级中学18—19学年上学期八年级期初考试数学试题(附答案)
2018-2019学年八年级上期中考试数学试卷(含答案解析)
初二年级上传数学期中试卷(满分150,考试时间120分钟)第Ⅰ卷(选择题共48分)一. 选择题(本大题共12小题,每小题 4分,共 48 分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列图形中,是轴对称图形的是( )A. B. C. D.2. 已知等腰三角形的两边长分别为 6 和1,则这个等腰三角形的周长为( )A. 13B. 8C. 10D. 8 或 133. 若一个多边形的内角和为720°,则这个多边形是()A. 三角形B. 四边形C. 五边形D. 六边形4. 如图,用尺规作图作已知角平分线,其根据是构造两个三角形全等,它所用到的判别方法是()A. SASB. AASC. ASAD. SSS5. 如图,CE 是△ABC 的外角∠ACD 的平分线,若∠B=35°,∠ACE=60°,则∠A=()A. 50°B. 60°C. 70°D. 80°6. 如图,∠A=50°,P 是等腰△ABC 内一点,AB=AC,BP 平分∠ABC,CP平分∠ACB,则∠BPC 的度数为( )A. 100°B.115°C.130°D. 1407. 如图,△ABC≌△DEF,若BC=12cm,BF=16cm,则下列判断错误的是( )A. AB=DEB. BE=CFC. AB//DED. EC=4cm8. 如图,△ABC 中,∠C=90°,AD 平分∠BAC,过点 D 作 DE⊥AB 于 E,测得 BC=9,BD=5,则DE的长为()A. 3B. 4C. 5D. 69. 如图,AB=AC,AD=AE,BE、CD 交于点 O,则图中全等的三角形共有()A.四对 B. 三对 C. 二对 D. 一对10. 如图,△ABC 中,AB=AC,BD 平分∠ABC 交 AC 于 G,DM//BC 交∠ABC 的外角平分线于 M,交AB、AC 于F、E,下列结论:①MB⊥BD;②FD=FB;③MD=2CE. 其中一定正确的有( )A. 0 个B. 1 个C. 2 个D. 3 个第 7 题第 8 题第 9 题第 10 题11、如图,△ABC中,∠C=75°,若沿图中虚线截去∠C,则∠1+∠2=()A. 360°B. 180°C. 255°D. 145°12、一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线第Ⅱ卷(非选择题共102分)二. 填空题(每小题 4 分,共 24 分)11. 已知△ABC 中,AB=6,BC=4,那么边 AC 的长可以是(填一个满足题意的即可).12. 如图,一扇窗户打开后,用窗钩 BC 将其固定. 这里所运用的几何原理是.13. 点 M 与点 N(-2,-3)关于y 轴对称,则点 M 的坐标为.1∠C,则△ABC 是三角形.14. 在△ABC 中,∠A=∠B=215. 如图,D 是 AB 边上的中点,将△ABC 沿过点 D 的直线折叠,DE 为折痕,使点 A 落在 BC 上 F 处,若∠B=40°,则∠EDF=_度.16. 如图,在 Rt△ABC 中,∠C=90°,∠BAC=30°,点 D 是 BC 边上的点,AB=18,将△ABC 沿直线AD 翻折,使点 C 落在 AB 边上的点 E 处,若点 P 是直线 AD 上的动点,则 BP+EP 的最小值是.第 15 题第 16 题三、解答题(一)(每小题 6 分,共 18 分)17. 如图,A、F、B、D 在一条直线上,AF=DB,BC=EF,AC=DE.求证:∠A=∠D.18. 一个多边形,它的内角和比外角和还多180°,求这个多边形的边数.19. 如图,已知△ABC,∠C=90°,AC<BC.D 为 BC 上一点,且到 A,B 两点的距离相等.(1)用直尺和圆规,作出点D 的位置(不写作法,保留作图痕迹).(2)连接AD,若∠B= 35°,则∠CAD=°.四、解答题(二)(每小题 7 分,共 21 分)21. 如图,在△ABC 中,∠ACB=90°,AC=BC,BE⊥CE 于 E,AD⊥CE 于 D,AD=2.5,DE=1.7,求 BE 的长.22. 如图,在△ABC 中,D 是 BC 的中点,DE⊥AB 于点 E,DF⊥AC 于点 F,BE=CF.(1)求证:AD 平分∠BAC.(2)连接 EF,求证:AD 垂直平分 EF.五、解答题(三)(每小题 9 分,共 27 分)23. 如图, AD 为△ ABC 的中线, BE 为△ ABD 的中线.(1)∠ ABE=15°,∠ BED=55°,求∠ BAD 的度数;(2)作△ BED 的边 BD 边上的高;(3)若△ ABC 的面积为 20, BD=2.5,求△ BDE 中 BD 边上的高.24. 如图,在△ ABC 中,∠BAC=120°,AB=AC=4,AD⊥BC,BD= 2 3 ,延长 AD 到 E,使 AE=2AD,连接 BE.(1)求证:△ ABE 为等边三角形;(2)将一块含 60°角的直角三角板 PMN 如图放置,其中点 P 与点 E 重合,且∠NEM=60°,边 NE与AB 交于点 G,边 ME 与 AC 交于点 F. 求证:BG=AF;(3)在(2)的条件下,求四边形AGEF 的面积.25. 如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点 P 在线段 AB 上以 1cm/s 的速度由点 A 向点 B 运动,同时,点 Q 在线段 BD 上由点 B 向点 D 运动.它们运动的时间为 t(s).(1)若点 Q 的运动速度与点 P 的运动速度相等,当 t=1 时,△ACP 与△BPQ 是否全等,请说明理由,并判断此时线段 PC 和线段 PQ 的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点 Q 的运动速度为 x cm/s,是否存在实数 x,使得△ACP 与△BPQ 全等?若存在,求出相应的x、t 的值;若不存在,请说明理由.参考答案一. 选择题(每小题 3 分,共 30 分)1. 【分析】根据轴对称图形的概念解答即可【解答】选项A、C、D 中的图形是不是轴对称图形故答案为:B【点评】本题考查轴对称图形,掌握轴对称图形的概念,要求会判断一个图形是否是轴对称图形2. 【分析】根据等腰三角形边的定义及三角形三边关系解答即可【解答】∵等腰三角形的两边长分别是 6 和 1,①当腰为1 时,1+1=3<6,三角形不成立;②当腰为6 时,三角形的周长为:6+6+1=13;∴此等腰三角形的周长是 13.故答案为:A.【点评】本题考查三角形三边关系,等腰三角形的定义,及分类讨论的思想.3. 【分析】根据计算多边形内角和的公式(n-2)×180°,即可得出该多边形的边数。
2018-2019年第一学期初二年期中考试数学试题及答案
2018-2019年第一学期初二年期中考试数 学 试 题(满分:150分;考试时间:120分钟 )题号一 二三总分得分 1~7 8~17181920212223242526一、选择题(每小题3分,共21分) 1、 实数6的相反数是().A. 3-B. 6C. 6-D. 6-2、下列计算正确的是( )A .236a a a =÷B .229)3(x x =-C .632a a a =⋅D .923)(a a =3、 在实数0、3、6-、35、π、723、14.3中无理数的个数是( )个.A .1 B.2 C.3 D.4 4、下列变形是分解因式的是( )A .6x 2y 2=3xy ·2xy B .a 2-4ab+4b 2=(a -2b)2C .(x+2)(x+1)=x 2+3x+2 D .x 2-9-6x=(x+3)(x -3)-6x 5、如图,在下列条件中,不能证明ABD ∆≌ACD ∆的是( )A. AC AB CD BD ==,B. DC BD ADC ADB =∠=∠,C. CAD BAD C B ∠=∠∠=∠,D. CD BD C B =∠=∠, 6、若))(3(152n x x mx x ++=-+,则m 的值为( )A .-2 B. 2 C.5 D.-5 7、已知,则的值为( )A . B. 8 C. D.6二、填空题(每小题4分,共40分) 8、9的算术平方根是 . 9、比较大小: 310.10、因式分解:ax+ay= . 11.计算:x x x 2)48(2÷-= .12.已知ABC ∆≌DEF ∆,︒=∠50A ,︒=∠60B ,则F ∠= 。
13、计算:光速约为3×108米/秒,太阳光射到地球上的时间约为5×210秒,则地球与太阳的距离是 米.14、命题:全等三角形的对应边相等,它的条件是 结论是 ,它是 命题(填“真”或“假”)15、已知m 6x =,3n x =,则2m n x -的值为 . 16.当整数=k 多项式42++kx x 恰好是另一个多项式的平方.17、观察 给出一列式子:y x 2,2421y x -,3641y x ,4881y x -,……,根据其蕴含的规律可知这一列式子中的第8个式子是 ,第n 个式子是 三、解答题(共89分)18.计算:(每题5分,共10分) (1)41227163⋅-+ (2) ()232x x x ÷-⋅19、分解因式:(每题5分,共10分)(1)a a 1823- (2)xy y x 4)(2-+20如图,已知DBC ACB DCB ABC ∠=∠∠=∠,, 求证:DC AB = (8分)21(8分)先化简,再求值:y y x y x y y x y x ÷-++-+24)2()2)(2( ,其中21-=x ,2=y .22、(9分)先因式分解,再求值:2x(a-2)-y(2-a),其中a=0.5,x=1.5,y=-223、(9分)如图,在长方形ABCD 中,E 、F 分别在AD 、CD 上,BE ⊥EF,且BE=EF,若AE=5cm ,长方形ABCD 的周长为40cm ,(1)求证:△ABE ≌△DEF (2)求AB 的长AEF D CB24、(9分)将大小不同的两个正方形按如图所示那样拼接起来,连结BD 、BF 、DF ,已知正方形ABCD 的边长为a ,正方形CEFG 的边长为b ,且a <b . (1)(4分)填空:BE ×DG = (用含a 、b 的代数式表示);(2)(5分)当正方形ABCD 的边长a 保持不变..,而正方形CEFG 的边长b 不断增大时,△BDF 的面积会发生改变吗?请说明理由.25.(13分)如图,一个开口的长方体盒子,是从一块边长为a 的正方形的钢板的每个角落剪掉一个边长为b 的正方形后,再把它的边折起来做成的.(1)请用代数式分别表示图中剩余部分的面积及s 1、s 5的面积.(2)利用剩余部分的图形能否来说明()()b a b a b a 22422-+=-的正确性,如果能,请选择适当的方法加以说明.A CB D GF E a b a b(3)设cm900cm,求盒子的表面积(不 ,底面s5的面积为2a60含盖)和体积.26、(13分)如图,已知△ABC中,∠B=∠C,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C 点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?数学试题参考答案一.选择题:本大题共7小题,每小题3分,共21分.1. C 2. B 3. C 4. B 5. D 6. A 7. C二.填空题:本大题共10小题,每小题4分,共40分.8. 3 9. < 10. a(x+y) 11. 24-x12. 70013. 11105.1⨯ 14、两个三角形全等;它们的对应边相等;真15. 12 16. 4± 17. —1281x 16y 8, (-21)n-1x 2n y n三、解答题(共89分) 18.(1)解:原式=21234⨯-+ …………………… (3分) =6 ……………………(5分)(2) 解:原式=()238xxx ÷-⋅ …………………… (3分)=248x x ÷- …………………… (4分) =28x - …(5分)19、解:(1)原式=)9(22-a a ……2分 (2)原式=xy y xy x 4222-++ … 2分 =)3)(3(2-+a a a …… 5分 =222y xy x +- ………… 3分 =2)(y x - ……………… 5分 20、中与在DCB ABC ∆∆∵⎪⎩⎪⎨⎧∠∠∠∠(已知)=(公共边)=(已知)=DCB ACB CB BC DCB ABC ……………∠……… 5分∴ABC ∆≌DCB ∆(A.S.A ) …………………… 7分 ∴AB=DC (全等三角形的对应边相等)……………… 8分21.解:原式=2222424x y xy y x -++- ……………………………………… 4分 =xy 2 ………………………………………………………………… 5分当21-=x ,2=y 时,原式=22212-=⨯⎪⎭⎫⎝⎛-⨯. …………………… 8分22、解:原式= 2x(a-2)+y(a-2)…………………… (3分) =(a-2)(2x+y) …………………… (2分)当 a=0.5,x=1.5,y=-2时,原式=(0.5-2)×(2×1.5+(-2)) …………………… 7分=-1.5 …………………… 9分23、解:(1) 证明:在长方形ABCD 中,∠A=900=∠D ……………………1分 ∵BE ⊥EF ∴∠BEF=900即∠AEB+∠DEF=900,又∠ABE+∠AEB=900∴∠ABE=∠DEF ……………………3分 ∴△ABE 和△DEF 中,∠A=∠D ,∠ABE=∠DEF ,BE=EF∴△ABE ≌△DEF(AAS) ……………………5分 (2) ∵△ABE ≌△DEF ∴AE=DF=5CM,AB=DE=acm, …………………6分 ∴AD=(5+a)cm …………………7分 又长方形ABCD 的周长为40cm ∴2(5+a+a)=40 解得a=7.5cm=AB …………………9分 24.解:(1)22a b -; …………………………………………… 3分 (2)答:△BDF 的面积不会发生改变. ………………… 4分由图形可得:BEF DFG ABD CEFG ABCD BDF S S S S S S ∆∆∆∆---+=)(21)(2121222b a b a b b a b a +----+= …… 6分222222121212121b ab ab b a b a --+--+=221a = …… 8分∵a 保持不变,∴当正方形ABCD 的边长a 保持不变,而正方形CEFG 的边长b 不断增大时,△BDF 的面积不会发生改变. ……………………………………… 9分25.(1)224b a S -=剩余 …………………… (1分)().2221b ab b a b S -=-⋅=…………………… (2分)()2225442b ab a b a S +-=-=…………………… (3分)(2)能. ………………………………………… (4分),422b a S -=剩余 ()()()()()b a b a b a b b a a S S S S S 2222221352+-=-+-⋅=+++=剩余……………………………………………………(7分)()()b a b a b a 22422-+=-∴.…………………… (8分).(画图再加说明亦可得分)(3),9005=S………………………… (10分)又,60=a .15=∴b ……………………(11分)().302,90022=-∴=-∴b a b a.1350015900,2700154604352222cm b S V cm b a S S =⨯=⋅==⨯-=-==∴剩余表 (12)………………………… (13分) 答:略。
2018-2019学年人教版上学期初二数学期中考试试卷及答案解析
2018-2019学年初二数学第一学期期中检测学校:___________姓名:___________班级:___________考号:___________一、选择题(每题3分,共30分)1.下列计算错误的是(▲ )A .a 2·a=a 3B .(ab )2=a 2b 2C .(a 2)3=a 5D .-a+2a=a2.下列四个图案中,是轴对称图形的是 (▲)3.下面各角能成为某多边形的内角和的是 (▲)A.430°B.4320°C. 4334°D.4360°4.如图,已知MB=ND,∠MBA=∠NDC ,下列条件中不能判定△ABM ≌△CDN 的是( ▲ )A .∠M=∠NB . AM ∥CNC .AB = CD D . AM=CN5.已知等腰三角形的两条边长分别是2和4,则它的周长是( ▲ )A .10B .8C .8或10D .无法确定6. 如图,点D 为△ABC 边AB 的中点,将△ABC 沿经过点D 的直线折叠,使点A 刚好落在BC 边上的点F 处,若∠B=48°,则∠BDF 的度数为( ▲ )A .88°B .86°C .84°D .82°7.如图,∠MON 内有一点P ,P 点关于OM 的轴对称点是G ,P 点关于ON 的轴对称点是H ,GH分别交OM 、ON 于A 、B 点,若GH 的长为10cm ,求△PAB 的周长为( ▲ )A .5cmB . 10cmC . 20cmD . 15cm8.如图,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( ▲ )A .△ACE≌△BCDB.△BGC≌△AFC C .△ADB≌△CEAD.△DCG≌△ECF9.如图,在△ABC 中,AB =AC ,∠ABC 、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于点E.某同学分析图形后得出以下结论: A B D C M N①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE.上述结论一定正确的是( )A.①②③ B.②③④C.①③⑤ D.①③④10.如图所示,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,使点C落在点C´的位置,则图中的一个等腰直角三角形是()A. △ADCB. △BDC’C. △ADC´D. 不存在二、填空题(每题3分,共24分)11.实数4的平方根是.12.点A(-5,-6)与点B(5,-6)关于__________对称。
2018-2019学年上学期八年级数 学期中考试卷含答案
