21、圆锥曲线专题第一节圆锥曲线中的向量有关的问题答案与解析
(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx
圆锥曲线一、椭圆:( 1)椭圆的定义:平面内与两个定点F1 , F2的距离的和等于常数(大于| F1 F2 |)的点的轨迹。
其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。
注意: 2a | F1F2 | 表示椭圆;2a | F1F2|表示线段F1F2; 2a| F1F 2 |没有轨迹;(2)椭圆的标准方程、图象及几何性质:中心在原点,焦点在x 轴上中心在原点,焦点在y 轴上标准方程图形x2y2y2x2a2b 21( a b 0)a 2b21(ab 0)yB 2yB 2P F2 PA 1 A 2x A 1xA 2OF1O F21B 1FB 1顶点对称轴焦点焦距离心率通径2b2aA1 (a,0), A2 (a,0)A1( b,0), A2 (b,0)B1 (0, b), B2(0, b)B1( 0,a), B2 (0, a) x 轴,y轴;短轴为2b,长轴为2aF1 (c,0), F2(c,0)F1 ( 0,c), F2 (0,c)| F1 F2 | 2c(c 0)c2 a 2 b 2ec(0 e 1) (离心率越大,椭圆越扁)a(过焦点且垂直于对称轴的直线夹在椭圆内的线段)3.常用结论:(1)椭圆x2y21(a b 0) 的两个焦点为F1, F2,过F1的直线交椭圆于A, B两a2 b 2点,则ABF 2的周长=(2)设椭圆x2y2221( a b 0)左、右两个焦点为 F1, F2,过 F1且垂直于对称轴的直线a b交椭圆于 P, Q 两点,则 P, Q 的坐标分别是| PQ |二、双曲线:( 1)双曲线的定义:平面内与两个定点F1 , F2的距离的差的绝对值等于常数(小于| F1F2 | )的点的轨迹。
其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。
注意: | PF1 || PF2 | 2a 与 | PF2 | | PF1 |2a ( 2a| F1F2 | )表示双曲线的一支。
2a | F1 F2|表示两条射线; 2a| F1F2 |没有轨迹;(2)双曲线的标准方程、图象及几何性质:中心在原点,焦点在 x 轴上中心在原点,焦点在 y 轴上标准x2y21( a 0,b 0)y2x21(a 0, b 0) 22方程 a 2 b 2a bP y2 F图形P y B2x xF1 A 1O A 2F2O B1F1顶点对称轴焦点焦距离心率渐近线A1 ( a,0), A2 ( a,0)B1(0,a), B2 (0, a) x 轴,y轴;虚轴为2b,实轴为2aF1 ( c,0), F2 ( c,0)F1 (0,c), F2 (0, c) | F1F2 | 2c(c 0) c 2 a 2b2ec(e 1)(离心率越大,开口越大)aybx y a xa b通径2b2a (3)双曲线的渐近线:①求双曲线 x 2y21的渐近线,可令其右边的 1 为 0,即得x2y 20 ,因式分解得到xy0。
高二数学圆锥曲线试题答案及解析
高二数学圆锥曲线试题答案及解析1.已知椭圆的离心率,右焦点为,方程的两个实根,,则点()A.必在圆内B.必在圆上C.必在圆外D.以上三种情况都有可能【答案】A【解析】本题只要判断与2的大小,时,点在圆上;时,点在圆内;时,点在圆外.由已知,,椭圆离心率为,从而,点在圆内,故选A.【考点】1.点与圆的位置关系;2.二次方程根与系数的关系.2.若抛物线y2=4x上的点A到其焦点的距离是6,则点A的横坐标是( )A.5B.6C.7D.8【答案】A【解析】由抛物线的方程可知抛物线的准线为,根据抛物线的定义可知点到其准线的距离也为6,即,所以。
故A正确。
【考点】抛物线的定义。
3.设一个焦点为,且离心率的椭圆上下两顶点分别为,直线交椭圆于两点,直线与直线交于点.(1)求椭圆的方程;(2)求证:三点共线.【答案】(1)(2)详见解析.【解析】(1)利用椭圆的定义和几何性质;(2)直线与圆锥曲线相交问题,可以设而不求,联立直线与椭圆方程,利用韦达定理结合题目条件来证明.试题解析:(1)由题知,,∴,3分∴椭圆.4分(2) 设点,由(1)知∴直线的方程为,∴.5分∴,,8分由方程组化简得:,,.10分∴,∴三点共线.12分【考点】1.椭圆的标准方程;2.直线与圆锥曲线相交问题;3.韦达定理.4.已知双曲线的右焦点为,若过且倾斜角为的直线与双曲线的右支有且只有一个交点,则双曲线离心率的取值范围是( )A.B.C.D.【答案】A【解析】由渐进线的斜率.又因为过且倾斜角为的直线与双曲线的右支有且只有一个交点,所以.所以.故选A.本小题关键是对比渐近线与过焦点的直线的斜率的大小.【考点】1.双曲线的渐近线.2.离心率.3.双曲线中量的关系.5.点P是抛物线y2 = 4x上一动点,则点P到点(0,-1)的距离与到抛物线准线的距离之和的最小值是 .【答案】【解析】抛物线y2 = 4x的焦点,点P到准线的距离与点P到点F的距离相等,本题即求点P到点的距离与到点的距离之和的最小值,画图可知最小值即为点与点间的距离,最小值为.【考点】抛物线的定义.6.准线方程为x=1的抛物线的标准方程是()A.B.C.D.【答案】A【解析】由题意可知:=1,∴p=2且抛物线的标准方程的焦点在x轴的负半轴上故可设抛物线的标准方程为:y2=-2px,将p代入可得y2=-4x.选A.【考点】抛物线的性质点评:本题主要考查抛物线的基本性质以及计算能力.在涉及到求抛物线的标准方程问题时,一定要先判断出焦点所在位置,避免出错.7.动点到两定点,连线的斜率的乘积为(),则动点P在以下哪些曲线上()(写出所有可能的序号)①直线②椭圆③双曲线④抛物线⑤圆A.①⑤B.③④⑤C.①②③⑤D.①②③④⑤【答案】C【解析】由题设知直线PA与PB的斜率存在且均不为零所以kPA •kPB=,整理得,点P的轨迹方程为kx2-y2=ka2(x≠±a);①当k>0,点P的轨迹是焦点在x轴上的双曲线(除去A,B两点)②当k=0,点P的轨迹是x轴(除去A,B两点)③当-1<k<0时,点P的轨迹是焦点在x轴上的椭圆(除去A,B两点)④当k=-1时,点P的轨迹是圆(除去A,B两点)⑤当k<-1时,点P的轨迹是焦点在y轴上的椭圆(除去A,B两点).故选C.【考点】圆锥曲线的轨迹问题.点评:本题考查圆锥曲线的轨迹问题,解题时要认真审题,注意分类讨论思想的合理运用.8.已知F1,F2是椭圆 (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2=,记线段PF1与y轴的交点为Q,O为坐标原点,若△F1OQ与四边形OF2PQ的面积之比为1∶2,则该椭圆的离心率等于【答案】-1【解析】根据题意,由于F1,F2是椭圆 (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2=,且有△F1OQ与四边形OF2PQ的面积之比为1∶2,则可知为点P到x轴的距离是Q到x轴距离的3:2倍,那么结合勾股定理可知该椭圆的离心率等于-1 ,故答案为-1 。
2021版新高考数学:圆锥曲线含答案
设M(x、y)、由已知得⊙M的半径为r=|x+2|、|AO|=2.
