有理数的乘方七年级上册知识点习题
七年级数学上第1章有理数1.5有理数的乘方第1课时有理数的乘方运算目标二乘方的应用习题课人教

(2)第②行数、第③行数分别与第①行数有什么关系?
解:第②行的每一个数是第①行对应的数除以-3得 到的;第③行的每一个数是第①行对应的数乘以2再 加上1得到的.
(3)设a,b,c分别是每行的第6个数,求a+6b+c的值. 解:a=729,b=-243,c=1 459, 所以a+6b+c=729+6×(-243)+1 459=730.
2 【中考•宜昌】(1)根据已知条件填空: ①已知(-1.2)2=1.44,那么(-120)2=_1_4_4_0_0_, (-0.012)2=_0_.0_0_0__1_4_4; ②已知(-3)3=-27,那么(-30)3=_-__2_7_0_0_0_, (-0.3)3=_-__0_.0_2_7__.
第1章 有理数
课1题. 2 有 理 数 的 乘 方 5第1课时 有理数的乘方运算
目标二 乘方的应用
习题链接
温馨提示:点击 进入讲评
1B 2 3A 4B
5B 6B 7 8
答案呈现
1
【2019·淄博】
0
.
6
×5
b ac
6
+
1
2
∧
4
与上面科学计算器的按键顺序对应的计算任务是( B )
A.0.6×65+124 B.0.6×56+124 C.0.6×5÷6+412 D.0.6×65+412
方法技巧练 1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月11日星期五上午10时36分18秒10:36:1822.3.11
2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那 些善于独立思考的人,给那些具有锲而不舍的人。2022年3月上午10时36分22.3.1110:36March 11, 2022
初中数学人教版七年级上册有理数的乘方

思考:这负四数个的幂奇,次底幂数是都_是负_负_数数, 得 为什出么:两个幂是正数,而另两个是
负数呢?负是数由的什偶么次数幂来是确_定正_它_数们。的 正负呢?
归纳:
+负数的奇次幂是负数, 负数的偶次幂是正数。 • 正数的任何次幂是正数; • 0的任何正整数次幂是0;
巩固练 习:
计算:
1、11=0 ;1 2、 =19 ;-1
(
1 2
)
4
.
解: 43 444 64
(
1 2
)4
1 2
1 2
1 2
1 2
1 16
如果幂的底数是正数,那么这个幂有可能是负数吗?
• 不正可数能!的正数任的何任何次次幂幂是是都正正数 数;
例3:
(3)2 __9___, (1)8 ___1___,
(2)5
__-_32__, (
1)3 2
___18__
9
)
指数是( 4
)
读作( 9的4次方 )
或9的4次幂
a a记作 a2 a a a 记作 a3
说一说:
说出下列各式的底数和指数, 并把他们读出来。
83 底数是8,指数3, 读作:8的3次方,
8的立方。
(9)5
底数是-9,指数是5, 读作:-9的5次方。
81 8 1231 123
03 0
幂的底数是分数或负数时,底数应该添上括号. 3、乘方的性质 (1)负数的奇次幂是负数;
负数的偶次幂是正数; (2)正数的任何次幂都是正数; (3)0的任何正整数次幂都是0。 3.乘方的有关运算
进行乘方运算应先确定符号后再计算。
2、 9=4
7
9 7
新浙教版七年级上册数学第二章《有理数的运算》知识点及典型例题

期末复习二有理数的运算要求知识与方法了解有理数加、减、乘、除、乘方的运算法则倒数的概念,会求一个数的倒数乘方、幂、指数、底数的概念计算器的简单使用理解有理数的混合运算的运算顺序,能进行有理数的混合运算用科学记数法表示较大的数说出一个由四舍五入法得到的有理数的精确位数及根据精确度取近似值运用合理运用运算律简化有理数混合运算的过程利用有理数的混合运算解决简单的实际问题一、必备知识:1.若两个有理数的乘积为____________,就称这两个有理数____________.2.有理数的各种运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、分配律.3.有理数混合运算的法则是:先算____________,再算____________,最后算____________.如有括号,先进行____________运算.4.把一个数表示成____________与____________的幂相乘的形式叫做科学记数法.二、防范点:1.倒数不要和相反数混淆,倒数符号不变,相反数要变号.2.乘方运算不要和乘法运算混淆,如23和32不相等.3.有理数混合运算中注意运算顺序,特别是乘、除同级运算时,注意从左到右的运算顺序.4.求用科学记数法表示的数及带单位的有理数的精确位数时要注意单位及10的幂的位数.倒数的概念例1 (1)2017的倒数为( )A .-2017B .2017C .-12017D .12017(2)已知a 与b 互为倒数,m 与n 互为相反数,则12ab -9m -9n 的值是________. 【反思】互为倒数的两个数乘积为1,注意互为倒数的两数符号是相同的,不要与相反数混淆起来.有理数运算法则及运算顺序例2 下列计算错在哪里?应如何改正?(1)74-22÷70=70÷70=1;(2)(-112)2-23=114-6=-434; (3)23-6÷3×13=6-6÷1=0.【反思】乘方运算是初中阶段新学的一种运算,要弄清楚它的法则,不要和乘法混淆起来;运算顺序也是学生的一个易错点,特别是乘、除同级运算过程中要遵循从左到右的运算顺序.有理数的混合运算例3 计算:(1)(-2)2+3×(-2)-1÷(14)2; (2)-32-[-(12)2-116]×(-2)÷(-1)2017.【反思】有理数的混合运算要注意运算的顺序不要搞错,-32的求值也是学生的一个易错点.有理数的简便计算例4 用简便方法计算:(1)(-6134)-(-512)+(134)-(+8.5); (2)19999899×(-11); (3)(-5)×713+7×(-713)-(+12)×713.【反思】合理地利用加法和乘法的运算律可以加快速度,分配律和分配律的逆向使用也是简便计算的一种重要的方法.近似数及科学记数法例5 (1)数361000000用科学记数法表示,以下表示正确的是( )A .0.361×109B .3.61×108C .3.61×107D .36.1×107(2)下列近似数精确到哪一位?①4.7万 ②17.68(3)用四舍五入法按要求取下列各数的近似数:①0.61548(精确到千分位);②73540(精确到千位).【反思】求带单位的近似数的精确度时,要注意单位也是有效的.有理数混合运算的应用例6 出租车司机王师傅从上午8:00~9:00在某市区东西向公路上营运,共连续运载八批乘客.