北师大九年级上一元二次方程应用复习试卷

合集下载

北师大版九年级上册一元二次方程单元测试题

北师大版九年级上册一元二次方程单元测试题

北师大版数学九年级上册第2章一元二次方程测试卷(满分120分,时间120分钟)题号一二三总分得分一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合要求的)1.一元二次方程的二次项系数是()A.2B.-3C.4D.-42.把方程化为一元二次方程的一般形式是()3.方程经过配方法化为(的形式,正确的是()4.方程的解为()A.x=0B.x=35.下列一元二次方程中,有两个不相等的实数根的方程是()6.根据关于x的一元二次方程可列表如下:x00.51 1.1 1.2 1.3x²+px+q—15—8.75—2—0.590.84 2.29则方程的正数解满足()A.0<x<0.5B.0.5<x<1C.1<x<1.1D.1.1<x<1.27.某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每次降价的百分率为x,根据题意列方程得()C.168(1-2x)=1288.一个两位数等于它的个位数的平方,且个位数比十位数大3,则这个两位数为()A.25B.36C.25或36D.-25或-369.设一元二次方程的两实根分别为x₁和x₂,则(()A.-10B.10C.2D.-210.三角形两边的长分别是8和6,第三边的长是一元二次方程的一个实数根,则该三角形的面积是()A.24B.24或C.48二、填空题(本大题共8小题,每小题4分,共32分,本题要求把正确结果填在规定的横线上,不需要解答过程)11.当k时,方程是关于x的一元二次方程.12.如果a是关于x的一元二次方程.的一个根,-a是关于x的一元二次方程.的一个根,则m的值是.13.根据下表得知,方程的一个近似解为x≈.(精确到0.1)x-4.2-4.3-4.4-4.5-4.6x²+2x-10-0.76-0.110.56 1.25 1.9614.某小区2019年屋顶绿化面积为2000平方米,计划2021年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是.15.若关于x的一元二次方程的一个根是-2,,则另一个根是.16.某校办工厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1400件.若设这个百分数为x,则可列方程.17.方程甲同学因为看错了常数项,解得的根是6,;乙同学看错了一次项,解得的根是-2,-3,则原方程为.18.如图,矩形ABCD的周长是20cm,以AB,AD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和ADGH的面积之和为(那么矩形ABCD的面积是cm².三、解答题(本大题共6小题,满分58分.解答应写出文字说明、证明过程或演算步骤)19.(每小题3分,共12分)选择适当的方法解下列方程:(配方法);20.(8分)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而杏梅有所增.(1)该地某果农今年收获樱桃和杏梅共400千克,其中杏梅的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、杏梅两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年杏梅的市场销售量为200千克,销售均价为20元/千克,今年杏梅的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和杏梅的销售总金额与他去年樱桃和杏梅的市场销售总金额相同,求m的值.21.(8分)当m为何值时,关于x的一元二次方程有两个相等的实数根?此时这两个实数根是多少?22.(8分)已知a,b是方程的两个根,求代数式的值.23.(10分)已知关于x的一元二次方程(其中a,b,c分别为三边的长.(1)如果.是方程的根,试判断的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断的形状,并说明理由.24.(12分)商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,请回答:(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?第2章测试卷1.D2.A3.A4.D5.A6.D7.B8.C9.C10.B11.k≠-312.-313.-4.314.20%15.117.x²--5x+6=018.1619.解所以所以x+1=0或x+1-6=0,所以(3)这里即20.解(1)设该果农今年收获樱桃至少x千克,根据题意得:解得:答:该果农今年收获樱桃至少50千克;(2)由题意可得:令原方程可化为:整理可得:解得:(舍去),答:m的值为12.5.21.解由题意,得即解得当时,方程有两个相等的实数根22.解由题意,得(所以原式23.解是等腰三角形.理由如下:是方程的根,是等腰三角形.是直角三角形.理由如下:∵方程有两个相等的实数根,是直角三角形.24.解(1)2x50一x(2)由题意,得化简,得解得因为该商场为了尽快减少库存,所以降的越多,越吸引顾客,故选.答:每件商品降价20元,商场日盈利可达2100元.。

北师大版九年级数学上册第二章 一元二次方程 专题复习练习题

北师大版九年级数学上册第二章 一元二次方程 专题复习练习题

北师大版九年级数学上册第二章一元二次方程专题复习练习题专题一、一元二次方程的解法1、用直接开平方法解方程:(1)x2﹣=0;(2)2x2+3=﹣2x2+4;(3)(2x﹣1)2﹣121=0;(4)(2x+3)2 =(x﹣1)2.2、用配方法解方程:(1)x2﹣4x=7;(2)2x2﹣4x-1=0.(3)(4x﹣1)(3﹣x)=5x+1.3、用因式分解法解方程:(1)2x2﹣5x=0;(2)(x﹣2)2=3x﹣6;(3)4x2+1=-4x;(4)(x﹣1)(x+3)=12.4、用公式法解方程:(1)x2x﹣14=0;(2)3x2=4x+2.5、当x取何值时,代数式3x2+6x﹣8的值与1﹣2x2的值互为相反数?专题二、一元二次方程的应用:增长率及利润问题1、某旅游景区今年5月份游客人数比4月份增加了44%,6月份游客人数比5月份增加了21%,求5月、6月游客人数的平均增长率.2、去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.3、某种病毒传播非常快,如果一个人被感染,经过两轮感染后就会有81个人被感染.(1)请你用学过的知识分析,每轮感染中平均一个人会感染几个人?(2)若病毒得不到有效控制,3轮感染后,被感染的人会不会超过700人?4、阿里巴巴电商扶贫对某贫困地区一种特色农产品进行网上销售,按原价每件300元出售,一个月可卖出100件,通过市场调查发现,单价每降低10元,月销售件数增加20件.已知该农产品的成本是每件200元,在保持月利润不变的情况下,尽快销售完毕,则售价应定为多少元?5、适逢中高考期间,某文具店平均每天可卖出30支2B铅笔,卖出1支铅笔的利润是1元,经调查发现,零售单价每降0.1元,每天可多卖出10支铅笔,为了使每天获取的利润更多,该文具店决定把零售单价下降x元(0<x<1).(1)当x为多少时,才能使该文具店每天卖2B铅笔获取的利润为40元?(2)该文具店每天卖2B铅笔获取的利润可以达到50元吗?如果能,请求出x的值;如果不能,请说明理由.6、某科技公司为提高经济效益,近期研发一种新型设备,每台设备成本价为2万元.经过市场调研发现,该设备的月销售量y(台)和销售单价x(万元)对应的点(x,y)在函数y =kx+b的图象上,如图.(1)求y与x的函数关系式;(2)根据相关规定,此设备的销售单价不高于5万元,若该公司要获得80万元的月利润,则该设备的销售单价是多少万元?专题三、一元二次方程的应用:面积问题1、如图,有一块宽为16 m的矩形荒地,某公园计划将其分为A、B、C三部分,分别种植不同的植物.若已知A、B地块为正方形,C地块的面积比B地块的面积少40 m2,试求该矩形荒地的长.2、如图,幼儿园某教室矩形地面的长为8m,宽为5m,现准备在地面正中间铺设一块面积为18m2的地毯,四周未铺地毯的条形区域的宽度都相同,求四周未铺地毯的条形区域的宽度是多少米.3、在某校园建设过程中,规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%,求广场中间小路的宽.4、如图,用长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC上用其他材料做了宽为1米的两扇小门.若花圃的面积刚好为45平方米,则此时花圃的AB段长为多少?5、如图①,有一张长40cm,宽20cm的长方形硬纸片,裁去角上2个小正方形和2个小长方形(图中阴影部分)之后,恰好折成如图②的有盖纸盒.(1)若纸盒的高是3cm,求纸盒底面长方形的长和宽;(2)若纸盒的底面积是150cm2,求纸盒的高.图①图②6、如图所示,在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从点A出发,沿AB 边以1cm/s的速度向点B移动;点Q从点B出发,沿BC边以2cm/s的速度向点C移动.如果点P,Q分别从点A,B同时出发,问:(1)经过几秒后,△PBQ的面积等于8cm2?(2)经过几秒后,P,Q两点间的距离是cm?专题1参考答案1.解:(1)x1=,x2=﹣.(2)x1=,x2=﹣.(3)x1=6,x2=﹣5.(4)x1=﹣4,x2=﹣2.解:(1)x1=x2=2.(2)x1=1+,x2=1﹣.(3)x1=x2=1.3.解:(1)x1=0,x2=52.(2)x1=2,x2=5.(3)x1=x2=-.(4)x1=3,x2=﹣5.4.解:(1)x1=,x2=.(2)x1=,x2=.5.解:根据题意,得3x2+6x﹣8+1﹣2x2=0,整理,得x2+6x﹣7=0,则(x+7)(x﹣1)=0,∴x+7=0或x﹣1=0,解得x1=﹣7,x2=1.∴当x取﹣7或1时,代数式3x2+6x﹣8的值与1﹣2x2的值互为相反数.专题2答案:1.解:设5月、6月游客人数的平均增长率是x,依题意有(1+x)2=(1+44%)×(1+21%),解得:x1=32%,x2=﹣2.32(舍去).答:5月、6月游客人数的平均增长率是32%.2.解:(1)450+450×12%=504(万元).答:该商店去年“十一黄金周”这七天的总营业额为504万元(2)设该商店去年8、9月份营业额的月增长率为x,依题意,得:350(1+x)2=504,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该商店去年8、9月份营业额的月增长率为20%.3.解:(1)设每轮感染中平均一个人会感染x个人,依题意,得:1+x+x(1+x)=81,解得:x1=8,x2=﹣10(不合题意,舍去).答:每轮感染中平均一个人会感染8个人.(2)81×(1+8)=729(人),729>700.答:若病毒得不到有效控制,3轮感染后,被感染的人会超过700人.4.解:当售价为300元时月利润为(300﹣200)×100=10000(元).设售价应定为x元,则每件的利润为(x﹣200)元,月销售量为100+=(700﹣2x)件,依题意,得:(x﹣200)(700﹣2x)=10000,整理,得:x2﹣550x+75000=0,解得:x1=250,x2=300(舍去).答:售价应定为250元.5.解:(1)根据题意得:(1﹣x)(100x+30)=40,整理得:10x2﹣7x+1=0,解得:x1=0.2,x2=0.5.答:当x为0.2或0.5时,才能使该文具店每天卖2B铅笔获取的利润为40元.(2)根据题意得:(1﹣x)(100x+30)=50,整理得10x2﹣7x+2=0, =b2﹣4ac=(﹣7)2﹣4×10×2=﹣31<0.答:该文具店每天卖2B铅笔获取的利润不可以达到50元.6.解:(1)依题意有,解得.故y与x的函数关系式是y=﹣10x+80.(2)设该设备的销售单价为x万元/台,依题意有(x﹣2)(﹣10x+80)=80,整理方程,得x2﹣10x+24=0.解得x1=4,x2=6.∵此设备的销售单价不高于5万元,∴x2=6(舍去),∴x=4.答:该设备的销售单价是4万元.专题3答案:1.解:设B地块的边长为x m,根据题意得:x2﹣x(16﹣x)=40,解得:x1=10,x2=﹣2(不符题意,舍去),∴10+16=26 m.答:矩形荒地的长为26 m.2.解:设四周未铺地毯的条形区域的宽度是x m,依题意,得:(8﹣2x)(5﹣2x)=18,整理,得2x2﹣13x+11=0,解得x1=1,x2=.又∵5﹣2x>0,∴x<,∴x=1.答:四周未铺地毯的条形区域的宽度是1 m.3.解:设广场中间小路的宽为x米,依题意,得:(18﹣2x)(10﹣x)=18×10×80%,整理,得:x2﹣19x+18=0,解得:x1=1,x2=18.又∵18﹣2x>0,∴x<9,∴x=1.答:广场中间小路的宽为1米4.解:设AB=x米,则BC=(22﹣3x+2)米,依题意,得:x(22﹣3x+2)=45,整理,得:x2﹣8x+15=0,解得:x1=3,x2=5.当x=3时,22﹣3x+2=15>14,不合题意,舍去;当x=5时,22﹣3x+2=9,符合题意.答:若花圃的面积刚好为45平方米,则此时花圃的AB段长为5米.5.解:(1)纸盒底面长方形的长为(40﹣2×3)÷2=17(cm),纸盒底面长方形的宽为20﹣2×3=14(cm).答:纸盒底面长方形的长为17cm,宽为14cm.(2)设当纸盒的高为x cm时,纸盒的底面积是150cm2,依题意,得×(20﹣2x)=150,化简,得:x2﹣30x+125=0,解得x1=5,x2=25.当x=5时,20﹣2x=10>0,符合题意;当x=25时,20﹣2x=﹣30<0,不符合题意,舍去.答:若纸盒的底面积是150 cm2,则纸盒的高为5 cm.6.解:(1)设经过x秒后,△PBQ的面积等于8 cm2,则BP=(6﹣x)cm,BQ=2x cm,依题意,得(6﹣x)×2x=8,化简,得x2﹣6x+8=0,解得x1=2,x2=4.答:经过2秒或4秒后,△PBQ的面积等于8 cm2.(2)设经过y秒后,P,Q两点间距离是cm,则BP=(6﹣y)cm,BQ=2y cm,依题意,得:(6﹣y)2+(2y)2=()2,化简,得:5y2﹣12y﹣17=0,解得:y1=,y2=﹣1(不合题意,舍去).答:经过秒后,P,Q两点间的距离是cm.。

