广东专插本(高等数学)模拟试卷30(题后含答案及解析)
广东专插本高等数学试题与答案
⼴东专插本⾼等数学试题与答案⼩编今天给⼤家的是⼴东专插本⾼等数学试题与答案的内容,专插本是⼴东专科⽣获取全⽇制本科学历和学⼠学位的*途径,备受⼴⼤⼤专⽣的喜爱。
专插本考试总共要考五个科⽬,三门统考科还有两门专业科科⽬。
理科的专插本考⽣们需要考政治、英语、⾼数三门统考科。
做专插本历年试题是专插本备考的⼀个重要⽅法。
这⾥就给⼤家分享⼴东专插本⾼等数学历年试题与答案。
⼴东专插本⾼数试题答案获取⽅法:这个⼴东专插本⾼数试题从2005到2017年的都有。
其中2005到2016年的都有答案。
2017年的暂时没有答案。
那么应该如何获取这些试题呢?关注公众号“帕思专插本”,直接在公众号消息框发送关键词“资料”即可获取⼴东专插本⾼等数学历年试题与答案。
专插本常见问题:⼴东专插本⾼等数学历年试题与答案:⼴东专插本考试科⽬?考试科⽬为五门,其中省统考三门,⾼校⾃主考试两门;省统考的三门为《政治理论》、《英语》和《专业基础课》。
考试各科满分为100分,五科总分为500分。
每科考试时间为120分钟。
注意:考“英语”专业本科插班⽣的考⽣,考试科⽬为五门,其中省统考《政治理论》和《⼤学语⽂》,及三门专业课。
⾼数作为⼀门⽐较难的科⽬,是⼤部分专插本考⽣的短板,甚⾄很多考⽣因为⾼数⽽放弃了⾃⼰原本喜欢的专业转⽽学习其他专业,在此⼩编想说如果你所选择的专业需要考⾼数这门科⽬,那么你就需要多做习题,*是可以找出以往的试题来练习。
哪些学校可以专插本,可以插什么专业?可以报考⼏个学校?答:(1)每年11-12⽉省考试院会公布下⼀年招⽣院校名单,未出之前⼤家可以先参考往年的学校和对应“招⽣简章”和“招⽣⽬录”查专业;(2)只能报⼀个学校,⼀个专业。
除了⾼数,还有⼴东专插本英语、政治、⼤学语⽂、艺术概论、管理学、民法、⽣态学基础等历年试题与答案。
⼤家直接关注公众号“帕思专插本”就有。
以上就是关于⼴东专插本⾼等数学试题与答案的相关内容,了解更多资讯请咨询帕思教育。
2021年广东省专插本考试《高等数学》真题+答案
广东省2021年普通高等学校本科插班生招生考试《高等数学》试题一、单项选择题(本大题共5小题,每小题3分,共15分。
每小题只有一个符合题目要求)1.极限lim x→0tan 6x 2x的值是( )A.1B.2 B.3D.42.点3=x 是函数36)(2---=x x x x f 的( )A.连续点B.可去间断点 B.无穷间断点D.跳跃间断点3.设)(x F 是)(x f 的一个原函数,C 为任意常数,则以下正确的是( ) A.∫F(x)dx =f(x) B.C x f x F +=)()(' B.C x F x f +=)()('D.∫f(x)dx =F(x)+C4.设常数项级数∑∞=1n n u 收敛,则下列级数收敛的是( )A.)31(1∑∞=+n n n uB.)21(1∑∞=+n n uB.)1(1∑∞=+n n n uD.)1(1∑∞=-n n nu 5.设506243)(,sin )(2x x x g dt t x f x +==⎰,当0→x 时,以下结论正确的是( ) A.)(x f 是比)(x g 低阶的无穷小 B.)(x f 是比)(x g 高阶的无穷小 B.)(x f 是比)(x g 等阶的无穷小D.)(x f 是比)(x g 非等阶的无穷小二、填空题(本大题共5小题,每小题3分,共15分)6.曲线{x =2t 3+3y =t 2−4,在1=t 相应的点处的切线斜率为 。
7.二元函数z =x 2y 的全微分=dz 。
8.微分方程dy dx=y +2满足条件10-==x y 的特解为=y 。
9.设平面区域}{x y x y x D -≤≤≤≤=30,10),(,则⎰⎰Dd σ的值为 。
10.设连续函数)(x f 满足12)(3120+-=⎰+x dt t f x ,则)3(f = 。
三、计算题(本大题共8小题,每小题6分,共48分) 11.求极限lim x →+∞x (√x 2+3−x ) 的值。
2021年广东专插本考试《高等数学》真题
2018年广东省普通高校本科插班生招生考试欧阳光明(2021.03.07)高等数学一、单项选择题(本大题共5小题,每小题3分,共15分.每小题只有一项符合题目要求)1.=+→∆)sin 1sin 3(lim 0x xx x xA .0B .1C .3D .42.设函数)(x f 具有二阶导数,且1)0(-='f ,0)1(='f ,1)0(-=''f ,3)1(-=''f ,则下列说法正确的是A .点0=x 是函数)(x f 的极小值点B .点0=x 是函数)(x f 的极大值点C .点1=x 是函数)(x f 的极小值点D .点1=x 是函数)(x f 的极大值点3.已知C x dx x f +=⎰2)(,其中C 为任意常数,则⎰=dx x f )(2A .C x +5B .C x +4C .C x +421D .C x +3324.级数∑∞==-+13)1(2n nnA .2B .1C .43D .215.已知{}94) , (22≤+≤=y x y x D ,则=+⎰⎰Dd yx σ221A .π2B .π10C .23ln2πD .23ln 4π二、填空题(本大题共5小题,每小题3分,共15分)6.已知⎩⎨⎧== 3log t 2y tx ,则==1t dx dy 。
7.=+⎰-dx x x )sin (22。
8.=⎰+∞-dx e x 021。
9.二元函数1+=y xz ,当e x =,0=y 时的全微分===ex y dz 0。
10.微分方程ydx dy x =2满足初始条件1=x y 的特解为=y 。
三、计算题(本大题共8小题,每小题6分,共48分)11.确定常数a ,b 的值,使函数⎪⎪⎩⎪⎪⎨⎧>+=<++= 0 )21(00 1)(2x x x b x x ax x f x,,,在0=x 处连续。
12.求极限))1ln(1(lim 20x x x x +-→.13.求由方程xxe y y =+arctan )1(2所确定的隐函数的导数dx dy.14.已知)1ln(2x +是函数)(x f 的一个原函数,求⎰'dx x f )(. 15.求曲线xxy ++=11和直线0=y ,0=x 及1=x 围成的平面图形的面积A .16.已知二元函数21y xy z +=,求y z∂∂和x y z ∂∂∂2.17.计算二重积分⎰⎰-Dd y x σ1,其中D 是由直线x y =和1=y ,2=y 及0=x 围成的闭区域.18.判定级数∑∞=+12sin n nx n的收敛性.四、综合题(本大题共2小题,第19小题10分,第20小题12分,共22分)19.已知函数0)(4)(=-''x f x f ,0=+'+''y y y 且曲线)(x f y =在点)0 0(,处的切线与直线12+=x y 平行(1)求)(x f ;(2)求曲线)(x f y =的凹凸区间及拐点.20.已知dtt x f x⎰=02cos )((1)求)0(f '(2)判断函数)(x f 的奇偶性,并说明理由; (3)0>x ,证明)0(31)(3>+->λλλx x x f .。
