人教版八年级上数学第13章《轴对称》单元测试卷及答案 - 副本

合集下载

八年级数学上册《第十三章 轴对称》单元检测卷及答案(人教版)

八年级数学上册《第十三章 轴对称》单元检测卷及答案(人教版)

八年级数学上册《第十三章轴对称》单元检测卷及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列图形中不一定是轴对称图形的是( )A.等腰三角形B.直角三角形C.角D.线段2.点M(2,−3)关于y轴的对称点坐标为( )A.(−2,3)B.(2,3)C.(−3,2)D.(−2,−3)3.到三角形各顶点的距离相等的点是三角形( )A.三边的垂直平分线的交点B.三条高的交点C.三条角平分线的交点D.三条中线的交点4.如图,在△ABC中AB=AC,∠A=38∘,AB的垂直平分线MN交AC于D点,则∠DBC的度数是( )A.33∘B.38∘C.43∘D.48∘5.如图,在△ABC中,AB=4,AC=6,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB,AC 于M,N,则△AMN的周长为()A.10 B.6 C.4 D.不确定6.如图,△ABC和△A′B′C′关于直线l对称,若∠A=50°,∠C′=30°则∠B的度数为()A.30°B.50°C.90°D.100°7.如图所示,在△ABC中,D为AB上一点,E为BC上一点,且AC = CD = BD = BE,∠A = 50°,则∠CDE的度数为()A.50°B.51°C.51.5°D.52.5°8.如图,在四边形ABCD中,连结AC,BD,若△ABC是等边三角形,AB=BD,∠ABD=20°,则∠BDC的度数为()A.50°B.60°C.70°D.75°二、填空题9.已知点P(3,m)关于x轴的对称点为Q(n,2),则2n﹣m= .10.已知△ABC中,AB=AC=4,∠A=60°,则△ABC的周长为.11.如图,在锐角△ABC中,AC=10 S△ABC=25∠BAC的平分线交BC于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值是12.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE 的度数为.13.如图,ΔABC中∠ACB=90°,AC=6,BC=8,CD是ΔABC的角平分线,点E是AC的中点,P是CD 上一点,则ΔAEP周长的最小值是.三、解答题14.已知等腰△ABC的周长为20,求腰长的取值范围.15.如图,在△ABC中,∠B=90°,M是AC上任意一点(M与A不重合)MD⊥BC,交∠ABC的平分线于点D,求证:MD=MA.16.已知:如图,∠BAC的角平分线与BC的垂直平分线DG交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F.①求证:BE=CF;②若AF=5,BC=6,求△ABC的周长.17.等边△ABC的边长为8,D为AB边上一动点,过点D作DE⊥BC于点E,过点E作EF⊥AC于点F.(1)若AD=2,求AF的长;(2)求当AD取何值时,DE=EF.18.数学课上,张老师举了下面的例题:例1:在等腰三角形ABC中,∠A=110°,求∠B的度数. (答案:35°)例2:在等腰三角形ABC中,∠A=40°,求∠B的度数. (答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式:在等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.参考答案1. B2. D3. A4. A5.A6.D7.D8.C9.810.1211.512.30°13.3+3√514.解:设等腰△ABC的腰长为x,则底边长为20﹣2x,依题意有{2x>20−2xx+20−2x>x解得5<x<10.故腰长的取值范围是5<x<10.15.证明:∵MD⊥BC,且∠B=90°∴AB∥MD∴∠BAD=∠D又∵AD为∠BAC的平分线∴∠BAD=∠MAD∴∠D=∠MAD∴MA=MD16.证明:①连结CD∵D 在BC 的中垂线上∴BD=CD∵DE ⊥AB ,DF ⊥ACAD 平分∠BAC∴DE=DF∠BED=∠DCF=90°在Rt △BDE 和Rt △CDF 中{DE =DF BD =CD∴Rt △BDE ≌Rt △CDF (HL )∴BE=CF ;②解:由(HL )可得,Rt △ADE ≌Rt △ADF∴AE=AF=5∴△ABC 的周长=AB+BC+AC=(AE+BE )+BC+(AF ﹣CF )=5+6+5=16.17.(1)∵AB=8,AD=2∴BD=AB-AD=6在Rt △BDE 中,∠BDE=90°-∠B=30°∴BE= 12 BD=3∴CE=BC-BE=5在Rt △CFE 中,∠CEF=90°-∠C=30°∴CF= 12 CE= 52∴AF=AC-FC= 112 ;(2)在△BDE 和△CFE 中 {∠BED =∠CFE =90°∠B =∠C DE =EF∴△BDE ≌△CFE(AAS)∴ BE=CF∴BE=CF= 12EC∴BE= 13 BC= 83∴BD=2BE= 163∴AD=AB-BD= 83∴ 当AD= 83 时,DE=EF.18.(1)解:若∠A 为顶角,则∠B=(180°-∠A) ÷2=50°; 若∠A 为底角,∠B 为顶角,则∠B=180°-2×80°=20°; 若∠A 为底角,∠B 也为底角,则∠B= 80°.故∠B 的度数是50°或20°或80°.(2)解:分两种情况:①当90≤x<180时,∠A 只能为顶角所以∠B 的度数只有一个;②当0<x<90时若∠A 为顶角,则∠B= (180−x 2)° ;若∠A 为底角,∠B 为顶角,则∠B=(180-2x)°;若∠A 为底角,∠B 也为底角,则∠B=x °当 180−x 2 ≠180-2x 且180-2x ≠x 且 180−x 2 ≠x即当x ≠60时,∠B 有三个不同的度数.综上,可知当0<x<90且x ≠60时,∠B 有三个不同的度数。

人教版八年级数学上册第13章《轴对称》单元练习题(含答案)

人教版八年级数学上册第13章《轴对称》单元练习题(含答案)

人教版八年级数学上册第13章《轴对称》单元练习题(含答案)一、单选题1.下列倡导节约的图案中,是轴对称图形的是( )A .B .C .D . 2.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.下列黑体字中,属于轴对称图形的是( )A .善B .勤C .健D .朴4.如图,在已知的ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ; ②作直线MN 交AB 于点D ,连接CD .若4AC =,10AB =,则ACD 的周长为( )A .8B .9C .10D .145.图1是光的反射规律示意图.其中,PO 是入射光线,OQ 是反射光线,法线KO ⊥MN ,∠POK 是入射角,∠KOQ 是反射角,∠KOQ =∠POK .图2中,光线自点P 射入,经镜面EF 反射后经过的点是( )A .A 点B .B 点C .C 点D .D 点6.如图,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠AED '=50°,则∠EFC 等于( )A .65°B .110°C .115°D .130°7.如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD △的周长为( )A .25B .22C .19D .188.如图,在ABC 中,AB AC =,40A ︒∠=,//CD AB ,则BCD ∠=( )A .40︒B .50︒C .60︒D .70︒9.如图是A ,B ,C 三岛的平面图,C 岛在A 岛的北偏东35度方向,B 岛在A 岛的北偏东80度方向,C 岛在B 岛的北偏西55度方向,则A ,B ,C 三岛组成一个( )A .等腰直角三角形B .等腰三角形C .直角三角形D .等边三角形10.如图,在等边ABC 中,BC 边上的高6AD =,E 是高AD 上的一个动点,F 是边AB 的中点,在点E 运动的过程中,EB EF +存在最小值,则这个最小值是( )A .5B .6C .7D .811.如图,在△ABC 中,AD 是BC 边上的高,∠BAF =∠CAG =90°,AB =AF ,AC =AG ,连接FG ,交DA 的延长线于点E ,连接BG ,CF , 则下列结论:①BG =CF ;②BG ⊥CF ;③∠EAF =∠ABC ;④EF =EG ,其中正确的有( )A .①②③B .①②④C .①③④D .①②③④ 12.如图,在ABC 中,45,ABC AD BE ∠=︒,分别为,BC AC 边上的高,,AD BE 相交于点F ,连接CF ,则下列结论:①BF AC =;②FCD DAC ∠=∠;③CF AB ⊥;④若2BF EC =,则FDC △周长等于AB 的长.其中正确的有( )A .①②B .①③④C .①③D .②③④二、填空题13.已知△ABC 是等腰三角形.若∠A =40°,则△ABC 的顶角度数是____.14.如图,,AC BD 在AB 的同侧,2,8,8AC BD AB ===,点M 为AB 的中点,若120CMD ∠=,则CD 的最大值是_____.15.如图,△ABC 的边CB 关于CA 的对称线段是CB ',边CA 关于CB 的对称线段是CA ',连结BB ',若点A '落在BB '所在的直线上,∠ABB '=56°,则∠ACB =___度.16.如图,在ABC 中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若AFC △是等边三角形,则B ∠=_________°.17.如图,在等边△ABC 中,点E 是边AC 上一点,AD 为BC 边上的中线,AD 、BE 相交于点F ,若∠AEB =100°,则∠AFB 的度数为_____.18.如图,在Rt ABC 中,90C ∠=︒,20B ∠=︒,PQ 垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边,AC AB 于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;⑤作射线AF .若AF 与PQ 的夹角为α,则α=________°.三、解答题19.已知ABC 的三边长分别为a ,b ,c .(1)若2a =,3b =,求c 的取值范围;(2)在(1)的条件下,若c 为奇数,试判断ABC 的形状,并说明理由.20.如图,在ABC 和ADE 中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒.(1)当点D 在AC 上时,如图①,线段BD ,CE 有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的ADE 绕点A 顺时针旋转()090αα︒<<︒,如图②,线段BD ,CE 有怎样的数量关系和位置关系?请说明理由.(3)拓展应用:已知等边ABC 和等边ADE 如图③所示,求线段BD 的延长线和线段CE 所夹锐角的度数.21.如图,在四边形ABCD 中,AD BC ∥,E 为CD 的中点,连接AE 、BE ,BE AE ⊥,延长AE 交BC 的延长线于点F .(1)请判断FC 与AD 的数量关系,并说明理由;(2)若AB =6,AD =2,求BC 的长度.22.已知△ABC 和△DEF 为等腰三角形,AB =AC ,DE =DF ,∠BAC =∠EDF ,点E 在AB 上,点F 在射线AC 上.(1)如图1,若∠BAC =60°,点F 与点C 重合,求证:AF =AE +AD ;(2)如图2,若AD =AB ,求证:AF =AE +BC .23.(1)如图1,在等边三角形ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 相交于点O .求证:OA =2DO ;(2)如图2,若点G 是线段AD 上一点,CG 平分∠BCE ,∠BGF =60°,GF 交CE 所在直线于点F .求证:GB =GF .(3)如图3,若点G 是线段OA 上一点(不与点O 重合),连接BG ,在BG 下方作∠BGF =60°边GF 交CE 所在直线于点F .猜想:OG 、OF 、OA 三条线段之间的数量关系,并证明.24.如图,在ABC 中,AD BC ⊥,AD BD =;点F 在AD 上,DF DC =.连接BF 并延长交AC 于E .(1)求证:BF AC =;(2)求证:BE AC ⊥;(3)若AB BC =,BF 与AE 有什么数量关系?请说明理由.25.如图,在Rt ABC 中,9030C A ∠=︒∠=︒,.点D 是AB 中点,点E 为边AC 上一点,连接CD DE ,,以DE 为边在DE 的左侧作等边三角形DEF ,连接BF .△的形状为______;(1)BCD(2)随着点E位置的变化,DBF∠的度数是否变化?并结合图说明你的理由;AC=,请直接写出DE的长.(3)当点F落在边AC上时,若626.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:△ABE≌△CBF;(2)若∠CAE=30°,求∠ACF度数.27.如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.(1)求证:AE=2CE;(2)连接CD,请判断△BCD的形状,并说明理由.28.已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P.(1)求证:△ABE≌△CAD;(2)求∠BPQ的度数;(3)若BQ⊥AD于Q,PQ=6,PE=2,求AD的长。

八年级数学上册《第十三章轴对称》单元试题(人教版含答案)

八年级数学上册《第十三章轴对称》单元试题(人教版含答案)

