宜昌市2020届高三年级3月线上统一测试文科数学试题答案

合集下载

2020届全国第三次(3月)在线大联考(新课标Ⅲ卷)数学(文)试题解析

2020届全国第三次(3月)在线大联考(新课标Ⅲ卷)数学(文)试题解析

绝密★启用前2020届全国第三次(3月)在线大联考(新课标Ⅲ卷)数学(文)试题注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上 一、单选题1.已知集合2{|1}A x x =<,{|ln 1}B x x =<,则 A .{|0e}A B x x =<<I B .{|e}A B x x =<I C .{|0e}A B x x =<<U D .{|1e}A B x x =-<<U答案:D 解:因为2{|1}{|11}A x x x x =<=-<<,{|ln 1}{|0e}B x x x x =<=<<, 所以{|01}A B x x =<<I ,{|1e}A B x x =-<<U ,故选D . 2.已知i 为虚数单位,若复数12i12iz +=+-,则z = A .9i 5+B .1i -C .1i +D .i -答案:B 解:因为212i (12i)(2i)2i 4i 2i 1111i 2i (2i)(2i)5z ++++++=+=+=+=+--+,所以1i z =-,故选B . 3.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,若双曲线C 的一条渐近线的倾斜角为3π,且点F ,则双曲线C 的实轴的长为A .1B .2C .4D 答案:B 解:双曲线C 的渐近线方程为by x a=±,由题可知tan 3b a π==.设点(c,0)F ,则点F 到直线3y x =的距离为22|3|3(3)(1)c =+-,解得2c =,所以222222344c a b a a a =+=+==,解得1a =,所以双曲线C 的实轴的长为22a =,故选B .4.从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图:根据频率分布直方图,可知这部分男生的身高的中位数的估计值为 A .171.25cm B .172.75cm C .173.75cm D .175cm答案:C 解:由题可得0.00520.02020.040(1)10a ⨯++⨯+⨯=,解得0.010a =, 则(0.0050.0100.020)100.35++⨯=,0.350.040100.750.5+⨯=>, 所以这部分男生的身高的中位数的估计值为0.50.3517010173.75(cm)100.040-+⨯=⨯,故选C .5.某几何体的三视图如图所示,若侧视图和俯视图均是边长为2的等边三角形,则该几何体的体积为A .83B 43C .1D .2答案:C解:由三视图可知,该几何体是三棱锥,底面是边长为2的等边三角形,三棱锥的高为3,所以该几何体的体积1132231322V=⨯⨯⨯⨯⨯=,故选C.6.已知实数,x y满足约束条件11220220xyx yx y≥-⎧⎪≥-⎪⎨-+≥⎪⎪--≤⎩,则23x y-的最小值是A.2-B.72-C.1 D.4答案:B解:作出该不等式组表示的平面区域,如下图中阴影部分所示,设23z x y=-,则2133y x z=-,易知当直线2133y x z=-经过点D时,z取得最小值,由1220xx y=-⎧⎨-+=⎩,解得112xy=-⎧⎪⎨=⎪⎩,所以1(1,)2D-,所以min172(1)322z=⨯--⨯=-,故选B.7.函数52sin()([,0)(0,])33x xx xf x x-+=∈-ππ-U的大致图象为A.B.C .D .答案:A 解: 因为5()2sin()52sin ()()3333x x x xx x x xf x f x ---+-+-===--,所以函数()f x 是偶函数,排除B 、D ,又5()033f π-πππ=>-,排除C ,故选A .8.如图,在三棱锥D ABC -中,DC ⊥平面ABC ,AC BC ⊥,2AC BC CD ===,E ,F ,G 分别是棱AB ,AC ,AD 的中点,则异面直线BG 与EF 所成角的余弦值为A .0B .63C .33D .1答案:B 解:根据题意可得BC ⊥平面ACD ,EF BC ∥,则CBG ∠即异面直线BG 与EF 所成的角,连接CG ,在Rt CBG △中,cos BCCBG BG∠=,易得22BD AD AB ===6BG =cos CBG ∠=66=,故选B . 9.历史上有不少数学家都对圆周率作过研究,第一个用科学方法寻求圆周率数值的人是阿基米德,他用圆内接和外切正多边形的周长确定圆周长的上下界,开创了圆周率计算的几何方法,而中国数学家刘徽只用圆内接正多边形就求得π的近似值,他的方法被后人称为割圆术.近代无穷乘积式、无穷连分数、无穷级数等各种π值的表达式纷纷出现,使得π值的计算精度也迅速增加.华理斯在1655年求出一个公式:π2244662133557⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯L L,根据该公式绘制出了估计圆周率π的近似值的程序框图,如下图所示,执行该程序框图,已知输出的 2.8T >,若判断框内填入的条件为?k m ≥,则正整数m 的最小值是A .2B .3C .4D .5答案:B 解:初始:1k =,2T =,第一次循环:2282 2.8133T =⨯⨯=<,2k =,继续循环;第二次循环:8441282.833545T =⨯⨯=>,3k =,此时 2.8T >,满足条件,结束循环, 所以判断框内填入的条件可以是3?k ≥,所以正整数m 的最小值是3,故选B .10.已知函数()2sin()(0,0)3f x x A ωωπ=->>,将函数()f x 的图象向左平移3π个单位长度,得到函数()g x 的图象,若函数()g x 的图象的一条对称轴是6x π=,则ω的最小值为 A .16B .23C .53D .56答案:C 解:将函数()f x 的图象向左平移3π个单位长度,得到函数()2sin()33g x x ωωππ=+-的图象,因为函数()g x 的图象的一条对称轴是6x π=,所以sin()1633ωωπππ+-=±,即,6332k k ωωππππ+-=+π∈Z ,所以52,3k k ω=+∈Z ,又0>ω,所以ω的最小值为53.故选C .11.已知抛物线2:2(0)C y px p =>的焦点为F ,过点F 的直线l 与抛物线C 交于A ,B 两点(设点A 位于第一象限),过点A ,B 分别作抛物线C 的准线的垂线,垂足分别为点1A ,1B ,抛物线C 的准线交x 轴于点K ,若11||2||A KB K =,则直线l 的斜率为 A .1 BC.D答案:C 解:根据抛物线定义,可得1||||AF AA =,1||||BF BB =, 又11AA FK BB ∥∥,所以11||||2||||A K AF B K BF ==,所以1111||||2||||A K AAB K BB ==, 设1||(0)BB m m =>,则1||2AA m =,则111||||21cos cos ||23AA BB m m AFx BAA AB m m --∠=∠===+,所以sin 3AFx ∠=,所以直线l的斜率tan k AFx =∠=C . 12.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知23C π=,1c =.当,a b 变化时,若z b a λ=+存在最大值,则正数λ的取值范围为 A .(0,1) B .(0,2) C .1(,2)2D .(1,3)答案:C 解: 因为23C π=,1c =,所以根据正弦定理可得sin sin sin a b c A B C ===,所以a A =,b B =,所以sin()])sin 32z b a B A B B B λλλπ=+==+-=-+])B B φ=+,其中tan φ=,03B π<<, 因为z b a λ=+存在最大值,所以由2,2B k k φπ+=+π∈Z ,可得22,62k k k φπππ+<<π+∈Z ,所以tan φ>>,解得122λ<<,所以正数λ的取值范围为1(,2)2,故选C .二、填空题13.已知向量(2,1)a =-,(1,)m =b ,若向量+a b 与向量a 平行,则实数m =___________.。