由于 ⊥ 、【关键点5:圆的几何性质向量化】
故可得x2+y2+4=(x+2)2、化简得M的轨迹方程为y2=4x.
因为曲线C:y2=4x是以点P(1、0)为焦点、以直线x=-1为准线的抛物线、所以|MP|=x+1.
因为|MA|-|MP|=r-|MP|=x+2-(x+1)=1、所以存在满足条件的定点P.
由题设知 =1、 =m、于是k=- .①
由于点M(1、m)(m>0)在椭圆 + =1内、
∴ + <1、解得0<m< 、故k<- .
(2)由题意得F(1、0).设P(x3、y3)、
则(x3-1、y3)+(x1-1、y1)+(x2-1、y2)=(0、0).
由(1)及题设得
x3=3-(x1+x2)=1、y3=-(y1+y2)=-2m<0.【关键点2、设出点P、借助向量的建立变量间的关系、达到设而不求的目的】
【点评】从本题可以看出、圆的几何性质与数量关系的转化涵盖在整个解题过程中、向量在整个其解过程中起了“穿针引线”的作用、用活圆的几何性质可以达到事半功倍的效果.
途径四 设而不求、化繁为简
高考示例
方法与思维
(20xx·全国卷Ⅲ)已知斜率为k的直线l与椭圆C: + =1交于A、B两点、线段AB的中点为M(1、m)(m>0).
所以l的方程为y=-x+ 、代入C的方程、并整理得7x2-14x+ =0.
故x1+x2=2、x1x2= 、
代入②解得|d|= .【关键点3:借用根与系数的关系、达到设而不求的目的】
所以该数列的公差为 或- .
【点评】本题(1)涉及弦的中点坐标、可以采用“点差法”求解、设出点A、B的坐标、代入椭圆方程并作差、再将弦AB的中点坐标代入所得的差、可得直线AB的斜率;对于(2)圆锥曲线中的证明问题、常采用直接法证明、证明时常借助等价转化思想、化几何关系为数量关系、然后借助方程思想给予解答.
圆锥曲线大题专题及答案
解析几何大题专题第一类题型 弦长面积问题1.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率是2,且过点P .直线2y x m =+与椭圆C 相交于,A B 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)求PAB △的面积的最大值;(Ⅲ)设直线,PA PB 分别与y 轴交于点,M N .判断||PM ,||PN 的大小关系,并加以证明.2. (本小题14分) 已知椭圆22:13+=x y C m m,直线:20+-=l x y 与椭圆C 相交于P ,Q 两点,与x 轴交于点B ,点,P Q 与点B 不重合.(Ⅰ)求椭圆C 的离心率;(Ⅱ)当2∆=OPQ S 时,求椭圆C 的方程;(Ⅲ)过原点O 作直线l 的垂线,垂足为.N 若λ=PN BQ ,求λ的值.3.(本小题共14分)已知椭圆2222:1(0)x yC a ba b+=>>离心率等于12,(2,3)P、(2,3)Q-是椭圆上的两点.(Ⅰ)求椭圆C的方程;(Ⅱ),A B是椭圆上位于直线PQ两侧的动点,若直线AB的斜率为12,求四边形APBQ面积的最大值.4.(本小题满分14分)已知椭圆C:2231(0)mx my m+=>的长轴长为O为坐标原点.(Ⅰ)求椭圆C的方程和离心率;(Ⅱ)设点(3,0)A,动点B在y轴上,动点P在椭圆C上,且P在y轴的右侧,若||||BA BP=,求四边形OPAB面积的最小值.5.(本小题共14分)已知椭圆C:2214xy+=,F为右焦点,圆O:221x y+=,P为椭圆C上一点,且P位于第一象限,过点P作PT与圆O相切于点T,使得点F,T在OP两侧.(Ⅰ)求椭圆C的焦距及离心率;(Ⅱ)求四边形OFPT面积的最大值.6.(本小题13分)已知抛物线C:y2=2px经过点P(2,2),A,B是抛物线C上异于点O的不同的两点,其中O为原点.(I)求抛物线C的方程,并求其焦点坐标和准线方程;(II)若OA OB,求△AOB面积的最小值.第二类题型 圆过定点问题( 包括点在圆上 点在圆外 点在圆内)1.(本小题满分14 分)已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,椭圆C 与y 轴交于A , B 两点,且|AB |=2.(Ⅰ)求椭圆C 的方程;(Ⅱ)设点P 是椭圆C 上的一个动点,且直线PA ,PB 与直线x =4分别交于M , N两点.是否存在点P 使得以MN 为直径的圆经过点(2,0)?若存在,求出点P 的横坐标;若不存在,说明理由。
高考数学圆锥曲线专题练习及答案解析
X = —½距离为6,点P,Q是椭圆上的两个动点©
C
(1)求椭圆C的方程;
(2)若直线AP丄40,求证:直线P0过泄点R,并求出R点的坐标。
【例二・】已知一动圆经过点M(2,0),且在y轴上截得的弦长为4,设该动圆圆心的轨迹为曲 线C。
(1)求曲线C的方程;
(2)过点N(1,O)任意作两条互相垂直的直线∕1,∕2,分别交曲线C于不同的两点A,B和
的焦点,直线4F的斜率为少,O为坐标原点。
3
(1)求E方程;
(2)设过点A的直线/与E相交于PQ两点,当AOP0的面积最大时,求/的方
程。
专题练习
1•在平面直角坐标系XOy中,已知点A(O,—OB点在直线y = -3±, M点满足
MB//QA,莎•亦=屁•鬲M点的轨迹为曲线C。
(1)求C的方程:
(2)P为C上的动点,/为C在P点处的切线,求O点到/距离的最小值。
10.抛汤钱屮阿基来德三角形鲂纟见般质及疝用
11.(S傩曲钱屮的戒切後龜哩
锥曲线中的求轨迹方程问题
解题技巧
求动点的轨迹方程这类问题可难可易是高考中的髙频题型,求轨迹方程的主要方法有直译法、
相关点法、泄义法、参数法等。它们的解题步骤分别如下:
1.直译法求轨迹的步骤:
(1)设求轨迹的点为P(χ,y);
(2)由已知条件建立关于x,y的方程;
D,Q设线段ABQE的中点分别为几。・
①求证:直线P0过左点R,并求出泄点/?的坐标;
②求PGl的最小值。
专题练习
1.设椭圆E:丄y+ =y=l(α> b > 0)的右焦点到直线x-y + 2√z2=0的距离为3,且过点Cr Ir
I
向量与圆锥曲线综合问题(带详解)
向量与圆锥曲线综合问题取值范围问题1、如图所示,已知圆M A y x C ),0,1(,8)1(:22定点=++为圆上一动点,点P 在AM 上, 点N 在CM 上,且满足N 点,0,2=⋅=的轨迹为曲线E. (I )求曲线E 的方程;(II )若过定点F (0,2)的直线交曲线E 于不同的两点G 、H (点G 在点F 、H 之间),且满足λ=,求λ的取值范围.2、已知椭圆2222+1,(0)x y a b a b=>>的离心率,直线y x =与椭圆交于A B ,两点,C 为椭圆的右顶点, 32OA OC ⋅=(1)求椭圆的方程;(2)若椭圆上存在两点,E F 使,(0,2)OE OF OA λλ+=∈,求OEF ∆面积的最大值。