第十三章《轴对称》单元练习题一、选择题1.如果一个三角形的外角平分线与这个三角形一边平行,则这个三角形一定是()A.锐角三角形B.等腰三角形C.等边三角形D.等腰直角三角形2.如图,在△ABC中,AB=AC,∠ABC=70°,顶点B在直线DE上,且DE∥AC,则∠CBE等于()A. 40°B. 50°C. 70°D. 80°3.若A(2a﹣b,a+b)关于y轴对称点是A1(3,﹣3),则P(a,b)关于x轴对称点P1的坐标是()A.(﹣2,﹣1)B.(2,﹣1)C.(﹣2,1)D.(2,1)4.如图,在△ABC中,AB=AC=8,BC=5,AB的垂直平分线交AC于D,则△BCD的周长为()A. 13B. 15C. 18D. 215.如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上的一点,当PA=CQ 时,连接PQ交AC于点D,下列结论中不一定正确的是()A.PD=DQB.DE=ACC.AE=CQD.PQ⊥AB6.已知a,b,c是三角形的三边长,如果满足(a﹣b)2++|c2﹣64|=0,则三角形的形状是()A.底和腰不相等的等腰三角形B.等边三角形C.钝角三角形D.直角三角形7.以下列各组数据为边长,可以构成等腰三角形的是()A. 2,3,4B. 5,5,10C. 2,2,1D. 1,2,38.要使得△ABC是等腰三角形,则需要满足下列条件中的()A.∠A=50°,∠B=60°B.∠A=50°,∠B=100°C.∠A+∠B=90°D.∠A+∠B=90°二、填空题(9.如图,等边△ABC周长是12,AD是∠BAC的平分线,则BD=.10.如图的4×4的正方形网格中,有A、B、C、D四点,直线a上求一点P,使PA+PB最短,则点P应选点(C或D).11.在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若三角形ABC 的边长为1,AE=2,则CD的长为.12.如图,△ABC与△A′B′C′关于直线l对称,则∠C′的度数为.13.如图,在△ABC中,D为AB上的一点,且DE垂直平分AC,∠B=115°,且∠ACD:∠BCD=5:3,则∠ACB=__________度.14.如图,在△ABC中,AB=AC,BC=8,AD平分∠BAC,则BD=____________.15.如图,△ABC是等边三角形,则∠ABD=度.16.如图将边长为5cm的等边△ABC,沿BC向右平移3cm,得到△DEF,DE交AC于M,则△MEC是三角形,DM=cm.三、解答题17.如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD.求证:BD=DE.18.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点M.(1)在给出图上画出一个格点△MB1C1,并使它与△ABC全等且A与M是对应点;(2)画出点B关于直线AC的对称点D.19.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(2,3),B(3,1),C(-2,-2).(1)请在图中作出△ABC关于y轴的轴对称图形△A′B′C′(A,B,C的对称点分别是A′,B′,C′),并直接写出A′,B′,C′的坐标.(2)求△A′B′C′的面积.20.如图,已知五边形ABCDE是轴对称图形,点B,E是一对对称点,请用无刻度的直尺画出该图形的对称轴.(保留作图痕迹,不要求写作法)21.在△ABC中,AB=AC,AC上的中线BD把三角形的周长分为24cm和30cm的两个部分,求三角形的三边长.第十三章《轴对称》单元练习题答案解析1.【答案】B【解析】可依据题意线作出简单的图形,结合图形可得∠B=∠A,进而可得其为等腰三角形.解:如图,DC平分∠ACE,且AB∥CD,∴∠ACD=∠DCE,∠A=∠ACD,∠B=∠DCE∴∠B=∠A,∴△ABC为等腰三角形.故选B2.【答案】C【解析】由已知AB=AC,∠ABC=70°,根据等腰三角形的性质,得出∠C的度数,再利用DE∥AC,可得∠CBE=70°,答案可得.解:∵AB=AC(已知),∴∠C=∠ABC=70°(等边对等角),又∵DE∥AC(已知),∴∠CBE=∠C=70°(两直线平行,内错角相等)故选C.3.【答案】C【解析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得方程组,根据解方程组,可得P点坐标,根据关于关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.解:由A(2a﹣b,a+b)关于y轴对称点是A1(3,﹣3),得2a-b=-3,a+b=-3,所以a=-2,b=-1,∴P(﹣2,﹣1).P(a,b)关于x轴对称点P1的坐标是(﹣2,1),故选:C.4.【答案】A【解析】根据线段垂直平分线的性质得出AD=BD,进而得出△BCD的周长为:CD+BD+BC=AC+BC求出即可.解:∵AB=AC=8,BC=5,AB的垂直平分线交AC于D,∴AD=BD,∴△BCD的周长为:CD+BD+BC=AC+BC=8+5=13.故选A.5.【答案】D【解析】过P作PF∥CQ交AC于F,∴∠FPD=∠Q,∵△ABC是等边三角形,∴∠A=∠ACB=60°,∴∠A=∠AFP=60°,∴AP=PF,∵PA=CQ,∴PF=CQ,在△PFD与△DCQ中,∠FPD=∠Q,∠FDE=∠CDQ,PF=CQ∴△PFD≌△QCD,∴PD=DQ,DF=CE,∴A选项正确,∵AE=EF,∴DE=AC,∴B选项正确,∵PE⊥AC,∠A=60°,∴AE=AP=CQ,∴C选项正确,故选D.6.【答案】B【解析】首先根据绝对值,平方数与算术平方根的非负性,求出a,b,c的值,再根据勾股定理的逆定理判断其形状是直角三角形.解:由(a﹣b)2++|c2﹣64|=0得:a﹣b=0,b﹣8=0,c2﹣64=0,又a,b,c是三角形的三边长,∴a=8,b=8,c=8,所以三角形的形状是等边三角形,故选:B.7.【答案】C【解析】根据三角形的三边关系对以下选项进行一一分析、判断.解:A.∵2≠3≠4,∴本组数据不可以构成等腰三角形;故本选项错误;B.∵5+5=10,∴本组数据不可以构成三角形;故本选项错误;C.∵1+2>2,∴本组数据可以构成等腰三角形;故本选项正确;D.∵1+2=3,∴本组数据不可以构成三角形;故本选项错误.故选C.8.【答案】D【解析】等腰三角形有两个底角相等,根据三角形的内角和是180°,进行判断即可.解:A、若∠A是顶角时,则50°+120°<180°,所以此种情况组不成等腰三角形;若∠B是顶角时,在50°+50°+160°<180°,所以此种情况组不成等腰三角形;总之,本组数据不能使得△ABC是等腰三角形;故本选项错误;B、若∠A是顶角时,则50°+200°>180°,所以此种情况组不成等腰三角形;若∠B是顶角时,在100°+100°>180°,所以此种情况组不成等腰三角形;总之,本组数据不能使得△ABC是等腰三角形;故本选项错误;C、当∠A+∠B=90°时,∠C=90°;但∠A=10°,∠B=80°时,三角形ABC的三个内角没有那两个相等,所以构不成等腰三角形;故本选项错误;D、当∠B是顶角时,则2∠A+∠B=180°,∴∠A+∠B=90°;故本选项正确;故选D.9.【答案】2【解析】根据等边三角形的性质求得BD=CD,并且求得边BC的长度,进而即可求得BD的长.解:∵△ABC是等边三角形,AD是∠BAC的平分线,∴AB=BC=CA,BD=CD,∵等边△ABC周长是12,∴BC=4,∴BD=2.故答案为2.10.【答案】C【解析】首先求得点A关于直线a的对称点A′,连接A′B,即可求得答案.解:如图,点A′是点A关于直线a的对称点,连接A′B,则A′B与直线a的交点,即为点P,此时PA+PB最短,∵A′B与直线a交于点C,∴点P应选C点.故答案为:C.11.【答案】1或3【解析】当E在线段BA的延长线上,D在线段BC的延长线上时,如图1所示,过E作EF⊥BD,垂足为F点,由EC=ED,利用三线合一得到F为CD的中点,再由三角形ABC为等边三角形,利用等边三角形的性质得到∠ABC=60°,可得出∠BEF=30°,利用30°所对的直角边等于斜边的一半,根据EB的长求出BF的长,由BF﹣BC求出CF的长,即可得到CD的长;当E在线段AB的延长线上,D在线段CB的延长线上时,如图2所示,过E作EF⊥BD,垂足为F点,由EC=ED,利用三线合一得到F为CD的中点,再由三角形ABC为等边三角形,利用等边三角形的性质得到∠ABC=∠EBF=60°,可得出∠BEF=30°,利用30°所对的直角边等于斜边的一半,根据EB的长求出BF的长,由BF+BC求出CF的长,即可得到CD的长.解:当E在线段BA的延长线上,D在线段BC的延长线上时,如图1所示,过E作EF⊥BD,垂足为F点,可得∠EFB=90°,∵EC=ED,∴F为CD的中点,即CF=DF=12CD,∵△ABC为等边三角形,∴∠ABC=60°,∴∠BEF=30°,∵BE=AB+AE=1+2=3,∴FB=12EB=32,∴CF=FB﹣BC=12,则CD=2CF=1;当E在线段AB的延长线上,D在线段CB的延长线上时,如图2所示,过E作EF⊥BD,垂足为F点,可得∠EFC=90°,∵EC=ED,∴F为CD的中点,即CF=DF=12CD,∵△ABC为等边三角形,∴∠ABC=∠EBF=60°,∴∠BEF=30°,∵BE=AE﹣AB=2﹣1=1,∴FB=12BE=12,∴CF=BC+FB=32,则CD=2CF=3,综上,CD的值为1或3.故答案为:1或3.12.【答案】20°【解析】根据轴对称的性质求出∠A′,再利用三角形的内角和等于180°列式计算即可得解.解:∵△ABC与△A′B′C′关于直线l对称,∴∠A′=∠A=50°,在△A′B′C′中,∠C′=180°﹣∠A′﹣∠B′=180°﹣50°﹣110°=20°.故答案为:20°.13.【答案】40【解析】根据垂直平分线的性质与三角形的全等可以得出∠A=∠ACD,再根据三角形的内角和和角的比计算.解:∵DE垂直平分AC,∴EA=EC,AD=CD,∠ADE=∠CDE=90°∴Rt△ADE≌Rt△CDE∴∠A=∠ACD又∵∠ACD:∠BCD=5:3,∴∠ACD:∠ACB=5:8∴∠A:∠ACB=5:8又∵∠B=115°∴∠A+∠ACB=65°∴∠ACB=(65×8)÷13=40°.14.【答案】4【解析】根据三线合一定理即可求解.解:∵AB=AC,AD平分∠BAC,∴BD=BC=4.故答案是:4.15.【答案】120【解析】根据△ABC是等边三角形,得出∠ABC的度数,进而求出∠ABD的度数即可.解:∵△ABC是等边三角形,∴∠ABC=60°,则∠ABD=120°.故答案为:120.16.【答案】等边 3【解析】本题考查平移的性质,经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等.解:∵AB∥DE,∴∠MEC=∠B,∠CME=∠A,∵△ABC是等边三角形,∴∠MEC=∠EMC=∠ACB,∴△MEC是等边三角形,沿BC向右平移3cm,∴BE=3cm,EC=2cm,∴DM=DE﹣EM=5﹣2=3cm.17.【答案】证明:∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边).【解析】根据等边三角形的性质得到∠ABC=∠ACB=60°,∠DBC=30°,再根据角之间的关系求得∠DBC=∠CED,根据等角对等边即可得到DB=DE.18.【答案】解:(1)△MB1C1即为所求;(2)如图所示,点D即为所求点.【解析】(1)把△ABC向右平移,使点A与点M重合即可;(2)画出点B关于直线AC的对称点D即可.19.【答案】解:(1)如图:(2)△A′B′C′的面积=5×5-×5×3-=6.5.【解析】(1)分别作出点A,B,C的对称点A′,B′,C′,然后顺次连接各点即可,根据图形然后直接写出A′,B′,C′的坐标;(2)利用图形的面积的和差关系可计算出△A′B′C′的面积.20.【答案】如图所示,直线AK即为所求的一条对称轴(解答不唯一).【解析】方法不唯一,至少可以有以上两种方法.如左图所示,因为五边形ABCDE是轴对称图形,点B,E是一对对称点,则C,D为一对对称点,故连接BD,CE,可以利用三角形全等说明K即为所求.第二幅图,因为五边形ABCDE是轴对称图形,点B,E是一对对称点,故延长BC,延长ED,则两线的交点必然为对称轴上一点,故连接AK即可.21.【答案】解:设三角形的腰AB=AC=x cm若AB+AD=24cm,则:x+x=24∴x=16三角形的周长为24+30=54(cm)所以三边长分别为16cm,16cm,22cm;若AB+AD=30cm,则:x+x=30∴x=20∵三角形的周长为24+30=54(cm)∴三边长分别为20cm,20cm,14cm;因此,三角形的三边长为16cm,16cm,22cm或20cm,20cm,14cm.【解析】两种情况讨论:当AB+AD=30 cm,BC+DC=24 cm或AB+AD=24 cm,BC+DC=30 cm,所以根据等腰三角形的两腰相等和中线的性质可求得,三边长为16cm,16cm,22cm或20cm,20cm,14cm.。

人教版八年级数学上:第13章《轴对称》单元测试(含答案)(含答案)

人教版八年级数学上:第13章《轴对称》单元测试(含答案)(含答案)

第13章轴对称一、选择题(共9小题)1.在平面直角坐标系中,点A(﹣1,2)关于x轴对称的点B的坐标为()A.(﹣1,2)B.(1,2) C.(1,﹣2)D.(﹣1,﹣2)2.如图,△ABC与△DEF关于y轴对称,已知A(﹣4,6),B(﹣6,2),E(2,1),则点D的坐标为()A.(﹣4,6)B.(4,6) C.(﹣2,1)D.(6,2)3.在平面直角坐标系中,与点(1,2)关于y轴对称的点的坐标是()A.(﹣1,2)B.(1,﹣2)C.(﹣1,﹣2) D.(﹣2,﹣1)4.点(3,2)关于x轴的对称点为()A.(3,﹣2)B.(﹣3,2)C.(﹣3,﹣2) D.(2,﹣3)5.在平面直角坐标系中,点P(﹣3,2)关于直线y=x对称点的坐标是()A.(﹣3,﹣2) B.(3,2) C.(2,﹣3)D.(3,﹣2)6.在平面直角坐标系中,已知点A(2,3),则点A关于x轴的对称点的坐标为()A.(3,2) B.(2,﹣3)C.(﹣2,3)D.(﹣2,﹣3)7.点P(2,﹣5)关于x轴对称的点的坐标为()A.(﹣2,5)B.(2,5) C.(﹣2,﹣5) D.(2,﹣5)8.点A(1,﹣2)关于x轴对称的点的坐标是()A.(1,﹣2)B.(﹣1,2)C.(﹣1,﹣2) D.(1,2)9.已知点A(a,2013)与点B(2014,b)关于x轴对称,则a+b的值为()A.﹣1 B.1 C.2 D.3二、填空题(共16小题)10.平面直角坐标系中,点A(2,0)关于y轴对称的点A′的坐标为______.11.在平面直角坐标系中,点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是(______,______).12.在平面直角坐标系中,点(﹣3,2)关于y轴的对称点的坐标是______.13.已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=______.14.若点M(3,a)关于y轴的对称点是点N(b,2),则(a+b)2014=______.15.已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为______.16.点A(﹣3,0)关于y轴的对称点的坐标是______.17.点P(2,﹣1)关于x轴对称的点P′的坐标是______.18.在平面直角坐标系中,点A(2,﹣3)关于y轴对称的点的坐标为______.19.点P(﹣2,3)关于x轴的对称点P′的坐标为______.20.点P(3,2)关于y轴对称的点的坐标是______.21.点P(1,﹣2)关于y轴对称的点的坐标为______.22.点A(﹣3,2)关于x轴的对称点A′的坐标为______.23.若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=______.24.点P(2,3)关于x轴的对称点的坐标为______.25.已知P(1,﹣2),则点P关于x轴的对称点的坐标是______.三、解答题26.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标;(2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出点C2的坐标.27.如图,在边长为1个单位长度的小正方形网格中,给出了△ABC (顶点是网格线的交点).(1)请画出△ABC 关于直线l 对称的△A 1B 1C 1;(2)将线段AC 向左平移3个单位,再向下平移5个单位,画出平移得到的线段A 2C 2,并以它为一边作一个格点△A 2B 2C 2,使A 2B 2=C 2B 2.28.在平面直角坐标系中,△ABC 的顶点坐标A (﹣4,1),B (﹣2,1),C (﹣2,3)(1)作△ABC 关于y 轴的对称图形△A 1B 1C 1;(2)将△ABC 向下平移4个单位长度,作出平移后的△A 2B 2C 2;(3)求四边形AA 2B 2C 的面积.29.在平面直角坐标系中,已知点A (﹣3,1),B (﹣1,0),C (﹣2,﹣1),请在图中画出△ABC ,并画出与△ABC 关于y 轴对称的图形.30.如图,△ABC 与△DEF 关于直线l 对称,请仅用无刻度的直尺,在下面两个图中分别作出直线l .第13章轴对称参考答案一、选择题(共9小题)1.D;2.B;3.A;4.A;5.C;6.B;7.B;8.D;9.B;二、填空题(共16小题)10.(-2,0);11.-2;3;12.(3,2);13.-6;14.1;15.25;16.(3,0);17.(2,1);18.(-2,-3);19.(-2,-3);20.(-3,2);21.(-1,-2);22.(-3,-2);23.0;24.(2,-3);25.(1,2);三、解答题(共5小题)26.27.28.29.30.。

人教版八年级数学上测第十三章《轴对称》检测题(含答案)

人教版八年级数学上测第十三章《轴对称》检测题(含答案)

人教版八年级数学上测第十三章《轴对称》检测题(含答案)一、选择题(每小题3分,共30分)1. 现实世界中,对称现象无处不在,下列汉字是轴对称图形的是()A. 爱B. 我C. 中D. 华【答案】C.2.点M(1,2)关于x轴对称点的坐标为()A.(-1,2)B.(-1,-2)C.(1,-2)D.(2,-1)【答案】C.3. 如图,△ABC中,AC的垂直平分线交AB于点D,CD平分∠ACB,若∠A=50°,则∠B度数为()A. 25°B. 30°C. 35°D. 40°【答案】B.4.下列每个网格中均有两个图形,其中一个图形可由另一个轴对称变换得到的是()A. B. C. D.【答案】B.5. 如图,∠MON内有一点P,点P关于OM、ON的对称点分别是G、H,连GH分别交OM、ON于A、B点,若GH=10cm,则△P AB的周长为()A. 5cmB.10cmC. 20cmD.15cm【答案】B. 提示:根据对称性,AG=AP,BH=GP,∴AP+AB+BP=AG+AB+BH=GH=10.6.等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A. 55° ,55°B. 70°,40或70°,55°C.70°,40°D. 55°,55°或70°,40°【答案】D.7. 如图,在正方形ABCD的外侧,作等边△CDE,连接AE交CD于点F,则∠DF A的度数为()A. 45°B. 55°C. 60°D. 75°【答案】D. 提示:∠ADE=90°+60°=150°,∠DAF=∠DEA=15°,则∠DF A=75°.8. 如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE的长度为()A. 5cmB. 5.4cmC. 2.4cmD. 3cm【答案】C. 提示:作DF⊥BC于F,∵BD平分∠ABC,故设DE=DF=h,由S△ABD+S△CBD=S△ABC,得:12(AB+BC)h=36,代入数值,解得h=2.4,故选C.9. 如图,在△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC=a,BC=b,则CD=()A.2ba+B.2ba-C. a-b D. b-a【答案】C. 提示:AD=BD=BC=b,CD=AC-AD=a-b.10. 如图OE是等边△AOB的中线,OB=4,C是直线OE上一动点,以AC为边在直线AC下方作等边△ACD,连接ED,下列说法正确的是()A. ED的最小值是2B. ED的最小值是1C. ED有最大值D. ED没有最大值也没有最小值【答案】B. 提示:连BD,则易得△AOC≌△ABD(SAS),∴∠ABD=∠AOC=30°,当∠BDE=90°时,ED最小,此时ED=12BE=1,故选B.二、填空题(每小题3分,共18分)11. 点P(m,n)和点Q(n-1,2m)关于x轴对称,则m+n的值为__________.【答案】13. 提示:m=n-1,2m+n=0,联立解得m=-13,n=23,∴m+n=13.12. 如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC,若DE=1,则BC的长是__________.【答案】3. 提示:由条件得AD=BD,∠CAD=∠BAD,∴∠CAD=∠BAD=∠B=30°,CD=DE=1,BD=2DE=2,∴BC=CD+BD=3.13. 如图,在△ABC中,DE垂直平分AC,若AE=3,△ABD周长为13,则△ABC周长为________.【答案】19. 提示:由题知AC=2AE=6,AD=CD,∴BC=BD+AD,∵AB+BD+AD=13,∴AB+BC=13,∴AB+BC+AC=13+6=19.14. 如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中所示的力向被击出(球可以经过多次反射),那么该球最后将落入的球袋是________.【答案】1号袋. 提示:如图所示.15. 如图,在△ABC中,∠C=46°,将△ABC沿直线l折叠,点C落在点D的位置,则∠1-∠2的度数是___________ .【答案】92°. 提示:由飞镖模型,∠DNC=∠C+∠D+∠DMC,即:180°-∠2=46°+46°+(180°-∠1),∴∠1-∠2=92°.16 .已知A(1,2)、B(7,4),点M、N是x轴上的动点(M在N左边),MN=3,当AM+MN+NB最小时,直接写出点M的坐标为___________.【答案】(2,0). 提示:作点A关于x轴的对称点A′,将点B向左平移3个单位得点B′,连接A′B′,交x轴于点M.三、解答题(共8小题,共72分)17. (8分)如图,已知点M、N和∠AOB,用尺规作图作一点P,使P到点M、N的距离相等,且到∠AOB两边的距离相等.(保留作图痕迹,不写作法)【答案】1.作∠AOB的平分线OC;2.连MN,作MN的垂直平分线EF;则射线OC与直线EF的交点P即为所求.18. (8分)如图,在△ABC中,∠B=30°,∠C=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数;(3)若△DAF的周长为20,求BC的长.【答案】(1)∠BAC=100°;(2)∵DE、FG分别垂直平分AB、AC,∴AD=BD,AF=CF,∴∠BAD=∠B=30°,∠CAF=∠C=50°,∴∠DAF=∠BAC-∠BAD-∠CAF=100°-30°-50°=20°;(3) ∵△DAF的周长为20,∴AD+DF+AF=20,∴BC=BD+DF+CF=AD+DF+AF=20.19. (8分)(1)如图,已知△ABC,请画出△ABC关于y轴对称的△A'B'C'(其中A'、B'、C'分别是A、B、C的对应点);(2)直接写出点A'、B'、C'点的坐标;(3)求△ABC的面积是多少?(4)用无刻度的直尺在y轴上找一点Q,使得QA+QB之和最小.(用虚线表示画图过程)【答案】(1) A'(2,3)、B'(3,1)、C'(-1,-2);(2)S△ABC=5×4-12×1×2-12×3×4-12×3×5=5.5;(3) 连接A′B(或AB′)交y轴于Q,即可.20. (8分)如图,在△ABC中,AB=AC,D是BC边上的一点,DE⊥AB于E,DF⊥AC于F,请添加一个条件,使DE=DF,并说明理由.【答案】添加的条件是:D为BC的中点. 理由如下:方法1:连接AD.∵AB=AC,D为BC中点,∴AD平分∠BAC.又∵DE⊥AB,DF⊥AC,∴DE=DF.方法2:∵AB=AC,∴∠B=∠C.∵D为BC中点,∴BD=CD.在△BDE与△CDF中,∵∠B=∠C,∠BED=∠CFD=90°,BD=CD,∴△BDE≌△CDF(AAS),∴DE=DF.21. (8分)如图,△ABC 是等边三角形,点D 在BC 延长线上,DE ⊥AB 于点E ,交AC 于G ,EF ⊥BC 于点F ,若CD =3AE ,CF =6,求AC 的长. 【答案】设AE =x ,则CD =3x .在等边△ABC 中,∠A =∠B =∠ACB =60°, 又DE ⊥AB ,∴∠D =∠AGE =∠CGD =30°. ∴AG =2AE =2x ,CG =CD =3x , ∴AB =BC =AC =2x +3x =5x . 则BE =5x -x =4x ,又∵EF ⊥BC ,∠B =60°,∴BF =12BE =2x ,∴BC =BF +CF =2x +6.∵BC =AC ,∴2x +6=5x ,∴x =2. ∴AC =5x =10.22. (10分)如图,在△ABC 中,∠ABC =∠ACB ,E 为BC 边上一点,以E 为顶点作∠AEF ,∠AEF 的边交AC 于点F ,使∠AEF =∠B . (1)如果∠ABC =40°,则∠BAC =________; (2)判断∠BAE 与∠CEF 的大小关系,并说明理由;(3)当△AEF 为直角三角形时,求∠AEF 与∠BAE 的数量关系.【答案】(1)100°; …………… 2分 (2)∠BAE =∠CEF ,理由如下: ∵∠AEC 是△ABE 的外角, ∴∠AEF +∠CEF =∠B +∠BAE . 又∵∠AEF =∠B ,∴∠CEF =∠BAE . …………… 5分(3)由(2),设∠CEF =∠BAE =α,设∠AEF =∠B =∠C =β.则∠AFE =∠CEF +∠C =α+β.∵∠AEF =∠B <90°,故分两种情况考虑:1°当∠EAF 为直角时,如图1,由∠AEF +∠AFE =90°,CBAFECBA备用图1CBA备用图2得β+(α+β)=90°,∴α+2β=90°,故有:∠BAE+2∠AEF=90°.2°当∠AFE为直角时,如图2,得α+β=90°,即:∠BAE+∠AEF=90°.综上,当△AEF为直角三角形时,∠BAE+2∠AEF=90°或∠BAE+∠AEF=90°. …………… 10分23. (10分)已知Rt△ABC中,AB=AC,∠ABC=∠ACB=45°,点D为直线BC上的一动点(点D不与点B、C重合),以AD为边在AD的右侧作Rt△ADE,AD=AE,∠ADE=∠AED =45°,连接CE.(1)〖发现问题〗如图1,当点D在边BC上时,①请写出BD和CE之间的数量关系为_____________,位置关系为____________;②求证:CE+CD=BC;(2)尝试探究:如图2,当点D在边BC的延长线上且其他条件不变时,(1)中BC、CE、CD 之间存在的数量关系是否成立? 若成立,请证明;若不成立,请写出新的数量关系(不必证明);(3)拓展延伸:如图3,当点D在CB的延长线上且其他条件不变时,若BC=6,CE=2,求线段CD的长.【答案】(1)①BD=CE,BD⊥CE,…………… 2分②由条件得∠BAC=∠DAE=90°,∴∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE,∠ACE=∠ABD=45°,∴CE+CD=BD+CD=BC. …………… 5分(2) 不成立,此时关系式为BC+CD=CE. …………… 7分提示:同上,证明△BAD≌△CAE(SAS),得BD=CE,即BC+CD=CE.(3) 由条件得∠BAC=∠DAE=90°,∴∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE. ∵BD+BC=CD,∴CD =CE +BC =2+6=8. …………… 10分24. (12分)等腰Rt △ACB 中,∠ACB =90°,AC =BC ,点A 在x 轴正半轴上,C 在y 轴负半轴上.(1)如图1,求证:∠BCO =∠CAO ;(2)如图2,若OA =4,OC =2,M 是AB 与y 轴交点,求△AOM 的面积;(3)如图3,点C (0,2),点Q 、A 均在x 轴上,且S △ACQ =6a (a 为已知数). 分别以AC 、CQ 为腰在第一、第二象限作等腰Rt △CAN 、等腰Rt △QCM ,连接MN 交y 轴于P 点,间:S △MON 是否发生改变?若不变,求出S △MON 的值;若变化,求S △MON 的取值范围.【答案】(1) ∵∠ACB =90°,∴∠BCO +∠ACO =90°. 又∵∠AOC =90°,∴∠CAO +∠ACO =90°. ∴ ∠BCO =∠CAO . …………… 3分(2) 过B 作BD ⊥y 轴于D ,则△BCD ≌△CAO (AAS ), ∴BD =CO =2,CD =AO =4,OD =CD -OC =2,∴B (-2,2). 又∵A (4,0),C (0,-2),由割补法,得S △ABC =4×6-12×2×4-12×2×4-12×2×6=10, 又2142△△BCM ACM S BD S OA ===,∴S △ACM =23S △ABC =203. ∵S △AOC =12×2×4=4,∴S △AOM =S △ACM -S △AOC =203-4=83. (3) 过N 作NE ∥CM 交y 轴于E ,则∠CNE +∠MCN =180°,∵∠MCQ +∠ACN =90°+90°=180°, ∴∠ACQ +∠MCN =180°, ∴∠CNE =∠ACQ . 又∵∠ECN +∠ACO =90°,∠QAC +∠ACO =90°, ∴∠ECN =∠QAC . 在△ECN 和△QAC 中,∵∠CNE =∠ACQ ,CN =AC ,∠ECN =∠QAC , ∴△ECN ≌△QAC (ASA ),∴CE=AQ,EN=QC=MC.又NE∥CM,∴△PEN≌△PCM(ASA),∴PE=PC.∵点C(0,2),S△ACQ=6a,∴AQ=6a.∴CE=AQ=6a,∴CP=PE=3a.∴OP=OC+CP=2+3a.过M作MF⊥y轴于F,过N作NG⊥y轴于G,∵△MCQ为等腰直角三角形,∴△MCF≌△CQO(AAS),∴MF=CO=2,同理,NG=OC=2.则S△MON=S△MOP+S△NOP=12OP·MF+12OP·NG=2OP=6a+4.。

