ,x 2﹣2x+m ≤0”是假命题,则命题“∀x ∈R ,x 2﹣2x+m >0”是真命题,即判别式△=4﹣4m <0, 解得m >1, 故答案为:m >1三、解答题19.【答案】【解析】解:(Ⅰ)PD ⊥平面ABCD ,EC ∥PD , ∴EC ⊥平面ABCD , 又BD ⊂平面ABCD , ∴EC ⊥BD ,∵底面ABCD 为正方形,AC ∩BD=N , ∴AC ⊥BD ,又∵AC ∩EC=C ,AC ,EC ⊂平面AEC , ∴BD ⊥平面AEC , ∴BD ⊥AE ,∴异面直线BD 与AE 所成角的为90°. (Ⅱ)∵底面ABCD 为正方形, ∴BC ∥AD ,∵BC ⊄平面PAD ,AD ⊂平面PAD , ∴BC ∥平面PAD ,∵EC ∥PD ,EC ⊄平面PAD ,PD ⊂平面PAD , ∴EC ∥平面PAD ,∵EC ∩BC=C ,EC ⊂平面BCE ,BC ⊂平面BCE ,∴ ∴平面BCE ∥平面PAD , ∵BE ⊂平面BCE , ∴BE ∥平面PAD .(Ⅲ) 假设平面PAD 与平面PAE 垂直,作PA 中点F ,连结DF , ∵PD ⊥平面ABCD ,AD CD ⊂平面ABCD ,∴PD⊥CD,PD⊥AD,∵PD=AD,F是PA的中点,∴DF⊥PA,∴∠PDF=45°,∵平面PAD⊥平面PAE,平面PAD∩平面PAE=PA,DF⊂平面PAD,∴DF⊥平面PAE,∴DF⊥PE,∵PD⊥CD,且正方形ABCD中,AD⊥CD,PD∩AD=D,∴CD⊥平面PAD.又DF⊂平面PAD,∴DF⊥CD,∵PD=2EC,EC∥PD,∴PE与CD相交,∴DF⊥平面PDCE,∴DF⊥PD,这与∠PDF=45°矛盾,∴假设不成立即平面PAD与平面PAE不垂直.【点评】本题主要考查了线面平行和线面垂直的判定定理的运用.考查了学生推理能力和空间思维能力.20.【答案】【解析】解:(1)A={x|x2+2x<0}={x|﹣2<x<0},B={x|y=}={x|x+1≥0}={x|x≥﹣1},∴∁R A={x|x≤﹣2或x≥0},∴(∁R A)∩B={x|x≥0};…(2)当a≥2a+1时,C=∅,此时a≤﹣1满足题意;当a<2a+1时,C≠∅,应满足,解得﹣1<a≤﹣;综上,a的取值范围是.…21.【答案】【解析】【专题】计算题.【分析】(1)利用二项展开式的通项公式求出展开式的x的系数,列出方程得到m,n的关系;利用二项展开式的通项公式求出x2的系数,将m,n的关系代入得到关于m的二次函数,配方求出最小值(2)通过对x分别赋值1,﹣1,两式子相加求出展开式中x的奇次幂项的系数之和.【解答】解:(1)由已知C m1+2C n1=11,∴m+2n=11,x2的系数为C m2+22C n2=+2n(n﹣1)=+(11﹣m)(﹣1)=(m﹣)2+.∵m∈N*,∴m=5时,x2的系数取得最小值22,此时n=3.(2)由(1)知,当x2的系数取得最小值时,m=5,n=3,∴f(x)=(1+x)5+(1+2x)3.设这时f(x)的展开式为f(x)=a0+a1x+a2x2++a5x5,令x=1,a0+a1+a2+a3+a4+a5=25+33,令x=﹣1,a0﹣a1+a2﹣a3+a4﹣a5=﹣1,两式相减得2(a1+a3+a5)=60,故展开式中x的奇次幂项的系数之和为30.【点评】本题考查利用二项展开式的通项公式求二项展开式的特殊项问题;利用赋值法求二项展开式的系数和问题.22.【答案】【解析】解:(1)∵函数是奇函数,则f(﹣x)=﹣f(x)∴,∵a≠0,∴﹣x+b=﹣x﹣b,∴b=0(3分)又函数f(x)的图象经过点(1,3),∴f(1)=3,∴,∵b=0,∴a=2(6分)(2)由(1)知(7分)当x>0时,,当且仅当,即时取等号(10分)当x<0时,,∴当且仅当,即时取等号(13分)综上可知函数f(x)的值域为(12分)【点评】本题主要考查函数的奇偶性和单调性的应用,转化函数研究性质是问题的关键.23.【答案】【解析】【命题意图】本题考查茎叶图的制作与读取,古典概型的概率计算,是概率统计的基本题型,解答的关键是应用相关数据进行准确计算,是中档题.24.【答案】=【解析】A2=.设=.由A2=,得,从而解得x=-1,y=2,所以=。