若规定向东为正,向西为负,王师傅营运八批乘客里程如下:(单位:千米)+5,-6,+3,-7,+5,+4,-3,-4.(1)将最后一批乘客送到目的地时,王师傅在第一批乘客出发地的什么位置?(2)已知王师傅的车在市区耗油成本约为0.6元/千米,若出租车的收费标准为:起步价8元(不超过3千米),若超过3千米,超过部分按每千米2元收费,则王师傅在上午8:00~9:00扣除耗油成本后赚了多少元?【反思】用有理数的运算解决实际问题,主要是要抓住题中各数量之间的关系,弄清是求各数之和还是各数的绝对值之和.1.计算:3×(-1)3+(-5)×(-3)____________.2.已知(x -2)2+||2y +6=0,则x +y =____________.3.如图,数轴上A 、B 两点分别对应实数a 、b ,则a 与b 之间的关系是____________.(写出一个正确关系式即可)第3题图4.由四舍五入得到的近似数0.50,精确到____________位,它表示大于或等于____________且小于____________的数.5.数轴上A 、B 两点位于原点O 的两侧,点A 表示的实数是a ,点B 表示的实数是b ,若||a -b =2016,且AO =2BO ,则a +b 的值是____________.6.计算:(1)(34-112+13)×(-60);(2)(-3)2÷92+(-1)2017-|-2|.7.已知x ,y 为有理数,现规定一种新运算※,满足x ※y =xy +1.(1)求2※3的值;(2)求(3※5)※(-2)的值;(3)探索a ※(b +c)与a ※b +a ※c 的关系,并用等式把它们表达出来.参考答案期末复习二 有理数的运算【必备知识与防范点】1.1 互为倒数 3.乘方 乘除 加减 括号里的 4.a(1≤a<10) 10【例题精析】例1 (1)D (2)12例2 (1)运算顺序错.改正为:74-22÷70=74-4÷70=74-235=733335; (2)运算法则错.改正为:(-112)2-23=94-8=-234; (3)运算法则和运算顺序都错.改正为:23-6÷3×13=8-6×13×13=8-23=713.例3 (1)-18 (2)-838例4 (1)-63 (2)-2199989(3)-176 例5 (1)B (2)①千位 ②百分位 (3)①0.615 ②7.4×104例6 (1)正西方向3千米处 (2)67.8元【校内练习】1.12 2.-1 3.答案不唯一,如a >b4.百分 0.495 0.505 5.±6726.(1)(34-112+13)×(-60)=-60×34+60×112-60×13=-45+5-20=-60. (2)(-3)2÷92+(-1)2017-|-2|=9×29-1-2=-1. 7.(1)7 (2)-31 (3)∵a ※(b +c)=a(b +c)+1=ab +ac +1,a ※b +a ※c =ab +1+ac +1.∴a ※(b +c)+1=a ※b +a ※c.。
专题1.20 有理数的乘方(知识讲解)-2021-2022学年七年级数学上册基础知识专项讲练

专题1.20 有理数的乘方(知识讲解)【学习目标】1.理解有理数乘方的定义;2.掌握有理数乘方运算的符号法则,并能熟练进行乘方运算;3. 进一步掌握有理数的混合运算. 【要点梳理】要点一、有理数的乘方定义:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power).即有:.在中,叫做底数, n 叫做指数.特别说明:(1)乘方与幂不同,乘方是几个相同因数的乘法运算,幂是乘方运算的结果. (2)底数一定是相同的因数,当底数不是单纯的一个数时,要用括号括起来.(3)一个数可以看作这个数本身的一次方.例如,5就是51,指数1通常省略不写. 2. 性质:要点二、乘方运算的符号法则(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数,负数的偶次幂是正数;(3)0的任何正整数次幂都是0;(4)任何一个数的偶次幂都是非负数,即 .特别说明:(1)有理数的乘方运算与有理数的加减乘除运算一样,首先应确定幂的符号,然后再计算幂的绝对值.(2)任何数的偶次幂都是非负数. 要点三、有理数的混合运算有理数混合运算的顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 特别说明:(1)有理数运算分三级,并且从高级到低级进行运算,加减法是第一级运算,乘除法是第二级运算,乘方和开方(以后学习)是第三级运算;(2)在含有多重括号的混合运算中,有时根据式子特点也可按大括号、中括号、小括号的顺序进行.(3)在运算过程中注意运算律的运用. 【典型例题】类型一、有理数的幂的概念的理解1.填表: 乘方65(-5)43(12)- -27na a a a n ⋅⋅⋅=个na a【分析】根据有理数乘方的定义解答即可.解:填表如下:【点拨】本题考查了有理数乘方的定义,属于应知应会题型,熟知概念是关键.举一反三:【变式1】把下列各式用幂的形式表示,并说出底数和指数:(1)(﹣3)×(﹣3)×(﹣3);(2)2222 ()()()() 5555+⨯+⨯+⨯+.【答案】(1)(﹣3)3,底数为﹣3,指数为3;(2)(+25)4,底数为+25,指数为4.【分析】(1)(2)都是相同的几个数字相乘,根据乘方的定义即可解答.解:(1)(﹣3)×(﹣3)×(﹣3)=(﹣3)3,底数为﹣3,指数为3;(2)22225555⎛⎫⎛⎫⎛⎫⎛⎫+⨯+⨯+⨯+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=25⎛⎫+⎪⎝⎭4, 底数为+25,指数为4.【点拨】求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂,记作a n,其中a叫做底数,n叫做指数.【变式2】小明学习了“第八章幂的运算”后做这样一道题:若(2x﹣3)x+3=1,求x的值,他解出来的结果为x=2,老师说小明考虑问题不全面,聪明的你能帮助小明解决这个问题吗?小明解答过程如下:解:因为1的任何次幂为1,所以2x﹣3=1,x=2.且2+3=5故(2x﹣3)x+3=(2×2﹣3)2+3=15=1,所以x=2你的解答是:【答案】x=2或3或1.【解析】试题分析:分别从底数等于1,底数等于- 1且指数为偶数,指数等于0且底数不等于0去分析求解即可求得答案.解:①①1的任何次幂为1,所以2x- 3=1,x=2.且2+3=5,①(2x - 3)x+3=(2×2 - 3)2+3=15=1,①x=2;①① - 1的任何偶次幂也都是1,①2x - 3= - 1,且x+3为偶数,①x=1,当x=1时,x+3=4是偶数,①x=1;①①任何不是0的数的0次幂也是1,①x+3=0,2x - 3≠0,解得:x= - 3,综上:x=2或3或1.