2022年广东省专插本考试《高等数学》真题+答案
广东省2022年普通学校专升本真题高等数学一、单项选择题(本大题共5小题,每小题3分,共15分。
每小题只有一个符合题目要求)1.若函数f (x )={x +1,x ≠1a,x =1,在 x ≠1处连续,则常数a=( )A.-1B.0C.1D.22.lim x→0(1−3x )1x=( ) A.e−3B.e 13C.1D.e 33.lim x→0u n =0是级数∑u n ∞n=1收敛的( ) A.充分条件 B.必要条件C.充要条件D.既非充分也非必要条件 4.已知1x 2是函数f(x)的一个原函数,则∫f(x)dx =+∞1( )A.2B.1C.-1D.-25.将二次积分I =∫dx 10∫f(x 2+y 2)dy 1x 化为极坐标系下的二次积分,则I=( )A.∫dθπ40∫f(p 2)dp secθ0 B.∫dθπ40∫pf(p 2)dp cscθ0C.∫dθπ2π4∫f(p 2)dp secθ0 D.∫dθπ2π4∫pf(p 2)dp cscθ0二、填空题(本大题共5小题,每小题3分,共15分)6.若x →0时,无穷小量2x 与3x 2+mx 等价,则常数m =7.设{x =5t −t 2y =log 2t ,则dy dx |t=2=8.椭圆x 24+y 23=1所围成的图形绕x 轴旋转一周而成的旋转体积为9.微分方程e −x y′=2的通解是10.函数Z =x ln y 在点(e ,e )处的全微分dz |(e ,e )= 三、计算题(本大题共8小题,每小题6分,共48分) 11.求极限limx→1x 3+3x 2−9x+5x 3−3x+212.设y =arc tan x 2,求 d 2ydx 2|x=113.设函数f (x )={ x 2sin 1x +2x,x ≠00, x =0 ,利用导数定义求f′(0).14.求不定积分2x √1−x 215.已知∫tanxdx =−ln |cos x |+C ,求定积分∫xsec 2π40xdx16.设Z =f(x,y)是由方程Z =2x −y 2e z 所确定的隐函数,计算ðzðx −y ðzðy 17.计算二重积分∬cosxdσD ,其中D 是由曲线y =sinx(o ≤x ≤π2)和直线 y =0,x =π2围成的有界闭区域。
广东省2010~2020年专插本考试《高等数学》真题及答案
广东省2010年普通高校本科插班生招生考试《高等数学》试题一、单项选择题(本大题共5小题,每小题3分,共15分)1.设函数()y f x =的定义域为(,)-∞+∞,则函数1[()()]2y f x f x =--在其定义域上是()A .偶函数B .奇函数C .周期函数D .有界函数2.0x =是函数1,0()0,0x e x f x x ⎧⎪<=⎨≥⎪⎩的()A .连续点B .第一类可去间断点C .第一类跳跃间断点D .第二类间断点3.当0x →时,下列无穷小量中,与x 等价的是()A .1cos x-B .211x +-C .2ln(1)x x ++D .21x e -4.若函数()f x 在区间[,]a b 上连续,则下列结论中正确的是()A .在区间(,)a b 内至少存在一点ξ,使得()0f ξ=B .在区间(,)a b 内至少存在一点ξ,使得()0f ξ'=C .在区间(,)a b 内至少存在一点ξ,使得()()()()f b f a f b a ξ-'=-D .在区间(,)a b 内至少存在一点ξ,使得()()()b af x dx f b a ξ=-⎰5.设22(,)f x y xy x y xy +=+-,则(,)f x y y∂∂=()A .2y x-B .-1C .2x y-D .-3二、填空题(本大题共5小题,每小题3分,共15分)6.设a ,b 为常数,若2lim()21x ax bx x →∞+=+,则a b +=.7.圆²²x y x y =++在0,0()点处的切线方程是.8.由曲线1y x=是和直线1x =,2x =及0y =围成的平面图形绕x 轴旋转一周所构成的几何体的体积V =.9.微分方程5140y y y '--'='的通解是y =.10.设平面区域22{(,)|1}D x y x y =+≤D={x ,y )x ²+y'≤1},则二重积分222()Dx y d σ+=⎰⎰.三、计算题(本大题共8小题,每小题6分,共48分)11.计算22ln sin lim(2)x xx ππ→-.12.设函数22sin sin 2,0()0,0x x x f x xx ⎧+≠⎪=⎨⎪=⎩,用导数定义计算(0)f '.13.已知点1,1()是曲线12xy ae bx =+的拐点,求常数a ,b 的值.14.计算不定积分cos 1cos xdx x -⎰.15.计算不定积分ln 51x e dx -⎰.16.求微分方程sin dy yx dx x+=的通解.17.已知隐函数(,)z f x y =由方程231x xy z -+=所确定,求z x ∂∂和z y∂∂.18.计算二重积分2Dxydxdy ⎰⎰,其中D 是由抛物线²1y x =+和直线2y x =及0x =围成的区域.四、综合题(本大题共2小题,第19小题10分,第20小题12分,共22分)19.求函数0Φ()(1)xx t t dt =-⎰的单调增减区间和极值。
高数专插本试题及答案
高等数学历年试题集及答案(2005-2016)2005年广东省普通高等学校本科插班生招生考试《高等数学》试题一、单项选择题(本大题共5小题,每小题3分,共15分)1、下列等式中,不成立...的是A 、1)sin(limx =--→πππx x B 、11sin lim x =∞→x xC 、01sin lim 0x =→x x D 、1sin 20x lim =→x x 2、设)(x f 是在(+∞∞-,)上的连续函数,且⎰+=c e dx x f x 2)(,则⎰dx xx f )(=A 、22x e -B 、c e x +2C 、C e x +-221D 、C e x +213、设x x f cos )(=,则=--→ax a f x f ax )()(limA 、-x sinB 、x cosC 、-a sinD 、x sin4、下列函数中,在闭区间[-1,1]上满足罗尔中值定理条件的是A 、|)(=x f x |B 、2)(-=x x f C 、21)(x x f -=D 、3)(x x f =5、已知x xy u )(=,则yu ∂∂= A 、12)(-x xy x B 、)ln(2xy x C 、1)(-x xy x D 、)ln(2xy y 二、填空题(本大题共5小题,每个空3分,共15分) 6、极限)1(1lim -∞→xx e x =。
7、定积分211sin x e xdx --⎰=。