北师大版九年级数学上册《第二章一元二次方程》单元测试卷(带答案)

北师大版九年级数学上册《第二章一元二次方程》单元测试卷(带答案)

北师大版九年级数学上册《第二章一元二次方程》单元测试卷(带答案)时间:60分钟,满分:100分一、选择题(每题3分,共24分)1.一元二次方程2x2−4x−5=0的一次项系数是()A.2 B.−4C.5 D.42.关于x的方程x2−mx−6=0的一个根为x=−3,则实数m的值为()A.−1B.1 C.−5D.53.用配方法解方程x2+6x+5=0,配方后所得的方程是()A.y=14x2B.(x−3)2=−4C.(x+3)2=4D.(x−3)2=44.方程中x(x−1)=0的根是()A.x1=0,x2=−1B.x1=0C.x1=x2=0D.x1=x2=15.如果关于x的一元二次方程x2−4x−k=0有两个不相等的实数根,则k的取值范围是()A.k<−4B.k>−4C.k<4且k≠0D.k>−4且k≠06.下列一元二次方程的两个实数根之和为−3的是()A.x2+2x−3=0B.x2−3x+3=0C.x2+3x−5=0D.x2+3x+5=07.毕业前夕,班主任王老师让每一位同学为班级的其他同学发送祝福短信,全班一共发送870条,这个班级的学生总人数是()A.40B.30C.29D.398.已知方程x2−7x+12=0的两根是x1,x2,则1x1+1x2的值是()A.−112B.112C.−712D.712二、填空题(每题2分,共10分)9.若关于x的方程(m+1)x m2+1−3x+2=0是一元二次方程,则m的值是.10.已知方程x2−6x+q=0可以配方成(x−p)2=7的形式,那么p−q=.11.关于x的一元二次方程(k−1)x2−2x−1=0有两个实数根,则k的取值范围是.12.等腰三角形的底和腰是方程x2−7x+10=0的两根,则这个三角形的周长是.13.已知方程x2−2x−3=0的两个根分别为x1x2,则x1+x2−x1⋅x2的值为.三、计算题(共10分)14.解方程:(1)(x+2)2=x+2(2)3x2+2x−3=0四、解答题(共56分)15.已知关于x的一元二次方程x2−(m+3)x+m+2=0.(1)求证:无论实数m取何值,方程总有两个实数根;(2)若方程两个根均为正整数,求负整数m的值.16.关于x的一元二次方程x2+(2m−1)x+m2=0有实数根.(1)求m的取值范围;(2)若两根为x1、x2且x12+x22=7,求m的值.17.淄博烧烤风靡全国.某烧烤店今年5月份的盈利额为15万元,7月份的盈利额达到21.6万元,如果每月增长的百分率相同.(1)求该烧烤店这两个月的月均增长率.(2)若该烧烤店盈利的月增长率继续保持不变,预计8月份盈利多少万元?18.某电商店铺销售一种儿童服装,其进价为每件50元,现在的销售单价为每件80元,每周可卖出200件,双十二期间,商家决定降价让利促销,经过市场调查发现,单价每件降低1元,每周可多卖出20件.(1)若想满足每周销售利润为7500元,同时尽可能让利于顾客,则每件童服装应降价多少元?(2)该店铺每周可能盈利10000元吗?请说明理由.参考答案1.B2.A3.C4.B5.B6.C7.B8.D9.110.111.k≥0且k≠112.1213.514.(1)解:x2+4x+4−x−2=0.x2+3x+2=0(x+1)(x+2)=0.∴x1=−1x2=−2(2)解:a=3b=2c=−3 b2−4ac=4+36=40>0.∴x=−2±√406=−2±2√106∴x1=−1+√103x2=−1−√10315.(1)证明:Δ=(m+3)2−4(m+2)=m2+6m+9−4m−8=m2+2m+1=(m+1)2≥0∴无论m为何值,方程总有两个实数根.(2)解:x=m+3±(m+1)2,则x1=m+2,x2=1,又方程两根均为正整数,则m+2>0m>−2,所以负整数m=−1.16.(1)解:∵关于x的一元二次方程x2+(2m−1)x+m2=0有实数根∴Δ=(2m−1)2−4×1×m2=−4m+1≥0解得:m≤14.(2)解:∵x1,x2是一元二次方程x2+(2m−1)x+m2=0的两个实数根∴x1+x2=1−2m,x1x2=m2∴x12+x22=(x1+x2)2−2x1x2=7,即(1−2m)2−2m2=7整理得:m2−2m−3=0解得:m1=−1,m2=3.又∵m≤14∴m=−1.17.(1)解:设该烧烤店这两个月盈利额的月均增长率为x根据题意得:15(1+x)2=21.6解得:x1=0.2=20%,x2=﹣2.2(不符合题意,舍去).答:该烧烤店这两个月盈利额的月均增长率为20%;(2)解:根据题意得:21.6×(1+20%)=25.92(万元).答:预计8月份盈利25.92万元.18.(1)解:设每件童服装应降价x元根据题意,得(80﹣50﹣x)(200+20x)=7500整理,得x2﹣20x+75=0解得x1=5,x2=15∵尽可能让利于顾客∴x=15答:每件童服装应降价15元;(2)解:该店铺每周不可能盈利10000元,理由为:设该店铺每周可能盈利10000元,则(80﹣50﹣x)(200+20x)=10000 整理,得x2﹣20x+200=0∵Δ=(﹣20)2﹣4×200=﹣400<0∴所列方程没有实数根故该店铺每周不能盈利10000元.。

北师大版九年级数学上册《第二章一元二次方程》单元测试卷及答案

北师大版九年级数学上册《第二章一元二次方程》单元测试卷及答案

北师大版九年级数学上册《第二章一元二次方程》单元测试卷及答案时间:60分钟,满分:100分一、选择题(每题3分,共24分)1.下列方程中,是一元二次方程的是()A.x−1=0B.x2−x−1=0C.x2−y=0D.1x+x−1=02.一元二次方程x2−4x+1=0配方后,可化为()A.(x−2)2=3B.(x+2)2=3C.(x−2)2=4D.(x+2)2=43.若x=1是方程x2+mx+1=0的一个解,则m的值为()A.1 B.2 C.−1D.−24.方程x(x−2)=0的解是()A.0 B.2 C.−2D.0或25.若一元二次方程mx2+2x+1=0有实数解,则m的取值范围是()A.m≥-1 B.m≤1C.m≥-1且m≠0 D.m≤1且m≠06.下列一元二次方程中,有两个不相等的实数根的是()A.x2−2x+3=0B.x2+6x+9=0C.4x2=3x+2D.3x2−x+2=07.一次同学聚会,每两人之间互赠1件礼物,共有礼物30件.设x人参加聚会,则可列方程为()A.12x(x+1)=30B.12x(x−1)=30C.x(x+1)=30 D.x(x−1)=308.已知m,n是一元二次方程x2+x−2023=0的两个实数根,则代数式m2+2m+n的值等于()A.2020 B.2021 C.2022 D.2023二、填空题(每题4分,共20分)9.已知关于x的方程(m+2)x m2−2+3x−1=0为一元二次方程,则m的值是.10.用配方法解一元二次方程x2+4x−3=0,配方后的方程为(x+2)2=n,则n的值为.11.一个等腰三角形的底边长为10,腰长是一元二次方程x2−11x+30=0的一个根,则这个三角形的周长是.12.若m,n是一元二次方程x2−3x−1=0的两个根,则m+n+3mn的值为13.某超市销售一种饮料,平均每天可售出100箱,每箱利润12元,为了扩大销售,增加利润,超市准备适当降价,据测算,每箱每降价1元平均每天可多售出20箱,若要使每天销售饮料获利1440元,则每箱应降价元.三、计算题(共10分)14.解方程:(1)x2−8x−9=0;(2)x2−x−1=0.四、解答题(共46分)15.已知关于x的一元二次方程x2−(2m+1)x+m(m+1)=0.(1)求证:无论m取何值,方程总有两个不相等的实数根:(2)若该方程的一个根为1,求m的值及另一个根.16.已知关于x的一元二次方程x2−2x−m=0有实数根.(1)求m的取值范围;(2)若两实数根分别为x1和x2,且x12+x22=6,求m的值.17.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)若某天该商品每件降价3元,当天可获利多少元?(2)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?18.据某市车管部门统计,2020年底全市汽车拥有量为150万辆,而截至到2022年底,全市的汽车拥有量已达216万辆,假定汽车拥有量年平均增长率保持不变.(1)求年平均增长率;(2)如果不加控制,该市2024年底汽车拥有量将达多少万辆?参考答案1.B2.A3.D4.D5.D6.C7.D8.C9.210.711.2212.014.(1)解:x2−8x−9=0(x−9)(x+1)=0 x1=9,x2=−1;(2)解:x2−x−1=0x2−x=1x2−x+14=1+14x2−x+14=54(x−12)2=54x−12=±√52x1=√52+12=1+√52,x2=−√52+12=1−√52.15.(1)证明:由题意得=4m2+4m+1−4m2−4m=1>0∴无论m取何值,方程总有两个不相等的实数根:(2)解:∵关于x的一元二次方程x2−(2m+1)x+m(m+1)=0的一个根为1∴1−(2m+1)+m(m+1)=0∴m2−m=0解得m=0或m=1;当m=0时,原方程为x2−x=0,解得x=0或x=1;当m=1时,原方程为x2−3x+2=0,解得x=1或x=2;综上所述,当m=0时,方程的另一个根为x=0;当m=1时,方程的另一个根为x=2.16.(1)解:∵关于x的一元二次方程x2−2x−m=0有实数根∴△=b2﹣4ac=4+4m≥0解得:m≥﹣1;(2)解:∵x1和x2是方程x2−2x−m=0的两个实数根∵x1+x2=2,x1x2=﹣m∴x12+x22=(x1+x2)2﹣2x1•x2=6∴22+2m=617.(1)解:当天盈利:(50-3)×(30+2×3)=1692(元).答:若某天该商品每件降价3元,当天可获利1692元;(2)解:设每件商品降价x元根据题意,得:(50-x)(30+2x)=2000整理,得:x2−35x+250=0解得:x1=10,x2=25∵商城要尽快减少库存∴x=25.答:每件商品降价25元时,商场日盈利可达到2000元.18.(1)解:设该市汽车拥有量的年平均增长率为x.根据题意,得150(1+x)2=216.解得:x=0.2或x=﹣2.2(不合题意,舍去).∴年平均增长率为20%.(2)解:216(1+20%)2=311.04(万辆).答:如果不加控制,该市2024年底汽车拥有量将达311.04万辆.。

北师大版九年级数学上册 2.6 应用一元二次方程同步复习试题(含答案)

北师大版九年级数学上册 2.6 应用一元二次方程同步复习试题(含答案)