人教版八年级数学上第十三章轴对称单元测试(含答案)

人教版八年级数学上第十三章轴对称单元测试(含答案)

数学人教版八年级上第十三章轴对称演习一.选择题1.下列由数字构成的图形中,是轴对称图形的是( ).2.下列语句中准确的个数是( ).①关于一条直线对称的两个图形必定能重合;②两个能重合的图形必定关于某条直线对称;③一个轴对称图形不必定只有一条对称轴;④轴对称图形的对应点必定在对称轴的两侧.A.1 B.2 C.3 D.43.已知等腰△ABC的周长为18 cm,BC=8 cm,若△ABC与△A′B′C′全等,则△A′B′C′的腰长等于( ).A.8 cmB.2 cm或8 cmC.5 cmD.8 cm或5 cm4.已知等腰三角形的一个角等于42°,则它的底角为( ).A.42° B.69°C.69°或84° D.42°或69°5.已知A.B两点的坐标分离是(-2,3)和(2,3),则下面四个结论中准确的有 ( ).①A.B关于x轴对称;②A.B关于y轴对称;③A.B不轴对称;④A.B之间的距离为4.A.1个 B.2个C.3个 D.4个二.填空题(本大题共8小题,每小题3分,共24分.把准确答案填在题中横线上)9.不雅察纪律并填空:10.点E(a,-5)与点F(-2,b)关于y轴对称,则a=__________,b=__________.11.如图,在等边△ABC中,AD⊥BC,AB=5 cm,则DC的长为__________.(第11题图) (第12题图)12.如图,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的等分线,若BD=10,则CD=__________.13.如图,∠BAC=110°,若MP和NQ分离垂直等分AB和AC,则∠PAQ的度数是__________.14.如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C=__________.(第13题图) (第14题图)15.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为__________.16.如图,是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC.DE垂直于横梁AC,AB=8 m,∠A=30°,则DE长为__________.三.解答题(本大题共5小题,共52分) 17.(本题满分10分)如图,在△ABC中,AB=AC,△ABC的两条中线BD.CE交于O点,求证:OB=OC. 19.(本题满分10分)如图,已知△ABC中,AH⊥BC于H,∠C=35°,且AB+BH=HC,求∠B的度数.20.(本题满分10分)如图,E在△ABC的AC边的延伸线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形.(过D作DG∥AC交BC于G).21.(本题满分12分)如图,C为线段AE上一动点(不与点A.E重合),在AE同侧分离作等边△ABC和等边△CDE,AD与BC订交于点P,BE与CD订交于点Q,衔接PQ.求证:△PCQ为等边三角形.参考答案1.A点拨:数字图案一般是沿中央竖直线或程度线折叠,看是否是轴对称图形,只有A选项是轴对称图形.2.B点拨:①③准确,②④不准确,个中④对应点还可能在对称轴上.3.D点拨:因为BC是腰是底不肯定,因而有两种可能,当BC是底时,△ABC的腰长是5 cm,当BC是腰时,腰长就是8 cm,且均能构成三角形,因为△A′B′C′与△ABC全等,所以△A′B′C′的腰长也有两种雷同的情形:8 cm或5 cm. 4.D点拨:在等腰三角形中,当一个锐角在未指明为顶角照样底角时,必定要分类评论辩论.①42°的角为等腰三角形底角;②42°的角为等腰三角形的顶角,则底角为(180°-42°)÷2=69°.所以底角消失两种情形,∴42°或69°.5.B点拨:①③不准确,②④准确.6.D 点拨:DE 垂直等分AB ,∠B =30°,所以AD 等分∠CAB ,由角等分线性质和线段垂直等分线性质可知 A.B.C 都准确,且AC≠AD =BD ,故D 错误.7.C 点拨:经由三次轴对称折叠,再剪切,得到的图案是C 图(也可将各选项图案按原步调折叠回复复兴).8.B 点拨:本题中的台球经由多次反射,每一次的反射就是一次轴对称变换,直到最后落入球袋,可用轴对称作图(如图),该球最后将落入2号袋.9.点拨:不雅察可知本题图案是两个数字雷同,且轴对称,由分列可知是雷同的偶数数字构成的,故此题答案为6构成的轴对称图形.10.2 -5点拨:点E .F 关于y 轴对称,横坐标互为相反数,纵坐标不变.11.2.5 cm 点拨:△ABC 为等边三角形,AB =BC =CA ,AD ⊥BC ,所以点D 等分BC .2.5 cm.==DC 所以12.5点拨:∠C =90°,∠A =30°, 则∠ABC =60°,BD 是∠ABC 的等分线,5.==CD 所以,30°=D CB 则∠ 13.40°点拨:因为MP .NQ 分离垂直等分AB 和AC ,所以PA =PB ,QA =QC ,∠PAB =∠B ,∠QAC =∠C ,∠PAB +∠QAC=∠C +∠B =180°-110°=70°,所以∠PAQ 的度数是40°.14.25°点拨:设∠C =x ,那么∠ADB =∠B =2x ,因为∠ADB +∠B +∠BAD =180°,代入解得x =25°.15.60°或120°点拨:有两种可能,如下图(1)和图(2),AB =AC ,CD 为一腰上的高,过A 点作底边BC 的垂线,图(1)中,∠BAC=60°,图(2)中,∠BAC =120°.16.2 m 点拨:依据30°角所对的直角边是斜边的一半,可知2 m.===DE 17.证实:∵BD .CE 分离是AC .AB 边上的中线,∴BE =.=CD ,又∵AB =AC ,∴BE =CD .,中CBD 和△BCE 在△ ∴△BCE ≌△CBD (SAS).∴∠ECB =∠DBC .∴OB =OC ..1C 1B 1A 如图所示的△(1)解:.18 .2C 2B 2A 如图所示的△(2) 19. 解:如图,在CH 上截取DH=BH,衔接AD,∵AH ⊥BC,∴AH 垂直等分BD.∴AB=AD.∴∠B=∠ADB.∵AB+BH=HC,∴AD+DH=HC=DH+CD.∴AD=CD.∴∠C=∠DAC=35°.∴∠B=∠ADB=∠C+∠DAC=70°.20. 证实:如图,过D 作DG ∥AC 交BC 于G,则∠GDF=∠E,∠DGB=∠ACB,在△DFG 和△EFC 中,∴△DFG ≌△EFC(ASA).∴CE=GD,∵BD=CE.∴BD=GD.∴∠B=∠DGB.∴∠B=∠ACB.∴△ABC 为等腰三角形.21. 证实:如图,∵△ABC 和△CDE 为等边三角形,∴AC =BC ,CE =CD ,∠ACB =∠ECD =60°.∴∠ACB +∠3=∠ECD +∠3, 即∠ACD =∠BCE .又∵C 在线段AE 上,∴∠3=60°.在△ACD 和△BCE 中,∴△ACD ≌△BCE .∴∠1=∠2.在△APC 和△BQC 中,∴△APC ≌△BQC .∴CP =CQ .∴△PCQ 为等边三角形(有一个角是60°的等腰三角形是等边三角形).。

人教版八年级数学上册第十三章《轴对称》综合测试题(含答案)

人教版八年级数学上册第十三章《轴对称》综合测试题(含答案)

人教版八年级数学上册第十三章《轴对称》综合测试题(含答案)一、单选题1.下列润滑油1ogo标志图标中,不是..轴对称图形的是()A.B.C.D.2.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.ABC的三条中线的交点B.ABC三边的垂直平分线的交点C.ABC三条角平分线的交点D.ABC三条高所在直线的交点3.三角形的外心是三角形的()A.三条中线的交点B.三条角平分线的交点C.三边垂直平分线的交点D.三条高所在直线的交点4.下列条件中,不能判定直线CD是线段AB(C,D不在线段AB上)的垂直平分线的是()A.CA=CB,DA=DB B.CA=CB,CD⊥ABC.CA=DA,CB=DB D.CA=CB,CD平分AB5.如图,在⊥ABC中,AB=AC,⊥A=36°,BD平分⊥ABC交AC于点D,则图中的等腰三角形共有()A .1 个B .2 个C .3 个D .4 个6.下列图形中,不是轴对称图形的是( )A .有一个角是45度的直角三角形B .有两个角相等的三角形C .有一个角是40度,另一个角是100度的三角形D .有一个角是30度的直角三角形7.如图,在ABC 中,90,6,10,8BAC AC BC AB ∠=︒===,过点A 的直线//,DE BC ABC ∠与ACB ∠的平分线分别交DE 于点E 、D ,则DE 的长为( )A .14B .16C .18D .208.若等腰三角形的顶角是40°,则它的底角是( )A .40°B .70°C .80°D .100°9.如图,在等边ABC 中,AD 是它的角平分线,DE AB ⊥于点E ,若8AC =,则BD =( )A .4B .3C .2D .110.如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线,150ABC ∠=︒,BC 的长是40m ,则乘电梯从点B 到点C 上升的高度h 是( )A.20m B 203m3C403m3D.203m11.如图,△ABC是边长为4的等边三角形,点P在AB上,过点P作PE⊥AC,垂足为E,延长BC至点Q,使CQ=P A,连接PQ交AC于点D,则DE的长为()A.1B.1.8C.2D.2.512.如图,等边三角形ABC的三条角平分线相交于点O,//OD AB交BC于点D,//OE AC交BC于点E,那么这个图形中的等腰三角形共有()个A.4B.5C.6D.7二、填空题13.在“锐角、五角星、等边三角形、圆、正六边形”这五个图形中,是轴对称图形的有________个,按对称轴条数由多到少排列是_______________.14.如图,在ABC中,10cmAB AC==,AB的垂直平分线交AC于点D,且BCD△的周长为17cm,则BC=________cm.15.如图,在ABC ∆中,,MP NQ 分别垂直平分边,AB AC ,交BC 于点,P Q ,如果20BC =,那么APQ 的周长为 __________.16.ABC ∆中,AB =AC ,AB 的中垂线与AC 所在直线相交成的锐角为50︒,则底角B 的大小为_________.17.如图,⊥AOB =60°,C 是BO 延长线上一点,OC =10cm ,动点P 从点C 出发沿CB 以2cm/s 的速度移动,动点Q 从点O 出发沿OA 以1cm/s 的速度移动,如果点P 、Q 同时出发,用t (s )表示移动的时间,当t =______s 时,△POQ 是等腰三角形.三、解答题18.如图,AD 平分⊥BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:AD 垂直平分EF .19.如图,在ABC 中,,AB AC AB =的垂直平分线交AB 于点D ,交AC 于点E .已知BCE 的周长为8,2AC BC -=,求AB 与BC 的长.20.如图,AD 是ABC 的角平分线,EF 是AD 的垂直平分线.求证:(1)EAD EDA ∠=∠;(2)//DF AC ;(3)EAC B ∠=∠.21.如图,在四边形ABCD 中,//AD BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F .求证:(1)FC =AD ;(2)AB =BC +AD .22.如图,在⊥ABC 中,⊥BAC =90°,E 为边BC 上的任意点,D 为线段BE 的中点,AB =AE ,EF ⊥AE ,AF BC ∥.(1)求证:⊥DAE=⊥C;(2)求证:AF=BC.23.阅读下面材料:【原题呈现】如图1,在ABC中,⊥A=2⊥B,CD平分⊥ACB,AD=2.2,AC=3.6,求BC的长.【思考引导】因为CD平分⊥ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到DEC⊥DAC,经过推理能使问题得到解决(如图2).【问题解答】(1)参考提示的方法,解答原题呈现中的问题;(2)拓展提升:如图3,已知ABC中,AB=AC,⊥A=20°,BD平分⊥ABC,BD=2.3,BC=2.求AD的长.参考答案1.C2.C3.C4.C5.C6.D7.A8.B9.A10.A11.C12.D解:⊥⊥⊥ABC为等边三角形,⊥AB=AC,⊥⊥ABC为等腰三角形;⊥⊥BO,CO,AO分别是三个角的角平分线,⊥⊥ABO=⊥CBO=⊥BAO=⊥CAO=⊥ACO=⊥BCO,⊥AO=BO,AO=CO,BO=CO,⊥⊥AOB为等腰三角形;⊥⊥AOC为等腰三角形;⊥⊥BOC为等腰三角形;⊥⊥OD⊥AB,OE⊥AC,⊥⊥ABC=⊥ODE,⊥ACB=⊥OED,⊥⊥ABC=⊥ACB,⊥⊥ODE=⊥OED,⊥⊥DOE为等腰三角形;⊥⊥OD⊥AB,OE⊥AC,⊥⊥BOD=⊥ABO,⊥COE=⊥ACO,⊥⊥DBO=⊥ABO,⊥ECO=⊥ACO,⊥⊥BOD=⊥DBO,⊥COE=⊥ECO,⊥⊥BOD为等腰三角形;⊥⊥COE为等腰三角形.故选:D.13. 5 圆、正六边形、五角星、等边三角形、锐角14.715.2016.70°或20°17.103或10 18.证明:AD 平分⊥BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,,EAD FAD DE EF ∴∠=∠=又AD AD =∴AED AFD ≌∴AE AF =∴,A D 在EF 的垂直平分线上即AD 垂直平分EF .19.解: ⊥BCE 的周长为8,⊥8BE EC BC ++=⊥AB 的垂直平分线交AB 于点D ,交AC 于点E ,⊥AE BE =,⊥8AE EC BC ++=,即8AC BC +=,⊥2AC BC -=,⊥5AC =,3BC =,⊥AB AC =,⊥5AB =.20解析:(1)根据线段垂直平分线上任意一点,到线段两端的距离相等可得到AE DE =,再根据三角形全等得到EAD EDA ∠=∠;(2)根据线段垂直平分线的性质证明AF DF =,进而得到BAD ADF ∠=∠,再利用角平分线的性质可得到BAD CAD ∠=∠,利用等量代换可得ADF CAD ∠=∠,再根据平行线的判定即可得到//DF AC ;(3)根据三角形内角与外角的关系可得到结论.答案:证明:(1)如图,连接AE ,设AD 与EF 相交于点Q ,⊥EF 是AD 的垂直平分线,⊥AE DE =,AQ DQ =,在AEQ △和DEQ 中,⊥,,,AQ DQ EQ EQ AE DE =⎧⎪=⎨⎪=⎩⊥AEQ DEQ ≌(SSS ),⊥EAD EDA ∠=∠;(2)⊥EF 是AD 的垂直平分线,⊥AF DF =,在AFQ △和DFQ 中,⊥,,,AQ DQ FQ FQ AF DF =⎧⎪=⎨⎪=⎩⊥AFQ DFQ ≌(SSS ),⊥BAD ADF ∠=∠,⊥AD 是ABC 的角平分线,⊥BAD CAD ∠=∠,⊥ADF CAD ∠=∠,⊥//DF AC ;(3)由(1)知EAD EDA ∠=∠,EAD CAD EAC ∠=∠+∠,⊥EDA CAD EAC ∠=∠+∠,又⊥EDA BAD B ∠=∠+∠,⊥CAD EAC BAD B ∠+∠=∠+∠,⊥BAD CAD ∠=∠,⊥EAC B ∠=∠.易错:证明:(1)⊥EF 是AD 的垂直平分线,⊥AE DE =,在AEQ △和DEQ 中,,,,AQ DQ AEQ DEQ AE DE =⎧⎪∠=∠⎨⎪=⎩⊥AEQ DEQ ≌(SAS ),⊥EAD EDA ∠=∠.错因:角不是夹角,随意找三个条件证明全等.满分备考:掌握线段的垂直平分线和角平分线的性质与判定的应用,可以快速解决有关线段相等,角相等或距离相等的问题.21(1)//AD BC ,,F DAE ECF D ∴∠=∠∠=∠,点E 是CD 的中点,CE DE ∴=,在CEF △和DEA △中,F DAE ECF D CE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()CEF DEA AAS ∴≅,FC AD ∴=;(2)由(1)已证:CEF DEA ≅,FE AE ∴=,又BE AE ⊥,BE ∴是线段AF 的垂直平分线,AB FB BC FC ∴==+,由(1)可知,FC AD =,AB BC AD ∴=+.22.(1)证明:⊥AB =AE ,D 为线段BE 的中点,⊥AD ⊥BC ,⊥⊥C +⊥DAC =90°,⊥⊥BAC =90°,⊥⊥BAD +⊥DAC =90°,⊥⊥C =⊥BAD ,⊥AB =AE ,AD ⊥BE ,⊥⊥BAD =⊥DAE ,⊥⊥DAE =⊥C ;(2)证明:⊥AF ⊥BC ,⊥⊥F AE =⊥AEB ,⊥AB =AE ,⊥⊥B =⊥AEB ,⊥⊥B =⊥F AE ,又⊥AEF =⊥BAC =90°,AB =AE ,⊥⊥ABC ⊥⊥EAF (ASA ),⊥AC =EF .23.解:(1)如图2,在BC 边上取点E ,使EC =AC ,连接DE .在△ACD 与△ECD 中,AC CE ACD ECD CD CD =⎧⎪∠=∠⎨⎪=⎩,⊥⊥ACD ⊥⊥ECD (SAS ),⊥AD =DE ,⊥A =⊥DEC ,⊥⊥A =2⊥B ,⊥⊥DEC =2⊥B ,⊥⊥B =⊥EDB ,⊥⊥BDE 是等腰三角形;⊥BE =DE =AD =2.2,AC =EC =3.6, ⊥BC 的长为5.8;(2)⊥⊥ABC 中,AB =AC ,⊥A =20°, ⊥⊥ABC =⊥C =80°,⊥BD 平分⊥B ,⊥⊥1=⊥2=40°,⊥BDC =60°,在BA 边上取点E ,使BE =BC =2,连接DE ,在△DEB 和△DBC 中,12BE BC BD BD =⎧⎪∠=∠⎨⎪=⎩,⊥⊥DEB ⊥⊥DBC (SAS ),⊥⊥BED =⊥C =80°,⊥⊥4=60°,⊥⊥3=60°,在DA 边上取点F ,使DF =DB ,连接FE , 同理可得△BDE ⊥⊥FDE ,⊥⊥5=⊥1=40°,BE =EF =2,⊥⊥A =20°,⊥⊥6=20°,⊥AF =EF =2,⊥BD =DF =2.3,⊥AD =BD +BC =4.3.。