3、已知椭圆+=1(a >b >0)的离心率为,且经过点P (1,).过它的两个焦点F 1,F 2分别作直线l 1与l 2,l 1交椭圆于A 、B 两点,l 2交椭圆于C 、D 两点,且l 1⊥l 2. (Ⅰ)求椭圆的标准方程;(Ⅱ)求四边形ACBD 的面积S 的取值范围.4、已知中心在原点,顶点12A A 、(2A 为右顶点)在x 轴上,离心率为e =的双曲线C 经过点(6,6)P ,动直线l 经过点(0,1)与双曲线C 交于M N 、两点,Q 为线段MN 的中点,①求双曲线C 的标准方程;②若E 点为(1,0),是否存在实数λ,使2EQ A P λ=,若存在,求λ的值;若不存在,说明理由。
定值问题1、已知双曲线222x y -=的左、右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点. (I )若动点M 满足1111FM F A F B FO =++(其中O 为坐标原点),求点M 的轨迹方程; (II )在x 轴上是否存在定点C ,使CA ·CB 为常数?若存在,求出点C 的坐标;若不存在,请说明理由.定点问题1、已知点A(22-,0),B(2-,0)动点P 满足||||2⋅=⋅(1)若动点P 的轨迹记作曲线C 1,求曲线C 1的方程.(2)已知曲线C 1交y 轴正半轴于点Q ,过点D (0,32-)作斜率为k 的直线交曲线C 1于M 、N 点,求证:无论k 如何变化,以MN 为直径的圆过点Q.1、设F 1、F 2分别是椭圆1422=+y x 的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求12PF PF ⋅的最大值和最小值;(Ⅱ)设过定点M(0,2)的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.存在性问题1、已知两定点())12,F F ,满足条件212PF PF -=的点P 的轨迹是曲线E ,直线y=kx-1与曲线E 交于A,B 两点。
(完整版)圆锥曲线常见题型及答案
圆锥曲线常见题型归纳一、基础题涉及圆锥曲线的基本概念、几何性质,如求圆锥曲线的标准方程,求准线或渐近线方程,求顶点或焦点坐标,求与有关的值,求与焦半径或长(短)轴或实(虚)轴有关的角和三角形面积。
此类题在考试中最常见,解此类题应注意:(1)熟练掌握圆锥曲线的图形结构,充分利用图形来解题;注意离心率与曲线形状的关系; (2)如未指明焦点位置,应考虑焦点在x 轴和y 轴的两种(或四种)情况;(3)注意2,2,a a a ,2,2,b b b ,2,2,c c c ,2,,2p p p 的区别及其几何背景、出现位置的不同,椭圆中222b a c -=,双曲线中222b a c +=,离心率a c e =,准线方程a x 2±=;例题:(1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 ( )A .421=+PF PFB .621=+PF PF C .1021=+PF PF D .122221=+PF PF (答:C );(2)方程8=表示的曲线是_____ (答:双曲线的左支)(3)已知点)0,22(Q 及抛物线42x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2)(4)已知方程12322=-++k y k x 表示椭圆,则k 的取值范围为____ (答:11(3,)(,2)22---); (5)双曲线的离心率等于25,且与椭圆14922=+y x 有公共焦点,则该双曲线的方程_______(答:2214x y -=);(6)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)二、定义题对圆锥曲线的两个定义的考查,与动点到定点的距离(焦半径)和动点到定直线(准线)的距离有关,有时要用到圆的几何性质。
此类题常用平面几何的方法来解决,需要对圆锥曲线的(两个)定义有深入、细致、全面的理解和掌握。
高二数学圆锥曲线试题答案及解析
高二数学圆锥曲线试题答案及解析1.设函数分别在、处取得极小值、极大值.平面上点、的坐标分别为、,该平面上动点满足,点是点关于直线的对称点.(Ⅰ)求点、的坐标;(Ⅱ)求动点的轨迹方程.【答案】(1);(2).【解析】(1)解决类似的问题时,要先求函数在区间内使的点,再判断导函数在各区间上的正负,由此得出函数的极大值和极小值.(2)第二问关键是理清思路,要求谁的方程,那就在这个曲线上任意选取一个点设为,然后根据条件寻找X与Y间的关系式即可. 试题解析:(Ⅰ)令解得当x<﹣1时,,当﹣1<x<1时,,当x>1时,所以,函数在处取得极小值,在取得极大值,故所以,点A、B的坐标为.(Ⅱ)设Q(x,y),①又点Q是点P关于直线y=x的对称点代入①得:,即为Q的轨迹方程【考点】(1)函数导数以及极值问题;(2)求点的轨迹方程问题.2.若抛物线的焦点与椭圆的右焦点重合,则的值为()A.B.C.D.【答案】D【解析】抛物线的焦点坐标为,而椭圆的右焦点坐标为即,依题意可得,故选D.【考点】1.椭圆的几何性质;2.抛物线的几何性质.3.已知离心率的椭圆一个焦点为.(1)求椭圆的方程;(2) 若斜率为1的直线交椭圆于两点,且,求直线方程.【答案】(1);【解析】(2) 或.(1)由焦点坐标、离心率及解方程即可;(2)可以联立直线L与椭圆方程消去y,得到关于x的一元二次方程,然后利用弦长公式建立方程求出斜率截距m即可.试题解析:解:(1)由题知,,∴,3分∴椭圆.4分(2) 设直线方程为,点,由方程组6分化简得:,.8分∴,9分,解得.11分∴直线方程或.12分【考点】1.椭圆的标准方程;2.直线与圆锥曲线相交;3.弦长公式.4.(1)已知点和,过点的直线与过点的直线相交于点,设直线的斜率为,直线的斜率为,如果,求点的轨迹;(2)用正弦定理证明三角形外角平分线定理:如果在中,的外角平分线与边的延长线相交于点,则.【答案】(1)的轨迹是以为顶点,焦点在轴的椭圆(除长轴端点);(2)证明详见解析.【解析】(1)本题属直接法求轨迹方程,即根据题意设动点的坐标,求出,列出方程,化简整理即可;(2)设,在中,由正弦定理得,同时在在中,由正弦定理得,然后根据,进而得到,最后将得到的两等式相除即可证明.试题解析:(1)设点坐标为,则 2分整理得 4分所以点的轨迹是以为顶点,焦点在轴的椭圆(除长轴端点) 6分(2)证明:设在中,由正弦定理得① 8分在中,由正弦定理得,而所以② 10分①②两式相比得 12分.【考点】1.轨迹方程的求法;2.正弦定理的应用.5.如图,已知椭圆:的离心率为,点为其下焦点,点为坐标原点,过的直线:(其中)与椭圆相交于两点,且满足:.(1)试用表示;(2)求的最大值;(3)若,求的取值范围.【答案】(1);(2)离心率的最大值为;(3)的取值范围是.【解析】(1)设,联立椭圆与直线的方程,消去得到,应用二次方程根与系数的关系得到,,然后计算得,将其代入化简即可得到;(2)利用(1)中得到的,即(注意),结合,化简求解即可得出的最大值;(3)利用与先求出的取值范围,最后根据(1)中,求出的取值范围即可.试题解析:(1)联立方程消去,化简得 1分设,则有, 3分∵∴ 5分∴即 6分(2)由(1)知∴,∴ 8分∴∴离心率的最大值为 10分(3)∵∴∴ 12分解得∴即∴的取值范围是 14分【考点】1.椭圆的标准方程及其性质;2.二次方程根与系数的关系.6.已知椭圆的一个焦点为,过点且垂直于长轴的直线被椭圆截得的弦长为;为椭圆上的四个点。