8、设函数xxx f +-=22ln)(,则(1)f ''=。
9、若函数1(1),0,()(12),0.x a x x f x x x +≤⎧⎪=⎨⎪+>⎩在x=0处连续,则a=。
10、微分方程222x xe xy dydx-=+的通解是。
三、计算题(本大题共10小题,每小题5分,共50分) 11、求极限1(22n lim +-+∞→n n n )。
12、求极限202x 0ln (1)limxt dt x →+⎰。
广东专插本(管理学)模拟试卷31(题后含答案及解析)
广东专插本(管理学)模拟试卷31(题后含答案及解析)题型有:1. 单项选择题 2. 多项选择题 3. 名词解释 4. 简答题 5. 论述题6. 案例分析题单项选择题1.管理的目的是( )A.获得信息B.协调多种关系C.寻求市场机会D.实现组织目标正确答案:D2.英国著名工业家、空想社会主义的代表人物之一罗伯特.欧文被称为( )A.现代组织管理之B.科学管理之父C.现代系统管理之父D.人事管理之父正确答案:D3.韦伯在管理学上的主要贡献是提出了( )A.“经济人”观点B.人际关系学说C.理想的行政组织体系理论D.X、Y理论正确答案:C4.业务流程再造的核心目标是( )A.提升企业的核心竞争力B.满足顾客需求C.对股东负责D.获得最大化收益正确答案:A5.大量证据表明,企业的社会责任与其长期利润之间有着( )关系。
A.正相关性B.负相关性C.没有明显关联D.无法判断正确答案:A6.政策指导矩阵属于( )A.集体决策方法B.有关活动方向的决策方法C.有关活动方案的决策方案D.风险型决策方法正确答案:B7.匿名征询专家意见的决策方法,属于A.组合排列法B.头脑风暴法C.名义小组法D.德尔菲法正确答案:D8.计划工作中的“WHO”指的是( )A.计划的制订者B.计划的执行者C.计划的评价者D.决策者正确答案:B9.基本建设计划、新产品的开发计划属于( )计划。
( )A.专项B.综合C.财务D.生产正确答案:A10.( )是一种管理的方法、计划的方法,同样也是解决组织、用人领导、控制等管理工作的关键。
A.计划管理B.目标管C.组织管D.人事管理11.专注于产品的经营,充分合理地利用专有资产,提高专业化经营的效率水平,有利于“多面手”式人才的成长,是部门形式中的( ) A.产品或服务化B.地域部门化C.职能部门化D.顾客部门化正确答案:A12.企业经营环境的变化直接影响到企业存在的方式以及企业的管理模式。
当一个企业的组织模式由“金字塔”形开始向扁平化转变时,下列哪项活动不能有力促进组织结构的扁平化( )A.严格的规章制度B.管理者授予下属更大的权力C.大量使用计算机D.提高管理者的管理能力正确答案:A13.下列( )情况,组织可以适当扩大管理幅度。
广东省2020年普通高等学校本科插班生招生考试真题、详细答案及考点详解
广东省2020年普通高等学校本科插班生招生考试高等数学真题、详细答案及考点详解一、单项选择题(本大题共5小题,每小题3分,共15分.每小题只有一个选项符合题目要求)1.设()[]1cos lim 0=-→x f x x ,则下列等式正确的是间断点是()A.()1lim 0=→x f x B.()1cos lim 0=→x x f x C.()1lim 0-=→x f x D.()[]1cos lim 0=+→x x f x 解答:根据初等函数的连续性,可得()[]()()()0lim 1lim 0cos lim cos lim cos lim 0=⇒=-=-=-→→→→→x f x f x f x x f x x x x x x 因此()()1cos lim ,0cos lim 0=+=→→x x f x x f x x 故选D.本题考试内容:初等函数的连续性;考试要求:会利用函数的连续性求极限.2.函数()2332x x x f -=的极小值是()A.1-=xB.0=xC.1=x D.2=x 解答:对函数进行一阶导数求导,可得()()16662-=-='x x x x x f 令()()⇒=-=-='016662x x x x x f 10==x x 或而()612-=''x x f 因此()060<-=''f ,即x =0为极大值点()066121>=-=''f ,即x =1为极小值点从而极小值为()1321-=-=f ,故选A.本题考试内容:函数极值与极值点;考试要求:理解函数极值的概念,掌握求函数的极值、最值的方法,并会应用函数极值的方法求解应用题.3.已知x 3是函数()x f 的一个原函数,则()=x f ()A.x 3B.3ln 3xC.13-x x D.3ln 3x 解答:根据原函数的定义,可知()()()3ln 33x x x f x f =⇒='故选B.本题考试内容:原函数与不定积分的定义;考试要求:理解原函数与不定积分的概念及其关系.4.设平面区域(){}0,1|,22≥≤+=y y x y x D ,则()=+⎰⎰σd y x D422()A.10π B.9πC.5πD.92π解答:使用极坐标计算二重积分,由于平面区域如下图所示令⎩⎨⎧==θθsin cos r y r x ,其中⎩⎨⎧≤≤≤≤πθ010r ,因此()()10sin cos 1904222210422ππθθθσπ==⋅+=+⎰⎰⎰⎰⎰dr r d r r r dr d y xD故选A.本题考试内容:极坐标系下二重积分的计算;考试要求:掌握直角坐标系与极坐标系下二重积分的计算.5.设级数∑∞=1n n a 满足nn a 510≤≤,则下列级数发散的是()A.∑∞=13n naB.∑∞=+13n n aC.∑∞=⎪⎪⎭⎫ ⎝⎛+1321n n n a D.∑∞=⎪⎪⎭⎫⎝⎛-131n n n a 解答:根据正项级数的比较审敛法,由于n n a 510≤≤,由于∑∞=151n n 收敛,因此∑∞=1n na 收敛,再根据级数的性质,可以对下列选项进行判断A 选项:∑∑∞=∞==1133n n n n a a ,因此根据级数的性质可知,∑∞=13n n a 收敛;B 选项:321113a a a a a n n n n ---=∑∑∞=∞=+,因此,级数增加(减去)有限项,不改变敛散性,因此∑∞=+13n n a 收敛;C 选项:∑∑∑∑∑∞=∞=∞=∞=∞=+=+=⎪⎪⎭⎫ ⎝⎛+13211321132111n n n n n n n n n a n a n a ,其中∑∞=1321n n 为p -级数(132<=p ),故∑∞=1321n n 发散,而∑∞=1n n a 收敛,因此根据级数收敛的性质可知∑∞=⎪⎪⎭⎫ ⎝⎛+1321n n n a 发散;D 选项:∑∑∑∑∑∞=∞=∞=∞=∞=+=+=⎪⎪⎭⎫ ⎝⎛+123113113111n n n n n n n n n a n a n a ,其中∑∞=1231n n 为p -级数(123>=p ),故∑∞=1231n n 收敛,而∑∞=1n n a 收敛,因此根据级数收敛的性质可知∑∞=⎪⎪⎭⎫ ⎝⎛+1321n n n a 收敛,故选D.