新邱区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

新邱区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

新邱区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=1+x ﹣+﹣+…+,则下列结论正确的是()A .f (x )在(0,1)上恰有一个零点B .f (x )在(﹣1,0)上恰有一个零点C .f (x )在(0,1)上恰有两个零点D .f (x )在(﹣1,0)上恰有两个零点2. 直线2x+y+7=0的倾斜角为( )A .锐角B .直角C .钝角D .不存在3. 给出下列各函数值:①sin100°;②cos (﹣100°);③tan (﹣100°);④.其中符号为负的是( )A .①B .②C .③D .④4. 已知点A (﹣2,0),点M (x ,y )为平面区域上的一个动点,则|AM|的最小值是()A .5B .3C .2D .5. 在等比数列中,,,且数列的前项和,则此数列的项数}{n a 821=+n a a 8123=⋅-n a a }{n a n 121=n S n 等于( )A .4B .5C .6D .7【命题意图】本题考查等比数列的性质及其通项公式,对逻辑推理能力、运算能力及分类讨论思想的理解有一定要求,难度中等.6. 如图,棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 为线段A 1B 上的动点,则下列结论正确的有( )①三棱锥M ﹣DCC 1的体积为定值②DC 1⊥D 1M③∠AMD 1的最大值为90° ④AM+MD 1的最小值为2.A .①②B .①②③C .③④D .②③④7. 若关于x 的方程x 3﹣x 2﹣x+a=0(a ∈R )有三个实根x 1,x 2,x 3,且满足x 1<x 2<x 3,则a 的取值范围为()A .a >B .﹣<a <1C .a <﹣1D .a >﹣18. 点A 是椭圆上一点,F 1、F 2分别是椭圆的左、右焦点,I 是△AF 1F 2的内心.若,则该椭圆的离心率为()A .B .C .D .9. 下列说法正确的是()A .类比推理是由特殊到一般的推理B .演绎推理是特殊到一般的推理C .归纳推理是个别到一般的推理D .合情推理可以作为证明的步骤10.(+)2n (n ∈N *)展开式中只有第6项系数最大,则其常数项为()A .120B .210C .252D .4511.若关于的不等式的解集为,则参数的取值范围为()x 07|2||1|>-+-++m x x R m A .B .C .D .),4(+∞),4[+∞)4,(-∞]4,(-∞【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.12.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )﹣g (x )=x 3﹣2x 2,则f (2)+g (2)=( )A .16B .﹣16C .8D .﹣8二、填空题13.函数f (x )=的定义域是 .14.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为__________15.圆柱形玻璃杯高8cm ,杯口周长为12cm ,内壁距杯口2cm 的点A 处有一点蜜糖.A 点正对面的外壁(不是A 点的外壁)距杯底2cm 的点B 处有一小虫.若小虫沿杯壁爬向蜜糖饱食一顿,最少要爬多少 cm .(不计杯壁厚度与小虫的尺寸)16.如图所示,正方体ABCD ﹣A ′B ′C ′D ′的棱长为1,E 、F 分别是棱AA ′,CC ′的中点,过直线EF 的平面分别与棱BB ′、DD ′交于M 、N ,设BM=x ,x ∈[0,1],给出以下四个命题:①平面MENF ⊥平面BDD ′B ′;②当且仅当x=时,四边形MENF 的面积最小;③四边形MENF 周长l=f (x ),x ∈0,1]是单调函数;④四棱锥C ′﹣MENF 的体积v=h (x )为常函数;以上命题中真命题的序号为 .17.若函数的定义域为,则函数的定义域是 .()f x []1,2-(32)f x -18.观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49…照此规律,第n 个等式为 . 三、解答题19.设函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求函数在上的最大值与最小值.20.△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,asinAsinB+bcos 2A=a .(Ⅰ)求;(Ⅱ)若c 2=b 2+a 2,求B .21.已知等差数列{a n }满足a 2=0,a 6+a 8=10.(1)求数列{a n }的通项公式;(2)求数列{}的前n 项和.22.(本题满分12分)已知数列的前项和为,().}{n a n n S 233-=n n a S +∈N n (1)求数列的通项公式;}{n a (2)若数列满足,记,求证:().}{n b 143log +=⋅n n n a b a n n b b b b T ++++= 32127<n T +∈N n 【命题意图】本题考查了利用递推关系求通项公式的技巧,同时也考查了用错位相减法求数列的前项和.重n点突出运算、论证、化归能力的考查,属于中档难度.23.(本小题满分13分)在四棱锥中,底面是梯形,,,,P ABCD -ABCD //AB DC 2ABD π∠=AD =22AB DC ==为的中点.F PA (Ⅰ)在棱上确定一点,使得平面;PB E //CE PAD (Ⅱ)若的体积.PA PB PD ===P BDF -ABCDPF24.已知函数f (x )=lnx ﹣kx+1(k ∈R ).(Ⅰ)若x 轴是曲线f (x )=lnx ﹣kx+1一条切线,求k 的值;(Ⅱ)若f (x )≤0恒成立,试确定实数k 的取值范围. 新邱区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】解:∵f′(x)=1﹣x+x2﹣x3+…+x2014=(1﹣x)(1+x2+…+x2012)+x2014;∴f′(x)>0在(﹣1,0)上恒成立;故f(x)在(﹣1,0)上是增函数;又∵f(0)=1,f(﹣1)=1﹣1﹣﹣﹣…﹣<0;故f(x)在(﹣1,0)上恰有一个零点;故选B.【点评】本题考查了导数的综合应用及函数零点的个数的判断,属于中档题.2.【答案】C【解析】【分析】设直线2x+y+7=0的倾斜角为θ,则tanθ=﹣2,即可判断出结论.【解答】解:设直线2x+y+7=0的倾斜角为θ,则tanθ=﹣2,则θ为钝角.故选:C.3.【答案】B【解析】解::①sin100°>0,②cos(﹣100°)=cos100°<0,③tan(﹣100°)=﹣tan100>0,④∵sin>0,cosπ=﹣1,tan<0,∴>0,其中符号为负的是②,故选:B.【点评】本题主要考查三角函数值的符号的判断,判断角所在的象限是解决本题的关键,比较基础.4.【答案】D【解析】解:不等式组表示的平面区域如图,结合图象可知|AM|的最小值为点A到直线2x+y﹣2=0的距离,即|AM|min=.故选:D.【点评】本题考查了不等式组表示的平面区域的画法以及运用;关键是正确画图,明确所求的几何意义. 5.【答案】B6.【答案】A【解析】解:①∵A1B∥平面DCC1D1,∴线段A1B上的点M到平面DCC1D1的距离都为1,又△DCC1的面积为定值,因此三棱锥M﹣DCC1的体积V==为定值,故①正确.②∵A1D1⊥DC1,A1B⊥DC1,∴DC1⊥面A1BCD1,D1P⊂面A1BCD1,∴DC1⊥D1P,故②正确.③当0<A1P<时,在△AD1M中,利用余弦定理可得∠APD1为钝角,∴故③不正确;④将面AA1B与面A1BCD1沿A1B展成平面图形,线段AD1即为AP+PD1的最小值,在△D1A1A中,∠D1A1A=135°,利用余弦定理解三角形得AD1==<2,故④不正确.因此只有①②正确.故选:A.7.【答案】B【解析】解:由x3﹣x2﹣x+a=0得﹣a=x3﹣x2﹣x,设f(x)=x3﹣x2﹣x,则函数的导数f′(x)=3x2﹣2x﹣1,由f′(x)>0得x>1或x<﹣,此时函数单调递增,由f′(x)<0得﹣<x<1,此时函数单调递减,即函数在x=1时,取得极小值f(1)=1﹣1﹣1=﹣1,在x=﹣时,函数取得极大值f(﹣)=(﹣)3﹣(﹣)2﹣(﹣)=,要使方程x3﹣x2﹣x+a=0(a∈R)有三个实根x1,x2,x3,则﹣1<﹣a<,即﹣<a<1,故选:B.【点评】本题主要考查导数的应用,构造函数,求函数的导数,利用导数求出函数的极值是解决本题的关键. 8.【答案】B【解析】解:设△AF1F2的内切圆半径为r,则S△IAF1=|AF1|r,S△IAF2=|AF2|r,S△IF1F2=|F1F2|r,∵,∴|AF1|r=2×|F1F2|r﹣|AF2|r,整理,得|AF1|+|AF2|=2|F1F2|.∴a=2,∴椭圆的离心率e===.故选:B.9.【答案】C【解析】解:因为归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤,故选C.【点评】本题考查合情推理与演绎推理,考查学生分析解决问题的能力,属于基础题.10.【答案】B【解析】【专题】二项式定理.【分析】由已知得到展开式的通项,得到第6项系数,根据二项展开式的系数性质得到n,可求常数项.【解答】解:由已知(+)2n(n∈N*)展开式中只有第6项系数为最大,所以展开式有11项,所以2n=10,即n=5,又展开式的通项为=,令5﹣=0解得k=6,所以展开式的常数项为=210;故选:B【点评】本题考查了二项展开式的系数以及求特征项;解得本题的关键是求出n,利用通项求特征项.11.【答案】A12.【答案】B【解析】解:∵f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x3﹣2x2,∴f(﹣2)﹣g(﹣2)=(﹣2)3﹣2×(﹣2)2=﹣16.即f(2)+g(2)=f(﹣2)﹣g(﹣2)=﹣16.故选:B.【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力.二、填空题13.【答案】 {x|x>2且x≠3} .【解析】解:根据对数函数及分式有意义的条件可得解可得,x>2且x≠3故答案为:{x|x>2且x≠3}14.【答案】【解析】【知识点】抛物线双曲线【试题解析】抛物线的准线方程为:x=2;双曲线的两条渐近线方程为:所以故答案为:15.【答案】 10 cm【解析】解:作出圆柱的侧面展开图如图所示,设A关于茶杯口的对称点为A′,则A′A=4cm,BC=6cm,∴A′C=8cm,∴A′B==10cm.故答案为:10.【点评】本题考查了曲面的最短距离问题,通常转化为平面图形来解决.16.【答案】 ①②④ .【解析】解:①连结BD ,B ′D ′,则由正方体的性质可知,EF ⊥平面BDD ′B ′,所以平面MENF ⊥平面BDD ′B ′,所以①正确.②连结MN ,因为EF ⊥平面BDD ′B ′,所以EF ⊥MN ,四边形MENF 的对角线EF 是固定的,所以要使面积最小,则只需MN 的长度最小即可,此时当M 为棱的中点时,即x=时,此时MN 长度最小,对应四边形MENF 的面积最小.所以②正确.③因为EF ⊥MN ,所以四边形MENF 是菱形.当x ∈[0,]时,EM 的长度由大变小.当x ∈[,1]时,EM 的长度由小变大.所以函数L=f (x )不单调.所以③错误.④连结C ′E ,C ′M ,C ′N ,则四棱锥则分割为两个小三棱锥,它们以C ′EF 为底,以M ,N 分别为顶点的两个小棱锥.因为三角形C ′EF 的面积是个常数.M ,N 到平面C'EF 的距离是个常数,所以四棱锥C'﹣MENF 的体积V=h (x )为常函数,所以④正确.故答案为:①②④.【点评】本题考查空间立体几何中的面面垂直关系以及空间几何体的体积公式,本题巧妙的把立体几何问题和函数进行的有机的结合,综合性较强,设计巧妙,对学生的解题能力要求较高.17.【答案】1,22⎡⎤⎢⎥⎣⎦【解析】试题分析:依题意得.11322,,22x x ⎡⎤-≤-≤∈⎢⎥⎣⎦考点:抽象函数定义域.18.【答案】 n+(n+1)+(n+2)+…+(3n ﹣2)=(2n ﹣1)2 .【解析】解:观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49…等号右边是12,32,52,72…第n个应该是(2n﹣1)2左边的式子的项数与右边的底数一致,每一行都是从这一个行数的数字开始相加的,照此规律,第n个等式为n+(n+1)+(n+2)+…+(3n﹣2)=(2n﹣1)2,故答案为:n+(n+1)+(n+2)+…+(3n﹣2)=(2n﹣1)2【点评】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.三、解答题19.【答案】【解析】【知识点】三角函数的图像与性质恒等变换综合【试题解析】(Ⅰ)因为.所以函数的最小正周期为.(Ⅱ)由(Ⅰ),得.因为,所以,所以.所以.且当时,取到最大值;当时,取到最小值.20.【答案】【解析】解:(Ⅰ)由正弦定理得,sin2AsinB+sinBcos2A=sinA,即sinB(sin2A+cos2A)=sinA∴sinB=sinA,=(Ⅱ)由余弦定理和C2=b2+a2,得cosB=由(Ⅰ)知b2=2a2,故c2=(2+)a2,可得cos2B=,又cosB>0,故cosB=所以B=45°【点评】本题主要考查了正弦定理和余弦定理的应用.解题的过程主要是利用了正弦定理和余弦定理对边角问题进行了互化.21.【答案】【解析】解:(1)设等差数列{a n}的公差为d,∵a2=0,a6+a8=10.∴,解得,∴a n﹣1+(n﹣1)=n﹣2.(2)=.∴数列{}的前n项和S n=﹣1+0+++…+,=+0++…++,∴=﹣1++…+﹣=﹣2+﹣=,∴S n=.22.【答案】【解析】23.【答案】(本小题满分13分)解:(Ⅰ)当为的中点时,平面. (1分)E PB //CE PAD 连结、,那么,. EF EC //EF AB 12EF AB∵,,∴,,∴. (3分)//DC AB 12DC AB =//EF DC EF DC =//EC FD 又∵平面, 平面,∴平面. (5分)CE ⊄PAD FD ⊂PAD //CE PAD (Ⅱ)设为的中点,连结、,∵,∴,O AD OP OB PA PD =OP AD ⊥在直角三角形中,, 又∵,∴,∴,∴ABD 12OB AD OA ==PA PB =PAO PBO ∆≅∆POA POB ∠=∠,OP OB ⊥∴平面. (10分)OP ⊥ABD,2PO ===2BD ==∴三棱锥的体积. (13分)P BDF -1112222233P BDF P ABD V V --==⨯⨯⨯=A BCD POEF 24.【答案】【解析】解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=﹣k=0,∴x=,由ln ﹣1+1=0,可得k=1;(2)当k ≤0时,f ′(x )=﹣k >0,f (x )在(0,+∞)上是增函数;当k >0时,若x ∈(0,)时,有f ′(x )>0,若x ∈(,+∞)时,有f ′(x )<0,则f (x )在(0,)上是增函数,在(,+∞)上是减函数.k ≤0时,f (x )在(0,+∞)上是增函数,而f (1)=1﹣k >0,f (x )≤0不成立,故k >0,∵f (x )的最大值为f (),要使f (x )≤0恒成立,则f ()≤0即可,即﹣lnk ≤0,得k ≥1.【点评】本题考查导数的几何意义,考查函数单调区间的求法,确定实数的取值范围,渗透了分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.。