人教版八年级上册数学第13章 轴对称 单元练习卷(配套练习附答案)

人教版八年级上册数学第13章 轴对称 单元练习卷(配套练习附答案)
【答案】C
【解析】
【分析】
首先要进行分析题意,“等腰三角形的一个内角”没明确是顶角还是底角,所以要分两种情况进行讨论.
【详解】本题可分两种情况:
①当70°角为底角时,顶角为180°−2×70°=40°;
②70°角为等腰三角形的顶角;
因此这个等腰三角形的顶角为40°或70°.
故选C
【点睛】考查等腰三角形的性质,注意分类讨论,不要漏解.
∴BM=AM,CN=AN,∴∠MAB=∠B,∠CAN=∠C,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,
∴∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,∴△AMN是等边三角形,∴AM=AN=MN,∴BM=MN=NC,
∵BC=9cm,∴MN=3cm.
故答案为3cm.
考点:1.线段垂直平分线的性质;2.等腰三角形的性质;
【点睛】考查等边三角形 性质,熟练掌握等边三角形的性质是解题的关键.
4.等腰三角形的周长为16,其一边长为6,则另两边为_____.
【答案】6和4或5和5.
【解析】
当腰是6时,则另两边是4,6,且4+6>6,满足三边关系定理;
当底边是6时,另两边长是5,5,5+5>6,满足三边关系定理.
故该等腰三角形的另两边为6和4或5和5.
A. B. C. D. 7
【答案】A
【解析】
【分析】
根据轴对称性质可得出PM=MQ,PN=RN,因此先求出QN的长度,然后根据QR=QN+NR进一步计算即可.
【详解】由轴对称性质可得:PM=MQ=2.5cm,PN=RN=3cm,
∴QN=MN−MQ=1.5cm,
∴QR=QN+RN=4.5cm,

第13章 轴对称 人教版数学八年级上册单元测试卷(含答案)

第13章 轴对称 人教版数学八年级上册单元测试卷(含答案)

第十三章 轴对称时间:60分钟 满分:100分一、选择题(本大题共10小题,每小题3分,满分30分.每小题有四个选项,其中只有一个选项符合题意)1.(2022·辽宁盘锦双台子区期末)下列由黑白棋子摆成的图案中,是轴对称图形的是( ) A B C D2.(2022·福建福州鼓楼区期中改编)在平面直角坐标系中,若点(2,m)与点(n,3)关于x 轴对称,则(m+n)2 023的值为( )A.0B.-1C.1D.32 0233.如图是3×3的正方形网格,其中已有2个小方格被涂成了黑色.现在要从编号为①—④的小方格中选出1个也涂成黑色,使黑色部分依然是轴对称图形,不能选择的是( )A.①B.②C.③D.④4.(2022·四川遂宁期末)若等腰三角形的一个外角等于70°,则它的底角的度数为( ) A.35° B.70° C.110° D.55°5.(2022·河南周口期末)元旦联欢会上,同学们玩抢凳子游戏,在与A,B,C三名同学距离相等的位置放一个凳子,谁先抢到凳子谁获胜.如果将A,B,C三名同学所在位置看作△ABC的三个顶点,那么凳子应该放在△ABC的( )A.三边中线的交点处B.三边垂直平分线的交点处C.三边上高的交点处D.三条角平分线的交点处6.(2022·山东菏泽期中)如图,在△ABC中,AB=AC,AD,BE分别是△ABC的中线和角平分线.若∠CAD=20°,则∠ABE的度数为( ) A.20° B.35° C.40° D.70°(第6题) (第7题)7.如图,直线a,b相交形成的夹角中,锐角为52°,交点为O,点A在直线a上,直线b 上存在点B,使以点O,A,B为顶点的三角形是等腰三角形,这样的点B有( )A.4个B.3个C.2个D.1个8.(2022·广东广州天河区期末)在△ABC中,AB=AC,∠A=36°,若按如图所示的尺规作图方法作出线段BD,则下列结论错误的是( )A.AD=BDB.∠BDC=72°C.S△ABD∶S△BCD=BC∶ACD.△BCD的周长=AB+BC9.(2022·山东烟台期末)如图,∠AOB=60°,点P在射线OA上,OP=22,点M,N在射线OB上(点M在点N的左侧),且PM=PN.若MN=4,则OM的长为( ) A.7 B.8 C.9 D.11(第9题) (第10题) 10.(2022·辽宁大连期末)如图,∠ABC=30°,点D是∠ABC内部的一点,连接BD.若BD=1m,点E,F分别是边BA,BC上的动点,则△DEF的周长的最小值为( )A.0.5mB.1mC.1.5mD.2m二、填空题(本大题共6小题,每小题3分,共18分)11.新风向开放性试题汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性,黑体的汉字“王”“中”“田”等都是轴对称图形,请再写出两个这样的汉字: .12.(2022·安徽合肥庐阳区期末改编)如图,在Rt△ABC中,∠C=90°,∠A=30°,线段AB的垂直平分线交AB于点D,交AC于点E,连接BE.若CE=3,则AE= .(第12题) (第13题)13.如图,在△ABC中,AB=AD=DC,若∠BAD=24°,则∠C的度数为 .14.新风向新定义试题(2021·江苏苏州期末)定义:等腰三角形的一个底角与其顶角的度数的比值k(k>1)称为这个等腰三角形的优美比.若在等腰三角形ABC中,∠A=36°,则它的优美比为 .15.(2022·河南济期末)在平面直角坐标系中,对△ABC进行如图所示的轴对称变换.若原来点A的坐标是(a,b),则经过第2 023次变换后,点A所对应的坐标是 .16.(2021·北京西城区期末)如图,△ABC是等边三角形,AD⊥BC于点D,DE⊥AC于三、解答题(共6小题,共52分)17.(6分)(2022·湖北十堰期末节选)如图,△ABC的顶点A,B,C都在小正方形的格点上,利用网格线按下列要求画图.(1)画出△A1B1C1,使它与△ABC关于直线l成轴对称;(2)在直线l上找一点P,使点P到点A,B的距离之和最短.(要求:不写作法,保留作图痕迹)18.(8分)(2022·湖北十堰郧阳区期中改编)某市发生地震后,为了抢救伤员,一架救援直升机从该市A地起飞,运送一批地震伤员沿正北方向到机场N,如图.上午8时,直升机从A地出发,以200 km/h的速度向正北方向飞行,9时到达B地,此时,机场的导航站传来信息:在C处有一座高山,因受天气影响,高山周围80 km内能见度低,飞行时会遇到危险.经测量得∠NAC=15°,∠NBC=30°.问该直升机继续向机场N飞行是否有危险,请说明理由.19.(8分)新风向开放性试题(2022·江苏南京鼓楼区期中)证明:有两个角相等的三角形是等腰三角形.已知:如图,在△ABC中, .求证: .证明:20.(8分)如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.(1)依题意补全图形;(2)若∠PAC=15°,求∠AEB的度数;21.(10分)新风向探究性试题(2022·河北石家庄裕华区期末)【问题】如图,在△ABC中,点D为BC边上一点,BD=BA.EF垂直平分AC,交AC 于点E,交BC于点F,连接AD,AF.若∠B=30°,∠BAF=90°,求∠DAC的度数.【探究】如果把【问题】中的条件“∠B=30°”去掉,其他条件不变,那么∠DAC的度数会变吗?请说明理由.22.(12分)如图,在△ABC中,AB=BC=AC=12 cm,现有两点M,N分别从点A,B同时出发,沿三角形的边运动,已知点M的速度为1 cm/s,点N的速度为2 cm/s.当点N 第一次到达点B时,M,N同时停止运动.(1)当点M,N运动几秒时,M,N两点重合?(2)当点M,N运动几秒时,可得到等边三角形AMN?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如果能,请求出此时M,N运动的时间.第十三章 轴对称选择填空题答案速查12345678910D B D A B B A C C B11.甲,本(答案不唯一)12.613.39°14.215.(-a,b)16.181.D高分锦囊判断一个图形是不是轴对称图形,关键看能否找到这样一条直线,使这个图形沿这条直线折叠,直线两旁的部分能够互相重合.2.B ∵点(2,m)与点(n,3)关于x轴对称,∴m=-3,n=2,∴(m+n)2 023=(2-3)2 023=-1.3.D 图示速解如图,将编号为④的小方格涂成黑色,黑色部分不是轴对称图形.4.A 由题意可得,与等腰三角形的这个外角相邻的内角等于110°.∵三角形的内×(180°-110°)=35°.角和为180°,∴底角不可能等于110°,∴底角度数为125.B ∵三角形的三边垂直平分线的交点到三角形三个顶点的距离相等,∴凳子应放在△ABC的三边垂直平分线的交点处.6.B ∵AD是△ABC的中线,AB=AC,∠CAD=20°,【关键】等腰三角形的“三线合一”∴∠CAB=2∠CAD=40°,∴∠ABC=1×(180°-40°)=70°.∵BE是△ABC的角平分线,2∴∠ABE=1∠ABC=35°.2一题多解∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴AD⊥BC,∴∠C=90°-20°=70°,∴∠ABC=∠C=70°.又BE是△ABC的角平分线,∴∠ABE=1∠ABC=35°.27.A 图示速解如图,要使△OAB为等腰三角形,应分三种情况讨论:①当OB=AB时,作线段OA的垂直平分线,与直线b的交点为B1;②当OA=AB时,以点A为圆心,OA 的长为半径作圆,与直线b交于点B2;③当OA=OB时,以点O为圆心,OA的长为半径作圆,与直线b交于点B3,B4.故选A.8.C ∵AB=AC,∠A=36°,∴∠ABC=∠C=72°.由作图痕迹可知BD平分∠ABC∴∠DBC=∠ABD=∠A=36°,【关键】由尺规作图可以得出BD平分∠ABC∴AD=BD,∠BDC=72°.故A,B选项不符合题意.由以上可知∠C=∠BDC,∴BD=BC,∴AD=BC.∵S△ABD∶S△BCD=AD∶CD,∴S△ABD∶S△BCD=BC∶CD.【关键】两三角形同高不同底故C选项符合题意.∵BD=AD,△BCD的周长=BC+CD+BD,∴△BCD的周长=BC+CD+AD=BC+AC=AB+BC.故D选项不符合题意.7.C 如图,过点P作PC⊥OB于点C,∵∠AOB=60°,∴∠OPC=90°-∠AOB=30°.∵OP=22,∴OC=1OP=11.∵2MN=2,∴OM=OC-MC=11-2=9.PM=PN,MN=4,∴MC=1210.B (转化思想)如图,作点D关于AB的对称点G,作点D关于BC的对称点H,连接GH交AB于点E,交BC于点F,此时△DEF的周长有最小值,连接GB,BH.由线段垂直平分线的性质可得,GE=ED,DF=FH,由轴对称的性质得BG=BD,BD=BH,∴ED+DF+EF=GE+EF+FH=GH,此时△DEF的周长最小值为GH.∵∠GBA=∠ABD,∠DBC=∠CBH,BD=m,∴∠GBH=2∠ABC=2×30°=60°,∴△GBH是等边三角形,∴GH=BG=BD=m,∴△DEF的周长的最小值为m.【关键】发现△GBH是等边三角形11.甲,本(答案不唯一,只要是轴对称图形即可)12.6 ∵∠C=90°,∠A=30°,∴∠CBA=60°.∵DE是线段AB的垂直平分线,∴BE=AE,∴∠ABE=∠A=30°,∴∠CBE=60°-30°=30°.∵∠C=90°,CE=3,∴BE=2CE=2×3=6,∴AE=6.13.39° ∵AB=AD,∠BAD=24°,∴∠B=∠ADB=1×(180°-24°)=78°.2又AD=DC ,∴∠C=∠CAD=12∠ADB=12×78°=39°.14.2 (分类讨论思想)当∠A 为顶角时,则底角∠B=∠C=72°,此时,优美比=72°36°=2;当∠A 为底角时,则顶角为108°,此时,优美比=36°108°=13(不合题意,舍去).15.(-a ,b ) 第1次变换后,点A 在第四象限;第2次变换后,点A 在第三象限;第3次变换后,点A 在第二象限;第4次变换后,点A 在第一象限,回到原始位置,…,以此类推,每4次变换为一组循环.因为2 023÷4=505……3,所以第2 023次变换后,点A 在第二象限,坐标为(-a ,b ).16.18 ∵△ABC 是等边三角形,∴∠C=∠BAC=60°.∵AD ⊥BC ,∴BD=CD ,∠DAC=12∠BAC=30°.∵AD=12,∴DE=12AD=6.∵DE ⊥AC ,∴∠EDC=90°-∠C=90°-60°=30°,∴EC=12DC ,∴BC=4EC.∵S △EDC =12ED ·EC=12×6×EC=3EC ,S △ABC =12AD×BC=12×12×BC=6BC=24EC ,∴S △EDCS △ABC =3EC24EC =18.17.【参考答案】(1)如图,△A 1B 1C 1即为所求作.(3分)(2)如图,点P 即为所求作.(6分)18.【参考答案】该直升机继续向机场N 飞行无危险.(1分)理由:如图,过点C 作CD ⊥AN 于点D ,∵∠NAC=15°, ∠NBC=30°,∴∠ACB=15°,CD=12BC ,∴∠ACB=∠NAC ,∴BC=AB.(5分)由题意可得,AB=200 km,∴BC=200 km,∴CD=100 km.∵100>80,∴该直升机继续向机场N飞行无危险.(8分)19.【参考答案】已知:如图,在△ABC中,∠B=∠C.(2分)求证:△ABC是等腰三角形.(4分)证明:如图,过点A作AD⊥BC,垂足为点D.∵AD⊥BC,∴∠ADB=∠ADC=90°.在△ABD和△ACD中,∠B=∠C,∠ADB=∠ADC,AD=AD,∴△ABD≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.(8分)20.【参考答案】(1)补全图形如图所示. (3分) (2)在等边三角形ABC中,AC=AB ,∠BAC=60°.由对称可知AD=AC ,∠PAD=∠PAC=15°,∴∠BAD=90°,AB=AD ,∴∠ABD=∠D=45°,∴∠AEB=∠D+∠PAD=60°.(8分)21.思路导图【参考答案】【问题】∵AB=BD ,∠B=30°,∴∠BAD=∠ADB=180°―30°2=75°.∵∠BAF=90°,∴∠AFB=90°-30°=60°.∵EF 垂直平分AC ,∴∠CAF=∠C.∵∠AFB=∠C+∠CAF=2∠C ,∴∠C=∠CAF=12∠AFB=30°,∴∠CAD=∠ADB-∠C=75°-30°=45°.(5分)【探究】不变.(6分)理由:∵AB=BD ,∴∠BAD=∠ADB=180°―∠B 2=90°-12∠B.∵∠BAF=90°,∴∠AFB=90°-∠B.∵EF 垂直平分AC ,∴∠CAF=∠C.∵∠AFB=∠C+∠CAF=2∠C ,∴∠C=∠CAF=12∠AFB=45°-12∠B ,∴∠CAD=∠ADB-∠C=90°-12∠B-(45°-12∠B )=45°.(10分)22.【参考答案】(1)设当点M ,N 运动x s 时,M ,N 两点重合,由题意,可得x×1+12=2x ,解得x=12.故当点M ,N 运动12 s 时,M ,N 两点重合.(2分)(2)设当点M ,N 运动t s 时,可得到等边三角形AMN ,此时AM=t ,AN=AB-BN=12-2t ,∴t=12-2t ,解得t=4.(4分)故当点M ,N 运动4 s 时,可得到等边三角形AMN.(5分)(3)当点M ,N 在BC 边上运动时,能得到以MN 为底边的等腰三角形.(6分)若△AMN 是以MN 为底边的等腰三角形,则AN=AM ,∴∠AMN=∠ANM ,∴∠AMC=∠ANB.∵在△ABC 中,AB=BC=AC ,∴△ACB 是等边三角形,∴∠C=∠B=60°.(8分)在△ACM 和△ABN 中,∠AMC =∠ANB ,∠C =∠B ,AC =AB ,∴△ACM ≌△ABN ,∴CM=BN.(10分)设当点M ,N 运动时间为y s 时,△AMN 是以MN 为底边的等腰三角形,∴CM=y-12,NB=36-2y ,∴y-12=36-2y ,解得y=16.故能得到以MN 为底边的等腰三角形AMN ,此时M ,N 运动的时间为16 s .(12分)。