2020届高三下学期第三次月考试数学文科试卷

2020届高三下学期第三次月考试数学文科试卷

n(ad bc)2

(a b)(c d)(a c)(b d)
P(K 2…K )
0.050
0.010
0.001
精品 文档 欢迎下载
K
3.841
6.635
10.828
18.( 12 分)在 V ABC 中,角 A, B, C 的对边分别为 a, b, c ,且 2ccosB 2a b . ( I)求角 C 的大小;
因为四边形 ABCD 是菱形, BAD 120 ,且 PC PB , 所以 BC AM , BC PM ,又 AM I PM M ,
所以 BC ⊥ 平面 APM,又 AP 平面 APM,
所以 BC PA.
同理可证: DC PA ,又 BC I DC C ,
所以 PA 平面 ABCD ,所以平面 PAF 平面 ABCD ,
C
:
x2 a2
y2 b2
1(a 0,b 0) ,点 P x0, y0 是直线 bx ay 4a 0 上任意一点,若

2
圆 x x0
y y0 1 与双曲线 C 的右支没有公共点,则双曲线的离心率取值范围是
A . 1,2
B. 1,4
C. 2,
D . 4,
2
第 II 卷 非选择题( 90 分)
精品 文档 欢迎下载
17~21 题为必考题,每个试
题考生都必须作答。第 22、 23 题为选考题,考生根据要求作答。
(一)必考题:共 60 分。
17.( 12 分) 23.为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地 改良玉米品种, 为农民提供技术支援, 现对已选出的一组玉米的茎高进行统计, 获得茎叶图如图 (单

2019-2020年高三3月质量检测 数学(文) 含答案

2019-2020年高三3月质量检测 数学(文) 含答案

2019-2020年高三3月质量检测数学(文)含答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 共 4页.满分150分,考试时间120分钟. 考试结束,将本试卷答题纸和答题卡一并交回.第Ⅰ卷选择题(共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目用铅笔涂写在答题卡上.2.选择题每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.3.答第Ⅱ卷前将答题纸密封线内的项目填写清楚.4.第Ⅱ卷试题解答要作在答题纸各题规定的矩形区域内,超出该区域的答案无效.一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数,则的共轭复数是A. B. C. D.2.已知集合,,若,则所有实数组成的集合是A. B. C. D.3.下列各小题中,是的充要条件的是(1);(2)是奇函数;(3);(4)或;有两个不同的零点.A. B. C. D.4.设某校高三女生的体重(单位:)与身高(单位:)具有线性相关关系,根据一组样本数据,用最小二乘法建立的回归方程为,则下列结论中不正确的是:A.与具有正的线性相关关系B.回归直线可能过样本点的中心C.若该校某女生身高增加,则体重约增加D.若该校某女生身高为,则可判定其体重约为5.设抛物线的焦点为,经过点的直线与抛物线相交于两点且点恰为的中点,则A. B. C. D.6.一个样本容量为的样本数据,它们组成一个公差不为的等差数列,若且前项和,则此样本的平均数和中位数分别是A.B. C. D.Array7.右面的程序框图中,若输出的值为,则图中应填上的条件为A.B. C. D.8.设函数,则下列结论正确的是A.的图像关于直线对称B.的图像关于点对称C.的最小正周期为,且在上为增函数D.把的图像向右平移个单位,得到一个偶函数的图像9.设为平面上四点,,则A.点在线段上B.点在线段上C.点在线段上D.四点共线10.已知函数的图像与轴恰有两个公共点,则的值为A.或B. 或C. 或D. 或11.在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,为半径的圆与圆有公共点,则的最大值为A. B. C. D.12.对于正实数,记为满足下述条件的函数构成的集合:且,有.下列结论中正确的是A. 若,则B. 若且,则C. 若,则D. 若且,则二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.13.设不等式组表示的平面区域为,在区域内随机取一个点,则此点到坐标原点的距离大于的概率是.14.已知命题,命题若命题“”是真命题,则实数的取值范围为 .15.如图,已知球的面上有四点,平面,,,则球的体积与表面积的比为.16.函数的零点的个数.三、解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)设的内角所对的边分别为且.(Ⅰ)求角的大小;(Ⅱ)若,求的周长的取值范围.18.(本小题满分12分)高三某班有两个数学课外兴趣小组,第一组有名男生,名女生,第二组有名男生,名女生.现在班主任老师要从第一组选出人,从第二组选出人,请他们在班会上和全班同学分享学习心得.(Ⅰ)求选出的人均是男生的概率;(Ⅱ)求选出的人中有男生也有女生的概率. 19.(本小题满分12分)如图,在多面体中,平面∥平面,⊥平面,,,∥.且 , .ABCDEGF(Ⅰ)求证:平面; (Ⅱ)求证:∥平面; (Ⅲ)求三棱锥的体积.20.(本题满分12分)已知数列为公差不为的等差数列,为前项和,和的等差中项为,且.令数列的前项和为. (Ⅰ)求及;(Ⅱ)是否存在正整数成等比数列?若存在,求出所有的的值;若不存在,请说明理由.21.(本题满分12分)已知函数为常数)是实数集上的奇函数. (Ⅰ)求实数的值;(Ⅱ)若函数在区间上是减函数,求实数的最大值; (Ⅲ)若关于的方程有且只有一个实数根,求的值.22.(本小题满分14分)设点到直线的距离与它到定点的距离之比为,并记点的轨迹为曲线. (Ⅰ)求曲线的方程;(Ⅱ)设,过点的直线与曲线相交于两点,当线段的中点落在由四点构成的四边形内(包括边界)时,求直线斜率的取值范围.xx03文科数学 参考答案及评分标准一、二、13. 14. 或 15. 16. 三.解答题17.解(Ⅰ)由得 …………2分又sin sin()sin cos cos sin B A C A C A C =+=+11sin cos sin ,sin 0,cos 22C A C C A ∴=-≠∴=- …………4分 又 …………6分 (Ⅱ)由正弦定理得:,)())1sin sin 1sin sinl a b c B C B A B =++=++=+++11(sin )1)223B B B π=+=+…………9分22,(0,),(,)33333A B B πππππ=∴∈∴+∈, …………10分故的周长的取值范围为.…………12分18(Ⅰ)记第一组的4人分别为;第二组的5人分别为 …1分设“从第一组选出人,从第二组选出人”组成的基本事件空间为,则12112212312112211111211311111212112212312112221121221321{(,,),(,,),(,,),(,,),(,,),(,,),(,,)(,,)(,,)(,,)(,,),(,,),(,,),(,,),(,,),(,,)(,,)(,,)(,A A B A A B A A B A A b A A b A a B A a B A a B A a b A a b A a B A a B A a B A a b A a b A a B A a B A a B A a Ω=1212221222223221222121122,)(,,),(,,)(,,)(,,)(,,)(,,),(,,)(,,)b A a b A a B A a B A a B A a b A a b a a B a a B共有30种 …………4分设“选出的人均是男生”为事件,则121122123{(,,),(,,),(,,)}A A A B A A B A A B =,共3种 …………5分,所以选出的人均是男生的概率为 …………7分(Ⅱ)设“选出的人中有男生也有女生”为事件,设“都是女生”为事件, …8分 则12112221{(,,)(,,)},()3015C a a b a a b P C === …………10分 115()1()()110156P B P A P C ∴=--=--=所以选出的人中有男生也有女生的概率为. …………12分 19.(本小题满分12分) 解:(Ⅰ)平面∥平面,平面平面,平面平面,∥ ………1分 又四边形为平行四边形,∥ ……3分 面平面……4分(Ⅱ)设的中点为,连接,则, ∥,∴四边形是平行四边形…………5分∴∥,由(Ⅰ)知,为平行四边形,∴∥,∴∥, ∴四边形是平行四边形,…………7分 即∥,又平面,故 ∥平面;…………9分(Ⅲ)∵平面∥平面,则到平面的距离为,…………10分1114(12)43323A FBC F ABC ABC V V S AD --∆==⋅=⨯⨯⨯⨯=…………12分20解:(Ⅰ)因为为等差数列,设公差为,则由题意得整理得所以……………3分ABCDEGF5712511411112221022()(4)(13)a a a d a a a a a d a d a a d +=⇒+=⎧⎨⋅=⋅⇒++=+⎩由111111()(21)(21)22121n n n b a a n n n n +===-⋅-+-+所以111111(1)2335212121n nT n n n =-+-++-=-++……………5分 (Ⅱ)假设存在 由(Ⅰ)知,,所以 若成等比,则有222121()2132144163mn m n m nT T T m n m m n =⋅⇒=⋅⇒=+++++………8分 2222441633412m m n m m m n n m++++-⇒=⇒=,。