【点拨】此题考查了零指数幂的性质与有理数的乘方.此题难度适中,注意掌握分类讨论思想的应用.类型二、有理数乘方的运算2.计算:(﹣48)÷(﹣2)3﹣(﹣25)×(﹣4)+(﹣2)2.【答案】- 90.【分析】根据有理数混合运算的运算顺序, 先算乘方再算乘除最后算加减, 计算即可.. 原式=﹣48÷(﹣8)﹣100+4=6﹣100+4=﹣90.【点拨】本题考查的是有理数的混合运算能力. 注意要正确掌握运算顺序.举一反三:【变式1】计算:﹣32+[9﹣(﹣6)×2]÷(﹣3)【答案】- 16.【分析】原式先计算乘方运算,再计算括号内及乘除运算,最后算加减运算即可得到结果.解:原式=﹣9+(9+12)÷(﹣3)=﹣9+21÷(﹣3) =﹣9+(﹣7) =﹣16.【点拨】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 【变式2】 小明做了这样一道题,他的方法如下:1110101010111111133313333333⎛⎫⎛⎫⎛⎫⨯=⨯⨯=⨯⨯=⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.请你用他的方法解下面题目.设201420151(2013)2013M ⎛⎫=-⨯ ⎪⎝⎭,1010111(5)(6)200830N ⎛⎫=-⨯-⨯-- ⎪⎝⎭,求2019()M N +的值. 【答案】 - 1【分析】先根据小明的方法求出M ,N 的值,然后代入代数式去接即可;解:①20142014201511(2013)20132013201320132013M ⎛⎫⎛⎫=-⨯=-⨯⨯= ⎪ ⎪⎝⎭⎝⎭,1010111(5)(6)200830N ⎛⎫=-⨯-⨯--=⎪⎝⎭101(5)(6)(6)200830⎡⎤⎛⎫-⨯-⨯-⨯--= ⎪⎢⎥⎝⎭⎣⎦ 620082014--=-.①20192019()(20132014)1M N +=-=-.【点拨】本题主要考查了有理数的乘方,准确计算是解题的关键. 类型三、有理数乘方的逆运算3、若6x =,24y =,且x <y ,求:x y -的值.【答案】 - 8或 - 4.【分析】根据绝对值的性质和有理数的乘方求出x 、y ,再判断出x 、y 的对应情况,然后相减计算即可得解.解:①|x |=6,y 2=4,①x=±6,y=±2, ①x<y , ①x=−6,y=±2,当y=2时,x - y= - 6 - 2= - 8, 当y=−2时,x−y= - 6 - ( - 2)= - 4, 故x y -的值.为 - 8或者 - 4.【点拨】本题考查有理数的减法,绝对值方程,有理数的乘方.能求出x 和y 的值并根据不等关系分情况讨论是解决本题的关键. 举一反三:【变式1】若点M 、点N 在数轴表示的数分别是x 、y ,223x +=,225y =(0)y <,求点M 、点N 两点之间的距离. 【答案】123或233【分析】根据绝对值的意义和乘方运算得到x 和y 值,再根据两点之间的距离得到结果. 解:①223x +=,225y =(0)y <, ①x+2=23,y= - 5, ①x= - 223=223-或113-,①点M 、点N 两点之间的距离为:223- - ( - 5)=123或113- - ( - 5)=233. 【点拨】本题考查了数轴上两点之间的距离,绝对值的意义和乘方运算,解题的关键是注意分类讨论.【变式2】()()2016920171122⎛⎫-⨯-⨯- ⎪⎝⎭.【答案】2.【分析】先计算有理数的乘方和乘方逆运算,再计算有理数的乘法即可得.解:原式201620161(1)(2)(2)2⎡⎤⎛⎫=-⨯-⨯-⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,()20161222⎡⎤⎛⎫=⨯-⨯- ⎪⎢⎥⎝⎭⎣⎦,201621=⨯,21=⨯, 2=.【点拨】本题考查了有理数的乘方和乘方逆运算、有理数的乘法,熟练掌握运算法则是解题关键.类型四、有理数乘方运算的符号规律4、计算:(1)()110.51 3.75542⎛⎫---+⎛⎫ ⎪⎝⎭-+ ⎪⎝⎭ (2)()()()20220358624361⎛⎫- ⎪-⨯+----⎝⎭÷【答案】(1)1-;(2)6- 【分析】(1)先把减法转化为加法,再把同号的两个数相加,即可得到答案;(2)先计算绝对值,乘方运算,再利用乘法的分配律计算乘法运算,除法运算,最后计算加减运算即可得到答案.解:(1)原式0.5 1.25 3.75 5.5=-++-()()0.5 5.5 1.25 3.75=--++.65=-+1=-.(2)原式()353684146⎛⎫=⨯-+-÷-⎪⎝⎭ 273021=---6=-【点拨】本题考查的是求一个数的绝对值,乘方符号的确定,含乘方的有理数的混合运算,掌握运算顺序与运算法则是解题的关键. 举一反三:【变式1】如果|m ﹣5|+(n +6)2=0,求(m +n )2020+m 3的值. 【答案】126【分析】根据绝对值和平方非负的性质求出m ,n 的值,代入所求的代数式计算即可. 解:①m ,n 满足|m ﹣5|+(n +6)2=0,①m ﹣5=0,n +6=0, 即:m =5,n =﹣6,①(m +n )2020+m3=(5﹣6)2020+53=1+125=126.【点拨】本题考查的非负数的性质,掌握绝对值和平方非负的性质,理解当这几个非负式子相加为0时,这个式子都为0是解题的关键.【变式2】 记a 1=﹣2,a 2=(﹣2)×(﹣2),a 3=(﹣2)×(﹣2)×(﹣2),……a n =n 个 - 2相乘.(1)填空:a4= ,a23是一个 (填“正”或“负”); (2)计算:a5+a6;(3)请直接写出2020an+1010an+1的值. 【答案】(1)16,负;(2)32;(3)0. 【分析】(1)探究规律,利用规律即可解决问题; (2)利用规律计算即可;(3)对原式进行变形,得出与规律有关的式子,即可得出结果. 解:(1)根据规律可知:a 4=(﹣2)×(﹣2)×(﹣2)×(﹣2)=16,a 23是23个﹣2相乘,是负数; (2)由规律可总结出:()2nn a =-,()()565622326432a a ∴+=-+-=-+=;(3)120201010n n a a ++=()110102n n a a ++ =()()12221010nn +⨯-+-⎡⎤⎣⎦=()()()22211020n n⨯-+-⨯-⎡⎤⎣⎦=10100⨯ =0【点拨】本题考查规律型:数字问题,解题的关键是学会探究规律,利用规律解决问题.类型五、有理数乘方的应用5、(1)若|2x +6|+(y ﹣2)2=0,求y 2﹣x 的值.(2)|a |=8,|b |=3,且|a ﹣b |=b ﹣a ,求a +b 的值.【答案】(1)7;(2)﹣11【分析】(1)利用非负数的性质求出x 与y 的值,代入原式计算即可求出值;(2)利用绝对值的代数意义求出a 与b 的值,代入原式计算即可求出值. 