人教版八年级(上册)数学 第13章 轴对称 单元测试及答案

人教版八年级(上册)数学 第13章 轴对称 单元测试及答案

八年级(上)数学第13章轴对称单元测试一、选择题(本大题共10题,每小题3分,共30分)1、下列说法正确的是().A.轴对称涉及两个图形,轴对称图形涉及一个图形B.如果两条线段互相垂直平分,那么这两条线段互为对称轴C.所有直角三角形都不是轴对称图形D.有两个内角相等的三角形不是轴对称图形2、点M(1,2)关于轴对称的点的坐标为().A.(-1,-2) B.(-1,2) C.(1,-2) D.(2,-1)3、下列图形中对称轴最多的是( ) .A.等腰三角形 B.正方形 C.圆 D.线段4、已知直角三角形中30°角所对的直角边为2,则斜边的长为().A.2 B.4 C.6 D.85、若等腰三角形的周长为26,一边为11,则腰长为().A.11 B.7.5 C.11或7.5 D.以上都不对6.在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()(A)250(B)300(C)350(D)4007、如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16 B.18 C.26 D.28B 8、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 ( ).A .75°或15°B .75°C .15°D .75°和30°9、等腰三角形ABC 在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标,能确定的是( ).A .横坐标B .纵坐标C .横坐标及纵坐标D .横坐标或纵坐标10、下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是( )A :B :C :D :二、填空题(每小题3分,共15分)11、已知点P 在线段AB 的垂直平分线上,PA=6,则PB= .12、等腰三角形一个底角是30°,则它的顶角是__________度.13、等腰三角形的一内角等于50°,则其它两个内角各为 .14、如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 .15.已知A (-1,-2)和B (1,3),将点A 向______平移________ 个单位长度后得到的点与点B 关于轴对称.三、解答题:16、如图,已知△ABC ,分别画出与△ABC 关于轴、轴对称的图形△A 1B 1C 1 和△A 2B 2C 2 ;(8分)17. (8分)在一次数学课上,王老师在黑板上画出下图,并写下了四个等式:①AB=DC,②BE=CE,③∠B=∠C,④∠BAE=∠CDE.要求同学从这四个等式中选出两个作为条件,推出△AED是等腰三角形.请你试着完成王老师提出的要求,并说明理由.(写出一种即可)已知:求证:△AED是等腰三角形.证明:18.如图,点D、E在△ABC的边BC上,AD=AE,AB=AC,求证:BD=EC。

人教版八年级数学上册《第十三章轴对称》测试卷-附带有答案

人教版八年级数学上册《第十三章轴对称》测试卷-附带有答案

人教版八年级数学上册《第十三章轴对称》测试卷-附带有答案一、单选题1.以下是某些运动会会标,其中是轴对称图形的是()A.B.C.D.2.等腰三角形的周长为,其中一边长为,则其腰长为()A.B.或C.D.以上都不对3.如图,在由边长为1的小正方形组成的5×5的网格中,点A,B在小方格的顶点上,要在小方格的顶点确定一点C,连接AC和BC,使△ABC是等腰三角形.则方格图中满足条件的点C的个数是()A.5 B.6 C.7 D.84.如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为()A.90°B.108°C.110°D.126°5.如图,中,是边的垂直平分线,分别交、于点、连接,若恰好为的平分线,则的度数是()A.B.C.D.6.如图,在中、的垂直平分线分别交于点、若的周长是20,则的周长为()A.4 B.7 C.9 D.117.如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=5,点F是AD边上的动点,则BF+EF的最小值为()A.7.5 B.5 C.4 D.不能确定8.如图,在△ABC,AB=AC,D为BC上的一点,∠BAD=28°,在AD的右侧作△ADE,使得AE=AD,∠DAE=∠BAC,连接CE、DE,DE交AC于点O,若CE∥AB,则∠AOD的度数为()A.92°B.90°C.88°D.84°二、填空题9.已知等腰三角形的两边长分别为3,6,则这个等腰三角形的周长为.10.如图,在中则°.11.如图,在△ABC中,AB=AC,BD=CD,∠BAD=20°,DE⊥AC于E ,则∠EDC °.12.如图,在直角三角形中,点D在上,点G在上,与关于直线对称,与交于点E,若,则的度数是度.13.如图,△ABC为等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1,则AD 的长为.三、解答题14.如图,在中,求的长15.如图,在平面直角坐标系中,的顶点均在正方形网格的格点上.①画出关于x轴的对称图形;②将向左平移3个单位后得到,画出,并写出顶点的坐标.16.如图所示,在△ABC中,AB=BC,点D是BC上一点,DE⊥AB于点E,DF⊥BC,交AC于点F,连接BF.(1)若∠AFD=155°,求∠EDF的度数;(2)若点F是AC的中点,判断∠ABC与∠CFD的数量关系,并说明理由.17.如图,在中,的垂直平分线分别交线段,于点M,P,的垂直平分线分别交线段,于点N,Q.(1)如图,当时,求的度数;(2)当时,求的度数.18.如图,在中,点分别在边上,且.(1)求证:是等腰三角形;(2)当时,求的度数;(3)若,判断是何种三角形.参考答案:1.B2.C3.B4.B5.C6.C7.B8.C9.1510.6511.2012.13.714.解:在中即BC的长为.15.解:如图所示:,即为所求;,即为所求,点(−3,−1). 16.(1)解:∵∠AFD=155°∴∠DFC=25°∵DF⊥BC,DE⊥AB∴∠FDC=∠AED=90°在Rt△FDC中∴∠C=90°﹣25°=65°∵AB=BC∴∠C=∠A=65°∴∠ABC=180°﹣2×65°=50°∵∠ABC+∠BDE=∠EDF+∠BDE=90°∴∠EDF=∠ABC=50°;(2)解:∠CFD=∠ABC,理由如下:∵AB=BC,且点F是AC的中点∴BF⊥AC,∠ABF=∠CBF=∠ABC∴∠CFD+∠BFD=90°∠CBF+∠BFD=90°∴∠CFD=∠CBF.17.(1)解:∵、分别是的垂直平分线∴,∵∴∵∴∴(2)解:∵分别是的垂直平分线∴∴∴当P点在Q点右侧时,如图:∵∴∵∴.当P点在Q点左侧时∵∴∵∴.综上或.18.(1)证明:在和中是等腰三角形;(2)解:即;;(3)解:是等边三角形,理由如下:由(2)知又又是等边三角形。

人教版八年级上册数学第13章《轴对称》单元测试卷(含答案解析)

人教版八年级上册数学第13章《轴对称》单元测试卷(含答案解析)

人教版八年级上册数学第13章《轴对称》单元测试卷班级_________ 姓名__________ 考号_____________ 得分____________一、选择题(每小题3分,共30分)1、下列图形中一定是轴对称图形的是()A.B.C.D.2、点A(a﹣3,﹣1)与点B(2,b+2)关于x轴对称,则a,b的值分别是()A.a=1,b=﹣3 B.a=1,b=﹣1 C.a=5,b=﹣3 D.a=5,b=﹣13、如图,在△ABC中,AB=AD=DC,若∠BAD=36°,则∠C的大小为()A.36°B.38°C.40°D.42°4、等腰三角形的一个外角是140°,则其底角是()A.40°B.70°或40°C.70°D.140°5、等腰三角形的周长为15,其中一边长为3,则该等腰三角形的底边长为()A.3 B.4 C.5 D.66、如图,△ABC中,AB=AC,AD=DE,∠BAD=18°,∠EDC=12°,则∠DAE的度数为()A.58°B.56°C.62°D.60°7、如图,四边形ABCD中,AB=AD,点B关于AC的对称点B′恰好落在CD上,若∠BAD=100°,则∠ACB的度数为()A.40°B.45°C.60°D.80°8、如图,在△ABC中,∠C=90°,点A关于BC边的对称点为A′,点B关于AC边的对称点为B′,点C关于AB边的对称点为C′,则△ABC与△A′B′C′的面积之比为()A.B.C.D.9、在△ABC中,AB=AC,OB=OC,点A到BC的距离是6,O到BC的距离是4,则AO为()A.2 B.10 C.2或10 D.无法测量10、如图,在Rt△ABC中(AB>2BC),∠C=90°,以BC为边作等腰△BCD,使点D落在△ABC的边上,则点D的位置有()A.2个B.3个C.4个D.5个二、填空题(每小题4分,共24分)11、在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴对称得到点A′,再将点A′向上平移2个单位,得到点A″,则点A″的坐标是(1,4).12、一个等腰三角形一腰上的中线把这个三角形的周长分为12和30两部分,则这个等腰三角形的腰长为20.13、如图,等腰△ABC中,AB=AC,∠A=54°,AB的垂直平分线MN交AC于点D,则∠DBC的度数是9°.14、如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE的长为.15、如图,在平面直角坐标系xOy中,已知点A(6,2),B(0,1).在x轴上找一点P,使得PA+PB最小,则点P的坐标是(2,0),此时△PAB的面积是4.16、在Rt△ABC中,∠ACB=90°,∠CAB=36°,在直线AC或BC上取点M,使得△MAB为等腰三角形,符合条件的M点有8个.。

八年级数学上册第十三章《轴对称》测试-人教版(含答案)

八年级数学上册第十三章《轴对称》测试-人教版(含答案)