2020年普通高等学校招生全国统一考试全国卷3文科数学试题解析(word版)

2020年普通高等学校招生全国统一考试全国卷3文科数学试题解析(word版)

C.
D.




时,标志着已初步遏 ,






故选:B.
6.在平面内, , 是两个定点, 是动点,若
A. 圆
B. 椭圆
C. 抛物线
【答案】A
【解析】在平面内, , 是两个定点, 是动点,
不妨设

,设

因为

,则点 的轨迹为( ) D. 直线
所以

解得

所以点 的轨迹为圆.
故选:A.
7.设 为坐标原点,直线 与抛物线 :


故选:C.
12.已知函数
,则( )
A.
的最小值为
B.
的图象关于 轴对称
C.
的图象关于直线 对称
D.
的图象关于直线
对称
【答案】D 【解析】由
可得函数的定义域为
,故定义域关于原点对称;

,则

,由双勾函数的图象和性质得,

,故 A 错误;
又有
,故
义域关于原点对称,故图象关于原点中心对称;故 B 错误;
所以
平面


平面

. 是长方体,
所以

因为
是长方体,且

所以
是正方形,
所以



所以 平面

又因为点 , 分别在棱 , 上,
所以
平面

所以

(2)点 在平面 内.
【答案】见解析
【解析】取 上靠近 的三等分点 ,连接 , , .