2018-2019学年八年级(上)期中数学试卷一、选择题(每题3分,共30分)1.(3分)以下列各组线段为边,能组成三角形的是()A.3cm,4cm,5cm B.4cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm 2.(3分)一个凸多边形的内角和等于540°,则这个多边形的边数是()A.5 B.6 C.7 D.83.(3分)等腰三角形一边长等于4,一边长等于9,则它的周长等于()A.17 B.22 C.17或22 D.134.(3分)在平面直角坐标系中,点P(3,4)关于x轴对称的点的坐标是()A.(﹣3,4)B.(4,3)C.(﹣3,﹣4)D.(3,﹣4)5.(3分)如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测得AB=5cm,AC=4cm,BC=7cm,则EF长为()A.4cm B.5cm C.6cm D.7cm6.(3分)如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BD=5,则DE的长是()A.3 B.4 C.5 D.67.(3分)已知△ABC中,AB=5,AC=7,BC=a,则a的取值范围是()A.1<a<6 B.5<a<7 C.2<a<12 D.10<a<148.(3分)如图,AB=AC,AD=AE,BE、CD交于点O,则图中全等三角形共有()A.四对B.三对C.二对D.一对9.(3分)如图,AC=DB,CE=BF,则添加一个条件能使△ACF≌△DBE,则这个条件不能是()A.AF=DE B.∠A=∠D C.∠C=∠B D.AC∥BD10.(3分)如图,已知AB=DC,AD=BC,E、F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF=()A.150°B.40°C.80°D.90°二、填空题(每题4分,共24分)11.(4分)如图,某同学将三角形玻璃打碎,现要到玻璃店配一块完全相同的玻璃,应带去.12.(4分)在△ABC中,∠A=∠B=∠C,则△ABC是三角形.13.(4分)如图,五角星的顶点分别是A,B,C,D,E,那么∠A+∠B+∠C+∠D+∠E=.14.(4分)如图,一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是.15.(4分)轴对称图形对应点所连线段被对称轴.16.(4分)如图所示,在△ABC中,BD,CE分别是AC、AB边上的高,且BD与CE相交于点O,如果∠BOC=135°,那么∠A的度数为°.三、解答题(每题6分,共18分)17.(6分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC ≌△DEF.18.(6分)如图,A、B两村庄在公路m的同侧,现需要在公路旁建立公交站,方便村民出行,使公交站到两村的距离相同,试在图中找出公交站的位置(尺规作图,不写作法,但要保留作图痕迹).19.(6分)如图,B处在A处的南偏西45°方向,C处在A处的南偏东30°方向,C处在B 处的北偏东80°方向,求∠ACB的度数.四、解答题(每题7分,共21分)20.(7分)如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1,B1,C1的坐标.21.(7分)如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.22.(7分)如图,在△ABC中(AC>AB),AC=2BC,BC边上的中线AD把△ABC的周长分成60cm和40cm两部分,求边AC和AB的长.(提示:设CD=x cm)五、解答题(每题9分,共27分)23.(9分)如图,△ABC中,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD、BE相交于点F,DF=DC.(1)求证:△BDF≌△ADC;(2)求∠C的度数.24.(9分)如图,AB⊥BD于B,ED⊥BD于D,AC=CE,AB=CD=6,DE=4.(1)求证:AC⊥CE;(2)求△ACE的面积.25.(9分)如图,∠BAE=∠CAF=90°,EC、BF相交于点M,AE=AB,AC=AF,(1.求证:(1)EC=BF(2)EC⊥BF(3)若条件∠BAE=∠CAF=90°改为∠BAE=∠CAF=m°,则(1)、(2)两个结论还成立吗?结论(1),结论(2)(只回答不写过程).参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)以下列各组线段为边,能组成三角形的是()A.3cm,4cm,5cm B.4cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm 【解答】解:A、4+3>5,能组成三角形;B、6+4=10,不能组成三角形;C、1+1=2<3,不能组成三角形;D、3+4=7<9,不能组成三角形;故选:A.2.(3分)一个凸多边形的内角和等于540°,则这个多边形的边数是()A.5 B.6 C.7 D.8【解答】解:设这个多边形的边数为n,则(n﹣2)180°=540°,解得n=5,故选:A.3.(3分)等腰三角形一边长等于4,一边长等于9,则它的周长等于()A.17 B.22 C.17或22 D.13【解答】解:∵4+4=8<9,0<4<9+9=18,∴腰的不应为4,而应为9,∴等腰三角形的周长=4+9+9=22,故选:B.4.(3分)在平面直角坐标系中,点P(3,4)关于x轴对称的点的坐标是()A.(﹣3,4)B.(4,3)C.(﹣3,﹣4)D.(3,﹣4)【解答】解:点P(3,4)关于x轴对称的点的坐标是(3,﹣4),故选:D.5.(3分)如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测得AB=5cm,AC=4cm,BC=7cm,则EF长为()A.4cm B.5cm C.6cm D.7cm【解答】解:∵△ABC≌△DEF,∴EF=BC=7cm,故选:D.6.(3分)如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BD=5,则DE的长是()A.3 B.4 C.5 D.6【解答】解:∵∠C=90°,AD平分∠BAC,DE⊥AB于E,∴DE=DC,∵BC=9,BD=5,∴DC=9﹣5=4,∴DE=4,故选:B.7.(3分)已知△ABC中,AB=5,AC=7,BC=a,则a的取值范围是()A.1<a<6 B.5<a<7 C.2<a<12 D.10<a<14【解答】解:∵△ABC中,AB=5,AC=7,BC=a,∴7﹣5<a<7+5,即2<a<12.故选:C.8.(3分)如图,AB=AC,AD=AE,BE、CD交于点O,则图中全等三角形共有()A.四对B.三对C.二对D.一对【解答】解:如图,全等的三角形有:△ABE≌△ACD,△BDO≌△CEO,△BCD≌△CBE,共三对.故选:B.9.(3分)如图,AC=DB,CE=BF,则添加一个条件能使△ACF≌△DBE,则这个条件不能是()A.AF=DE B.∠A=∠D C.∠C=∠B D.AC∥BD【解答】解:这个条件不能是B;理由如下:在△ACF与△DBE中,已经有条件:AC=DB,CE=BF,进而得出CF=BE,∵有两边且其中一边的对角对应相等的两个三角形不一定全等,∴这个条件不能是B,故选:B.10.(3分)如图,已知AB=DC,AD=BC,E、F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF=()A.150°B.40°C.80°D.90°【解答】解:∵AB=DC,AD=BC,∴四边形ABCD为平行四边形,∴∠ADE=∠CBF,∵BF=DE,∴△ADE≌△CBF,∴∠BCF=∠DAE,∵∠DAE=180°﹣∠ADB﹣∠AED,∵∠AED=180°﹣∠AEB=60°,∠ADB=30°,∴∠BCF=90°.故选:D.二、填空题(每题4分,共24分)11.(4分)如图,某同学将三角形玻璃打碎,现要到玻璃店配一块完全相同的玻璃,应带③去.【解答】解:第一块,仅保留了原三角形的一个角和部分边,不符合全等三角形的判定方法;第二块,仅保留了原三角形的一部分边,所以此块玻璃也不行;第三块,不但保留了原三角形的两个角还保留了其中一个边,所以符合ASA判定,所以应该拿这块去.故答案为:③.12.(4分)在△ABC中,∠A=∠B=∠C,则△ABC是直角三角形.【解答】解:在△ABC中,∠A+∠B+∠C=180°,∵∠A=∠B=∠C,∴∠C+∠C+∠C=180°,解得∠C=90°,所以,△ABC是直角三角形.故答案为:直角.13.(4分)如图,五角星的顶点分别是A,B,C,D,E,那么∠A+∠B+∠C+∠D+∠E=180°.【解答】解:如图,∠A+∠D=∠1,∠B+∠E=∠2,∵∠1+∠2+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°.故答案为:180°.14.(4分)如图,一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是三角形的稳定性.【解答】解:一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是三角形的稳定性.故应填:三角形的稳定性.15.(4分)轴对称图形对应点所连线段被对称轴垂直平分.【解答】解:轴对称图形对应点所连线段被对称轴垂直平分.故答案为:垂直平分.16.(4分)如图所示,在△ABC中,BD,CE分别是AC、AB边上的高,且BD与CE相交于点O,如果∠BOC=135°,那么∠A的度数为45°.【解答】解:在四边形AODE中,其内角和为360°,∵BD⊥AC,CE⊥AB,∴∠AEC=∠ADB=90°,又∠DOE=∠BOC=135°,∴∠A=45°.故应填45°.三、解答题(每题6分,共18分)17.(6分)已知:如图,A、C、F、D在同一直线上,A F=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.【解答】证明:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).18.(6分)如图,A、B两村庄在公路m的同侧,现需要在公路旁建立公交站,方便村民出行,使公交站到两村的距离相同,试在图中找出公交站的位置(尺规作图,不写作法,但要保留作图痕迹).【解答】解:如图所示,点C即为公交车的位置.19.(6分)如图,B处在A处的南偏西45°方向,C处在A处的南偏东30°方向,C处在B 处的北偏东80°方向,求∠ACB的度数.【解答】解:如图,∵AD,BE是正南正北方向,∴BE∥AD,∵∠BAD=45°,∴∠ABE=∠BAD=45°,∵∠EBC=80°,∴∠ABC=80°﹣45°=35°,∵∠BAC=∠BAD+∠DAC=45°+30°=75°,∴∠ACB=180°﹣∠ABC﹣∠BAC=180°﹣75°﹣35°=70°.四、解答题(每题7分,共21分)20.(7分)如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1,B1,C1的坐标.【解答】解:(1)如图所示:△ABC的面积:×3×5=7.5;(2)如图所示:(3)A1(1,5),B1(1,0),C1(4,3).21.(7分)如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.【解答】解:∵在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,∴∠DAE=∠CAB=(90°﹣∠B),∵DE垂直平分AB,∴AD=BD,∴∠DAE=∠B,∴∠DAE=∠CAB=(90°﹣∠B )=∠B ,∴3∠B=90°,∴∠B=30°.答:若DE 垂直平分AB ,∠B 的度数为30°.22.(7分)如图,在△ABC 中(AC >AB ),AC=2BC ,BC 边上的中线AD 把△ABC 的周长分成60cm 和40cm 两部分,求边AC 和AB 的长.(提示:设CD=x cm )【解答】解:∵AD 是BC 边上的中线,AC=2BC ,∴BD=CD ,设BD=CD=x ,AB=y ,则AC=4x ,分为两种情况:①AC+CD=60,AB+BD=40,则4x+x=60,x+y=40,解得:x=12,y=28,即AC=4x=48,AB=28;②AC+CD=40,AB+BD=60,则4x+x=40,x+y=60,解得:x=8, y=52,即AC=4x=32,AB=52,BC=2x=16, 此时不符合三角形三边关系定理;综合上述:AC=48cm ,AB=28cm .五、解答题(每题9分,共27分)23.(9分)如图,△ABC 中,∠BAC=75°,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 、BE 相交于点F ,DF=DC .(1)求证:△BDF ≌△ADC ;(2)求∠C 的度数.【解答】(1)证明:∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=90°,∠AEF=90°,∵∠AFE+∠CAD+∠AEF=180°,∠FBD+∠BFD+∠BDA=180°,∠AFE=∠BFD,∴∠FBD=∠CAD,在△BDF和△ADC中,∴△BDF≌△ADC(AAS),∴BF=AC.(2)∵△BDF≌△ADC,∴DA=DB,∵∠ADB=∠ADC=90°,∴∠BAD=45°,∵∠BAC=75°,∴∠DAC=75°﹣45°=30°,∴∠C=90°﹣30°=60°.24.(9分)如图,AB⊥BD于B,ED⊥BD于D,AC=CE,AB=CD=6,DE=4.(1)求证:AC⊥CE;(2)求△ACE的面积.【解答】解:∵AB⊥BD,ED⊥BD,∴∠B=∠D=90°.在Rt△ABC和Rt△CDE中,,∴Rt△ABC≌Rt△CDE(HL).∴∠A=∠DCE.∵∠A+∠ACB=90°,∴∠DCE+∠ACB=90°.∵∠ACB+∠ACE+∠DCE=180°∴∠ACE=90°,∴AC⊥CE,(2)在Rt△CDE中,CE===2,∴S△ACE=××2=26.25.(9分)如图,∠BAE=∠CAF=90°,EC、BF相交于点M,AE=AB,AC=AF,(1.求证:(1)EC=BF(2)EC⊥BF(3)若条件∠BAE=∠CAF=90°改为∠BAE=∠CAF=m°,则(1)、(2)两个结论还成立吗?结论(1)成立,结论(2)不成立(只回答不写过程).【解答】证明:(1)∵AE⊥AB,AC⊥AF,∴∠BAE=∠CAF=90°,∴∠CAE=∠BAF,在△CAE与△BAF中,,∴△CAE≌△BAF,∴CE=BF;(2)如图,设AC交BF于O.∵△CAE≌△BAF,∴∠AFO=∠OCM,∵∠AOF=∠COM,∴∠OMC=∠OAF=90°,∴CE⊥BF.(3)条件∠BAE=∠CAF=90°改为∠BAE=∠CAF=m°,则结论(1)成立,结论(2)不成立.理由:同法可证△CAE≌△BAF,可得CE=BF,∠CMO=∠FAO=m°,∴结论(1)成立,结论(2)不成立.故答案为成立,不成立.。
2018-2019学年上学期八年级 数学期中考试卷含答案
2018-2019学年上学期期中教学质量调研八年级数学一.精心选择,一锤定音(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一个答案是正确的,请将正确答案的序号直接填入下表中)序号 1 2 3 4 5 6 7 9 10答案1.下面四个手机应用图标中是轴对称图形的是2.已知图中的两个三角形全等,则的大小为A.B. C. D.3.如图,三角形被木板遮住一部分,这个三角形是A.锐角三角形B.直角三角形C.钝角三角形 D.以上都有可能4.如图,∠ACB=90,CD⊥AB,垂足为D,下列结论错误的是A.图中有三个直角三角形B. ∠1=∠2C. ∠1和∠B都是∠A的余角D.∠2=∠A5.已知n边形从一个顶点出发可以作9条对角线,则n=A.9B.10C.11D.126.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有A.1个B.2个C.3个D.4个7.如图,点O在△ABC内,且到三边的距离相等,若∠A=60,则∠BOC的大小为A. B. C. D.608.如图,在Rt△ABC中,∠BAC=90,AD⊥BC于D,将AB边沿AD折叠,发现B点的对应点E正好在AC的垂直平分线上,则∠C=2A.30B.C.60D.759.如图所示,小华从A点出发,沿直线前进10米后左转24,再沿直线前进10米,又向左转24,……,照这样走下去,他第一次加到出发地A点时,一共走的路程是A.140米B.150米C.160米D.240米10.如图,在Rt△ABC中,∠ACB=90,∠BAC的平分线交BC于D,过点C作CG⊥AB于G,交AD 于E,过点D作DF⊥AB于 F.下列结论①∠CED=;②;③∠ADF=;④CE=DF.正确的是A.①②④B.②③④C.①③D.①②③④二.细心填一填,试试自己的身手!(本大题共10个小题;每小题3分,共30分)11.一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是.12.三角形三边长分别为3,,7,则的取值范围是.13.一个正多边形的内角和为540,则这个正多边形的每个外角的度数为.14.如图,已知AB⊥BD,AB∥DE,AB=ED。
2018-2019学年度第一学期八年级(上)期中数学试题(含答案).doc