新邱区第二中学校20182019学年上学期高二数学月考试题含解析

新邱区第二中学校20182019学年上学期高二数学月考试题含解析

优选高中模拟试卷新邱区第二中学校2018-2019学年上学期高二数学12月月考试题含分析班级__________姓名__________分数__________一、选择题1f(x )esinx ,此中x R ,e 2.71828为自然对数的底数.当x[0, ]时,函数 yf(x) .已知函数x2的图象不在直线y kx 的下方,则实数 k 的取值范围()A .(,1)B .( ,1]C .(,e 2) D .( ,e 2]【命题企图】本题考察函数图象与性质、利用导数研究函数的单一性、 零点存在性定理,意在考察逻辑思想能 力、等价转变能力、运算求解能力,以及结构思想、分类议论思想的应用. 2 1 02.若命题p :?x∈R,2x﹣ )>,则该命题的否认是(A .?x∈R,2x 2﹣1<0B .?x∈R,2x 2﹣1≤02 1≤0 D . ?x∈R , 2x 2 10C .?x∈R,2x ﹣ ﹣> 3.以下命题的说法错误的选项是( ) A .若复合命题 p∧q 为假命题,则 p ,q 都是假命题 B .“x=1”是“x 2﹣3x+2=0”的充足不用要条件C p x R 2 0 p x R 2 0.对于命题 ? ∈ , x+x+1 > 则¬ :? ∈ , x+x+1: ≤2 3x+2=0 ,则 x=1” “x 1 x 2 3x+20”D .命题“若x ﹣ 的逆否命题为: 若 ≠,则 ﹣ ≠ 4.设偶函数f (x )在(0, +∞)上为减函数,且 f (2)=0,则不等式 > 0 的解集为( ) A .(﹣2,0)∪(2,+∞) B .(﹣∞,﹣2)∪(0,2) C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,0) ∪(0,2)5.某几何体的三视图以下图,且该几何体的体积是,则正视图中的 x 的值是( )A.2B.C.D.36.以下式子中成立的是()A.log0.44<log0.46B.1.013.4>1.013.5第1页,共17页优选高中模拟试卷C.3.50.3<3.40.3D.log76<log672m,则m不行能等于()7.设方程|x+3x﹣3|=a的解的个数为A.1B.2C.3D.4x a1或x2,则的取值为()8.若对于的不等式0的解集为3xx24x3A.B.11D.2 2C.29.在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的()A.充足非必需条件B.必需非充足条件C.充要条件D.既不充足也非必需条件10.某几何体的三视图以下图,此中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则其侧视图的面积是()A.B.C.1D.11.履行以下图的程序框图,若输出的结果是,则循环体的判断框内①处应填()A.11?B.12?C.13?D.14?第2页,共17页优选高中模拟试卷12.甲、乙两所学校高三年级分别有1200人,1000人,为了认识两所学校全体高三年级学生在该地域六校联考的数学成绩状况, 采纳分层抽样方法从两所学校一共抽取了 110名学生的数学成绩,并作出了频数散布统计表以下: 甲校:分组 [70,80 [80,90[90,100[100,110频数34815分组 [110,120[120,130[130,140[140,150]频数15x32乙校:分组 [70,80 [80,90[90,100[100,110频数 1 28 9 分组 [110,120[120,130[130,140[140,150]频数1010y3则x ,y 的值分别为A 、12,7B 、10,7C 、10,8D 、11,9二、填空题13.函数f (x )= (x >3)的最小值为.14.若曲线f (x )=ae x +bsinx (a ,b ∈R )在x=0 处与直线y=﹣1 相切,则b ﹣a=.15.已知|a|2,|b|1,2a 与1b 的夹角为,则|a2b|.3316.平面内两定点 M (0,一2)和N (0,2),动点P (x ,y )知足 ,动点P 的轨迹为曲线E ,给出以下命题:①m ,使曲线E 过坐标原点;②对m ,曲线E 与x 轴有三个交点;③曲线E 只对于y 轴对称,但不对于 x 轴对称;④若P 、M 、N 三点不共线,则△ PMN 周长的最小值为 2m +4;⑤曲线E 上与M,N 不共线的随意一点 G 对于原点对称的此外一点为H ,则四边形GMHN的面积不大于 m 。