八年级数学上册第十三章《轴对称》测试-人教版(含答案)题号一二三总分19 20 21 22 23 24分数一、选择题(每题3分,共30分)1以下列各组数据为边长,可以构成等腰三角形的是()A.1,1,2 B.1,1,3 C.2,2,1 D.2,2,52如图,下列条件不能推出△ABC是等腰三角形的是()A.∠B=∠C B.AD⊥BC,∠BAD=∠CADC.AD⊥BC,BD=CD D.AD⊥BC,∠BAD=∠ACD3如图,DE是△ABC中AB边的垂直平分线,若BC=6,AC=8,则△BCE的周长为()A.10 B.12 C.14 D.164.如图,直线m是多边形ABCDE的对称轴,其中∠A=120°,∠B=110°,那么∠BCD的度数为( )A.50° B.60° C.70° D.80°5.如图,在等腰△ABO中,∠ABO=90°,腰长为2,则A点关于y轴的对称点的坐标为()A.(﹣2,2)B.(﹣2,﹣2)C.(2,2)D.(2,﹣2)6.以下叙述中不正确的是()A.等边三角形的每条高线都是角平分线和中线B.有一内角为60°的等腰三角形是等边三角形C.等腰三角形一定是锐角三角形D.在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等7.如图①,在边长为4cm的正方形ABCD中,点P从点A出发,沿AB→BC的路径匀速运动,当点C停止,过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(s)的函数关系图象如图②所示,当点P运动2.5s时,PQ的长是()cm.A.B.C.D.8.如图13-5,P是∠AOB外的一点,M,N分别是∠AOB两边上的点,点P关于OA的对称点Q 恰好落在线段MN上,点P关于OB的对称点R恰好落在MN的延长线上.若PM=2.5 cm,PN=3 cm,MN=4 cm,则线段QR的长为()A.4.5 cmB.5.5 cmC.6.5 cmD.7 cm图13-5 图13-69.如图13-6,已知在△ABC中,∠ABC=90°,∠A=30°,BD⊥AC,DE⊥BC,D,E分别为垂足,下列结论中正确的是()A.AC=2ABB.AC=8ECC.CE=12BDD.BC=2BD10. 如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为()A.90°B.108°C.110°D.126°二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.17.如图,在△ABC中,AB=AC,∠A=32°,以点C为圆心、BC的长为半径作弧,交AB于点D,交AC于点E,连接BE,则∠ABE的大小为______.18.如图,△ABC中,BC的垂直平分线DP与∠BAC的平分线相交于点D,垂足为点P,若∠BAC =84°,则∠BDC=______.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC,(1)分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2;(2)直接写出B1和B2点坐标.20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.21.如图,△ABC中,AB=AC,DE是腰AB的垂直平分线.(1)若∠A=40°,求∠DBC的度数;(2)若AB=9,BC=5,求△BDC的周长.22.如图,在△ABC中,BC的垂直平分线交BC于点D,交AB延长线于点E,连接CE.求证:∠BCE=∠A+∠ACB.23.已知△ABC中,AC=BC,∠C=120°,点D为AB边的中点,∠EDF=60°,DE、DF分别交AC、BC于E、F点.(1)如图1,若EF∥AB.求证:DE=DF.(2)如图2,若EF与AB不平行.则问题(1)的结论是否成立?说明理由.24.已知等腰ABC,AC AB⊥交BA延长线于点D,点P在直线AC上=,30ABC∠=︒,CD AB运动,连接BP,以BP为边,并在BP的左侧作等边三角形BPE,连接AE.(1)如图1,当BP AC≌△△;⊥时,求证:ABP ACD(2)如图2,当点D与点E在直线CP同侧时,求证:AP AB AE=+;(3)在点P运动过程中,是否存在定直线,使得线段BE、CE始终关于这条直线对称,若存在,指出这一条直线,并加以证明:若不存在,请说明理由.参考答案一、选择题(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案 C D C D C C D B D B二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.【考点】轴对称图形.【答案】见试题解答内容【分析】应根据各图形组成特征找出对应关系.【解答】解:A剪开后是三个三角形,B和C剪开后是两个直角梯形和一个三角形,D剪开后是两个三角形和一个四边形,因而,A与G对应,B与E对应,C与F对应,D与H对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.【考点】线段垂直平分线的性质.【专题】三角形.【答案】见试题解答内容【分析】先根据题意得到AB垂直平分CD,然后根据线段垂直平分线的性质可判断C,D到B的距离相等.【解答】解:∵AB⊥CD,AC=AD,∴AB垂直平分CD,∴BC=BD,即C,D到B的距离相等.故答案为:垂直平分线上的点到线段两端点的距离相等.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.【考点】等边三角形的性质;含30度角的直角三角形.【专题】推理填空题.【答案】见试题解答内容【分析】根据等边三角形的性质得到AD=4,AC=8,∠A=∠C=60°,根据直角三角形的性质得到AE=AD=2,计算即可.【解答】解:等边△ABC中,D是AB的中点,AB=8,∴AD=4,BC=AC=8,∠A=∠C=60°,∵DE⊥AC于E,EF⊥BC于F,∴∠AFD=∠CFE=90°,∴AE=AD=2,∴CE=8﹣2=6,∴CF=CE=3,∴BF=5,故答案为:5.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.【考点】解一元一次不等式组;一元一次不等式组的整数解;关于x轴、y轴对称的点的坐标.【专题】平面直角坐标系;数感;运算能力.【答案】2.【分析】由于点P关于y轴的对称点在第二象限,则点P在第一象限,再根据点的坐标特征,即可得出整数m的值.【解答】解:由于点P关于y轴的对称点在第二象限,则点P在第一象限.依题意有解得<m<3.因为m为整数,所以m=2,故答案为:2.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.【考点】等边三角形的性质;轴对称﹣最短路线问题.【专题】平移、旋转与对称;推理能力.【答案】见试题解答内容【分析】根据等边三角形的性质得到AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,根据直角三角形的性质得到BG=2BF=14,求得EG=8,于是得到结论.【解答】解:∵△ABC是等边三角形,∴AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,∵∠B=60°,∠BFG=90°,∴∠G=30°,∵BF=7,∴BG=2BF=14,∴EG=8,∵CE=CG=4,∴AC=BC=10,故答案为:10.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.【考点】等腰三角形的性质.【专题】等腰三角形与直角三角形.【答案】见试题解答内容【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解.【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或17.21°解析:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°.依题意可知BC=EC,∴∠BEC =∠EBC=53°,∴∠ABE=∠ABC-∠EBC=74°-53°=21°.18.96°解析:如图,过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于点F.∵AD是∠BAC的平分线,∴DE =DF .∵DP 是BC 的垂直平分线,∴BD =CD .在Rt△DEB 和Rt△DFC 中,⎩⎨⎧DB =DC ,DE =DF ,∴Rt△DEB ≌Rt△DFC (HL).∴∠BDE =∠CDF ,∴∠BDC =∠EDF .∵∠DEB =∠DFA =90°,∠BAC =84°,∴∠BDC =∠EDF =360°-90°-90°-84°=96°.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC ,(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1和△A 2B 2C 2;(2)直接写出B 1和B 2点坐标.【分析】(1)分别作出点A 、B 、C 关于x 轴、y 轴对称的点,然后顺次连接;(2)根据坐标系的特点,写出点B 1和B 2的坐标.【解答】解:(1)所作图形如图所示:;(2)B1(2,2),B2(﹣2,﹣4).20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.【分析】①③;②③;①④;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形,首先证明△EBO≌△DCO,可得BO=CO,根据等边对等角可得∠OBC =∠OCB,进而得到∠ABC=∠ACB,根据等角对等边可得AB=AC,即可得到△ABC是等腰三角形.【解答】①③;②③;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形;证明:∵在△EBO和△DCO中,∵,∴△EBO≌△DCO(AAS),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.21.解:(1)∵△ABC中,AB=AC,∠A=40°,∴∠ABC==70°.∵DE是腰AB的垂直平分线,∴AD=BD,∠DBA=∠A=40°,∴∠DBC=70°﹣40°=30°;(2)由(1)得:AD=BD,∴△BDC的周长=BD+CD+BC=AD+CD+BC=AC+BC=AB+BC=9+5=14.答:△BDC的周长是14.22.证明:∵BC的垂直平分线交BC于点D,交AB延长线于点E,∴CE=BE,∴∠ECB=∠EBC,∵∠EBC=∠A+∠ACB,∴∠BCE=∠A+∠ACB.23.【答案】(1)解:∵EF∥AB.∴∠FEC=∠A=30°.∠EFC=∠B=30°∴EC=CF.又∵AC=BC∴AE=BFD是AB中点.∴DB=AD∴△ADE≌△BDF.∴DE=DF(2)解:过D作DM⊥AC交AC于M,再作DN⊥BC交BC于N.∵AC=BC,∴∠A=∠B,又∵∠ACB=120°,∴∠A=∠B=(180°﹣∠ACB)÷2=30°,∴∠ADM=∠BDN=60°,∴∠MDN=180°﹣∠ADM﹣∠BDN=60°.∵AC=BC、AD=BD,∴∠ACD=∠BCD,∴DM=DN.由∠MDN=60°、∠EDF=60°,可知:一当M 与E 重合时,N 就一定与F 重合.此时:DM=DE 、DN=DF ,结合证得的DM=DN ,得:DE=DF .二当M 落在C 、E 之间时,N 就一定落在B 、F 之间.此时:∠EDM=∠EDF﹣∠MDF=60°﹣∠MDF,∠FDN=∠MDN﹣∠MDF=60°﹣∠MDF,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.三当M 落在A 、E 之间时,N 就一定落在C 、F 之间.此时:∠EDM=∠MDN﹣∠EDN=60°﹣∠EDN,∠FDN=∠EDF﹣∠EDN=60°﹣∠EDN,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.综上一、二、三所述,得:DE=DF .24. (1)证明∶如图1,∵CD ⊥AB , BP ⊥AC ,∴∠ADC =∠APB =90°,∵在△ABP 和△ACD 中,ADC APB CAD BAP AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABP ≌△ACD ;(2)证明:如图3,在PA 上取一点M ,使得PM =AB ,∵△BPE是等边三角形,∴BE=PE,∠BEP=60°,∵AB=AC,∠ABC=30°,∴∠ACB=∠ABC=30°,∴∠BAP=∠ABC+∠ACB=60*,∴∠BEP=∠BAP,∴∠EPM=∠EBA,∴△PEM≌△BEA,∴EM=AE,∠PEM=∠BEA,∴∠AEM=∠AEB+∠BEM=∠PEM+∠MEB=∠BEP=60°,∴△AEM是等边三角形,∵AE=AM,∴AP=AM+PM=AE+AB;(3)解∶存在定直线,使得线段BE、CE始终关于这条直线对称,理由如下:①当点D与点E在直线CP同侧时,连接CE,如图4,∵△AEM是等边三角形,∴∠EAM=60°,∵∠BAP =60°,∴∠DAE =180°-∠DAE -∠EAM =60°,∴∠CAE =CAD +∠DAE =120°,∠BAE =∠BAP +∠AEM =120°,∴∠CAE =∠BAE ,∵在△CAE 和△BAE 中AE AE CAE BAE AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△CAE ≌△BAE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;②当点D 与点E 在直线CP 两侧时,在PC 上取一点M ,使得PM = BA ,如图5,∵△BPE 是等边三角形,∴BE =PE ,∠BEP =60°,∵AB =AC ,∠ABC =30°,∴∠ACB =∠ABC =30°,∴∠BAP =∠ABC +∠ACB =60°,∴∠BEP =∠BAP ,∴∠EPM =∠EBA ,∴△PEM ≌△BEA ,∴∠PME =∠BAE , EM =AE ,∴∠PME =∠MAE ,∴∠MAE =∠BAE ,∵△ACE 和△ABE 中,CA AB MAE BAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△ABE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;即∶在点P 运动过程中,存在定直线(线段BC 的垂直平分线),使得线段BE 、CE 始终关于这条直线对称.。

2022-2023学年人教版八年级数学上册《第13章轴对称》单元综合测试题(附答案)

2022-2023学年人教版八年级数学上册《第13章轴对称》单元综合测试题(附答案)

2022-2023学年人教版八年级数学上册《第13章轴对称》单元综合测试题(附答案)一.选择题(共8小题,满分32分)1.在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.2.如图,△ABC中,AB=AC、∠ABC=72°,CD∥AB,BD交AC于E,且CE=DE,则∠D的度数是()A..36°B.30°C..22.5°D.40°3.如图,在△ABC中,∠C=90°,AP是角平分线,AP=5,CP=2,则P到AB的距离是()A.5B.2C.3D.44.等腰三角形两边长分别为3和6,则该三角形的周长为()A.12B.15C.12或15D.条件不够无法计算5.如图,∠ABC是一个锐角,以点A为圆心,适当长度为半径画弧,交射线BC于点D,E.若∠ABC=40°,∠BAD=25°,则∠DAE的度数是()A.40°B.50°C.60°D.70°6.如图,在△ABC中,边AB,AC的垂直平分线交于点P,连结BP,CP,若∠A=50°,则∠BPC=()A.50°B.100°C.130°D.150°7.如图,已知长方形纸片ABCD,点E,F在AD边上,点G,H在BC边上,分别沿EG,FH折叠,使点D和点A都落在点M处,若α+β=118°,则∠EMF的度数为()A.56°B.58°C.60°D.62°8.如图,在△ABC中,∠A=90°,BE是△ABC的角平分线,ED⊥BC于点D,CD=4,△CDE周长为12,则AC的长是()A.14B.8C.16D.6二.填空题(共8小题,满分40分)9.已知三角形的三边长分别为5、a、10,则a的取值范围是;如果这个三角形中有两条边相等,那么它的周长为.10.等腰三角形的一个底角为50°,则该等腰三角形的顶角度数为度.11.如图,将一张长方形纸片ABCD沿EF折叠,使点D与点B重合,点C落在C′的位置上,若∠BFE=68°,则∠ABE的度数为.12.如图,在△ABC中,AB=AC,且AE=AD,∠EDC=α,则∠BAD=.13.如图,点P为∠AOB内一点,分别作出P点关于OA,OB的对称点P1,P2,连结P1P2交OA于M,交OB于N,若线段P1P2的长为12cm,则△PMN的周长为cm.14.如图,在直角三角形ABC中,∠C=90°,点D在AB上,点G在BC上,将△BDG 沿直线DG翻折后,点B落在点F处,联结DF,如果DF∥AC,那么∠B与∠BDG的数量关系是.15.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,则∠1+∠2=度.16.如图,在四边形ABCD中,∠BCD=50°,∠B=∠D=90°,在BC、CD上分别取一点M、N,使△AMN的周长最小,则∠MAN=°.三.解答题(共7小题,满分48分)17.如图,∠AOB=40°,点D在OA边上,点C,E在OB边上,连接CD,DE.若OC =OD=DE,求∠CDE的度数.18.如图,已知M、N分别是∠AOB的边OA上任意两点.(1)尺规作图:作∠AOB的平分线OC;(2)在∠AOB的平分线OC上求作一点P,使PM+PN的值最小.(保留作图痕迹,不写画法)19.如图,在△ABC中,∠ABC=20°,∠ACB=65°,DE,FG分别为AB,AC的垂直平分线,E,G分别为垂足.(1)求∠DAF的度数.(2)若BC的长为50,求△DAF的周长.20.在8×6的网格中,A,B,C是格点,D是AB与网格线的交点,仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示:(1)在线段AC上取点E,使DE=CD;(2)画格点F,使EF∥AB;(3)画点E关于AB的对称点G;(4)在射线AG上画点P,使∠PDE与∠GAE互补.21.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将△ACB沿CD折叠,使点A 恰好落在BC边上的点E处.(1)求△BDE的周长;(2)若∠B=37°,求∠CDE的度数.22.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交AC于点M.(1)若∠B=70°,求∠BAC的大小.(2)连接MB,若AB=8cm,△MBC的周长是14cm.①求BC的长;②在直线MN上是否存在点P,使PB+CP的值最小,若存在,标出点P的位置并求PB+CP的最小值,若不存在,说明理由.23.如图,点D在等边△ABC的外部,E为BC边上的一点,AD=CD,DE交AC于点F,AB∥DE.(1)判断△CEF的形状,并说明理由;(2)若BC=10,CF=4,求DE的长.参考答案一.选择题(共8小题,满分32分)1.解:A.风,不是轴对称图形,故此选项不合题意;B.和,不是轴对称图形,故此选项不合题意;C.日,是轴对称图形,故此选项符合题意;D.丽,不是轴对称图形,故此选项不合题意;故选:C.2.解:∵AB=AC,∠ABC=72°,∴∠ACB=∠ABC=72°,∵CD∥AB,∴∠BCD=180°﹣∠ABC=108°,∴∠ACD=∠BCD﹣∠ACB=36°,∵CE=DE,∴∠D=∠ACD=36°,故选:A.3.解:过P作PD⊥AB于D,∵∠C=90°,∴PC⊥AC,∴AP平分∠CAB,∴PD=PC,∵PC=2,∴PD=2,∴点P到边AB的距离是2,故选:B.4.解:当等腰三角形的腰为3时,三边为3,3,6,3+3=6,三边关系不成立,当等腰三角形的腰为6时,三边为3,6,6,三边关系成立,周长为3+6+6=15.故选:B.5.解:根据题意,得AD=AE,∴∠ADE=∠AED,∵∠ABC=40°,∠BAD=25°,∴∠ADE=40°+25°=65°,∴∠AED=65°,∴∠DAE=180°﹣65°﹣65°=50°,故选:B.6.解:连接AP,延长BP交AC于D,∴∠BPC=∠PDA+∠ACP=∠BAC+∠ABP+∠ACP,∵点P是AB,AC的垂直平分线的交点,∴P A=PB=PC,∴∠ABP=∠BAP,∠ACP=∠CAP,∴∠BPC=∠BAC+∠BAP+∠CAP=∠BAC+∠BAC=2∠BAC=2×50°=100°,故选B.7.解:∵AD∥BC,∴∠DEG=α,∠AFH=β,∴∠DEG+∠AFH=α+β=118°,由折叠得:∠DEM=2∠DEG,∠AFM=2∠AFH,∴∠DEM+∠AFM=2×118°=236°,∴∠FEM+∠EFM=360°﹣236°=124°,在△EFM中,∠EMF=180°﹣(∠FEM+∠EFM)=180°﹣124°=56°,故选:A.8.解:∵BE是△ABC的角平分线,ED⊥BC,∠A=90°,∴AE=DE,∵△CDE的周长为12,CD=4,∴DE+EC=8,∴AC=AE+EC=8,故选:B.二.填空题(共8小题,满分40分)9.解:根据三角形的三边关系可得:10﹣5<a<10+5,即5<a<15,∵这个三角形中有两条边相等,∴a=10或a=5(不符合三角形的三边关系,不合题意,舍去)∴周长为5+10+10=25,故答案为:5<a<15;25.10.解:∵等腰三角形底角相等,∴180°﹣50°×2=80°,∴顶角为80°.故答案为:80.11.解:∵AD∥BC,∴∠DEF=∠BFE=68°,根据折叠的性质得,∠BEF=∠DEF=68°,∴∠AEB=180°﹣∠BEF﹣∠DEF=180°﹣68°﹣68°=44°,∵∠A=90°,∴∠ABE=90°﹣44°=46°,故答案为:46°.12.解:∵∠AED=∠C+∠EDC=∠C+α,AE=AD,∴∠ADE=∠AED=∠C+α,∴∠ADC=∠C+2α,∵AB=AC,∴∠B=∠C,∴∠BAD=∠ADC﹣∠B=∠ADC﹣∠C=∠ADC﹣(∠C+2α)=2α.故答案为:2α.13.解:∵P点关于OA、OB的对称点P1,P2,∴NP=NP2,MP=MP1,∴△PMN的周长=PN+MN+MP=P2N+NM+MP1=P1P2=12cm,故答案为:12.14.解:∠B与∠BDG的数量关系是:∠B+2∠BDG=90°,∵AC∥DF,∴∠DEB=∠C=90°,∴∠B+∠FDB=90°,由翻折可得:∠BDG=∠FDG,∴∠B+2∠BDG=90°,故答案为:∠B+2∠BDG=90°.15.解:延长AF、BE交于点D,∵∠A=65°,∠B=75°,∴∠D=180°﹣∠A﹣∠B=40°,∴∠DFE+∠DEF=180°﹣∠D=140°,∵将纸片的一角折叠,使点C落在△ABC内,∴∠CFE=∠DFE,∠CEF=∠DEF,∴∠DFC+∠DEC=2(∠DFE+∠DEF)=280°,∴∠1+∠2=(180°﹣∠DFC)+(180°﹣∠DEC)=360°﹣(∠DFC+∠DEC)=360°﹣280°=80°,故答案为:80.16.解:如图,作点A关于BC、CD的对称点A1、A2,连接A1、A2分别交BC、DC于点M、N,连接AM、AN,则此时△AMN的周长最小,∵∠BCD=50°,∠B=∠D=90°,∴∠BAD=360°﹣90°﹣90°﹣50°=130°,∴∠A1+∠A2=180°﹣130°=50°,∵点A关于BC、CD的对称点为A1、A2,∴NA=NA2,MA=MA1,∴∠A2=∠NAD,∠A1=∠MAB,∴∠NAD+∠MAB=∠A1+∠A2=50°,∴∠MAN=∠BAD﹣(∠NAD+∠MAB)=130°﹣50°=80°,故答案为:80°.三.解答题(共7小题,满分48分)17.解:∵OC=OD,∴∠OCD=∠ODC,∵∠AOB=40°,∴∠ODC=(180°﹣∠AOB)÷2=(180°﹣40°)÷2=70°,∵OD=DE,∴∠OED=∠AOB=40°,∴∠ODE=180°﹣40°×2=100°,∴∠CDE=∠ODE﹣∠ODC=100°﹣70°=30°.18.解:(1)如图1所示,OC即为所求作的∠AOB的平分线.(2)如图2,作点M关于OC的对称点M′,连接M′N交OC于点P,则点P即为所求.19.解:(1)∵∠ABC=20°,∠ACB=65°,∴∠BAC=180°﹣∠ABC﹣∠ACB=95°,∵DE,FG分别为AB,AC的垂直平分线,∴DA=DB,F A=FC,∴∠DAB=∠ABC=20°,∠F AC=∠ACB=65°,∴∠DAF=∠BAC﹣∠DAB﹣∠F AC=10°;(2)由(1)可知,DA=DB,F A=FC,∴△DAF的周长=DA+DF+F A=DB+DF+FC=BC=50.20.解:(1)如图,点E即为所求;(2)如图,线段EF即为所求;(3)如图,点G即为所求;(4)如图,点P即为所求.21.解:(1)由折叠可得,AC=CE,DE=AD,∵AC=6,BC=8,∴CE=6,AB=10,∵BC=8,∴BE=2,∴△BDE的周长=DE+EB+BD=AD+BD+EB=AB+EB,∵AB=10,∴△BDE的周长=10+2=12;(2)∵∠B=37°,∴∠CED=37°+∠BDE,∵∠A=∠CED,∴∠CED=37°+∠BDE,∵∠ACB=90°,∴37°+∠BDE+37°=90°,∴∠BDE=16°,∴∠ADE=180°﹣16°=164°,∴∠CDE=∠ADE=82°.22.解:(1)∵AB=AC,∠B=70°,∴∠BAC=180°﹣70°×2=40°;(2)∵MN垂直平分AB.∴MB=MA,又∵△MBC的周长是14cm,∴AC+BC=14cm,∴BC=6cm.(3)当点P与点M重合时,PB+CP的值最小,为AC长,最小值是8cm.23.解:(1)△CEF是等边三角形,理由:∵△ABC是等边三角形,∴∠ABC=∠ACB=∠BAC,∵AB∥DE,∴∠CEF=∠ABC,∠CFE=∠CAB,∴∠CEF=∠CFE=∠ECF∴△CEF是等边三角形;(2)连接BD,∵△ABC是等边三角形,∴AB=BC=AC,∵AD=CD,∴BD是线段AC的垂直平分线,∴BD平分∠ABC,∴∠ABD=∠CBD,∵AB∥DE∴∠ABD=∠BDE,∴∠BDE=∠CBD,∴BE=DE,∴BC=BE+EC=DE+CF∴DE=BC﹣CF=10﹣4=6.。