2018/2019学年度第一学期第一阶段学业质量监测试卷八年级数学(满分:100分考试时间:100分钟)注意事项:1.选择题请用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.2.非选择题必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.下列“表情”中属于轴对称图案的是A. B. C. D.2.下列说法正确的是A .两个等边三角形一定全等B .形状相同的两个三角形全等C .面积相等的两个三角形全等D .全等三角形的面积一定相等3.下列长度的三条线段,能组成直角三角形的是 A .1,2,3B .2,3,4C .3,4,5D .4,5,64.在△ABC 中,AB =AC ,BD 为△ABC 的高,若∠BAC =40°,则∠CBD 的度数是 A .70°B .40°C .20°D .30°5.如图,分别以直角三角形各边为一边向三角形外部作正方形,其中两个小正方形的面积分别为9和25,则正方形A 的面积是 A .16 B .32 C .34 D .64925A(第5题)(第4题)ABCD6.到三角形三条边距离相等的点是A .三条边的垂直平分线的交点B .三条边上高的交点C .三条边上中线的交点D .三个内角平分线的交点7.用直尺和圆规作一个角等于已知角,如图,能得出∠A ′C ′B ′=∠ACB 的依据是A .SASB .SSSC .ASAD .AAS8.如图,长方形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A ′,点B 落在点B ′处.若∠2=40°,则∠1的度数为 A .115°B .120°C .130°D .140°二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题..卷.相应位置....上) 9.等边三角形有▲条对称轴.10.在Rt △ABC 中,∠C =90°,AB =13,BC =12,则AC =▲.11.已知△ABC ≌△DEF ,且△DEF 的周长为12.若AB =5,BC =4,则AC =▲. 12.若等腰三角形的两边长分别为4和8,则这个三角形的周长为▲. 13.在等腰△ABC 中,AC =AB ,∠A =70°,则∠B =▲°.14.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,CD ⊥AB ,垂足为D ,CD =▲.15.如图,在等腰△ABC 中,AB =AC ,AD 为△ABC 的中线,∠B =72°,则∠DAC =▲°. 16.在Rt △ABC 中,∠C =90°,∠A =30°,D 是斜边AB 的中点,DE ⊥AC ,垂足为E ,DE =2,则AB =▲.(第7题) AC DBB ′A ′C ′D ′(第8题)1 2BB ′ CA ′ DEAF(第15题)DACBDACB(第14题)(第16题)ACBDE17.如图,△DEF 的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫做格点三角形.若在图中再画1个格点△ABC (不包括△DEF ),使△ABC ≌△DEF ,这样的格点三角形能画▲个.18.如图,在Rt △ABC 中,∠ABC =90°,AB =BC =4,M 在BC 上,且BM =1,N 是AC上一动点,则BN +MN 的最小值为▲.三、解答题(本大题共9小题,共64分.请在答题..卷.指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤)19.(6分)已知:如图,在△ABC 中,DE ∥BC ,AD =AE .求证:AB =AC .20.(5分)如图,三个直角三角形(Ⅰ,Ⅱ,Ⅲ)拼成一个梯形(两底分别为a 、b ,高为a +b ),利用这个图形,小明验证了勾股定理.请将计算过程补充完整. 解:S 梯形=12(上底+下底)×高=12(a +b )•(a +b ),即S 梯形=12(▲).①S 梯形=Ⅰ+Ⅱ+Ⅲ(罗马数字表式相应图形的面积) =▲+▲+▲.即S 梯形=12(▲).②由①、②,得a 2+b 2=c 2.DE C(第19题)A(第20题)cⅢcⅡⅠb ba a(第17题)EDFMNABC(第18题)21.(6分)如图,育苗棚的顶部是长方形,求育苗棚顶部薄膜ABDE 的面积.22.(6分)已知:如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .求证:BC ∥EF .23.(6分)如图,△ABC 是等边三角形,D 是BC 上任意一点(与点B 、C 不重合),以AD 为一边向右侧作等边△ADE ,连接CE .求证:△CAE ≌△BAD .FECBA(第22题)DCEA(第23题)B(第21题)E24.(7分)如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,CD =12,AD =13.求四边形ABCD 的面积.25.(8分)如图,在△ABC 中,∠C =90°.E 是AB 中点,DE ⊥AB ,垂足为E .若CD =ED ,求∠BAC ,∠B 的度数.26.(8分)如图,在四边形ABCD 中,∠ABC =∠ADC =90°,M 为AC 的中点.(1)求证:MB =MD .(2)若∠BAD =100°,求∠BMD 的度数.M(第26题)CABD (第24题)CBDA(第25题)BE DC27.(12分)在Rt △ABC 中,∠C =90°,将△ABC 沿着某条直线折叠.(1)若该直线经过点A ,且折叠后点C 落在AB 边上,请用直尺和圆规在图①中作出该直线(不写作法,保留作图痕迹); (2)若折叠后点A 与点B 重合.①请用直尺和圆规在图②中作出该直线(不写作法,保留作图痕迹); ②若图②中所画直线与AC 交于点P ,且AB =8,AP =5,求CP 的长.(第27题)AC图①AC图②2018/2019学年度第一学期第一阶段学业质量监测试卷八年级数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共计16分)二、填空题(每小题2分,共计20分)9.3 10.5 11.3 12.20 13.55 14.4.8 15.18 16.8 17.3 18.5三、解答题(本大题共9小题,共计64分) 19.(本题6分) 证明:∵DE ∥BC ,∴∠ADE =∠B ,∠AED =∠C .……………………………………………2分 ∵AD =AE ,∴∠ADE =∠AED . …………………………………………………………4分 ∴∠B =∠C . ………………………………………………………………5分 ∴AB =AC .……………………………………………………………………6分20.(本题5分)解:S 梯形=12(上底+下底)•高=12(a +b )•(a +b ),即S 梯形=12(a 2+2ab +b 2).①…………………………1分S 梯形=Ⅰ+Ⅱ+Ⅲ(罗马数字表式相应图形的面积) =12ab +12c 2+12ab .…………………………4分即S 梯形=12(c 2+2 ab ).②……………………………5分由①、②,得a 2+b 2=c 2.21.(本题6分)解:在Rt △ABC 中,∠ACB =90°,由勾股定理得:AB 2=AC 2+BC 2=22+1.52=6.25,∴AB =2.5(m ).…………3分∴S 四边形ABDE =2.5×20=50(m 2).……………………………………………5分 答:四边形ABDE 的面积是50m 2.……………………………………………6分 22.(本题6分)证明:∵AF =DC ,∴AF +FC =DC +FC .即AC =DF .………………………1分在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ,∠A =∠D ,AC =DF .∴△ABC ≌△DEF (SAS ).…………………4分∴∠BCA =∠EFD .……………………………………………5分 ∴BC ∥EF .……………………………………………6分 23.(本题6分)证明:∵△ABC 和△ADE 是等边三角形,∴AC =AB ,AE =AD ,∠DAE =∠BAC =60°.………………………………3分 ∴∠DAE -∠CAD =∠BAC -∠CAD ,即∠CAE =∠BAD .………………4分 在△CAE 和△BAD 中,⎩⎪⎨⎪⎧AC =AB ,∠CAE =∠BAD ,AE =AD .∴△CAE ≌△BAD (SAS ).………6分24.(本题7分)解:∵在△ABC 中,∠B =90°,AB =4,BC =3,∴AC =5.………………………2分在△ADC 中,AD =13,CD =12,AC =5. ∵122+52=132,即CD 2+AC 2=AD 2,∴△ADC 是直角三角形,且∠DCA =90°.……………………………………4分∴S 四边形ABCD =S △ABC +S △ADC =12AB •BC +12AC •CD =12×3×4+12×5×12=36.……7分25.(本题8分) 解:连接AD .∵∠C =90°,DE ⊥AB ,CD =ED , ∴点D 在∠BAC 的角平分线上.∴∠CAD =∠EAD .……………………………………………………………………2分 ∵E 是AB 中点,DE ⊥AB ,∴DB =DA .……………………………………………………………………4分 ∴∠DBA =∠DAB .……………………………………………………………………6分 ∵∠DBA +∠CAB =90°, ∴3∠DBA =90°. ∴∠DBA =30°.∴∠B =30°,∠BAC =60°.…………………………………………………………8分 26.(本题8分)(1)证明:∵∠ABC =∠ADC =90°,又∵M 为AC 的中点,∴MB =12AC ,MD =12AC .………………………………4分∴MB =MD .…………………………………………………………………………5分 (2)解:∵∠BAD =100°,∴∠BCD =360°-(∠ABC +∠ACB )-∠BAD =80°,……………………………6分 ∵MB =MC =MD ,∴∠MBC =∠MCB ,∠MCD =∠MDC .……………………………………………7分 ∴∠BMD =∠BMA +∠DMA =2∠BCA +2∠DCA =2∠ACB =2×80°=160°.……8分27.(本题12分)解:(1)如图,直线AD 即为所求.…………………………………………………3分(2)①如图,直线MN 即为所求.……………………………………………………6分②由①中的作图得:AP =PB .…………………………………………………7分 ∵∠C =90º,∴ △BCP 和△ACB 是直角三角形. 在Rt △ABC 中,∵AC 2+CB 2=AB 2,∴BC 2=AB 2-AC 2.………………………………………8分 在Rt △PCB 中,∵PC 2+CB 2=PB 2,∴ BC 2=PB 2-CP 2.………………………………………9分 ∴ AB 2-AC 2=PB 2-CP 2. 设CP =x ,则AC =5+x ,52-x 2=82-(5+x )2.……………………………………………………………11分 ∴ x =1.4.即CP 的长为1.4.…………………………12分.ACDBBCAPMN。
2018-2019学年第一学期期中考试八年级数学试卷参考答案
∴∠CBE= (180°-150°)=30°-
∴=30°.…………………………………………………………………………………………12分
20.由题知:点P在第四象限.
∴ 解得a<- ……………………………………………………………………………7分
21.(1)证明:∵∠ADE=∠2+∠BDE=∠1Βιβλιοθήκη ∠ACE∴∠BDE=∠ACE
又∵∠A=∠B,AE=BE
∴△ACE≌△BDE,∴AC=BD.………………………………………………………………………5分
2018--2019学年第一学期期中考试
八年级数学试题参考答案
一、选择题:1.D;2.C;3.A;4.B;5.D;6.A;7.C;8.D;9.B;10.B.
二、填空题:11.10;12.0;13.64º;14.3;15.(4,-4);16.7.
三、解答题:
17.略.…………………………………………………………………………………………………6分
18.由题知:∠ABD=2∠DBE=56º
∴∠BAC=180º-56º-70º=54º………………………………………………………………………6分
19.(1)略;………………………………………………………………………………………………4分
(2)A1(8,0),B1(6,-2),C1(5,2)…………………………………………………………………7分
(2)由(1)知:△ACE≌△BDE,∴CE=DE
∴∠C=∠CDE= (180º-40º)=70º
∴∠BDE=70º……………………………………………………………………………………………8分
22.(1)易得∠ADE=∠CDF=30º,
中学18—19学年上学期八年级期中考试数学试题(附答案)
2018—2019学年第一学期八年级数学期中考试试卷一.选择题。
(本大题共10小题,每小题3分,共30分)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A. B. C. D.2.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有、、、的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块3.下列各图中,正确画出BC边上的高的是()A. B. C.D.4. 从平面镜中看到时钟示数为15:01,那么实际时间应为()A.10:51B.10:21C.10:15D.15:015.已知等腰三角形的一边长为,另一边长为,则它的周长是()A.12B.16C.20D.16或206.如图,兔子的三个洞口A、B、C构成△ABC,猎狗想捕捉兔子,必须到三个洞口的距离都相等,则猎狗应蹲守在()A..三条边的垂直平分线的交点 B.三个角的角平分线的交点C.三角形三条高的交点D..三角形三条中线的交点7.如图,△ABC中,点D在BC上,△ACD和△ABD面积相等,线段AD是三角形的()A.高B.角平分线C.中线D.无法确定8.下列条件中,不能得到等边三角形的是()A.有两个内角是60°的三角形B.有两边相等且是轴对称图形的三角形C.三边都相等的三角形D.有一个角是60°且是轴对称图形的三角形.9.如图,在平面内,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF等于()A.50°B.115°C.65°D.无法确定10.我们都有这样的生活经验,要想使多边形(三角形除外)木架不变形至少再钉上若干根木条,如图所示,四边形至少再钉上一根;五边形至少再钉上两根;六边形至少再钉上三根;…,按照此规律,十二边形至少再钉上()A.11根B.10根C.9根D.8根二..填空题。
八年级2018-2019学年度上学期期中考试 数学试题(word版,含答案)
2018-2019学年度八年级上学期期中考试 数学试题第1卷(选择题 共42分)注意事项:1.答第1卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后。
再选涂其它答案,不能答在试卷上。
3.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共14小题.每小题3分,共42分)1.若一个正多边形一个外角是60°,则该正多边形的内角和是 A .360° B . 540° C . 720° D .900° 2. 若点A (1,1)m n +-与点B (-3,2)关于y 轴对称,则m n +的值是A .-5B .-3C .3D . 13. 已知三角形三个内角∠A 、∠B 、∠C ,满足关系式∠B+∠C=2∠A ,则此三角形 A. 一定有一个内角为45° B. 一定有一个内角为60° C. 一定是直角三角形 D. 一定是钝角三角形4. 如图,已知∠ABC=∠DCB,添加以下条件不能判定∆ABC ≌∆DCB 的是A .∠A=∠DB .∠ACB=∠DBC C .AC=DBD .AB=DC第4题 第5题第6题5.观察图中尺规作图痕迹,下列说法错误的是A.OE是∠AOB的平分线 B.OC=ODC.点C、D到OE的距离不相等 D、∠AOE=∠BOE6.如图,在Rt∆ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S∆ABD=15,则CD的长为A.3 B.4 C.5 D.67. 将一副直角三角板按如图所示位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是A.45° B.60° C.75° D.85°第7题第8题第9题8.如图,OA=OB,∠A=∠B,有下列3个结论:①△AOD≌△BOC②△ACE≌△BDE③点E在∠O的平分线上其中正确的结论是A. 只有①B. 只有②C. 只有①②D. 有①②③9.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则等于∠ACE=A.15° B.30° C.45 D.60°10.将一个n边形变成n+1边形,内角和将A.减少180∘B.增加90∘C.增加180∘D.增加360∘11.如图,△ABC中,∠A=36∘,AB=AC,BD平分∠ABC,下列结论错误的是A. ∠C=2∠AB. BD=BCC. △ABD是等腰三角形D. 点D为线段AC的中点第11题第12题第13题12.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是A. AB=ADB. AC平分∠BCDC. AB=BDD. △BEC≌△DEC13.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F分别为垂足,则下列四个结论:①∠DEF=∠DFE;②AE=AF;③AD平分∠EDF;④AD垂直平分EF.其中正确结论有()A.1个B.2个C.3个D.4个14.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A. 30°B. 35°C. 45°D. 60°第14题第17题第18题二、填空题(本题共4小题,每小题5分,共20分)15.已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.16.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是___17.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是______.18. 在△ABC 中,AB=AC,CD=CB,若∠ACD=42∘,则∠BAC=______∘.19. 含角30°的直角三角板与直线1l ,2l 的位置关系如图所示,已知12l l ,∠1=60°,以下三个结论中正确的是____(只填序号)。
2018-2019学年八年级上期中考试数学试卷含答案
2018-2019学年八年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.在天气预报图上,有各种各样表示天气的符号,下列表示天气符号的图形中,是轴对称图形的有()A.1个B.2个C.3个D.4个2.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B. C.D.3.已知点P(﹣2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A.1 B.﹣1 C.5 D.﹣54.若x,y的值均扩大为原来的2倍,则下列分式的值保持不变的是()A.B.C.D.5.若a:b=4:3,且b2=ac,则b:c等于()A.2:3 B.3:2 C.4:3 D.3:46.学完分式运算后,老师出了一道题“化简:”.小明的做法是:原式=;小亮的做法是:原式=(x+3)(x﹣2)+(2﹣x)=x2+x﹣6+2﹣x=x2﹣4;小芳的做法是:原式=.其中正确的是()A.小明B.小亮C.小芳D.没有正确的7.如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为()A.10cm B.6cm C.4cm D.2cm8.已知两个分式:,,其中x≠±2,则A与B的关系是()A.相等B.互为倒数C.互为相反数 D.A大于B二、填空题(本大题共8小题,每小题3分,共24分)9.如图,点C、D在BE上,BC=DE,∠1=∠2,要使得△ABD≌△AEC,还需要添加一个边或角的条件,你添加的条件是.10.如图,在△ABC中,AB=AC,BF=CD,BD=CE.若∠A=40°,则∠FDE=°.11.如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于.12.如图,若∠A=15°,AB=BC=CD=DE=EF,则∠DEF等于.13.如图,AB⊥AC,点D在BC的延长线上,且AB=AC=CD,则∠ADB=°.14.如图,在△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若△ADE的周长为9,△ABC的周长是14,则BC=.15.如图所示,AB=AC=10m,作AB的垂直平分线ED交AC于D,交AB于E,量得△BDC的周长为17m,请你计算BC的长是.16.如图(1),四边形ABCD中,∠B=120°,∠D=50°,如图(2),将纸片右下角沿直线PR向内翻折得到一△PCR,若CP∥AB,RC∥AD,则∠C为.三、解答题(本大题共9小题,共72分)17.(6分)作图题:(简要写出作法,保留作图痕迹)如图,已知点M,N和∠AOB,求作一点P,使P到点M,N的距离相等,且到∠AOB的两边的距离相等.18.(8分)(1)计算:÷(﹣x﹣2)(2)先化简,再求值:(﹣)•,其中x=﹣3.19.(7分)如图所示,点D在AC上,点E在AB上,且AB=AC,BC=BD,AD=DE=EB,求∠A的度数.20.(8分)已知线段a,b,c满足==,且a+2b+c=26.①求a,b,c的值;②若线段x是线段6a,b的比例中项,求x.21.(8分)如图所示,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,求点D到直线AB的距离.22.(8分)如图所示,AB=AC,DB=DC,E是AD延长线上的一点,BE是否与CE相等?试说明理由.23.(8分)已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.24.(10分)已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.25.(9分)如图,△ABC中,AB=AC=2,∠B=∠C=40°.点D在线段BC上运动(点D 不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BAD=20°时,∠EDC=°;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)△ADE能成为等腰三角形吗?若能,请直接写出此时∠BAD的度数;若不能,请说明理由.2017-2018学年山东省菏泽市定陶区八年级(上)期中数学试卷参考答案一、选择题(本大题共8小题,每小题3分,共24分)1.C;2.B;3.C;4.A;5.C;6.C;7.C;8.C;二、填空题(本大题共8小题,每小题3分,共24分)9、(答案不唯一)如:∠B=∠E ; ∠BCA=∠EDA ; ∠BDA=∠ECA ;AB=AE.等10、70°11、20° 12、60° 13、 22.5° 14、5 15、7m 16、95°三、(注意事项:1.不写解题过程者不得分;2.不写解者每小题扣0.5分 3.证明题过程不唯一合理即可。