新邱区第一高级中学2018-2019学年高二上学期第二次月考试卷数学

新邱区第一高级中学2018-2019学年高二上学期第二次月考试卷数学

新邱区第一高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 已知函数2()2ln 2f x a x x x =+-(a R ∈)在定义域上为单调递增函数,则的最小值是( )A .14 B .12C .D . 2. 某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘 坐甲车的4名同学中恰有2名同学是来自同一年级的乘坐方式共有( )种. A .24 B .18 C .48 D .36【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力. 3. 函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数,则a 的取值范围为( ) A .0<a ≤ B .0≤a ≤ C .0<a < D .a >4. 函数是( )A .最小正周期为2π的奇函数B .最小正周期为π的奇函数C .最小正周期为2π的偶函数D .最小正周期为π的偶函数5. 执行如图所示的程序,若输入的3x =,则输出的所有x 的值的和为( ) A .243 B .363 C .729 D .1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力.6.半径R的半圆卷成一个圆锥,则它的体积为()A.πR3B.πR3C.πR3D.πR37.某几何体的三视图如图所示,则它的表面积为()A.B.C.D.8.已知函数f(x)=2x﹣+cosx,设x1,x2∈(0,π)(x1≠x2),且f(x1)=f(x2),若x1,x0,x2成等差数列,f′(x)是f(x)的导函数,则()A.f′(x0)<0 B.f′(x0)=0C.f′(x0)>0 D.f′(x0)的符号无法确定9.sin45°sin105°+sin45°sin15°=()A.0 B.C.D.110.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是据某地某日早7点至晚8点甲、乙两个PM2.5监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是()A.甲B.乙C.甲乙相等 D.无法确定11.若P 是以F 1,F 2为焦点的椭圆=1(a >b >0)上的一点,且=0,tan ∠PF 1F 2=,则此椭圆的离心率为( )A .B .C .D .12.设复数z 满足z (1+i )=2(i 为虚数单位),则z=( ) A .1﹣i B .1+i C .﹣1﹣i D .﹣1+i二、填空题13.如图,正方形''''O A B C 的边长为1cm ,它是水平放置的一个平面图形的直观图,则原图的 周长为 .1111]14.经过A (﹣3,1),且平行于y 轴的直线方程为 .15.已知面积为的△ABC 中,∠A=若点D 为BC 边上的一点,且满足=,则当AD 取最小时,BD 的长为 .16.设曲线y=x n+1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lgx n ,则a 1+a 2+…+a 99的值为 .17.在各项为正数的等比数列{a n }中,若a 6=a 5+2a 4,则公比q= . 18.在△ABC 中,点D 在边AB 上,CD ⊥BC ,AC=5,CD=5,BD=2AD ,则AD 的长为 .三、解答题19.(本小题满分10分)选修4-5:不等式选讲 已知函数()|21|f x x =-.(1)若不等式1()21(0)2f x m m +≤+>的解集为(][),22,-∞-+∞,求实数m 的值;(2)若不等式()2|23|2yyaf x x ≤+++,对任意的实数,x y R ∈恒成立,求实数a 的最小值. 【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力.20.【徐州市第三中学2017~2018学年度高三第一学期月考】为了制作广告牌,需在如图所示的铁片上切割出一个直角梯形,已知铁片由两部分组成,半径为1的半圆O 及等腰直角三角形EFH ,其中FE FH ⊥,为裁剪出面积尽可能大的梯形铁片ABCD (不计损耗),将点,A B 放在弧EF 上,点,C D 放在斜边EH 上,且////AD BC HF ,设AOE θ∠=.(1)求梯形铁片ABCD 的面积S 关于θ的函数关系式;(2)试确定θ的值,使得梯形铁片ABCD 的面积S 最大,并求出最大值.21.已知函数,(其中常数m >0)(1)当m=2时,求f (x )的极大值;(2)试讨论f (x )在区间(0,1)上的单调性;(3)当m ∈[3,+∞)时,曲线y=f (x )上总存在相异两点P (x 1,f (x 1))、Q (x 2,f (x 2)),使得曲线y=f (x )在点P 、Q 处的切线互相平行,求x 1+x 2的取值范围.22.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)(不等式选做题)设,且,则的最小值为(几何证明选做题)如图,中,,以为直径的半圆分别交于点,若,则23.(本小题满分10分)已知函数()2f x x a x =++-.(1)若4a =-求不等式()6f x ≥的解集; (2)若()3f x x ≤-的解集包含[]0,1,求实数的取值范围.24.已知函数f(x)=xlnx+ax(a∈R).(Ⅰ)若a=﹣2,求函数f(x)的单调区间;(Ⅱ)若对任意x∈(1,+∞),f(x)>k(x﹣1)+ax﹣x恒成立,求正整数k的值.(参考数据:ln2=0.6931,ln3=1.0986)新邱区第一高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题1. 【答案】A 【解析】试题分析:由题意知函数定义域为),0(+∞,2'222()x x af x x++=,因为函数2()2ln 2f x a x x x=+-(a R ∈)在定义域上为单调递增函数0)('≥x f 在定义域上恒成立,转化为2()222h x x x a =++在),0(+∞恒成立,10,4a ∴∆≤∴≥,故选A. 1考点:导数与函数的单调性. 2. 【答案】A【解析】分类讨论,有2种情形.孪生姐妹乘坐甲车,则有12121223=C C C 种. 孪生姐妹不乘坐甲车,则有12121213=C C C 种. 共有24种. 选A.3. 【答案】B【解析】解:当a=0时,f (x )=﹣2x+2,符合题意当a ≠0时,要使函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数∴⇒0<a ≤综上所述0≤a ≤ 故选B【点评】本题主要考查了已知函数再某区间上的单调性求参数a 的范围的问题,以及分类讨论的数学思想,属于基础题.4. 【答案】B【解析】解:因为==cos (2x+)=﹣sin2x .所以函数的周期为: =π. 因为f (﹣x )=﹣sin (﹣2x )=sin2x=﹣f (x ),所以函数是奇函数.故选B .【点评】本题考查二倍角公式的应用,诱导公式的应用,三角函数的基本性质,考查计算能力.5. 【答案】D【解析】当3x =时,y 是整数;当23x =时,y 是整数;依次类推可知当3(*)n x n N =∈时,y 是整数,则由31000nx =≥,得7n ≥,所以输出的所有x 的值为3,9,27,81,243,729,其和为1092,故选D . 6. 【答案】A【解析】解:2πr=πR ,所以r=,则h=,所以V=故选A7. 【答案】 A【解析】解:由三视图知几何体为半个圆锥,且圆锥的底面圆半径为1,高为2,∴母线长为,圆锥的表面积S=S底面+S 侧面=×π×12+×2×2+×π×=2+.故选A .【点评】本题考查了由三视图求几何体的表面积,解题的关键是判断几何体的形状及三视图的数据所对应的几何量.8. 【答案】 A【解析】解:∵函数f (x )=2x ﹣+cosx ,设x 1,x 2∈(0,π)(x 1≠x 2),且f (x 1)=f (x 2),∴,∴存在x 1<a <x 2,f '(a )=0,∴,∴,解得a=,假设x 1,x 2在a 的邻域内,即x 2﹣x 1≈0.∵,∴,∴f (x )的图象在a 的邻域内的斜率不断减少小,斜率的导数为正, ∴x 0>a ,又∵x >x 0,又∵x >x 0时,f ''(x )递减,∴.故选:A .【点评】本题考查导数的性质的应用,是难题,解题时要认真审题,注意二阶导数和三阶导数的性质的合理运用.9.【答案】C【解析】解:sin45°sin105°+sin45°sin15°=cos45°cos15°+sin45°sin15°=cos(45°﹣15°)=cos30°=.故选:C.【点评】本题主要考查了诱导公式,两角差的余弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题.10.【答案】A【解析】解:根据茎叶图中的数据可知,甲地的数据都集中在0.06和0.07之间,数据分别比较稳定,而乙地的数据分布比较分散,不如甲地数据集中,∴甲地的方差较小.故选:A.【点评】本题考查茎叶图的识别和判断,根据茎叶图中数据分布情况,即可确定方差的大小,比较基础.11.【答案】A【解析】解:∵∴,即△PF1F2是P为直角顶点的直角三角形.∵Rt△PF1F2中,,∴=,设PF2=t,则PF1=2t∴=2c,又∵根据椭圆的定义,得2a=PF1+PF2=3t∴此椭圆的离心率为e====故选A【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题.12.【答案】A【解析】解:∵z(1+i)=2,∴z===1﹣i.故选:A.【点评】本题考查了复数的运算法则、共轭复数的定义,属于基础题.二、填空题13.【答案】8cm【解析】考点:平面图形的直观图.14.【答案】x=﹣3.【解析】解:经过A(﹣3,1),且平行于y轴的直线方程为:x=﹣3.故答案为:x=﹣3.15.【答案】.【解析】解:AD取最小时即AD⊥BC时,根据题意建立如图的平面直角坐标系,根据题意,设A(0,y),C(﹣2x,0),B(x,0)(其中x>0),则=(﹣2x,﹣y),=(x,﹣y),∵△ABC的面积为,∴⇒=18,∵=cos=9,∴﹣2x2+y2=9,∵AD⊥BC,∴S=••=⇒xy=3,由得:x=,故答案为:.【点评】本题考查了三角形的面积公式、利用平面向量来解三角形的知识.16.【答案】﹣2.【解析】解:∵曲线y=x n+1(n∈N*),∴y′=(n+1)x n,∴f′(1)=n+1,∴曲线y=x n+1(n∈N*)在(1,1)处的切线方程为y﹣1=(n+1)(x﹣1),该切线与x轴的交点的横坐标为x n=,∵a n=lgx n,∴a n=lgn﹣lg(n+1),∴a1+a2+…+a99=(lg1﹣lg2)+(lg2﹣lg3)+(lg3﹣lg4)+(lg4﹣lg5)+(lg5﹣lg6)+…+(lg99﹣lg100)=lg1﹣lg100=﹣2.故答案为:﹣2.17.【答案】2.【解析】解:由a 6=a 5+2a 4得,a 4q 2=a 4q+2a 4,即q 2﹣q ﹣2=0,解得q=2或q=﹣1,又各项为正数,则q=2, 故答案为:2.【点评】本题考查等比数列的通项公式,注意公比的符号,属于基础题.18.【答案】 5 .【解析】解:如图所示:延长BC ,过A 做AE ⊥BC ,垂足为E , ∵CD ⊥BC ,∴CD ∥AE , ∵CD=5,BD=2AD ,∴,解得AE=,在RT △ACE ,CE===,由得BC=2CE=5,在RT △BCD 中,BD===10,则AD=5, 故答案为:5.【点评】本题考查平行线的性质,以及勾股定理,做出辅助线是解题的关键,属于中档题.三、解答题19.【答案】【解析】(1)由题意,知不等式|2|21(0)x m m ≤+>解集为(][),22,-∞-+∞.由|2|21x m ≤+,得1122m x m --≤≤+,……………………2分 所以,由122m +=,解得32m =.……………………4分(2)不等式()2|23|2y y a f x x ≤+++等价于|21||23|22yy a x x --+≤+,由题意知max (|21||23|)22yyax x --+≤+.……………………6分20.【答案】(1)()21sin cos S θθ=+,其中02πθ<<.(2)6πθ=时,max S =【解析】试题分析:(1)求梯形铁片ABCD 的面积S 关键是用θ表示上下底及高,先由图形得AOE BOF θ∠=∠=,这样可得高2cos AB θ=,再根据等腰直角三角形性质得()1cos sin AD θθ=-+,()1cos sin BC θθ=++最后根据梯形面积公式得()2AD BC ABS +⋅=()21sin cos θθ=+,交代定义域02πθ<<.(2)利用导数求函数最值:先求导数()'f θ()()22sin 1sin 1θθ=--+,再求导函数零点6πθ=,列表分析函数单调性变化规律,确定函数最值试题解析:(1)连接OB ,根据对称性可得AOE BOF θ∠=∠=且1OA OB ==, 所以1cos sin AD θθ=-+,1cos sin BC θθ=++,2cos AB θ=, 所以()2AD BC ABS +⋅=()21sin cos θθ=+,其中02πθ<<.考点:利用导数求函数最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f′(x)>0或f′(x)<0求单调区间;第二步:解f′(x)=0得两个根x1、x2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.21.【答案】【解析】解:(1)当m=2时,(x>0)令f′(x)<0,可得或x>2;令f′(x)>0,可得,∴f(x)在和(2,+∞)上单调递减,在单调递增故(2)(x>0,m>0)①当0<m<1时,则,故x∈(0,m),f′(x)<0;x∈(m,1)时,f′(x)>0此时f(x)在(0,m)上单调递减,在(m,1)单调递增;②当m=1时,则,故x∈(0,1),有恒成立,此时f(x)在(0,1)上单调递减;③当m>1时,则,故时,f′(x)<0;时,f′(x)>0此时f(x)在上单调递减,在单调递增(3)由题意,可得f′(x1)=f′(x2)(x1,x2>0,且x1≠x2)即⇒∵x1≠x2,由不等式性质可得恒成立,又x1,x2,m>0∴⇒对m∈[3,+∞)恒成立令,则对m∈[3,+∞)恒成立∴g(m)在[3,+∞)上单调递增,∴故从而“对m∈[3,+∞)恒成立”等价于“”∴x1+x2的取值范围为【点评】运用导数,我们可解决曲线的切线问题,函数的单调性、极值与最值,正确求导是我们解题的关键22.【答案】【解析】AB23.【答案】(1)(][),06,-∞+∞;(2)[]1,0-.【解析】试题分析:(1)当4a =-时,()6f x ≥,利用零点分段法将表达式分成三种情况,分别解不等式组,求得解集为(][),06,-∞+∞;(2)()3f x x ≤-等价于23x a x x ++-≤-,即11x a x --≤≤-在[]0,1上恒成立,即10a -≤≤.试题解析:(1)当4a =-时,()6f x ≥,即2426x x x ≤⎧⎨-+-≥⎩或24426x x x <<⎧⎨-+-≥⎩或4426x x x ≥⎧⎨-+-≥⎩,解得0x ≤或6x ≥,不等式的解集为(][),06,-∞+∞;考点:不等式选讲. 24.【答案】【解析】解:(I )a=﹣2时,f (x )=xlnx ﹣2x ,则f ′(x )=lnx ﹣1. 令f ′(x )=0得x=e ,当0<x <e 时,f ′(x )<0,当x >e 时,f ′(x )>0,∴f (x )的单调递减区间是(0,e ),单调递增区间为(e ,+∞). (II )若对任意x ∈(1,+∞),f (x )>k (x ﹣1)+ax ﹣x 恒成立,则xlnx+ax >k (x ﹣1)+ax ﹣x 恒成立,即k (x ﹣1)<xlnx+ax ﹣ax+x 恒成立,又x ﹣1>0,则k <对任意x ∈(1,+∞)恒成立,设h (x )=,则h ′(x )=.设m (x )=x ﹣lnx ﹣2,则m ′(x )=1﹣,∵x∈(1,+∞),∴m′(x)>0,则m(x)在(1,+∞)上是增函数.∵m(1)=﹣1<0,m(2)=﹣ln2<0,m(3)=1﹣ln3<0,m(4)=2﹣ln4>0,∴存在x0∈(3,4),使得m(x0)=0,当x∈(1,x0)时,m(x)<0,即h′(x)<0,当x∈(x0,+∞)时,m(x)>0,h′(x)>0,∴h(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,∴h(x)的最小值h min(x)=h(x0)=.∵m(x0)=x0﹣lnx0﹣2=0,∴lnx0=x0﹣2.∴h(x0)==x0.∴k<h min(x)=x0.∵3<x0<4,∴k≤3.∴k的值为1,2,3.【点评】本题考查了利用导数研究函数的单调性,函数的最值,函数恒成立问题,构造函数求出h(x)的最小值是解题关键,属于难题.。