高二数学圆锥曲线试题答案及解析
高二数学圆锥曲线试题答案及解析1.已知点,,直线上有两个动点,始终使,三角形的外心轨迹为曲线为曲线在一象限内的动点,设,,,则()A.B.C.D.【答案】C【解析】依题意设,的外心为,则有即,又由得即,将代入化简得即,在中,由余弦定理可得即展开整理得即也就是,将、代入可得,整理可得,即的外心轨迹方程为设,则即,而又,所以所以,故选C.【考点】1.动点的轨迹;2.直线的斜率;3.两角和的正切公式.2.若点P到点的距离与它到直线y+3=0的距离相等,则P的轨迹方程为 () A.B.C.D.【答案】C【解析】根据抛物线的定义可知,条件为以为焦点的抛物线,所以轨迹为.【考点】抛物线的定义.3.过抛物线的焦点的直线交抛物线于两点,且在直线上的射影分别是,则的大小为 .【答案】.【解析】如图,由抛物线的定义可知:,∴;根据内错角相等知;同理可证而,∴.【考点】抛物线的定义.4.已知椭圆的一个焦点为,过点且垂直于长轴的直线被椭圆截得的弦长为;为椭圆上的四个点。
(Ⅰ)求椭圆的方程;(Ⅱ)若,且,求四边形的面积的最大值和最小值.【答案】(Ⅰ) ;(Ⅱ) 2,【解析】(Ⅰ)依题意可得椭圆C的一个焦点为知,在代入点即可得得到一个关于的等式从而可求出的值,即可得椭圆的标准方程.(Ⅱ) 由于,所以直线都过F点,从而又因为所以直线与直线相互垂直.所以四边形的面积为.故关键是求出线段的长度.首先要分类存在垂直于轴的情况,和不垂直于轴的情况两种.前者好求.后者通过假设一条直线联立椭圆方程写出弦长的式子,类似地写出另一条所得到的弦长.通过利用基本不等式即可求得面积的范围.从而再结合垂直于轴的情况,求出最大值与最小值.试题解析:(Ⅰ)由题椭圆C的一个焦点为知故可设椭圆方程为,过焦点且与长轴垂直的直线方程为,设此直线与椭圆交于A,B两点则,又,所以,又,联立求得,,故椭圆方程为.(Ⅱ)由,知,点共线,点共线,即直线经过椭圆焦点。
又知,(i)当斜率为零或不存在时,(ii)当直线存在且不为零时,可设斜率为,则由知,的斜率为所以:直线方程为:。
高三数学圆锥曲线试题答案及解析
高三数学圆锥曲线试题答案及解析1.设、是定点,且均不在平面上,动点在平面上,且,则点的轨迹为()A.圆或椭圆B.抛物线或双曲线C.椭圆或双曲线D.以上均有可能【答案】D【解析】以为高线,为顶点作顶角为的圆锥面,则点就在这个圆锥面上,用平面截这个圆锥面所得截线就是点的轨迹,它可能是圆、椭圆、抛物线、双曲线,因此选D.【考点】圆锥曲线的性质.2.已知点是双曲线右支上一点,是双曲线的左焦点,且双曲线的一条渐近线恰是线段的中垂线,则该双曲线的离心率是( )A.B.C.D.【答案】D【解析】设直线:求直线与渐近线的交点,解得:是的中点,利用中点坐标公式,得,在双曲线上,所以代入双曲线方程得:,整理得,解得.故选D.【考点】1.双曲线的几何性质;2.双曲线的方程.3.已知椭圆的焦点重合,则该椭圆的离心率是.【答案】【解析】抛物线的焦点为,椭圆的方程为:,所以离心率.【考点】1、椭圆与抛物线的焦点;2、圆的离心率.4.已知双曲线的左、右焦点分别为,以为直径的圆与双曲线渐近线的一个交点为,则此双曲线的方程为()A.B.C.D.【答案】C【解析】由条件得:,即,而,渐近线为,在上,所以,得,所以双曲线方程为.【考点】1.双曲线方程的求法;2.双曲线的渐近线.5.已知动点到定点和的距离之和为.(Ⅰ)求动点轨迹的方程;(Ⅱ)设,过点作直线,交椭圆异于的两点,直线的斜率分别为,证明:为定值.【答案】(Ⅰ);(Ⅱ)证明过程详见解析.【解析】本题考查椭圆的基本量间的关系及韦达定理的应用.第一问是考查椭圆的基本量间的关系,比较简单;第二问是直线与椭圆相交于两点,先设出两点坐标,本题的突破口是在消参后的方程中找出两根之和、两根之积,整理斜率的表达式,但是在本问中需考虑直线的斜率是否存在,此题中蕴含了分类讨论的思想的应用.试题解析:(Ⅰ)由椭圆定义,可知点的轨迹是以为焦点,以为长轴长的椭圆.由,得.故曲线的方程为. 5分(Ⅱ)当直线的斜率存在时,设其方程为,由,得. 7分设,,,.从而.11分当直线的斜率不存在时,得,得.综上,恒有. 12分【考点】1.三角形面积公式;2.余弦定理;3.韦达定理;4.椭圆的定义.6.已知双曲线的左、右焦点分别为,以为直径的圆与双曲线渐近线的一个交点为,则此双曲线的方程为()A.B.C.D.【答案】C【解析】由条件得:,即,而,渐近线为,在上,所以,得,所以双曲线方程为.【考点】1.双曲线方程的求法;2.双曲线的渐近线.7.已知椭圆的中心在坐标原点,右准线为,离心率为.若直线与椭圆交于不同的两点、,以线段为直径作圆.(1)求椭圆的标准方程;(2)若圆与轴相切,求圆被直线截得的线段长.【答案】(1);(2).【解析】(1)先根据题中的条件确定、的值,然后利用求出的值,从而确定椭圆的方程;(2)先确定点的坐标,求出圆的方程,然后利用点(圆心)到直线的距离求出弦心距,最后利用勾股定理求出直线截圆所得的弦长.试题解析:(1)设椭圆的方程为,由题意知,,解得,则,,故椭圆的标准方程为 5分(2)由题意可知,点为线段的中点,且位于轴正半轴,又圆与轴相切,故点的坐标为,不妨设点位于第一象限,因为,所以, 7分代入椭圆的方程,可得,因为,解得, 10分所以圆的圆心为,半径为,其方程为 12分因为圆心到直线的距离 14分故圆被直线截得的线段长为 16分【考点】椭圆的方程、点到直线的距离、勾股定理8.已知为抛物线的焦点,抛物线上点满足(Ⅰ)求抛物线的方程;(Ⅱ)点的坐标为(,),过点F作斜率为的直线与抛物线交于、两点,、两点的横坐标均不为,连结、并延长交抛物线于、两点,设直线的斜率为,问是否为定值,若是求出该定值,若不是说明理由.【答案】(Ⅰ),(Ⅱ).【解析】(Ⅰ)利用抛物线的定义得到,再得到方程;(Ⅱ)利用点的坐标表示直线的斜率,设直线的方程,通过联立方程,利用韦达定理计算的值.试题解析:(Ⅰ)由题根据抛物线定义,所以,所以为所求. 2分(Ⅱ)设则,同理 4分设AC所在直线方程为,联立得所以, 6分同理 (8分)所以 9分设AB所在直线方程为联立得, 10分所以所以 12分【考点】抛物线标准方程,直线与抛物线位置关系的应用.9.极坐标系中椭圆C的方程为以极点为原点,极轴为轴非负半轴,建立平面直角坐标系,且两坐标系取相同的单位长度. (Ⅰ)求该椭圆的直角标方程;若椭圆上任一点坐标为,求的取值范围;(Ⅱ)若椭圆的两条弦交于点,且直线与的倾斜角互补,求证:.【答案】(Ⅰ)(Ⅱ)详见解析【解析】将椭圆的极坐标方程转化为一般标准方程,再利用换元法求范围,利用参数方程代入,计算得到结果.试题解析:(Ⅰ)该椭圆的直角标方程为, 2分设,所以的取值范围是 4分(Ⅱ)设直线的倾斜角为,直线的倾斜角为,则直线的参数方程为(为参数),(5分)代入得:即 7分同理 9分所以(10分)【考点】极坐标、参数方程,换元法应用.10.已知直线,,过的直线与分别交于,若是线段的中点,则等于()A.12B.C.D.【答案】B【解析】设、,所以、.所以.故选B.【考点】两点之间的距离点评:主要是考查了两点之间的距离的运用,属于基础题。