北师大版九年级数学上册第二章2.6 应用一元二次方程同步复习试题一、选择题1.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1-x)2=315C.560(1-2x)2=315 D.560(1-x2)=3152.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)3.现代互联网技术的广泛应用,促进快递行业高速发展,据调查,我市某家快递公司,今年3月份与5月份完成投递的快递总件数分别为6.3万件和8万件.设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是()A.6.3(1+2x)=8 B.6.3(1+x)=8C.6.3(1+x)2=8 D.6.3+6.3(1+x)+6.3(1+x)2=84.随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次,2016年约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A.20(1+2x)=28.8 B.28.8(1+x)2=20C.20(1+x)2=28.8 D.20+20(1+x)+20(1+x)2=28.85.有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A.12x(x-1)=45 B.12x(x+1)=45 C.x(x-1)=45 D.x(x+1)=456.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.己知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的年平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9 B.10(1+2x)=16.9C.10(1-x)2=16.9 D.10(1-2x)=16.97.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.48. 2018年某市仅教育费附加就投入7200万元,用于发展本市的教育,预计到2020年投入将达9800万元,若每年增长率都为x,根据题意列方程()A.7200(1+x)=9800 B.7200(1+x)2=9800C.7200(1+x)+7200(1+x)2=9800 D.7200x2=98009.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18 B.x2-3x+16=0 C.(x-1)(x-2)=18 D.x2+3x+16=010. 2018年某县GDP总量为1000亿元,计划到2020年全县GDP总量实现1210亿元的目标.如果每年的平均增长率相同,那么该县这两年GDP总量的平均增长率为()A.1.21% B.8% C.10% D.12.1%11.从正方形铁片上截去2cm宽的一个长方形,剩余矩形的面积为80cm2,则原来正方形的面积为()A.100cm2B.121cm2C.144cm2D.169cm212.广州亚运会的某纪念品原价188元,连续两次降价a%,后售价为118元,下列所列方程中正确的是()A.188(1+a%)2=118 B.188(1-a%)2=118C.188(1-2a%)=118 D.188(1-a2%)=118二、填空题1.某加工厂九月份加工了10吨干果,十一月份加工了13吨干果.设该厂加工干果重量的月平均增长率为x,根据题意可列方程为 .2.用一条长40cm的绳子围成一个面积为64cm2的矩形.设矩形的一边长为xcm,则可列方程为.3.某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额的月均增长率为x,则可列方程为.4.受“减少税收,适当补贴”政策的影响,某市居民购房热情大幅提高.据调查,2016年1月该市宏鑫房地产公司的住房销售量为100套,3月份的住房销售量为169套.假设该公司这两个月住房销售量的增长率为x,根据题意所列方程为.5.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为 m.6.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是.三、解答题1.周口体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?2.随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现在仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每场降价的百分率.3.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?4.在直角墙角AOB(OA⊥OB,且OA、OB长度不限)中,要砌20m长的墙,与直角墙角AOB 围成地面为矩形的储仓,且地面矩形AOBC的面积为96m2.(1)求这地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?5.如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的17 80.(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.参考答案一、选择题1.B;2.B;3.C;4.C;5.A;6.A;7.D;8.B;9.C;10.C;11.A;12.B二、填空题1. 10(1+x)2=13;2. x(20-x)=64;3.60(1+x)2=100;4. 100(1+x)2=169;5.2;6. 10%.三、解答题1. 解:设要邀请x支球队参加比赛,由题意,得1x(x-1)=28,2解得:x1=8,x2=-7(舍去).答:应邀请8支球队参加比赛.2.解:设该种药品平均每场降价的百分率是x,由题意得:200(1-x)2=98解得:x1=1.7(不合题意舍去),x2=0.3=30%.答:该种药品平均每场降价的百分率是30%.3.解:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1-x%)2=324,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100-m)件,第一次降价后的单件利润为:400×(1-10%)-300=60(元/件);第二次降价后的单件利润为:324-300=24(元/件).依题意得:60m+24×(100-m)=36m+2400≥3210,解得:m≥22.5.∴m≥23.答:为使两次降价销售的总利润不少于3210元.第一次降价后至少要售出该种商品23件.4.解:(1)设这地面矩形的长是xm,则依题意得:x(20-x)=96,解得x1=12,x2=8(舍去),答:这地面矩形的长是12米;(2)规格为0.80×0.80所需的费用:96÷(0.80×0.80)×55=8250(元).规格为1.00×1.00所需的费用:96÷(1.00×1.00)×80=7680(元).因为8250>7680,所以采用规格为1.00×1.00所需的费用较少.5.解:(1)设条纹的宽度为x米.依题意得2x×5+2x×4-4x2=1780×5×4,解得:x1=174(不符合,舍去),x2=14.答:配色条纹宽度为14米.(2)条纹造价:1780×5×4×200=850(元)其余部分造价:(1-1780)×4×5×100=1575(元)∴总造价为:850+1575=2425(元)答:地毯的总造价是2425元.。

2021-2022学年北师大版九年级数学上册《一元二次方程的应用》期末综合复习训练(附答案)

2021-2022学年北师大版九年级数学上册《一元二次方程的应用》期末综合复习训练(附答案)

2021-2022学年北师大版九年级数学上册《一元二次方程的应用》期末综合复习训练(附答案)1.长沙成为网红城市以后,游客人数逐年增加,据有关部门统计,2019年约为12万人次,若2021年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17B.17(1﹣x)=12C.12(1+x)2=17D.12+12(1+x)+12(1+x)2=172.2021年2月25日,习近平总书记庄严宣告,我国脱贫攻坚战取得全面胜利,据有关部门统计,2018年末我国贫困人口还有1660万人,此后逐年下降,截至到2020年末我国贫困人口仅有551万人.若设贫困人口的年平均下降率为x,则可列方程为()A.551(1+x)2=1660B.1660(1﹣2x)=551C.1660(1﹣x%)2=551D.1660(1﹣x)2=5513.参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x支,根据题意,下面列出的方程正确的是()A.x(x+1)=110B.x(x﹣1)=110C.x(x+1)=110D.x(x﹣1)=1104.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人5.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是()A.2秒钟B.3秒钟C.4秒钟D.5秒钟6.如图,某学校计划在一块长12米,宽9米的矩形空地修建两块形状大小相同的矩形种植园,它们的面积之和为60平方米,两块种植园之间及周边留有宽度相等的人行通道,若设人行通道的宽度为x米,则可以列出关于x的方程()A.x2﹣17x﹣16=0 B.2x2+17x﹣16=0C.2x2﹣17x﹣16=0 D.2x2﹣17x+16=07.某超市将某品牌书包的售价从原来80元/个经两次调价后调至64.8元/个.若该超市两次调价的降价率相同,则降价率是()A.10%B.20%C.80%D.90%8.某商店销售连衣裙,每条盈利40元,每天可以销售20条.商店决定降价销售,经调查,每降价1元,商店每天可多销售2条连衣裙.若想要商店每天盈利1200元,每条连衣裙应降价()A.5元B.10元C.20元D.10元或20元9.某校要组织一次乒乓球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排2天,每天安排5场比赛.设比赛组织者应邀请x个队参赛,则x 满足的方程为.10.如图,某小区规划在一个长30m、宽20m的长方形ABCD土地上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?设通道的宽为xm,由题意列得方程.11.某呼吸机制造商2020年一月份生产呼吸机1000台,2020年三月份生产呼吸机4000台,设二、三月份每月的平均增长率为x,根据题意,可列方程为.12.有一人患了流感,经过两轮传染后,共有121人患了流感,每轮传染中平均每人传染了个人.13.有一个人患了流感,经过两轮传染后得知第二次被传染的有420人,如果每轮传染率都相同,那么每轮传染中平均一个人传染了个人.14.某足球比赛,要求每两支球队之间都要比赛一场,若共比赛45场,则有支球队参加比赛.15.有长为30m的篱笆,如图所示,一面靠墙(墙足够长),围成中间隔有一道篱笆的长方形花圃,当花圃的面积是72m2时,则AB=.16.师梅课外生物小组拟定在桃花岭上建立一个实验园地,其形状是长10米、宽6米的矩形,为便于管理,要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为40平方米,求小道的宽.若设小道的宽为x米,则可列方程为.(结果化为一般式)17.某钢铁厂计划今年第一季度一月份的总产量为500t,三月份的总产量为720t,若平均每月的增长率相同.(1)第一季度平均每月的增长率;(2)如果第二季度平均每月的增长率保持与第一季度平均每月的增长率相同,请你估计该厂今年5月份总产量能否突破1000t?18.长沙著名网红打卡地“超级文和友”在2019年五一小长假期间,接待食客约20万人次,在2021年五一小长假期间,接待食客约28.8万人次.现假定该店每年五一小长假接待食客的增长率相同.(1)求出该店2019年至2021年五一小长假期间食客人次的年平均增长率;(2)按照这个增长率,预计2022年“超级文和友”在五一小长假期间食客将达到多少万人次?19.为抗击疫情,人们众志成城,响应号召,口罩成了生活必需品,某药店销售普通口罩和N95口罩.(1)计划N95口罩每包售价比普通口罩贵16元,14包普通口罩和6包N95口罩总售价相同,求普通口罩和N95口罩每包售价;(2)已知普通口罩每包进价8元,按(1)中售价销售一段时间后,发现普通口罩的日均销售量为120包,当每包售价降价1元时,日均销售量增加20包.该药店秉承让利于民的原则,对普通口罩进行降价销售,但要保证当天普通口罩的利润为320元,求此时普通口罩每包售价.20.随着“双减”政策在星城的落地,为进一步规范各个学校的课后服务工作,长沙市教育局就《长沙市中小学课后服务工作实施办法》进行了更明确的要求,鼓励教师参与志愿辅导.某区率先示范,推出名师公益大课堂,为学生提供线上线下免费辅导,据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次.(1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率;(2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次?21.为促销新疆棉花,人们众志成城,响应号召,棉花是生活生产必需品.现有某生产商销售珍珠棉和长绒棉.(1)计划珍珠棉每斤售价比长绒棉贵16元,14斤长绒棉和6斤珍珠棉的总售价相同,求长绒棉和珍珠棉的每斤售价;(2)已知长绒棉每斤进价8元,按(1)中售价销售一段时间后,发现长绒棉的日均销售量为120斤,当每斤售价降价1元时,日均销售量增加20斤.该生产商秉承让利于民的原则,对长绒棉进行降价销售,但要保证当天长绒棉的利润为320元,求此时长绒棉每斤售价.22.口味虾是长沙网红美食之一,步行街某口味虾店“五一黄金周”期间,来店内就餐选择微辣和不辣两种口味虾的游客共2500人,其中微辣和不辣两种口味虾的人均消费分别为80元和60元.(1)“五一”期间,若选择微辣口味虾的人数是不辣口味虾人数的1.5倍,求有多少人选择不辣口味虾?(2)随着“五一”的结束,前来店里就餐的人数逐渐减少,据接下来的第二周统计数据显示,在(1)的条件下,选择微辣口味虾的人数下降了a%,选择不辣口味虾的人数不变,但选择微辣口味虾的人均消费增长了a%,选择不辣口味虾的人均消费增长了a%,最终销售总额为18万元,求a的值.参考答案1.解:设游客人数的年平均增长率为x,则2020的游客人数为:12×(1+x),2021的游客人数为:12×(1+x)2.那么可得方程:12(1+x)2=17.故选:C.2.解:设贫困人口的年平均下降率为x,根据题意得:1660(1﹣x)2=551,故选:D.3.解:设有x个队参赛,则x(x﹣1)=110.故选:D.4.解:设参加酒会的人数为x人,根据题意得:x(x﹣1)=55,整理,得:x2﹣x﹣110=0,解得:x1=11,x2=﹣10(不合题意,舍去).答:参加酒会的人数为11人.故选:C.5.解:设动点P,Q运动t秒后,能使△PBQ的面积为15cm2,则BP为(8﹣t)cm,BQ为2tcm,由三角形的面积计算公式列方程得,×(8﹣t)×2t=15,解得t1=3,t2=5(当t=5时,BQ=10,不合题意,舍去).∴动点P,Q运动3秒时,能使△PBQ的面积为15cm2.故选:B.6.解:设人行道的宽度为x米,根据题意得,(12﹣3x)(9﹣2x)=60,化简整理得,2x2﹣17x+16=0.故选:D.7.解:设该超市调价的降价率为x,根据题意得:80(1﹣x)2=64.8,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:该超市调价的降价率为10%.故选:A.8.解:设每条连衣裙降价x元,则每天售出(20+2x)条,依题意,得:(40﹣x)(20+2x)=1200,整理,得:x2﹣30x+200=0,解得:x1=10,x2=20.答:每条连衣裙应降价10元或20元.故选:D.9.解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=2×5.故答案是:x(x﹣1)=2×5.10.解:由题意可得,(30﹣2x)(20﹣x)=78×6,化简,得x2﹣35x+66=0,故答案为:x2﹣35x+66=0.11.解:依题意,得:1000(1+x)2=4000.故答案为:1000(1+x)2=4000.12.解:设每轮传染中平均每人传染了x人.依题意,得1+x+x(1+x)=121,即(1+x)2=121,解方程,得x1=10,x2=﹣12(舍去).答:每轮传染中平均每人传染了10人.13.解:设每轮传染中平均每个人传染了x人.依题意得x(1+x)=420,∴x2+x﹣420=0,∴(x+21)(x﹣20)=0∴x1=20,x=﹣21(不合题意,舍去).所以,每轮传染中平均一个人传染给20个人.故答案为:20.14.解:∵有x支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为x(x﹣1),∴共比赛了45场,∴x(x﹣1)=45,解得:x1=10,x2=﹣9(舍去),故答案为:1015.解:设AB长为xm,则BC长为(30﹣3x)m,根据题意得:x(30﹣3x)=72,整理得:x2﹣10x+24=0,解得:x1=4,x2=6.答:AB的长4m或6m.故答案是:4m或6m.16.解:把阴影部分分别移到矩形的上边和左边可得矩形的长为(10﹣2x)米,宽为(6﹣x)米,∴可列方程为(10﹣2x)(6﹣x)=40,化简得,x2﹣11x+10=0,故答案为:x2﹣11x+10=0.17.解:(1)设第一季度平均每月的增长率为x,根据题意得:500(1+x)2=720,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:第一季度平均每月的增长率为20%.(2)720×(1+20%)2=1036.8(t),∵1036.8>1000,∴该厂今年5月份总产量能突破1000t.18.解:(1)设该店每年五一小长假接待食客的增长率为x,依题意得:20(1+x)2=28.8,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:这个增长率为20%.(2)28.8×(1+20%)=34.56(万人次).答:预计2022年“超级文和友”在五一小长假期间食客将达到34.56万人次.19.解:(1)设普通口罩每包的售价为x元,N95口罩每包的售价为y元,依题意得:,解得:.答:普通口罩每包的售价为12元,N95口罩每包的售价为28元.(2)设普通口罩每包的售价降低m元,则此时普通口罩每包的售价为(12﹣m)元,日均销售量为(120+20m)包,依题意得:(12﹣m﹣8)(120+20m)=320,整理得:m2+2m﹣8=0,解得:m1=2,m2=﹣4(不合题意,舍去),∴12﹣m=10.答:此时普通口罩每包的售价为10元.20.解:(1)设增长率为x,依题意得:2(1+x)2=2.42,解得:x1=0.1=10%,x2=﹣2.1(不合题意,舍去).答:这个增长率为10%.(2)2.42×(1+10%)=2.662(万人次).答:预计第四批公益课受益学生将达到2.662万人次.21.解:(1)设长绒棉的每斤售价为x元,则珍珠棉的每斤售价为(x+16)元,依题意得:14x=6(x+16),解得:x=12,∴x+16=28(元).答:长绒棉的每斤售价为12元,珍珠棉的每斤售价为28元.(2)设长绒棉每斤售价为m元,则每斤的利润为(m﹣8)元,日均销售量为120+20(12﹣m)=(360﹣20m)斤,依题意得:(m﹣8)(360﹣20m)=320,整理得:m2﹣26m+160=0,解得:m1=10,m2=16.又∵m<12,∴m=10.答:此时长绒棉每斤售价为10元.22.解:(1)设有x人选择不辣口味虾,则有(2500﹣x)人选择微辣口味虾,依题意,得:2500﹣x=1.5x,解得:x=1000.答:1000人选择不辣口味虾.(2)依题意,得:80(1+a%)×(2500﹣1000)(1﹣a%)+60(1+a%)×1000=180000,整理,得:12a2﹣120a=0,解得:a1=10,a2=0(不合题意,舍去).答:a的值为10.。