新邱区第二中学2018-2019学年上学期高二数学12月月考试题含解析

新邱区第二中学2018-2019学年上学期高二数学12月月考试题含解析

新邱区第二中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. “1<x <2”是“x <2”成立的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2. 已知集合{}ln(12)A x y x ==-,{}2B x x x =≤,全集U A B =U ,则()U C A B =I ( ) (A ) (),0-∞ ( B ) 1,12⎛⎤-⎥⎝⎦ (C ) ()1,0,12⎡⎤-∞⋃⎢⎥⎣⎦ (D )1,02⎛⎤- ⎥⎝⎦3. 设f (x )=(e -x -e x )(12x +1-12),则不等式f (x )<f (1+x )的解集为( )A .(0,+∞)B .(-∞,-12)C .(-12,+∞)D .(-12,0)4. 为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法........从该地区调查了500位老年人,结果如由2()()()()()n ad bc K a b c d a c b d -=++++算得22500(4027030160)9.96720030070430K ⨯⨯-⨯==⨯⨯⨯ 附表:参照附表,则下列结论正确的是( )①有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无.关”; ②有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有.关”; ③采用系统抽样方法比采用简单随机抽样方法更好; ④采用分层抽样方法比采用简单随机抽样方法更好; A .①③ B .①④ C .②③ D .②④3.841 6.635 10.828k 2() 0.050 0.010 0.001P K k ≥5. 一个椭圆的半焦距为2,离心率e=,则它的短轴长是( )A .3B .C .2D .66. 已知点A (﹣2,0),点M (x ,y )为平面区域上的一个动点,则|AM|的最小值是( )A .5B .3C .2D .7. 5名运动员争夺3项比赛冠军(每项比赛无并列冠军),获得冠军的可能种数为( )A .35B .C .D .538. 与函数 y=x 有相同的图象的函数是( ) A .B .C .D .9. 设函数)(x f 是定义在)0,(-∞上的可导函数,其导函数为)('x f ,且有2')()(2x x xf x f >+,则不等式0)2(4)2014()2014(2>--++f x f x 的解集为A 、)2012,(--∞B 、)0,2012(-C 、)2016,(--∞D 、)0,2016(-10.椭圆22:143x y C +=的左右顶点分别为12,A A ,点P 是C 上异于12,A A 的任意一点,且直线1PA 斜率的取值范围是[]1,2,那么直线2PA 斜率的取值范围是( )A .31,42⎡⎤--⎢⎥⎣⎦ B .33,48⎡⎤--⎢⎥⎣⎦ C .1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤⎢⎥⎣⎦【命题意图】本题考查椭圆的标准方程和简单几何性质、直线的斜率等基础知识,意在考查函数与方程思想和基本运算能力. 11.已知函数⎩⎨⎧≤>=)0(||)0(log )(2x x x x x f ,函数)(x g 满足以下三点条件:①定义域为R ;②对任意R x ∈,有1()(2)2g x g x =+;③当]1,1[-∈x 时,2()1g x x =-.则函数)()(x g x f y -=在区间]4,4[-上零点的个数为( )A .7B .6C .5D .4【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大.12.若将函数y=tan (ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan (ωx+)的图象重合,则ω的最小值为( ) A .B .C .D .二、填空题13.函数()y f x =的定义域是[]0,2,则函数()1y f x =+的定义域是__________.111]14.某城市近10年居民的年收入x 与支出y 之间的关系大致符合=0.9x+0.2(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是 亿元.15.曲线y=x 2和直线x=0,x=1,y= 所围成的图形的面积为 . 16.81()x x-的展开式中,常数项为___________.(用数字作答) 【命题意图】本题考查用二项式定理求指定项,基础题.17.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均的课外阅读时间为 小时.18.将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S 的最小值是 .三、解答题19.已知梯形ABCD 中,AB ∥CD ,∠B=,DC=2AB=2BC=2,以直线AD 为旋转轴旋转一周的都如图所示的几何体(Ⅰ)求几何体的表面积(Ⅱ)判断在圆A 上是否存在点M ,使二面角M ﹣BC ﹣D 的大小为45°,且∠CAM 为锐角若存在,请求出CM 的弦长,若不存在,请说明理由.20.(本题满分15分)如图,已知长方形ABCD 中,2AB =,1AD =,M 为DC 的中点,将ADM ∆沿AM 折起,使得平面⊥ADM 平面ABCM .(1)求证:BM AD ⊥;(2)若)10(<<=λλDB DE ,当二面角D AM E --大小为3π时,求λ的值.【命题意图】本题考查空间点、线、面位置关系,二面角等基础知识,意在考查空间想象能力和运算求解能力.21.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)(不等式选做题)设,且,则的最小值为(几何证明选做题)如图,中,,以为直径的半圆分别交于点,若,则22.某实验室一天的温度(单位:)随时间(单位;h )的变化近似满足函数关系;(1) 求实验室这一天的最大温差; (2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?23.(本小题满分12分)已知函数2()(21)ln f x x a x a x =-++(a R ∈).(I )若12a >,求)(x f y =的单调区间; (II )函数()(1)g x a x =-,若0[1,]x e ∃∈使得00()()f x g x ≥成立,求实数a 的取值范围.24.(本小题满分12分)求下列函数的定义域:(1)()f x=(2)()f x=新邱区第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】A【解析】解:设A={x|1<x <2},B={x|x <2}, ∵A ⊊B ,故“1<x <2”是“x <2”成立的充分不必要条件. 故选A .【点评】本题考查的知识点是必要条件,充分条件与充要条件判断,其中熟练掌握集合法判断充要条件的原则“谁小谁充分,谁大谁必要”,是解答本题的关键.2. 【答案】C【解析】[]11,,0,1,0,22A B A B ⎛⎫⎡⎫=-∞== ⎪⎪⎢⎝⎭⎣⎭I ,(],1U =-∞,故选C .3. 【答案】【解析】选C.f (x )的定义域为x ∈R ,由f (x )=(e -x -e x )(12x +1-12)得f (-x )=(e x -e -x )(12-x +1-12)=(e x -e -x )(-12x +1+12)=(e -x -e x )(12x +1-12)=f (x ),∴f (x )在R 上为偶函数,∴不等式f (x )<f (1+x )等价于|x |<|1+x |,即x 2<1+2x +x 2,∴x >-12,即不等式f (x )<f (1+x )的解集为{x |x >-12},故选C.4. 【答案】D【解析】解析:本题考查独立性检验与统计抽样调查方法.由于9.967 6.635>,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,②正确;该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,④正确,选D.5.【答案】C【解析】解:∵椭圆的半焦距为2,离心率e=,∴c=2,a=3,∴b=∴2b=2.故选:C.【点评】本题主要考查了椭圆的简单性质.属基础题.6.【答案】D【解析】解:不等式组表示的平面区域如图,结合图象可知|AM|的最小值为点A到直线2x+y﹣2=0的距离,即|AM|min=.故选:D.【点评】本题考查了不等式组表示的平面区域的画法以及运用;关键是正确画图,明确所求的几何意义.7.【答案】D【解析】解:每一项冠军的情况都有5种,故5名学生争夺三项冠军,获得冠军的可能的种数是53,故选:D.【点评】本题主要考查分步计数原理的应用,属于基础题.8.【答案】D【解析】解:A:y=的定义域[0,+∞),与y=x的定义域R不同,故A错误B:与y=x的对应法则不一样,故B错误C:=x,(x≠0)与y=x的定义域R不同,故C错误D:,与y=x是同一个函数,则函数的图象相同,故D正确故选D【点评】本题主要考查了函数的三要素:函数的定义域,函数的值域及函数的对应法则的判断,属于基础试题9.【答案】C.【解析】由,得:,即,令,则当时,,即在是减函数,,,,在是减函数,所以由得,,即,故选10.【答案】B11.【答案】D第Ⅱ卷(共100分)[.Com]12.【答案】D【解析】解:y=tan(ωx+),向右平移个单位可得:y=tan[ω(x﹣)+]=tan(ωx+)∴﹣ω+kπ=∴ω=k+(k∈Z),又∵ω>0∴ωmin=.故选D.二、填空题-13.【答案】[]1,1【解析】考点:函数的定义域.14.【答案】18.2【解析】解:∵某城市近10年居民的年收入x和支出y之间的关系大致是=0.9x+0.2,∵x=20, ∴y=0.9×20+0.2=18.2(亿元).故答案为:18.2. 【点评】本题考查线性回归方程的应用,考查学生的计算能力,考查利用数学知识解决实际问题的能力,属于基础题.15.【答案】 .【解析】解:∵曲线y=x 2和直线:x=1的交点为(1,1),和直线y=的一个交点为(,) ∴曲线y=x 2和直线x=0,x=1,y= 所围成的图形的面积为S=()dx+dx=(x﹣x 3)+(x 3﹣x )=.故答案为:.16.【答案】70【解析】81()x x -的展开式通项为8821881()(1)r rr r r r r T C x C x x--+=-=-,所以当4r =时,常数项为448(1)70C -=.17.【答案】 0.9【解析】解:由题意, =0.9,故答案为:0.918.【答案】 .【解析】解:设剪成的小正三角形的边长为x ,则:S==,(0<x <1)令3﹣x=t ,t ∈(2,3), ∴S===,当且仅当t=即t=2时等号成立;故答案为:.三、解答题19.【答案】【解析】解:(1)根据题意,得; 该旋转体的下半部分是一个圆锥,上半部分是一个圆台中间挖空一个圆锥而剩下的几何体, 其表面积为S=×4π×2×2=8π, 或S=×4π×2+×(4π×2﹣2π×)+×2π×=8π;(2)作ME ⊥AC ,EF ⊥BC ,连结FM ,易证FM ⊥BC , ∴∠MFE 为二面角M ﹣BC ﹣D 的平面角, 设∠CAM=θ,∴ EM=2sin θ,EF=,∵tan ∠MFE=1,∴,∴tan=,∴,∴CM=2.【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目.20.【答案】(1)详见解析;(2)33λ=. 【解析】(1)由于2AB =,2AM BM ==AM BM ⊥,又∵平面⊥ADM 平面ABCM ,平面I ADM 平面ABCM =AM ,⊂BM 平面ABCM , ∴⊥BM 平面ADM ,…………3分又∵⊂AD 平面ADM ,∴有BM AD ⊥;……………6分21.【答案】 【解析】AB22.【答案】【解析】(1)∵f(t)=10﹣=10﹣2sin(t+),t∈[0,24),∴≤t+<,故当t+=时,函数取得最大值为10+2=12,当t+=时,函数取得最小值为10﹣2=8,故实验室这一天的最大温差为12﹣8=4℃。

