实际问题与二次函数1

合集下载

26.3实际问题与二次函数(1)

26.3实际问题与二次函数(1)
做一做
= − 20 x + 100 x + 6000 (0≤x≤20)
2
当x = −
1 所以降价时,定价为 所以降价时 定价为 57 2 6125元. 元
b 5 5 5 = 时, y 最大 = − 20 × + 100 × + 6000 = 6125 2a 2 2 2
2
元,利润最大,最大利润为 利润最大,
S=- 2 +30l =-l =- 因此, 因此,当 l = −
( 0 < l < 30 )
b 30 时 =− = 15 , 2a 2× (−1)
4ac − b2 − 302 = = 225, S有最大值 有最大值 4a 4×(−1)
也就是说, 最大( = 也就是说, 当l是15m时,场地的面积 最大(S= 是 时 场地的面积S最大 225m2).
6 4 2 0
x 2
-4 -2
探究
用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边 的篱笆围成矩形场地,矩形面积 随矩形一边 用总长为 的篱笆围成矩形场地 的变化而变化, 是多少时,场地的面积S最大 最大? 长 l 的变化而变化,当 l 是多少时,场地的面积 最大?
分析: 的函数关系式, 分析:先写出S与l的函数关系式,再求出使S最大的l值. s 矩形场地的周长是60m,一边长为 , 矩形场地的周长是 ,一边长为l, 60 则另一边长为 − l m ,场地的面积 2 200 S=l ( 30-l ) = - 即 S=- +30l =-l =-
请大家带着以下几个问题读题
(1)题目中有几种调整价格的方法? )题目中有几种调整价格的方法? (2)题目涉及到哪些量之间的关系? )题目涉及到哪些量之间的关系? (3)哪一个量是自变量?哪些量随之发生 哪一个量是自变量? 哪一个量是自变量 了变化? 了变化?

实际问题与二次函数(1)

实际问题与二次函数(1)

D
C B A
25m
实际问题与二次函数(1)
探究1:面积问题
例题:用总长为60m 的篱笆围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化.当l 是多少米时,场地的面积S 最大?针对训练(一)
用一段长为30m 的篱笆围成一个一边靠墙的矩形菜园,墙长为18m ,这个矩形的长,宽各为多少时?菜园的面积最大,面积是多少?针对训练(二)
为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m )的空地上修建一个矩形绿化带ABCD ,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如下图).设绿化带的BC 边长为x m ,绿化带的面积为y m 2.
(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围.
(2)当x 为何值时,满足条件的绿化带的面积最大?
探究(二)利润问题
例题:已知某商品的进价为每件40元。

现在的售价是每件60元,每星期可卖出300件。

市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;如何定价才能使利润最大?
针对训练(一)
商场销售一批衬衫,每天可售出20件,每件盈利40元,为了扩大销售,减少库存,决定采取适当的降价措施,经调查发现,如果一件衬衫每降价1元,每天可多售出2件。

每件降价多少元时,商场每天的盈利达到最大?盈利最大是多少元?
针对训练(二)
某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?。

22.3实际问题与二次函数(一)

22.3实际问题与二次函数(一)

22.3实际问题与二次函数(一)一、课前导学1.二次函数c bx ax y ++=2的顶点坐标是( _, )2.一般地:(1)如果抛物线c bx ax y ++=2中a>0,那么当=x _______时,二次函数c bx ax y ++=2有最_______值是_____________;(2)如果抛物线c bx ax y ++=2中a<0,那么当=x _______时,二次函数c bx ax y ++=2有最_______值是_____________。

3.分别用配方法和公式法,求当x 取何值时,y 有最值。

(1)223y x x =+- (2)21252y x x =-+-二、自主探究,合作交流问题:从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系为2305(06)h t t t =-≤≤.小球的运动时间是多少时,小球最高?小球运动中的最大高度是多少?探究:借助函数图象解决这个问题,画出2305(06)h t t t =-≤≤函数图象如图 可以看出这个函数图象是一条抛物线的 一部分,这条抛物线的顶点是这个函数图象的最高点,也就是说,当t 取顶点横坐标时这个函数之最大. 因此,当2b t a =-=时,h 有最大值244ac b a -=.也就是说小球运动 秒时,小球运动最大高度 米.三、自主探究,交流展示☆探究1:用总长为60m 的篱笆围成矩形场地,矩形的面积S 随一边长l 的变化而变化,当l 是多少米时,场地面积S 最大?☆应用举例:1.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m )的空地上修建一个矩形绿化带ABCD ,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如图).(1)若设绿化带的BC 边长为x m ,绿化带的面积为y m 2.求y 与x 之间的函数关系式,并写出自变量x 的取值范围.(2)绿化带的最大面积是多少?2.如图,点E 、F 、G 、H 分别位于正方形ABCD 的四条边上,四边形EFGH 也是正方形.当点E 位于何处时,正方形EFGH 的面积最小?H G F E DC BA☆练检巩固:1. 用长为20cm 的铁丝作两个正方形,两个正方形的边长分别为多少时,面积和最大?是多少?2. 已知直角三角形两条直角边的和等于8,两条直角边各为多少时,这个直角三角形的面积最大,最大值是多少?3. 如图,四边形的两条对角线AC 、BD 互相垂直,AC +BD =10,当AC 、BD 的长是多少时,四边形ABCD 的面积最大?4.一块三角形废料如图所示,∠A =30°,∠C =90°,AB =12.用这块废料剪出一个长方形CDEF ,其中,点D 、E 、F 分别在AC 、AB 、BC 上.要使剪出的长方形CDEF 面积最大,点E 应造在何处?D C BAF E DC BA☆能力提升:1. 如图,点E,F,G,H 分别在菱形ABCD 的四条边上,BE=BF=DG=DH ,连接EF 、FG 、GH 、HE ,得到四边形EFGH.(1)求证:四边形EFGH 是矩形;(1)设AB=a ,∠A=60°,当BE 为何值时,矩形EFGH 面积最大?BAC2.为了改善小区环境,某小区决定要在一块一边靠墙(墙长16m )的空地上修建一个矩形绿化带ABCD ,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如图).(1)若设绿化带的BC 边长为x m ,绿化带的面积为y m 2.求y与x 之间的函数关系式,并写出自变量x 的取值范围.(2)绿化带的最大面积是多少?。

实际问题和二次函数(一)

实际问题和二次函数(一)

y
400 300 200 100 100 0 200 300 400 500 700 600
x
总结反思,拓展升华 总结反思 拓展升华
【总结】本节所学的数学知识是如何利用二次函数的最大 总结】 值来解决实际问题. (小)值来解决实际问题.
【反思】(1)解决实际问题需注意什么? 反思】(1)解决实际问题需注意什么 解决实际问题需注意什么? (2)利用二次函数还可以解决哪些实际问题 利用二次函数还可以解决哪些实际问题, (2)利用二次函数还可以解决哪些实际问题,请 大家注意收集,分类,看它们各自有何特点. 大家注意收集,分类,看它们各自有何特点.
合作交流,解读探究 合作交流 解读探究
【探究】某商品现在的售价为每件60元,每星 探究】某商品现在的售价为每件60 60元 期可卖出300件 市场调查反映:如果调整价格, 卖出300 期可卖出300件,市场调查反映:如果调整价格, 涨价1 每星期要少卖出10件 少卖出10 降价1 每涨价1元,每星期要少卖出10件;每降价1元, 每星期可多卖出20件 已知商品的进价为每件 多卖出20 每星期可多卖出20件.已知商品的进价为每件 40元 如何定价才能使利润最大 利润最大? 40元,如何定价才能使利润最大?
练习3 某宾馆有50个房间供游客居住 练习3:某宾馆有50个房间供游客居住,当每个房间的定 50个房间供游客居住, 价为每天180元 每天180 房间会全部住满, 价为每天180元时,房间会全部住满,当每个房间每天的 定价每增加10元 每增加10 会有一个房间空闲, 定价每增加10元时,就会有一个房间空闲,如果游客居住 房间,宾馆需对每个房间每天支出20元的各种费用 每个房间每天支出20元的各种费用. 房间,宾馆需对每个房间每天支出20元的各种费用.房价 定为多少时,宾馆利润最大? 定为多少时,宾馆利润最大?

