记住:竖直平面内的变速圆周运动

合集下载

竖直面内的圆周运动(解析版)

竖直面内的圆周运动(解析版)

竖直面内的圆周运动一、竖直平面内圆周运动的临界问题——“轻绳、轻杆”模型1.“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产生拉力也可对小球产生支持力。

2.有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。

物理情景最高点无支撑最高点有支撑实例球与绳连接、水流星、沿内轨道的“过山车”等球与杆连接、球在光滑管道中运动等图示异同点受力特征除重力外,物体受到的弹力方向:向下或等于零除重力外,物体受到的弹力方向:向下、等于零或向上受力示意图力学方程mg+F N=mv2R mg±F N=mv2R临界特征F N=0mg=mv2minR即v min=gRv=0即F向=0F N=mg过最高点的条件在最高点的速度v≥gR v≥0【典例1】如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动。

小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如图乙所示,则()A .小球的质量为aRbB .当地的重力加速度大小为RbC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等 【答案】: ACD【典例2】用长L = 0.6 m 的绳系着装有m = 0.5 kg 水的小桶,在竖直平面内做圆周运动,成为“水流星”。

G =10 m/s 2。

求:(1) 最高点水不流出的最小速度为多少?(2) 若过最高点时速度为3 m/s ,此时水对桶底的压力多大? 【答案】 (1) 2.45 m/s (2) 2.5 N 方向竖直向上【解析】(1) 水做圆周运动,在最高点水不流出的条件是:水的重力不大于水所需要的向心力。

这是最小速度即是过最高点的临界速度v 0。

以水为研究对象, mg =m v 20L解得v 0=Lg =0.6×10 m/s ≈ 2.45 m/s(2) 因为 v = 3 m/s>v 0,故重力不足以提供向心力,要由桶底对水向下的压力补充,此时所需向心力由以上两力的合力提供。

竖直平面内的圆周运动及实例分析

竖直平面内的圆周运动及实例分析

竖直平面内的圆周运动及实例分析竖直平面内的圆周运动一般是变速圆周运动(带电粒子在匀强磁场中运动除外),运动的速度大小和方向在不断发生变化,运动过程复杂,合外力不仅要改变运动方向,还要改变速度大小,所以一般不研究任意位置的情况,只研究特殊的临界位置──最高点和最低点。

一、两类模型——轻绳类和轻杆类1.轻绳类。

运动质点在一轻绳的作用下绕中心点作变速圆周运动。

由于绳子只能提供拉力而不能提供支持力,质点在最高点所受的合力不能为零,合力的最小值是物体的重力。

所以:(1)质点过最高点的临界条件:质点达最高点时绳子的拉力刚好为零,质点在最高点的向心力全部由质点的重力来提供,这时有,式中的是小球通过最高点的最小速度,叫临界速度;(2)质点能通过最高点的条件是;(3)当质点的速度小于这一值时,质点运动不到最高点高作抛体运动了;(4)在只有重力做功的情况下,质点在最低点的速度不得小于,质点才能运动过最高点;(5)过最高点的最小向心加速度。

2.轻杆类。

运动质点在一轻杆的作用下,绕中心点作变速圆周运动,由于轻杆能对质点提供支持力和拉力,所以质点过最高点时受的合力可以为零,质点在最高点可以处于平衡状态。

所以质点过最高点的最小速度为零,(1)当时,轻杆对质点有竖直向上的支持力,其大小等于质点的重力,即;(2)当时,;(3)当,质点的重力不足以提供向心力,杆对质点有指向圆心的拉力;且拉力随速度的增大而增大;(4)当时,质点的重力大于其所需的向心力,轻杆对质点的竖直向上的支持力,支持力随的增大而减小,;(5)质点在只有重力做功的情况下,最低点的速度,才能运动到最高点。