新邱区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

新邱区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

新邱区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设函数F (x )=是定义在R 上的函数,其中f (x )的导函数为f ′(x ),满足f ′(x )<f (x )对于x∈R 恒成立,则( ) A .f (2)>e 2f (0),f B .f (2)<e 2f (0),f C .f (2)>e 2f (0),f D .f (2)<e 2f (0),f2. 已知x >1,则函数的最小值为( )A .4B .3C .2D .13. ()()22f x a x a =-+ 在区间[]0,1上恒正,则的取值范围为( )A .0a > B.0a << C .02a << D .以上都不对4. 设公差不为零的等差数列{}n a 的前n 项和为n S ,若4232()a a a =+,则74S a =( ) A .74 B .145C .7D .14 【命题意图】本题考查等差数列的通项公式及其前n 项和,意在考查运算求解能力.5. 等差数列{a n }中,已知前15项的和S 15=45,则a 8等于( ) A.B .6C.D .36. 设a ,b ∈R ,i 为虚数单位,若2+a i1+i =3+b i ,则a -b 为( )A .3B .2C .1D .07. 若圆226260x y x y +--+=上有且仅有三个点到直线10(ax y a -+=是实数)的距离为, 则a =( )A . 1±B .4±C. D.8. 如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( )A .π1B .π21 C .π121- D .π2141- 【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度. 9. 给出下列命题:①在区间(0,+∞)上,函数y=x ﹣1,y=,y=(x ﹣1)2,y=x 3中有三个是增函数;②若log m 3<log n 3<0,则0<n <m <1;③若函数f (x )是奇函数,则f (x ﹣1)的图象关于点A (1,0)对称;④若函数f (x )=3x ﹣2x ﹣3,则方程f (x )=0有2个实数根.其中假命题的个数为( )A .1B .2C .3D .410.已知{}n a 是等比数列,25124a a ==,,则公比q =( ) A .12-B .-2C .2D .1211.已知曲线2:4C y x =的焦点为F ,过点F 的直线与曲线C 交于,P Q 两点,且20FP FQ +=,则OP Q ∆的面积等于( ) A. B. C.2 D.412.不等式﹣x 2﹣2x+3≤0的解集为( )A .{x|x ≥3或x ≤﹣1}B .{x|﹣1≤x ≤3}C .{x|﹣3≤x ≤1}D .{x|x ≤﹣3或x ≥1}二、填空题13.直线l:(t 为参数)与圆C:(θ为参数)相交所得的弦长的取值范围是 .DABCO14.设双曲线﹣=1,F 1,F 2是其两个焦点,点M 在双曲线上.若∠F 1MF 2=90°,则△F 1MF 2的面积是 .15.某种产品的加工需要 A ,B ,C ,D ,E 五道工艺,其中 A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种.(用数字作答)16.函数f (x )=2a x+1﹣3(a >0,且a ≠1)的图象经过的定点坐标是 .17.已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为_________.18.设f (x )是(x 2+)6展开式的中间项,若f (x )≤mx 在区间[,]上恒成立,则实数m 的取值范围是 .三、解答题19.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y (单位:kg )与它的“相近”作物株数X 之间的关系如下表所示:X 1 2 3 4 Y 51 48 45 42这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I )从三角形地块的内部和边界上分别随机选取一株作物,求它们恰 好“相近”的概率;(II )在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.20.【泰州中学2018届高三10月月考】已知函数()(),,xf x eg x x m m R ==-∈.(1)若曲线()y f x =与直线()y g x =相切,求实数m 的值; (2)记()()()h x f x g x =⋅,求()h x 在[]0,1上的最大值; (3)当0m =时,试比较()2f x e -与()g x 的大小.21.已知命题p :方程表示焦点在x 轴上的双曲线.命题q :曲线y=x 2+(2m ﹣3)x+1与x 轴交于不同的两点,若p ∧q 为假命题,p ∨q 为真命题,求实数m 的取值范围.22.已知数列{a n }满足a 1=﹣1,a n+1=(n ∈N *).(Ⅰ)证明:数列{+}是等比数列;(Ⅱ)令b n =,数列{b n }的前n 项和为S n .①证明:b n+1+b n+2+…+b 2n <②证明:当n ≥2时,S n 2>2(++…+)23.(本小题满分12分)设p :实数满足不等式39a ≤,:函数()()32331932a f x x x x -=++无极值点. (1)若“p q ∧”为假命题,“p q ∨”为真命题,求实数的取值范围;(2)已知“p q ∧”为真命题,并记为,且:2112022a m a m m ⎛⎫⎛⎫-+++> ⎪ ⎪⎝⎭⎝⎭,若是t ⌝的必要不充分条件,求正整数m 的值.24.对于定义域为D 的函数y=f (x ),如果存在区间[m ,n]⊆D ,同时满足: ①f (x )在[m ,n]内是单调函数;②当定义域是[m ,n]时,f (x )的值域也是[m ,n]. 则称[m ,n]是该函数的“和谐区间”.(1)证明:[0,1]是函数y=f (x )=x 2的一个“和谐区间”.(2)求证:函数不存在“和谐区间”.(3)已知:函数(a ∈R ,a ≠0)有“和谐区间”[m ,n],当a 变化时,求出n ﹣m 的最大值.新邱区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】B 【解析】解:∵F (x )=,∴函数的导数F ′(x )==,∵f ′(x )<f (x ), ∴F ′(x )<0,即函数F (x )是减函数,则F (0)>F (2),F (0)>F <e 2f (0),f ,故选:B2. 【答案】B【解析】解:∵x >1∴x ﹣1>0由基本不等式可得,当且仅当即x ﹣1=1时,x=2时取等号“=”故选B3. 【答案】C 【解析】试题分析:由题意得,根据一次函数的单调性可知,函数()()22f x a x a =-+在区间[]0,1上恒正,则(0)0(1)0f f >⎧⎨>⎩,即2020a a a >⎧⎨-+>⎩,解得02a <<,故选C. 考点:函数的单调性的应用. 4. 【答案】C.【解析】根据等差数列的性质,4231112()32(2)a a a a d a d a d=+⇒+=+++,化简得1a d =-,∴1741767142732a dS d a a d d⋅+===+,故选C.5. 【答案】D【解析】解:由等差数列的性质可得:S 15==15a 8=45,则a 8=3.故选:D .6. 【答案】【解析】选A.由2+a i1+i=3+b i 得,2+a i =(1+i )(3+b i )=3-b +(3+b )i , ∵a ,b ∈R ,∴⎩⎪⎨⎪⎧2=3-b a =3+b,即a =4,b =1,∴a -b =3(或者由a =3+b 直接得出a -b =3),选A. 7. 【答案】B 【解析】试题分析:由圆226260x y x y +--+=,可得22(3)(1)4x y -+-=,所以圆心坐标为(3,1),半径为2r =,要使得圆上有且仅有三个点到直线10(ax y a -+=是实数)的距离为,则圆心到直线的距离等于12r,即1=,解得4a =±,故选B. 1 考点:直线与圆的位置关系.【方法点晴】本题主要考查了直线与圆的位置关系,其中解答中涉及到圆的标准方程、圆心坐标和圆的半径、点到直线的距离公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化的思想方法,本题的解答中,把圆上有且仅有三个点到直线的距离为,转化为圆心到直线的距离等于12r 是解答的关键.8. 【答案】C【解析】设圆O 的半径为2,根据图形的对称性,可以选择在扇形OAC 中研究问题,过两个半圆的交点分别向OA ,OC 作垂线,则此时构成一个以1为边长的正方形,则这个正方形内的阴影部分面积为12-π,扇形OAC 的面积为π,所求概率为πππ12112-=-=P . 9. 【答案】 A【解析】解:①在区间(0,+∞)上,函数y=x ﹣1,是减函数.函数y=为增函数.函数y=(x ﹣1)2在(0,1)上减,在(1,+∞)上增.函数y=x 3是增函数.∴有两个是增函数,命题①是假命题;②若log m 3<log n 3<0,则,即lgn <lgm <0,则0<n <m <1,命题②为真命题;③若函数f (x )是奇函数,则其图象关于点(0,0)对称, ∴f (x ﹣1)的图象关于点A (1,0)对称,命题③是真命题;④若函数f (x )=3x ﹣2x ﹣3,则方程f (x )=0即为3x ﹣2x ﹣3=0,也就是3x =2x+3,两函数y=3x与y=2x+3有两个交点,即方程f (x )=0有2个实数根命题④为真命题.∴假命题的个数是1个.故选:A . 【点评】本题考查了命题的真假判断与应用,考查了基本初等函数的性质,训练了函数零点的判定方法,是中档题.10.【答案】D 【解析】试题分析:∵在等比数列}{a n 中,41,2a 52==a ,21,81q 253=∴==∴q a a . 考点:等比数列的性质. 11.【答案】C 【解析】∴1122(1,)2(1,)(0,0)x y x y -+-=, ∴1220y y +=③, 联立①②③可得218m =,∴12y y -==.∴12122S OF y y =-=. (由1212420y y y y =-⎧⎨+=⎩,得12y y ⎧=⎪⎨=⎪⎩12y y ⎧=-⎪⎨=⎪⎩考点:抛物线的性质.12.【答案】D【解析】解:不等式﹣x 2﹣2x+3≤0,变形为:x 2+2x ﹣3≥0,因式分解得:(x ﹣1)(x+3)≥0,可化为:或,解得:x ≤﹣3或x ≥1,则原不等式的解集为{x|x ≤﹣3或x ≥1}. 故选D .二、填空题13.【答案】 [4,16] .【解析】解:直线l:(t 为参数),化为普通方程是=,即y=tan α•x+1; 圆C的参数方程(θ为参数),化为普通方程是(x ﹣2)2+(y ﹣1)2=64;画出图形,如图所示;∵直线过定点(0,1),∴直线被圆截得的弦长的最大值是2r=16,最小值是2=2×=2×=4∴弦长的取值范围是[4,16].故答案为:[4,16].【点评】本题考查了直线与圆的参数方程的应用问题,解题时先把参数方程化为普通方程,再画出图形,数形结合,容易解答本题.14.【答案】9.【解析】解:双曲线﹣=1的a=2,b=3,可得c2=a2+b2=13,又||MF|﹣|MF2||=2a=4,|F1F2|=2c=2,∠F1MF2=90°,1在△F1AF2中,由勾股定理得:|F1F2|2=|MF1|2+|MF2|2=(|MF1|﹣|MF2|)2+2|MF1||MF2|,即4c2=4a2+2|MF1||MF2|,可得|MF1||MF2|=2b2=18,即有△F1MF2的面积S=|MF1||MF2|sin∠F1MF2=×18×1=9.故答案为:9.【点评】本题考查双曲线的简单性质,着重考查双曲线的定义与a、b、c之间的关系式的应用,考查三角形的面积公式,考查转化思想与运算能力,属于中档题.15.【答案】24【解析】解:由题意,B与C必须相邻,利用捆绑法,可得=48种方法,因为A必须在D的前面完成,所以完成加工该产品的不同工艺的排列顺序有48÷2=24种,故答案为:24.【点评】本题考查计数原理的应用,考查学生的计算能力,比较基础.16.【答案】(﹣1,﹣1).