22.3实际问题与二次函数第一课时教案

22.3实际问题与二次函数第一课时教案

22.3 实际问题与二次函数第1课时 实际问题与二次函数(1)※教学目标※【知识与技能】1.能够分析和表示实际问题中变量之间的二次函数关系.2.会运用二次函数的知识求出实际问题中的最大(小)值.【过程与方法】通过对“矩形面积”、“销售利润”等实际问题的探究,让学生经历数学建模的基本过程,体会建立数学模型的思想.【情感态度】体会二次函数是一类最优化问题的模型,感受数学的应用价值,增强数学的应用意识.【教学重点】通过解决问题,掌握如何应用二次函数来解决生活中的最值问题.【教学难点】分析现实问题中数量关系,从中构建出二次函数模型,达到解决实际问题的目的. ※教学过程※一、复习导入从地面竖直向上抛出一个小球,小球的上升高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是2305h t t =-(0≤t ≤6).小球运动的时间是多少时,小球最高?小球运动中的最大高度是少?提问 (1)图中抛物线的顶点在哪里?(2)这条抛物线的顶点是否是小球预定的最高点?(3)小球运动至最高点的时间是什么时间?(4)通过前面的学习,你认为小球运行轨迹的顶点坐标是什么?二、探索新知探究1 用总长为60m 的篱笆围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化.当l 是多少米时,场地的面积S 最大?分析:先写出S 与l 的函数关系式,再求出使S 最大的l 值.矩形场地的周长是60m ,一边长为l m ,则另一边长为 ,场地的面积S= .化简得S= .当l= 时,S 有最大值 .探究2 某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?(1)设每件涨价x 元,则每星期售出商品的利润y 随之变化.我们先来确定y 随x 变化的函数解析式.涨价x 元时,每星期少卖10x 件,实际卖出()30010x -件,销售额为()60x +· ()30010x -元,买进商品需付()4030010x -元.因此,所得利润()()()60300104030010y x x x =+---,即2101006000y x x =-++,其中,0≤x ≤30.根据上面的函数,填空:当x= 时,y 最大,也就是说,在涨价的情况下,涨价 元,即定价 元时,利润最大,最大利润是 .(2)在降价的情况下,最大利润是多少?请你参考(1)的讨论,自己得出答案. 由(1)(2)的讨论及现在的销售状况,你知道如何定价能使利润最大了吗?三、巩固练习1.如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB 为x 米,面积为S 平方米. (1)求S 与x 的函数关系式及自变量的取值范围;(2)当x 取何值时所围成的花圃面积最大,最大值是多少? 2.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y (千克)是销售单价x (元)的一次函数,且当x =60时 ,y =80;当x =50时,y =100.在销售过程中,每天还要支付其他费用450元.(1)求出y 与x 的函数关系式,并写出自变量x 的取值范围.(2)求该公司销售该原料日获利W (元)与销售单价x (元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?答案:1.(1) ∵ AB 为x 米,篱笆长为24米,∴ 花圃宽为()244x -米.∴ ()()2244424?06?S x x x x x =+<<-=-.(2)当32b x a =-=时,有最大值24364ac b y a -==(平方米).2.(1)设y kx b =+ .根据题意,得8060,10050.k b k b +⎧⎨=+⎩=解得2,200.k b ∴2200y x =-+(30 ≤x ≤60).(2)23022004()()5022606450W x x x x =+=+-----.(3)()2? 2652000W x =+--.∵30 ≤x ≤60,∴当x =60时,W 有最大值为1950元.∴当销售单价为60元时,该公司日获利最大,为1950元.四、归纳小结通过这节课的学习,你有哪些收获和体会?有哪些地方需要特别注意?※布置作业※从教材习题22.3中选取.※教学反思※二次函数是描述现实世界变量之间关系的重要模型,也是某些单变量最优化的数学模 型,如最大利润、最大面积等实际问题,因此本课时主要结合这两类问题进行了一些探讨.生活中的最优化问题通过数学模型可抽象为二次函数的最值问题,由于学生对于这一转化过程较难理解,因此教学时教师可通过分步设问的方式让学生逐层深入、稳步推出,让学生自主建立数学模型,在这个过程中,教师可通过让学生画图探讨最值.总之,在本课时的教学过程中,要让学生经历数学建模的基本过程,体验探究知识的乐趣.。

26.3.1实际问题与二次函数 (1)

26.3.1实际问题与二次函数 (1)

寄语
生活是数学的源泉, 探索是数学的生命线.
作业:
同步训练25页 规范化作业一
Y=(X-20)〔400-20﹙X-30﹚〕 =-20X² -1400X-20000
=-20(X-35)² +4500
∴ 当X=35时,Y最大=4500
即售价为35元时,在半个月内获得利润最大为 4500元。
练习
旅行社何时营业额最大
3.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行 社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价 就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行 社可以获得最大营业额? 解: 设旅行团人数为x人,营业额为y元,则
练习
日用品何时获得最大利润
2.售某商店购进一批单价为20元的日用品,如果以单价30元 销,那么半个月内可以售出400件.根据销售经验,提高单价会 导致销售量的减少,即销售单价每提高1元,销售量相应减少 20件.如何提高售价,才能在半个月内获得最大利润? 解:设销售价为x元(x≥30元), 利润为y元,则
y x800 10x 30
10 x 2 1100 x
10x 55 30250.
2
4.某商店销售一种销售成本为40元的水产品,若按50元/千克销售, 一月可售出500千克,销售价每涨价1元,月销售量就减少10千克.
练习
水产品何时利润最大
(1)写出售价x(元/千克)与月销售利润y(元)之间的函数关系式;
练习
1、某商店经营T恤衫,已知成批购进时单价是2.5元,根据市场调查, 销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销 售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析,销售单价是多少时,可以获利最多? 设降价 x( x ≤13.5)元,那么 500+200x (1)销售量可以表示为__________________; (13.5-x)(500+200x) (2)销售额可以表示为____________________; (13.5-x-2.5)(500+200x) (3)所获利润可以表示为____________________; 9.25元 (4)当销售单价是_____________元时,可以获得最大利润, 9112.5元 最大利润是___________________.

《实际问题与二次函数(1)》名师教案

《实际问题与二次函数(1)》名师教案

22.3.2实际问题与二次函数——二次函数与销售利润最大问题(杜星兰)一、教学目标(一)学习目标1.初步让学生学会用二次函数知识解决实际问题;2.能够理解生活中文字表达与数学语言之间的关系,建立数学模型,发展合情推理.3.能理解函数图象的顶点、端点与最值的关系,并能应用这些关系解决实际问题.(二)学习重点学会用二次函数知识解决实际问题, 把实际生活中的最值问题转化为二次函数的最值问题.(三)学习难点1.读懂题意,找出相关量的数量关系,正确构建数学模型.2.理解与应用函数图象顶点、端点与最值的关系.二、教学设计(一)课前设计预习任务1.二次函数y =ax 2+bx +c(a≠0)的图象的顶点坐标是24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴是x= 2b a -;二次函数的图象是一条抛物线,当a >0时,图象开口向上,当a <0时,图象开口向下;2.抛物线2(0)y ax bx c a =++≠的最值问题:(1)若a >0,则当x =2b a -时,y 最小值=244ac b a -;(2)若a <0,则当x =2b a -时,y 最大值=244ac b a -. 预习自测1.已知二次函数221y x x =-++,当x=______时,取得最_______值为_______;【知识点】二次函数求最值【解题过程】配方,得2(1)2y x =--+,∴当x=1时,取得最大值为2.【思路点拨】将二次函数的一般式转化成顶点式来求二次函数最值【答案】1、大、2.2.已知二次函数221y x x =-++,2≤x ≦5,则当x=______时,取得最大值为_______;x=______时,取得最小值为_______。