解:(1)∵|2x+6|+(y ﹣2)2=0,∴2x+6=0且y ﹣2=0, 解得:x =﹣3,y =2, 则原式=4+3=7;(2)∵|a|=8,|b|=3,且|a ﹣b|=b ﹣a , ∴a =±8,b =±3,a ﹣b <0,即a <b ,当a =﹣8,b =3时,a+b =﹣5;当a =﹣8,b =﹣3时,a+b =﹣11.【点拨】本题考查了非负数的性质,①非负数有最小值是零;②有限个非负数之和仍然是非负数;③有限个非负数的和为零,那么每一个加数也必为零.初中范围内的非负数有:绝对值,算术平方根和偶次方.也考查了绝对值的意义. 举一反三:【变式1】已知327x =,216y =,求2x y +. 【答案】11【解析】根据乘方的意义求出x ,y 的值,代入2x y +计算即可. 解:①327x =,216y =,①3x =,4y =①232411x y +=+⨯=.【点拨】本题考查了乘方的意义及求代数式的值,根据乘方的意义求出x ,y 的值是解答本题的关键.【变式2】已知51381x -=,求()345x -的值. 【答案】 - 1【解析】把原式变形为51433x -=,列出关于x 的方程求解即可.解:①5143813x -==,① 514x -=, 解得1x =,把1x =代入()345x -,得 原式=(4 - 5)31=-.【点拨】本题考查了乘方的意义及求代数式的值,根据乘方的意义求出x 是解答本题的关键. 类型六、有理数加减乘除混合运算6、计算:(1)-4+2×|-3|-(-5); (2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018. 【答案】(1)7;(2)9 【分析】(1)注意运算顺序,先算乘除再算加减,减去一个数等于加上这个数的相反数,减法变为加法;(2)注意运算顺序,先算乘方再算乘除最后算加减.注意()201811-=,1-的偶次方为1,奇次方为1-.解:(1) 原式=-4+2×3+5=-4+6+5 =7;(2) 原式=12+(-8)÷4-1=12-2-1 =9.【点拨】本题考查了有理数的混合运算,注意:要正确掌握运算顺序,即乘方运算叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序. 举一反三: 【变式1】计算:(1)3.47( 2.7)( 3.47)( 2.3)+-+-+- (2)(32)17(65)5----+(3)111(12)234⎛⎫+-⨯-⎪⎝⎭(4)4211[2(3)]6--⨯--【答案】(1) - 5;(2)21;(3) - 7;(4)16【分析】(1)根据有理数的加法运算法则计算;(2)根据有理数的加减混合运算法则计算; (3)利用乘法分配率计算即可;(4)先算乘方,再算括号内的,再算乘法,最后算加法. 解:解:(1)3.47( 2.7)( 3.47)( 2.3)+-+-+-=3.47 - 2.7 - 3.47 - 2.3 = - 5;(2)(32)17(65)5----+= - 32 - 17+65+5 =21; (3)111(12)234⎛⎫+-⨯-⎪⎝⎭ =()()()111121212234⨯-+⨯--⨯- =643--+ = - 7; (4)4211[2(3)]6--⨯-- =()11296--⨯-=716-+=16【点拨】本题考查了有理数的混合运算,解题的关键是掌握运算法则和运算律. 【变式2】计算:(1)251(24)386⎛⎫-+-⨯- ⎪⎝⎭; (2)43116(2)|31|-+÷-⨯--; 【答案】(1)5;(2) - 9.【分析】(1)根据乘法分配律简便计算;(2)先算乘方,再算乘除,最后算加法;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算.解:(1)(–23+58–16)×(–24)=–23×(–24)+58×(–24)–16×(–24)=16–15+4=5;(2)–14+16÷(–2)3×|–3–1|=–1+16÷(–8)×4=–1–8=–9.【点拨】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.类型七、有理数加减乘除混合运算的实际运用7、-22-(-3)3×(-1)4-(-1)5【答案】24【分析】在进行有理数的混合运算时,一是要注意运算顺序,先算高一级的运算,再算低一级的运算,即先乘方,后乘除,再加减.同级运算按从左到右的顺序进行.有括号先算括号内的运算.解:原式= - 4 - ( - 27)×1+1= - 4+27+1=24【点拨】本题考查了有理数的混合运算,有理数混合运算的顺序(1)先乘方,再乘除,最后加减;(2)同级运算,从左至右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.举一反三:【变式1】计算:(1)3557212212⎛⎫--+- ⎪⎝⎭(2)111(370)0.2524.55424⎛⎫⎛⎫⎛⎫-⨯-+⨯+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)17111236329126⎡⎤⎛⎫--+⨯÷ ⎪⎢⎥⎝⎭⎣⎦【答案】(1)2-;(2)100;(3)12【分析】(1)根据有理数的加减混合运算进行求解即可; (2)根据有理数的混合运算直接进行求解即可;(3)先算括号里的,然后再由有理数的混合运算进行求解即可.解:(1)原式=3557+=112221212⎛⎫----=- ⎪⎝⎭; (2)原式=()11370+24.5+5.5=400=10044⨯⨯; (3)原式=171111112363636322833629126232⎛⎫⎛⎫-⨯+⨯-⨯÷=-+-⨯= ⎪ ⎪⎝⎭⎝⎭.【点拨】本题主要考查有理数的混合运算,熟练掌握有理数运算法则是解题的关键. 【变式2】有个写运算符号的游戏:在“3□(2□3)□43□2” 中的每个□内,填入+, - ,×,÷中的某一个(可重复使用),然后计算结果. (1)请计算琪琪填入符号后得到的算式:()2432323⨯÷-÷; (2)嘉嘉填入符号后得到的算式是()43233÷⨯⨯□22,一不小心擦掉了□里的运算符号,但她知道结果是103-,请推算□内的符号. 【答案】(1)53;(2)□里应是“-”号. 【分析】(1)根据有理数的混合运算法则计算可以解答本题; (2)根据题目中式子的结果,可以得到□内的符号; 解:(1) ()2432323⨯÷-÷=2413334⨯-⨯ =123-=53; (2) ()43233÷⨯⨯=4363÷⨯=1423⨯ =23, 因为23□22=103-,即23□4=103-所以23-123=103- 所以“□”里应是“-”号.【点拨】本题考查了有理数的混合运算,解答本题得关键是明确有理数混合运算的计算方法. 