本题考试内容:收敛级数的基本性质;考试要求:掌握几何级数(等比级数)、调和级数、p -级数的敛散性;理解收敛级数的基本性质.二、填空题(本大题共5小题,每小题3分,共15分)6.若函数()()()⎪⎩⎪⎨⎧>+-≤+=1,321,132x x a x x a x f 在1=x 处连续,则常数=a .解答:根据函数极限的充分必要条件可知,()()()Ax f x f A x f x x x ==⇔=+→-→→111lim lim lim 而()()a x a x f x x +=+=-→-→11lim lim 211,()()332lim lim 311+-=+-=+→+→a x a x f x x 因此()().131lim lim 11=⇒+-=+⇒=+→-→a a a x f x f x x 本题考试内容:函数在一点连续的充分必要条件;考试要求:掌握判断函数(分段函数)在一点处连续的方法.7.曲线3222=+y x 在()1,2-点处的切线方程为=y .解答:隐函数求导,因此()122|20212=--='⇒-='⇒='⋅+-,y y x y y y x 从而切线方法为()().3211-=⇒-⋅=--x y x y 本题考试内容:求导方法:函数的四则运算求导方法、隐函数的求导法;考试要求:熟练掌握隐函数的求导方法.8.微分方程043=-'+''y y y 的通解为=y .解答:特征方程为()()0140432=-+⇒=-+r r r r 故1,421=-=r r 故通解为.241x x e C e C y +=-本题考试内容:二阶常系数线性齐次微分方程;考试要求:会求二阶常系数线性齐次微分方程的通解和特解.9.设二元函数()y x f ,在点()0,0的某个领域有定义,且当0≠x 时,()()230,00,+=-x xf x f ,则()='0,0x f .解答:根据偏导数的定义,()()()230,00,0,+=-='x x f x f x f x 因此().20,0='x f 本题考试内容:多元函数的定义;考试要求:理解一阶偏导数和全微分的概念.10.设函数()x f 在()+∞∞-,内可导且满足()()x f x f '=,()m f =0,如果()811=⎰-dx e x f x ,则=m .解答:使用分离变量法,可得:()()()()()()()()⎰⎰=⇒=⇒=⇒'=dx x df x f dx x f x df x f dx x df x f x f 1因此()()Cx e x f C x x f +=⇒+=ln 由于()m f =0,因此()m C m e f C ln 0=⇒==从而()xmx me ex f ==+ln ,将此式子代入()811=⎰-dx e x f x,可得().482888111111=⇒=⇒=⇒=⇒=⎰⎰⎰---m m dx m dx e me dx e x f x xx本题考试内容:可分离变量的微分方程;考试要求:会求可分离变量的微分方程.三、计算题(本大题共8小题,每小题6分,共48分)11.求极限xdt t t xx ⎰→0arctan lim.解:使用洛必达法则00arctan 01arctan limarctan lim=⋅==→→⎰xx xdt t t x xx 本题考试内容:洛必达法则和变上限的定积分;考试要求:熟练掌握应用洛必达法则求未定式极限的方法以及掌握变上限定积分求导数的方法.12.已知y 是x 的函数,且2ln 2ln ln ++='x x y ,求.|22e x dxyd =解:使用复合函数求导法,可得x x x xx x x y ln 212101ln 21211+=+⋅+⋅=''则.1ln 2121|22ee e e dx y d e x =+==本题考试内容:求导方法——复合函数的求导法;考试要求:熟练掌握复合函数求导方法.13.求不定积分().sin 2cos 2⎰-dx x x x 解:根据不定积分的性质,可得()dxx x dx x dx x x x ⎰⎰⎰-=-22sin 2cos sin 2cos 其中12sin 2122cos 212cos C x x xd xdx +==⎰⎰22222cos 21sin 21sin C x dx x dx x x +-==⎰⎰因此()C x x dx x x x +-=-⎰22cos 212sin 21sin 2cos (其中21C C C +=).本题考试内容:基本积分公式、换元积分法——第一换元法(凑微分法);考试要求:熟练掌握不定积分的基本积分公式、熟练掌握不定积分的第一换元法.14.设函数()⎪⎩⎪⎨⎧>≤+=1,1,123x x x x x x f ,求定积分().203dx x f ⎰-+解:令2+=x t ,从而2-=t x ,dt dx =,当3-=x 时,1-=t ;当0=x 时,2=t ,从而原式可变为()().23|210122122111232103=+=++==+⎰⎰⎰⎰---t dt t dt t t dt t f dx x f 本题考试内容:定积分的性质、定积分的计算——换元积分法;考试要求:掌握定积分的基本性质以及掌握定积分的换元法.15.求二元函数y x xy z 223+=的全微分dz ,并求.2yx z∂∂∂解:y x y x z 232+=∂∂,226yx xy y z -=∂∂,因此dyy x xy dx y x y dz ⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=222623.2662222yxy y x xy x y x z -=⎪⎪⎭⎫ ⎝⎛-∂∂=∂∂∂本题考试内容:全微分以及高阶偏导数;考试要求:掌握二元函数一阶偏导数与二阶偏导数的求法,掌握二元函数全微分的求法.16.计算σd y D⎰⎰,其中D 是由直线x y =,2-=x y 与0=y ,2=y 围成的有界区域.解:x则有界区域可写为Y-型区域⎩⎨⎧+≤≤≤≤220y x y y 因此原二重积分可变为().4|2|202222220=====⎰⎰⎰⎰⎰⎰++y ydy dy x y dx y dy d y y yy yDσ本题考试内容:直角坐标系下二重积分的计算;考试要求:掌握直角坐标系下二重积分的计算方法.17.求微分方程22sec yxdx dy =,满足初始条件1|0==x y 的特解.解:使用分离变量法,可得⎰⎰=⇒=⇒=xdx dy y xdx dy y yx dx dy 222222sec sec sec 因此C x y +=tan 313将1|0==x y 代入上式,可得310tan 131=⇒+=⨯C C 从而可得微分方程特解为.1tan 331tan 3133+=⇒+=x y x y 本题考试内容:可分离变量方程;考试要求:会求分离变量微分方程的通解和特解.18.判断级数∑∞=12!2n n n n 的收敛性.