八年级数学上册第十三章《轴对称》综合测试卷-人教版(含答案)

八年级数学上册第十三章《轴对称》综合测试卷-人教版(含答案)

八年级数学上册第十三章《轴对称》综合测试卷-人教版(含答案)一、选择题(每小题3分,共30分)1.(2022独家原创)下图是天气预报中的图形,其中是轴对称图形的为( )A BC D2.(2022独家原创)如图,在△ABC中,∠BAC=75°,∠ACB=35°,AC=8,∠ABC的平分线BD交边AC于点D,则AD+BD的长为( )A.10B.8C.6D.43.(2020湖南益阳中考)如图,在△ABC中,AC的垂直平分线交AB于点D,交AC于点E,CD平分∠ACB,若∠A=50°,则∠B的度数为( )A.25°B.30°C.35°D.40°4.(2021河北石家庄二十八中期中)如图,△ABC中,点D在AC上,连接BD,∠ABD=2∠DBC,∠ADB=2∠C,∠DBC=∠A,则图中共有等腰三角形( )A.0个B.1个C.2个D.3个5.如图,在棋盘中建立直角坐标系xOy,现将A,O,B三颗棋子分别放置在(-2,2),(0,0),(1,0)处.如果在其他格点位置添加一颗棋子P,使四颗棋子A,O,B,P成为轴对称图形,则满足条件的棋子P的位置的坐标不正确的是( )A.(-2,3)B.(-3,2)C.(-2,-2)D.(0,-1)6.(2020湖北宜昌中考)如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l 为线段FG的垂直平分线.下列说法正确的是( )A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线7.(2020山东济南期末)如图,在△ABC中,∠C=90°,∠A=15°,∠DBC=60°,BC=1,则AD的长为( )A.1.5B.2C.3D.48.如图,在△ABC中,AB=AC,∠C=70°,△AFG与△ABC关于直线DE成轴对称,∠CAE=10°,连接BF,则∠ABF的度数是( )A.30°B.35°C.40°D.45°第8题图第9题图9.如图,在钝角三角形ABC中,∠ABC为钝角,以点B为圆心,AB的长为半径画弧,再以点C为圆心,AC 的长为半径画弧,两弧交于点D,连接AD,与CB的延长线交于点E.下列结论错误的是( )A.CE垂直平分ADB.CE平分∠ACDC.△ABD是等腰三角形D.△ACD是等边三角形10.(2021河南郑州模拟)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列选项中结论错误的是( )A.EF=BE+CFB.∠BOC=90°+12∠AC.点O到△ABC各边的距离相等D.设OD=m,AE+AF=n,则S△AEF=mn二、填空题(每小题3分,共24分)11.(2021山东淄博中考)在直角坐标系中,点A(3,2)关于x轴的对称点为A1,将点A1向左平移3个单位得到点A2,则点A2的坐标为.12.(2022独家原创)如图,在3×3的方格图中,将其中一个小方格涂阴影,使整个图形为轴对称图形,这样的轴对称图形共有个.13.(2022黑龙江齐齐哈尔三中期中)如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为.14.(2019湖南永州中考)已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF= .15.(2021江苏苏州中考)如图,在Rt△ABC中,∠C=90°,AF=EF.若∠CFE=72°,则∠B= °.16.(2022安徽芜湖一中期末)如图,已知点D、E分别是等边三角形ABC中BC、AB边的中点,AD=6,点F是线段AD上的动点,则BF+EF的最小值为.17.如图,已知D为等边三角形纸片ABC的边AB上的点,过点D作DG∥BC交AC于点G,DE⊥BC于点E,过点G作GF⊥BC于点F.把三角形纸片ABC分别沿DG,DE,GF按如图所示的方式折叠,则图中阴影部分是三角形.18.(2021四川绵阳模拟)如图,∠BOC=60°,点A是OB的反向延长线上的一点,OA=10 cm,动点P从点A出发沿AB以2 cm/s的速度移动,动点Q从点O出发沿OC以1 cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t= 时,△POQ是等腰三角形.三、解答题(共46分)19.(2019广西中考)(6分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,-1),B(1,-2),C(3,-3).(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.20.(6分)如图,四边形ABCD中,AD=4,BC=1,∠A=30°,∠B=90°,∠ADC=120°,求CD的长.21.(2022浙江温州期末)(8分)如图,在△ABC中,AB=AC,点E,F在边BC上,BE<BF.已知BE=CF.(1)求证:△ABE≌△ACF;(2)若点D在AF的延长线上,AD=AC,∠BAE=30°,∠BAD=75°,求证:AB∥DC.22.(8分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF, BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=44°时,求∠DEF的度数.23.(2018浙江绍兴中考)(8分)数学课上,张老师举了下面的例题:例1 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2 等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°) 张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题;(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC 中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.24.(10分)如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形AOB,点C为x轴正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边三角形CBD,连接DA并延长,交y轴于点E.(1)求证:OC=AD;(2)在点C的运动过程中,∠CAD的度数是否会变化?如果不变,请求出∠CAD的度数;如果改变,请说明理由;(3)当点C运动到什么位置时,以A、E、C为顶点的三角形是等腰三角形?参考答案1.C根据轴对称图形的定义可知,选项A中的图形不是轴对称图形,选项B中的图形不是轴对称图形,选项C中的图形是轴对称图形,选项D中的图形不是轴对称图形.故选C.2.B在△ABC中,∠BAC=75°,∠ACB=35°,∴∠ABC=180°-∠BAC-∠ACB=70°,∵BD平分∠ABC,∴∠DBC=1∠ABC=35°,2∴∠DBC=∠ACB,∴BD=CD,∴AD+BD=AD+CD=AC=8.故选B.3.B∵DE垂直平分AC,∴AD=CD,∴∠ACD=∠A=50°,又∵CD平分∠ACB,∴∠ACB=2∠ACD=100°,∴∠B=180°-∠A-∠ACB=180°-50°-100°=30°,故选B.4.D图中共有等腰三角形3个.∵∠ADB=∠C+∠DBC,∠ADB=2∠C,∴∠DBC=∠C,∴△BCD是等腰三角形,∵∠ABD=2∠DBC,∴∠ABD=∠ADB,∴△ABD是等腰三角形,∵∠DBC=∠A,∴∠A=∠C,∴△ABC是等腰三角形,故选D.5.B满足条件的点P的位置如图所示,点P的坐标为(-2,3)或(3,2)或(-2,-2)或(0, -1),故选B.6.A设直线l与FG交于点O(图略),∵直线l为线段FG的垂直平分线,∴FO=GO,l⊥FG,∵EF=GH,∴EF+FO=GH+OG,即EO=OH,∴l为线段EH的垂直平分线,故选项A正确;∵EO≠OQ,∴l不是线段EQ的垂直平分线,故选项B错误;∵FO≠OH,∴l不是线段FH的垂直平分线,故选项C错误;∵l为直线,直线没有垂直平分线,∴EH不能平分直线l,故选项D错误.故选A.7.B ∵∠DBC=60°,∠C=90°,∴∠BDC=90°-60°=30°,∴BD=2BC=2×1=2, ∵∠C=90°,∠A=15°,∴∠ABC=90°-15°=75°, ∴∠ABD=∠ABC-∠DBC=75°-60°=15°, ∴∠ABD=∠A,∴AD=BD=2.故选B.8.C ∵△AFG 与△ABC 关于直线DE 成轴对称,∴△AFG ≌△ABC,∠GAE=∠CAE=10°,∴∠GAF=∠CAB,AB=AF,∵AB=AC,∠C=70°,∴∠ABC=∠ACB=70°,∴∠GAF=∠BAC=40°,∴∠BAF=40°+10°+10°+40°=100°,∵AB=AF,∴∠ABF=∠AFB=40°.故选C.9.D 由题意可得CA=CD,BA=BD,∴直线CB 是AD 的垂直平分线,即CE 垂直平分AD,故A 选项结论正确;∵AC=DC,CE ⊥AD,∴∠ACE=∠DCE,即CE 平分∠ACD,故B 选项结论正确;∵DB=AB,∴△ABD 是等腰三角形,故C 选项结论正确;∵AD 与AC 不一定相等,∴△ACD 不一定是等边三角形,故D 选项结论错误.故选D.10.D ∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O, ∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF ∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC, ∴∠EOB=∠OBE,∠FOC=∠OCF, ∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF, 故A 选项结论正确;∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12∠ABC+12∠ACB=12(180°-∠A)=90°-12∠A,∴∠BOC=180°-(∠OBC+∠OCB)=90°+12∠A,故B 选项结论正确;过点O 作OM ⊥AB 于M,ON ⊥BC 于N,连接OA,如图,∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O,∴ON=OD=OM,∴点O 到△ABC 各边的距离相等,故C 选项结论正确;∵OD=m,∴ON=OD=OM=m,∴S △AEF =S △AOE +S △AOF =12AE ·OM+12AF ·OD=12OD ·(AE+AF)=12mn,故D 选项结论错误.故选D.11.(0,-2)解析∵点A(3,2)关于x轴的对称点为A1,∴A1(3,-2),∵将点A1向左平移3个单位得到点A2,∴点A2的坐标为(0,-2).12.3解析将其中一个小方格涂阴影,使整个图形为轴对称图形,这样的轴对称图形有3个,如图.13.12解析∵D为BC的中点,且BC=6,∴BD=12BC=3,由折叠的性质知NA=ND,则△DNB的周长=ND+NB+BD=NA+NB+BD=AB+BD=9+3=12.14.4解析过点D作DM⊥OB,垂足为M,如图所示.∵OC是∠AOB的平分线,DE⊥OA,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案为4.15.54解析∵AF=EF,∴∠A=∠AEF,∵∠A+∠AEF=∠CFE=72°,∴∠A=12×72°=36°,在Rt△ABC中,∠C=90°,∴∠B=90°-36°=54°.16.6解析如图,连接CE交AD于点F,连接BF,∵△ABC是等边三角形,∴BF=CF,∴BF+EF=CF+EF=CE,此时BF+EF的值最小,最小值为CE的长,∵D、E分别是△ABC中BC、AB边的中点,∴AD=CE,∵AD=6,∴CE=6,∴BF+EF的最小值为6.17.等边解析∵三角形ABC为等边三角形,∴∠A=∠B=∠C=60°,根据题意知点B和点C经过折叠后分别落在了点I和点H处,∴∠DIH=∠B=60°,∠GHI=∠C=60°,∴∠HJI=60°,∴∠DIH=∠GHI=∠HJI,∴阴影部分是等边三角形,故答案为等边.或1018.103解析分情况讨论:①当点P在OA上时,如图所示,△POQ是等腰三角形,PO=QO;∵PO=AO-AP=(10-2t)cm,OQ=t cm,.∴10-2t=t,解得t=103②当点P在射线OB上时,如图所示,△POQ是等腰三角形.∵∠BOC=60°,∴等腰△POQ是等边三角形,∴PO=QO.∵PO=AP-AO=(2t-10)cm,OQ=t cm,∴2t-10=t,解得t=10.故当t=103或t=10时,△POQ是等腰三角形.19.解析(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)A1(2,3),A2(-2,-1).20.解析如图,延长AD交BC的延长线于点E.∵∠A=30°,∠B=90°,∴∠E=60°,AE=2BE,∵∠ADC=120°,∴∠EDC=60°,∴△EDC是等边三角形.设CD=CE=DE=x,∵AD=4,BC=1,∴AE=x+4,BE=x+1,∴2(x+1)=x+4,解得x=2,∴CD=2.21.证明(1)∵AB=AC,∴∠ABE=∠ACF,在△ABE 和△ACF 中,{AB =AC,∠ABE =∠ACF,BE =CF,∴△ABE ≌△ACF(SAS).(2)∵△ABE ≌△ACF,∴∠CAF=∠BAE=30°,∵AD=AC,∴∠ADC=∠ACD=75°,∴∠BAD=∠ADC,∴AB ∥CD.22.解析 (1)证明:∵AB=AC,∴∠ABC=∠ACB,在△DBE 和△ECF 中,{BE =CF,∠DBE =∠ECF,BD =CE,∴△DBE ≌△ECF(SAS),∴DE=EF,∴△DEF 是等腰三角形.(2)∵△DBE ≌△ECF,∴∠BDE=∠CEF,∠BED=∠CFE,∵∠A+∠B+∠C=180°,∠A=44°,∴∠B=12×(180°-44°)=68°,∴∠BDE+∠BED=112°,∴∠BED+∠CEF=112°,∴∠DEF=180°-112°=68°.23.解析 (1)当∠A 为顶角时,∠B=12×(180°-80°)=50°, 当∠A 为底角时,若∠B 为顶角,则∠B=180°-80°-80°=20°, 若∠B 为底角,则∠B=∠A=80°,∴∠B 的度数为50°或20°或80°.(2)分两种情况:①当90≤x<180时,∠A 只能为顶角,∴∠B 的度数只有一个.②当0<x<90时,若∠A 为顶角,则∠B=(180−x 2)°,若∠A 为底角,则∠B=x °或∠B=(180-2x)°,∴当180−x 2≠180-2x 且180−x 2≠x 且180-2x ≠x,即x ≠60时,∠B 有三个不同的度数.综上,当0<x<90且x ≠60时,∠B 有三个不同的度数.24.解析 (1)证明:∵△AOB,△CBD 都是等边三角形,∴OB=AB,CB=DB,∠ABO=∠DBC=60°,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD,在△OBC 和△ABD 中,{OB =AB,∠OBC =∠ABD,CB =DB,∴△OBC ≌△ABD(SAS),∴OC=AD.(2)点C 在运动过程中,∠CAD 的度数不会发生变化.理由如下: ∵△AOB 是等边三角形,∴∠BOA=∠OAB=60°,∵△OBC ≌△ABD,∴∠BAD=∠BOC=60°,∴∠CAD=180°-∠OAB-∠BAD=60°.(3)∵∠OAB=∠BAD=60°,∴∠OAE=180°-60°-60°=60°,∴∠EAC=120°,∠OEA=30°,∴以A,E,C 为顶点的三角形是等腰三角形时,AE 和AC 是腰, ∵A(1,0),∴OA=1,∵∠OEA=30°,∴AE=2OA=2,∴AC=AE=2,∴OC=OA+AC=1+2=3,∴当点C 的坐标为(3,0)时,以A,E,C 为顶点的三角形是等腰三角形.。

八年级数学上册《第十三章 轴对称》单元检测卷及答案-人教版

八年级数学上册《第十三章 轴对称》单元检测卷及答案-人教版

八年级数学上册《第十三章轴对称》单元检测卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列图形中,是轴对称图形的有()A.1个B.2个C.3个D.4个2.等腰三角形的两条边长分别为15cm和7cm,则它的周长为()A.37cm B.29cm C.37cm或29cm D.无法确定3.在平面直角坐标系中,点P (-1,2 )关于x轴的对称点的坐标为()A.(-1,-2 )B.(1,-2 )C.(2,-1 )D.(-2,1 )4.等腰三角形的两个内角的比是1:2,则这个等腰三角形是()A.锐角三角形B.直角三角形C.锐角三角形或直角三角形D.以上结论都不对5.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC 的长为()A.16 B.14 C.12 D.66.如图∠A=∠B,AE=BE ,点D在AC边上∠1=∠2,AE和BD相交于点O,若∠1=400,则∠BDE为()度.A.300B.400C.600D.7007.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD8.已知等边ABC中,在射线BA上有一点D,连接CD,以CD为边向上作等边△CDE,连接BE和AE,下列结论:①∠BAE=120°;②当D在线段AB或BA延长线上时,总有∠BED﹣∠AED=1∠BDC.2下列说法正确的是()A.①②都对B.①②都错C.①错,②对D.①对,②错二、填空题9.若等腰三角形有两边长为2cm,5cm则第三边长为cm.10.在△ABC中∠A=100∘,当∠B=∘时,△ABC是等腰三角形.11.已知点M(1−2m,m−1)关于x轴的对称点在第二象限,则m的取值范围是.12.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD,∠B=40∘,∠C=36∘则∠DAC的度数是.13.如图,已知∠AOB=60∘,点P在OA上OP=8,点M,N在边OB上PM=PN,若MN=2,则OM=.三、解答题14.如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴对称的△A1B1C1,画出△ABC关于x轴对称的△A2B2C2 并写出△A2B2C2的顶点坐标.15.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.16.如图,在△ABC中,D是BC边上一点,连接AD,AD=AC=BD,∠DAC=40°,∠BAC的度数.17.如图,在△ABC中,AB=AC,点D是BC边的中点,作∠EAB=∠BAD,AE边交CB的延长线于点E,延长AD到点F,使AF=AE,连接CF.求证:BE=CF.18.尺规作图画线段AB的中垂线CD(E为垂足)时,为了方便起见,通常把四段弧的半径取成相等;其实不必如此,如图,若能确保弧①、②的半径相等(即AC=BC),再确保弧③、④的半径相等(即AD=BD),直线CD同样是线段AB的中垂线.请你给出证明.19.如图,在△ABC中,AB=AC,D为AB边的中点,DE⊥AC于点E,DF⊥BC于点F,DE=DF.求证:△ABC 是等边三角形.1.B2.A3.A4.C5.C6.D7.D8.B9. 510. 40<m<111. 1212. 34∘13. 314.解:△ABC的各顶点的坐标分别为:A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1);所画图形如下所示15.证明:如图∵DE∥AC∴∠1=∠3∵AD平分∠BAC∴∠1=∠2∵AD⊥BD∴∠2+∠B=90°,∠3+∠BDE=90°∴∠B=∠BDE∴△BDE是等腰三角形.16.解:∵AD=AC∴△ACD是等腰三角形.∴∠ADC=∠ACD.∵∠DAC=40°∴2∠ADC=180°−40°=140°.∴∠ADC=70°.∵AD=BD∴△ABD是等腰三角形.∴∠ABC=∠BAD.又∠ADC是△ABD的一个外角∴∠ADC=∠ABD+∠BAD=2∠BAD.∴∠BAD=35°.∵∠BAC=∠CAD+∠BAD∴∠BAC=40°+35°=75°.17.证明:∵AB=AC,点D是BC的中点,∴∠BAD=∠CAD.∵∠EAB=∠BAD,∴∠EAB=∠CAD.又∵AE=AF,AB=AC,∴△ABE≌△ACF(SAS).∴BE=CF18.解:∵AC=BC,AD=BD,CD=CD,∴△ACD≌△BCD,∴∠ACE=∠BCE,∴AE=BE,CD⊥AB,即CD是AB 的中垂线.19.证明:∵D为AB的中点∴AD=BD.∵DE⊥AC DF⊥BC∴∠AED=∠BFD=90°.在Rt△ADE和Rt△BDF中{AD=BDDE=DF∴Rt△ADE≌Rt△BDF(HL)∴∠A=∠B∴CA=CB∵AB=AC∴AB=BC=AC ∴ΔABC是等边三角形。