2020届高三第三次模拟考试卷 文科数学(一) 解析版

2020届高三第三次模拟考试卷 文科数学(一) 解析版

2020届高三第三次模拟考试卷文 科 数 学(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.设3i1iz +=-,则||z =( )A .3B .5C .3D .2答案:B 解:|3i |10||5|1i |2z +===-. 2.设集合{1,2,3,4,5}A =,{|3}B x x =≤,则()A B =R I ð( ) A .{4,5} B .{3,4,5} C .{1,2} D .{1,2,3}答案:A解:{|3}B x x =>R ð,(){4,5}A B =R I ð.3.已知22log 5log 5x =-,5log 3y =,125z -=,则下列关系正确的是( ) A .z y x << B .z x y << C .x y z << D .y z x <<答案:A解:∵222log 5log 5log 51x =-=>,5log 31y =<,1211525z -==<, 因为551log 3log 52>=,即y z >,∴z y x <<.4.定义:10000100010010abcde a b c d e =++++,当五位数abcde 满足a b c <<,且c d e >>时,称这个五位数为“凸数”.由1,2,3,4,5组成的没有重复数字的五位数共120个,从中任意抽取一个,则其恰好为“凸数”的概率为( ) A .16B .110C .112D .120答案:D解:由题意,由1,2,3,4,5组成的没有重复数字的五位数恰好为“凸数”的有:12543,13542,14532,23541,24531,34521,共6个基本事件,所以恰好为“凸数”的概率为6112020P ==. 5.函数||2()2x f x x =-的图象大致是( )A .B .C .D .答案:D解:由||2()2x f x x =-为偶函数可排除A ,C ;当01x <<时,2xy =图象高于2y x =图象,即||220x x ->,排除B ,故选D .6.将参加体检的36名学生,编号为1,2,3,…,36,若采用系统抽样的方法抽取一个容量为9的样本,已知样本中含有编号为33的学生,则下面十名学生编号中被抽到的是( ) A .13 B .14 C .23 D .24答案:A解:从36名学生中抽取9名,抽样间隔为4,所以9名学生的编号分别为33,29,25,21,17,13,9,5,1. 7.若cos57m ︒=,则cos213︒=( )A .21m--B .2211m m--+ C .21m --D .m -答案:C解:2cos213cos(18033)cos33sin571m ︒=︒+︒=-︒=-︒=--.8.若向量(2,3)=m ,(1,)λ=-n ,且(23)⊥-m m n ,则实数λ的值为( ) A .329-B .329C .32D .32-此卷只装订不密封班级 姓名 准考证号 考场号 座位号答案:B解:由题意得,23(7,63)λ-=-m n ,∵(23)⊥-m m n ,∴(23)0⋅-=m m n ,即141890λ+-=,解得329λ=. 9.执行下面的程序框图,如果输出的S 为1112,则判断框中填写的内容可以是( )A .5n <B .5n ≤C .6n <D .6n ≤答案:D解:运行程序,0,2S n ==,判断是,1,42S n ==,判断是,11,624S n =+=,判断是,11111,824612S n =++==,判断否,输出1112S =,故答案为D .10.已知双曲线2222:1(0,0)x yC a b a b-=>>的焦点(2,0)F 3,则该双曲线的离心率为( ) A .1 B 3 C .2 D .23答案:C解:由题意知双曲线的焦点(2,0)到渐近线的距离为3b =2224c a b =+=,所以1a =,该双曲线的离心率为2ca=.11.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos cos 3cos a B b A c C +=,sin sin sin 0a A c C b A -+=,则ba=( ) A .53B .73 C .72D .52答案:A解:在ABC △中,由正弦定理及cos cos 3cos a B b A c C +=,得sin cos cos sin 3sin cos A B A B C C +=,∴sin()sin 3sin cos A B C C C +==, 又sin 0C ≠,∴1cos 3C =, 由正弦定理及sin sin sin 0a A c C b A -+=,得22a c ab -=-,∴由余弦定理得22221cos 223a b c b ab C ab ab +--===,即213b a -=,∴53b a =. 12.抛物线2:(0)C y ax a =>的焦点F 是双曲线22221y x -=的一个焦点,过F 且倾斜角为60°的直线l 交C 于A 、B ,则||AB =( )A 432 B .432C .163D .16答案:D解:双曲线2211122y x -=,∴焦点(0,1)±,∴(0,1)F ,114a =,∴14a =,直线:31l y x =+,由2431x y y x ìï=ïíï=+ïî,得21410y y -+=,1214y y +=,1212||||||(1)(1)216AB AF BF y y y y =+=+++=++=.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.13.已知曲线()(1)ln f x ax x =-在点(1,0)处的切线方程为1y x =-,则实数a 的值为 .答案:2解:1()ln +ax f x a x x-'=,(1)11f a '=-=,∴2a =. 14.已知正项等比数列{}n a 的前n 项和为n S ,若22S =,410S =,则5a = . 答案:323解:因为410S =,22S =,所以414(1)101a q S q -==-,212(1)2(1)1a q S q q-==≠-,, 两式相除可得215q +=,24q =,2q =±,由题设知2q =-舍,故123a =,1212233n n n a -=⋅=⋅,5323a =. 15.函数2()cos sin f x x x =-的最大值为 .答案:5 4解:221()1sin sin5(sin)24f x x x x=-+-+=-,∵sin[1,1]x∈-,∴()f x的最大值为54.16.已知正方体1111ABCD A B C D-的棱长为4,E为棱1CC的中点,点M在正方形11BCC B内运动,且直线AM∥平面1A DE,则动点M的轨迹长度为.答案:22解:设平面1DA E与直线11B C交于点F,连接EF,则F为11B C的中点.分别取1B B、BC的中点N、O,连接AN、ON、AO,则∵1A F AO∥,AN DE∥,1A F,DE⊂平面1A DE,AO,AN⊂平面ANO,∴1A F∥平面ANO.同理可得DE∥平面ANO,∵1A F、DE是平面1A DE内相交直线,∴平面1A DE∥平面ANO,所以NO∥平面1A DE,∴M的轨迹被正方形11BCC B截得的线段是线段NO,∴M的轨迹被正方形11BCC B截得的线段长22NO=.三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)某高中为了了解高三学生每天自主参加体育锻炼的情况,随机抽取了100名学生进行调查,其中女生有55名.下面是根据调查结果绘制的学生自主参加体育锻炼时间的频率分布直方图:将每天自主参加体育锻炼时间不低于40分钟的学生称为体育健康A类学生,已知体育健康A类学生中有10名女生.(1)根据已知条件完成下面22⨯列联表,并据此资料你是否有%95的把握认为达到体育健康A类学生与性别有关?非体育健康A类学生体育健康A类学生合计男生女生合计(2)将每天自主参加体育锻炼时间不低于50分钟的学生称为体育健康A+类学生,已知体育健康A+类学生中有2名女生,若从体育健康A+类学生中任意选取2人,求至少有1名女生的概率.附:22()()()()()n ad bcKa cb dcd a b-=++++答案:(1)列联表见解析,没有95%的把握认为;(2)710.解:(1)右频率分布直方图可知,在抽取的100人中,体育健康A类学生有25人,从而22⨯列联表如下:非体育健康A类学生体育健康A类学生合计男生301545女生451055合计7525100由22⨯列联表中数据代入公式计算,得:时间/mint222()100(30104515)1003.030 3.841()()()()7525455533n ad bc K a c b d c d a b -⨯⨯-⨯====<++++⨯⨯⨯,所以没有%95的把握认为达到体育健康A 类学生与性别有关.(2)由频率分布直方图可知,体育健康A +类学生为5人,记123,,a a a 表示男生,12,b b 表示女生,从而一切可能结果所组成的基本事件空间为12132311{(,),(,),(,),(,)a a a a a a a b Ω=12212231,(,),(,),(,),(,),a b a b a b a b 3212(,),(,)}a b b b .Ω由10个基本事件组成,而且这些事件的出现是等可能的.用B 表示“任选2人中至少有1名是女生”这一事件,则11122122313212{(,),(,),(,),(,),(,),(,),(,)}B a b a b a b a b a b a b b b =共计7种,∴7()10P B =.18.(12分)已知等差数列{}n a 的首项为1a ,公差为()1,d a d ∈∈Z Z ,前n 项的和为n S ,且749S =,524S 26<<.(1)求数列{}n a 的通项公式;(2)设数列11{}n n a a +⋅的前n 项和为n T ,求n T . 答案:(1)21n a n =-;(2)11(1)221n T n =-+. 解:(1)由题意可得11176749254245262,a d a d a d ⨯⎧+=⎪⎪⨯⎪<+<⎨⎪∈∈⎪⎪⎩Z Z ,解得112a d =⎧⎨=⎩,∴1(1)21n a a n d n =+-=-.(2)∴111111()(21)(21)22121n n a a n n n n +==-⋅-+-+,∴11111111[(1)()()](1)23352121221n T n n n =-+-++-=--++L . 19.(12分)如图1,在直角梯形ABCD 中,AB CD ∥,AB AD ⊥,且112AB AD CD ===,现以AD 为一边向梯形外作正方形ADEF ,然后沿边AD 将正方形ADEF 翻折,使平面ADEF 与平面ABCD 垂直,如图2.(1)求证:BC ⊥平面DBE ; (2)求点D 到平面BEC 的距离. 答案:(1)证明见解析;(2)63. 解:(1)在正方形ADEF 中,ED AD ⊥, 又因为平面ADEF⊥平面ABCD ,且平面ADEF I平面ABCD AD =,所以ED ⊥平面ABCD ,可得ED BC ⊥,在直角梯形ABCD 中,1AB AD ==,2CD =,可得2BC =在BCD △中,2BD BC ==2CD =,所以222BD BC CD +=,所以BC BD ⊥,ED BD D =I ,所以BC ⊥平面DBE . (2)因为BC ⊂平面BCE ,所以平面BDE ⊥平面BEC , 过点D 作EB 的垂线交EB 于点G ,则DG ⊥平面BEC , 所以点D 到平面BEC 的距离等于线段DG 的长度. 在直角三角形BDE 中,1122BDE S BD DE BE DG =⋅=⋅△, 所以263BD DE DG BE ⋅===,所以点D 到平面BEC 的距离等于63. 20.(12分)已知函数()1xf x ae x =-+.(1)若()f x 在(0,3)上只有一个零点,求a 的取值范围; (2)设0x 为()f x 的极小值点,证明:02123()4f x a a >-++. 答案:(1)3221(1,]{}e e -U ;(2)证明见解析. 解:(1)因为()f x 在(0,3)上只有一个零点,所以方程1x x a e-=在(0,3)上只有一个解, 设函数1()x x h x e -=,则2()xxh x e-'=, 当02x <<时,()0h x '>;当23x <<时,()0h x '<,所以max 21()(2)h x h e ==, 又(0)1h =-,32(3)h e =,故a 的取值范围为3221(1,]{}e e-U .(2)证明:()1xf x ae '=-,当0a ≤时,()0f x '<恒成立,()f x 无极值,故0a >, 令()10xf x ae '=-=,得ln x a =-,当ln x a <-时,()0f x '<;当ln x a >-时,()0f x '>, 故()f x 的极小值为(ln )2ln f a a -=+,故要证02123()4f x a a >-++,只需证:2125ln 04a a a +-+>, 设函数1()ln 1g x x x =+-,21()(0)x g x x x-'=>,当01x <<时,()0g x '<;当1x >时,()0g x '>,故min ()(1)0g x g ==,而2213913()042a a a -+=-≥, 于是221251139ln ln 1044a a a a a a a +-+=+-+-+>,从而02123()4f x a a >-++.21.(12分)已知动点P 到点1(,0)2的距离比到直线1x =-的距离小12,设点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过曲线C 上一点00(2,)(0)M y y >作两条直线1l ,2l 与曲线C 分别交于不同的两点A ,B ,若直线1l ,2l 的斜率分别为1k ,2k ,且121k k =,证明:直线AB 过定点.答案:(1)22y x =;(2)证明见解析.解:(1)由题意可知,动点P 到点1(,0)2的距离与到直线12x =-的距离相等, 所以点F 的轨迹是以1(,0)2为焦点,直线12x =-为准线的抛物线, 所以曲线C 的方程为22y x =.(2)易知(2,2)M ,设点11(,)A x y ,22(,)B x y ,直线AB 的方程为x my b =+,联立22x my b y x =+⎧⎨=⎩,得2220y my b --=,所以121222y y m y y b +=⎧⎨=-⎩,所以21221222x x m b x x b⎧+=+⎪⎨=⎪⎩, 因为12121222122y y k k x x --=⋅=--,即121212122()2()y y y y x x x x -+=-+, 所以222440b b m m --+=,所以22(1)(21)b m -=-,所以2b m =或22b m =-+,当22b m =-+时,直线AB 的方程为22x my m =-+过定点(2,2)与M 重合,舍去; 当2b m =时,直线AB 的方程为2x my m =+过定点(0,2)-, 所以直线AB 过定点(0,2)-.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)【选修4-4:坐标系与参数方程】 已知斜率为1的直线l 经过点(1,1)P . (1)写出直线l 的参数方程;(2)设直线l 与圆224x y +=相交于A ,B 两点,求22PA PB-的值.答案:(1)1:12x l y ⎧=+⎪⎪⎨⎪=+⎪⎩()t 为参数;(2) 解:(1)直线l 的参数方程为π1cos 4π1sin4x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩()t 为参数,即112x y ⎧=+⎪⎪⎨⎪=+⎪⎩()t 为参数. (2)将112x y ⎧=⎪⎪⎨⎪=+⎪⎩代入224x y +=,化简整理得220t +-=, 因为||||||4PA PB AB +==,12||||||||PA PB t t -=+=所以22||||||PA PB -= 23.(10分)【选修4-5:不等式选讲】 已知()2121f x x x =++-.(1)解不等式()(1)f x f >;(2)若不等式11()f x m n ≥+(0m >,0n >)对任意的x ∈R 都成立,证明:43m n +≥. 答案:(1)3(,)(1,)2-∞-+∞U ;(2)证明见解析. 解:(1)()(1)f x f >,即21215x x ++->. ①当12x >时,2(1)(21)5x x ++->,得1x >; ②当112x -≤≤时,2(1)(21)5x x +-->,得35>,不成立; ③当1x <-时,2(1)(21)5x x -+-->,得32x <-, 综上,所求的x 的取值范围是3(,)(1,)2-∞-+∞U .(2)因为21212221(22)(21)3x x x x x x ++-=++-≥+--=,所以113m n+≤. 因为0m >,0n >时,11m n +≥3≤23≥,所以43m n +≥≥,当且仅当32==n m 时等号成立.。