九年级数学上册第二十一章《一元二次方程》测试题-北师大版(含答案)

九年级数学上册第二十一章《一元二次方程》测试题-北师大版(含答案)

九年级数学上册第二十一章《一元二次方程》测试题-北师大版(含答案)(满分120分)一、选择题(每题3分,共30分)1.方程(x+1)(x-1)=0的根是()A. x1=x²=1B. x1= x²=-1C. x1=1,x²=-1D. x1=1,x²=02.一元二次方程x²-2x-5 =0用配方法解可变形为()A. (x+1)2=6B. (x+2)2=9C. (x-1)2=6D. (x-2)2=93.方程x²-2x+3 =0的根的情况是:()A.有两个相等的实数根7B.无实C.有两个不相等的实数根D.只有一个实根4.关于x的一元二次方程(a-1)x²+x+a2-1 =0有一个根为0,则a的值为()A.1B.-1C.+1D.05.一个等腰三角形的两边是方程x²-6x+8=0的两根,则这个三角形的周长为()A.8B.10 DBC.8或10D. 66.方程x-2x+m=0有两个相等的实数解,则m的值为()A.1B.-1C.2D. -27.以1,3为根的一元二次方程是.()A. x²+4x+3=0B. x²-4x+3=0C. x²+4x-3=0D. -x²+4x+3=08.两个连续偶数的积为120,若设较小的偶数为x,则可列方程()A. x(x+1)=120B. x(x+2)=120C. x(x-1)=120D. x(x-2)=1209.一个长方形的长比宽多1,面积为12,则长方形的宽为()A.3B.4C.523D.610.在某次会议中,每两人都握了一次手,共握手10次,设有x人参加会议,则可列方程为()A. x(x+1)=10B. x(x-1)= 10C. 12(x+1)=10D. 12(x-1)=10二、填空题(每题4分,共28分)11.方程x²=1的解为。

12. 已知m和n是方程3x²-6x-9=0的两根,则m +n= .13.已知代数式x²与2x-1的值相等,则x的值为.14.如果关于x的一元二次方程x²+2x-m=0没有实根,那么m的取值范围是.15.若关于x的方程x²+mx-3=0有一个根为2,则m的值为.16. 一个长方形的周长为8,面积为4,设宽为x,则可列方程为.17.已知关于x的一元二次方程x²+(2m-1)x+m²=0有两个实数根x1和x2,且x1+x2+ x1x2=1,出m的值为.三、解答题(一)(每题6分,共18分)18.解方程:(1)x²-4x+3=0;(2)2x²-3x-1 =0;(3)(x+4)2 =2(x +4).19.已知x=-1是方程x2+mx-5=0的一个根,求m的值及方程的另一根.20.如图,在长为10m,宽为8m的矩形试验田上修建两条宽度相等且互相垂直的道路,要使种植面积(空白部分)为63m2,求道路的宽.四、解答题(二)(每题8分,共24分)21.已知关于x的一元二次方程x2+(m+1)x+m=0.(1)当m=0时,求方程的解;(2)当m=1时,求方程的解.22.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动,第一天收到捐款1000元,第三天收到捐款1440元(1)如果第二天第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?23.已知关于x的一元二次方程(x-2)(x-3)=p2.求证:无论p取何值,方程总有两个不相等的实数根五、解答题(三)(每题10分,共20分)24.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?25.设等腰三角形的三条边分别为3,m,n,已知m,n是关于x的方程x²-4x+k=0的两个根,求k的值.参考答案一、1.C 2.C 3.B 4.B 5.B 6. A 7.B 8.B 9.A 10.D二、11. X1=1,x2=-1 12.2 13. 114.m< -1 15. -1 216.x(4-x) =4 17.0三、18.解:(1)x2 -4x+4= -3+4 (x-2)2=1x-2=土1x1=1 +2=3x2=-1+2=1(2)∵ a=2,b= -3,c= -1△=b2 -4ac=( -3)2-4x2x( -1)=9+8= 17∴x=24317=24b b aca--±x1317±x2317=4(3)(x+4)(x+4-2) =0(x +4)(x+2) =0X1=-4x2=-2.19.解:把x= -1代人方程x2 +mx-5 =0则:(-1)2-m-5=0- m=4m= -4把m= -4代人x2 +mx-5=0则:x2 -4x-5=0X2 -4x+4=5 +4(x-2)2 =9x-2=土3x1 =3+2=5x2= -3+2= -1∴m的值为-4,方程的另一根为520.解:设道路寬x m.根据题意,得(10-x)(8-x) =63x2 -18x +80= 63(x-9)2 =64x-9=土8x 1=8 +9=17(不合题意,舍去)x2 = -8+9=1∴道路宽1m四、21.解:(1)当m=0时,x2 +(m+1)x+m=0 x2 +x+0=0x(x+1) =0∴x=0或x+1 =0∴x1 =0,x2=-1(2)当m=1时,x2 +(m+1)x+m=0X2+(1 +1)x+1=0x2 +2x+1 =0(x+1)2 =0∴x1=x2=-122.解:(1)设捐款增长率为x,依题意,得1 000(1 +x)2=1 440(1 +x)2=1.441 +x= +1.2x= ±1.2-1∴x1 =1.2-1 =0.2 = 20%x2= -1.2-1= -2.2(不合题意,舍去)答:捐款增长率为20%(2)1440x(1 +20%) =1 728元答:第四天该单位能收到1728元捐款。

北师大版数学九年级上册 第二章 一元二次方程 复习题(解析版)

北师大版数学九年级上册 第二章 一元二次方程 复习题(解析版)