【知识点】二次函数区间求最值【解题过程】配方,得2)1(2+--=x y ,∵2≤x≤5 在对称轴的右边,且抛物线开口向下,∴当2≤x≤5时,y 随x 的增大而减小,∴当x=2时,取得最大值为1;当x=5时,取得最小值为-14.【思路点拨】将二次函数的一般式转化成顶点式,再根据x 的取值范围并结合图象,求二次函数的区间最值【答案】2,1;5,-14.3.某种商品每件进价为20元,调查表明:在某段时间内若以每件x 元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x )件.若使利润最大,每件售价应为____元.【知识点】二次函数的应用.【思路点拨】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.【解题过程】解:设最大利润为w 元,则w=(x ﹣20)(30﹣x )=2x 2525+-(﹣), ∵20≤x≤30,∴当x=25时,二次函数有最大值25,【答案】254.某超市购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个,如果超市将篮球售价定为x 元(x>50),每月销售这种篮球获利y 元.(1)求y 与x 之间的函数关系式;(2)超市计划下月销售这种篮球获利8000元,又要吸引更多的顾客,那么这种篮球的售价为多少元?【知识点】销售问题中的数量关系,二次函数求最值【解题过程】解:(1)y =-10x 2+1400x -40000(50<x<100).(2)由题意得:-10x 2+1400x -40000=8000,化简得x 2-140x +4800=0,∴x 1=60,x 2=80.∵要吸引更多的顾客,∴售价应定为60元.【思路点拨】关键是先将实际问题抽象成数学问题,即先建立二次函数关系,然后再利用二次函数的图象及性质进行解答.(二)课堂设计1.知识回顾(1)营销问题的基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.(2)抛物线2(0)y ax bx c a =++≠的最值问题:①若a >0,则当x =2b a -时,y 最小值=244ac b a -;②若a <0,则当x =2b a -时,y 最大值=244ac b a -. 2.问题探究探究一 销售问题中的利润最大问题(★▲)●活动1 回顾旧知,回忆销售问题中常见概念和公式.师问:销售问题中一般都会涉及哪些名词?它们之间的数量关系是什么?学生抢答: 成本价;定价;售价;利润;销量;利润率;定价;利润=每件利润×销售量,每件利润=每件售价﹣每件进价.【设计意图】通过对旧知识的复习,为新知识的学习作铺垫.●活动2 整合旧知,探究利润最大问题创设情景,激发学生学习兴趣,引入新课.师问:在讲课之前,我对咱班的学生先做一个小小的调查。

实际问题与二次函数(一)

实际问题与二次函数(一)

尺 = ( 2= 一 x 8 )4 - 0 2P Q ) ( 2 + 0 ( 5 2 ) 5 x 2 0 ( 1 ≤3 . 0+0 0 2 ≤ 0 且 为整数 ) .
= 一
() l 2 在 ≤ ≤2 , 0 且 为 整数 时 ,
・ . ’ຫໍສະໝຸດ R= (— o 9 0, l一 l ) 0 +
・ . .
设货 车速度 应提高 到 千米/ 时. 当 4 + 0 1 2 0时 ,- 0 x 4  ̄= 8 X' , - 6

. .
要使货 车安全 通过此 桥 , 车的速度 应超过 6 货 0千米/ 时.

种 外 语 的传 播 不是 依 靠 火 与剑 , 而是 依 靠 这 种语 言本 身的 丰富 与优 越 。— — 亚历 山大 ・ 希 金 普

. .
当x 1 = 0时 , 的最 大值 为 9 0 尺。 0.
2≤ 1 ≤3 . 0 且 为整 数时 .


2 8
、 、
A fr in t n u p d n t yf ea d te s o d b t yi wn r h e sa d s p r rt e g g e i s  ̄a o r n w r u t o c n s n u e o i o o s b i h b s i i y
( 1 ≤3 , 2≤ 0 且 为 整数 ) .
() 1 试写 出该 商 店前 2 0天 的 1销售 利 润 R。元 ) 3 ( 和后 l 0天 的
日销售利 润 尺 ( ) 元 分别 与销售 时 间 ( ) 间的 函数关 系式 ; 天 之
( ) 问在这 3 2请 0天 的试 销售 中 , 一天 的 日销 售利 润最 大 ? 哪 并

人教版九年级数学上册《实际问题与二次函数(第1课时)》示范教学设计

人教版九年级数学上册《实际问题与二次函数(第1课时)》示范教学设计

实际问题与二次函数(第1课时)教学目标1.通过探究学习,让学生能够独立分析并表示出实际问题中变量之间的二次函数关系,正确建立坐标系,并学会运用二次函数的图象、性质解决实际问题.2.通过探索建立直角坐标系解决实际问题的过程,让学生体会运用函数观点解决实际问题的方法,体验通过建立函数模型来解决实际问题的转化思想.教学重点建立直角坐标系,利用二次函数的图象、性质解决实际问题.教学难点恰当建立直角坐标系来解决实际问题.教学过程 知识回顾一般地,二次函数y =ax 2+bx +c 可以通过配方法化成y =a (x -h )2+k 的形式,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭.因此,抛物线y =ax 2+bx +c 的对称轴是2b x a =-,顶点是2424b ac b a a ⎛⎫-- ⎪⎝⎭, . 【设计意图】通过复习已经学过的二次函数知识,为新课“实际问题与二次函数”作铺垫.新知探究一、探究学习【问题】从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是h =30t -5t 2(0≤t ≤6).小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?【师生活动】教师提出问题,学生分小组交流讨论.教师提示:可以先利用所学的知识画出函数h =30t -5t 2(0≤t ≤6)的图象. 学生根据提示,画出图象并思考问题.教师提问:观察所画图象,你能发现什么?学生思考并回答:这个函数的图象是一条抛物线的一部分.这条抛物线的顶点是这个函数的图象的最高点,当t 取顶点的横坐标时,这个函数有最大值.h =30t -5t 2(0≤t ≤6),30322(5)b t a =-=-=⨯-, 2243045445ac b h a --===⨯-(). 小球运动的时间是3 s 时,小球最高.小球运动中的最大高度是45 m .【设计意图】通过提问为学生提供解决此类问题的思路,让学生在问题解决的过程中体会二次函数与实际问题的联系,用二次函数的最大值等知识刻画实际问题中的最大高度.【思考】对于二次函数y =ax 2+bx +c ,如何求出它的最小(大)值呢?【新知】一般地,当a >0(a <0)时,抛物线y =ax 2+bx +c 的顶点是最低(高)点,也就是说,当2b x a=-时,二次函数y =ax 2+bx +c 有最小(大)值244ac b a -. 【设计意图】在实际问题的基础上,引出直接根据函数解析式求二次函数的最大值或最小值的结论,体会由特殊到一般的思想方法.【探究】图中是抛物线形拱桥,当拱顶离水面2 m 时,水面宽4 m .水面下降1 m ,水面宽度增加多少?【师生活动】教师提出问题,学生分小组交流讨论.教师提示:二次函数的图象是抛物线,建立适当的坐标系,就可以求出这条抛物线表示的二次函数.教师提问:都可以怎样建立直角坐标系解决问题?学生分小组讨论,并派代表发言,教师总结.教师提问:根据建立的直角坐标系,求出抛物线所对应的二次函数的解析式,解决问题. 学生独立思考并作答.解:方法1:以抛物线和水面的两个交点的连线为x 轴,以左边的交点为原点,建立直角坐标系.设这条抛物线表示的二次函数为y =a (x -2)2+2.由抛物线经过点A (4,0),可得0=a ×22+2,a =12-. 这条抛物线表示的二次函数为()21222y x =--+. 当水面下降1 m 时,水面上C ,D 的纵坐标为−1.由()211222x -=--+,2x =C (2,-1),D (2,-1).所以((22CD =-=.所以水面下降1 m ,水面宽度增加()4-m .方法2:以抛物线的顶点为原点,以抛物线的对称轴为y 轴建立直角坐标系(如图).设这条抛物线表示的二次函数为y =ax 2.由抛物线经过点A (2,-2),可得-2=a ×22,a =12-. 这条抛物线表示的二次函数为212y x =-. 当水面下降1 m 时,水面上C ,D 的纵坐标为-3.由2132x -=-,得x =C 3),D (3).此时水面的宽度CD 为.所以水面下降1 m ,水面宽度增加()4-m .方法3:以抛物线和水面的两个交点的连线为x 轴,以抛物线的对称轴为y 轴,建立平面直角坐标系(如图).设这条抛物线表示的二次函数为y =ax 2+k .由抛物线经过点A (2,0),P (0,2),可得a =12-,k =2. 这条抛物线表示的二次函数为2122y x =-+. 当水面下降1 m 时,水面上C ,D 的纵坐标为−1.由21122x -=-+,得x =C ,-1),D (,-1).此时水面的宽度CD 为.所以水面下降1 m ,水面宽度增加()4-m .教师提问:对比三种解法,哪种解法更简便?学生结合解题过程思考,并回答,教师总结归纳.【归纳】“拱桥类”问题建立坐标系的“窍门”:(1)根据抛物线的对称性建立以对称轴为y 轴的坐标系;(2)若顶点在原点上,一般设y =ax 2;若顶点不在原点上,一般设y =ax 2+k . 解决“拱桥类”问题的一般步骤:(1)建立适当的坐标系,并将已知条件转化为点的坐标;(2)合理设出所求函数的表达式,并代入已知条件或点的坐标,求出关系式;(3)利用关系式求解实际问题.【设计意图】从实际情景中让学生学会建立直角坐标系,分析两个变量之间的二次函数关系,并用所求出的二次函数的图象、性质解决实际问题.通过探索建立直角坐标系解决实际问题的过程,让学生体会运用函数观点解决实际问题的方法,体验通过建立函数模型来解决实际问题的转化思想.二、典例精讲【例题】某工厂大门是一抛物线形水泥建筑物(如图),大门地面宽AB =4 m ,顶部C 离地面高度为4 m .现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.5 m ,装货宽度为2 m .请判断这辆汽车能否顺利通过大门.【师生活动】教师提出问题,学生分小组交流讨论,并派代表发言,教师板书.【答案】解:以点C为原点,以抛物线的对称轴为y轴,建立平面直角坐标系(如图).设这条抛物线所表示的二次函数的解析式为y=ax².由图象知,抛物线过点(2,-4),∴-4=a×2²,a=-1.∴y=-x².装货宽度为2 m,在图象上为EF,即点F的横坐标为1.当x=1时,y=-1,即CG=1 m.∵大门的顶部C离地面高度为4 m,∴CH=4 m.∴GH=4-1=3(m).∵3 m>2.5 m,∴这辆汽车能顺利通过大门.【设计意图】通过例题练习与讲解,加深学生对所学知识的理解及应用.课堂小结板书设计一、用二次函数解决抛物线型运动问题二、用二次函数解决抛物线型建筑问题二、用二次函数解决抛物线型实际问题的一般步骤课后任务完成教材第51页习题22.3第1,3题.。