湖北省宜昌市2019-2020学年高考数学三模试卷含解析

湖北省宜昌市2019-2020学年高考数学三模试卷含解析

湖北省宜昌市2019-2020学年高考数学三模试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.命题p :存在实数0x ,对任意实数x ,使得()0sin sin x x x +=-恒成立;q :0a ∀>,()ln a xf x a x+=-为奇函数,则下列命题是真命题的是( ) A .p q ∧ B .()()p q ⌝∨⌝ C .()p q ∧⌝ D .()p q ⌝∧【答案】A 【解析】 【分析】分别判断命题p 和q 的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项. 【详解】对于命题p ,由于()sin sin x x π+=-,所以命题p 为真命题.对于命题q ,由于0a >,由0a xa x+>-解得a x a -<<,且()()1ln ln ln a x a x a x f x f x a x a x a x --++⎛⎫-===-=- ⎪+--⎝⎭,所以()f x 是奇函数,故q 为真命题.所以p q ∧为真命题. ()()p q ⌝∨⌝、()p q ∧⌝、()p q ⌝∧都是假命题. 故选:A 【点睛】本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题. 2.函数2sin 1x xy x+=+的部分图象大致为( ) A .B .C .D .【答案】B 【解析】 【分析】图像分析采用排除法,利用奇偶性判断函数为奇函数,再利用特值确定函数的正负情况。