第二章一元二次方程复习题一.选择题1.已知x1,x2是一元二次方程x2﹣3x+1=0的两实数根,则的值是()A.﹣7B.﹣1C.1D.72.已知关于x的一元二次方程x2﹣x+m=0的一个实数根为b,若y=4b2﹣4b+m2,则y的取值范围是()A.y>B.C.y>﹣1D.y≥﹣13.若x=2是关于x的方程ax2﹣bx=2的解,则2019﹣2a+b的值为()A.2016B.2017C.2018D.20194.若关于x的一元二次方程ax2=b(ab>0)的两个根分别是m﹣1和2m+4,则的值为()A.4B.3C.2D.15.一元二次方程y2﹣y=配方后可化为()A.=1B.=1C.=D.=6.将y=x2﹣6x+1化成y=(x﹣h)2+k的形式,则h+k的值是()A.﹣5B.﹣8C.﹣11D.57.代数式x2﹣4x﹣2019的最小值是()A.﹣2017B.﹣2019C.﹣2021D.﹣20238.已知等腰三角形两边a,b,满足4a2﹣4ab+2b2﹣8b+16=0,则此等腰三角形的周长为()A.8B.10C.12D.8或109.设x1为一元二次方程x2﹣2x=较小的根,则()A.0<x1<1B.﹣1<x1<0C.﹣2<x1<﹣1D.﹣5<x1<﹣4 10.若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的最大整数是()A.1B.0C.﹣1D.﹣211.若方程x2﹣7x+12=0的两个实数根恰好是直角△ABC的两边的长,则△ABC的周长为()A.12B.7+C.12或D.1112.方程3x(2x+1)=2(2x+1)的两个根为()A.B.C.D.13.方程2x2+5=7x根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根14.在一次酒会上,每两人都只碰一次杯,如果一共碰杯21次,则参加酒会的人数为()A.5人B.6人C.7人D.8人15.一件产品原来每件的成本是1000元,在市场售价不变的情况下,由于连续两次降低成本,现在利润每件增加了190元,则平均每次降低成本的()A.10%B.9.5%C.9%D.8.5%二.填空题16.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率.设每次降价的百分率为x,则可列方程为.17.某市从2017年开始大力发展旅游产业.据统计该市2017年旅游收入约为2亿元,预计2019旅游收入达到2.88亿元,据此估计该市2018年、2019年旅游收入的年平均增长率约为.18.自中国加入WTO以来,中美经贸往来日益密切,贸易总量不断攀升.据海关统计,2018年中国对美国进出口总值比2017年增长5.5%,其中进口值下降5%,出口值大幅增长,且增长率是进口值下降率的正整数倍,以致对美贸易顺差(贸易顺差=出口值﹣进口值)进一步加大.经核算,2018年贸易顺差增长率是出口值增长率的倍,则2017年的出口值占进出口总值的百分比为.19.已知x1,x2是方程x2﹣x﹣3=0的两根,则+=.20.若关于x的一元二次方程kx2+2x+1=0有实数根,则k的取值范围是.三.解答题21.某村2016年的人均收入为20000元,2018年的人均收入为24200元(1)求2016年到2018年该村人均收入的年平均增长率;(2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2019年村该村的人均收入是多少元?22.已知关于x的方程kx2﹣3x+1=0有实数根.(1)求k的取值范围;(2)若该方程有两个实数根,分别为x1和x2,当x1+x2+x1x2=4时,求k的值.23.已知关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根x1,x2.(1)若a为正整数,求a的值;(2)若x1,x2满足x12+x22﹣x1x2=16,求a的值.24.为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?25.某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?26.关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.第二章一元二次方程复习题参考答案与试题解析一.选择题1.【分析】先根据一元二次方程解的定义得到x12﹣3x1+1=0,x22﹣3x2+1=0,则1﹣3x1=﹣x12,1﹣3x2=﹣x22,则可变形为﹣,再根据根与系数的关系得到x1+x2=3,x1x2=1,然后利用整体代入的方法计算.【解答】解:∵x1,x2是一元二次方程x2﹣3x+1=0的两实数根,∴x12﹣3x1+1=0,x22﹣3x2+1=0,∴1﹣3x1=﹣x12,1﹣3x2=﹣x22,∴=﹣﹣=﹣,∵x1,x2是一元二次方程x2﹣3x+1=0的两实数根,∴x1+x2=3,x1x2=1,∴原式=﹣=﹣7.故选:A.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了根与系数的关系.2.【分析】先表示出判别式△,根据方程有两个实数根得出m的取值范围,根据b是方程的一个实数根,可得4b2﹣4b+2m=0,整体代入,根据二次函数的性质可得y的取值范围.【解答】解:∵关于x的一元二次方程x2﹣x+m=0有实数根,∴△=1﹣2m≥0,∴m≤,∵b是方程的一个实数根,∴b2﹣b+m=0,∴4b2﹣4b+2m=0,∴4b2﹣4b=﹣2m,∴y=4b2﹣4b+m2=﹣2m+m2=(m﹣1)2﹣,而m≤,∴y≥﹣1.故选:D.【点评】本题考查了根的判别式,一元二次方程的解,二次函数的性质,解答本题的关键是掌握一元二次方程判别式与方程根的关系.3.【分析】把x=2代入方程求出2a﹣b的值,代入原式计算即可求出值.【解答】解:把x=2代入方程得:4a﹣2b=2,即2a﹣b=1,则原式=2019﹣(2a﹣b)=2019﹣1=2018,故选:C.【点评】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.【分析】根据直接开方法即可求出答案.【解答】解:由题意可知:ax2=b有两个根,由直接开方法可知:m﹣1与2m+4互为相反数,∴m﹣1+2m+4=0,∴m=﹣1,∴m﹣1=﹣2,2m+4=2,∴x2==4,故选:A.【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.5.【分析】先配方,再变形,即可得出选项.【解答】解:y2﹣y=,y2﹣y+()2=+()2,(y﹣)2=1,故选:B.【点评】本题考查了解一元二次方程,能够正确配方是解此题的关键.6.【分析】利用完全平方公式计算即可求出所求.【解答】解:∵y=x2﹣6x+1化成y=(x﹣h)2+k,∴h=3,k=﹣8,则h+k=﹣5,故选:A.【点评】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.7.【分析】利用配方法把原式变形,根据非负数的性质解答.【解答】解:x2﹣4x﹣2019=x2﹣4x+4﹣4﹣2019=(x﹣2)2﹣2023,∵(x﹣2)2≥0,∴(x﹣2)2﹣2023≥﹣2023,即代数式x2﹣4x﹣2019的最小值﹣2023,故选:D.【点评】本题考查的是配方法的应用,掌握完全平方公式、非负数的性质是解题的关键.8.【分析】利用配方法和非负数的性质求出a、b的值,根据三角形的周长公式计算即可.【解答】解:∵4a2﹣4ab+2b2﹣8b+16=0,∴(4a2﹣4ab+b2)+(b2﹣8b+16)=0,∴(2a﹣b)2+(b﹣4)2=0,∴a=2,b=4,∴当腰为4时,等腰三角形的周长为4+4+2=10,当腰为2时,2+2=4,构不成三角形.故选:B.【点评】此题考查了配方法的应用,三角形三边关系及等腰三角形的性质,解题的关键熟练掌握完全平方公式.9.【分析】求出方程的解,求出方程的最小值,即可求出答案.【解答】解:x2﹣2x=,8x2﹣16x﹣5=0,x==,∵x1为一元二次方程x2﹣2x=较小的根,∴x1==1﹣,∵5<<6,∴﹣1<x1<0.故选:B.【点评】本题考查了求一元二次方程的解和估算无理数的大小的应用,关键是求出方程的解和能估算无理数的大小.10.【分析】根据根的判别式即可求出答案.【解答】解:△=4﹣4k>0,∴k<1,∴k的最大整数为0,故选:B.【点评】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.11.【分析】先利用因式分解法解方程得到直角三角形的两边为3,4,然后进行讨论:当4为直角边时,利用勾股定理计算斜边长,从而得到此时三角形的周长;当4为斜边时,利用勾股定理计算出另一条直角边长,从而得到此时三角形的周长.【解答】解:(x﹣3)(x﹣4)=0,x﹣3=0或x﹣4=0,所以x1=3,x2=4,所以直角三角形的两边为3,4,当4为直角边时,斜边长==5,三角形的周长为3+4+5=12;当4为斜边时,另一条直角边长==,三角形的周长为3+4+=7+.故选:C.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.12.【分析】先变形得到3x(2x+1)﹣2(2x+1)=0,然后利用因式分解法解方程.【解答】解:3x(2x+1)﹣2(2x+1)=0,(2x+1)(3x﹣2)=0,2x+1=0或3x﹣2=0,所以x1=﹣,x2=.故选:D.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.13.【分析】先把方程化为一般式,然后计算判别式的值后判断方程根的情况.【解答】解:方程化为2x2﹣7x+5=0,因为△=(﹣7)2﹣4×2×5=9>0,所以方程有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.14.【分析】设参加酒会的人数为x人,根据每两人都只碰一次杯且一共碰杯21次,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设参加酒会的人数为x人,依题意,得:x(x﹣1)=21,解得:x1=7,x2=﹣6(舍去).故选:C.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.15.【分析】设平均每次降低成本的x,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设平均每次降低成本的x,根据题意得:1000﹣1000(1﹣x)2=190,解得:x1=0.1=10%,x2=1.9(舍去),则平均每次降低成本的10%,故选:A.【点评】此题考查了一元二次方程的应用,弄清题意是解本题的关键.二.填空题16.【分析】设每次降价的百分率为x,(1﹣x)2为两次降价的百分率,40降至32.4就是方程的平衡条件,列出方程即可.【解答】解:设每次降价的百分率为x,依题意得:40(1﹣x)2=32.4.故答案是:40(1﹣x)2=32.4.【点评】此题主要考查了由实际问题抽象出一元二次方程,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.17.【分析】设该市2018年、2019年旅游收入的年平均增长率为x,根据该市2017年及2019年的旅游收入,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设该市2018年、2019年旅游收入的年平均增长率为x,依题意,得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).故答案为:20%.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.18.【分析】设2017年的进口值为x,出口值为y,总值为x+y,则2018年的出口值为(1﹣5%)x,出口值为(1+5n%)y,总值为(1+5.5%)x+y,其中n为正整数,即可得到结论.【解答】解:设2017年的进口值为x,出口值为y,总值为x+y,则2018年的出口值为(1﹣5%)x,出口值为(1+5n%)y,总值为(1+5.5%)x+y,其中n为正整数,由题意得,(1﹣5%)x+(1+5n%)y=(1+5.5%)(x+y)解得:x=y,∵2018年贸易顺差增长率是出口值增长率的倍,∴=×,将x=y代入,化简整理得,85n2﹣148n﹣44=0,解得:n=2,(负值舍去),∴=,∴=70%,答:2017年的出口值占进出口总值的百分比为70%.故答案为:70%.【点评】本题考查了一元二次方程的应用,正确的理解题意是解题的关键.19.【分析】利用根与系数的关系可得出x1+x2=1,x1•x2=﹣3,将其代入+=中即可得出结论.【解答】解:∵x1,x2是方程x2﹣x﹣3=0的两根,∴x1+x2=1,x1•x2=﹣3,∴+===﹣.故答案为:﹣.【点评】本题考查了根与系数的关系,牢记“两根之和等于﹣,两根之积等于”是解题的关键.20.【分析】根据一元二次方程的根的判别式即可求出答案.【解答】解:由题意可知:△=4﹣4k≥0,∴k≤1,∵k≠0,∴k≠0且k≤1,故答案为:k≠0且k≤1;【点评】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.三.解答题21.【分析】(1)设2016年到2018年该村人均收入的年平均增长率为x,根据某村2016年的人均收入为20000元,2018年的人均收入为24200元,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由2019年村该村的人均收入=2018年该村的人均收入×(1+年平均增长率),即可得出结论.【解答】解:(1)设2016年到2018年该村人均收入的年平均增长率为x,根据题意得:20000(1+x)2=24200,解得:x1=0.1=10%,x2=﹣2.1(不合题意,舍去).答:2016年到2018年该村人均收入的年平均增长率为10%.(2)24200×(1+10%)=26620(元).答:预测2019年村该村的人均收入是26620元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.22.【分析】(1)分k=0及k≠0两种情况考虑:当k=0时,原方程为一元一次方程,通过解方程可求出方程的解,进而可得出k=0符合题意;当k≠0时,由根的判别式△≥0可得出关于k的一元一次不等式,解之即可得出k的取值范围.综上,此问得解;(2)利用根与系数的关系可得出x1+x2=,x1x2=,结合x1+x2+x1x2=4可得出关于k 的分式方程,解之经检验后即可得出结论.【解答】解:(1)当k=0时,原方程为﹣3x+1=0,解得:x=,∴k=0符合题意;当k≠0时,原方程为一元二次方程,∵该一元二次方程有实数根,∴△=(﹣3)2﹣4×k×1≥0,解得:k≤.综上所述,k的取值范围为k≤.(2)∵x1和x2是方程kx2﹣3x+1=0的两个根,∴x1+x2=,x1x2=.∵x1+x2+x1x2=4,∴+=4,解得:k=1,经检验,k=1是分式方程的解,且符合题意.∴k的值为1.【点评】本题考查了根的判别式、根与系数的关系、一元二次方程的定义、解一元一次方程以及解分式方程,解题的关键是:(1)分k=0及k≠0两种情况,找出k的取值范围;(2)利用根与系数的关系结合x1+x2+x1x2=4,找出关于k的分式方程.23.【分析】(1)根据关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根,得到△=[﹣2(a﹣1)]2﹣4(a2﹣a﹣2)>0,于是得到结论;(2)根据x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,代入x12+x22﹣x1x2=16,解方程即可得到结论.【解答】解:(1)∵关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根,∴△=[﹣2(a﹣1)]2﹣4(a2﹣a﹣2)>0,解得:a<3,∵a为正整数,∴a=1,2;(2)∵x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,∵x12+x22﹣x1x2=16,∴(x1+x2)2﹣3x1x2=16,∴[2(a﹣1)]2﹣3(a2﹣a﹣2)=16,解得:a1=﹣1,a2=6,∵a<3,∴a=﹣1.【点评】本题考查的是一元二次方程根与系数的关系及根的判别式,先判断出a的取值范围,再由根与系数的关系得出方程组是解答此题的关键.24.【分析】设降价后的销售单价为x元,则降价后每天可售出[300+5(200﹣x)]个,根据总利润=每个产品的利润×销售数量,即可得出关于x的一元二次方程,解之即可得出结论.【解答】解:设降价后的销售单价为x元,则降价后每天可售出[300+5(200﹣x)]个,依题意,得:(x﹣100)[300+5(200﹣x)]=32000,整理,得:x2﹣360x+32400=0,解得:x1=x2=180.180<200,符合题意.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.25.【分析】设扩充后广场的长为3xm,宽为2xm,根据矩形的面积公式和总价=单价×数量列出方程并解答.【解答】解:设扩充后广场的长为3xm,宽为2xm,依题意得:3x•2x•100+30(3x•2x﹣50×40)=642000解得x1=30,x2=﹣30(舍去).所以3x=90,2x=60,答:扩充后广场的长为90m,宽为60m.【点评】题考查了列二元一次方程解实际问题的运用,总价=单价×数量的运用,解答时找准题目中的数量关系是关键.26.【分析】直接利用根的判别式得出m的取值范围进而解方程得出答案.【解答】解:∵关于x的方程x2﹣2x+2m﹣1=0有实数根,∴b2﹣4ac=4﹣4(2m﹣1)≥0,解得:m≤1,∵m为正整数,∴m=1,∴x2﹣2x+1=0,则(x﹣1)2=0,解得:x1=x2=1.【点评】此题主要考查了根的判别式,正确得出m的值是解题关键.。

北师大版九年级数学上册一元二次方程应用题复习

北师大版九年级数学上册一元二次方程应用题复习

5000
3、某商场将进货价为30元的台灯以40元售出,平均 每月能售出600个,调查表明,这种台灯的售价每上 涨1元,其销售量就减少10个,为了实现平均每月 10000元的销售利润,这种台灯的售价应为多少?这 时应至少进台灯多少?
解:设每盏台灯涨价x元,则这种台灯的售价应为(40+x)元,这时应 至少进台灯(600-10x)台.
x+10
解:设矩形的宽为xm,则长为 (x+10) m, 根据题意得: x
x (x+10) =900.
即 x2 + 10x-900 =0.
900m2
3、一块四周镶有宽度相等的花边的地毯如
下图,它的长为8m,宽为5m.如果地毯
中央长方形图案的面积为18m2 ,则花边
多宽?
8-2x
5-2x
x
x
解:如果设花边的宽为xm , 根据题意得
(35-x) (26-x) =850.
35m
即 x2 - 61x-60 =0.
解这个方程,得
x1 =1;
26m
x2 =60(不合题意,舍去).
答:道路的宽应为1m.
6. 某农场要建一个长方形的养鸡场,鸡场的一 边靠墙(墙长25m),另外三边用木栏围成,木栏 长40m.
(1) 鸡场的面积能达到180m2吗? (2) 鸡场的面积能达到200m2吗? (3) 鸡场的面积能达到250m2吗?
(44 x)(20 5 x ) 1600 0.5
2、新华商场销售某种冰箱,每台进价为2500元.市场 调研表明:当销售价为2900元时,平均每天能售出8台; 而当销价每降低50元时,平均每天能多售4台.商场要 想使这种冰箱的销售利润平均每天达到5000元,每台 冰箱的定价应为多少元?