过最高点的最小向心加速度。

过最低点时,轻杆和轻绳都只能提供拉力,向心力的表达式相同,即,向心加速度的表达式也相同,即。

质点能在竖直平面内做圆周运动(轻绳或轻杆)最高点的向心力最低点的向心力,由机械能守恒,质点运动到最低点和最高点的向心力之差,向心加速度大小之差也等于。

高中物理必修二 第二章 专题强化5 竖直面内的圆周运动

高中物理必修二 第二章 专题强化5 竖直面内的圆周运动
1 2 3 4 5 6 7 8 9 10 11 12
6.在游乐园乘坐如图所示的过山车时,质量为m的人随车在竖直平面内 沿圆周轨道运动,已知重力加速度为g,下列说法正确的是 A.车在最高点时人处于倒坐状态,全靠保险带拉
住,若没有保险带,人一定会掉下去 B.人在最高点时对座位仍会产生压力,但压力一定
小于mg C.人在最高点和最低点时的向心加速度大小相等
√D.人在最低点时对座位的压力大于mg
1 2 3 4 5 6 7 8 9 10 11 12
过山车上人经过最高点及最低点时,受力如图,
在最高点,由 mg+FN=mvR12,可得:FN=m(vR12-g)

在最低点,由 FN′-mg=mvR22,可得:FN′=m(vR22+g)

1 2 3 4 5 6 7 8 9 10 11 12
当 v1≥ gR时,在最高点无保险带也不会掉下,且还可能会对座位 有压力,大小因 v1 而定,A、B 错误. 最高点、最低点两处向心力大小不相等,向心加速度大小也不相等 (变速率),C错误. 由②式知,在最低点FN′>mg,根据牛顿第三定律知,D正确.
1 2 3 4 5 6 7 8 9 10 11 12
二、竖直面内圆周运动的轻杆(管)模型
导学探究
如图所示,细杆上固定的小球和在光滑管形轨道内运动的小球在重 力和杆(管道)的弹力作用下在竖直平面内 做圆周运动,这类运动称为“轻杆模型”. 1.分析求解小球通过最高点的最小速度. 答案 由于杆和管在最高点处能对小球产生向上的支持力,故小球 恰能到达最高点的最小速度v=0,此时小球受到的支持力FN=mg.
2.(多选)如图所示,质量为m的小球在竖直平面内的光滑圆环内侧做圆周 运动.圆环半径为R,小球半径不计,小球经过圆环内侧最高点时刚好不 脱离圆环,则其通过最高点时下列表述正确的是(重力加速度为g) A.小球对圆环的压力大小等于mg

竖直平面内的圆周运动临界问题(超级经典全面)

竖直平面内的圆周运动临界问题(超级经典全面)

B、a处为拉力,b处为推力
C、a处为推力,b处为拉力
D、a处为推力,b处为推力
b
a
例:长度为L=0.5m的轻质细杆OA,A端有一质量
为m=3.0kg的小球,如图5所示,小球以O点为圆心 在竖直平面内做圆周运动,通过最高点时小球的速 率是2.0m/s,g取10m/s2,则此时细杆OA受到 ( B)
A、6.0N的拉力 C、24N的拉力
练习习题
7.质量为m的小球在竖直平面内的圆形轨道的 内侧运动如图5-8-9所示,经过最高点而不 脱离轨道的速度临界值是v,当小球以2v的速 度经过最高点时,对轨道的压力值是( )
A.0
B.mg
C.3mg
D.5mg
2、用长为l的细绳,拴着质量为m的小球,在竖直平面 内做圆周运动,则下列说法中正确的是( ) A.小球在最高点所受的向心力一定是重力 B.小球在最高点绳的拉力可能为零 C.小球在最低点绳子的拉力一定大于重力 D.若小球恰好能在竖直平面内做圆周运动,则它在最 高点的速率为
A .O
C B
2、轻杆和圆管模型 :
N
能过最高点的临界条件:
mg
v临界=0
O
杆(管的下壁)对球的支持力FN=mg
N
mg O
小结二:有支撑的物体
小球与杆相连,球在光滑封闭管中运动
1、临界条件: 由于支撑作用,小球恰能到达最高点的临界速度V临界=0,此时弹力
等于重力
FN mg
2、小球过最高点时,轻杆对小球的弹力情况:
由牛顿第二定律有
FN+mg= mv^2/L
2.6 N(1分)
(3分) ∴mvF^N2=/L
-mg=
根据牛顿第三定律可知,水对桶底的压力大小为2.6 N,方向