【详解】22sin()sin ()()11x x x xf x f x x x -+-+-==-=-++,故奇函数,四个图像均符合。

sin x x+当(,2)x ππ∈时,sin 0x <,2sin 01x xy x+=>+,排除A 。

故选B 。

【点睛】图像分析采用排除法,一般可供判断的主要有:奇偶性、周期性、单调性、及特殊值。

湖北省宜昌市2019-2020学年高三上学期元月调研考试数学(文)试题.docx

湖北省宜昌市2019-2020学年高三上学期元月调研考试数学(文)试题.docx

1 / 1湖北省宜昌市2019-2020学年高三上学期元月调研考试数学(文)试题学校:___________姓名:___________班级:___________考号:___________1.已知实数集R ,集合2{|430}A x x x =-+<,集合{|B x y ==,则A B =( ) A .{}|12x x <≤ B .{}|2x x ≤<3 C .{}|23x x << D .{}3|1x x <<2.下列命题中正确的是( )A .若命题p 为真,命题q 为假,则命题“p q ∧”为真.B .命题“00x ∃>,021x >”的否定是“0x ∀>,21x <”.C .椭圆22143x y +=与22143y x +=的离心率相同. D .已知a 、b 为实数,则5a b +>是6ab >的充要条件.3.设0.23a =,30.2b =,0.2log 3c =,则a 、b 、c 的大小关系是( )A .a b c >>B .b a c >>C .a c b >>D .c a b >>4.已知锐角α满足3cos 5α=,则tan 4πα⎛⎫+= ⎪⎝⎭( ) A .7- B .7 C .17 D .17- 5.设α、β是两个不同的平面,m 、n 是两条不同的直线,则下列命题正确的是( )A .若α、β垂直于同一平面,则αβ∥.B .若α内无数条直线与β平行,则αβ∥.C .若m α⊥,n m ⊥,则n α.D .若m n ,αβ∥,则m 与α所成的角和n 与β所成的角相等.6.已知向量(1,),(2,1)a t b ==-,且()a b b -⊥,则t =( )A .3-B .12-C .1D .37.已知等比数列{}n a 的各项均为正数,若212228log log log 8a a a +++=,则45a a =( ) A .1 B .2C .4D .8 8.直线l 过点()1,3P 且与圆()2224x y -+=交于A 、B 两点,若||AB =,则直线l 的方程为( )A .43130x y +-=B .34150x y +-=C .34150x y +-=或1x =D .43130x y +-=或1x =9.某地为了加快推进垃圾分类工作,新建了一个垃圾处理厂,每月最少要处理300吨垃圾,最多要处理600吨垃圾,月处理成本(元)与月处理量(吨)之间的函数关系可近似的表示为21300800002y x x =-+,为使每吨的平均处理成本最低,该厂每月处理量应为( ) A .300吨B .400吨C .500吨D .600吨 10.已知函数2()22cos f x x x =-,将()f x 图象上所有点的横坐标缩短到原来的12倍,纵坐标保持不变,再把所得图象向上平移1个单位长度,得到函数()y g x =的图象,若()()124g x g x ⋅=,则12||x x -的值可能为( )A .3πB .2πC .34πD .54π 11.如图1,已知正方体1111ABCD A B C D -的棱长为2,P 为棱1AA 的中点,M 、N 、Q 分别是线段11A D 、1CC 、11A B 上的点,三棱锥P MNQ -的俯视图如图2所示.当三棱锥P MNQ -的体积最大时,异面直线PN 与AD 所成角的正切值为( )ABCD .112.点A 、B 为椭圆2222:1(0)x y E a b a b+=>>长轴的端点,C 、D 为椭圆E 短轴的端点,动点M 满足||2||MA MB =,记动点M 的轨迹为曲线Γ,若曲线Γ上两点1M 、2M 满足1M AB △面积的最大值为8,2M CD △面积的最小值为1,则椭圆的离心率为( )A.3 B.3 C.2 D.213.已知直线1l :230ax y +-=和直线2l :(1)10a x y --+=.若12l l ,则1l 与2l 的距离为__________. 14.已知实数x 、y 满足条件202203x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩,则3z x y =-的最小值为__________.15.已知函数()f x 对于任意实数x 都有()()f x f x -=,且当0x ≥时,()33f x x x =+.若0x <,则()f x =__________;若实数a 满足()()3log 1f a f <,则a 的取值范围是__________.16.艾萨克·牛顿(1643-1727),英国皇家学会会长,英国著名物理学家,在数学上也有许多杰出贡献.牛顿用“作切线”的方法求函数()f x 的零点时给出了一个数列{}n x :()()1n n n n f x x x f x +=-',我们把该数列称为牛顿数列.如果函数2()(0)f x ax bx c a =++>有两个零点1和3,数列{}n x 为牛顿数列,3lg 1nn nx a x -=-,且13a =,3n x >,则数列{}n a 的通项公式为n a =__________.17.已知等差数列{}n a 的前n 项和为n S ,且242,10a S ==.(1)求数列{}n a 的通项公式;(2)设2n an n c a =+,求数列{}n c 前n 项和n T . 18.已知,,a b c 分别为ABC 三个内角,,A B C 的对边,且(2)cos cos b c A a C -=.(1)求角A ;(2)若a =,ABC,求ABC 的周长.19.如图,在四棱锥P ABCD -中,AB CD ∥,222PD CD AB AD ====,E 为棱PD 的中点.(1)求证:AE 平面PBC ;(2)若PD ⊥平面ABCD ,AB AD ⊥,求点E 到平面PBC 的距离.20.已知函数22()ln f x x a x ax =--.(1)当1a =时,求()f x 的单调区间;(2)若对于定义域内任意的x ,()0f x ≥恒成立,求a 的取值范围;(3)记()()g x f x a x =+,若()g x 在区间1[,]e e内有两个零点,求a 的取值范围. 21.已知椭圆()2222:10x y C a b a b +=>>,12,F F 为椭圆的左右焦点,1,2P ⎛ ⎝⎭为椭圆上一点,且12PF =. (1)求椭圆的标准方程;1 / 1 (2)设直线:2l x =-,过点2F 的直线交椭圆于,A B 两点,线段AB 的垂直平分线分别交直线l 、直线AB 于M 、N 两点,当MAN ∠最小时,求直线AB 的方程.22.已知曲线C 的极坐标方程为4cos ρθ=,直线l的参数方程为112x y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数).(1)求曲线C 的直角坐标方程与直线l 的普通方程;(2)已知点(1,0)M ,直线l 与曲线C 交于A B 、两点,求11MA MB-. 23.已知函数()|23||21|f x x x =-++.(1)解不等式:()6f x ≥;(2)设x ∈R 时,()f x 的最小值为M .若正实数,,a b c 满足a b c M ++=,求ab bc ca ++的最大值.科教兴国。