人教初中数学 《实际问题与二次函数(第1课时)》教案 (公开课获奖)

人教初中数学  《实际问题与二次函数(第1课时)》教案 (公开课获奖)

实际问题与二次函数教学内容22.3 实际问题与二次函数(1). 教学目标1.会求二次函数y =ax 2+bx +c 的最小(大)值.2.能够从实际问题中抽象出二次函数关系,并运用二次函数及性质解决最小(大)值等实际问题. 教学重点求二次函数y =ax 2+bx +c 的最小(大)值. 教学难点将实际问题转化成二次函数问题. 教学过程 一、导入新课 同学们好,我们上节课学习了二次函数与一元二次方程,可以利用二次函数的图象求一元二次方程的根.对于某些实际问题,如果其中变量之间的关系可以用二次函数模型来刻画,那么我们就可以利用二次函数的图象和性质来进行研究. 二、新课教学问题 从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是h =30t -5t 2(0≤t ≤6).小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?教师引导学生找出问题中的两个变量:小球的高度h (单位:m )与小球的运动时间t (单位:s ).然后画出函数h =30t -5t 2(0≤t ≤6)的图象(可见教材第49页图).根据函数图象,可以观察到当t 取顶点的横坐标时,这个函数有最大值.也就是说,当小球运动的时间是3s 时,小球最高,小球运动中的最大高度是45m .一般地,当a >0(a <0),抛物线y =ax 2+bx +c 的顶点是最低(高)点,也就是说,当x=-a b 2时,二次函数y =ax 2+bx +c 有最小(大)值ab ac 442 .探究1 用总长为60 m 的篱笆围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化.当l 是多少米时,场地的面积S 最大?教师引导学生参照问题1的解法,先找出两个变量,然后写出S 关于l 的函数解析式,最后求出使S 最大的l 值.具体步骤可见教材第50页. 三、巩固练习1.已知一个矩形的周长是100 cm ,设它的一边长为x cm ,则它的另一边长为______cm ,若设面积为s cm 2,则s 与x 的函数关系式是__________,自变量x 的取值范围是________.当x 等于_____cm 时,s 最大,为_______ cm 2.2.已知:正方形ABCD 的边长为4,E 是BC 上任意一点,且AE =AF ,若EC =x ,请写出△AEF 的面积y 与x 之间的函数关系式,并求出x 为何值时y 最大. 参考答案:1.50-x ,s=x (50-x ),0<x <50,25,6252.y =-21x 2+4x ,当x =4时,y 有最大值8. 四、课堂小结今天学习了什么,有什么收获? 五、布置作业习题22.3 第1、4题.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习1.计算: (1))1)(1(yx x y x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. (三)情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.D CA BD CABDC A B[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识. Ⅲ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.D CAB我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,则它的对称轴一定是( )E DC A B PA.某一条边上的高B.某一条边上的中线C.平分一角和这个角对边的直线D.某一个角的平分线2.等腰三角形的一个外角是100°,它的顶角的度数是()A.80°B.20°C.80°和20°D.80°或50°答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm,并且它的周长为16 cm.求这个等腰三角形的边长.解:设三角形的底边长为x cm,则其腰长为(x+2)cm,根据题意,得2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm、6 cm和6 cm.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22yx xy- (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.。