第四章 第3-3讲竖直面内的圆周运动

第四章 第3-3讲竖直面内的圆周运动

【典例透析2】小明站在水平地面上,手握不可伸长的轻绳一 端,绳的另一端系有质量为m的小球,甩动手腕,使球在竖直 平面内做圆周运动,当球某次运动到最低点时,绳突然断掉, 球飞行水平距离d后落地,如图所示。已知握绳的手离地面高 度为d,手与球之间的绳长为 3 d ,重力加速度为g。忽略手的运
4
动半径和空气阻力。求:
(1)绳断时球的速度大小v1; (2)绳能承受的最大拉力; (3)改变绳长(绳承受的最大拉力不变),保持手的位置不动, 使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球 抛出的水平距离最大,绳长应为多少?最大水平距离为多少?
【解析】(1)设绳断后球做平抛运动时间为t1,
竖直方向:
1 4
d
1 2
第3-3讲 竖直面内的圆周运动
【考点解读】 1.竖直面内的圆周运动一般是变速圆周运动。 2.只有重力做功的竖直面内的变速圆周运动机械能守恒。 3.竖直面内的圆周运动问题,涉及知识面比较广,既有临界问 题,又有能量守恒的问题,要注意物体运动到圆周的最高点速 度不为零。 4.一般情况下,竖直面内的圆周运动问题只涉及最高点和最低 点的两种情形。
【规范解答】已知a、b绳长均为1 m,即:
Am Bm 1 m,AO 1 AB 0.8 m 2
在△AOm中,cos AO 0.8 0.8
Am 1
sinθ=0.6,θ=37° 小球做圆周运动的轨道半径为
r Om Amsin 1 0.6 m 0.6 m
b绳被拉直但无张力时,小球所受的重力mg与a绳拉力FTa的合 力F为向心力,其受力分析如图所示: 由牛顿第二定律得:F=mgtanθ=mrω2 解得直杆和球的角速度为
【解析】(1)物块做平抛运动,竖直方向有
H 1 gt2 2

高中物理必修课《生活中的圆周运动》知识讲解及考点梳理

高中物理必修课《生活中的圆周运动》知识讲解及考点梳理

高中物理必修课《生活中的圆周运动》知识讲解及考点梳理【学习目标】1、能够根据圆周运动的规律,熟练地运用动力学的基本方法解决圆周运动问题。

2、学会分析圆周运动的临界状态的方法,理解临界状态并利用临界状态解决圆周运动问题。

3、理解外力所能提供的向心力和做圆周运动所需要的向心力之间的关系,以此为根据理解向心运动和离心运动。

【要点梳理】要点一、静摩擦力提供向心力的圆周运动的临界状态 要点诠释:1、水平面上的匀速圆周运动,静摩擦力的大小和方向物体在做匀速圆周运动的过程中,物体的线速度大小不变,它受到的切线方向的力必定为零,提供向心力的静摩擦力一定沿着半径指向圆心。

这个静摩擦力的大小2f ma mr ω==向,它正比于物体的质量、半径和角速度的平方。

当物体的转速大到一定的程度时,静摩擦力达到最大值,若再增大角速度,静摩擦力不足以提供物体做圆周运动所需要的向心力,物体在滑动摩擦力的作用下做离心运动。

临界状态:物体恰好要相对滑动,静摩擦力达到最大值的状态。

此时物体的角速度rgμω=(μ为最大静摩擦因数),可见临界角速度与物体质量无关,与它到转轴的距离有关。

2、水平面上的变速圆周运动中的静摩擦力的大小和方向无论是加速圆周运动还是减速圆周运动,静摩擦力都不再沿着半径指向圆心,静摩擦力一定存在着一个切向分量改变速度的大小。

如图是在水平圆盘上的物体减速和加速转动时静摩擦力的方向:(为了便于观察,将图像画成俯视图)要点二、竖直面上的圆周运动的临界状态 要点诠释: 1.汽车过拱形桥在竖直面内的圆周运动中可以分为:匀速圆周运动和变速圆周运动。