人教版八年级上册数学第13章《轴对称》测试题【含答案】

人教版八年级上册数学第13章《轴对称》测试题【含答案】

一、选择题(每小题3分,共24分)1.下列交通标志图案是轴对称图形的是()2.下列图形中对称轴只有两条的是()3.如图1,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的()A.轴对称性 B.用字母表示数C.随机性 D.数形结合4.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16 B.18C.20 D.16或205.如图2,△ABC与△A′B′C′关于直线l对称,且∠A′=78°,∠C=48°,则∠ABC的度数为()A.48°B.54°C.74°D.78°6.图3是一个风筝的图案,它是以直线AF为对称轴的轴对称图形,下列结论中不一定成立的是()A.△ABD≌△ACDB.AF垂直平分线段EGC.连接BG,CE,其交点在AF上D.△DEG是等边三角形7.在平面直角坐标系xOy中,点P(-3,8)关于y轴的对称点的坐标为()A.(-3,-8)B.(3,8)C.(3,-8)D.(8,-3)8.如图4,在△ABC中,∠ACB=90°,∠A=20°,若将△ABC沿CD折叠,使点B落在AC边上的点E处,则∠CED的度数是()A.30°B.40°C.50°D.70°二、填空题(每小题4分,共32分)9.如果一个三角形是轴对称图形,且有一个角是60°,那么这个三角形是________三角形.10. 已知M,N是线段AB的垂直平分线上任意两点,则∠MAN和∠MBN的关系是________. 11.如图5,在△ABC中,AB=AC,∠B=50°,则∠A=________.12.如图6,在△ABC中,AB=AC=3 cm,AB的垂直平分线MN交AC于点N,交AB于点M.已知△BCN的周长是5 cm,则BC的长是________cm.13.如图7,A,B,C三个居民小区的位置呈三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在________________.14.如图8,在△ABC中,∠ACB=90°,∠BAC=30°,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有________个.15.观察规律,并填空:16.如图9,O为△ABC内一点,O与D关于AB对称,O与E关于BC对称,O与F关于AC对称,∠BAC=40°,∠ABC=80°,∠ACB=60°,则∠ADB+∠BEC+∠CFA=_________.三、解答题(共64分)17.(9分)请在如图10所示的三个2×2的方格中各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)18.(8分)汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性.如图11所示的三个汉字可以看成是轴对称图形,请在方框中再写出4个类似轴对称图形的汉字.19.(12分)如图12,在△ABC中,∠BAC=90°,∠B=45°,D为BC上一点,BD=AB,DE⊥BC,交AC于点E.(1)求证:△ADE是等腰三角形;(2)图中除△ADE是等腰三角形外,还有没有等腰三角形?若有,请一一写出来(不要求证明);若没有,请说明理由.20.(11分)如图13,在△ABC中,点D,E分别是AB,AC边的中点,请你在BC边上确定一点P,使△PDE的周长最小,在图中作出点P.21.(12分)如图14,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线DE交AB于点E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC的长.22.(12分)如图15,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E,A在直线DC的同侧,连接AE,则线段AE与BC有什么位置关系?请说明理由.第十三章轴对称测试题一、1.B 2.C 3.A 4.C 5.B 6.D 7.B 8.D二、9.等边 10. 相等 11.80° 12.213. AB,BC,CA垂直平分线的交点处14. 6 15. 16. 360°三、17.解:答案不唯一,如图1所示.18.解:答案不唯一,如中、田、日、吕、呆等.19.(1)证明:因为BD=AB,所以∠BAD=∠BDA.因为DE⊥BC,所以∠BDE=90°.又∠BAC=90°,所以∠EAD=∠EDA.所以AE=DE,即△ADE是等腰三角形.(2)还有三个等腰三角形,△ABD、△ABC、△CDE.20.解:如图2,作点D关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求作.21.解:(1)因为DE垂直平分AC,所以CE=AE,即△ACE是等腰三角形.所以∠ECD =∠A=36°.(2)因为AB=AC,∠A=36°,所以∠B=∠ACB=(180°-36°)÷2=72°.因为∠ECD=36°,所以∠BEC=∠A+∠ECD=72°,即∠BEC=∠B.所以BC=CE=5.22.解:AE∥BC.理由:因为△ABC和△DEC是等边三角形,所以BC=AC,CD=CE,∠ABC=∠BCA=∠ECD =60°.所以∠BCA-∠DCA=∠ECD-∠DCA,即∠BCD=∠ACE.在△ACE和△BCD中,AC=BC,∠ACE=∠BCD,CE=CD,所以△ACE≌△BCD.所以∠EAC=∠B=60°.所以∠EAC=∠ACB.所以AE∥BC.。

八年级数学上册《第十三章轴对称》单元检测卷及答案-人教版

八年级数学上册《第十三章轴对称》单元检测卷及答案-人教版

八年级数学上册《第十三章轴对称》单元检测卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列图标中轴对称图形的是( )A .B .C .D .2.一个三角形如果有两边的垂直平分线的交点在第三边上,那么这个三角形是( )A .等腰三角形;B .等边三角形;C .直角三角形;D .等腰直角三角形.3.如图,A 、B 在格点位置上,若要在所给网格中再找一个格点,使它与点A 、B 连成的三角形是轴对称图形,图中满足这样条件的格点共有( )个.A .7B .8C .9D .104.已知点 ()32P a +-,和点()4Q b ,关于x 轴对称,则b a 的值为( ) A .1 B .2 C .149 D .495.如图,△ABC 的两边AB 和AC 的垂直平分线分别交BC 于D ,E ,若∠BAC +∠DAE =150°,则∠BAC 的度数是( )A .105B .110C .115D .1206.如图,E 为ABC 内一点,BE 平分ABC ∠,AD BE ⊥垂足为点E ,交BC 于点D ,点D 恰好在AC 边的垂直平分线上,10BC =和6AB =,则AE 的长为( )A .1B .2C .3D .47.如图,分别以ABC 的顶点A 和B 为圆心,大于12AB 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交AB 于点E ,连接BD .若643AB AC BC ===,,,则BCD 的周长为( )A .7B .9C .10D .138.如图,在△ABC 和△ADE 中,∠CAB =∠DAE =36°,AB =AC ,AD =AE.连接CD ,连接BE 并延长交AC ,AD 于点F ,G.若BE 恰好平分∠ABC ,则下列结论错误的是( )A .∠ADC =∠AEB B .CD ABC .DE =GED .CD =BE二、填空题:(本题共5小题,每小题3分,共15分.)9.已知等腰三角形的其中两边长分别为2,5,则这个等腰三角形的周长为 .10.如图,在△ABC 中,AB=AC .以点C 为圆心,以CB 长为半径作圆弧,交AC 的延长线于点D ,连结BD .若∠A=28°,则∠CDB 的大小为 °.11.如图,△ABC 中,∠ABC=45°,AD 是∠BAC 的平分线,EF 垂直平分AD ,交BC 的延长线于F ,则∠CAF 的大小是 度.12.如图,点D 在ABC 内部DAB ≌EAC ,若添加一个条件: .则ADE 是等边三角形.13.如图,已知:∠BAC 的平分线与BC 的垂直平分线相交于点D ,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,AB =6,AC =4,则BE = .三、解答题:(本题共5题,共45分)14.如图,在平面直角坐标系xOy 中,A (﹣1,5),B (﹣1,0),C (﹣4,3),在图中作出△ABC 关于y 轴的对称图形△A 1B 1C 1,并写出A 1点关于x 轴对称的点的坐标.15.如图,等腰 ABC 中, AB AC = 和 120BAC ∠=︒ , AD AB ⊥ 交 BC 于点D 2AD = 求 BC 的长.16.如图,在ABC 中90C ∠=︒,AC 的垂直平分线分别交AC AB ,于点D ,M .求证:点M 在BC 的垂直平分线上.17.如图, ABD 和 BCE 都是等边三角形,AE 与CD 相交于F ,连接BF .(1)求证: AE CD = ;(2)求证:BF平分DFE.18.如图,已知在△ABC中,∠BAC为直角,AB=AC,D为AC上一点,CE⊥BD于E,交BA的延长线于F.(1)求证:△ABD≌△ACF;(2)若BD平分∠ABC,求证:CE=12BD;(3)若D为AC上一动点,∠AED如何变化,若变化,求它的变化范围;若不变,直接写出它的度数.参考答案:1.C 2.C 3.D 4.A 5.B 6.B 7.A 8.C9.1210.3811.4512.AD=DE 或∠EAD=60°或∠BAC=60°或AB=BC 等 13.114.解:△A 1B 1C 1如图所示;∵点A 1的坐标为(1,5)∴点A 1关于x 轴对称点的坐标(1,﹣5).15.解:∵AB AC = 120BAC ∠=︒∴∠B =∠C =12(180°−∠BAC)=30°∵AD AB ⊥∴90BAD ∠=︒∴∠CAD =∠BAC −∠BAD =120°−90°=30°=∠C ∴CD =AD =2在 Rt △BAD 中 30B ∠=︒∴BD =2AD =4∴BC =BD +CD =4+2=6 .16.证明:连接CM∵DM 是AC 的垂直平分线∴AM CM =∴A MCA ∠=∠∵90ACB ∠=︒∴9090A B MCA MCB ∠∠∠∠+=︒+=︒, ∴MCB B ∠=∠∴CM BM =∴点M 在BC 的垂直平分线上.17.(1)证明:∵ABD 和 BCE 都是等边三角形 ∴DB AB = BC BE = ∠DBA =∠CBE =60° ∴∠ABC +∠DBA =∠ABC +∠CBE即 DBC ABE ∠=∠ ,∴△DBC ≅△ABE(SAS)∴AE CD = ;(2)证明:过B 分别作CD 和AE 的垂线垂足分别为M 、N∵△DBC ≅△ABE∴∠BDM =∠BAN∵BM CD ⊥ BN ⊥AE∴∠DMB =∠ANB =90°又∵DB AB =∴△DMB ≅△ANB(AAS)∴BM BN =∵BM CD ⊥ BN ⊥AE∴BF 平分 DFE ∠18.(1)证明:∵∠BAC 是直角,CE ⊥BD∴∠BAC =∠CAF =∠BEC =90°∴∠CDE+∠DCE =90°,∠ABD+∠ADB =90°∵∠ADB =∠CDE∴∠ABD =∠ACF在△ABD 和△ACF 中 {∠BAD =∠CAF =90°AB =AC∠ABD =∠ACF∴△ABD ≌△ACF (ASA );(2)解:由(1)知 △ABD ≌ACF∴BD =CF∵BD ⊥CE ,BD 平分∠ABC∴BC =BF∵BD ⊥CE∴CE =EF∴CE = 12 CF = 12BD (3)解:∠AED 不变化理由:如图,过点A 作AG ⊥⊥CF 于G ,作AH ⊥BD 于H由(1)证得△BAD≌△CAF(ASA)∴S△BAD=S△CAF,BD=CF∴BD•AH=CF•AG,而BD=CF∴AH=AG∵AH⊥EB,AG⊥EG∴EA平分∠BEF∴∠BEA=12∠BEG=45°即:∠AED不变化.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学八年级上学期
第13章《轴对称》单元测试复习试卷
(满分120分,限时120分钟)
一、选择题(共10小题,每小题3分,共30分)
1、下列图形成轴对称图形的有()
A.5个B.4个C.3个D.2个
2、下列图形中,对称轴的条数最少的图形是()
A B C D
3、在4×4的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有()
A.1个B.2个C.3个D.4个
4、若等腰三角形的顶角为40°,则它的底角度数为()
A.40°B.50°C.60°D.70°
5、若一个等腰三角形的两边长分别是2和5,则它的周长为()
A.12 B.9 C.12或9 D.9或7
6、如图,ABCD是矩形纸片,翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰
好落在同一点O上,折痕分别是CE,AF,则AE
BE
等于()
O F
E A B
C
D
A
B .2
C .1.5 D
7、如图,在矩形ABCD 中,AB <BC ,AC ,BD 相交于点O ,则图中等腰三角形的个数是( )
A
B C D
A .8
B .6
C .4
D .2
8、如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在C ′处,折痕为EF ,若AB=1,BC=2,则△ABE 和BC ′F 的周长之和为( )
F C 'E A B
C
D
A .3
B .4
C .6
D .8
9、如图,点P 是∠AOB 内任意一点,OP=5cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm ,则∠AOB 的度数是( )
P O N
M A
B
A .25°
B .30°
C .35°
D .40°
10、如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120° 的菱形,剪口与第二次折痕所成角的度数应为( )
A .15°或30°
B .30°或45°
C .45°或60°
D .30°或60°
二、填空题(共6小题,每小题3分,共18分)
11、轴对称是指 个图形的位置关系,轴对称图形是指 个具有特殊形状的图形.
12、点A (﹣3,2)与点B (3,2)关于 对称.
13、已知等腰三角形的顶角为40°,则它一腰上的高与底边的夹角为 .
14、如图,在△ABC 中,AB=AC ,AB 边的垂直平分线DE 交AC 于点D .已知△BDC 的周长为14,BC=6,则AB= . E
A
B C
D
15、在等边三角形ABC 中,点D 在AB 边上,点E 在BC 边上,且AD=BE .连接AE 、CD 交于点P ,则∠APD= .
P
E A
B C
D
16、如图,OC 是∠AOB 的平分线,P 是OC 上一点,PD ⊥OA 于点D ,PD=6,则点P 到边OB 的距离为( )
P O A
B
D
A .6
B .5
C .4
D .3
三、解答题(共8题,共72分)
17、(本题8分)如图是未完成的上海大众的汽车标志图案,该图案是以直线L 为对称轴的轴对称图形,现已完成对称轴左边的部分,请你补全标志图案,画出对称轴右边的部分.(要求用尺规作图,保留痕迹,不写作法.)
l
18、(本题8分)如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,DE ⊥AC 交于点E ,DF ⊥BC 于点F ,
且BC=4,DE=2,则△BCD 的面积是 .
F E A B C
D
19、(本题8分)如图,BD 是∠ABC 的平分线,P 为BD 上的一点,PE ⊥BA 于点E ,PE=4cm ,则点P 到边BC 的距离为 cm .
20、(本题8分)如图:△ABC 的周长为30cm ,把△ABC 的边AC 对折,使顶点C 和点A 重合,折痕交BC 边于点D ,交AC 边与点E ,连接AD ,若AE=4cm ,求△ABD 的周长.
E
A
B C
D
21、(本题8分)如图,在△ABC 中,AC=DC=DB ,∠ACD=100°,求∠B 的度数
A B C
D
22、(本题10分)在平面直角坐标系中,等边三角形OAB 关于x 轴对称的图形是等边三角形OA ′B ′.若已知点A 的坐标为(6,0),求点B ′的横坐标.
23、(本题10分)已知点A (2m+n ,2),B (1,n ﹣m ),当m 、n 分别为何值时,
(1)A 、B 关于x 轴对称;
(2)A 、B 关于y 轴对称.
24、(本题12分)平面直角坐标系中,△ABC 的三个顶点坐标分别为A (0,4),B (2,4),C (3,﹣1). (1)试在平面直角坐标系中,标出A 、B 、C 三点;
(2)求△ABC 的面积.
(3)若△A 1B 1C 1与△ABC 关于x 轴对称,写出A 1、B 1、C 1的坐标.
x
y
-1
-111
参考答案
一、选择题
1、A
2、B
3、C
4、D
5、A
6、B
7、C.
8、C
9、B 10、D
二、填空题
11、两,一12、y轴13、20°14、8 15、60°16、A
三、解答题
17、如图
l
18、解∵CD平分∠ACB交AB于点D,
∴∠DCE=∠DCF,
∵DE⊥AC,DF⊥BC,
∴∠DEC=∠DFC=90°,
在△DEC和△DFC中,
∠DCE=∠DCF,∠DEC=∠DFC,CD=CD,
∴△DEC≌△DFC(AAS),
∴DF=DE=2,
∴S△BCD=BC×DF÷2=4×2÷2=4
19、解∵BD是∠ABC的平分线,
PE⊥AB于点E,PE=4cm,
∴点P到BC的距离=PE=4cm.
20、解:由图形和题意可知AD=DC,AE=CE=4,
AB+BC=22,
△ABD的周长=AB+AD+BD=AB+CD+BC﹣CD=AB+BC,
即可求出周长为22.
21、解∵AC=DC=DB,∠ACD=100°,
∴∠CAD=(180°- 100°)÷2=40°,
∵∠CDB是△ACD的外角,
∴∠CDB=∠A+∠ACD=100°=40°+100°=140°,
∵DC=DB,
∴∠B=(180°- 140°)÷2=20°.
22、解:如图所示,
∵等边△OAB关于x轴对称的图形是等边△OA′B′,
∴点A′的坐标为(6,0),∴点B′的横坐标是3.
23、解:(1)∵点A (2m+n ,2),
B (1,n ﹣m ),A 、B 关于x 轴对称,
∴ 2m+n=1,n-m= -2
解得:m=1,n= -1,
(2)∵点A (2m+n ,2),
B (1,n ﹣m ),A 、B 关于y 轴对称,
∴2m+n= -1,n-m=2
解得:m= -1,n=1,
24、解:(1)如图所示: x y
C (3,-1)
B (2,4)
A (0,4)
-1-111
(2)由图形可得:AB=2,AB 边上的高=|﹣1|+|4|=5, ∴△ABC 的面积=1
2AB×5=5.
(3)∵A (0,4),B (2,4),C (3,﹣1), △A 1B 1C 1与△ABC 关于x 轴对称,
∴A 1(0,﹣4)、B 1(2,﹣4)、C 1.(3,1).。

相关文档
最新文档