实际问题与二次函数

实际问题与二次函数

22.3 实际问题与二次函数(1)1.经历探索实际问题中两个变量的变化过程,使学生理解用抛物线知识解决最值问题的思路.2.初步学会运用抛物线知识分析和解决实际问题.重难点:用抛物线知识解决实际问题.一、自学指导.(10分钟)自学:自学课本P 49~50,自学“探究1”,能根据几何图形及相互关系建立二次函数关系式,体会二次函数这一模型的意义.总结归纳:图象是抛物线的,可设其解析式为y =ax 2+bx +c 或y =a(x -h)2+k ,再寻找条件,利用二次函数的知识解决问题;实际问题中没有坐标系,应建立适当的坐标系,再根据图象和二次函数的知识解决实际问题.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟)1.用长16 m 的绳子围成如图所示的矩形框,使矩形框的面积最大,那么这个矩形框的最大面积是323_m 2. 2.如图,点C 是线段AB 上的一个动点,AB =1,分别以AC 和CB 为一边作正方形,用S 表示这两个正方形的面积之和,下列判断正确的是( A )A .当C 是AB 的中点时,S 最小B .当C 是AB 的中点时,S 最大C .当C 为AB 的三等分点时,S 最小D .当C 是AB 的三等分点时,S 最大第2题图 第3题图3.如图,某水渠的横断面是等腰梯形,底角为120°,两腰与下底的和为4 cm ,当水渠深x 为233时,横断面面积最大,最大面积是433. 点拨精讲:先列出函数的解析式,再根据其增减性确定最值.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1 某窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长为15 m (图中所有线条长度之和),当x 等于多少时,窗户通过的光线最多?此时,窗户的面积是多少?(结果精确到0.01 m )解:由题意可知4y +12×2πx +6x =15,化简得y =15-6x -πx 4,设窗户的面积为S m 2,则S =12πx 2+2x ×15-6x -πx 4=-3x 2+152x ,∵a =-3<0,∴S 有最大值.∴当x =1.25 m 时,S 最大值≈4.69(m 2),即当x =1.25 m 时,窗户通过的光线最多.此时,窗户的面积是4.69 m 2.点拨精讲:中间线段用x 的代数式来表示,要充分利用几何关系;要注意顶点的横坐标是否在自变量x 的取值范围内.探究2 如图,从一张矩形纸片较短的边上找一点E ,过E 点剪下两个正方形,它们的边长分别是AE ,DE ,要使剪下的两个正方形的面积和最小,点E 应选在何处?为什么?解:设矩形纸较短边长为a ,设DE =x ,则AE =a -x ,那么两个正方形的面积和y 为y =x 2+(a -x)2=2x 2-2ax +a 2,当x =--2a 2×2=12a 时,y 最小值=2×(12a)2-2a ×12a +a 2=12a 2. 即点E 选在矩形纸较短边的中点时,剪下的两个正方形的面积和最小.点拨精讲:此题要充分利用几何关系建立二次函数模型,再利用二次函数性质求解.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.如图,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等,设甬道的宽为x 米.①用含x 的式子表示横向甬道的面积;②当三条甬道的总面积是梯形面积的八分之一时,求甬道的宽;③根据设计的要求,甬道的宽不能超过6米,如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?点拨精讲:想象把所有的阴影部分拼在一起就是一个小梯形.点拨精讲:解答抛物线形实际问题的一般思路:1.把实际问题中的已知条件转化为数学问题;2.建立适当的平面直角坐标系,把已知条件转化为坐标系中点的坐标;3.求抛物线的解析式;4.利用抛物线解析式结合图象解决实际问题.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.3 实际问题与二次函数(2)能根据实际问题建立二次函数的关系式,并探求出在何时刻,实际问题能取得理想值,增强学生解决具体问题的能力.重点:用函数知识解决实际问题.难点:如何建立二次函数模型.一、自学指导.(10分钟)1.自学:自学课本P 50,自学“探究2”,理解求实际问题中的最值与二次函数最值之间的关系,完成填空.总结归纳:在日常生活、生产和科研中,常常会遇到求什么条件下可以使材料最省、时间最少、效率最高等问题,其中一些问题可以归结为求二次函数的最大值或最小值.用二次函数的知识解决实际问题时,关键是先将实际问题抽象成数学问题,即先建立二次函数关系,然后再利用二次函数的图象及性质进行解答.在二次函数y =a(x -h)2+k 中,若a>0,当x =h 时,函数y 有最小值,其值为y =k ;若a<0,当x =h 时,函数y 有最大值,其值为y =k .点拨精讲:遇到一般式,可先化成顶点式,再求最值;自变量有取值范围的还要考虑在范围内的最值.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟)1.已知二次函数y =x 2-4x +m 的最小值是2,那么m 的值是6.2.边长为10 cm 的正方形铁片,中间剪去一个边长是x cm 的小正方形,剩下的四方框铁片的面积y(cm 2)与x(cm )之间的函数关系是y =-x 2+100(0<x <10).3.服装店将进价为100元的服装按x 元出售,每天可销售(200-x)件,若想获得最大利润,则x 应定为150元.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)探究 某经销店代销一种材料,当每吨售价为260元时,月销售量为45吨,该经销店为提高经营利润,准备采取降价的方式进行促销,经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨,每售出1吨建筑材料共需支付厂家及其他费用100元,设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y 与x 的函数关系式;(不要求写出x 的取值范围)(3)该经销店要获得最大月利润,售价应定为每吨多少元?(4)王强说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.解:(1)45+260-24010×7.5=60(吨);(2)y =(x -100)(45+260-x 10×7.5), 化简,得y =-34x 2+315x -24000; (3)y =-34x 2+315x -24000=-34(x -210)2+9075 此经销店要获得最大月利润,材料的售价应定为每吨210元.(4)我认为,王强说得不对.理由:当月利润最大时,x 为210元,而月销售额W =x(45+260-x 10×7.5)=-34(x -160)2+19200,当x 为160元时,月销售额W 最大,∴当x 为210元时,月销售额W 不是最大.∴王强说得不对.点拨精讲:要分清每一吨的利润、销售量与售价的关系;分清最大利润与最大销售额之间的区别.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.若抛物线y =-x 2+bx +c 的最高点为(1,3),则b =________,c =________.2.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x 元(x 为正整数),每个月的销售利润为y 元.(1)求y 与x 的函数关系式并直接写出自变量x 的取值范围.(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰好是2200元?根据以上的结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?3.某旅社有100张床位,每床每晚收费10元时,床位可全部租出;若每床每晚收费提高2元,则减少10张床位的租出,若每床每晚收费再提高2元,则再减少10张床位租出;以每次提高2元的这种方法变化下去,为了投资少而获利大,每床位每晚应提高多少元?点拨精讲:在根据实际问题建立函数模型时,要考虑自变量的取值范围.(3分钟)学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时的对应训练部分.(10分钟)22.3 实际问题与二次函数(3)能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能利用二次函数的知识解决实际问题.重难点:用抛物线知识解决实际问题.一、自学指导.(10分钟)自学:自学课本P 51,自学“探究3”,学会根据实际问题,建立适当的坐标系和二次函数关系,完成填空.总结归纳:建立二次函数模型解决实际问题的一般步骤:①根据题意建立适当的平面直角坐标系;②把已知条件转化为点的坐标;③合理设出函数关系式;④利用待定系数法求出函数关系式;⑤根据求得的关系式进一步分析、判断,并进行有关的计算.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟)1.一个运动员打高尔夫球,如果球的飞行高度y(m)与水平距离x(m)之间的函数表达式为y=190(x-30)2+10,则高尔夫球在飞行过程中的最大高度为(A)A.10 mB.20 mC.30 mD.40 m2.某工厂大门是一个抛物线形水泥建筑物,大门的地面宽度为8米,两侧距地面3米高处各有一盏壁灯,两壁灯之间的水平距离为6米,如图所示,则厂门的高(水泥建筑物厚度不计,精确到0.1米)为(B)A.6.8米B.6.9米C.7.0米D.7.1米一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究小红家门前有一座抛物线形拱桥,如图,当水面在l时,拱顶离水面2 m,水面宽4 m,水面下降1 m时,水面宽度增加多少?解:由题意建立如图的直角坐标系,设抛物线的解析式为y=ax2,∵抛物线经过点A(2,-2),∴-2=4a,∴a=-1 2,即抛物线的解析式为y=-12x2,当水面下降1 m时,点B的纵坐标为-3.将y=-3代入二次函数解析式y=-12x2,得-3=-12x2,∴x=±6,∴此时水面宽度为2|x|=2 6 (m).即水面下降1 m时,水面宽度增加了(26-4)m.点拨精讲:用二次函数知识解决拱桥类的实际问题一定要建立适当的直角坐标系;抛物线的解析式假设恰当会给解决问题带来方便.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(11分钟)1.有一座抛物线形拱桥,正常水位时桥下水面宽度为20 m ,拱顶距离水面4 m .(1)在如图所示的直角坐标系中,求出该抛物线的解析式;(2)在正常水位的基础上,当水位上升h(m )时,桥下水面的宽度为d(m ),求出将d 表示为h 的函数解析式;(3)设正常水位时桥下的水深为2 m ,为保证过往船只顺利航行,桥下水面的宽度不得小于18 m ,求水深超过多少米时就会影响过往船只在桥下顺利航行?点拨精讲:以桥面所在直线为x 轴,以桥拱的对称轴所在直线为y 轴建立坐标系.设抛物线的解析式为y =ax 2,则点B 的坐标为(10,-4),即可求出解析式.2.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线y =-35x 2+3x +1的一部分,如图. (1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?请说明理由.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)。