北师大版九年级数学上册《一元二次方程综合测试》

北师大版九年级数学上册《一元二次方程综合测试》

北师大版九年级数学上册《一元二次方程综合测试》一、选择题1.下列方程中,是一元二次方程的是()A. x2+2x=x2−1B. x2+1x=1C. x2+y2=1D. ax2+bx+c=0(其中a≠0)2.一元二次方程x2+4x−5=0的解是()A. x1=1,x2=−5B. x1=−1,x2=5C. x1=x2=−2D. x1=2+√11,x2=2−√113.对于一元二次方程ax2+bx+c=0(其中a≠0),若b2−4ac<0,则方程()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 有一根为0二、填空题1.方程x2−6x+9=0的两个根为___。

2.若关于x的一元二次方程x2+2x+k−1=0有两个相等的实数根,则k=___。

3.若x1,x2是方程2x2−5x−3=0的两个根,则x1+x2=_,x1∙x2=。

三、解答题1.解方程:3x2−5x−2=0(要求使用公式法)。

解:对于方程3x2−5x−2=0,其中a=3,b=−5,c=−2。

2.计算判别式Δ=b2−4ac=(−5)2−4×3×(−2)=25+24=49。

因为Δ>0,所以方程有两个不相等的实数根。

使用公式法,得x=−b±√Δ2a=5±√496=5±76。

因此,x1=2,x2=−13。

3.已知关于x的一元二次方程x2−4x+k−1=0有两个不相等的实数根。

(1)求k的取值范围;(2)若该方程的两个实数根的积为2,求k的值。

解:(1)对于方程x2−4x+k−1=0,其中a=1,b=−4,c=k−1。

要求有两个不相等的实数根,则Δ=b2−4ac=(−4)2−4×1×(k−1)= 16−4k+4=20−4k>0。

解得k<5。

(2)设方程的两个实数根为x1,x2,由根与系数的关系知x1∙x2=ca=k−1。

已知x1∙x2=2,所以k−1=2,解得k=3。

北师大版初三数学上册一元二次方程复习题(含解析)

北师大版初三数学上册一元二次方程复习题(含解析)

北师大版初三数学上册一元二次方程复习题(含解析)知识讲解+例题解析+强化训练◆知识讲解1.一元二次方程的一样形式ax2+bx+c=0(a ,b ,c 是常数,a ≠0)2.一元二次方程的解法(1)直截了当开平方法;(2)配方法;(3)公式法;(4)因式分b2-4ac ≥0). 3.二元三项式ax2+bx+c=a (x -x1)(x -x2).其中x1,x2是关于x 的方程ax2+bx+c=0•的两个实数根.4.一元二次方程ax2+bx+c=0(a△>0时,•方程有两个不相等的实数根,当△=0时,方程有两个相等实数根x1=x2=-2b a ;当△<0时,方程没有实数根.5.若一元二次方程ax2+bx+c=0(a ≠0)的两个实数根为x1,x2,则x1+x2=-b a ,x1x2=c a.6.以x1,x2为根的一元二次方程可写成x2-(x1+x2)x+x1x2=0.7.使用一元二次方程ax2+bx+c=0(a ≠0)的根的判别式△=b2-4ac•解题的前提是二次项系数a ≠0.8.若x1,x2是关于x 的方程ax2+bx+c=0的两根,则ax12+bx1+c=0,ax22+bx2+c=0.反之,若ax12+bx1+c=0,ax22+bx2+c=0,且x1≠x2,则x1,x2是关于x 的一元二次方程ax2+bx+c=0的两根.9.一元二次方程的应用列一元二次方程解应用问题的步骤和解法与前面讲过的列方程解应用题的方法步骤相同,但在解题中心须注意所求出的方程的解一定要使实际问题有意义,凡不满足实际问题的解(尽管是原方程的解)一定要舍去.◆例题解析例1 若0是关于x的方程(m-2)x2+3x+m2+2m-8=0的解,求实数m的值,并讨论此方程解的情形.【分析】这是一道确定待定系数m的一元二次方程,•又讨论方程解的情形的优秀考题,需要考生具备分类讨论的思维能力.【解答】由题知:(m-2)×02+3×0+m2+2m-8=0,∴m2+2m-8=0.利用求根公式可解得m1=2,或m2=-4.当m=2时,原方程为3x=0,现在方程只有一个解,x=0.当m=-4时,原方程可化为2x2-x=0,解得x1=0,x2=12.例2 已知下列n(n为正整数)个关于x的一元二次方程:x2-1=0 (1)x2+x-2=0 (2)x2+2x-3=0 (3)x2+(n-1)x-n=0 (n)(1)请解上述一元二次方程(1),(2),(3),(n);(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.【分析】由具体到一样进行探究.【解答】(1)<1>(x+1)(x-1)=0,因此x1=-1,x2=1.<2>(x+2)(x-1)=0,因此x1=-2,x2=1.<3>(x+3)(x-1)=0,因此x1=-3,x2=1.<n>(x+n)(x-1)=0,因此x1=-n,x2=1.(2)比如:共同特点是:都有一个根为1;都有一个根为负整数;两个根差不多上整数根等.【点评】本例从教材要求的差不多知识动身,探究具有某种特点的方程的解题规律及方程根与系数之间的关系,注重了对学生观看、类比及联想等数学思想方法的考查.例3张大叔从市场上买回一块矩形铁皮,•他将此矩形铁片的四个角各剪去一个边长为1m的正方形后,剩下的部分刚好能围成一个容积为15m3的无盖长方体运输箱.且此长方体运输箱底面的长比宽多2m,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了多少元钱?【分析】第一化无形为有形,画出示意图,分清底面、侧面,底面的长与宽和长方体的高各用什么数或式子表示,然后利用体积相等列出方程求解.【解答】设这种运输箱底部宽为xm,则长为(x+2)m,依题意,有x(x+2)×1=15化简,得x2+2x-15=0.∴x1=-5(舍去)x2=2.所求铁皮的面积为:(3+2)(5+2)m2=35m2.所购矩形铁皮所需金额为:35×20元=700元.答:张大频购回这张矩形铁皮花了700元钱.【点评】画出示意图是解题的关键.另外本题所采纳的是间接设未知数的方法.若直截了当设出购买铁皮所需金额就困难了.◆强化训练一、填空题1.方程(2x-1)(3x+1)=x2+2化为一样形式为______,其中a=___ _,b=____,c=____.2.方程(x-1)2=2的解是_______.3.关于x的一元二次方程mx2+nx+m2+3m=0有一个根为零,则m的值等于_____.4.配方:x2-6x+_____=(x-____)2;x2-52x+______=(x-_____)2.5.方程(x-1)(x+2)(x-3)=0的根是_______.6.关于x的一元二次方程x2+mx+n=0的两个根为x1=1,x2=-2,则x2+mx+n分解因式的结果是______.7.若关于x的方程x2+px+1=0的一个实数根的倒数恰好是它本身,则p的值是____.8.两个连续整数的积为210,则这两个数分别是_____.9.若一个三角形的三边长均满足方程x2-6x+8=0,则此三角形的周长为_____.10.假如a ,b ,c 为互不相等的实数,且满足关系式b2+c2=2a2+16a+14与bc=a2-4a -5,那么a 的取值范畴是______.二、选择题11.关于x 的一元二次方程2x2-3x -a2+1=0的一个根为2,则a 的值是( )A .1 BC D12.若关于x 的一元二次方程(m -1)x2+5x+m2-3m+2=0的常数项为0,则m 的值等于( )A .1B .2C .1或2D .013.关于x 的一元二次方程x2-(k+1)x+k -2=0的根的情形是( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法判定14.已知关于x 的方程x2-(2k -1)x+k2=0有两个不相等的实数根,那么k•的最大整数值是( )A .-2B .-1C .0D .115.方程mx2-4x+1=0 )A .14B .2m C .2m D .以上都不对16.关于x 的一元二次方程x2-3x+k=0有实数根,则k 的取值范畴是( )A .k<94B .k>94C .k ≤94D .k ≥94 17.方程组18ax y x by -=⎧⎨+=⎩的解是23x y =⎧⎨=⎩,那么方程x2+ax+b=0 ( ) A .有两个不相等的实数根 B .有两个相等的实数根C .没有实数根D .有两个根为2和318.若a ,b 是方程x2+2x -2021=0的两个不相等的实数根,则a2+3a +b 的值是( )A .-2021B .2021C .2021D .2021三、解答题19.解方程:(1)x2-6x+9=(5-2x)2 (2)x2-4x+1=020.汽车产业的进展,•有效促进我国现代化建设,•某汽车销售公司2 021年盈利1500万元,到2021年盈利2160万元,且从2021年到2021年,•每年盈利的年增长率相同.(1)该公司2021年盈利多少万元?(2)若该公司盈利的年增长率连续保持不变,估量2021年盈利多少万元?21.假如方程ax2-bx-6=0与方程ax2+2bx-15=0有一个公共根是3,求a,b的值,•并求方程的另一个根.22.某村打算建筑如图所示的矩形蔬菜温室,要求长与宽的比为2:1,在温室内沿前侧内墙保留3m宽的空地,其他三侧内墙各保留1m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m2?23.黄冈百货商店服装柜在销售中发觉:•“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,•商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存,经市场调查发觉,•假如每件童装每降价4元,那么平均每天就可多售出8件,要想平均每天在销售这种童装上盈利1200元,•那么每件童装应降价多少元?24.近年来,由于受国际石油市场的阻碍,汽油价格不断上涨,•请你依照图所示的信息,帮小明运算今年5月份汽油的价格.25.机械加工需用油进行润滑以减小摩擦,•某企业加工一台大型机械设备润滑用油量为90kg,用油的重复利用率为60%,按此运算,加工一台大型机械设备的实际耗油量为36kg.为了建设节约型社会,减少油耗,该企业的甲、•乙两个车间都组织了人员为减少实际耗油量进行攻关.(1)甲车间通过技术革新后,加工一台大型机械设备润滑用油量下降到70kg,•用油的重复利用率仍旧为60%,问甲车间技术革新后,•加工一台大型机械设备的实际耗油量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑用油量,•同时也提高了用油的重复利用率,同时发觉在技术革新前的基础上,润滑用油量每减少1kg,用油的重复利用率将增加1.6%,如此乙车间加工一台大型机械设备的实际耗油量下降到12kg.问乙车间技术革新后,加工一台大型机械设备的润滑用油量是多少千克?用油的重复利用率是多少?参考答案1.5x2-x-3=0 5 -1 -3 2.,x2=13.-34.9 3 2516545.x1=1,x2=-2,x3=3 6.(x-1)(x+2)7.p=±28.14,15或-15,-14 9.6,12,10 10.a>-111.D 12.B 13.B 14.C 15.B 16.C 17.C 18.D19.(1)x1=83,x2=2(2)x2-4x+1=0,x2-4x+4-4+1=0∴(x-2)2=3,x-2=∴x2=220.(1)设每年盈利的年增长率为x,依照题意得1500(1+x)2=2160.解得x1=0.2,x2=-2.2(不合题意,舍去)∴1500(1+x)=1500(1+0.2)=1800.答:2021年该公司盈利1800万元.(2)2160(1+0.2)=2592.答:估量2021年该公司盈利2592万元.21.方程①的另外一根是-2,方程②的另外一根是-5.22.解法一:设矩形温室的宽为xm,则长为2xm,依照题意,得(x-2)·(2x-4)=288.解那个方程,得x1=-10(不合题意,舍去),x2=14.因此x=14,2x=2×14=28.答:当矩形温室的长为28m,宽为14m时,蔬菜种植区域的面积是288m2.解法二:设矩形温室的长为xm,则宽为12xm.依照题意,得(12x-2)·(x-4)=288.解那个方程,得x1=-20(不合题意,舍去),x2=28.因此x=28×12x=12×28=14.答:当矩形温室的长为28m,宽为14m时,蔬菜种植区域的面积是288m2.23.设每件童装应降价x元,由题意,得(40-x)(20+2x)=1200,整理,得x2-30x+200=0,(x-10)(x-20)=0,∴x-10=0或x-20=0,解得x1=10,x2=20,因要尽快减少库存,故x•应取20.24.设今年5月份汽油价格为x元/升,则去年5月份的汽油价格为(x-1.8)元/升.•依照题意,得1501.8x -150x=18.75,整理得x2-1.8x-14.4=0,解那个方程,得x1=4.8,x2=-3.经检验两根都为原方程的根,但x2 =-3不符合实际意义,故舍去.答:今年5月份的汽油价格为4.8元/升.25.(1)由题意,得70×(1-60%)=70×40%kg=28kg.(2)设乙车间加工一台大型机械设备润滑用油量为xkg.由题意,得x[1-(90-x)×1.6%-60%]=12.整理,得x2-65x-750=0,解得:x1=75,x2=-10(舍去).(90-75)×1.6%+60%=84%.答:(1)技术革新后,甲车间加工一台大型机械设备的实际耗油量是28kg.(2)技术革新后,乙车间加工一台大型机械设备润滑用油量为7 5kg,•用油的重复利用率为84%.。