圆锥曲线题型总结:圆锥曲线与向量结合的三种题型【精品】
圆锥曲线题型总结:圆锥曲线与向量结合的三种题型【精品】圆锥曲线与向量的结合——圆锥曲线题型总结一、AP=λPB解题方法总结如下:设直线AB与圆锥曲线C相交于点A、B,P为直线AB上的任意一点,A(x1,y1),B(x2,y2),则可以得到AP=λPB。
利用这个条件,可以构造两根之和与两根之积,消去x2,然后利用XXX定理求解。
例如,对于题目“设双曲线C:2-x^2/a^2=y^2/b^2(a>b)与直线l:x+y=1相交于两个不同的点A、B.设直线l与y轴的交点为P,且PA=5PB.求a的值.”,可以按照上述方法解题。
首先联立方程组,得到两个交点的坐标。
然后利用构造两根之和与两根之积的方法,消去x2,得到一个关于a的方程。
最后利用XXX定理求解,得到a的值。
二、PR/PQ的取值范围对于题目“已知x-1>0(x>1),设直线y=-2x+m与y轴交于点P,与双曲线C相交于点Q、R,且|PQ|<3/2|PR|,求PR/PQ的取值范围.”,可以采用向量的方法解题。
设向量PQ 为a,向量PR为b,则PR/PQ=|b|/|a|。
根据向量的定义,可以得到a和b的表达式。
然后根据题目中的条件,可以列出一个关于m的不等式。
最后,通过分析不等式的解集,可以得到PR/PQ的取值范围。
已知直线 $C:x-1=0$($x\neq 1$ 且 $x\neq -1$),设直线$y=x+m$($m>0$)与 $y$ 轴交于点 $P$,与轨迹 $C$ 相交于点 $Q$、$R$,且 $|PQ|<|PR|$,求 $m$ 的取值范围。
解法一:设 $Q(x_1,y_1)$,$R(x_2,y_2)$,联立$\begin{cases} 4x^2-y^2-4=PRx \\ 3x-2mx-m-4=0 \end{cases}$。
则可设 $x_2=-\lambda x_1$($\lambda>1$),即 $-x_1x_2=\lambda x_2^2$,此时$y_P=x_P+m$,$y_Q=x_Q+m$。
(完整word版)圆锥曲线知识点+例题+练习含答案(整理)
圆锥曲线一、椭圆:(1)椭圆的定义:平面内与两个定点21,F F 的距离的和等于常数(大于||21F F )的点的轨迹。
其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。
注意:||221F F a >表示椭圆;||221F F a =表示线段21F F ;||221F F a <没有轨迹; (2)椭圆的标准方程、图象及几何性质:3.常用结论:(1)椭圆)0(12222>>=+b a by a x 的两个焦点为21,F F ,过1F 的直线交椭圆于B A ,两点,则2ABF ∆的周长=(2)设椭圆)0(12222>>=+b a by a x 左、右两个焦点为21,F F ,过1F 且垂直于对称轴的直线交椭圆于Q P ,两点,则Q P ,的坐标分别是 =||PQ二、双曲线:(1)双曲线的定义:平面内与两个定点21,F F 的距离的差的绝对值等于常数(小于||21F F )的点的轨迹。
其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。
注意:a PF PF 2||||21=-与a PF PF 2||||12=-(||221F F a <)表示双曲线的一支。
||221F F a =表示两条射线;||221F F a >没有轨迹;(2)双曲线的标准方程、图象及几何性质:中心在原点,焦点在x 轴上中心在原点,焦点在y 轴上标准 方程)0,0(12222>>=-b a by a x )0,0(12222>>=-b a bx a y 图 形顶 点 )0,(),0,(21a A a A -),0(),,0(21a B a B -对称轴 x 轴,y 轴;虚轴为b 2,实轴为a 2焦 点 )0,(),0,(21c F c F -),0(),,0(21c F c F -焦 距 )0(2||21>=c c F F 222b a c+=离心率 )1(>=e ace (离心率越大,开口越大) 渐近线 x ab y ±= x ba y ±= 通 径22b a(3)双曲线的渐近线: ①求双曲线12222=-by a x的渐近线,可令其右边的1为0,即得02222=-by a x ,因式分解得到0x y a b ±=。
高二数学圆锥曲线试题答案及解析
高二数学圆锥曲线试题答案及解析1.已知点的坐标为,点为轴负半轴上的动点,以线段为边作菱形,使其两对角线的交点恰好在轴上,则动点的轨迹E 的方程 .【答案】【解析】试题解析:依题意,设对角线的交点为,因为在轴上,又顶点与关于对称,所以始终在直线上,根据菱形的特点,亦即轴,有到定点的距离与到定直线的距离相等,显然,的轨迹是以为焦点,直线为准线的抛物线即,所以,抛物线方程为:,动点D的轨迹E 的方程为:.【考点】动点的轨迹方程.2.已知实数1,m,9构成一个等比数列,则圆锥曲线+y2=1的离心率为_________.【答案】或2【解析】因为实数1,m ,9构成一个等比数列,所以即m=3或m=-3,当m=3时,曲线为焦点在x轴的椭圆,离心率为;当m=-3时,曲线为焦点在y轴的双曲线,离心率为2,答案为或2.【考点】1.等比数列的性质;2.圆锥曲线的性质3.在中,,给出满足的条件,就能得到动点的轨迹方程,下表给出了一些条件及方程:条件方程①周长为10②面积为10③中,则满足条件①、②、③的点轨迹方程按顺序分别是A. 、、B. 、、C. 、、D. 、、【答案】A【解析】①周长为10,即,轨迹为椭圆;②面积为10,即,∴所以轨迹为;③中,,即为圆周上一点,所以轨迹为圆.【考点】圆锥曲线问题、轨迹问题.4.若抛物线y2=4x上的点A到其焦点的距离是6,则点A的横坐标是( )A.5B.6C.7D.8【答案】A【解析】由抛物线的方程可知抛物线的准线为,根据抛物线的定义可知点到其准线的距离也为6,即,所以。
故A正确。
【考点】抛物线的定义。
5.若一个动点到两个定点的距离之差的绝对值等于8,则动点M的轨迹方程为 ( )A.B.C.D.【答案】C【解析】因为,由双曲线的定义可知,点的轨迹是以为焦点的双曲线。
此时,即,,所以点的轨迹方程是。
故C正确。
【考点】双曲线的定义。
6.设椭圆的方程为,斜率为1的直线不经过原点,而且与椭圆相交于两点,为线段的中点.(1)问:直线与能否垂直?若能,之间满足什么关系;若不能,说明理由;(2)已知为的中点,且点在椭圆上.若,求椭圆的离心率.【答案】(1)直线与不能垂直;(2)【解析】(1)设直线的方程为,与椭圆方程联立,消去整理为关于的一元二次方程,因为有两个交点则判别式应大于0,由韦达定理可得根与系数的关系,用中点坐标公式求点的坐标。
圆锥曲线与向量的综合性问题
设 ,由 点在 轴的负半轴上,则
又 ,
又 ,
所以,点 的轨迹 的方程为
(解法二) ,故 为 的中点.