2018-2019学年八年级上册期中数学试卷含答案(人教版)
2018-2019学年八年级(上册)期中数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题锁给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列亚运会会徽中的图案,不是轴对称图形的是()A.B.C.D.2.(3分)小芳有两根长度为5cm和11cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.5cm B.3cm C.17cm D.12cm3.(3分)如果n边形的内角和是它外角和的4倍,则n等于()A.7B.8C.10D.94.(3分)若等腰三角形的一边长等于6,另一边长等于4,则它的周长等于()A.15B.16C.14D.14或165.(3分)在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中,与这100°角对应相等的角是()A.∠A B.∠B C.∠C D.∠B或∠C6.(3分)如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD等于()A.18°B.36°C.54°D.64°7.(3分)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°8.(3分)如图,已知D为△ABC边AB的中点,E在边AC上,将△ABC折叠,使A点落在BC上的F 处,若∠B=75°,则∠BDF等于()(A.30°B.50°C.60°D.37.5°9.3分)如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米10.(3分)如图,在△ABC和△DEC中,已知AB=△DE,还需添加两个条件才能使ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠EC.BC=DC,∠A=∠DB.BC=EC,AC=DCD.AC=DC,∠A=∠D11.(3分)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24°B.30°C.32°D.36°12.(3分)如图所示的正方形网格中,网格的交点称为格点,已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C的个数是()A.6B.7C.8D.913.(3分)如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN =4cm,则线段QR的长为()A.4.5cm B.5.5cm C.6.5cm D.7cm14.(3分)如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则四个结论①点P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.其中正确的是()A.①②B.①②④C.①②③D.①②③④二、填空题:(本题共5小题,每小题3分,共15分)15.(3分)点P(﹣3,5)关于x轴的对称点的坐标是.16.(3分)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,S=7,DE△ABC =2,AB=4,则AC长是.17.(3分)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为.18.(3分)如图,AB、CD相交于点O,AD=△CB,请你补充一个条件,使得AOD≌△COB,你补充的条件是.19.(3分)如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM 上.△A1B1A△2,A2B2A△3,A3B3A4,…均为等边三角形,若OA1=△4,则A6B6A7的边长为.三、解答题(本大题共7个小题,共计63分)20.(6分)用尺规作图,在△ABC中作一点P,使点P到AB,AC两边的距离相等,且P A=PB.21.(7分)如图,△ABC三个顶点的坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使P A+PC最小.(不写作法,保留作图痕迹).22.(8分)如图,在△ABC中,∠B=40°,AE是∠BAC的平分线,∠ACD=106°,求∠AEC的度数.23.(8分)如图,在△ABC和△DCB中,∠A=∠D=90°,OA=OD,AC与BD相交于点O.(1)求证:AB=CD;(2)请判断△OBC的形状,并证明你的结论.24.(10分)如图,已知港口A东偏南10°方向有一处小岛B,一艘货轮从港口A沿南偏东40°航线出发,行驶80海里到达C处,此时观测小岛B在北偏东60°方向.(1)求此时货轮到小岛B的距离.(2)在小岛周围36海里范围内是暗礁区,此时轮船向正东方向航行有没有触礁危险?请作出判断并说明理由.25.(12分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE 与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).26.(12分)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)试求何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ 变化吗?若变化,则说明理由,若不变,则求出它的度数.2018-2019学年八年级(上册)期中数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题锁给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列亚运会会徽中的图案,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.(3分)小芳有两根长度为5cm和11cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.5cm B.3cm C.17cm D.12cm【分析】设木条的长度为x cm,再由三角形的三边关系即可得出结论.【解答】解:设木条的长度为x cm,则11﹣5<x<11+5,即6<x<16.故选:D.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.3.(3分)如果n边形的内角和是它外角和的4倍,则n等于()A.7B.8C.10D.9【分析】利用多边形的内角和公式和外角和公式,根据一个n边形的内角和是其外角和的4倍列出方程求解即可.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=360°×4,解得n=10.故选:C.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.4.(3分)若等腰三角形的一边长等于6,另一边长等于4,则它的周长等于()A.15B.16C.14D.14或16【分析】由于等腰三角形的底边与腰不能确定,故应分4为底边与6为底边两种情况进行讨论.【解答】解:当4为底边时,腰长为6,则这个等腰三角形的周长=4+6+6=16;当6为底边时,腰长为4,则这个等腰三角形的周长=4+4+6=14;故选:D.【点评】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论,不要漏解是解题关键.5.(3分)在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中,与这100°角对应相等的角是()A.∠A B.∠B C.∠C D.∠B或∠C【分析】根据三角形的内角和等于180°可知,相等的两个角∠B与∠C不能是100°,再根据全等三角形的对应角相等解答.【解答】解:在△ABC中,∵∠B=∠C,∴∠B、∠C不能等于100°,∴与△ABC全等的三角形的100°的角的对应角是∠A.故选:A.【点评】本题主要考查了全等三角形的对应角相等的性质,三角形的内角和等于180°,根据∠A=∠C判断出这两个角都不能是100°是解题的关键.6.(3分)如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD等于()A.18°B.36°C.54°D.64°【分析】根据等腰三角形的性质由已知可求得∠A的度数,再根据垂直的定义和三角形内角和定理不难求得∠ABD的度数.【解答】解:∵AB=AC,∠ABC=72°,∴∠ABC=∠ACB=72°,∴∠A=36°,∵BD⊥AC,∴∠ABD=90°﹣36°=54°.故选:C.【点评】本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.7.(3分)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°【分析】根据三角形角平分线的性质求出∠ACD,根据三角形外角性质求出∠A即可.【解答】解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B=120°﹣35°=85°,故选:C.【点评】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.8.(3分)如图,已知D为△ABC边AB的中点,E在边AC上,将△ABC折叠,使A点落在BC上的F 处,若∠B=75°,则∠BDF等于()(A.30°B.50°C.60°D.37.5°【分析】由题意可得AD=BD=DF,即可求∠B=∠DFB=75°,根据三角形内角和定理可求∠BDF的度数.【解答】解:∵点D是AB的中点∴AD=BD∵折叠∴AD=DF∴BD=AD=DF∴∠B=∠DFB=75°∴∠BDF=30°故选:A.【点评】本题考查了翻折变换,三角形内角和定理,熟练运用折叠性质解决问题是本题的关键.9.3分)如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米【分析】多边形的外角和为360°每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走了:15×10=150米.故选:B.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.10.(3分)如图,在△ABC和△DEC中,已知AB=△DE,还需添加两个条件才能使ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠EC.BC=DC,∠A=∠DB.BC=EC,AC=DCD.AC=DC,∠A=∠D【分析】根据全等三角形的判定方法逐项判断即可.【解答】解:∵AB=DE,∴当BC=EC,∠B=∠E时,满足SAS,可证明△ABC≌△DEC,故A可以;当BC=EC,AC=DC时,满足SSS,可证明△ABC≌△DEC,故B可以;当BC=DC,∠A=∠D时,在△ABC中是ASS,在△DEC中是SAS,故不能证明△ABC≌△DEC,故C不可以;当AC=DC,∠A=∠D时,满足SAS,可证明△ABC≌△DEC,故D可以;故选:C.【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.11.(3分)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24°B.30°C.32°D.36°【分析】根据角平分线的定义可得∠ABP=∠CBP,根据线段垂直平分线上的点到两端点的距离相等可得BP=CP,再根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.【解答】解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.【点评】本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.12.(3分)如图所示的正方形网格中,网格的交点称为格点,已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C的个数是()A.6B.7C.8D.9【分析】分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.【解答】解:①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点评】本题考查了等腰三角形的判定,熟练掌握网格结构的特点是解题的关键,要注意分AB是腰长与底边两种情况讨论求解.13.(3分)如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()A.4.5cm B.5.5cm C.6.5cm D.7cm【分析】利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用MN=4cm,得出NQ的长,即可得出QR的长.【解答】解:∵点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,∴PM=MQ,PN=NR,∵PM=2.5cm,PN=3cm,MN=4cm,∴RN=3cm,MQ=2.5cm,即NQ=MN﹣MQ=4﹣2.5=1.5(cm),则线段QR的长为:RN+NQ=3+1.5=4.5(cm).故选:A.【点评】此题主要考查了轴对称图形的性质,得出PM=MQ,PN=NR是解题关键.14.(3分)如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则四个结论①点P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.其中正确的是()A.①②B.①②④C.①②③D.①②③④【分析】因为△ABC为等边三角形,根据已知条件可推出△Rt ARP≌△Rt ASP,则AR=AS,故(2)正确,∠BAP=∠CAP,所以AP是等边三角形的顶角的平分线,故(1)正确,根据等腰三角形的三线合一的性质知,AP也是BC边上的高和中线,即点P是BC的中点,因为AQ=PQ,所以点Q是AC的中点,所以PQ是边AB对的中位线,有PQ∥AB,故(△3)正确,又可推出BRP≌△QSP,故(4)正确.【解答】解:∵PR⊥AB于R,PS⊥AC于S∴∠ARP=∠ASP=90°∵PR=PS,AP=AP∴△Rt ARP≌△Rt ASP∴AR=AS,故(2)正确,∠BAP=∠CAP∴AP是等边三角形的顶角的平分线,故(1)正确∴AP是BC边上的高和中线,即点P是BC的中点∵AQ=PQ∴点Q是AC的中点∴PQ是边AB对的中位线∴PQ∥AB,故(3)正确∵∠B=∠C=60°,∠BRP=∠CSP=90°,BP=CP∴△BRP≌△QSP,故(4)正确∴全部正确.故选:D.【点评】本题利用了等边三角形的性质:三线合一,全等三角形的判定和性质,中位线的性质求解.二、填空题:(本题共5小题,每小题3分,共15分)15.(3分)点P(﹣3,5)关于x轴的对称点的坐标是(﹣3,﹣5).【分析】利用平面内两点关于x轴对称时:横坐标不变,纵坐标互为相反数,进行求解.【解答】解:P(﹣3,5)关于x轴的对称点的坐标是(﹣3,﹣5),故答案为:(﹣3,﹣5).【点评】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.16.(3分)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,S=7,DE△ABC =2,AB=4,则AC长是3.【分析】根据角平分线上的点到角的两边距离相等可得DE=DF,再根据三角形的面积公式列式计算即可得解.【解答】解:∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,=×4×2+AC•2=7,∴S△ABC解得AC=3.故答案为:3.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.17.(3分)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为13.【分析】根据线段的垂直平分线的性质得到EA=EB,根据三角形的周长公式计算即可.【解答】解:∵DE是AB的垂直平分线,∴EA=EB,则△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,故答案为:13.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.18.(3分)如图,AB、CD相交于点O,AD=△CB,请你补充一个条件,使得AOD≌△COB,你补充的条件是∠A=∠C或∠ADO=∠CBO.【分析】本题证明两三角形全等的三个条件中已经具备一边和一角,所以只要再添加一组对应角或边相等即可.【解答】解:添加条件可以是:∠A=∠C或∠ADC=∠ABC.