类型八、程序流程图与有理数运算8、根据下边的流程图回答下列问题:(1)输入54后,得到的输出结果是____________.(2)如果输出的结果34,请推测输入的数可能是那些?并写出结果. 【答案】(1)14(2)512或2512【分析】(1)根据流程图直接进行列式求解即可; (2)根据题意分两种情况:一是大于23输出的结果,二是小于或等于23输出的结果,然后分别求解即可.解:(1)由流程图可得:533=454⨯, 3243>, ∴311424-=; 故答案为14;(2)①当输出的结果是由大于23计算而得的,则有: 31325+=42512⎛⎫÷ ⎪⎝⎭; ①当输出的结果是由小于或等于23计算而得的,则有: 3135=42512⎛⎫-÷ ⎪⎝⎭; 答:输入的数可能是512或2512. 【点拨】本题主要考查分数的混合运算,熟练掌握分数的混合运算是解题的关键. 举一反三:【变式1】李海在自学了简单的电脑编程后,设计了如图所示的程序,他若输入的数是2,那么执行了程序后,输出的数是多少?若开始输的是-4呢?【答案】若输入的数是2,则输出的数是-558;若输入的数是-4,则输出的数是-108.【分析】根据题意,把2输入,得(2 - 8)×9= - 54,其绝对值小于100,所以再把- 54从头输入,计算输出的数.根据题意,把- 4输入,得(- 4 - 8)×9= - 108,其绝对值大于100,所以- 108就是输出的数.解:把2输入,得(2 - 8)×9= - 54,①| - 54|<100,①再把- 54从头输入,得(- 54 - 8)×9= - 558,①| - 558|>100,①输出- 558.若输入的数是-4,得到(- 4 - 8)×9= - 12×9= - 108,因为| - 108|>100,①输出- 108.答:若输入的数是2,则输出的数是-558;若输入的数是-4,则输出的数是-108.【点拨】本题考查程序框图、有理数的混合运算和绝对值,熟练掌握运算法则是解本题的关键.【变式2】如图,按程序框图中的顺序计算,当运算结果小于或等于100时,则将此时的值返回第一步重新运箅,直至运算结果大于100才输出最后的结果.若输入的初始值为1,则最后输出的结果是多少?【答案】256【分析】把1代入依次计算,当结果大于100时输出.解:1×12÷(-14)= - 2<100;- 2×12÷(-14)=4<100;4×12÷(-14)= - 8<100;- 8×12÷(-14)=16<100;16×12÷(-14)= - 32<100;- 32×12÷(-14)=64<100;64×12÷(-14)= - 128<100;- 128×12÷(-14)=256>100;故输出为256.【点拨】本题考查循环结构,通过运算规则求解最后运算结果,是算法中一种常见的题型.类型九、“24”点运算9、暖羊羊有5张写着不同数字的卡片,请你按要求选择卡片,完成下列各问题:(1)从中选择两张卡片,使这两张卡片上数字的乘积最大.这两张卡片上的数字分别是,积为_.(2)从中选择两张卡片,使这两张卡片上数字相除的商最小.这两张卡片上的数字分别是,商为.(3)从中选择4张卡片,每张卡片上的数字只能用一次,选择加、减、乘、除中的适当方法(可加括号),使其运算结果为24,写出运算式子.(写出一种即可)【答案】(1)-5和-3,15 ;(2) -5和+3,53-;(3)3[5(3)]0-⨯--++(答案不唯一)【分析】(1)要想乘积最大,必须积为正数才有最大值,也就是必须选择同号的两个数相乘,然后取积最大的两个卡片即可.(2)要想商最小,必须商为负数才最小值,也就是必须选择异号的两个数相除且被除数的绝对值要大于除数的绝对值,然后选择商最小的两个卡片即可.(3)把24分解因数,可得到2×12=24,3×8=24,4×6=24,然后找到合适的卡片能够通过运算得到24的因数即可.解:(1)要想乘积最大,必须积为正数才有最大值,选择同号的两个数相乘则有(+3)×(+4)=12,(- 5)×(- 3)=15积最大为15,所以选择卡片- 5和卡片- 3(2) 要想商最小,必须商为负数才最小值,选择异号的两个数相除且被除数的绝对值要大于除数的绝对值.则有( - 5)÷3=53-,( - 5)÷4=54-,4÷(- 3)=43-商最小为53-,所选择卡片- 5和卡片+3(3) 把24分解因数,可得到2×12=24,3×8=24,4×6=24等形式.当2×12=24时,2=(- 3)-(- 5),12=3×4则[( - 3) - ( - 5)]×3×4=12故选择卡片数字为:- 3,- 5,+3,+4当3×8=24时,可得- 3×(- 8)=24,则- 8=(- 5)- 3则- 3×[( - 5) - 3]=24.同理可继续推导.故答案为(1)-5和-3,15 ;(2) -5和+353-;(3)3[5(3)]0-⨯--++(答案不唯一)【点拨】本题综合性的考察了有理数的计算,因为正数大于负数,所以在本题中务必理解两个数乘积最大值只有在正数里面选择,两数商最小值,只有在负数里面选择.举一反三:【变式1】做游戏:24点游戏是利用扑克牌中的52张(去掉大王、小王),任意抽取4张,利用混合运算,可以是加、减、乘、除法,也可以是乘方(底数、指数均是这4个数之中的),只要结果得到24即可.(每个数都要用且只能用一次)【答案】[5÷(- 5)+9]×3=24.(答案不唯一)【分析】假设抽取的4张扑克:黑桃3,梅花5,红桃5,黑桃9;首先用5除以- 5,构造出- 1;然后用- 1加上9,构造出8,再用8乘3,即可使其结果等于24.解:解:抽取的4张扑克:黑桃3,梅花5,红桃5,黑桃9.[5÷(- 5)+9]×3=24.故答案为:[5÷(- 5)+9]×3=24.(答案不唯一)【点拨】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【变式2】如图,现有5张写着不同数的卡片,请按要求完成下列问题:(1)从中任选2张卡片,使这2张卡片上的数的乘积最大,则该乘积的最大值是多少? (2)从中任选4张卡片,用卡片上的数和加、减、乘、除四则运算(可用括号,每个数都要用且只能用一次)列出两个不同的算式(每个算式可选用不同的卡片),使其计算结果为24.【答案】(1)18;(2)()()536324⨯----=(答案不唯一) 【分析】(1)观察这五个数,要找乘积最大的就要找符号相同且绝对值最大的数,所以选−6和−3; (2)根据有理数的混合运算即可求解. 解:解:(1)依题意选−6和−3 (−6)×(−3)=18, ①此时乘积的最大值为18;(2)答案不唯一:如()()536324⨯----=;()()336524----⨯=.【点拨】此题实际上是有理数的混合运算的逆运算,先给你数,让你列混合运算的式子,所以学生平时要培养自己的逆向思维能力. 类型十、含乘方的有理数运算10、计算:43116(2)31-+÷-⨯--. 