设 ,由 点在 轴的负半轴上,则 -
又由 ,故 ,可得
由 ,则有 ,化简得:
所以,点 的轨迹 的方程为
例2、已知椭圆的方程为 ,它的一个焦点与抛物线 的焦点重合,离心率 ,过椭圆的右焦点 作与坐标轴不垂直的直线 ,交椭圆于 、 两点.
解(Ⅰ)设点 的坐标为 ,则点 的坐标为 ,
依据题意,有
动点 所在曲线 的方程是
(Ⅱ)因直线 过点 ,且斜率为 ,故有
联立方程组 ,消去 ,得
设 、 ,可得 ,于是 .
又 ,得 即
而点 与点 关于原点对称,于是,可得点若ຫໍສະໝຸດ 段 、 的中垂线分别为 和 , ,则有
联立方程组 ,解得 和 的交点为
因此,可算得
∴ >
∴点G的轨迹是以M、N为焦点的椭圆,又
∴
(2)∵. 四边形OASB为平行四边行,
假设存在直线1,使 四边形OASB为矩形
若1的斜率不存在,则1的方程为
由 >0.
这与 相矛盾,∴1的斜率存在.
设直线1的方程
,化简得:
∴
∴
由 ∴
∴存在直线1: 或 满足条件.
二、针对性练习
1.已知过抛物线 的焦点,斜率为 的直线交抛物线于 ,
且 , ,不妨设 ,
即
把 代入 得
,
故所求抛物线方程为
(Ⅱ)设 ,
则过抛物线上 、 两点的切线方程分别是 ,
两条切线的交点 的坐标为
设 的直线方程为 ,代入 得
故 的坐标为 点 的轨迹为
直线圆锥曲线有关向量的问题(精品)
直线圆锥曲线有关向量的问题高考考什么知识要点:1.直线与圆锥曲线的公共点的情况00),(02=++⇒⎩⎨⎧==++C Bx Ax y x f c by ax 曲线:直线:)0'''(2=++C y B yA 或(1)没有公共点 → 方程组无解 (2)一个公共点 → 0,0)0)=∆≠→=→A ii A i 相切相交(3)两个公共点 → 0,0>∆≠A2.连结圆锥曲线上两个点的线段称为圆锥曲线的弦,要能熟练地利用方程的根与系数关系来计算弦长,常用的弦长公式:1212AB x y =-=-3.以平面向量作为工具,综合处理有关长度、角度、共线、平行、垂直、射影等问题 4.几何与向量综合时可能出现的向量内容(1) 给出直线的方向向量或;(2)给出与相交,等于已知过的中点;(3)给出,等于已知是的中点;(4)给出,等于已知A 、B 与PQ 的中点三点共线;(5) 给出以下情形之一:①;②存在实数;③若存在实数,等于已知三点共线.(6) 给出,等于已知是的定比分点,为定比,即 (7) 给出,等于已知,即是直角,给出,等于已知是钝角, 给出,等于已知是锐角。
(8)给出,等于已知是的平分线。
(9)在平行四边形中,给出,等于已知是菱形;(10)在平行四边形中,给出,等于已知是矩形;(11)在中,给出,等于已知是的外心(三角形外接圆的圆心,三角形的外心是三角形三边垂直平分线的交点);(12)在中,给出,等于已知是的重心(三角形的重心是三角形三条中线的交点);(13)在中,给出,等于已知是的垂心(三角形的垂心是三角形三条高的交点);(14)在中,给出等于已知通过的内心;(15)在中,给出等于已知是的内心(三角形内切圆的圆心,三角形的内心是三角形三条角平分线的交点);(16)在中,给出,等于已知是中边的中线;高考怎么考主要题型:1.三点共线问题;2.公共点个数问题;3.弦长问题;4.中点问题;5.定比分点问题;6.对称问题;7.平行与垂直问题;8.角的问题。
圆锥曲线中的轨迹方程问题-(解析版)
专题1 圆锥曲线的轨迹方程问题轨迹与轨迹方程高考题中在选择题或填空题中单独考查,在解答题中也会出现轨迹与轨迹方程的问题.本文主要研究圆锥曲线中关于轨迹方程求法。
首先正确理解曲线与方程的概念,会用解析几何的基本思想和坐标法研究几何问题,用方程的观点实现几何问题的代数化解决,并能根据所给条件选择适当的方法求曲线的轨迹方程,常用方法有:直译法、定义法、相关点法、参数(交轨)法等方法1、直译法:若动点运动的条件是一些已知(或通过分析得出)几何量的等量关系,可转化成含x,y 的等式,就得到轨迹方程。
直译法知识储备:两点间距离公式,点到直线的距离公式,直线的斜率(向量)公式。
经典例题:1.(2020·江苏徐州市·高三月考)古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:平面内到两个定点A 、B 的距离之比为定值λ(1λ≠)的点所形成的图形是圆.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,()2,0A -、()4,0B ,点P 满足12PA PB =,设点P 所构成的曲线为C ,下列结论正确的是( ) A .C 的方程为()22416x y ++= B .在C 上存在点D ,使得D 到点()1,1的距离为3 C .在C 上存在点M ,使得2MO MA = D .在C 上存在点N ,使得224NO NA += 【答案】ABD【分析】设点P 的坐标,利用12PA PB =,即可求出曲线C 的轨迹方程,然后假设曲线C 上一点坐标,根据BCD 选项逐一列出所满足条件,然后与C 的轨迹方程联立,判断是否有解,即可得出答案.【详解】设点P (x ,y ),()2,0A -、()4,0B ,由12PA PB =,12=,化简得x 2+y 2+8x =0,即:(x +4)2+y 2=16,故A 选项正确;曲线C 的方程表示圆心为(﹣4,0),半径为4的圆,圆心与点(1,1)=﹣4,+4,而3∈﹣4,故B 正确;对于C 选项,设M (x 0,y 0),由|MO |=2|MA |,=又 ()2200416x y ++=,联立方程消去y 0得x 0=2,解得y 0无解,故C 选项错误;对于D 选项,设N (x 0,y 0),由|NO |2+|NA |2=4,得 ()2222000024x y x y ++++=,又()2200416x y ++=,联立方程消去y 0得x 0=0,解得y 0=0,故D 选项正确.2.(2020·湖南省高三期末)点(,)P x y 与定点(1,0)F 的距离和它到直线:4l x =距离的比是常数12. 求点P 的轨迹方程;【答案】22143x y +=12=,化简即可求出;12=,化简得:223412x y +=,故1C 的方程为22143x y +=.【点睛】该题考查的是有关解析几何的问题,涉及到的知识点是动点轨迹方程的求解.3.(2021年湖南省高三月考)已知动点P 到定点A (5,0)的距离与到定直线165x =的距离的比是54,求P 点的轨迹方程.【答案】轨迹方程是221169x y -=.【分析】利用动点P 到定点A (5,0)的距离与到定直线165x =的距离的比是54可得方程,化简由此能求出轨迹M 的方程.【详解】由题意,设P (x ,y ),则()22252516165x y x -+=⎛⎫- ⎪⎝⎭,化简得轨迹方程是221169x y -=. 故答案为221.169x y -=【点睛】本题主要考查轨迹方程的求法,属于基础题.由2、3题推广:圆锥曲线统一定义(第二定义):到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。