∵添加∠A=∠C根据AAS判定△AOD≌△COB,添加∠ADC=∠ABC根据ASA判定△AOD≌△COB,故填空答案:∠A=∠C或∠ADC=∠ABC.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.19.(3分)如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM 上.△A1B1A△2,A2B2A△3,A3B3A4,…均为等边三角形,若OA1=△4,则A6B6A7的边长为128.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=16,A4B4=8B1A2=32,A5B5=16B1A2…进而得出答案.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=4,∴A2B1=4,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=16=24,A4B4=8B1A2=32=25,A5B5=16B1A2=64=26,以此类推:△A n B n A n+1的边长为2n+1,∴△A6B6A7的边长为:26+1=128.故答案为:128.【点评】此题主要考查了等边三角形的性质以及直角三角形30度角的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.三、解答题(本大题共7个小题,共计63分)20.(6分)用尺规作图,在△ABC中作一点P,使点P到AB,AC两边的距离相等,且P A=PB.【分析】分别作∠BAC的平分线和线段AB的中垂线,它们的交点即为所求点P.【解答】解:如图所示,点P即为所求.【点评】此题主要考查了线段垂直平分线的性质与作法以及角平分线的性质与作法,正确掌握相关性质是解题关键.21.(7分)如图,△ABC三个顶点的坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使P A+PC最小.(不写作法,保留作图痕迹).【分析】(1)写出点A、B、C关于y轴对称的对应点A′、B′、C′的坐标,然后描点即可;(2)作A点关于x轴的对应点A″,连接A″C交x轴于点P,利用两点之间线段最短可判断此时P A+PC 最小.【解答】解:(△1)如图,A′B′△C′为所作,A′B′C′三个顶点的坐标分别为A'(4,1),B'(3,3),C'(1,2);(2)如图,点P为所作..【点评】本题考查了作图﹣轴对称变换:在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:由已知点出发向所给直线作垂线,并确定垂足;直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;连接这些对称点,就得到原图形的轴对称图形.22.(8分)如图,在△ABC中,∠B=40°,AE是∠BAC的平分线,∠ACD=106°,求∠AEC的度数.【分析】先由三角形外角的性质,求出∠BAC的度数,然后由角平分线的定义即可求出∠BAE的度数,然后再根据外角的性质,即可求∠AEC的度数.【解答】解:∵∠ACD是△ABC的外角,∴∠ACD=∠B+∠BAC,∵∠B=40°,∠ACD=106°,∴∠BAC=66°,∵AE平分∠BAC,∴∠BAE=∠BAC=33°,∵∠AEC是△ABE的外角,∴∠AEC=∠B+∠BAE=73°.【点评】此题考查了三角形外角的性质及角平分线的定义,熟记三角形的外角等于与它不相邻的两个内角之和.23.(8分)如图,在△ABC和△DCB中,∠A=∠D=90°,OA=OD,AC与BD相交于点O.(1)求证:AB=CD;(2)请判断△OBC的形状,并证明你的结论.【分析】(1)根据已知条件,用HL公理证:△Rt ABC≌△Rt DCB,从而得证;(2)利用△Rt ABC≌△Rt DCB的对应角相等,即可证明△OBC是等腰三角形.【解答】证明:(1)在△Rt ABC与△Rt DCB中,∠A=∠D=90°,,∴△Rt ABC≌△Rt DCB(HL),∴AB=CD;(2)△OBC是等腰三角形,理由如下:∵△ABC≌△DCB,则∠ACB=∠DBC,在△OBC中,即∠OCB=∠OBC∴△OBC是等腰三角形.【点评】此题主要考查全等三角形的判定和性质,关键是学生对直角三角形全等的判定和等腰三角形的判定与性质的理解和掌握.24.(10分)如图,已知港口A东偏南10°方向有一处小岛B,一艘货轮从港口A沿南偏东40°航线出发,行驶80海里到达C处,此时观测小岛B在北偏东60°方向.(1)求此时货轮到小岛B的距离.(2)在小岛周围36海里范围内是暗礁区,此时轮船向正东方向航行有没有触礁危险?请作出判断并说明理由.【分析】(1)根据题意得到∠CAB=∠B,根据等腰三角形的性质得到CB=CA=80,得到答案;(2)作BD⊥CD于点D,求出∠BCD=30°,根据直角三角形的性质计算即可.【解答】解:(1)由题意得,∠CAB=90°﹣40°﹣10°=40°,∠ACB=40°+60°=100°,∴∠B=180°﹣100°﹣40°=40°,∴∠CAB=∠B,∴CB=CA=80(海里),答:此时货轮到小岛B的距离为80海里;(2)轮船向正东方向航行没有触礁危险.理由如下:如图,作BD⊥CD于点D,∵∠BCD=90°﹣60°=30°,∴BD=BC=40,∵40>36,∴轮船向正东方向航行没有触礁危险.【点评】本题考查的是解直角三角形的应用﹣方向角问题,掌握直角三角形的性质、方向角的概念是解题的关键.25.(12分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE 与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有②(请写序号,少选、错选均不得分).【分析】(1)欲证明AE=△CD,只要证明ABE≌△CBD;(2)由△ABE≌△CBD,推出BAE=∠BCD,由∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE ﹣∠ANB,又∠CNM=∠ABC,∠ABC=90°,可得∠NMC=90°;(3)结论:②;作BK⊥AE于K,BJ⊥CD于J.理由角平分线的判定定理证明即可;【解答】(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD,∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAE=∠BCD,∵∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,又∠CNM=∠ABC,∵∠ABC=90°,∴∠NMC=90°,∴AE⊥CD.(3)结论:②△S ABE=理由:作BK⊥AE于K,BJ⊥CD于J.∵△ABE≌△CBD,∴AE=CD,△S CDB,∴•AE•BK=•CD•BJ,∴BK=BJ,∵作BK⊥AE于K,BJ⊥CD于J,∴BM平分∠AMD.不妨设△①成立,则ABM≌△DBM,则AB=BD,显然可不能,故①错误.故答案为②.【点评】本题考查全等三角形的判定和性质、等腰直角三角形的性质、角平分线的性质定理等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线解决问题.26.(12分)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)试求何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ 变化吗?若变化,则说明理由,若不变,则求出它的度数.【分析】(△1)利用等边三角形的性质可证明APC≌△BQA,则可求得∠BAQ=∠ACP,再利用三角形外角的性质可证得∠CMQ=60°;(2)可用t分别表示出BP和BQ,分∠BPQ=90°和∠BPQ=90°两种情况,分别利用直角三角形的性质可得到关于t的方程,则可求得t的值;(3)同(△1)可证得PBC≌△QCA,再利用三角形外角的性质可求得∠CMQ=120°.【解答】解:(△1)∵ABC为等边三角形,∴AB=AC,∠B=∠P AC=60°,∵点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,∴AP=BQ,在△APC和△BQA中,∴△APC≌△BQA(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠CAQ+∠ACP=∠BAQ+∠CAQ=∠BAC=60°,∴在P、Q运动的过程中,∠CMQ不变,∠CMQ=60°;(2)∵运动时间为ts,则AP=BQ=t,∴PB=4﹣t,当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,∴4﹣t=2t,解得t=,当∠BPQ=90°时,∵∠B=60°,∴BQ=2PB,∴t=2(4﹣t),解得t=,∴当t为s或s时,△PBQ为直角三角形;(3)在等边三角形ABC中,AC=BC,∠ABC=∠BCA=60°,∴∠PBC=∠QCA=120°,且BP=CQ,在△PBC和△QCA中,∴△PBC≌△QCA(SAS),∴∠BPC=∠MQC,又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=120°,∴在P、Q运动的过程中,∠CMQ的大小不变,∠CMQ=120°.【点评】本题为三角形的综合应用、等边三角形的性质、直角三角形的性质、勾股定理、全等三角形的判定和性质、解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
2018-2019学年八年级上期中数学试卷含解析
2018-2019学年实验学校八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.2.(3分)若等腰三角形底角为72°,则顶角为()A.108°B.72°C.54°D.36°3.(3分)对于任意三角形的高,下列说法不正确的是()A.锐角三角形有三条高B.直角三角形只有一条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部4.(3分)一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.95.(3分)在△ABC和△DEF中,AB=DE,∠B=∠E,如果补充一个条件后不一定能使△ABC ≌△DEF,则补充的条件是()A.BC=EF B.∠A=∠D C.AC=DF D.∠C=∠F6.(3分)如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°7.(3分)下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,118.(3分)已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数为()A.70°B.70°或55°C.40°或55°D.70°或40°9.(3分)点M(3,2)关于y轴对称的点的坐标为()A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(2,﹣3)10.(3分)已知△ABC≌△DEF,∠A=80°,∠E=40°,则∠F等于()A.80°B.40°C.120° D.60°二、填空题(每小题4分,共24分)11.(4分)如果△ABC和△DEF全等,△DEF和△GHI全等,则△ABC和△GHI全等,如果△ABC和△DEF不全等,△DEF和△GHI全等,则△ABC和△GHI全等.(填“一定”或“不一定”或“一定不”)12.(4分)点P(﹣1,2)关于x轴对称点P1的坐标为.13.(4分)如图,已知△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠DAC=.14.(4分)如图,已知AO=OB,若增加一个条件,则有△AOC≌△BOC.15.(4分)如图,△ABC中,∠C=90°,AD平分∠CAB交BC于D,DE⊥AB于E,且CD=3cm,则ED长为.16.(4分)如图,在△ABC中,AD=DE,AB=BE,∠A=92°,则∠CED=.三、计算题(本大题7小题,共66分)17.(8分)在等腰三角形ABC中,已知它的两边分别为3cm和7cm,试求三角形ABC的周长.18.(8分)一个等腰三角形的周长为18cm.(1)已知腰长是底边长的2倍,求各边长.(2)已知其中一边长为4cm,求另两边长.19.(8分)已知:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.20.(10分)如图,AE是∠BAC的平分线,AB=AC.若点D是AE上任意一点,请证明:△ABD≌△ACD.21.(10分)已知:如图,点D在△ABC的边BC上,AB=AC=CD,AD=BD,求△ABC各内角的度数.22.(10分)如图,AF=DB,BC=EF,AC=DE,求证:BC∥EF.23.(12分)△ABC在平面直角坐标系中的位置如图所示A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.(3)求△ABC的面积.2017-2018学年广东省肇庆市高要市朝阳实验学校八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、是轴对称图形,故正确.故选:D.2.(3分)若等腰三角形底角为72°,则顶角为()A.108°B.72°C.54°D.36°【解答】解:∵等腰三角形底角为72°∴顶角=180°﹣(72°×2)=36°故选:D.3.(3分)对于任意三角形的高,下列说法不正确的是()A.锐角三角形有三条高B.直角三角形只有一条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部【解答】解:A、锐角三角形有三条高,说法正确,故本选项不符合题意;B、直角三角形有三条高,说法错误,故本选项符合题意;C、任意三角形都有三条高,说法正确,故本选项不符合题意;D、钝角三角形有两条高在三角形的外部,说法正确,故本选项不符合题意;故选:B.4.(3分)一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.9【解答】解:根据三角形的三边关系,得第三边大于8﹣3=5,而小于两边之和8+3=11.又第三边应是奇数,则第三边等于7或9.故选:B.5.(3分)在△ABC和△DEF中,AB=DE,∠B=∠E,如果补充一个条件后不一定能使△ABC ≌△DEF,则补充的条件是()A.BC=EF B.∠A=∠D C.AC=DF D.∠C=∠F【解答】解:A、添加BC=EF,可利用SAS判定△ABC≌△DEF,故此选项错误;B、添加∠A=∠D,可利用ASA判定△ABC≌△DEF,故此选项错误;C、添加AC=DF,不能判定△ABC≌△DEF,故此选项正确;D、添加∠C=∠F,可利用AAS判定△ABC≌△DEF,故此选项错误;故选:C.6.(3分)如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°【解答】解:∵∠B=90°,∠1=30°,∴∠3=90°﹣∠1=90°﹣30°=60°,在Rt△ABC和Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL),∴∠2=∠3=60°.故选:D.7.(3分)下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,11【解答】解:A、因为1+2<4,所以本组数不能构成三角形.故本选项错误;B、因为4+5=9,所以本组数不能构成三角形.故本选项错误;C、因为4+6>8,所以本组数可以构成三角形.故本选项正确;D、因为5+5<11,所以本组数不能构成三角形.故本选项错误;故选:C.8.(3分)已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数为()A.70°B.70°或55°C.40°或55°D.70°或40°【解答】解:分两种情况:当70°的角是底角时,则顶角度数为40°;当70°的角是顶角时,则顶角为70°.故选:D.9.(3分)点M(3,2)关于y轴对称的点的坐标为()A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(2,﹣3)【解答】解:点M(3,2)关于y轴对称的点的坐标为(﹣3,2),故选:A.10.(3分)已知△ABC≌△DEF,∠A=80°,∠E=40°,则∠F等于()A.80°B.40°C.120° D.60°【解答】解:∵△ABC≌△DEF,∴∠D=∠A=80°,∵∠E=40°,∴∠F=180°﹣∠D﹣∠E=180°﹣80°﹣40°=60°.故选:D.二、填空题(每小题4分,共24分)11.(4分)如果△ABC和△DEF全等,△DEF和△GHI全等,则△ABC和△GHI一定全等,如果△ABC和△DEF不全等,△DEF和△GHI全等,则△ABC和△GHI一定不全等.(填“一定”或“不一定”或“一定不”)【解答】解:根据全等三角形的传递性,△ABC和△GHI一定全等,三者有一对不重合则△ABC和△GHI一定不重合,则二者不全等.故结果分别为一定,一定不.12.(4分)点P(﹣1,2)关于x轴对称点P1的坐标为(﹣1,﹣2).【解答】解:点P(﹣1,2)关于x轴对称点P1的坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2).13.(4分)如图,已知△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠DAC=40°.【解答】解:∵△ABC≌△ADE,∴∠DAE=∠BAC,∵∠CAD=∠BAC﹣∠BAD=∠DAE﹣∠CAE,∴∠BAD=∠CAE=40°,∵∠BAE=120°,∠BAD=40°,∴∠DAC=BAE﹣∠BAD﹣∠CAE=120°﹣40°﹣40°=40°.故答案为40°.14.(4分)如图,已知AO=OB,若增加一个条件∠1=∠2,则有△AOC≌△BOC.【解答】解:∵AO=OB,∠1=∠2,OC=OC,∴△AOC≌△BOC.故答案为:∠1=∠2.15.(4分)如图,△ABC中,∠C=90°,AD平分∠CAB交BC于D,DE⊥AB于E,且CD=3cm,则ED长为3cm.【解答】解:∵AD平分∠CAB,∠C=90°,DE⊥AB于点E,∴DE=CD,∵CD=3cm,∴DE=3cm.故答案为3cm.16.(4分)如图,在△ABC中,AD=DE,AB=BE,∠A=92°,则∠CED=88°.【解答】解:∵在△ABD和△EBD中,∴△ABD≌△EBD(SSS),∴∠BED=∠A=92°,∴∠CED=180°﹣∠DEB=88°,故答案为:88°.三、计算题(本大题7小题,共66分)17.(8分)在等腰三角形ABC中,已知它的两边分别为3cm和7cm,试求三角形ABC的周长.【解答】解:当3cm是腰时,3+3<7cm,不符合三角形三边关系,故舍去;当7cm是腰时,周长=7+7+3=17cm.故该三角形的周长为17cm.18.(8分)一个等腰三角形的周长为18cm.(1)已知腰长是底边长的2倍,求各边长.(2)已知其中一边长为4cm,求另两边长.【解答】解:(1)设底边BC=acm,则AC=AB=2acm,∵三角形的周长是18cm,∴2a+2a+a=18,∴a=,2a=.答:等腰三角形的三边长是cm,cm,cm.(2)当4cm为腰,设底边为xcm,可得:4+4+x=18,解得:x=10,三角形的三边长是4cm,4m,10cm,不符合三角形的三边关系定理,当4cm为底,设腰为xcm,可得:x+4+x=18,解得:x=7,三角形的三边长是7cm,7cm,4cm,符合三角形的三边关系定理,所以另两边长7cm,7cm.19.(8分)已知:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.【解答】证明:(1)∵AC∥DF∴∠ACB=∠F在△ABC与△DEF中,∴△ABC≌△DEF(2)∵△ABC≌△DEF∴BC=EF∴BC﹣EC=EF﹣EC即BE=CF20.(10分)如图,AE是∠BAC的平分线,AB=AC.若点D是AE上任意一点,请证明:△ABD≌△ACD.【解答】证明:∵AE是∠BA C的平分线,∴∠BAD=∠CAD,在△ABD和△ACD中,,∴△BAD≌△CAD(SAS)21.(10分)已知:如图,点D在△ABC的边BC上,AB=AC=CD,AD=BD,求△ABC各内角的度数.【解答】解:设∠B=α∵AB=AC,∴∠C=α,∵BD=BA,∴∠BAD=α,∵∠ADC为△ABC外角,∴∠ADC=2α,∵AC=DC,∴∠CAD=2α,∴∠BAC=3α,∴在△ABC中∠B+∠C+∠BAC=5α=180°,∴α=36°,∴∠B=∠C=36°,∴∠CAB=108°.22.(10分)如图,AF=DB,BC=EF,AC=DE,求证:BC∥EF.【解答】证明:∵AF=DB,∴AF+FB=DB+FB,∴AB=DF,在△ACB和△DEF中,,∴△ACB≌△DEF(SSS),∴∠ABC=∠EFD,∴CB∥EF.23.(12分)△ABC在平面直角坐标系中的位置如图所示A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.(3)求△ABC的面积.【解答】解:(1)如图,△A1B1C1即为所求;点C1的坐标(3,﹣2)(2)如图,△A2B2C2即为所求;点C2的坐标(﹣3,2).=2×3﹣×1×2﹣×1×2﹣×1×3=2.5.(3)S△ABC。