北师大版九年级数学上册 2.6 应用一元二次方程(含答案和解析)

北师大版九年级数学上册  2.6 应用一元二次方程(含答案和解析)

北师大版九年级数学上册 2.6 应用一元二次方程(含答案和解析)一、单选题1.扬帆中学有一块长30m.宽20m的矩形空地,计划在这块空地上划出四分之—的区域种花.小禹同学设计方案如图所示.求花带的宽度。

设花带的宽度为x m.则可列方程为( )A. (30-x)(20-x)= ×20×30B. (30-2x)(20-x)= ×20×30C. 30x+2×20x= ×20×30D. (30-2x)(20-x)= ×20×302.将一块长方形桌布铺在长为3m,宽为2m的长方形桌面上,各边下垂的长度相同,且桌布的面积是桌面面积的2倍,求桌布下垂的长度.设桌布下垂的长度为xm,则所列的方程是()A. (2x+3)(2x+2)=2×3×2B. 2(x+3)(x+2)=3×2C. (x+3)(x+2)=2×3×2D. 2(2x+3)(2x+2)=3×2 21/4x3.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是,则这种植物每个支干长出的小分支个数是()A. B. C. D.4.如图,空地上(空地足够大)有一段长为20m的旧墙MN,小敏利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长100m,矩形菜园ABCD的面积为900m2.若设AD=xm,则可列方程()A. (50﹣)x=900B. (60﹣x)x=900C. (50﹣x)x=900D. (40﹣x)x=900二、解答题5.某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?6.如图,有一块矩形硬纸板,长,宽.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为?三、综合题7.已知y=ax2+bx+1,当x=1时,y=0;当x=2时,y=3.(1)求a、b的值(2)当x=-2时,求y的值8.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千元)与每千元降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?9.一家水果店以每千克2元的价格购进某种水果若干千克,然后以每千克4元的价格出售,每天可售出100千克,通过调查发现,这种水果每千克的售价每降低1元,每天可多售出200千克.(1)若将这种水果每千克的售价降低元,则每天销售量是多少千克?(结果用含的代数式表示)(2)若想每天盈利300元,且保证每天至少售出260千克,那么水果店需将每千克的售价降低多少元?10.某商场在去年底以每件80元的进价购进一批同型号的服装,一月份以每件150元的售价销售了320件,二、三月份该服装畅销,销量持续走高,在售价不变的情况下,三月底统计知三月份的销量达到了500件(1)求二、三月份服装销售量的平均月增长率(2)从四月份起商场因换季清仓采用降价促销的方式,经调查发现,在三月份销量的基础上,该服装售价每降价5元,月销售量增加10件,当每件降价多少元时,四月份可获利12000元?答案解析部分一、单选题1.答案:D解:设花带的宽度为x m,根据题意得:(30-2x)(20-x)=×20×30故答案为:D【分析】此题的等量关系为:空白区域的面积=矩形空地的面积,列方程即可。

北师大版九年级数学上期末单元复习 第2章 一元二次方程 含答案

北师大版九年级数学上期末单元复习  第2章 一元二次方程  含答案

第2章一元二次方程一.选择题(共7小题)1.下列方程是一元二次方程的是()A.ax2+bx+c=0 B.C.x2=﹣4 D.x2=(x+2)(x﹣2)+42.方程5x2﹣2=﹣3x的二次项系数、一次项系数、常数项分别是()A.5、3、﹣2 B.5、﹣3、﹣2 C.5、3、2 D.5、﹣3、23.关于x的一元二次方程(a2﹣1)x2﹣3x+a2+3a﹣4=0的一个根为0,则a的值是()A.﹣4 B.1 C.4或﹣1 D.﹣4或14.m是方程x2+x﹣1=0的根,则式子3m2+3m﹣2020的值为()A.﹣2018 B.2018 C.﹣2017 D.20175.已知关于x的方程(x﹣1)(x﹣2)=m2,则该方程的解的情况是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.方程没有实数根D.无法判断6.已知关于x的一元二次方程(k﹣1)x2﹣2x+2=0有两个不相等的实数根,则k的取值范围值是()A.B.C.k<且k≠1 D.k≤且k≠1 7.设α,β是方程x2+x+2012=0的两个实数根,则α2+2α+β的值为()A.﹣2014 B.2014 C.2013 D.﹣2013二.填空题(共5小题)8.已知关于x的一元二次方程a(x﹣h)2+k=0的解为x1=﹣1,x2=3,则方程a(x﹣h ﹣1)2+k=0的解为.9.若x,y为实数,且(x2+y2)(x2﹣1+y2)=12,则x2+y2=.10.已知(a2+b2﹣1)(a2+b2+6)=8,则a2+b2=.11.如果关于x的一元二次方程3x2﹣5x+m=0的两实数根互为倒数,则m的值为.12.关于x的一元二次方程x2+kx+k﹣2=0,方程的一个根为x=﹣2,则方程的另一个根为.三.解答题(共8小题)13.解下列方程:(1)x2﹣4x+2=0(用配方法);(2)3x2﹣7x+3=﹣1(用公式法).14.试用配方法说明2x2﹣4x+5的值不小于3.15.(教材变式题)如图所示,在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,求满足x的方程.16.受某种因素影响,在一个月内猪肉价格两次大幅下降,由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为x,则根据题意可列方程为.17.汽车产业的发展,有效促进了我国现代化建设.某汽车销售公司2016年盈利1000万元,2018年盈利1440万元,且从2016年到2018年,每年盈利的年增长率相同.(1)求每年盈利的年增长率;(2)若该公司盈利的年增长率继续保持不变,预计2019年盈利多少万元?18.电脑病毒是可以传播的;调查发现有一台电脑中了病毒,经过两轮传播后共有25台电脑中了病毒.(1)试求每轮传播中平均一台电脑传播多少台电脑中了病毒?(2)如果按照这样的传播速度,经过三轮传播后共有多少台电脑中了病毒?19.某商店销售某种电扇,每台进货价为150元.经市场调研,当每台售价为230元时,平均每天能售出8台:当每台售价每降10元时,平均每天就能多售出4台.若商店要想使这种电扇的销售利润平均每天达到1000元,则每台电扇的定价应为多少元?20.如图,利用一面墙(墙长10米)用20米的篱笆围成一个矩形场地.设垂直于墙的一边为x米,矩形场地的面积为s平方米.(1)求s与x的函数关系式,并求出x的取值范围;(2)若矩形场地的面积为48平方米,求矩形场地的长与宽.参考答案与试题解析一.选择题(共7小题)1.下列方程是一元二次方程的是()A.ax2+bx+c=0 B.C.x2=﹣4 D.x2=(x+2)(x﹣2)+4【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.【解答】解:A、当a=0时,该方程不是一元二次方程,故本选项不符合题意.B、该方程不是整式方程,故本选项不符合题意.C、该方程符合一元二次方程的定义,故本选项符合题意.D、由已知方程得到:0=﹣4+4,不是方程,故本选项不符合题意.故选:C.2.方程5x2﹣2=﹣3x的二次项系数、一次项系数、常数项分别是()A.5、3、﹣2 B.5、﹣3、﹣2 C.5、3、2 D.5、﹣3、2【分析】直接利用一元二次方程中各部分的名称分析得出答案.【解答】解:5x2﹣2=﹣3x整理得:5x2+3x﹣2=0,则二次项系数、一次项系数、常数项分别是:5、3、﹣2.故选:A.3.关于x的一元二次方程(a2﹣1)x2﹣3x+a2+3a﹣4=0的一个根为0,则a的值是()A.﹣4 B.1 C.4或﹣1 D.﹣4或1【分析】根据一元二次方程的解的定义,将x=0代入关于x的一元二次方程(a2﹣1)x2﹣3x+a2+3a﹣4=0,列出关于a的一元一次方程,通过解方程即可求得a的值.【解答】解:根据题意知,x=0是关于x的一元二次方程(a2﹣1)x2﹣3x+a2+3a﹣4=0的根,∴a2+3a﹣4=0,解得,a=﹣4或a=1,∵a2﹣1≠0,∴a≠±1.∴a=﹣4.故选:A.4.m是方程x2+x﹣1=0的根,则式子3m2+3m﹣2020的值为()A.﹣2018 B.2018 C.﹣2017 D.2017【分析】首先由已知可得m2+m﹣1=0,即m2+m=1.然后化简代数式,注意整体代入,从而求得代数式的值.【解答】解:∵m是方程x2+x﹣1=0的根,∴m2+m﹣1=0,∴m2+m=1,原式=3m2+3m﹣2020=3(m2+m)﹣2020=3×1﹣2020=﹣2017.故选:C.5.已知关于x的方程(x﹣1)(x﹣2)=m2,则该方程的解的情况是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.方程没有实数根D.无法判断【分析】方程整理后,表示出根的判别式,判断即可.【解答】解:方程整理得:x2﹣3x+2﹣m2=0,∵△=9﹣4(2﹣m2)=4m2+1>0,∴方程有两个不相等的实数根,故选:B.6.已知关于x的一元二次方程(k﹣1)x2﹣2x+2=0有两个不相等的实数根,则k的取值范围值是()A.B.C.k<且k≠1 D.k≤且k≠1 【分析】根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k的不等式,求出不等式的解集即可得到k的范围.【解答】解:根据题意得:△=b2﹣4ac=4﹣8(k﹣1)=12﹣8k>0,且k﹣1≠0,解得:k<且k≠1.故选:C.7.设α,β是方程x2+x+2012=0的两个实数根,则α2+2α+β的值为()A.﹣2014 B.2014 C.2013 D.﹣2013【分析】由α,β是方程x2+x+2012=0的两个实数根知α+β=﹣1,α2+α=﹣2012,将其代入到α2+2α+β=α2+α+α+β计算可得.【解答】解:∵α,β是方程x2+x+2012=0的两个实数根,∴α+β=﹣1,α2+α=﹣2012,∴α2+2α+β=α2+α+α+β=﹣1﹣2012=﹣2013,故选:D.二.填空题(共5小题)8.已知关于x的一元二次方程a(x﹣h)2+k=0的解为x1=﹣1,x2=3,则方程a(x﹣h ﹣1)2+k=0的解为x1=0,x2=4 .【分析】利用关于x的一元二次方程a(x﹣h)2+k=0的解为x1=﹣1,x2=3,从而得到x﹣1=﹣1或x﹣1=3,然后解两个一次方程即可.【解答】解:∵关于x的一元二次方程a(x﹣h)2+k=0的解为x1=﹣1,x2=3,∴方程a(x﹣h﹣1)2+k=0的解为x﹣1=﹣1或x﹣1=3,∴x1=0,x2=4.故答案为x1=0,x2=4.9.若x,y为实数,且(x2+y2)(x2﹣1+y2)=12,则x2+y2= 4 .【分析】令t=x2+y2,然后根据一元二次方程的解法即可求出答案.【解答】解:令t=x2+y2,∴t≥0,∴t(t﹣1)=12,∴t2﹣t﹣12=0,∴(t﹣4)(t+3)=0,∴t=4或t=﹣3(舍去),∴x2+y2=4,故答案为:410.已知(a2+b2﹣1)(a2+b2+6)=8,则a2+b2= 2 .【分析】设t=a2+b2(t≥0),则原方程转化为关于t的新方程,通过解新方程求得t即a2+b2的值.【解答】解:设t=a2+b2(t≥0),则由原方程得到:(t﹣1)(t+6)=8,整理,得(t+7)(t﹣2)=0,解得t=﹣7(舍去)或t=2,所以a2+b2=2.故答案是:2.11.如果关于x的一元二次方程3x2﹣5x+m=0的两实数根互为倒数,则m的值为 3 .【分析】根据根与系数的关系,由两根的积为1可以求出m的值.【解答】解:设方程的两根分别是x1和x2,则:∵关于x的一元二次方程3x2﹣5x+m=0的两实数根互为倒数,∴x1•x2==1,∴m=3.故答案为:3.12.关于x的一元二次方程x2+kx+k﹣2=0,方程的一个根为x=﹣2,则方程的另一个根为0 .【分析】把x=﹣2代入一元二次方程x2+kx+k﹣2=0得到关于k得一元一次方程,解之,得到关于x得一元二次方程,解之即可.【解答】解:把x=﹣2代入一元二次方程x2+kx+k﹣2=0得:4﹣2k+k﹣2=0,解得:k=2,即原方程为:x2+2x=0,解得:x1=﹣2,x2=0,即方程的另一个根为0,故答案为:0.三.解答题(共8小题)13.解下列方程:(1)x2﹣4x+2=0(用配方法);(2)3x2﹣7x+3=﹣1(用公式法).【分析】(1)方程移项后,利用完全平方公式配方,开方即可求出解;(2)找出a,b,c的值,代入求根公式即可求出解.【解答】解析:(1)移项,得x2﹣4x=﹣2.配方,得x2﹣4x+4=﹣2+4,即(x﹣2)2=2.∴x﹣2=±,∴,.(2)方程化为3x2﹣7x+4=0.∵a=3,b=﹣7,c=4,∴△=(﹣7)2﹣4×3×4=49﹣48=1>0,方程有两个不等的实数根.则,即x1=1,.14.试用配方法说明2x2﹣4x+5的值不小于3.【分析】先对代数式x2﹣4x+5进行配方,然后根据配方后的形式,再根据a2≥0这一性质即可证得.【解答】证明:2x2﹣4x+5=2(x2﹣2x+)=2(x﹣1)2+3,∵无论x取何值,(x﹣1)2≥0,∴2(x﹣2)2+3≥3,即2x2﹣4x+5的值不小于3.15.(教材变式题)如图所示,在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,求满足x的方程.【分析】挂图长为(80+2x)cm,宽为(50+2x)cm,根据其积为5400,即长×宽=5400,列方程进行化简即可.【解答】解:挂图长为(80+2x)cm,宽为(50+2x)cm;所以(80+2x)(50+2x)=5400,即4x2+160x+4000+100x=5400,所以4x2+260x﹣1400=0.即x2+65x﹣350=0.16.受某种因素影响,在一个月内猪肉价格两次大幅下降,由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为x,则根据题意可列方程为16(1﹣x)2=9 .【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=9,把相应数值代入即可求解.【解答】解:第一次降价后的价格为16(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为16(1﹣x)(1﹣x),则列出的方程是16(1﹣x)2=9,故答案为:16(1﹣x)2=9.17.汽车产业的发展,有效促进了我国现代化建设.某汽车销售公司2016年盈利1000万元,2018年盈利1440万元,且从2016年到2018年,每年盈利的年增长率相同.(1)求每年盈利的年增长率;(2)若该公司盈利的年增长率继续保持不变,预计2019年盈利多少万元?【分析】(1)设每年盈利的年增长率为x,根据题意列出方程求解即可;(2)利用2019年盈利=1440×(1+x),由此计算即可;【解答】解:(1)设每年盈利的年增长率为x,根据题意得1000(1+x)2=1440解得x1=0.2,x2=﹣2.2(不合题意,舍去)答:每年盈利的年增长率为20%.(2)1440(1+0.2)=1728答:预计2009年该公司盈利1728万元.18.电脑病毒是可以传播的;调查发现有一台电脑中了病毒,经过两轮传播后共有25台电脑中了病毒.(1)试求每轮传播中平均一台电脑传播多少台电脑中了病毒?(2)如果按照这样的传播速度,经过三轮传播后共有多少台电脑中了病毒?【分析】(1)设每轮传播中平均一台电脑传播x台电脑中了病毒,根据一台电脑中毒后经过两轮传播后共25台电脑中了病毒,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据经过三轮传播后中毒的电脑数=经过两轮传播后中毒的电脑数+经过两轮传播后中毒的电脑数×4,即可求出结论.【解答】解:(1)设每轮传播中平均一台电脑传播x台电脑中了病毒,依题意,得:1+x+x(x+1)=25,整理,得:x2+2x﹣24=0,解得:x1=4,x2=﹣6(不合题意,舍去).答:每轮传播中平均一台电脑传播4台电脑中了病毒.(2)25+25×4=125(台).答:经过三轮传播后共有125台电脑中了病毒.19.某商店销售某种电扇,每台进货价为150元.经市场调研,当每台售价为230元时,平均每天能售出8台:当每台售价每降10元时,平均每天就能多售出4台.若商店要想使这种电扇的销售利润平均每天达到1000元,则每台电扇的定价应为多少元?【分析】设每台电扇下调x个10元,根据销售量×每件的利润=总利润,构建方程即可解决问题.【解答】解:设每台电扇下调x个10元.根据题意,得:(80﹣10x)(8+4x)=1000解得x1=x2=3.所以下调30元,因此定价为200元.答:每台电扇的定价应为200元.20.如图,利用一面墙(墙长10米)用20米的篱笆围成一个矩形场地.设垂直于墙的一边为x米,矩形场地的面积为s平方米.(1)求s与x的函数关系式,并求出x的取值范围;(2)若矩形场地的面积为48平方米,求矩形场地的长与宽.【分析】(1)由AD=x,可得出AB=20﹣2x,由墙长10米,可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再利用矩形的面积公式即可得出s关于x的函数关系式;(2)根据矩形场地的面积,可得出关于x的一元二次方程,解之取其较大值即可得出结论.【解答】解:(1)∵AD=BC=x,∴AB=20﹣2x.又∵墙长10米,∴,∴5≤x<10.∴s=x(20﹣2x)=﹣2x2+20x(5≤x<10).(2)当矩形场地的面积为48平方米时,﹣2x2+20x=48,解得:x1=4(不合题意,舍去),x2=6,∴20﹣2x=8.答:矩形的长为8米,宽为6米.11。