对于变速圆周运动,需要特别注意几种具体情况下的临界状态。

例如:汽车通过半圆的拱形桥,讨论桥面受到压力的变化情况(1)车在最高点的位置Ⅰ时对桥面的压力对车由牛顿第二定律得: Rv m F mg N 2=-为了驾驶安全,桥面对车的支持力必须大于零,即0N F > 所以车的速度应满足关系gR v <临界状态:汽车在最高点处桥面对汽车的支持力为零,此时汽车的速度gR v =。

竖直面内的圆周运动(解析版)

竖直面内的圆周运动(解析版)

竖直面内的圆周运动一、竖直平面内圆周运动的临界问题——“轻绳、轻杆”模型1.“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产生拉力也可对小球产生支持力。

2.有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。

物理情景最高点无支撑最高点有支撑实例球与绳连接、水流星、沿内轨道的“过山车”等球与杆连接、球在光滑管道中运动等图示异同点受力特征除重力外,物体受到的弹力方向:向下或等于零除重力外,物体受到的弹力方向:向下、等于零或向上受力示意图力学方程mg+F N=mv2R mg±F N=mv2R临界特征F N=0mg=mv2minR即v min=gRv=0即F向=0F N=mg过最高点的条件在最高点的速度v≥gR v≥0【典例1】如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动。

小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如图乙所示,则()A .小球的质量为aRbB .当地的重力加速度大小为RbC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等 【答案】: ACD【典例2】用长L = 0.6 m 的绳系着装有m = 0.5 kg 水的小桶,在竖直平面内做圆周运动,成为“水流星”。

G =10 m/s 2。

求:(1) 最高点水不流出的最小速度为多少?(2) 若过最高点时速度为3 m/s ,此时水对桶底的压力多大? 【答案】 (1) 2.45 m/s (2) 2.5 N 方向竖直向上【解析】(1) 水做圆周运动,在最高点水不流出的条件是:水的重力不大于水所需要的向心力。

这是最小速度即是过最高点的临界速度v 0。

以水为研究对象, mg =m v 20L解得v 0=Lg =0.6×10 m/s ≈ 2.45 m/s(2) 因为 v = 3 m/s>v 0,故重力不足以提供向心力,要由桶底对水向下的压力补充,此时所需向心力由以上两力的合力提供。

变速圆周运动

变速圆周运动

第3节变速圆周运动【知识要点】(一)水平面内的匀速圆周运动1、物体在水平面内作匀速圆周运动,其所需的向心力就是合外力,故可对研究对象先进行受力分析,物体所受的水平合力即为向心力,竖直方向的合力为零。

2、处理匀速圆周运动问题,除了须进行正确的受力分析外,设法找到圆周运动的圆心和半径也至关重要。

(二)竖直平面内的圆周运动1、运动物体在竖直平面内作圆周运动,如果物体带电,且空间存在电磁场,此时物体可能作匀速圆周运动。

2、杆的一端固定一小球,可在竖直平面内作匀速圆周运动;线的一端系一小球只在完全失重的环境中才能竖直平面内作匀速圆周运动。

3、线的一端系一小球在竖直平面内运动(不处于完全失重状态且小球不带电),由于重力做功而沿半径方向的拉力不做功,故小球只能作变速圆周运动。

4、对没有物体支持的小球(如小球系在细线的一端、小球在圆轨道内侧运动等)在竖直平面内作圆周运动过最高点的临界条件:绳子和轨道对小球无力作用,则若小球作圆周运动的半径为R ,它在最高点的临界速度为:V 临=5、对有物体支持的小球(如球固定在杆的一端、小球套在圆环上或小球在空心管内的运动)在竖直平面内作圆周运动的半径为R ,它在最高点的临界条件为:V临= 。

6、对于变速圆周运动,物体所受合外力在半径方向上的分力即为向心力,其大小等于作用在物体上的沿半径方向上的分力的代数和,而其所受合外力在垂直于半径方向的分力代数和也不为零。