【答案】 - 9.【分析】原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果.解:原式()11684189=-+÷-⨯=--=-.【点拨】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 举一反三: 【变式1】计算:(1)(-1)2×5+(-2)3÷4; (2)52()83-⨯24+14÷3(12)-+|-22|【答案】(1)3;(2)19 【解析】试题分析:(1)按照先算乘方,再算乘除,后算加减的顺序计算;(2)按照先算乘方,再算乘除,后算加减的顺序计算,522483⎛⎫-⨯⎪⎝⎭部分可按照乘法分配律计算. 解:(1)(-1)2×5+(-2)3÷4=1×5+( - 8) ×14=5 - 2 =3 ;(2)3521124228342⎛⎫⎛⎫-⨯+÷-+- ⎪ ⎪⎝⎭⎝⎭ =52112424228348⎛⎫⨯-⨯+÷-+ ⎪⎝⎭=()115168224-+⨯-+ =15 - 16 - 2+22 =19.【变式2】计算:()()213142--+÷-⨯.【答案】 - 5【分析】根据有理数的运算法则计算即可得到答案.解:()()213142--+÷-⨯()1932=+÷-⨯ 132=-⨯()16=+-5=-.【点拨】本题考查了有理数的混合运算,掌握运算法则是解决本题的关键. 类型十一、计算器 - 有理数11、用计算器求下列各式的值:(1)24.12×2+3.452×4.2;(精确到0.1);(2)(2.42- 1.32)×3.1+4.13;(精确到0.01)【答案】(1)1161.62;(2)81.538.【解析】试题分析:先计算,再四舍五入.≈.(1) 24.12×2+3.452×4.2= 1211.61051211.6≈(2) (2.42 - 1.32)×3.1+4.13=81.53881.54举一反三:【变式1】利用计算器计算( - 8.9)×( - 11.2)【答案】99.68【解析】试题分析:利用计算器计算即可,注意按键顺序.试题解析:先输入—8.9,然后输入乘号,最后输入—11.2,即可得答案是99.68.【变式2】有一张厚度是0.1mm的纸,假设我们能将它连续对折30次,这时它的厚度能超过珠穆朗玛峰的海拔(8844.43m)吗?请用计数器帮你得出答案.【答案】能,107374.1824m【分析】每对折一次即扩大1倍,对折30次相当于扩大230倍.解:0.1×230=107374182.4mm=107374.1824m>8845m.答:将一张厚度是0.1mm的纸,连续对折30次后,它的厚度能超过珠穆朗玛峰的海拔高度(8845米)【点拨】此题考查计算器—有理数,解题关键在于熟练运用计算器.。
初中数学青岛版七年级上册第3章 有理数的运算3.3有理数的乘方-章节测试习题(14)

章节测试题1.【答题】由四舍五入法得到的近似数6.8×103,下列说法正确的是().A. 精确到十分位B. 精确到个位C. 精确到百位D. 精确到千位【答案】C【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解答】解:看8所在的位置,8正好是精确到百位;选C.方法总结:先把6.8×103还原,再看8所在的位置,即可得出答案.2.【答题】由四舍五入法得到的近似数8.8×103,下列说法中正确的是()A. 精确到十分位B. 精确到个位C. 精确到百位D. 精确到千位【答案】C【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解答】解:个位代表千,那么十分位就代表百,精确到百位.选C.3.【答题】下列说法正确的有()①近似数7.4与7.40是一样的;②近似数8.0精确到十分位;③近似数9.62精确到百分位;④由四舍五入得到的近似数精确到百分位.A. 1个B. 2个C. 3个D. 4个【答案】B【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解答】(1)近似数7.4与7.40的精确度不一样,所以①错误;(2)近似数8.0精确到十分位是正确的,所以②正确;(3)近似数9.62精确到百分位是正确的,所以③正确;(4)由四舍五入得到的近似数=69600,原数中最后一个有效数字6在百位,故其是精确到百位的,所以④错误;综上所述,正确的是②③,共2个.选B.4.【答题】某市今年参加中考的学生人数大约为2.08×104人,对于这个用科学记数表示的近似数,下列说法中正确的是()A. 精确到百分位B. 精确到十分位C. 精确到个位D. 精确到百位【答案】D【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解答】∵,而8在百位上,∴近似数是精确到百位的.方法总结:用科学记数法表示的近似数,确定其精确度时,需化成普通记数方式的形式,此时原数中最后一个有效数字在新数中的哪个数位上,原数就精确到哪个数位在.5.【答题】下列各近似数中,精确度一样的是()A. 0.28与0.280B. 0.70与0.07C. 5百万与500万D. 1.1×103与1100【答案】B【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解答】解:A、0.28精确到百分位,0.280精确到千分位,所以A选项错误;B、0.70精确到百分位,0.07精确到百分位,所以B选项正确;C、5百万精确到百万位,500万精确到万位,所以C选项错误;D、1.1×103精确到百位,1100精确到个位,所以D选项错误.选B.6.【答题】近似数3.0×10²精确到()A. 十分位B. 个位C. 十位D. 百位【答案】C【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解答】3.0×102=300,精确到十位.方法总结:判断科学计数法表示法精确到哪一位要将数字还原,然后判断小数点后面最后一位在哪一位即可.7.【答题】地球的半径为6.4×103km,这个近似数精确到()A. 个位B. 十分位C. 十位D. 百位【答案】D【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解答】6.4×103=6400千米,所以是精确到百位.选D.8.【答题】在﹣(﹣5)、|﹣2|、﹣22、(﹣1)5这四个数中,是负数的有()A. 4个B. 3个C. 2个D. 1个【答案】C【分析】本题考查有理数的乘方运算,绝对值以及相反数.【解答】-(-5)=5,|-2|=2,-22=-4,(-1)5=-1,∴是负数有两个,选C.9.【答题】在下列各数,,,,中,负数有()A. 个B. 个C. 个D. 个【答案】B【分析】本题考查相反数,有理数的乘方运算以及绝对值.