23题实际问题与二次函数

23题实际问题与二次函数

实际问题与二次函数(1)1、某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y(万件)与销售单价x(元)之间存在着如图所示的一次函数关系.(1)求y关于x的函数关系式;(2)试写出该公司销售该种产品的年获利z(万元)关于销售单价x(元)的函数关系式(年获利=年销售额一年销售产品总进价一年总开支).当销售单价x为何值时,年获利最大并求这个最大值;(3)若公司希望该种产品一年的销售获利不低于40万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?2、在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.(1)求y与x满足的函数关系式(不要求写出x的取值范围);(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P 最大?3、某商家独家销售具有地方特色的某种商品,每件进价为40元.经过市场调查,一周的销售量y件与销售单价x(x≥50)元/件的关系如下表:(1)直接写出y与x的函数关系式:(2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润随着销售单价的增大而增大?(3)雅安地震牵动亿万人民的心,商家决定将商品一周的销售利润全部寄往灾区,在商家购进该商品的贷款不超过10000元情况下,请你求出该商家最大捐款数额是多少元?4、某商场将进价为4000元的电视以4400元售出,平均每天能售出6台.为了配合国家财政推出的“节能家电补贴政策”的实施,商场决定采取适当的降价措施,调查发现:这种电视的售价每降价50元,平均每天就能多售出3台.(1)现设每台电视降价x元,商场每天销售这种电视的利润是y元,请写出y与x之间的函数表达式.(不要求写出自变量的取值范围)(2)每台电视降价多少元时,商场每天销售这种电视的利润最高?最高利润是多少?(3)商场要想在这种电视销售中每天盈利3600元,同时又要使百姓得到更多实惠,每台电视应降价多少元?根据以上的结论,请你直接写出售价在什么范围时,每个月的利润不低于3600元?5、某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?6、某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能售出500件,若销售单价每涨1元,每周销售量就减少10件.设销售单价为每件x元(x≥50),一周的销售量为y件.(1)写出y与x的函数关系式.(标明x的取值范围)(2)设一周的销售利润为S,写出S与x的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大?(3)在超市对该种商品投入不超过10 000元的情况下,使得一周销售利润达到8 000元,销售单价应定为多少?实际问题与二次函数(2)1、如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM 为12米.现以O 点为原点,OM 所在直线为x 轴建立直角坐标系. (1)直接写出点M 及抛物线顶点P 的坐标; (2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”AD-DC-CB ,使C 、D 点在抛物线上,A 、B 点在地面OM 上,则这个“支撑架”总长的最大值是多少?2、某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O 的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误. (1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为米,问此次跳水会不会失误? 并通过计算说明理由3、如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满足关系式y=a (x-6)2+h .已知球网与O 点的水平距离为9m ,高度为2.43m ,球场的边界距O 点的水平距离为18m .(1)当h=2.6时,求y 与x 的关系式(不要求写出自变量x 的取值范围) (2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由; (3)若球一定能越过球网,又不出边界,求h 的取值范围.4、一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈。

26.3实际问题与二次函数(1)

26.3实际问题与二次函数(1)

补充练习: 1.如图(1)所示,要建一个长方形的养鸡场,鸡场的一边靠墙,如果用 50m 长的篱笆围成中间有一道篱笆的养鸡 场,没靠墙的篱笆长度为 xm. (1)要使鸡场的面积最大,鸡场的应为多少 米? (2)如果中间有 n(n 是大于 1 的整数)道篱笆 隔墙,要使鸡场面积最大,鸡场的长应为 多少米? (3)比较(1)、(2)的结果,你能得到什么结论? 2.某产品每件成本 10 元,试销阶段每件产品的销售价 x(元)• 与产 品的日销售量 y(件)之间的关系如下表: x(元) 15 20 30 … y(件) 25 20 10 … 若日销售量 y 是销售价 x 的一次函数. (1)求出日销售量 y(件)与销售价 x(元)的函数关系式; (2) 要使每日的销售利润最大, 每件产品的销售价应定为多少元? • 此时每日销售利润是多少元? 四、小结归纳 1.利用二次函数解决实际问题中最值问题的一般步骤. 2.学完本节课你有什么疑惑? 五、作业设计 复习巩固作业和综合运用为全体学生必做; 拓广探索为成绩中上等学生必做; 学有余力的学生, 要求模仿编拟课堂上出现的一些补充题目进行重复 练习. 补充作业: 1.已知平行四边形 ABCD 的周长为 8cm,∠B=30°,若 边长 AB=x(cm). (1)写出□ABCD 的面积 y 与 x 的函数关系式,并求自变量 x 的取值范 围. (2)当 x 取什么值时,y 的值最大?并求最大值. (3)求二次函数的函数关系式. 2.某超市购进一批 20 元/千克的绿色食品, 如果以 30•元/千克销售,那么每天可售出 400 千克.由销 售经验知,每天销售量 y(千克)•与销售单价 x (元) (x≥30)存在如图所示的一次函数关系式. (1)试求出 y 与 x 的函数关系式; (2)设超市销售该绿色食品每天获得利润 P 元,当销售单价为何值 时,每天可获得最大利润?最大利润是多少? (3)根据市场调查,该绿色食品每天可获利润不超过 4480 元,•现 该超市经理要求每天利润不得低于 4180 元,请你帮助该超市确定绿 色食品销售单价 x 的范围(•直接写出答案) . 学生独立完成,教师巡视 使学生巩固提 指导,了解学生掌握情况, 高, 并集中订正. 了解学生掌握情 况

实际问题与二次函数(一)

实际问题与二次函数(一)

26.3 实际问题与二次函数(一)基础训练1.二次函数y=ax 2+bx+c(a ≠0)的最大值是0,那么代数式|a|+4ac-b 2的化简结果是( )A.aB.-aC.0D.12.抛物线y=-2x 2-8x+3的顶点关于y 轴对称的点的坐标为____________.3.两数之和为6,则之积最大为.____________强化训练1.抛物线y=x 2+2x+1的顶点是( )A.(0,1)B.(-1,0)C.(1,0)D.(-1,1)2.一名男同学推铅球时,铅球行进中离地的高度y(m)与水平距离x(m)之间的关系是y=35321212++-x x ,那么铅球推出后最大高度是______m ,落地时距出手地的距离是____m .3.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,求:(1)若商场平均每天要盈利1 200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,该商场平均每天盈利最多?4.某工厂现有80台机器,每台机器平均每天生产384件产品.现准备增加一批同类机器以提高生产总量,在试生产中发现,由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.(1)如果增加x 台机器,每天的生产总量为y 件,请你写出y 与x 之间的关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?巩固训练1.已知二次函数y=x 2-6x+m 的最小值为1,那么m=_____________.2.抛物线y=21x 2-6x+21,当x=_________,y 最大=____________. 3.对于物体,在不计空气阻力的情况下,有关系式h=v 0t-21gt 2,其中h 是上升高度,v 0(m/s )是初速度,g(m/s 2)是重力加速度,t(s)是物体抛出后经过的时间,图26311是上升高度h 与t 的函数图象.(1)求v 0,g ;(2)几秒后,物体在离抛出点25 m 高的地方?图26-3-1-14.某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件,现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价0.5元其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚的利润最大?并求出最大利润.5.随着海峡两岸交流日益增强,通过“零关税”进入我市的一种台湾水果,其成本是每吨0.5万元,这种水果市场上的销售量y(吨)是每吨销售价x (万元)的一次函数,且x=0.6时,y=2.4;x=1时,y=2.(1)求出销售量y(吨)与每吨销售价x (万元)之间的函数关系式;(2)若销售利润为W(万元),请写出W与x之间的函数关系式,并求出销售价为多少时的销售利润最高?6.某经营商购进一种商品原料7 000千克存在某货场,进价为每千克30元,物价部门最高限价为每千克70元.市场调查发现,单价为70元,日均售60千克,每降一元,日多售2千克.每天需向货场支付500元存货费(不足一天,按一天计).问:(1)日销售单价为多少时,日均获利最大?(2)如将该种原料全部售完,比较日均获利最大和单价最高这两种销售方式,哪种总获利多?多多少?7.(2010山东青岛模拟,22)在2010年青岛崂山北宅樱桃节前夕,某果品批发公司为指导今年的樱桃销售,对往年的市场销售情况进行了调查统计,得到如下数据:销售价x…25242322…(元/千克)销售量y… 2 000 2 500 3 000 3 500…(千克)(1)在如图26-3-1-2的直角坐标系内,作出各组有序数对(x,y)所对应的点.连结各点并观察所得的图形,判断y与x之间的函数关系,并求出y与x之间的函数关系式;(2)若樱桃进价为13元/千克,试求销售利润P(元)与销售价x (元/千克)之间的函数关系式,并求出当x取何值时,P的值最大?图26-3-1-2。