2018-2019学 年八年级上学期期中考试数学试题(含答案)
2018-2019学年八年级(上)期中数学试卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)实数﹣3的倒数是()A.﹣3 B.﹣C.D.32.(4分)25的算术平方根是()A.5 B.±5 C.﹣5 D.253.(4分)下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=x(x+2)﹣1 B.(a+b)(a﹣b)=a2﹣b2C.x2+4x+4=(x+2)2 D.ax2﹣a=a(x2﹣1)4.(4分)下列计算正确的是()A.6a8÷3a2=2a5 B.a4•a3=a7 C.(2a)2=4a D.(a2)3=a55.(4分)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.66.(4分)多项式2x2+6x3中各项的公因式是()A.x2 B.2x C.2x3 D.2x27.(4分)下列式子正确的是()A.=±3 B.=3 C.=﹣3 D.8.(4分)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|d| D.b+c>09.(4分)已知+(b+3)2=0,则(a+b)2017的值为()A.0 B.2017 C.﹣1 D.110.(4分)若2m﹣4与3m﹣1是同一个数的平方根,则m的值是()A.﹣3 B.﹣1 C.1 D.﹣3或111.(4分)若a+b=3,a2+b2=7,则ab等于()A.2 B.1 C.﹣2 D.﹣112.(4分)已知a2﹣2a﹣1=0,则a4﹣2a3﹣2a+1等于()A.0 B.1 C.2 D.3二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.(4分)﹣的绝对值是.14.(4分)若(ax+2y)(x﹣y)展开式中,不含xy项,则a的值为.15.(4分)若x2+kx+16是完全平方式,则k的值为.16.(4分)若m2=n+2,n2=m+2(m≠n),则m3﹣2mn+n3的值为.三、解答题(本大题共6小题,共56分)17.(9分)计算或化简:(1)|﹣3|﹣(2)(m4)2+m5•m3+(﹣m)4•m4(3)(1+a)(1﹣a)+a(a﹣2)18.(9分)把下列各数分别填在相应的集合中:,﹣6,,0,,3.1415926,,﹣.19.(8分)先化简,再求值:(a+3)2﹣2(3a+4),其中a=﹣2.20.(9分)把下列多项式分解因式:(1)27xy2﹣3x(2)2x2+12x+18(3)(a﹣b)(a﹣4b)+ab.21.(9分)在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.22.(12分)(1)请用两种不同的方法列代数式表示图1中阴影部分的面积.方法①:;方法②:;(2)根据(1)写出一个等式:;(3)若x+y=8,xy=3.75,利用(2)中的结论,求x,y;(4)有许多代数恒等式可以用图形的面积来表示.如图2,它表示了(2m+n)(m+n)=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示(2m+n)(m+2n)=2m2+5mn+2n2.参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)实数﹣3的倒数是()A.﹣3 B.﹣C.D.3【解答】解:﹣3的倒数是﹣,故选:B.2.(4分)25的算术平方根是()A.5 B.±5 C.﹣5 D.25【解答】解:∵52=25,∴25的算术平方根是5.故选:A.3.(4分)下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=x(x+2)﹣1 B.(a+b)(a﹣b)=a2﹣b2C.x2+4x+4=(x+2)2 D.ax2﹣a=a(x2﹣1)【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、符合因式分解的定义,故本选项正确;D、右边分解不彻底,不是因式分解,故本选项错误;故选:C.4.(4分)下列计算正确的是()A.6a8÷3a2=2a5 B.a4•a3=a7 C.(2a)2=4a D.(a2)3=a5【解答】解:A、原式=2a6,不符合题意;B、原式=a7,符合题意;C、原式=4a2,不符合题意;D、原式=a6,不符合题意,故选:B.5.(4分)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.6【解答】解:∵16<17<20.25,∴4<<4.5,∴与最接近的是4.故选:B.6.(4分)多项式2x2+6x3中各项的公因式是()A.x2 B.2x C.2x3D.2x2【解答】解:2x2+6x3=2x2(1+3x),故选:D.7.(4分)下列式子正确的是()A.=±3 B.=3 C.=﹣3 D.【解答】解:A、原式=±3,符合题意;B、原式=﹣3,不符合题意;C、原式=3,不符合题意;D、原式=±2,不符合题意,故选:A.8.(4分)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|d| D.b+c>0【解答】解:由数轴上点的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合题意;B、bd<0,故B不符合题意;C、|a|>4=|d|,故C符合题意;D、b+c<0,故D不符合题意;故选:C.9.(4分)已知+(b+3)2=0,则(a+b)2017的值为()A.0 B.2017 C.﹣1 D.1【解答】解:由题意得,a﹣2=0,b+3=0,解得,a=2,b=﹣3,则(a+b)2017=﹣1,故选:C.10.(4分)若2m﹣4与3m﹣1是同一个数的平方根,则m的值是()A.﹣3B.﹣1 C.1 D.﹣3或1【解答】解:当2m﹣4=3m﹣1时,m=﹣3,当2m﹣4+3m﹣1=0时,m=1.故选:D.11.(4分)若a+b=3,a2+b2=7,则ab等于()A.2 B.1 C.﹣2 D.﹣1【解答】解:∵a+b=3,∴(a+b)2=9,∴a2+2ab+b2=9,∵a2+b2=7,∴7+2ab=9,∴ab=1.故选:B.12.(4分)已知a2﹣2a﹣1=0,则a4﹣2a3﹣2a+1等于()A.0 B.1 C.2 D.3【解答】解:∵a2﹣2a﹣1=0,∴a2﹣2a=1,∴a4﹣2a3﹣2a+1=a2(a2﹣2a)﹣2a+1=a2﹣2a+1=1+1=2.故选:C.二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.(4分)﹣的绝对值是.【解答】解:|﹣|=.故本题的答案是.14.(4分)若(ax+2y)(x﹣y)展开式中,不含xy项,则a的值为2.【解答】解:(ax+2y)(x﹣y)=ax2+(2﹣a)xy﹣2y2,含xy的项系数是2﹣a.∵展开式中不含xy的项,∴2﹣a=0,解得a=2.故答案为:2.15.(4分)若x2+kx+16是完全平方式,则k的值为±8.【解答】解:∵x2+kx+16=x2+kx+42,∴kx=±2•x•4,解得k=±8.故答案为:±8.16.(4分)若m2=n+2,n2=m+2(m≠n),则m3﹣2mn+n3的值为﹣2.【解答】解:∵m2=n+2,n2=m+2(m≠n),∴m2﹣n2=n﹣m,∵m≠n,∴m+n=﹣1,∴原式=m(n+2)﹣2mn+n(m+2)=mn+2m﹣2mn+mn+2n=2(m+n)=﹣2.故答案为﹣2.三、解答题(本大题共6小题,共56分)17.(9分)计算或化简:(1)|﹣3|﹣(2)(m4)2+m5•m3+(﹣m)4•m4(3)(1+a)(1﹣a)+a(a﹣2)【解答】解:(1)原式=3﹣4+4=3;(2)原式=m8+m8+m8=3m8;(3)原式=1﹣a2+a2﹣2a=1﹣2a.18.(9分)把下列各数分别填在相应的集合中:,﹣6,,0,,3.1415926,,﹣.【解答】解:如图,故答案为:﹣6,,0,3.1415926,,﹣;,;﹣6,﹣.19.(8分)先化简,再求值:(a+3)2﹣2(3a+4),其中a=﹣2.【解答】解:原式=a2+6a+9﹣6a﹣8=a2+1,当a=﹣2时,原式=4+1=5.20.(9分)把下列多项式分解因式:(1)27xy2﹣3x(2)2x2+12x+18(3)(a﹣b)(a﹣4b)+ab.【解答】解:(1)27xy2﹣3x=3x(9y2﹣1)=3x(3y+1)(3y﹣1);(2)2x2+12x+18=2(x2+6x+9)=2(x+3)2;(3)(a﹣b)(a﹣4b)+ab=a2﹣5ab+4b2+ab=a2﹣4ab+4b2=(a﹣2b)2.21.(9分)在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.【解答】解:(1)[(9+1)2﹣(9﹣1)2]×25÷9=18×2×25÷9=100;(2)[(a+1)2﹣(a﹣1)2]×25÷a=4a×25÷a=100.22.(12分)(1)请用两种不同的方法列代数式表示图1中阴影部分的面积.方法①:(m+n)2﹣4mn;方法②:(m﹣n)2;(2)根据(1)写出一个等式:(m+n)2﹣4mn=(m﹣n)2;(3)若x+y=8,xy=3.75,利用(2)中的结论,求x,y;(4)有许多代数恒等式可以用图形的面积来表示.如图2,它表示了(2m+n)(m+n)=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示(2m+n)(m+2n)=2m2+5mn+2n2.【解答】解:(1)方法①:(m+n)2﹣4mn,方法②:(m﹣n)2;故答案为:(m+n)2﹣4mn,(m﹣n)2;(2)由①可得:(m+n)2﹣4mn=(m﹣n)2;故答案为:(m+n)2﹣4mn=(m﹣n)2;(3)由②可得:(x﹣y)2=(x+y)2﹣4xy,∵x+y=﹣8,xy=3.75,∴(x﹣y)2=64﹣15=49,∴x﹣y=±7;又∵x+y=8,∴或;(4)如图,表示(2m+n)(m+2n)=2m2+5mn+2n2:。
2018-2019学年度初二上期中考试数学试题及答案
下期半期考试数学试卷(本试卷满分150分,考试时间120分钟)一、选择题:(本大题共12个小题,没小题4分,共48分)在每个小题的下面,都给出了代号为A 、A B .2- C . D .2 2. 如图,在平面直角坐标系中,小猫遮住的点的坐标可能是( )A .(-2,1)B .(2,3)C .(3,-5)D .(-6,-2) 3. 下列方程是二元一次方程的是( )A .xy -1=2B .210x x +-=C .113x y +=- D .2y x= B2题图4题图4. 如图,在△ABC 中,∠C=90°,AB 的垂直平分线交AB 于D 点,交BC 于E 点,连接AE ,若CE=5,AC =12,则BE 的长是() A .13 B .17 C .7 D .12 5. 下列不等式中,可以用如图表示其解集的是( )A .21x x ≥-⎧⎨⎩>B .21x x ≥-⎧⎨⎩<C .21x x ≤-⎧⎨⎩>D .12x x ⎧⎨≤-⎩<6. 下列根式不是最简二次根式的是()ABCD7. 有意义,那么x 的取值范围在数轴上表示出来,正确的是( )A .B .C .D .8. 若x >y >0,则下列不等式不一定成立的是( )A .xz yz >B .x z y z ++>C .11x y<D .2x xy > 9. 已知关于x ,y 的二元一次方程组323223x y m x y m+=-⎧⎨+=⎩的解适合方程x -y =4,则m 的值为( )A .1B .2C .3D .4 10. 点A (a ,3),点B (2,b )关于y 轴对称,则a +b 的算术平方根为( )A .1B .2C .1±D .-1 11. 已知不等式组026x a x -≥⎧⎨--⎩>有解,则a 的取值范围( )A .3a >B .3a ≥-C .3a <D .3a ≤-12.如右图,在平面直角坐标系上有个点A (-1,0),点A 第1次向上跳动1个单位至点1A (-1,1),紧接着第2次向右跳动2个单位至点2A (1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依此规律跳动下去,点A 第2015次跳动至点2015A 的坐标是( )A .(504,1008)B .(-504,1007)C .(503,1007)D .(-503,1008) 二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将每小题的正确答案填在下列表格内.14. 不等式-2x +3>0的正整数解是 .15. 已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为_______.16. 已知二元一次方程22=+y x 的一个解是⎩⎨⎧==b y ax ,其中,0≠a ,则______236=-+b a17. 已知11=-x x ,那么x x+1的值为________. 18. 甲乙两人骑自行车在一个环形公路内进行拉力测试,两人从同一地点同时出发,乙迅速超过甲,在第6分钟时甲提速,在第8分钟时,甲追上乙并且开始超过乙,在第15分钟时,甲再次追上乙。
2018-2019学年八 年级上学期期中考试数学试题(含答案)
2018-2019学年度第一学期阶段联考八年级数学试卷一.选择题(本大题共10小题,每小题3分,共30分)点P在第二象限内,P到x轴的距离是2,到y轴的距离是3,那么点P的坐标为()A. (-2,3)B. (-3,-2)C. (-3,2)D. (3,-2)如图所反映的两个量中,其中y是x的函数的个数有()A. 4个B. 3个C. 2个D. 1个下列语句中,是命题的是()A. ∠α和∠β相等吗?B. 两个锐角的和大于直角C. 作∠A的平分线MND. 在线段AB上任取一点在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1),P2(x2,y2)两点,下列表述正确的是()A. 若x1<x2,则y1<y2B. 若x1<x2,则y1>y2C. 若x1>x2,则y1<y2D. y1与y2大小关系不确定在同一直角坐标系中,若直线y=kx+3与直线y=-2x+b平行,则()A. k=-2,b≠3B. k=-2,b=3C. k≠-2,b≠3D. k≠-2,b=3如图,一次函数y1=x+3与y2=ax+b的图象相交于点P(1,4),则关于x的不等式x+3≤ax+b的解集是()A. x≥4B. x≤4C. x≥1D. x≤17.一盘蚊香长100cm,点燃时每小时缩短10cm,小明在蚊香点燃5h后将它熄灭,过了2h,他再次点燃了蚊香.下列四个图象中,大致能表示蚊香剩余长度y(cm)与所经过时间x(h)之间的函数关系的是()A. B. C. D.8.一次函数y1=ax+b与y2=bx+a,它们在同一坐标系中的大致图象是()A. B. C. D.9如图,点A,B,C在一次函数y=-2x+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()A.1B. 3C.(m-1)D.()2 23-m10. 如图,在平面直角坐标系上有个点A (-1,0),点A 第1次向上跳动一个单位至点A1(-1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A 第2017次跳动至点A2017的坐标是( ) A. (-504,1008) B. (-505,1009) C. (504,1009) D. (-503,1008) 填空题(本大题共8小题,每小题3分,共24分)11.在平面直角坐标系中有一点A (-2,1),将点A 先向右平移3个单位,再向下平移2个单位,则平移后点A 的坐标为 ______ .12.函数31-=x y 的自变量x 的取值范围是 ______ .13.已知a <b <0,则点A(a-b ,b)在第____________象限.14.如图,为了防止门板变形,小明在门板上钉了一根加固木条,从数学的角度看,这样做的理由是利用了三角形的____________15.等腰三角形的三边长为3,a ,7,则它的周长是 ______ .16.当k= ______ 时,函数y=()532-++k x k 是关于x 的一次函数.17.直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y 轴围城的三角形面积为4,那么b1﹣b2等于 .18.等腰三角形的一腰上的高与另一腰的夹角为45°,则这个三角形的底角为 ______ .三.解答题(本大题共6小题,第19题8分,20题10分,21题10分,22题12分,23题12分,24题14分,共66分)19.