解:由于∑∞=12!2n n n n 为正项级数,()()()()()1021lim !2!121lim !2!121lim lim 22122121<=+=++=++=∞→+∞→+∞→+∞→n n n n n n n n n n a a n n n n n n n nn n 因此根据比值判别法可知:∑∞=12!2n n n n 收敛.本题考试内容:常数项级数审敛法;考试要求:掌握正项级数的比值审敛法.四、综合题(本大题共2小题,第19小题10分,第20小题12分,共22分)19.设有界平面图形G 由曲线ax e y =和直线0==x e y ,围成,其中a >0,若G 的面积等于1(1)求a 的值;(2)求G 绕y 轴旋转一周而成的旋转体体积V .解:(1)由题设可得平面图形G ,如下图所示因此aa a e a e e e a a e e a ex dx e e S a a a ax a ax1111|1011010=+-=⎪⎪⎭⎫ ⎝⎛--⋅=⎪⎭⎫ ⎝⎛-=-=⋅⎰又因为平面G 的面积为1,因此.111=⇒==a aS ye1/ax(2)要求G 绕y 轴旋转一周,因此根据公式可得()()().2|21|ln 2ln 21ln 2|ln ln 11111121212-=--=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⋅-⋅-=⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⋅⋅-⋅===⎰⎰⎰⎰⎰e y e e dy y y y y e dy y e dy y y y y y dy y dy x V ee eee ee ey πππππππ本题考试内容:定积分的应用——平面图形的面积、旋转体的体积;考试要求:掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生的旋转体体积的方法.20.设函数()bxeax f +=1,其中b a ,为常数,且0≠ab (1)判别()x f 在区间()+∞∞-,内单调性;(2)求曲线()x f y =的拐点;(3)求曲线()x f y =的水平渐近线方程.解:(1)函数()bxeax f +=1定义域为()+∞∞-,,而()()211bxbx bx e abe e a x f +-='⎪⎭⎫⎝⎛+='因此,当0>ab 时,函数()bxeax f +=1定义域为()+∞∞-,单调递减;当0<ab 时,函数()bxeax f +=1定义域为()+∞∞-,单调递增.(2)由于()()()()()()()324222*********bx bx bx bx bx bx bx bx bx bx e e e ab e e e ab e e ab e abe x f +--=++++-='⎪⎪⎭⎫ ⎝⎛+-=''令()()()01132=+--=''bx bxbx e e e ab x f ,且0≠ab ,可得0010=⇒=⇒=-x e e ebx bx显然()x f ''在x =0左右两端异号,因此把x =0代入原式,可得()2100ae af =+=因此,拐点为⎪⎭⎫⎝⎛2,0a .(3)当0>b 时,()01limlim =+=+∞→+∞→bx x x e a x f ,()a e ax f bx x x =+=-∞→-∞→1lim lim ;当0<b 时,()a e a x f bx x x =+=+∞→+∞→1lim lim ,()01lim lim =+=-∞→-∞→bx x x e ax f ,因此水平渐近线为0==y a y 和.本题考试内容:函数单调性的判定法、曲线的凹凸性、拐点以及函数曲线的水平渐近线:掌握利用导数判定函数单调性的方法,会判定曲线的凹凸性、会求曲线的拐点以及会求曲线的水平渐近线.。
广东省2022年专升本《高等数学》真题解析精选全文完整版
广东省2022年普通高等学校专升本招生考试高等数学本试卷共20小题,满分100分。
考试时间120分钟。
一、单项选择题(本大题共5小题,每小题3分,共15分,每小题只有一项符合题目要求)1.若函数1,1(),1x x f x a x +≠⎧=⎨=⎩,1x =在处连续,则常数a =( )A.-1B.0C.1D.22.1lim(13)xx x →-=()A.3e - B.13e-C.1D.3e 3.1lim 0n n x n u u ∞→==∑是级数收敛的( )A.充分条件B.必要条件1C.充要条件D.即非充也非公必要条件得分阅卷人4.2+1()()1f x f x dx x∞=⎰已知是函数的一个原函数,则( )A.2B.1C.-1D.-25.xf (x 2+y 2)dy 化为极坐标形成的二次积分,则 I =()110I dx =⎰⎰将二次积分 A.2sec ()400d f p dp πθθ⎰⎰ B.2c ()40cs d pf p dp πθθ⎰⎰B.2sec 2()04d f p dp πθθπ⎰⎰ D.2csc 2()04d pf p dp πθθπ⎰⎰二、填空题(本大题共5小题,每小题3分,共15分)6.若0→x 时,无穷小量x 2与x x m 32+等价,则常数m =7.2225,log t x t t dy dx y t=⎧=-=⎨=⎩设则8.椭圆13422=+y x 所围成的图形绕x 轴旋转一周而成的旋转体体积为9.微分方程2'=-y ex的通解是10.ln (,)(,)ye e Z xe e dz==函数在点处的全微分得分阅卷人三、计算题(本大题共8小题,每小题6分,共48分)12.2212=tan ,x d yy arc x dx=设求13.设函数21sin ,00,0x x x x ⎧≠⎪⎨⎪=⎩,利用导数定义(0)f '.14.求不定积分2.得分阅卷人15.已知tan ln cos xdx x C=-+⎰,求定积分24sec x xdx π⎰.16.2(,)2z z z Z f x y Z x y e y x y∂∂==--∂∂设是由方程所确定的隐函数,计算.17.cos ,sin (0)0,2Dxd D y x x y πσ=≤≤=⎰⎰计算二重积分其中是曲线和曲线2x π=围成的有界闭区域。
广东省专插本04-10年-高数真题(无水印)
广东省本科插班生入学考试高等数学辅导资料2004年专升本插班考试《高等数学》试题一、填空题(每小题4分,共20分)1、函数211xx y --=的定义域是 。
2、=+→xx x x 52tan 3lim。
3、若=-=dxdy x x e y x则),cos (sin 。
4、若函数⎰+--=xdt t t t x f 02112)(,=)21(f 则 。
5、设23,32a i j k b i j k c i j =-+=-+=- 和, ()()a b b c +⨯+=则 。