《实际问题与二次函数(第1课时)》教案(高效课堂)2022年人教版数学精品

《实际问题与二次函数(第1课时)》教案(高效课堂)2022年人教版数学精品

实际问题与二次函数(第 1 课时)教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. (三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是. [师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形. Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.A BICABI作一条直线L ,在L 上取点A ,在L 外取点B ,作出点B 关于直线L 的对称点C ,连接AB 、BC 、CA ,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A 点可以取直线L 上的任意一点. [师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形. ……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角. [师]有了上述概念,同学们来想一想. (演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴. 2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢? [生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系. [生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线. [生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质. [生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高. [师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”). [师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程). (投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为D CA B,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角. [师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识. Ⅲ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)D CABDC A B答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题.(二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC . ∴∠P=∠ACD . 又∵DE ∥AP ,EDCABPD C A B∴∠4=∠P.∴∠4=∠ACD.∴DE=EC.同理可证:AE=DE.∴AE=C E.板书设计一、设计方案作出一个等腰三角形二、等腰三角形性质1.等边对等角2.三线合一三、例题分析四、随堂练习五、课时小结六、课后作业备课资料参考练习1.如果△ABC是轴对称图形,则它的对称轴一定是()A.某一条边上的高B.某一条边上的中线C.平分一角和这个角对边的直线D.某一个角的平分线2.等腰三角形的一个外角是100°,它的顶角的度数是()A.80°B.20°C.80°和20°D.80°或50°答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm,并且它的周长为16 cm.求这个等腰三角形的边长.解:设三角形的底边长为x cm,则其腰长为(x+2)cm,根据题意,得2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm、6 cm和6 cm.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.。

实际问题与二次函数第1课时说课稿

实际问题与二次函数第1课时说课稿

实际问题与二次函数第1课时说课稿《实际问题与二次函数(1)》说课稿旧城中学说课人:杨佐永各位老师们:大家好!今天能在这里说课,得到老师们的指导,感到非常荣幸。

我说课的内容是人教版九年级下册第二十六章实际问题与二次函数中第一课时的如何获得最大利润问题,下面我根据自己书写的教案,从教材分析、教学方法及教学手段的选择、教学过程设计等方面做出具体的说明。

一、教材分析二次函数的实际应用只设计了3个例题和一部分习题,它加强了方程等内容与函数的联系,在本章的学习中,教材已研究了二次函数及其图象和性质,让学生初步了解了求特殊二次函数最大(小)值的一些方法。

本节课在巩固二次函数性质的同时,进一步让学生掌握利用二次函数知识求一些简单实际问题最大(小)值的方法,即如何获得最大利润问题,培养学生运用所学知识解决实际问题的能力,学会用建模的思想去解决其它和函数有关应用问题。

并通过实践体会到数学来源于生活又服务于生活。

此部分内容具有承上启下的作用,既是前面所学知识的具体应用,又为学生在高中阶段进一步学习二次函数,以及用二次函数研究二次方程、二次不等式等知识奠定基础。

二、学生分析我所在学校是凉城县唯一的一所乡下中学,乡亲常说我们学校的学生是三留学生(每年开学时转校留下的差生),基础差,底子薄。

对现在我所任教的九年级学生来说,在学习了一次函数和二次函数与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图像的增减性和最值,但在变量超过两个的实际问题中,还是不能熟练地应用知识解决问题,本节课正是为了弥补这一不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。

三、教学方法与手段的选择由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,解决问题以学生动手动脑探究为主,并加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的,为了提高课堂效率,展示学生的学习效果,特配有学生学案并适当地辅以电脑多媒体技术。

公开课教案(二次函数与实际问题1)教案

公开课教案(二次函数与实际问题1)教案

实际问题与二次函数(1)教学目标:1)使用二次函数的相关知识解决实际问题中的最大(小)值。

2)经历最大(小)值的探索过程,体验二次函数的模型思想。

教学重难点:通过度析、探究实际问题,确定二次函数的关系式。

教学过程:引入语:八百里清江美如画,三百里画廊在长阳.今天让我们的思绪畅游于清江画廊,感受生活中的数学,这节课课题是实际问题与二次函数(1) ,我们的学习目标是…一、创设情境激发兴趣情境1:八百里清江美如画,三百里画廊在长阳。

十一黄金周期间,我县天气风和日丽.笑迎八方来客,原来是气象部门在这之前展开了人工降雨,发射了某型号的火箭弹,它的高度h千米与时间t秒的关系能够用h=-5t2+150t表示.(1):请问经过多少秒,火箭弹达到它的最高点,这时的高度为多少千米?( 2 ):确定自变量t取值范围;3:画出函数的图像。

设计意图:让学生明确由已知的函数关系式确定函数的最大(小)值的方法活动过程:合作讨论------展示作业(板书)--------学会纠错------ 学生小结归纳二. 合作交流探索新知情境2:王老师十一黄金周随清江旅行社组团游玩美丽如画的清江画廊,公路两侧醒目的广告牌西游了他,,据王老师测算,广告牌的周长约12 米,若用12米的铝条制作矩形边框,,你能帮王老师设计出面积最大的矩形吗?设长方形的长为x米,广告牌的面积为S平方米.(1)写出广告牌的面积S与边长x的函数关系式,并写出自变量的取值范围;(2)当x为何值时,广告牌面积S最大?最大值为多少?设计意图:让学生明确由变量间的关系确定函数关系式的方法,体验二次函数的建模思想活动过程:合作讨论------展示作业------学生小结归纳建模方法情境3.王老师随团乘船畅游清江画廊,一般情况下10人起组团,每人单价132元.黄金周期间,旅行社作出如下优惠:即旅行团超过10人时,每增加1人,每人的票价就减少2元,这样游客得到实惠,旅行社也增加了营业额.请分析一下当旅行团的人数是多少时,旅行社可获得最大营业额?(营业额=总人数×票价)(1)设增加的人数为x(2设旅游的总人数为x设计意图:建模确定二次函数,用二次函数的相关知识解决生活中的某些实际问题活动过程:合作讨论------展示作业--------学会纠错------ 学生小结归纳方法三、归纳总结形成经验步骤:1、设变量明确自变量的取值范围;2、找等量关系,求函数关系式;3、利用公式求最大(小)值关键是:求函数关系式四、应用新知形成评价情境4:碧绿的清江水是锦绣长阳的最大亮点,也是长阳水产业发展的天然基地,好山出好水,好水养好鱼,体色光亮、肉质细嫩的清江鲟鱼,深受国内外消费者喜爱。

《实际问题与二次函数》二次函数PPT课件(第1课时)

《实际问题与二次函数》二次函数PPT课件(第1课时)
1 (x 20)2 200 2
∵0<x<25,
∴当x=20时,满足条件的绿化带面积ymax=200.
课堂检测
拓广探索题
某广告公司设计一幅周长为12m的矩形广告牌,广告 设计费用每平方米1000元,设矩形的一边长为x(m), 面积为S(m2). (1)写出S与x之间的关系式,并写出自变量x的取值范 围;
解:令AB长为1,设DH=x,正方形EFGH的面
积为y,则DG=1-x.

y
12
4
1 2
x(1
x)
当x= 1 时,y有最小值
2
1 2
2
.
x
1 2
2
1 2
(0
x 1).
即当E位于AB中点时,正方形EFGH面积最小.
课堂检测
2. 某小区在一块一边靠墙(墙长25m)的空地上修建一个矩形 绿化带ABCD,绿化带一边靠墙, 另三边用总长为40m的栅 栏围住.设绿化带的边长BC为xm,绿化带的面积为ym². (1)求y与x之间的函数关系式,并写出自变量的取值范围.
链接中考 (2)求矩形菜园ABCD面积的最大值.
解:设AD=xm,
∴S=
1 2
x(100﹣x)=﹣12(x﹣50)2+1250,
当a≥50时,则x=50时,S的最大值为1250;
当0<a<50时,则当0<x≤a时,S随x的增大而增大; 当x=a时,S的最大值为50a﹣1 a2,
2
综上所述,当a≥50时,S的最大值为1250;
高?小球运动中的最大高度是多少?
h/m
可以看出,这个函数的图象是一条抛
4
物线的一部分,这条抛物线的顶点是这个 0
函数的图象的最高点.也就是说,当t取顶
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