如图为东明一中新校区分布图的一部分,方格纸中每个小方格都是边长为1个单位的正方形,若教学楼的坐标为A (1,2),图书馆的位置坐标为B (-2,-1),解答以下问题: (1)在图中找到坐标系中的原点,并建立直角坐标系;(2)若体育馆的坐标为C (1,-3),食堂坐标为D (2,0),请在图中标出体育馆和食堂的位置; (3)顺次连接教学楼、图书馆、体育馆、食堂得到四边形ABCD ,求四边形ABCD 的面积.20.已知y与x+1.5成正比例,且x=2时,y=7.(1)求y与x之间的函数表达式;(2)若点P(-2,a)在(1)所得的函数图象上,求a.21.如图,在平面直角坐标系中直线y=-2x+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C.(1)求点C的坐标(2)求三角形OAC的面积.22.如图,在△ABC中,CD、CE分别是△ABC的高和角平分线.(1)若∠A=30°,∠B=50°,求∠ECD的度数;(2)试用含有∠A、∠B的代数式表示∠ECD(不必证明)23.一列动车从西安开往西宁,一列普通列车从西宁开往西安,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.根据图象进行以下探究:(1)西宁到西安两地相距_________千米,两车出发后___________小时相遇;普通列车到达终点共需__________小时,普通列车的速度是___________千米/小时.(2)求动车的速度;(3)普通列车行驶t小时后,动车的达终点西宁,求此时普通列车还需行驶多少千米到达西安?24.【问题背景】(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D ; 【简单应用】(2)如图2,AP 、CP 分别平分∠BAD .∠BCD ,若∠ABC=36°,∠ADC=16°, 求∠P 的度数; 【问题探究】(3)如图3,直线AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE ,若∠ABC=36°,∠ADC=16°,请猜想∠P 的度数,并说明理由.【拓展延伸】(4)在图4中,若设∠C =α,∠B =β,∠CAP=31∠CAB ,∠CDP=31∠CDB ,试问∠P 与∠C 、∠B之间的数量关系为: ______ (用α、β表示∠P,不必证明)八年级数学答案一.选择题(共10小题,每小题3分,满分30分)题号 1234567 8 9 10 答案C C B A A DCDBB二.填空题(共8小题,每小题3分,满分24分)11.(1,-1) ,12.3x ≠,13.三,14.稳定性15.17 16.-1,17.4 ,18.67.5°或22.5° 三.解答题(共6小题,满分66分)19.(1) 略…3分(2)体育馆C (1,-3),食堂D (2,0)…6分 (3)四边形ABCD 的面积=10.…8分20.(1)y=2x+3,……5分(2)1-=a …10分21.解:(1) ∴点C 的坐标为(4,4). ……………5分(2)点A 的坐标为(6,0),∴OA=6,∴S △OAC=21OA •yC=21×6×4=12.…10分22.(1)∵CD 为高,∴∠CDB=90°,∴∠BCD=90°-∠B ,∵CE 为角平分线,∴∠BCE=∠ACB ,而∠ACB=180°-∠A-∠B ,∴∠BCE=(180°-∠A-∠B )=90°-(∠A+∠B ),∴∠ECD=∠BCE-∠BCD =90°-(∠A+∠B )-(90°-∠B )=(∠B-∠A ), 当∠A=30°,∠B=50°时,∠ECD=×(50°-30°)=10°; ………………………8分 (2)由(1)得∠ECD=(∠B-∠A ).………………………12分23.(1)1000,3,12,,3250…………4分(2)250……8分(3)32000……12分24.(1)证明:在△AOB 中,∠A+∠B+∠AOB=180°,在△COD 中,∠C+∠D+∠COD=180°, ∵∠AOB=∠COD ,∴∠A+∠B=∠C+∠D ;…………3分 (2)26°.…………7分 (3)如图3,∵AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE ,∴∠1=∠2,∠3=∠4,∴∠PAD=180°-∠2,∠PCD=180°-∠3,∵∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4, ∴2∠P=∠B+∠D ,∴∠P=(∠B+∠D )=×(36°+16°)=26°;……………11分(4)∠P=α+β; …………………………14分。
2018-2019学年八年级上学期 期中考试数学试题(含答案)
2018-2019学年八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(3分)在平面直角坐标系中,点(3,﹣2)关于y轴对称的点的坐标是()A.(3,2)B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)3.(3分)下列长度的三条线段能组成三角形的是()A.1cm 2cm 3cm B.6cm 2cm 3cmC.4cm 6cm 8cm D.5cm 12cm 6cm4.(3分)如图,在△ABC中,∠A=55°,∠B=45°,那么∠ACD的度数为()A.110 B.100 C.55 D.455.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE6.(3分)如图,△ABC与△A′B′C′关于直线MN对称,P为MN上任一点(P不与AA′共线),下列结论中错误的是()A.△AA′P是等腰三角形B.MN垂直平分AA′,CC′C.△ABC与△A′B′C′面积相等D.直线AB、A′B′的交点不一定在MN上7.(3分)如图,△ABC中,AB=AC,∠BAC=100°,AD是BC边上的中线,且BD=BE,则∠ADE的大小为()A.10°B.20°C.40°D.70°8.(3分)如图,在△ABC中,BE、CE分别是∠ABC和∠ACB的平分线,过点E作DF∥BC 交AB于D,交AC于F,若AB=4,AC=3,则△ADF周长为()A.6 B.7 C.8 D.109.(3分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)10.(3分)已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点所构成的三角形是()A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形二、填空题(共6小题,每小题3分,满分18分)11.(3分)在△ABC中,已知∠A=60°,∠B=80°,则∠C是°.12.(3分)五边形的内角和为.13.(3分)如图,△ABC的边BC的垂直平分线M N交AC于D,若△ADB的周长是10cm,AB=4cm,则AC=cm.14.(3分)如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D到AB 的距离是.15.(3分)如图,把长方形纸片ABCD纸沿对角线折叠,若∠BDE=25°,那么∠BED=.16.(3分)如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF 分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM 周长的最小值为.三、解答题(本题共9小题,共86分)17.(8分)一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.18.(8分)如图,AB=AC,AE=AF.求证:∠B=∠C.19.(8分)如图,在直角坐标系中,先描出点A(1,3),点B(4,1).(1)描出点A关于x轴的对称点A1的位置,写出A1的坐标;(2)用尺规在x轴上找一点C,使AC+BC的值最小(保留作图痕迹);(3)用尺规在x轴上找一点P,使PA=PB(保留作图痕迹).20.(8分)如图,△ABC是等腰三角形,AB=AC,∠A=36°.21.(1)尺规作图:作∠B的角平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)判断△DBC是否为等腰三角形,并说明理由.21.(8分)已知三角形一条边上的中线等于这条边的一半,证明这个三角形是直角三角形.22.(10分)如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.23.(10分)如图,△ABC是等边三角形,BD⊥AC,AE⊥BC,垂足分别为D、E,AE、BD相交于点O,连接DE.(1)判断△CDE的形状,并说明理由.(2)若AO=12,求OE的长.24.(12分)如图1和2,△ABC中,BE平分∠ABC交AC边于点E,(1)过点E作DE∥BC交AB于点D,求证:△BDE为等腰三角形;(2)若AB=AC,AF⊥BD,∠ACD=∠ABC,判断BF、CD、DF的数量关系,并说明理由.25.(14分)在平面直角坐标系中,点A(a,b)的坐标满足(a﹣2)2+(b+2)2=0(1)A点坐标为,则OA==;(2)y轴上是否存在点P使△OAP为等腰三角形,若存在请求出P点坐标;(3)若直线l过点A,且平行于y轴,如果点N的坐标是(﹣n,0),其中n>0,点N关于y轴的对称点是点N1,点N1关于直线l的对称点是点N2,求NN2的长.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选;B.2.(3分)在平面直角坐标系中,点(3,﹣2)关于y轴对称的点的坐标是()A.(3,2)B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)【解答】解:点(3,﹣2)关于y轴对称的点的坐标是(﹣3,﹣2),故选:D.3.(3分)下列长度的三条线段能组成三角形的是()A.1cm 2cm 3cm B.6cm 2cm 3cmC.4cm 6cm 8cm D.5cm 12cm 6cm【解答】解:A.∵1+2=3,∴1cm 2cm 3cm不能组成三角形,故A错误;B.∵3+2<6,∴6cm 2cm 3cm不能组成三角形,故B错误;C.∵4+6>8,∴4cm 6cm 8cm能组成三角形,故C正确;D.∵5+6<12,∴5cm 12cm 6cm不能组成三角形,故D错误;故选:C.4.(3分)如图,在△ABC中,∠A=55°,∠B=45°,那么∠ACD的度数为()A.110 B.100 C.55 D.45【解答】解:由三角形的外角的性质可知,∠ACD=∠A+∠B=100°,故选:B.5.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE【解答】解:当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS),故选:B.6.(3分)如图,△ABC与△A′B′C′关于直线MN对称,P为MN上任一点(P不与AA′共线),下列结论中错误的是()A.△AA′P是等腰三角形B.MN垂直平分AA′,CC′C.△ABC与△A′B′C′面积相等D.直线AB、A′B′的交点不一定在MN上【解答】解:∵△ABC与△A′B′C′关于直线MN对称,P为MN上任意一点,∴△AA′P是等腰三角形,MN垂直平分AA′,CC′,这两个三角形的面积相等,A、B、C选项正确;直线AB,A′B′关于直线MN对称,因此交点一定在MN上.D错误;故选D.7.(3分)如图,△ABC中,AB=AC,∠BAC=100°,AD是BC边上的中线,且BD=BE,则∠ADE的大小为()A.10°B.20°C.40°D.70°【解答】解:∵△A BC中,AB=AC,∠BAC=100°∴∠B=∠C=(180°﹣∠BAC)=(180°﹣100°)=40°∵BD=BE∴∠BED=∠BDE=(180°﹣∠B)=(180°﹣40°)=70°∴∠ADE=90°﹣70°=20°.故选B.8.(3分)如图,在△ABC中,BE、CE分别是∠ABC和∠ACB的平分线,过点E作DF∥BC交AB于D,交AC于F,若AB=4,AC=3,则△ADF周长为()A.6 B.7 C.8 D.10【解答】(1)证明:∵E是∠ABC,∠ACB平分线的交点,∴∠EBD=∠EBC,∠ECF=∠ECB,∵DF∥BC,∴∠DEB=∠EBC,∠FEC=∠ECB,∴∠DEB=∠DBE,∠FEC=∠FCE,∴DE=BD,EF=CF,∴DF=DE+EF=BD+CF,即DE=BD+CF,∴△ADF的周长=AD+DF+AF=(AD+BD)+(CF+AF)=AB+AC,∵AB=4,AC=3,∴△ADF的周长=4+3=7,故选B.9.(3分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.10.(3分)已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点所构成的三角形是()A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形【解答】解:根据轴对称的性质可知,OP1=OP2=OP,∠P1OP2=60°,∴△P1OP2是等边三角形.故选:D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)在△ABC中,已知∠A=60°,∠B=80°,则∠C是40°.【解答】解:∵∠A=60°,∠B=80°,∴∠C=180°﹣60°﹣80°=40°,故答案为:40.12.(3分)五边形的内角和为540°.【解答】解:(5﹣2)•180°=540°.故答案为:540°.13.(3分)如图,△ABC的边BC的垂直平分线MN交AC于D,若△ADB的周长是10cm,AB=4cm,则AC=6cm.【解答】解:∵MN是线段BC的垂直平分线,∴CD=BD,∵△ADB的周长是10cm,∴AD+BD+AB=10cm,∴AD+CD+AB=10cm,∴AC+AB=10cm,∵AB=4cm,∴AC=6cm,故答案为:6.14.(3分)如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D到AB 的距离是3.【解答】解:作DE⊥AB于E,∵AD是∠CAB的角平分线,∠C=90°,∴DE=DC,∵DC=3,∴DE=3,即点D到AB的距离DE=3.故答案为:3.15.(3分)如图,把长方形纸片ABCD纸沿对角线折叠,若∠BDE=25°,那么∠BE D=130°.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠BDE=∠DBC,根据折叠的性质得:∠EBD=∠DBC,∴∠EBD=∠EDB=25°,∴∠BED=130°,故答案为:130°.16.(3分)如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF 分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM 周长的最小值为10.【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=16,解得AD=8,∵E F是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.故答案为:10.三、解答题(本题共9小题,共86分)17.(8分)一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.【解答】解:设这个多边形的边数是,则(n﹣2)×180=360×4,n﹣2=8,n=10.答:这个多边形的边数是10.18.(8分)如图,AB=AC,AE=AF.求证:∠B=∠C.【解答】证明:在△ABF和△ACE中,∴△ABF≌△ACE(SAS),∴∠B=∠C.19.(8分)如图,在直角坐标系中,先描出点A(1,3),点B(4,1).(1)描出点A关于x轴的对称点A1的位置,写出A1的坐标(1,﹣3);(2)用尺规在x轴上找一点C,使AC+BC的值最小(保留作图痕迹);(3)用尺规在x轴上找一点P,使PA=PB(保留作图痕迹).【解答】解:(1)如图所示:A1的坐标(1,﹣3);故答案为:(1,﹣3);(2)如图所示:点C即为所求;(3)如图所示:点P即为所求.20.(8分)如图,△ABC是等腰三角形,AB=AC,∠A=36°.(1)尺规作图:作∠B的角平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)判断△DBC是否为等腰三角形,并说明理由.【解答】解:(1)如图所示:BD即为所求;(2)∵AB=AC,∴∠ABC=∠C,∵∠A=36°,∴∠ABC=∠ACB=(180°﹣36°)÷2=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠BDC=36°+36°=72°,∴BD=BC,∴△DBC是等腰三角形.21.(8分)已知三角形一条边上的中线等于这条边的一半,证明这个三角形是直角三角形.【解答】已知:如图1,在△ABC中,点D是AB的中点,连接CD,且CD=AB求证:△ABC为直角三角形证明:由条件可知,AD=BD=CD则∠A=∠DCA,∠B=∠DCB又∵∠A+∠DCA+∠B+∠DCB=180°∴∠DCA+∠DCB=90°即∠ACB=90°∴△ABC为直角三角形22.(10分)如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.【解答】(1)解:∵∠BAC=50°,AD平分∠BAC,∴∠EAD=∠BAC=25°,∵DE⊥AB,∴∠AED=90°,∴∠EDA=90°﹣25°=65°.(2)证明∵DE⊥AB,∴∠AED=90°=∠ACB,又∵AD平分∠BAC,∴∠DAE=∠DAC,∵AD=AD,∴△AED≌△ACD,∴AE=AC,∵AD平分∠BAC,∴AD⊥CE,即直线AD是线段CE的垂直平分线.23.(10分)如图,△ABC是等边三角形,BD⊥AC,AE⊥BC,垂足分别为D、E,AE、BD相交于点O,连接DE.(1)判断△CDE的形状,并说明理由.(2)若AO=12,求OE的长.【解答】解:(1)∵△ABC是等边三角形,且BD⊥AC,AE⊥BC,∴∠C=60°,CE=BC,CD=AC;而BC=AC,∴CD=CE,△CDE是等边三角形.(2)由(1)知:AE、BD分别是△ABC的中线,∴AO=2OE,而AO=12,∴OE=6.24.(12分)如图1和2,△ABC中,BE平分∠ABC交AC边于点E,(1)过点E作DE∥BC交AB于点D,求证:△BDE为等腰三角形;(2)若AB=AC,AF⊥BD,∠ACD=∠ABC,判断BF、CD、DF的数量关系,并说明理由.【解答】(1)证明:∵BE平分∠ABC,∴∠ABE=∠EBC,∵DE∥BC,∴∠DEB=∠EBC=∠ABE,∴BD=ED,∴△DBE为等腰三角形;(2)解:过A作AG=AD,交BD于G,∵AF⊥BD,∴DF=FG,∵∠ACD=∠ABC,BE平分∠ABC,∴∠ACD=∠ABD,∴A,B,C,D四点共圆,∴∠DAC=∠CBD,∠ADB=∠ACB=∠ABC=∠AGD,∵∠AGD=∠BAG+∠ABG,∠ABG=ABC=∠AGD,∴∠BAG=∠CAD,在△ABG与△ACD中,∴△ABG≌△ACD,∴BG=CD,∴BF=BG+DF,即BF=CD+DF.25.(14分)在平面直角坐标系中,点A(a,b)的坐标满足(a﹣2)2+(b+2)2=0(1)A点坐标为(2,﹣2),则OA==2;(2)y轴上是否存在点P使△OAP为等腰三角形,若存在请求出P点坐标;(3)若直线l过点A,且平行于y轴,如果点N的坐标是(﹣n,0),其中n>0,点N关于y轴的对称点是点N1,点N1关于直线l的对称点是点N2,求NN2的长.【解答】解:(1)∵(a﹣2)2+(b+2)2=0,∴a﹣2=0且b+2=0,则a=2,b=﹣2,故A(2,﹣2),OA==2.故答案是:(2,﹣2),2.(2)如图1所示,①当OA=OP=2时,符合条件的点P的坐标是P(0,﹣4),P′(0,2);②当OP=AP=2时,符合条件的点P的坐标是P″(0,﹣2);综上所述,符合条件的点的坐标是:P(0,﹣4)或P′(0,2)或P″(0,﹣2);(3)如图2,①当n≥2时,∵N与N1关于y轴对称,N(﹣n,0),∴N1(n,0),又∵N1与N2关于l:直线x=3对称,设N2(x,0),可得:=2,即x=4﹣n,∴N2(4+n,0),则NN2=4﹣n﹣(﹣n)=4.②如图3,当0<a<2时,∵N与N1关于y轴对称,N(﹣n,0),∴N1(n,0),又∵N1与N2关于l:直线x=2对称,设N2(x,0),可得:=2,即x=4﹣n,∴P2(4﹣n,0),则PP2=4﹣n+n=4.③综上所述,NN2的长是4.。