2020年全国统一高考数学试卷(文科)(新课标ⅲ)(含解析版)

2020年全国统一高考数学试卷(文科)(新课标ⅲ)(含解析版)
整理得 ,因为 ,所以 ,
【点睛】本题考查等比数列通项公式基本量的计算,以及等差数列求和公式的应用,考查计算求解能力,属于基础题目.
18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):
锻炼人次
空气质量等级
[0,200]
(200,400]
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 , ,则A∩B中元素的个数为()
A.2B.3C.4D.5
【答案】B
【解析】
【分析】
采用列举法列举出 中元素的即可.
【详解】由题意, ,故 中元素的个数为3.
故选:B
【点晴】本题主要考查集合 交集运算,考查学生对交集定义的理解,是一道容易题.
【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,
其中 ,且点M为BC边上的中点,
设内切圆的圆心为 ,
由于 ,故 ,
设内切圆半径为 ,则:
,
解得: ,其体积: .
故答案为: .
【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.
2.若 ,则z=()
A. 1–iB. 1+iC. –iD.i
【答案】D
【解析】
【分析】
先利用除法运算求得 ,再利用共轭复数的概念得到 即可.
【详解】因为 ,所以 .

2019-2020年高三3月高考模拟 文科数学 含答案

2019-2020年高三3月高考模拟 文科数学 含答案

第5题图2019-2020年高三3月高考模拟 文科数学 含答案本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页. 考试时间120分钟,满分150分,考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:1.锥体的体积公式:,其中是锥体的底面积,是锥体的高;2.方差],)()([(1222212x x x x x x ns n -++-+-=其中为的平均数. 第I 卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的. 1. 已知全集,集合,,则集合 A .{3,4,6}B .{3,5}C .{0,5}D .{0,2,4}2. 设复数(是虚数单位),则复数的虚部为 A . B. C. D.3. 若,,,则 A . B.C. D.4. 设,则“”是“”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D 5. 若某程序框图如图所示,则该程序运行后输出的值是 A .2 B .3 C .4 D .5 6. 已知两条直线, 平行,则A .-1B .2C .0或-2D .-1或2 7. 若抛物线的焦点在直线上,则该抛物线的准线方程为 A. B. C. D. 8. 等差数列中,,则它的前9项和 A .9 B .18 C .36D .729. 已知函数的最小正周期为,则的单调递增区间 A. B. C. D.10. 函数的图象大致为11. 一个几何体的三视图如右图所示,则它的体积为A. B. C. 20 D. 40 12. 若函数的图象与x 轴交于点A ,过点A 的直线与函数的图象交于B 、C 两点,则A .-32B .-16C .16D .32第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题4分,共16分.13. 为了均衡教育资源,加大对偏远地区的教育投入,调查了某地若干户家庭的年收入x (单位:万元)和年教育支出y (单位:万元),调查显示年收入x 与年教育支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:.由回归直线方程可知,家庭年收入每增加1万元,年教育支出平均增加____________万元. 14. 已知实数x ,y 满足,则的最小值是 . 15. 下列命题正确的序号为 .①函数的定义域为;②定义在上的偶函数最小值为; ③若命题对,都有,则命题,有; ④若,,则的最小值为.16. 若双曲线渐近线上的一个动点P 总在平面区域内,则实数的取值范围是 .三、解答题:本大题共6小题,共74分. 17. (本小题满分12分) 在中,边、、分别是角、、的对边,且满足. (1)求; (2)若,,求边,的值.18. (本小题满分12分)以下茎叶图记录了甲组3名同学寒假假期中去图书馆学习的次数和乙组4名同学寒假假期中去图书馆学习的次数. 乙组记录中有一个数据模糊,无法确认,在图中以x 表示.(1)如果x =7,求乙组同学去图书馆学习次数的平均数和方差;(2)如果x =9,从学习次数大于8的学生中选两名同学,求选出的两名同学恰好分别在两个图书馆学习且学习的次数第11题图甲组0 1x 8 29 21 9 乙组 第18题图和大于20的概率.19. (本小题满分12分)正项等比数列的前项和为,,且的等差中项为. (1)求数列的通项公式; (2)设,求数列的前项和 .20. (本小题满分12分)已知在如图的多面体中,⊥底面,, ,是的中点. (1)求证:平面; (2)求证:平面.21. (本小题满分12分)已知椭圆的左右焦点分别为F 1和F 2,由4个点M(-a ,b )、N(a ,b )、F 2和F 1组成了一个高为,面积为的等腰梯形.(1)求椭圆的方程;(2)过点F 1的直线和椭圆交于两点A 、B ,求F 2AB 面积的最大值.22. (本小题满分14分)已知函数,其中是自然对数的底数,. (1)若,求曲线在点处的切线方程; (2)若,求的单调区间;(3)若,函数的图象与函数的图象有3个不同的交点,求实数的取值范围.xx 年3月济南市高考模拟考试文科数学参考答案1.C2.B3.A4.B5.C6.D7.A8.B9.D 10.A 11.B 12.DA DFEB GC 第20题图13.0.15 14. 15.②③④ 16. 17. 解:(1)由正弦定理和,得, …………………2分 化简,得即, …………………4分故.所以. …………………6分 (2)因为, 所以所以,即. (1) …………………8分 又因为,整理得,. (2) …………………10分 联立(1)(2) ,解得或. …………………12分18. 解(1)当x =7时,由茎叶图可知,乙组同学去图书馆学习次数是:7,8,9,12,所以平均数为 …………………3分 方差为.27])912()99()98()97[(4122222=-+-+-+-=s ……………6分 (2)记甲组3名同学为A 1,A 2,A 3,他们去图书馆学习次数依次为9,12,11;乙组4名同学为B 1,B 2,B 3,B 4,他们去图书馆学习次数依次为9,8,9,12;从学习次数大于8的学生中人选两名学生,所有可能的结果有15个,它们是:A 1A 2,A 1A 3,A 1B 1,A 1B 3,A 1B 4,A 2A 3,A 2B 1,A 2B 3,A 2B 4,A 3B 1,A 3B 3,A 3B 4, B 1 B 3,B 1B 4,B 3B 4. …………………9分 用C 表示:“选出的两名同学恰好在两个图书馆学习且学习的次数和大于20”这一事件,则C 中的结果有5个,它们是:A 1B 4,A 2B 4,A 2B 3,A 2B 1,A 3B 4,故选出的两名同学恰好分别在两个图书馆学习且学习的次数和大于20概率为 …………………12分 19. 解:(1)设等比数列的公比为,由题意,得,解得. …………………4分所以. …………………5分 (2)因为, …………………6分 所以,121275322123222141+-+-++++=n n n nn T , …………………8分 所以12127532212121212143+--+++++=n n n n T…………………11分故. …………………12分A DFEBGC20. 证明:(1)∵,∴. ………………1分 又∵,是的中点,∴, ………………2分 ∴四边形是平行四边形,∴ . ………………4分 ∵平面,平面,∴平面. ………5分 (2)连结,四边形是矩形, ∵,⊥底面,∴平面,平面, ∴.…………8分 ∵,∴四边形为菱形,∴, …………………11分 又平面,平面,∴平面. …………………12分21. 解:(1)由条件,得b=,且,所以a+c=3. …………………2分 又,解得a=2,c=1.所以椭圆的方程. …………………4分(2)显然,直线的斜率不能为0,设直线方程为x=my -1,直线与椭圆交于A(x 1,y 1),B(x 2,y 2).联立方程 ,消去x 得, ,因为直线过椭圆内的点,无论m 为何值,直线和椭圆总相交. …………………6分 = ……………………8分22222221221)311(14)43(1124)(+++=++=-+=m m m m y y y y…………………10分令,设,易知时,函数单调递减, 函数单调递增 所以 当t==1即m=0时,取最大值3. …………………12分 22. 解:(1)因为,所以, ………………1分所以曲线在点处的切线斜率为. ………………2分又因为,所以所求切线方程为,即.………………3分(2),①若,当或时,;当时,.所以的单调递减区间为,;单调递增区间为. …………………5分②若,,所以的单调递减区间为.…………………6分③若,当或时,;当时,.所以的单调递减区间为,;单调递增区间为. …………………8分(3)由(2)知,在上单调递减,在单调递增,在上单调递减,所以在处取得极小值,在处取得极大值.…………………10分由,得.当或时,;当时,.所以在上单调递增,在单调递减,在上单调递增.故在处取得极大值,在处取得极小值.…………………12分因为函数与函数的图象有3个不同的交点,所以,即. 所以.…………14分。