【解析】解:由指数幂的性质可知,令x+1=0得x=﹣1,此时f(﹣1)=2﹣3=﹣1,即函数f(x)的图象经过的定点坐标是(﹣1,﹣1),故答案为:(﹣1,﹣1).17.【答案】20x y --=【解析】解析: 设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,而1222y y +=,∴12121y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=.18.【答案】 [5,+∞) .【解析】二项式定理.【专题】概率与统计;二项式定理.【分析】由题意可得 f (x )=x 3,再由条件可得m ≥x 2在区间[,]上恒成立,求得x 2在区间[,]上的最大值,可得m 的范围.【解答】解:由题意可得 f (x )=x 6=x 3.由f (x )≤mx 在区间[,]上恒成立,可得m ≥x 2在区间[,]上恒成立,由于x 2在区间[,]上的最大值为 5,故m ≥5,即m 的范围为[5,+∞), 故答案为:[5,+∞).【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,函数的恒成立问题,属于中档题.三、解答题19.【答案】【解析】【专题】概率与统计. 【分析】(I )确定三角形地块的内部和边界上的作物株数,分别求出基本事件的个数,即可求它们恰好“相近”的概率;(II )确定变量的取值,求出相应的概率,从而可得年收获量的分布列与数学期望.【解答】解:(I )所种作物总株数N=1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株数为12,从三角形地块的内部和边界上分别随机选取一株的不同结果有=36种,选取的两株作物恰好“相近”的不同结果有3+3+2=8,∴从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率为=;(II )先求从所种作物中随机选取一株作物的年收获量为Y 的分布列∵P (Y=51)=P (X=1),P (48)=P (X=2),P (Y=45)=P (X=3),P (Y=42)=P (X=4)∴只需求出P (X=k )(k=1,2,3,4)即可记n k 为其“相近”作物恰有k 株的作物株数(k=1,2,3,4),则n 1=2,n 2=4,n 3=6,n 4=3由P (X=k )=得P (X=1)=,P (X=2)=,P (X=3)==,P (X=4)==∴所求的分布列为Y 51 48 45 42P数学期望为E (Y )=51×+48×+45×+42×=46【点评】本题考查古典概率的计算,考查分布列与数学期望,考查学生的计算能力,属于中档题.20.【答案】(1)1m =-;(2)当1e m e <-时,()()max 1h x m e =-;当1e m e ≥-时,()max h x m =-;(3)()()2f x eg x ->.【解析】试题分析:(1)研究函数的切线主要是利用切点作为突破口求解;(2)通过讨论函数在定义域内的单调性确定最值,要注意对字母m 的讨论;(3)比较两个函数的大小主要是转化为判断两个函数的差函数的符号,然后转化为研究差函数的单调性研究其最值.试题解析:(1)设曲线()xf x e =与()g x x m =-相切于点()00,P x y , 由()xf x e '=,知01x e=,解得00x =,又可求得点P 为()0,1,所以代入()g x x m =-,得1m =-.(2)因为()()x h x x m e =-,所以()()()()[]1,0,1x x xh x e x m e x m e x =+-=∈'--.①当10m -≤,即1m ≤时,()0h x '≥,此时()h x 在[]0,1上单调递增, 所以()()()max 11h x h m e ==-;②当011m <-<即12m <<,当()0,1x m ∈-时,()()0,h x h x '<单调递减, 当()1,1x m ∈-时,()()0,h x h x '>单调递增,()()()0,11h m h m e =-=-.(i )当()1m m e -≥-,即21em e ≤<-时,()()max 0h x h m ==-; (ii )当()1m m e -<-,即11em e <<-时,()()()max 11h x h m e ==-;③当11m -≥,即2m ≥时,()0h x '≤,此时()h x 在[]0,1上单调递减, 所以()()min 0h x h m ==-. 综上,当1em e <-时,()()max 1h x m e =-; 当1em e ≥-时,()max h x m =-. (3)当0m =时,()()22,x f x e ee g x x --==, ①当0x ≤时,显然()()2f x eg x ->;②当0x >时,()()222ln ln ,ln ln x f x ex e e e g x x ---===,记函数()221ln ln x x x ex e x eφ-=-=⨯-, 则()22111x x x e e e x xφ-=⨯-=-',可知()x φ'在()0,+∞上单调递增,又由()()10,20φφ''知,()x φ'在()0,+∞上有唯一实根0x ,且012x <<,则()020010x x e x φ--'==,即0201x e x -=(*),当()00,x x ∈时,()()0,x x φφ'<单调递减;当()0,x x ∈+∞时,()()0,x x φφ'>单调递增, 所以()()0200ln x x x e x φφ-≥=-,结合(*)式021x ex -=,知002ln x x -=-, 所以()()()22000000121120x x x x x x x x x φφ--+≥=+-==>,则()2ln 0x x e x φ-=->,即2ln x e x ->,所以2x e e x ->.综上,()()2f x eg x ->.试题点睛:本题综合考查了利用导数研究函数的单调性、最值基本思路,当比较两个函数大小的时候,就转化为两个函数的差的单调性,进一步确定最值确定符号比较大小. 21.【答案】【解析】解:∵方程表示焦点在x 轴上的双曲线,∴⇒m >2若p 为真时:m >2,∵曲线y=x 2+(2m ﹣3)x+1与x 轴交于不同的两点, 则△=(2m ﹣3)2﹣4>0⇒m >或m,若q 真得:或,由复合命题真值表得:若p ∧q 为假命题,p ∨q 为真命题,p ,q 命题一真一假 若p 真q 假:;若p 假q 真:∴实数m 的取值范围为:或.【点评】本题借助考查复合命题的真假判定,考查了双曲线的标准方程,关键是求得命题为真时的等价条件.22.【答案】【解析】(Ⅰ)证明:∵数列{a n }满足a 1=﹣1,a n+1=(n ∈N *),∴na n =3(n+1)a n +4n+6,两边同除n (n+1)得,,即,也即,又a 1=﹣1,∴,∴数列{+}是等比数列是以1为首项,3为公比的等比数列.(Ⅱ)(ⅰ)证明:由(Ⅰ)得, =3n ﹣1,∴,∴,原不等式即为:<,先用数学归纳法证明不等式:当n ≥2时,,证明过程如下:当n=2时,左边==<,不等式成立假设n=k 时,不等式成立,即<,则n=k+1时,左边=<+=<,∴当n=k+1时,不等式也成立.因此,当n≥2时,,当n≥2时,<,∴当n≥2时,,又当n=1时,左边=,不等式成立故b n+1+b n+2+…+b2n<.(ⅱ)证明:由(i)得,S n=1+,当n≥2,=(1+)2﹣(1+)2==2﹣,,…=2•,将上面式子累加得,﹣,又<=1﹣=1﹣,∴,即>2(),∴当n≥2时,S n2>2(++…+).【点评】本题考查等比数列的证明,考查不等式的证明,解题时要认真审题,注意构造法、累加法、裂项求和法、数学归纳法、放缩法的合理运用,综合性强,难度大,对数学思维能力的要求较高.23.【答案】(1){}125a a a <<≤或;(2)1m =.【解析】(1)∵“p q ∧”为假命题,“p q ∨”为真命题,∴p 与只有一个命题是真命题. 若p 为真命题,为假命题,则2115a a a a ≤⎧⇒<⎨<>⎩或.………………………………5分 若为真命题,p 为假命题,则22515a a a >⎧⇒<≤⎨≤≤⎩.……………………………………6分 于是,实数的取值范围为{}125a a a <<≤或.……………………………………7分考点:1、不等式;2、函数的极值点;3、命题的真假;4、充要条件. 24.【答案】【解析】解:(1)∵y=x2在区间[0,1]上单调递增.又f(0)=0,f(1)=1,∴值域为[0,1],∴区间[0,1]是y=f(x)=x2的一个“和谐区间”.(2)设[m,n]是已知函数定义域的子集.∵x≠0,[m,n]⊆(﹣∞,0)或[m,n]⊆(0,+∞),故函数在[m,n]上单调递增.若[m,n]是已知函数的“和谐区间”,则故m、n是方程的同号的相异实数根.∵x2﹣3x+5=0无实数根,∴函数不存在“和谐区间”.(3)设[m,n]是已知函数定义域的子集.∵x≠0,[m,n]⊆(﹣∞,0)或[m,n]⊆(0,+∞),故函数在[m,n]上单调递增.若[m,n]是已知函数的“和谐区间”,则故m、n是方程,即a2x2﹣(a2+a)x+1=0的同号的相异实数根.∵,∴m,n同号,只须△=a2(a+3)(a﹣1)>0,即a>1或a<﹣3时,已知函数有“和谐区间”[m,n],∵,∴当a=3时,n﹣m取最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新邱区第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 若复数z=(其中a ∈R ,i 是虚数单位)的实部与虚部相等,则a=( ) A .3 B .6C .9D .122. 在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,含2x 项的系数为( )(A )10 ( B ) 30 (C ) 45 (D ) 1203. △ABC 的三内角A ,B ,C 所对边长分别是a ,b ,c ,设向量,,若,则角B 的大小为( )A .B .C .D .4. 如图,半圆的直径AB=6,O 为圆心,C 为半圆上不同于A 、B 的任意一点,若P 为半径OC 上的动点,则的最小值为( )A .B .9C .D .﹣95. 函数2(44)xy a a a =-+是指数函数,则的值是( ) A .4 B .1或3 C .3 D .16. 如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A .B .C .D .7. 在等差数列{a n }中,a 1=2,a 3+a 5=8,则a 7=( ) A .3B .6C .7D .88. 设复数z 满足(1﹣i )z=2i ,则z=( ) A .﹣1+i B .﹣1﹣iC .1+iD .1﹣i9. 如图所示,已知四边形ABCD 的直观图是一个边长为的正方形,则原图形的周长为()A.B. C. D.10.α是第四象限角,,则sinα=()A.B.C.D.11.复数的虚部为()A.﹣2 B.﹣2i C.2 D.2i12.如图所示,函数y=|2x﹣2|的图象是()A.B.C.D.二、填空题13.设a抛掷一枚骰子得到的点数,则方程x2+ax+a=0有两个不等实数根的概率为.14.在矩形ABCD中,=(1,﹣3),,则实数k=.15.在复平面内,记复数+i对应的向量为,若向量饶坐标原点逆时针旋转60°得到向量所对应的复数为.16.如图所示,在三棱锥C﹣ABD中,E、F分别是AC和BD的中点,若CD=2AB=4,EF⊥AB,则EF与CD所成的角是.17.一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是.18.已知z是复数,且|z|=1,则|z﹣3+4i|的最大值为.三、解答题19.在数列{a n}中,a1=1,a n+1=1﹣,b n=,其中n∈N*.(1)求证:数列{b n}为等差数列;(2)设c n=b n+1•(),数列{c n}的前n项和为T n,求T n;(3)证明:1+++…+≤2﹣1(n∈N*)20.已知四棱锥P﹣ABCD,底面ABCD是∠A=60°、边长为a的菱形,又PD⊥底ABCD,且PD=CD,点M、N分别是棱AD、PC的中点.(1)证明:DN∥平面PMB;(2)证明:平面PMB⊥平面PAD;(3)求点A到平面PMB的距离.21.已知等差数列满足:=2,且,成等比数列。