二、单项选择题(每小题4分,共20分)6、若⎰=+=I dx x I 则,231( ) (A )C x ++23ln 21 (B )()C x ++23ln 21 (C )Cx ++23ln (D )()Cx ++23ln7、设)2ln(),(x yx y x f +=,=),f y 01('则( )(A )0, (B )1, (C)2, (D)218、曲线2,,1===x x y x y 所围成的图形面积为S ,则S=( ) (A )dx x x )1(21-⎰ (B )dx x x )1(21-⎰(C )dxy dx y)2()12(2121-+-⎰⎰(D )dxx dx x)2()12(2121-+-⎰⎰9、函数项级数∑∞=-1)2(n nx n的收敛区间是( )(A )1x > (B )1x < (C )13x x <>及 (D )13x << 10、⎰⎰=12),(xxdyy x f dx I 变换积分分次序后有I=( )(A )21(,)x xdx f x y dy⎰⎰ (B )⎰⎰1),(y ydxy x f dx(C )⎰⎰102),(yydxy x f dx (D )⎰⎰yydxy x f dx 1),(三、简单计算题(每题9分,共36分)11、求极限x x x e xx 3sin )2()2(lim++-→12、求由方程0sin 21=+-y y x 所确定的隐函数y 的二阶导数22dx yd 。
高数2005-2016年专插本试题(卷)与答案解析
高等数学历年试题集及答案(2005-2016)2005年广东省普通高等学校本科插班生招生考试《高等数学》试题一、单项选择题(本大题共5小题,每小题3分,共15分) 1、下列等式中,不成立...的是 A 、1)sin(lim x =--→πππx x B 、11sin lim x =∞→x x C 、01sin lim 0x =→x x D 、1sin 20x lim =→x x 2、设)(x f 是在(+∞∞-,)上的连续函数,且⎰+=c e dx x f x 2)(,则⎰dx xx f )(=A 、22x e - B 、c e x +2 C 、C e x +-221 D 、C e x +213、设x x f cos )(=,则=--→ax a f x f ax )()(limA 、-x sinB 、x cosC 、-a sinD 、x sin 4、下列函数中,在闭区间[-1,1]上满足罗尔中值定理条件的是A 、|)(=x f x | B 、2)(-=x x f C 、21)(x x f -= D 、3)(x x f =5、已知xxy u )(=,则yu ∂∂= A 、12)(-x xy x B 、)ln(2xy x C 、1)(-x xy x D 、)ln(2xy y二、填空题(本大题共5小题,每个空3分,共15分) 6、极限)1(1lim -∞→xx ex = 。
7、定积分211sin x exdx --⎰= 。
8、设函数xxx f +-=22ln )(,则(1)f ''= 。
9、若函数1(1),0,()(12),0.x a x x f x x x +≤⎧⎪=⎨⎪+>⎩在x=0处连续,则a= 。
10、微分方程222x xe xy dydx-=+的通解是 。
三、计算题(本大题共10小题,每小题5分,共50分) 11、求极限1(22n lim +-+∞→n n n )。
2024广东专插本考试高等数学试题
2024广东专插本考试高等数学试题2024广东专插本考试高等数学试题一、选择题1、下列函数中,在区间(0,1)内为增函数的是: A. y = ln(x + 1) B. y = e^(-x) C. y = sinx D. y = cosx2、设{an}为等比数列,a1 = 2,公比为q,则a2 等于: A. 2q B. qC. 1/qD. q^23、下列图形中,面积为S的平行四边形的个数是: A. 1 B. 2 C. 3D. 4二、填空题 4. 已知向量a = (1, -2),向量b = (3, -4),则向量a 与向量b 的夹角为__________。
5. 设函数f(x) = x^3 - 6x^2 + 9x - 3,则f(-2) = __________。
6. 若矩阵A = [1, 2; 3, 4],则|A| = __________。
三、解答题 7. 求函数y = sinx + cosx + sinxcosx + 1的最大值与最小值。
8. 求下列微分方程的通解:dy/dx = y/(x + 1),其中y(0) = 1。
9. 在等差数列{an}中,已知a1 = 1,S100 = 100a10,求{an}的前n项和Sn的公式。
四、应用题 10. 某公司生产一种产品,每年需投入固定成本40万元,此外每生产100件产品还需增加投资2万元。
设总收入为R(x)万元,x为年产量,产品以每百件为单位出售,售价为47万元/百件。
若当年产量不足300件时,可全部售出;若当年产量超过300件,则只能销售75%。
试求该公司的年度总收入R(x)的表达式。
五、选做题 11. 在极坐标系中,已知两点A、B的极坐标分别为(3, π/6)、(4, π/3),求△AOB的面积S。
12. 已知函数f(x)在[0,1]上连续,且f(0) = f(1) = 0。
试求证:存在一点ξ∈[0,1],使得f(ξ) = -ξ。
六、附加题 13. 求证:在正整数中,n^3 - n一定是6的倍数。
广东专插本高等数学真题
2008年广东省普通高校本科插班生招生考试《高等数学》试题一、单项选择题(本大题共5小题,每小题3分,共15分。
每小题给出的四个选项,只有一项是符合题目要求的) 1、下列函数为奇函数的是A. x x -2B. xxe e -+ C. xxe e -- D. x x sin 2、极限()xx x 101lim -→+=A. eB. 1-e C. 1 D.-1 3、函数在点0x 处连续是在该点处可导的A.必要非充分条件B. 充分非必要条件C.充分必要条件D. 既非充分也非必要条件 4、下列函数中,不是x xe e 22--的原函数的是A.()221x xe e -+ B.()221x xe e -- C.()x xe e 2221-+ D. ()x xe e 2221-- 5、已知函数xy e z =,则dz =A. ()dy dx e xy +B. ydx +xdyC. ()ydy xdx e xy +D. ()xdy ydx e xy + 二、填空题(本大题共5小题,每小题3分,共15分) 6、极限xx x e e x-→-0lim= 。
7、曲线y=xlnx 在点(1,0)处的切线方程是= 。
8、积分()⎰-+22cos sin ππdx x x = 。
9、设y e v y e u xx sin ,cos ==,则xvy u ∂∂+∂∂= 。
10、微分方程012=+-x x dx dy 的通解是 。
三、计算题(本大题共8小题,每小题6分,共48分) 11、计算xx xx x sin tan lim 0--→。