根据负数为小于0的数判断即可.【解答】,,,,.∴负数有个.选B.10.【答题】下列各数:,,,,,,,,其中是负数的有()A. 个B. 个C. 个D. 个【答案】B【分析】本题考查相反数,有理数的乘方运算.负数为小于0的数.【解答】负数有-3,-24,-2π,一共有3个.选B.11.【答题】在﹣(﹣4),|﹣1|,﹣|0|,(﹣2)3这四个数中非负数共有()个.A. 1B. 4C. 2D. 3【答案】D【分析】本题考查有理数的运算.【解答】∴非负数有3个,选D.12.【答题】在﹣(﹣5),|﹣2|,0,(﹣3)3这四个数中,非负数共有()个.A. 1B. 4C. 2D. 3【答案】D【分析】本题考查相反数,绝对值以及乘方运算.【解答】﹣(﹣5)=5,|﹣2|=2,0,(﹣3)3=-27,∴非负数有3个,选D.13.【答题】一质点P从距原点1个单位的A点处向原点方向跳动,第一次跳动到OA 的中点A1处,第二次从A1点跳动到OA1的中点A2处,第三次从A2点跳动到OA2的中点A3处,如此不断跳动下去,则第5次跳动后,该质点到原点O的距离为______.【答案】【分析】本题考查数轴上的动点问题,有理数的乘方运算.【解答】第一次跳动到OA的中点处,即在离原点的处,第二次从点跳动到处,即在离原点的处,…则跳动次后,即跳到了离原点的处,则第5次跳动后,该质点到原点O的距离为故答案为:14.【答题】已知5个数中:(﹣1)2017,|﹣2|,﹣(﹣1.5),﹣32,﹣3的倒数,其中正数的个数有()A. 1B. 2C. 3D. 4【答案】B【分析】本题考查了有理数的乘方、绝对值的性质、相反数的定义、倒数的定义等实数基本概念,要熟悉这些概念,并能灵活运用.【解答】(﹣1)2017=﹣1,|﹣2|=2,﹣(﹣1.5)=1.5,﹣32=﹣9,﹣3的倒数是.故正数的个数有2个.选B.15.【答题】在(﹣2)2,(﹣2),+,﹣|﹣2|这四个数中,负数的个数是()A. 1个B. 2个C. 3个D. 4个【答案】C【分析】本题考查求一个数的绝对值,有理数的乘方.【解答】(﹣2)2=4,(﹣2)=-2,,﹣|﹣2|=-2,显然负数有3个.选C.16.【答题】在|﹣1|,﹣|0|,(﹣2)3,﹣|﹣2|,﹣(﹣2)这5个数中,负数共有()A. 2个B. 3个C. 4个D. 5个【答案】A【分析】本题考查求一个数的绝对值,有理数的乘方.【解答】|﹣1|=1,﹣|0|=0,(﹣2)3=-8,﹣|﹣2|=-2,﹣(﹣2)=2,负数有2个.选A.17.【答题】已知与互为相反数,则的值是()A. –1B. 1C. –4D. 4【答案】B【分析】本题考查绝对值的非负性以及有理数的乘方.【解答】∵与互为相反数,∴|a+1|+|b–4|=0,∴a+1=0,b–4=0,∴a=–1,b=4,∴=(–1)4=1.选B.18.【答题】若x,y为实数,且满足|x﹣3|+(y+3)2=0,则()2020的值是()A. 4B. 3C. 2D. 1【答案】D【分析】本题考查绝对值的非负性以及有理数的乘方.【解答】由题意得,x﹣3=0,y+3=0,解得x=3,y=﹣3,则()2020=(﹣1)2020=1,选D.19.【答题】在、、、和中,负数有()A. 1个B. 2个C. 3个D. 4个【答案】B【分析】本题考查了负数的定义,掌握负数的定义是解题的关键.【解答】=3,不是负数;=-9,是负数;=-9,是负数;=,不是负数;=0,不是负数;综上所述,共有两个负数;故选B.20.【答题】下列各组数中互为相反数的是()A. 3与B. (﹣1)与1C. ﹣(﹣2)与|﹣2|D. ﹣2与2【答案】D【分析】本题考查相反数以及有理数的乘方.正确理解相反数的定义,是解答此类题目的关键.【解答】A.3与不是互为相反数;B.(﹣1)2=1与1不是互为相反数;C.﹣(﹣2)=2,|﹣2|=2,﹣(﹣2)与|﹣2|不是互为相反数;D.﹣24=﹣16,24=16,﹣24与24是互为相反数,选D.。
2012年新人教版七年级数学上册《1.5.1有理数的乘方》第一课时课件

2 2
4
2 2 2 2 16
当底数是负数时,幂的正负由指数 思考:例 1的两个幂,底数都是负数, 为什么这两个幂一个是正数而另一个 确定,指数是偶数时,幂是正数; 是负数呢?是由什么数来确定它们的 指数是奇数时,幂是负数。 如果幂的底数是正数,那么这个幂有 不可能!正数的任何次幂都是正数 正负呢? 可能是负数吗?
n
a
n
指数 因数
因数的个数
底数
1)在
12
10
中,12是 底 数,10是 ;
指 数,读作 12的10次方
7
2 2) 的底数是 ,指数是 7 , 3 2 的7次方 ; 读作 3
2 3
3)在 3 中,-3是 底 数,16是 指 数,
16
读作 17 读作
-3的16次方
; ;
4)在 a 17中,底数是 a ;指数是
6
7 2、 4 读做-4的7次方或-4的7次幂 ;
3、 2 的结果是 负 数(填“正”或 “负”); 3Leabharlann 15 22-8
4、计算: 1 =
4
1 16
;
5、计算:
=
; 2 n 1 2n (1) 1 0
附加题:计算
。
• 思考: • (1).互为相反数的两个数的相同 奇次幂有什么关系?相同偶次幂又 有何关系; • (2). 任何一个数的偶次幂是什 么数? 2 • (3) 若a为有理数,则 a 是什么数?
义务教育教科书
数学
七年级
上册
1.5 有理数的乘方(第1课时) 1.5.1 有理数的乘方
练习一(课前测评)
2个 a 相加可记为: 边长为 a的正方形的面积可记为: 2
2019-2020学年人教版七年级数学上册同步精品课堂1-5 有理数的乘方 (练习)(含答案)

【点睛】本题考查了近似数,经过四舍五入得到的数为近似数;近似数与精确数的接近程度,可以用精确度表示.
13.(2019·福建省南平市第三中学初一期中)按照如图所示的操作步骤,若输入的值为﹣2,则输出的值为_____.
【答案】30
【解析】根据题目中的操作步骤,可以求得输入的值为 ,输出的值,本题得以解决.
故答案为:1.3×107
【点睛】本题考查科学记数法1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
15.(2018·福建省厦门市第六中学初一期中)若 ,则 的值为______.
【答案】-8
【解析】根据非负数的性质,可求出m、n的值,代入所求代数式计算即可.
C.(-3)3=-9D.-32=-9
【答案】D
【解析】根据有理数减法法则,有理数加法法则,有理数乘方进行计算,逐一进行判断即可.
【详解】解:A、(-3)-(-5)=(-3)+(+5)=2,故本选项错误;
B、(-3)+(-5)=-(3+5)=-8,故本选项错误;
C、(-3)3=(-3)×(-3)×(-3)=-27,故本选项错误;
(4)根据有理数的乘方、乘除法和加减法可以解答本题.