(1) 求数列的通项公式。

(2)记为数列的前n 项和,是否存在正整数n ,使得若存在,求n 的最小值;若不存在,说明理由.22.【海安县2018届高三上学期第一次学业质量测试】已知函数()()2xf x x ax a e =++,其中a R ∈,e 是自然对数的底数.(1)当1a =时,求曲线()y f x =在0x =处的切线方程; (2)求函数()f x 的单调减区间;(3)若()4f x ≤在[]4,0-恒成立,求a 的取值范围.23.某中学为了普及法律知识,举行了一次法律知识竞赛活动.下面的茎叶图记录了男生、女生各 10名学生在该次竞赛活动中的成绩(单位:分).已知男、女生成绩的平均值相同.(1)求的值;(2)从成绩高于86分的学生中任意抽取3名学生,求恰有2名学生是女生的概率.24.(本小题满分12分)在多面体ABCDEFG中,四边形ABCD与CDEF均为正方形,CF⊥平面ABCD,==.BG⊥平面ABCD,且24AB BG BH(1)求证:平面AGH⊥平面EFG;--的大小的余弦值.(2)求二面角D FG E新邱区第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题1. 【答案】A【解析】解:复数z===.由条件复数z=(其中a ∈R ,i 是虚数单位)的实部与虚部相等,得,18﹣a=3a+6,解得a=3. 故选:A .【点评】本题考查复数的代数形式的混合运算,考查计算能力.2. 【答案】C【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++⎪ ⎪⎝⎭⎝⎭,所以2x 项只能在10(1)x +展开式中,即为2210C x ,系数为21045.C =故选C . 3. 【答案】B【解析】解:若,则(a+b )(sinB ﹣sinA )﹣sinC (a+c )=0,由正弦定理可得:(a+b )(b ﹣a )﹣c (a+c )=0,化为a 2+c 2﹣b 2=﹣ac ,∴cosB==﹣,∵B ∈(0,π),∴B=,故选:B .【点评】本题考查了正弦定理与余弦定理的应用、向量数量积运算性质,考查了推理能力与计算能力,是一道基础题.4. 【答案】C【解析】解:∵圆心O 是直径AB 的中点,∴ +=2所以=2•,∵与共线且方向相反∴当大小相等时点乘积最小.由条件知当PO=PC=时,最小值为﹣2×=﹣【点评】本题考查了向量在几何中的应用,结合图形分析是解决问题的关键.5.【答案】C【解析】考点:指数函数的概念.6.【答案】C【解析】解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种,其中只有(3,4,5)为勾股数,故这3个数构成一组勾股数的概率为.故选:C7.【答案】B【解析】解:∵在等差数列{a n}中a1=2,a3+a5=8,∴2a4=a3+a5=8,解得a4=4,∴公差d==,∴a7=a1+6d=2+4=6故选:B.8.【答案】A【解析】解:∵复数z满足z(1﹣i)=2i,∴z==﹣1+i故选A.【点评】本题考查代数形式的除法运算,是一个基础题,这种题目若出现一定是一个送分题目,注意数字的运算.9.【答案】C考点:平面图形的直观图.10.【答案】B【解析】解:∵α是第四象限角,∴sinα=,故选B.【点评】已知某角的一个三角函数值,求该角的其它三角函数值,应用平方关系、倒数关系、商的关系,这是三角函数计算题中较简单的,容易出错的一点是角的范围不确定时,要讨论.11.【答案】C【解析】解:复数===1+2i的虚部为2.故选;C.【点评】本题考查了复数的运算法则、虚部的定义,属于基础题.12.【答案】B【解析】解:∵y=|2x﹣2|=,∴x=1时,y=0,x≠1时,y>0.故选B.【点评】本题考查指数函数的图象和性质,解题时要结合图象进行求解.二、填空题13.【答案】.【解析】解:∵a是甲抛掷一枚骰子得到的点数,∴试验发生包含的事件数6,∵方程x2+ax+a=0 有两个不等实根,∴a 2﹣4a >0,解得a >4, ∵a 是正整数, ∴a=5,6,即满足条件的事件有2种结果,∴所求的概率是=,故答案为:【点评】本题考查等可能事件的概率,在解题过程中应用列举法来列举出所有的满足条件的事件数,是解题的关键.14.【答案】 4 .【解析】解:如图所示,在矩形ABCD 中,=(1,﹣3),,∴=﹣=(k ﹣1,﹣2+3)=(k ﹣1,1),∴•=1×(k ﹣1)+(﹣3)×1=0,解得k=4. 故答案为:4.【点评】本题考查了利用平面向量的数量积表示向量垂直的应用问题,是基础题目.15.【答案】 2i .【解析】解:向量饶坐标原点逆时针旋转60°得到向量所对应的复数为(+i )(cos60°+isin60°)=(+i )()=2i,故答案为 2i .【点评】本题考查两个复数代数形式的乘法及其集合意义,判断旋转60°得到向量对应的复数为(+i )(cos60°+isin60°),是解题的关键.16.【答案】 30° .【解析】解:取AD的中点G,连接EG,GF则EG DC=2,GF AB=1,故∠GEF即为EF与CD所成的角.又∵FE⊥AB∴FE⊥GF∴在Rt△EFG中EG=2,GF=1故∠GEF=30°.故答案为:30°【点评】此题的关键是作出AD的中点然后利用题中的条件在特殊三角形中求解,如果一味的想利用余弦定理求解就出力不讨好了.17.【答案】.【解析】解:由题意可得,2a,2b,2c成等差数列∴2b=a+c∴4b2=a2+2ac+c2①∵b2=a2﹣c2②①②联立可得,5c2+2ac﹣3a2=0∵∴5e2+2e﹣3=0∵0<e<1∴故答案为:【点评】本题主要考查了椭圆的性质的应用,解题中要椭圆离心率的取值范围的应用,属于中档试题18.【答案】6.【解析】解:∵|z|=1,|z﹣3+4i|=|z﹣(3﹣4i)|≤|z|+|3﹣4i|=1+=1+5=6,∴|z﹣3+4i|的最大值为6,故答案为:6.【点评】本题考查复数求模,着重考查复数模的运算性质,属于基础题.三、解答题19.【答案】【解析】(1)证明:b n+1﹣b n=﹣=﹣=1,又b1=1.∴数列{b n}为等差数列,首项为1,公差为1.(2)解:由(1)可得:b n=n.c n=b n+1•()=(n+1).∴数列{c n}的前n项和为T n=+3×++…+(n+1).=+3×+…+n+(n+1),∴T n=+++…+﹣(n+1)=+﹣(n+1),可得T n=﹣.(3)证明:1+++…+≤2﹣1(n∈N*)即为:1+++…+≤﹣1.∵=<=2(k=2,3,…).∴1+++…+≤1+2[(﹣1)+()+…+(﹣)]=1+2=2﹣1.∴1+++…+≤2﹣1(n∈N*).20.【答案】【解析】解:(1)证明:取PB中点Q,连接MQ、NQ,因为M、N分别是棱AD、PC中点,所以QN∥BC∥MD,且QN=MD,于是DN∥MQ.⇒DN∥平面PMB.(2)⇒PD⊥MB又因为底面ABCD是∠A=60°、边长为a的菱形,且M为AD中点,所以MB⊥AD.又AD∩PD=D,所以MB⊥平面PAD.⇒平面PMB⊥平面PAD.(3)因为M是AD中点,所以点A与D到平面PMB等距离.过点D作DH⊥PM于H,由(2)平面PMB⊥平面PAD,所以DH⊥平面PMB.故DH是点D到平面PMB的距离..∴点A到平面PMB的距离为.【点评】本题主要考查空间线面的位置关系,空间角的计算等基本知识,考查空间想象能力、逻辑思维能力、运算求解能力和探究能力,同时考查学生灵活利用图形,借助向量工具解决问题的能力,考查数形结合思想.21.【答案】见解析。

相关文档
最新文档