x e e x f x x 2)(--='-,(4分)222)(2)(x x xx e e ee xf ---=-+=''>0,于是)(x f '在),0(+∞内单调增加,从而)(x f '>)0(f '=0,所以)(x f 在),0(+∞内单调增加,故)(x f >)0(f =0,即2x x e e -+>212x +.20、解:设⎰--=xdt t f x x F 01)(2)(,则)(x F 在[0,1]上连续,1)0(-=F ,因为0<f(x)<1,可证⎰1)(dx x f <1,于是⎰-=1)(1)1(dtt f F >0,所以)(x F 在(0,1)内至少有一个零点.又)(2)(x f x F -='>2﹣1>0,)(x F 在[0,1]上单调递增,所以)(x F 在(0,1)内有唯一零点,即⎰=-xdt t f x 01)(2在(0,1)内有唯一实根(6分) (8分)(10分)(3分)(6分) (9分)(12分)2009年广东省普通高校本科插班生招生考试《高等数学》试题一、单项选择题(本大题共5小题,每小题3分,共15分。
《高等数学》专插本2005-2019年历年试卷
广东省2019年普通高等学校本科插班生招生考试高等数学一、单项选择题(本在题共 小题,每小题 分,共 分。
每小题只有一个选项符合题目要求).函数22()2x xf x x x -=+-的间断点是.2x =- 和0x = .2x =- 和1x = .1x =- 和2x = .0x = 和1x =.设函数1,0()2,0cos ,0x x f x x x x +<⎧⎪==⎨⎪>⎩,则0lim ()x f x → .等于1 .等于2 .等于1 或2 .不存在 已知()tan ,()2xf x dx x Cg x dx C =+=+⎰⎰C 为任意常数,则下列等式正确的是.[()()]2tan x f x g x dx x C +=+⎰ .()2tan ()x f x dx x C g x -=++⎰.[()]tan(2)x f g x dx C =+⎰.[()()]tan 2x f x g x dx x C +=++⎰.下列级数收敛的是.11nn e ∞=∑ .13()2nn ∞=∑.3121()3n n n ∞=-∑ .121()3n n n ∞=⎡⎤+⎢⎥⎣⎦∑..已知函数 ()bf x ax x =+在点1x =-处取得极大值,则常数,a b 应满足条件.0,0a b b -=< .0,0a b b -=>.0,0a b b +=< .0,0a b b +=> 二、填空题(本大题共 小题,每小题 分,共 分).曲线33arctan x t ty t ⎧=+⎨=⎩,则0t =的对应点处切线方程为y =.微分方程0ydx xdy +=满足初始条件的1|2x y ==特解为y = .若二元函数(,)z f x y =的全微分sin cos ,xxdz e ydx e ydy =+ 则2zy x∂=∂∂ .设平面区域{(,)|0,01}D x y y x x =≤≤≤≤,则Dxdxdy =⎰⎰.已知1()sin(1)tf x dx t t tπ=>⎰,则1()f x dx +∞=⎰三、计算题(本大题共 小题,每小题 分,共 分).求20sin 1lim x x e x x →--.设(0)21x x y x x =>+,求dydx.求不定积分221xdx x ++⎰.计算定积分012-⎰.设xyzx z e-=,求z x ∂∂和z y∂∂ .计算二重积分22ln()Dx y d σ+⎰⎰,其中平面区域22{(,)|14}D x y x y =≤+≤ .已知级数1n n a ∞=∑和1n n b ∞=∑满足0,n n a b ≤≤且414(1),321n n b n b n n ++=+- 判定级数1nn a ∞=∑的收敛性.设函数()f x 满足(),xdf x x de-=求曲线()y f x =的凹凸区间四、综合题(大题共 小题,第 小题 分,第 小题 分,共 分) .已知函数()x ϕ满足0()1()()xxx x t t dt x t dt ϕϕϕ=+++⎰⎰( )求()x ϕ;( )求由曲线 ()y x ϕ=和0,2x x π==及0y =围成的平面图形绕x 轴旋转而成的立体的体积.设函数()ln(1)(1)ln f x x x x x =+-+ ( )证明:()f x 在区间(0,)+∞内单调减少; ( )比较数值20192018与20182019的大小,并说明理由;年广东省普通高校本科插班生招生考试《高等数学》参考答案及评分标准一、单项选择题(本大题共 小题,每小题 分,共 分) 二、填空题(本大题共 小题,每个空 分,共 分)13x2x cos xe y 13π 三、计算题(本大题共 小题,每小题 分,共 分)原式00cos sin 1limlim 222x x x x e x e x x →→-+=== 解:21ln ln ln(21)12ln 1212(ln 1)2121xx x y x y x x x y x y x dy x x dx x x =+∴=-+'∴=+-+∴=+-++解:22222211112(1)12112arctan ln(1)2x dxx dx d x x xx x C++=++++=+++⎰⎰⎰,t =则211,22x t dx tdt =-=20121021420153011,,2211()221()2111()253115t x t dx tdt t t tdtt t dtt t -==-==-=-=-=-⎰⎰⎰解:设(,,)xyzf x y z x z e=--(,,)1(,,)(,,)11,11xyz x xyz y xyzz xyz xyz xyz xyzf x y z yze f x y z xze f x y z xye z yze z xze x xye y xye ∴=-=-=--∂-∂∴==-∂+∂+解:由题意得12,0r θπ≤≤≤≤222020ln()3(4ln 2)23(4ln 2)|2(8ln 23)Dx y d d ππσθθπ∴+==-=-=-⎰⎰⎰ 解:由题意得414(1),321n n b n b n n ++=+-414(1)1lim lim 1,3213n x x nb n b n n +→∞→∞+∴==<+- 由比值判别法可知1nn b∞=∑收敛0,n n a b ≤≤由比较判别法可知1n n a ∞=∑也收敛.