圆锥曲线分类讲义之——向量问题
圆锥曲线的向量问题【例1】已知椭圆)0(1:2222>>=+b a by a x C 的离心率为,21以原点O 为圆心,椭圆的短半轴长为半径的圆与直线06=+-y x 相切。
(I )求椭圆C 的方程;(II )设P (4,0),A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 交椭圆C 于另一点E ,证明直线AE 与x 轴交于定点Q ;(III )在(II )条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求ON OM ⋅的取值范围。
【例2】在直角坐标系xOy 中,椭圆C 1:22221(0)x y a b a b+=>>的左、右焦点分别为F 1、F 2.其中F 2也是抛物线C 2:24y x =的焦点,点M 为C 1与C 2在第一象限的交点,且25||3MF =.(1)求C 1的方程;(2)平面上的点N 满足12MN MF MF =+,直线l ∥MN ,且与C 1交于A 、B 两点,若OA ·OB =0,求直线l 的方程.【例3】已知椭圆)0(12222>>=+b a by a x 的离心率为.36 (I )若原点到直线0=-+b y x 的距离为,2求椭圆的方程;(II )设过椭圆的右焦点且倾斜角为︒45的直线l 和椭圆交于A ,B 两点. (i )当3||=AB ,求b 的值;(ii )对于椭圆上任一点M ,若OB OA OM μλ+=,求实数μλ,满足的关系式.练习:已知椭圆22221(0)x ya ba b+=>>的长轴长为4,且点3(1,)2在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)过椭圆右焦点的直线l交椭圆于,A B两点,若以AB为直径的圆过原点,求直线l方程.【例4】已知椭圆22221x y a b +=(a>b>0)的离心率32e =,椭圆上任意一点到椭圆的两个焦点的距离之和为4.设直线l 与椭圆相交于不同的两点A 、B ,点A 的坐标为(a -,0).(Ⅰ)求椭圆的标准方程; (Ⅱ)若42||5AB =,求直线l 的倾斜角; (Ⅲ)若点Q 0(0,)y 在线段AB 的垂直平分线上,且4=∙QB QA ,求0y 的值.【例5】已知点(4, 0)M ,(1, 0)N ,若动点P 满足6||MN MP PN ⋅=.(Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)设过点N 的直线l 交轨迹C 于A ,B 两点,若181275NA NB -⋅-≤≤,求直线l 的斜率的取值范围.练习:已知中心在原点,焦点在x 轴上的椭圆C 的离心率为21,且经过点)23,1(M ,过点P (2,1)的直线l 与椭圆C 相交于不同的两点A 、B.(1)求椭圆C 的方程;(2)是否存直线l ,满足2PM PB PA =⋅?若存在,求出直线l 的方程;若不存在,请说明理由.【与平行四边形有关的向量问题】1、已知点M (-1,0),N (1,0),动点P (x ,y )满足:|PM|•|PN|=(1)求P 的轨迹C 的方程; (2)是否存在过点N (1,0)的直线l 与曲线C 相交于A 、B 两点,并且曲线C 存在点Q ,使四边形OAQB 为平行四边形?若存在,求出直线l 的方程;若不存在,说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.设过点 P(x,y)的直线分别与 x 轴的正半轴和 y 轴的正半轴交于 A,B 两
点,点 Q 与点 P 关于 y 轴对称,O 为坐标原点,若
且
,
则点 P 的轨迹方程是( )
A.
B.
C.
D.
【分析】设 P(x,y),则 Q(﹣x,y),又设 A(a,0),B(0,b),则
坐标,利用
,即可求得直线 l 的方程;当直线斜率存在时,确定向
第 8 页(共 13 页)
量 PA,PB,PF1 的坐标,利用
,即可求得直线 l 的方程.
【解答】解:(1)设椭圆方程为
(a>b>0),
由题意点( , )在椭圆上,a2=b2+1…(2 分)
∴
,∴b2=1,a2=b2+1=2
∴椭圆的标准方程为
的右焦点为 F1,直线
与 x 轴交
于点 A,若
(其中 O 为坐标原点).
(1)求椭圆 M 的方程; (2)设 P 是椭圆 M 上的任意一点,EF 为圆 N:x2+(y﹣2)2=1 的任意一条直径
(E、F 为直径的两个端点),求
的最大值.
【分析】(1)先求出点 A,F1 的坐标,利用
,即可求得椭圆的方
(3)当直线斜率不存在时,可得 A(1, ),B(1,﹣ ),
所以
,
,
由
得 t=2,直线 l 的方程为 x=1.…(11 分)
当直线斜率存在时,设 A(x1,y1),B(x2,y2),直线方程为 y=k(x﹣1) 代入椭圆方程可得( +k2)x2﹣2k2x+k2﹣1=0
∴x1+x2=
所以
,
由
得 x1+x2=t,
…(4 分)
(2)由题意,A 是椭圆与 y 轴负半轴的交点,∴A(0,﹣1)
∵F1(1,0),∴过 F1,A 作直线 l 的方程为 y=x﹣1,…(5 分) 代入椭圆方程可得 3x2﹣4x=0 ∴x=0 或
∴A(0,﹣1),B( , ),…(7 分)
∵P(0, )
∴△PAB 的面积为
=1…(9 分)
=
,利用
,可求
方法 3:①若直线 EF 的斜率存在,设 EF 的方程为 y=kx+2,由
,
第 10 页(共 13 页)
解得
,再分别求得 、 ,利用
,可求
的最大值;②若直线 EF 的斜率不存在,此时 EF 的方程为 x=0,同理可求 的最大值.