即 y=
2 0.0045
(45r-r)²
(0<r<45)
你能说出r为多少时y最大吗?
探究3
一座抛物线形拱桥,当水面 在ι时,拱顶离水面2m, 水面宽4m。水面下降1m, 水面宽度增加多少?
B
如何建立坐 标系呢?
A
D
C
你认为A、B、C、D四点,哪一点作为原点 较好?X轴、y轴怎么规定呢?
我们来比较一下
1 2 y x 4 4 (0≤x≤8) 9 20 当x 8时,y 9
此球没有达到篮圈中心距离 地面3米的高度,不能投中。
条件:小明球出手时离地面高
小明与篮圈中心的水平距离为8米,
球出手后水平距离为4米时最高4米,
20 米, 9
篮圈中心距离地面3米。
小明向前平移1米 问题:此球能否投中?
(4,4) 4
20 0, 9
3
(8,3) 20 8, 9
O
4
8
x
y
(4,4) (5,4)
4
3
20 0, 9
A (7,3)

B ( 8, 3 )
O
4
5
8
x
(二)
探究2
计算机把数据存储在磁盘上,磁盘 是带有磁性物质的圆盘,磁盘上有 一些同心圆轨道,叫做磁道,现有 一张半径为45mm的磁盘,
(一)
探究1 某商品现在的售价为每件60 元,每星期可卖出300件,市 场调查反映:如调整价格,每 涨价1元,每星期少卖出10件; 每降价1元,每星期可多卖出 20件,已知商品的进价为每件 40元,如何定价才能使利润最 大?
请大家带着以下几个问题读题
(1)题目中有几种调整价格的方法?
(2)题目涉及到哪些变量?哪一个量是自变量?哪些 量随之发生了变化?
1 2 解法二:前面解法相同,得 y x 4 ( 4 0≤x≤8) 可投中 9 设篮球高度能达到篮圈中心3米高, 1 2 令y x 4 4=3, 9 解之,得x1 =1 (不合题意,舍去),x2 =7
即篮球与小明的水平距离没有达到8米,此球不能投中。
y
(4、0)
y、2) (0
设抛物线的解析式为 Y=a(x-0)² +2 或y=a(x+2)(x-2) ∴y=-0.5x² +2
x
(-2、0)
o
(2、0)
还是都来做一做
(0、0)
Y
设抛物线的解析式为 Y=ax² ∴y=-0.5x²
好像是选它 最好!
(-2、-2)
X
o
(2、-2) (-2、2)
Y
设抛物线的解析式为 Y=a(x+2)² +2 或y=a(x+4)(x-0) ∴y=-0.5x² -2x
9.“津工”超市购进一批20元/千克的绿色食品, 如果以30元/千克销售,那么每天可售出400千克. 由销售经验知;每天销售量y(千克)与销售单价 x(元)(x≥30)存在如图所示的一次函数关系.
(1)求y与x之间的函数解析式. (2)设“津工”超市销售该绿色食品每天获利润W元, 当销售单价定为何值时,每天可获得最大利润?最大 利润是多少? y 400 (3)根据市场调整,该绿色食品 每天获得利润不超过4480元,现 200 该超市经理要求每天利润不得 低于4180元,请你帮助该超市确 x 10 20 30 40 定绿色食品销售单价x取值范围.
9
篮圈中心距离地面3米。
问题:此球能否投中?
解:如图,建立平面直角坐标系,
出手高度要增加
2
204,47 这段抛物线的顶点为( 3 ), 米 9 3 设其对应的函数解析式为:
解之,得a
1 9
y ax 4 4
(0≤x≤8)
20 Q 抛物线经过点 0, 9 20 2 a0 4 4 9
(3)若正常水位时,有一艘
宽8米,高2.5米的小船
C
D
能否安全通过这座桥?
A
20m
B
谈谈你的学习体会
解题步骤: 1、分析题意,把实际问题转化为数学问题,画出图形。
2、根据已知条件建立适当的平面直角坐标系。
3、选用适当的解析式求解。 4、根据二次函数的解析式解决具体的实际问题。
y\元
6250 6000
0
5
30
x\元
可以看出,这个函数的 图像是一条抛物线的一 部分,这条抛物线的顶 点是函数图像的最高点, 也就是说当x取顶点坐标 的横坐标时,这个函数 有最大值。由公式可以 求出顶点的横坐标.
在降价的情况下,最大利润是多少?请你参考(1) 的过程得出答案。 解:设降价x元时利润最大,则每星期可多卖20x件,实 际卖出(300+20x)件,每件利润为(60-40-x)元,因 此,得利润 y=(300+20x)(60-40-x) =-20(x² -5x+6.25)+6150 =-20(x-2.5)² +6150 (0<x<20) ∴x=2.5时,y极大值=6150
(2 、2 ) (0、0)
(0、0) (0、2)
(4、0) (-2、-2) 谁最 合适 (-2、2)
(2、-2)
(-2、0)
(2、0)
(-4、0)
(0、0)
还是都来做一做
y
设抛物线的解析式为 Y=a(x-2)² +2 或y=a(x-0)(x-4) ∴y=-0.5x² +2x
(0、0)
o
(2、2)
x
(1)磁盘最内磁道的半径为rmm, 其上每0.015mm的弧长为一个存储单 元,这条磁道有多少个存储单元? (2)磁盘上各磁道之间的宽度必须 不小于0.3mm,磁盘的外圆周不是磁 道,这张磁盘最多有多少条磁道? (3)如果各磁道的存储单元数目与 最内磁道相同,最内磁道的半径r是多 少时,磁盘的存储量最大?
y=(60+x-40)(300-10x)
怎样确 定x的取 值范围
即y=-10(x-5)² +6250 (0≤X≤30) ∴当x=5时,y最大值=6250
也可以这样求极值
b x 5时,y最大值 10 52 100 5 6000 6250 2a
所以,当定价为65元时,利润最大,最大利润为6250元
某商品现在的售价为每件60元, 每星期可卖出300件,市场调查反 映:每涨价1元,每星期少卖出10 件;每降价1元,每星期可多卖出 20件,已知商品的进价为每件40元, 如何定价才能使利润最大?
分析: 调整价格包括涨价和降价两种情况 先来看涨价的情况:⑴设每件涨价x元,则每星期售出商品的利润y 也随之变化,我们先来确定y与x的函数关系式。涨价x元时则每星 期少卖10x 件,实际卖出 (300-10x) 件,每件利润为 (60+x-40) 元, (60+x-40)(300-10x) 因此,所得利润为 元
OX
(-4、0)
(0、0)
Y
解:设抛物线的解析式为
(0、0)
X
o Y=ax² ∵点(2、-2)在抛物线上, (-2、-2) 4m (2、-2) ∴a=-0.5 , ∴这条抛物线的解析式为 2 6m y=-0.5x² , 当水面下降1m时,y=-3, 这时有 -3=-0.5x² 解得 x1= 6 、x2=- 6 。
你能回答了吧! 怎样确定 x的取值 范围
由(1)(2)的讨论及现在的销售 情况,你知道应该如何定价能 使利润最大了吗?
(1)列出二次函数的解析式,并根 据自变量的实际意义,确定自变量的 取值范围; (2)在自变量的取值范围内,运用 公式法或通过配方求出二次函数的最 大值或最小值。
练习.某商店购进一种单价为40元的篮球,如 果以单价50元售出,那么每月可售出500个, 据销售经验,售价每提高1元,销售量相应减 少10个。 (1)假设销售单价提高x元,那么销售每个 篮球所获得的利润是_______元,这种篮球每 月的销售量是______ 个(用X的代数式表示) (2)8000元是否为每月销售篮球的最大利润? 如果是,说明理由,如果不是,请求出最大利润, 此时篮球的售价应定为多少元?
20 时离地面高 9 米,与篮圈中心的水平距离为8米,当
例题:一场篮球赛中,小明跳起投篮,已知球出手
球出手后水平距离为4米时到达最大高度4米,设篮
球运行的轨迹为抛物线,篮圈中心距离地面3米。
问此球能否投中? 最高4米
篮圈中心
20 米 9
4米 8米
3米
条件:小明球出手时离地面高 20 米, 小明与篮圈中心的水平距离为8米, 球出手后水平距离为4米时最高4米,
此时水面宽为2 6 , 故 水面,有一座抛物线型拱桥,在正常水位AB时, 水面宽20米,水位上升3米,就达到警戒线CD,这时水 面宽为10米。 (1)求抛物线型拱桥的解析式。 (2)若洪水到来时,水位以每小时0.2米的速度上升, 从警戒线开始,在持续多少小时才能达 到拱桥顶?
相关文档
最新文档