解()()()()(1)xx x x df x x de df x xde f x xe f x e x ----=∴='∴=-''∴=-()f x ∴的凹区间为(1,)+∞,凸区间为(,1)-∞( )由题意得0()1()()()1()xxx x x t dt x x t dt ϕϕϕϕϕ'=++-=+⎰⎰()()()()0x x x x ϕϕϕϕ''∴=-''∴+=特征方程210r +=,解得r i=±通解为()cos sin x x x Cϕ=++(0)1,0()cos sin C x x xϕϕ=∴=∴=+由题意得2202022(cos sin )(1sin 2)1(cos 2)22x V x x dx x dx x x ππππππππ=+=+=-=+⎰⎰证明( )()ln(1)(1)ln 1()ln(1)ln 111ln(1)ln ()1f x x x x x x x f x x x x x x x x x=+-++'∴=+-+-+=+--++ 证明11ln(1)ln ()01x x x x +--+<+即可 即证11ln(1)ln ()1x x x x+-<++令()ln g x x =()ln g x x =在(0,)+∞连续可导,由拉格朗日中值定理得ln(1)ln 1ln(1)ln ()1x x x x g x x x ξ+-'+-===+-且1x x ξ<<+ 111101x x x xξξ<<+∴<<<+11ln(1)ln ()1x x x x ∴+-<++成立11ln(1)ln ()01x x x x∴+--+<+()f x ∴在(0,)+∞单调递减( )设2019,2018a b ==则201820192019,2018b a a b ==比较,a b b a 即可,假设a bb a>即ln ln a b b a >即ln ln b ab a >设ln (),x g x x =则21ln ()xg x x -'=()g x 在(0,)+∞单调递减即()()g b g a ∴>,即a b b a >成立即2019201820182019>广东省 年普通高等学校本科插班生招生考试高等数学一、单项选择题(本在题共 小题,每小题 分,共 分。
广东专插本(高等数学)模拟试卷31(题后含答案及解析)
广东专插本(高等数学)模拟试卷31(题后含答案及解析)题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题选择题在每小题给出的四个选项中,只有一项是符合要求的。
1.设函数f(χ)可导且f(0)=0,则( )A.f?(χ)B.f?(0)C.f(0)D.f?(0)正确答案:B2.下列函数中,是奇函数的为( )A.y=χ4+χ2+1B.y=χ.sinχ2C.y=χ3-e-χ2D.y=ln2χ正确答案:B3.设函数f(χ)和g(χ)在点χ0处不连续,而函数h(χ)在点χ0处连续,则函数( )在χ0处必小连续。
A.f(χ)+g(χ)B.f(χ)g(χ)C.f(χ)+h(χ)D.f(χ)h(χ)正确答案:C4.由曲线,直线y=χ及χ=2所围图形面积为( )A.B.C.D.正确答案:B5.交换二次积分的积分次序后,I= ( )A.B.C.D.正确答案:C填空题6.______。
正确答案:7.设f(χ)=e2χ-1,则f(2015)(0)=_______。
正确答案:22015e-χ8.定积分______。
正确答案:9.设区域D={χ,y|0≤χ≤1,-1≤y≤1},则=_____。
正确答案:10.函数y=2χ3+3χ2-12χ+1的单调递减区间是_____。
正确答案:(-2,1)解答题解答时应写出推理、演算步骤。
11.求极限。
正确答案:12.已知参数方程。
正确答案:13.∫[e2χ求不定积分∫[e2χ+ln(1+χ)]dχ正确答案:14.求。
正确答案:令=t,则χ=t2,dχ=2tdt,t∈[1,],故15.求函数y=xarctanx-ln的导数y?。
正确答案:16.设χ2+y2+2χ-2yz=ez确定函数z=z(χ,y),求。
正确答案:令F(χ,y,z)=χ2+y2+2χ-2yz-ez=0,则Fχ=2χ+2,Fy=2y-2z,Fz=-2y-ez,故当-2y-ez≠0时,有17.计算二重积分,其中D是由直线χ=2,y=χ与双曲线χy=1所围成的区域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东专插本(高等数学)模拟试卷30(题后含答案及解析)
题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题
选择题在每小题给出的四个选项中,只有一项是符合要求的。
1.函数f(χ)=χ3sinχ是( )
A.奇函数
B.偶函数
C.有界函数
D.周期函数
正确答案:B
2.设函数在χ=0处连续,则a= ( ) A.0
B.1
C.2
D.3
正确答案:B
3.有( )
A.一条垂直渐近线,一条水平渐近线
B.两务垂直渐近线,一条水平渐近线
C.一条垂直渐近线,两条水平渐近线
D.两条垂直渐近线,两条水平渐近线
正确答案:A
4.设函数f?(2χ-1)=eχ,则f(χ)= ( )
A.
B.
C.
D.
正确答案:D
5.下列微分方程中,其通解为y=C1cosχ+C2sinχ的是( ) A.y?-y?=0
B.y?+y?=0
C.y?+y=0
D.y?-y=0
正确答案:C
填空题
6.设函数f(χ)=2χ+5,则f[f(χ)-1]=______。
正确答案:4χ+13
7.如果函数y=2χ2十aχ+3在χ=1处取得极小值,则a=______。
正确答案:-4
8.设f(χ)=e2χ,则不定积分=_____。
正确答案:eχ+C
9.设方程χ-1+χey确定了y是的隐函数,则dy=______。
正确答案:
10.微分方程y?-y?=0的通解为______。
正确答案:y=C1+C2eχ(C1,C2为任意常数)
解答题解答时应写出推理、演算步骤。
11.求极限。
正确答案:由于当χ→0时,χ4是无穷小量,且,故可知
,当χ→0时,1-e-32-3χ2,故
所以
12.已知参数方程。
正确答案:所以则
13.求不定积分∫χ.arctanxdx。
正确答案:
14.已知函数f(χ)处处连续,且满足方程
求。
正确答案:方程两边关于χ求导,得f(χ)=2χ+sin2χ+χ.cos2χ.2+(-sin2χ).2 =2χ+2χcos2χ,f?(χ)=2+2cos2χ+2χ.(-2sin2χ)
=2(1+cos2χ)-4χsin2χ,所以,。
15.设函数f(χ)=χ(1-χ)5+,求f(χ)。
正确答案:等式两边从0到1积分得
16.设函数,其中f为可导函势,求。
正确答案:
17.计算,其中D为圆χ2+y2=1及χ2+y2=9所围成的环形区域。
正确答案:画出区域D如图所示,由积分区域的对称
性及被积函数关于χ轴和y轴都是偶函数,故有其中D1为区域D在第一象限的部分,即D1={(χ,y)|1≤,χ2+y2≤9,χ
≥0,y≥0)。
利用极坐标变换,D1可表示为0≤θ≤,1≤r≤3,故
因此,
18.求微分方程χy?=1-χ2的通解。
正确答案:所给方程是可分离变量方程,先将方程分离变量,得
从而可得χ2+y2=ln(Cχ)2 为原方程的通解,其中C为不等于零的任意常数。
综合题
19.设D是由曲线y=f(χ)与直线y=0,y=3围成的区域,其中
求D绕y轴旋转形成的旋转体的体积。
正确答案:由题意得
20.求曲线y=(χ-1)的凹凸区间及拐点。
正确答案:函数的定义域是(-∞,+∞),且
当χ1=时,y?=0;当χ2=0
时,y?不存在,故以χ1=-和χ2=0将定义域分成三个部分区间,并列表讨论如下:
所以,在(-∞,)内曲线是凸的,在(,+∞)内曲线是凹的,曲线的拐点为(),在χ=0处曲线无拐点。