北师大版数学九年级上册 一元二次方程应用题练习题

北师大版数学九年级上册 一元二次方程应用题练习题

北师大版数学九年级上册 一元二次方程应用题练习题1、某商场今年一月份销售额100万元,二月份销售额下降10%,进入3月份该商场采取措施,改革营销策略,使日销售额大幅上升,四月份的销售额达到129.6万元,求三、四月份平均每月销售额增长的百分率.2、在△ABC 中,∠B=90º,AB=6cm ,BC=8cm ,点P 从点A 开始沿AB 边向终点B 以1cm/s 的速度移动,与此同时,点Q 从点C 开始沿CB 边向终点B 以2cm/s 的速度移动,如果P ,Q 分别从A ,C 同时出发。

如设移动时间为t 秒,分别解答下列问题。

(1)如图①,当移动时间t=3秒时,这时PQ 的长是 cm ;(2)当P ,Q 移动到能使线段PQ 正好平分△ABC 的面积时,这时时间t 为多少秒?(3)如图②,连接A 、Q ,设m PBAP ,当m 取多少时,点P 关于AQ 的对称点P '正好落在AC 边上。

3、某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.4、如图所示,在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570m2,道路应为多宽?5、某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?6、某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.7、某商场今年1月份销售额为100万元,2月份销售额下降了10%, 该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3, 4月份平均每月销售额增长的百分率.8、某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?9、王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)10、某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。

北师大版九年级上学期一元二次方程测试

北师大版九年级上学期一元二次方程测试

九年级第一学期数学单元测试题一元二次方程一、选择题:(每小题4分,共24分)1.下列方程是一元二次方程的是( )。

A 、7513+=+x xB 、0112=-+x xC 、)(为常数和b a bx ax 52=-D 、322=-m m 2.一元二次方程042=-x 的根为( )。

A 、x = 2 B 、x = -2 C 、x 1 = 2 , x 2 = -2 D 、x = 43.已知2是关于x 的方程:032=+-a x x 的一个解,则2а - 1的值是( )。

A 、5B 、-5C 、3D 、-34.用配方法解一元二次方程0782=++x x ,则方程可化为( )。

A 、942=+)(xB 、942=-)(xC 、23)8(2=+xD 、9)8(2=-x5.小丽要在一幅长为80cm ,宽为50cm 的矩形风景画的四周外围镶上一条宽度相同的金色纸边制成一幅矩形挂图使整幅挂图面积是5400cm 2,设金色纸边的宽度为x cm ,则x 满足的方程是( )。

A 、014001302=-+x xB 、0350652=-+x xC 、014001302=--x xD 、0350652=--x x6.若方程0112=-+-x m x m )(是关于x 的一元二次方程,则m 的取值范围是( )。

A 、m = 0B 、m ≠ 1C 、m ≥0且m ≠ 1D 、m 为任意实数二、填空题:(每小题4分,共28分)7.把一元二次方程:)()(23122-=-+x x x 化成一般式是________________________。

8.把方程182825=--))((x x 整理为一般式后,它的一次项系数是________,一次项系数是__________。

9.方程:33-=-y y y )(的解为:____________________。

10.已知关于x 的方程032112=-+-+x x m m)(是一元二次方程,则m 的值为:___________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程应用复习
(08年西宁市) 1.“5·12”汶川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.问原计划每天修多少米?某原计划每天修x 米,所列方程正确的是( )
A .
12012045x x -=+ B .12012045x x -=+ C .12012045x x -=- D .120120
45x x -=- (08年南京市)2.某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,
沿前侧内墙保留3m 宽的空地,其它三侧内墙各保留1m 宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是2
288m ?
3.李叔叔家房子前面有一块长方形荒地,准备把它建成一座花园.但中央修两条互相垂直的等宽小路,正好将荒地分成四个面积相等的小长方形.如图3-8-7,已知原长方形的长为30米,宽
20米,要使每个小长方形面积不少于126m 2
.则每条小路宽至少为多少米?
4.如图3-9-13,所示一个农户用24m 长的篱笆围成一排一面靠墙、大小相等且彼此相连的三个
矩形鸡舍.要使三个鸡舍的总面积为36m 2
,求每个鸡舍的长和宽.
5.如图3-9-5,从一块长80厘米,宽60厘米的铁片中间截去一个小长方形,使剩下的长方框四周的宽度一样,并且小长方形的面积是原来铁片面积的一半,求这个宽度.
6.某电脑公司2000年的各项经营收入中,经营电脑配件的收入为600万元,占全年经营总收入的40%,该公司预计2002年经营总收入要达到2160万元,且计划从2000年到2002年,每年经营总收入的年增长率相同,问2001年预计经营总收入为多少万元?
(08年安徽省)7.某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价油价上涨,这个月进口石油的费用反而比上个月增加了14%。

求这个月的石油价格相对上个月的增长率。

8.某百货商店服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六·一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装每降价4元,那么平均每天就可多售出8件.要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?
(第2题)
9.某商店进了一批服装,进价为每件50元.按每件60元出售时,可销售800件;若单价每提高1元,则其销售量就减少20件.今商店计划获利12000元,问销售单价应定为多少元?此时应进多少件服装?
10.将进货单价为40元的商品按50元售出时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个,问为了赚得8000元的利润,售价应定为多少?这时应进货多少个?
1212
= ,12= (1)、对你的猜想加以证明:
(2)、利用你的猜想解下列问题:
1、若X1,X2是方程X2—2X—3=0的两根求,X21+X22,(X1+2)(X2+2)的值。

2、已知2+3是方程X2—4X+c=0的一个根,求方程的另一个根及c的值。

12、解方程(X—1)2—5(X—1)+4=0时,我们可以将(X—1)看成一个整体,设(X—1)= y,则原来方程可化为y2—5y+4=0。

解得y1=1,y2=4,当y=1时X—1=1,解得x=2;当y=4时,X—1=4解得x=5,所以原方程的解为x=2,x=5。

这种方法称为法,有的目的,体现的思想。

(1)、请利用这种方法解方程:(3X+5)2—4(3X+5)+3=0,X4+2X2—3=0
(2)、小红有一道数学题是(y+5)(x—2+y)+6=30求x+y的值,她问小明这题怎样做,小明说一个方程中有两个末知数我不会做,同学们你能运用上面的知识帮助小红吗。

13、(1)、小明在用公式法求解方程X2—4X+4=0,2X2—4X+2=0时发现每个方程的各项系数都满足这样一个规律:b2—4ac=0。

并且他们都有两个相等的实数根。

好思考的小明想。


b2—4ac>0 ,b2—4ac<0时,方程的根又会是一种什么情况?请你帮小明研究一下,并写出你的结论。

(2)、利用你的结论判断方程X2+(k—1)X—2=0,2X2—(k+1)X=6+k的根的情况。

(3)、小明学了这点知识,他说无论x取何值这个多项式—3X2—X+的值不大于
12
13
,你能帮他解决吗?。

相关文档
最新文档