【详解】(1)(+6)﹣(+12)+(+8.3)﹣(﹣7.7)
=6+(﹣12)+8.3+7.7
=10;
(2)﹣9×(﹣11)÷3÷(﹣3)
=﹣9×11×
=﹣11;
(3)
=(﹣4)+18+15
=29;
(4)
=﹣1+8÷(﹣8)﹣ +1
=﹣1+(﹣1)﹣ +1
七年级数学上册“有理数的运算”知识点学习

七年级数学上册“有理数的运算”知识点梳理导图知识点一、有理数的加法(1)同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和;例:1+2=3(1和2都是正数,和取正号;|3|=|1|+|2|)﹣2+(﹣3)=﹣5(﹣2和﹣3都是负数,和取负号;|﹣5|=|﹣2|+|﹣3|)(2)绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差;例:2+(﹣1)=1(|2|>|﹣1|,和取正号;|1|=|2|-|﹣1|)2+(﹣3)=﹣1(|﹣3|>|2|,和取﹣号;|﹣1|=|﹣3|-|2|)(3)互为相反数的两个数相加得0;例:1+(﹣1)=0;﹣2+2=0(4)一个数与0相加,仍得这个数;例:1+0=1;﹣2+0=﹣2(5)两个数相加,交换加数的位置,和不变;例:1+2=2+1=3;1+(﹣2)=(﹣2)+1=﹣1;(﹣1)+(﹣2)=(﹣2)+(﹣1)=﹣3(6)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变;例:1+2+3=1+(2+3)=(1+2)+3=6;(﹣1)+(﹣2)+(﹣3)=(﹣1)+[(﹣2)+(﹣3)]=[(﹣1)+(﹣2)]+(﹣3)=﹣6习题1:计算(1):3+4; (2):﹣4+(﹣5); (3):5+(﹣6);(4):﹣7+8; (5):9+0; (6):﹣10+0;(7):10+11+12; (8):(﹣11)+(﹣12)+(﹣13); (9):12+(﹣13)+(﹣14)知识点二、有理数的减法(1)减去一个数,等于加这个数的相反数例:1-2=1+(﹣2)=﹣1;(﹣2)-3=(﹣2)+(﹣3)=﹣50-5=0+(﹣5)=﹣5习题2:计算(1):3-4; (2)5-4; (3)(﹣6)-5; (4)(﹣6)-(﹣7);(5):8-7; (6)0-9 (4)0-(﹣10)知识点三、有理数的乘法(1)两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积; 例:1×2=2(1和2都是同号,积为正;|2|=|1|×|2|)(﹣2)×(﹣3)=6(﹣2和﹣3都是同号,积为正;|6|=|﹣2|×|﹣3|) 2×(﹣3)=﹣6(2和﹣3是异号,积为负;|﹣6|=|﹣2|×|﹣3|)(2)任何数与0相乘,都得0;例:0×0=0;1×0=0;(﹣2)×0=0(3)乘积是1的两个数互为倒数;例: 2×12=1(2与12互为倒数)(﹣3)×(﹣13)=1(﹣3与﹣13互为倒数)(4)两个数相乘,交换乘数的位置,积不变;例:1×2=2×1=2;5×(﹣6)=(﹣6)×5=﹣30(5)三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变;例:﹣1×2×3=﹣1×(2×3)=(﹣1×2)×3=﹣6;(6)一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加; 例:2×(1+3)=2×1+2×3=8(7)α×b 也可以写为α·b 或αb ;当用字母表示乘数时,“×”可以写成“·”或省略; 例:5×α可以写成5·α或5α习题3:计算(1)2×3; (2):(﹣3)×(﹣4); (3):4×(﹣5);(4):0×100; (5):1×2×3; (6):(﹣2)×(﹣3)×(﹣4);(7):(﹣3)×(﹣4)×5;(8):2×(2+3);(9):3×(4-5);(10)4×[(﹣3)+(﹣4)]知识点四、有理数的除法(1)除以一个不等于0的数,等于乘这个数的倒数例:4÷(﹣2)=4×(﹣1)=22(2)两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商例:(﹣8)÷(﹣2)=4(﹣8和﹣2都是同为负号,商为正;|4|=|﹣8|÷|﹣2|)8÷(﹣2)=﹣4(8和﹣2一正一负为异号,商为负;|﹣4|=|8|÷|﹣2|)(3)0除以任何一个不等于0的数,都得0例:0÷(﹣9)=0;0÷9=0习题4:计算(1):6÷(﹣3);(2):(﹣10)÷(﹣2);(3):10÷(﹣10);(4):0÷4知识点五、有理数的乘方(1)求n个相同乘数的积的运算,叫作乘方,乘方的结果叫作幂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识导入: 1、古时候,有一个聪明的长工到财主家做工,他和财主商定:“第一天给一分钱,第二天给两分钱,以后每天是前一天的2倍。
”财主一听,心想:这人真傻,就要这么一点钱。
于是高兴的答应了,而长工心想:就怕你付不起啊!到了月底(30天)后,请你们猜一猜,财主应给长工多少钱?财主真的给不起吗? 2、有一根绳子和一把剪刀,操作如下:第一次把绳子对折,找到绳子的中点并剪断,绳子变为2根;第二次把两根绳子重合继续对折,找出中点并剪断,绳子的根数增至4根;依次类推,思考一下:
(1)如果绳子剪10次,会得到多少根绳子?
(2)如果剪n 次,会得到多少根绳子?
知识点一:有理数乘方的意义
求n 个相同因数的积的运算,叫做乘方。
乘方的表示法:
一般地, a
n a a a a 个⋅⋅⋅..记作n a ,即=n a
a n a a a a 个⨯⋅⋅⋅⨯⨯⨯; 乘方的结果叫做幂,在n a 中,a 叫做底数,n 叫做指数,n a 从运算的角度读作a 的n 次方,
从结果的角度读作a 的n 次幂。
知识点二:乘方运算的符号法则
(1)正数的任何次幂都是正数; (2)负数的奇次幂是负数,负数的偶次幂是正数;
(3)任何数的偶次幂都是非负数;即02≥a (或02≥n a )
(4)0的任何次幂都得0,-
1的偶次幂得1,-1的奇次幂得-1;1的任何次幂都得1; 知识点三:有理数乘方的运算
(1)根据乘方的定义,先把乘方转化为乘法,再利用乘法的运算法则进行计算。
知识讲解
(2)先根据有理数乘方的符号法则确定幂的符号,再求幂的绝对值。
考点一:有理数乘方的意义
【例1】把下列各式写成乘方的形式,并指出底数与指数。
(1)()()()()3.13.13.13.1-⨯-⨯-⨯-; (2)5151515151⨯⨯⨯⨯
;
(3)⎪⎭
⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-21212121; (4)⎪⎭⎫
⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛656565656565
【举一反三】1、(-2)6中指数为 ,底数为 ;4的底数是 ,指数是 ;
523⎪⎭
⎫ ⎝⎛-的底数是 ,指数是 ,结果是 ; 2、判断下列各题是否正确:
(1)3223⨯=;( ) (2)32222=++;( )
(3)
22223⨯⨯=;( ) (4)()()()()222224-⨯-⨯-⨯-=-( )
考点二:乘方运算的符号法则
【例2】计算:
(1)()44- (2)()22- (3)3
8 (4)()3
5-
(5)()21.0- (6)()20051- (7)()200652.0⨯- (8)3
31⎪⎭
⎫ ⎝⎛- 【举一反三】1、计算:1、()42-- 2、3
211⎪⎭⎫ ⎝⎛ 3、()20031-
2、-32的值是( )
A 、-9
B 、9
C 、-6
D 、6
考点三:有理数乘方的运算
【例3】计算:
(1)()()336-⨯- (2)
()⎪⎭⎫ ⎝⎛-÷-4332 (3)()()22234-÷⨯
(4)()20132012212⎪⎭⎫ ⎝⎛-⨯-
【举一反三】1、计算(1)2×(-3)3; (2)-32×(-2)2; (3)-(-2)3×(-3)2
2、-24×(-22)×(-2) 3=( )
A 、 29
B 、-29
C 、-224
D 、224
考点四:偶次幂的非负性
【例4】已知()0654=++-y x ,求()()y x --+-11的值。
【举一反三】1、已知()0322=-+-y x ,求(1)y x ;(2)y xy
y x -
2、如果一个数的偶次幂是非负的,那么这个数是( )
A.正数
B.负数
C.非负数
D.任何有理数。