【解答】解:(1)由题设知,
,
,…(1 分)
由
,得
.…(3 分)
,即
可求得直线 AB 的方程.
【解答】解:(1)椭圆
的长轴长为 4,离心率为
∵椭圆 C2 以 C1 的长轴为短轴,且与 C1 有相同的离心率 ∴椭圆 C2 的焦点在 y 轴上,2b=4,为
∴b=2,a=4
∴椭圆 C2 的方程为
;
(2)设 A,B 的坐标分别为(xA,yA),(xB,yB), ∵
∴O,A,B 三点共线,且点 A,B 不在 y 轴上 ∴设 AB 的方程为 y=kx
第 1 页(共 13 页)
【点评】本题主要考查了圆锥曲线的共同特征、圆锥曲线的轨迹问题.解答关 键是利用向量的基本运算得出 x,y 之间的关系式. 2.平面直角坐标系中,O 为坐标原点,已知两点 A(3,1)、B(﹣1,3),若点 C 满足 =α +β ,其中 α、β∈R,且 α+β=1,则点 C 的轨迹方程为( ) A.3x+2y﹣11=0 B.(x﹣1)2+(y﹣2)2=5 C.2x﹣y=0 D.x+2y﹣5=0 【分析】由点 C 满足 =α +β ,其中 α、β∈R,且 α+β=1,知点 C 在直线 AB 上,故求出直线 AB 的方程即求出点 C 的轨迹方程. 【解答】解:C 点满足 =α +β 且 α+β=1,
将 y=kx 代入
,消元可得(1+4k2)x2=4,∴
将 y=kx 代入
,消元可得(4+k2)x2=16,∴
∵
,∴ =4 ,
∴
,解得 k=±1,
∴AB 的方程为 y=±x 【点评】本题考查椭圆的标准方程,考查直线与椭圆的位置关系,解题的关键 是掌握椭圆几何量关系,联立方程组求解. 7.已知点 C 的坐标为(0,1),A,B 是抛物线 y=x2 上不同于原点 O 的相异的 两个动点,且 • =0. (1)求证: ∥ ;
3.设 F1、F2 分别是双曲线 x2﹣ =1 的左、右焦点,若点 P 在双曲线上,且向
量 与 的夹角为 60°,则 S
=( )
A.9 B.6 C.4 D.10 【分析】由余弦定理可得 4×10=m2+n2﹣2mncos60°,即 m2+n2﹣mn=49,结合双 曲线的定义,面积公式即可得出结论. 【解答】解:设|PF1|=m,|PF2|=n,则|m﹣n|=2,① 由余弦定理可得 4×10=m2+n2﹣2mncos60°,即 m2+n2﹣mn=40,②
∴A、B、C 三点共线.
∴C 点的轨迹是直线 AB 又 A(3,1)、B(﹣1,3), ∴直线 AB 的方程为:
整理得 x+2y﹣5=0
故 C 点的轨迹方程为 x+2y﹣5=0 故选:D. 【点评】考查平面向量中三点共线的充要条件及知两点求直线的方程,是向量 与解析几何综合运用的一道比较基本的题,难度较小,知识性较强.
9.已知椭圆的焦点 F1(1,0),F2(﹣1,0),过 P(0, )作垂直于 y 轴的直
线被椭圆所截线段长为 ,过 F1 作直线 l 与椭圆交于 A、B 两点. (1)求椭圆的标准方程;
(2)若 A 是椭圆与 y 轴负半轴的交点,求△PAB 的面积;
(3)是否存在实数 t 使
,若存在,求 t 的值和直线 l 的方程;若
【分析】(1)求出椭圆
的长轴长,离心率,根据椭圆 C2 以 C1 的
第 4 页(共 13 页)
长轴为短轴,且与 C1 有相同的离心率,即可确定椭圆 C2 的方程;
(2)设 A,B 的坐标分别为(xA,yA),(xB,yB),根据
,可设 AB 的方
程为 y=kx,分别与椭圆 C1 和 C2 联立,求出 A,B 的横坐标,利用
程; (2)方法 1:设圆 N:x2+(y﹣2)2=1 的圆心为 N,则
=
=
,从而求
的最大值转化为求 的最大值; 方法 2:设点 E(x1,y1),F(x2,y2),P(x0,y0),根据 E,F 的中点坐标为
(0,2),可得
所以
= 的最大值;
=
.根据点 E 在圆 N 上,点 P 在椭圆 M 上,可得
②﹣①2,可得 mn=36,
第 2 页(共 13 页)
∴S
=
=9 .
故选:A. 【点评】本题主要考查了双曲线的性质,考查余弦定理.要利用好双曲线的定 义.
4.设 F1、F2 分别是双曲线 x2﹣ =1 的左、右焦点.若点 P 在双曲线上,且
• =0,则| + |=( )
A. B.2
C. D.2
【分析】由点 P 在双曲线上,且 • =0 可知| + |=2| |=|
|.由此可以求出| + |的值.
【解答】解:根据题意,F1、F2 分别是双曲线 x2﹣ =1 的左、右焦点.
∵点 P 在双曲线上,且 • =0,
∴| + |=2| |=| |=2 .
故选:B. 【点评】把| + |转化为||
|是正确解题的关键步骤.
【点评】能够判断出 F1OMP 是菱形,这是正确解题的关键步骤. 二.解答题(共 5 小题)
6.已知椭圆 C1: +y2=1,椭圆 C2 以 C1 的长轴为短轴,且与 C1 有相同的离心
率. (1)求椭圆 C2 的方程; (2)设 O 为坐标原点,点 A,B 分别在椭圆 C1 和 C2 上, =2 ,求直线 AB 的方程.
(y≠0).(14 分) 【点评】本题考查直线与圆锥曲线的综合应用,考查向量知识的运用,考查运 算求解能力,推理论证能力,属于中档题.
8.设 F1、F2 分别是椭圆 +y2=1 的左、右焦点.
(Ⅰ)若 P 是该椭圆上的一个动点,求
的最大值和最小值;
(Ⅱ)设过定点 M(0,2)的直线 l 与椭圆交于不同的两点 A、B,且∠AOB 为 锐角(其中 O 为坐标原点),求直线 l 的斜率 k 的取值范围. 【分析】(Ⅰ)根据题意,求出 a,b,c 的值,然后设 P 的坐标,根据 PF1•PF2 的表达式,按照一元二次函数求最值方法求解. (Ⅱ)设出直线方程,与已知椭圆联立方程组,运用设而不求韦达定理求出根
解得 a2=6.
所以椭圆 M 的方程为
.…(4 分)
(2)方法 1:设圆 N:x2+(y﹣2)2=1 的圆心为 N,
则
…(6 分)
=
…(7 分)
=
.…(8 分)
从而求
的最大值转化为求 的最大值.…(9 分)
【解答】解:∵
,
∴四边形 F1OMP 是菱形, 设 PM 与 y 轴交于点 N, ∵|F1O|=|PM|=c,MN= ,
∴P 点的横坐标为
,
把
代入双曲线
得
,
∴
,
∴
.
∵四边形 F1OMP 是菱形,∴|OM|=|F1O|,
∴
=c.
整理得 e4﹣5e2+4=0,解得 e2=4 或 e2=1(舍去).
∴e=2,或 e=﹣2(舍去).
a>0,b>0,表示出
,根据