2020年普通高等学校招生全国统一考试文科数学(全国III卷)(含答案) (3)

2020年普通高等学校招生全国统一考试文科数学(全国III卷)(含答案) (3)

2020年普通高等学校招生全国统一考试文科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}1,2,3,5,7,11A =,{}|315B x x =<<,则A B 中元素的个数为A. 2B. 3C. 4D. 52. 若(1)1z i i +=-,则z = A. 1i - B. 1i + C.i - D.i3.设一组样本数据12,,...,n x x x 的方差为0.01,则数据12n 10,10,...,10x x x 的方差为 A .0.01 B .0.1 C .1 D .104. Logistic 模型是常用数学模型之一,可应用于流行病学领域,有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()t I (t 的单位:天)的Logistic 模型:()()0.23531t KI t e--=+,其中K 为最大确诊病例数.当()0.95I t K *=时,标志着已初步遏制疫情,则t *约为(In19≈3) A.60 B.63 C.66 D.695.已知sin sin()13πθθ++=,则sin()6πθ+= A.12C.23D.26.在平面内,,A B 是两个定点,C 是动点,若1AC BC ⋅=,则点C 的轨迹为 A. 圆 B. 椭圆 C. 抛物线 D. 直线7.设O 为坐标原点,直线2x =与抛物线2:2(0)C y px p =>交于,D E 两点,若OD OE ⊥,则C 的焦点坐标为A .1(,0)4B .1(,0)2C .(1,0)D .(2,0)8.点(0,1)-到直线(1)y k x =+距离的最大值为 A .1 B .2 C .3 D .29.右图为某几何体的三视图,则该几何体的表面积是A. 6+42B. 4+42C. 6+23D. 4+2310.设3log 2a =,5log 3b =,23c =,则 A .a c b << B.a b c << C. b c a << D. c a b <<11. 在ABC ∆中,2cos 3C =,4,3AC BC ==,则tan B =12. 已知函数1()sin sin f x x x=+,则 A. ()f x 的最小值为2B. ()f x 的图像关于y 轴对称C. ()f x 的图像关于直线x π=对称D. ()f x 的图像关于直线2x π=对称二、填空题:本题共4小题,每小题5分,共20分。

【精准解析】湖北省宜昌市2020届高三下学期3月线上统一调研测试数学(文)试题

【精准解析】湖北省宜昌市2020届高三下学期3月线上统一调研测试数学(文)试题
所以概率 P 2 1 , 63
故选:B 【点睛】本题考查函数奇偶性的判断,考查列举法求古典概型的概率.
10.已知数列an 满足 an 3 2n1 , n N * ,现将该数列按下图规律排成蛇形数阵(第 i 行
有 i 个数,i N * ),从左至右第 i 行第 j 个数记为 ai, j( i, j N * 且 j i ),则 a21,20 ( )
点,即可求解. 【详解】由题,可行域如图所示,
设 z 3x y ,则 y 3x z ,平移直线,当与点 A2, 2 相交时,截距最小,
-3-
所以 z 3 2 2 4 ,
故选:D 【点睛】本题考查由线性规划求最值,考查数形结合思想.
6.关于某设备的使用年限 x (年)和所支出的维修费用 y (万元),有如下的统计资料:
故选:A.
【点睛】本题考查解对数不等式、一元二次不等式的解集求法、集合的并集运算,属于综合
性问题,难度较易.解对数型不等式时,要注意对数式的真数大于零.
2.已知纯虚数 z 满足 1 2i z 2 ai ,其中 i 为虚数单位,则实数 a 等于( )
A. 1
【答案】B
B. 1
C. 2
D. 2
【解析】
z a bi 为纯虚数,则有 a 0, b 0 .
3.如图是国家统计局公布的 2013-2018 年入境游客(单位:万人次)的变化情况,则下列结 论错误的是( )
A. 2014 年我国入境游客万人次最少
B. 后 4 年我国入境游客万人次呈逐渐增加趋势
C. 这 6 年我国入境游客万人次的中位数大于 13340 万人次
x /年
1
2
3
4
5
y /万元
4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档