18-19第一学期期中试初二数学试题+答案
2018—2019学年度第一学期期中考试八 年 级 数 学 试 卷说明:本卷共8页,25小题,总分120分。
一、精心选一选(本大题共10小题,每小题3分,共30分)1、在722;-π;4 ;0;22;3π;0.33 ;0.3131131113 中,属于无理数的有( )个A 、2B 、3C 、4D 、5 2、点A (a ,3),点B (2,b )关于y 轴对称,则 b a + 的算术平方根为( )A 、1B 、2C 、1±D 、-13、若5=a 3=,且0a b +<,则a b -的值是( )A 、2或8B 、-2或8C 、2或 -8D 、-2或-84、将一根23cm 的筷子,置于底面直径为12cm ,高9cm 的圆柱形水杯中,如图,设筷子露在杯子外面的长度为h cm ,则h 的取值范围是( )A 、h ≤15cmB 、h ≥9cmC 、12cm ≤h ≤14cmD 、8cm ≤h ≤14cm 5、下列运算正确的是( )A 、3232+=+B 、33=-a aC 、 ()532a a = D 、2)3(-=36、今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s 与t 之间的函数关系如图所示.下列说法错误的是( ) A 、小明中途休息用了20分钟B 、小明在上述过程中所走的路程为6 600米C 、小明休息前爬山的平均速度为每分钟70米D 、小明休息前爬山的平均速度大于休息后爬山的平均速度7、直线y kx b =+经过一、三、四象限,则直线y bx k =-的图象只能是图中的( )8、在△ABC 中,若AB=20,AC=13,高AD=12,则△ABC 的周长为( ) A .54 B .44 C .54或44 D .以上都不对 9、若函数()8223--=mx m m y 是正比例函数,则m 的值是( ) A 、±3 B 、-3 C 、3 D 、-110、如图,P 是等边△ABC 形内一点,连接PA 、PB 、PC ,PA :PB :PC=3:4:5,以AC 为边在形外作△AP ′C ≌△APB ,连接PP ′,则以下结论错误的是( ) A 、△APP'是等边三角形 B 、△PCP'是直角三角形 C 、∠APB=150° D 、∠APC=135°二、耐心填一填(本大题共6小题,每小题4分,共24分) 1112、若函数y =2x +3与y =4x -2b 的图象交x 轴于同一点,则b 的值为 13、若实数x 、y 满足0268=-+-yy x ,则以x 、y 的值为边长的直角三角形的周长为 .14、如图,已知点A (1,1)、B (3,2),且P 为x 轴 上一动点,则△ABP 的周长..的最小值为 。
学18—19学年上学期八年级期中考试数学试题(附答案)
乌市第四中学2018—2019学年度上学期阶段性诊断测试八年级数学试题时间100分钟总分100分得分---------------一、选择题。
(每题3分,共30分)1、在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()2、以下各组线段为边,能组成三角形的是()A.2cm,4cm,6cm B.8cm,6cm,4cmC.14cm,6cm,7cm D.2cm,3cm,6cm3、点(﹣3,2)关于x轴的对称点是()A.(﹣3,﹣2)B.(3,2)C.(﹣3,2)D.(3,﹣2)4、如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD5、如图,把一副含30°角和45°角的直角三角板拼在一起,那么图中∠ADE是()A.100°B.120°C.135°D.150°第4题图第5题图第7题图第8题图6、在△ABC内一点P满足PA=PB=PC,则点P一定是△ABC()A.三条角平分线的交点B.三边垂直平分线的交点C.三条高的交点D.三条中线的交点7、如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.90°B.150°C.180°D.210°8、如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.609、等腰三角形一腰上的高等于该三角形另一边长的一半,则其顶角等于()A.30°B.30°或150°C.120°或150°D.120°,30°或150°10、如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法正确的是()①△ABE与△BCE的面积相等;②∠AFG=∠AGF;③∠F AG=2∠ACF;④BH=CHA.①②③B.②③④C.①③④D.①②③④二、填空题(本大题共5个小题,每小题3分,共15分)11、已知正n边形的一个外角是45°,则n=____________12、如右图,在△ABC中,BC=10,AB的垂直平分线交BC于D,AC的垂直平分线交BC与E,则△ADE的周长等于___________.13、如图所示,在△ABC中,已知点D,E,F分别为BC,AD,BE的中点.且S△ABC=8cm2,则图中△CEF的面积=____________.14、△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,点D为AB的中点.如果点P 在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A 点运动.若点Q的运动速度为v厘米/秒,则当△BPD与△CQP全等时,v的值为________厘米/秒.第10题图第12题图第13题图第14题图15. 如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是..,.。
学18—19学年上学期八年级期中考试数学试题(附答案)
2018-2019学年南平三中第一学期期中质量检测八年级数学试题(满分:150分;考试时间:120分钟)★友情提示:①所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效;②试题未要求对结果取近似值的,不得采取近似计算.一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡...的相应位置填涂)1.如下图形中,不.是.轴对称图形的是()2.下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.3.长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是()A.9 B.5 C.6 D.44.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块第4题第6题第7题第8题5.将点P(4,﹣5)关于y轴对称得P1,则P1的坐标为()A .(4,5)B .(﹣4,5)C .(4,﹣5)D .(﹣ 4,﹣5)6.如图,△ABC ≌△EBD ,AB=3cm ,BC=4cm ,AC=5cm,则BE 的长度为( )A .3cmB .4cmC .5cmD .1cm7. 如图,在△ABC 中,∠A=70°,点D 是BC 延长线上一点,∠ACD=150°,则∠B 等于( )A .60°B .70°C .80°D .90°8.如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,若DE=5,则DF 的值是( )A .5B .10C .2.5D .49.已知等腰三角形的一个内角是40°,则它的顶角是( )A .100°B .40°C .70°或50°D .40°或100°10.如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,AB=10,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC+PQ 的最小值( )A .2.4B .4C .5D .4.8二、填空题(本题共6小题,每小题4分,共24分.请将答案填入答题卡...的相应位置) 11.一个正多边形的一个外角都是36°,则这个多边形是________边形.12.如图,为了使木门不变形,木工师傅在木门上加钉了一根木条,这样是利用三角形的 .第10题 第12题 第13题13.如图所示,∠A+∠B +∠C +∠D +∠E +∠F =__________. 14.在Rt △ABC 和Rt △A′B′C′中,AB=A′B′,AC=A′C′,∠C=∠C′=90°,则Rt △ABC ≌Rt △A′B′C′的根据是 .第16题15.如果等腰三角形两边长是4cm 和8cm ,那么它的周长是 cm .16. 如图,△ABC 和△CDE 都是等边三角形,B 、C 、D 三点在一条直线上,AD 与BE 相交于点P ,AC 、BE 相交于点M ,AD 、CE 相交于点N ,则下列五个结论:①AD=BE ;②∠BMC=∠ANC ;③∠APM=60∘;④CP 平分∠MCN ;⑤△CMN 是等边三角形.其中,一定正确的是 (填序号)三、解答题(本大题共9小题,共86分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018学年第一学期八年级期初考试数学试题卷(2018.8.31)一、仔细选一选(本题有10个小题,每小题3分,共30分) 1.下列计算正确的是( )A .b a b a b a 224-=÷-B .()222b a b a -=-C .632a a a =∙D .22223a a a -=+- 2.已知关于x ,y 的方程64122=+++--n m n m y x 是二元一次方程,则m ,n 的值为( )A .1,1-==n mB .1,1=-=n mC .34,31-==n m D .34,31=-=n m 3.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为( )A .14°B .16°C .90°﹣αD .α﹣44°5.若4)32(22+-+x p x 是完全平方式,则p 的值等于( ) A .B .2C .2或1D .或6.将下列多项式因式分解,结果中不含有因式1+a 的是( )A .12-aB .a a +2C .()112+--a aD .()()12222++-+a a7.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设实际参加游览的同学共x 人,则所列方程为( )A .32180180=+-x x B .31802180=-+x x C .32180180=--x x D .31802180=--xx8.比较552、443、554的大小( ) A .552<443<554 B .554<443<552 C .552<554<443D .443<554<5529.下面的统计图反映了我市2011﹣2016年气温变化情况,下列说法不合理的是( ) A .2011﹣2014年最高温度呈上升趋势B .2014年出现了这6年的最高温度C .2011﹣2015年的温差成下降趋势D .2016年的温差最大10.设a ,b 是实数,定义关于“*”的一种运算如下:()()22b a b a b a --+=*.则下列结论:①若a*b=0,则a=0或b=0;②不存在实数a ,b ,满足a*b=a 2+4b 2;③a*(b+c )=a*b+a*c ; ④若ab ≠0,a*b=8,则÷=.其中正确的是( ) A .①②③B .①③④C .①②④D .②③④二、认真填一填 (本题有6个小题, 每小题4分, 共24分) 11.分式有意义的条件是 ;用科学记数法表示0.00000201为 __12.分解因式:16m 2﹣4= .13.在二元一次方程2x ﹣3y+1=0中,用含x 的代数式表示y ,得 . 14.如图,已知△ABC ≌△DEF ,∠A=25°,∠B=105°,则∠F= .15.为了了解某地区45000名九年级学生的睡眠情况,运用所学统计知识解决上述问题所要经历的几个主要步骤:①抽样调查;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据,按操作的先后进行排序为 ____.(只写序号) 16.七张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 应满足的关系式是___________.三、解答题(共7题,共66分) 17.(本题6分)计算:(1)()⎪⎭⎫ ⎝⎛-∙+-4232313a a a ;(2)()⎪⎭⎫ ⎝⎛---x x 231422. 18.(本题8分)解下列方程(组)(1)﹣1=(2).19.(本题8分)先化简(﹣x+1)÷,再从﹣1,+1,﹣2中选择合适的x值代入求值.20.(本题10分)一次统计七年级若干名学生每分钟跳绳次数的频数直方图和扇形统计图如图,请根据图给的信息回答下列问题:(1)参加测试的总人数是多少? (2)数据分组时,组距是多少?(3)频数分布直方图中,自左至右第一组的两个边界值分别是多少?该组频数是多少?(4)请补全频数直方图(并标上频数),在扇形统计图中补上另外三个扇形的圆心角度数.21.(本题10分)如图,AB ∥CD ,EF ∥MN ,∠1=115°. (1)求∠2和∠3的度数;(2)本题隐含着一个规律,请你根据(1)的结果进行归纳,用文字表述出来; (3)利用(2)的结论解答:如果两个角的两边分别平行,其中一个角是另一个角的两倍,求这两个角的度数.22.(本题12分)用四块完全相同的小长方形拼成的一个“回形”正方形.(1)用不同代数式表示图中的阴影部分的面积,你能得到怎样的等式,试用乘法公式说明这个等式成立;(2)利用(1)中的结论计算:a+b=2,ab=,求a ﹣b ;(3)根据(1)中的结论,直接写出x+和x ﹣之间的关系;若x 2﹣3x+1=0,分别求出x+和(x ﹣)2的值.23.(本题12分)一张如图1的长方形铁皮,四个角都剪去边长为30厘米的正方形,再四周折起,做成一个有底无盖的铁盒如图2,铁盒底面长方形的长是4a(cm),宽是3a(cm),这个无盖铁盒各个面的面积之和称为铁盒的全面积.(1)请用a的代数式表示图1中原长方形铁皮的面积;(2)若要在铁盒的各个外表面漆上某种油漆,每元钱可漆的面积为(cm2),则油漆这个铁盒需要多少钱(用a的代数式表示)?(3)铁盒的底面积是全面积的几分之几(用a的代数式表示)?若铁盒的底面积是全面积的,求a的值;(4)是否存在一个正整数a,使得铁盒的全面积是底面积的正整数倍?若存在,请求出这个a,若不存在,请说明理由.2018学年第一学期八年级期初考试数学试题卷参考答案一、 选择题:本题10小题,每小题3分,共30分。
1-10: DABAD CDCCB二、 填空题:本题6小题,每小题4分,共24分。
11. x ≠﹣1 ;2.01×10﹣612. 4(2m+1)(2m ﹣1) 13.14. 50° 15. ②①④⑤③ 16. a=3b三、 解答题:本题共7小题,共66分。
17.(6分)(1) (﹣a 2)3+3a 2•(﹣a 4) (2)(2﹣x )2﹣4(1﹣x )=﹣a 6﹣a 6 =4﹣4x+x 2﹣4+6x =﹣2a 6; =x 2+2x .18. (8分)(1)去分母得:x 2+2x ﹣x 2﹣x+2=3, (2)解得:x=1, ②﹣①×3得:x=5, 经检验x=1为增根,原分式方程无解; 把x=5代入①得:y=5, 则方程组的解为.19. (8分) 解:(﹣x+1)÷===,要使分式有意义,故1-≠x ,且2-≠x312+=x y∴当x=1时,原式=.20.(10分)解:(1)∵第三组所在扇形圆心角的度数是144°,占=,又∵频数为6,∴参加测试的总人数为6÷=15;(2)组距为87﹣62=25;(3)频数分布直方图中,自左至右第一组的两个边界值分别是62﹣=49.5,62+=74.5,该组频数是2;(4)第四组的频数为15﹣(2+4+6)=3,360°×=48°,360°×=96°,360°×=72°.如右图:21.(10分)解:(1)∵AB∥CD,∴∠1+∠4=180°,①∵EF∥MN,∴∠2+∠4=180°,②由①、②,得∠2=∠1,又∵∠1=115°,∴∠2=115°∵∠3+∠2=180°,∴∠3=180°﹣∠2=180°﹣115°=65°;(2)如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补.(3)根据(2),设其中一个角为x°,则另一个角为2x°,则x+2x=180,解得:x=60,∴这两个角的度数为60°,120°.22.(12分)解:(1)阴影部分的面积为:4ab或(a+b)2﹣(a﹣b)2,得到等式:4ab=(a+b)2﹣(a﹣b)2,说明:(a+b)2﹣(a﹣b)2=a2+2ab+b2﹣(a2﹣2ab+b2)=a2+2ab+b2﹣a2+2ab﹣b2=4ab.(2)(a﹣b)2=(a+b)2﹣4ab==4﹣3=1,∴a﹣b=±1.(3)根据(1)中的结论,可得:,∵x2﹣3x+1=0,方程两边都除以x得:,∴,∴.23.(12分)解:(1)原铁皮的面积是(4a+60)(3a+60)=12a2+420a+3600;(2)油漆这个铁盒的表面积是:12a2+2×30×4a+2×30×3a=12a2+420a,则油漆这个铁盒需要的钱数是:(12a2+420a)÷=(12a2+420a)×=600a+21000(元);(3)铁盒的底面积是全面积的=;根据题意得:=,解得a=105;(4)铁盒的全面积是4a×3a+4a×30×2+3a×30×2=12a2+420a,底面积是12a2,假设存在正整数n,使12a2+420a=n(12a2)则(n﹣1)a=35,则a=35,n=2或a=7,n=6或a=5,n=8或a=1,n=36所以存在铁盒的全面积是底面积的正整数倍,这时a=35或7或5或1.。