即变速圆周运动的物体的加速度与其速度不一定垂直,也即加速度并不一定指向圆心。

(三)离心现象物体作圆周运动时,在半径方向所受的合外力不足以提供物体作圆周运动所需要的向心力时,物体将远离圆心,这种现象叫离心现象。

【典型例题】1、长为L 的轻绳一端系一质量为m 的小球,以另一端为圆心,使小球恰好能在竖直平面内做圆周运动,则小球通过最高点时,下列说法正确的是:()A、绳子张力恰好为mg ;B、小球加速度恰好为g ;C、小球加速度恰好为g ;D、小球所受的重力恰好为零。

专题_竖直平面内的圆周运动详解

专题_竖直平面内的圆周运动详解

(1).当V1=1m/s时,F1=? (2).当V2=4m/s时,F2=? (3).通过最低点时,情况又如何呢? (4).如果和小球相连的是细绳而 不是细杆,情况又如何呢?
V
.
O
例2.一细杆与水桶相连,水桶中装有水,水桶与细杆一起在竖 直平面内做圆周运动,如右图所示,水的质量是m=0.5kg,水 的重心到转轴的距离L=50cm. (1).若在最高点时水不流出来,求桶的最小速度; (2).若在最高点时水桶的速率V=3m/s,求水对桶底的压力.
二.小球有支撑(在竖直平面内过最高点的情况)
V
V
r杆


1.临界条件: 由于轻杆和管壁的支撑作用,小球恰好能到达 最高点的临界速度V临界=0
2.如图丙所示,小球过最高点时,轻杆对小球的弹力情况:
(1).V=0时,轻杆对小球有竖直向上的支持力FN,且FN=mg
(2).0<V< gr 时, 轻杆对小球有竖直向上的支持力FN, 大小随速度的增大而减小,取值范 围:0<FN<mg
施力 特点
拉力
v gr v gr v gr
不可 通过
T=0
恰好通过 最高点
拉力
拉力
支持力 N=0
支持力
拉力
支持力
安全过 桥
N=0 恰好离 开桥
离开桥
三.例题
例1.长L=0.5m、质量可以忽略的杆,其下端固定于O点,上 端连有质量=2㎏的小球,它绕O点在竖直平面内做匀速圆周 运动.当通过最高点时,如图所示,在下列情况下,求杆受到 的力.(g=10m/s2)
o B
2.如图所示,一个人用一根长为1m、只能承受46N拉力的绳子拴着 一个质量为1kg的小球在竖直平面内做圆周运动.已知圆心O离地 面的高度H=6m,转动中,小球在最低点时绳子断了,g=10m/s2,求: (1).绳子断时小球运动的角速度 (2).绳子断后小球落地点与抛出点的水平距离

高中物理:竖直平面内的圆周运动

高中物理:竖直平面内的圆周运动

高中物理:竖直平面内的圆周运动 (竖直平面内的圆周运动——是典型的变速圆周运动)(圆周运动实例) ①火车转弯 ②汽车过拱桥、凹桥3③飞机做俯冲运动时,飞行员对座位的压力。

④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。

⑤万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、重力与弹力的合力——锥摆、(关健要搞清楚向心力怎样提供的)(1)火车转弯:设火车弯道处内外轨高度差为h ,内外轨间距L ,转弯半径R 。

由于外轨略高于内轨,使得火车所受重力和支持力的合力F 合提供向心力。

为转弯时规定速度)(得由合0020sin tan v LRgh v R v m L hmg mg mg F ===≈=θθR g v ⨯=θtan 0(是内外轨对火车都无摩擦力的临界条件)①当火车行驶速率V 等于V 0时,F 合=F 向,内外轨道对轮缘都没有侧压力 ②当火车行驶V 大于V 0时,F 合<F 向,外轨道对轮缘有侧压力,F 合+N=R2mv③当火车行驶速率V 小于V 0时,F 合>F 向,内轨道对轮缘有侧压力,F 合-N'=R2mv即当火车转弯时行驶速率不等于V 0时,其向心力的变化可由内外轨道对轮缘侧压力自行调节,但调节程度不宜过大,以免损坏轨道。

火车提速靠增大轨道半径或倾角来实现2.解决匀速圆周运动问题的一般方法(1)明确研究对象,必要时将它从转动系统中隔离出来。

(2)找出物体圆周运动的轨道平面,从中找出圆心和半径。

(3)分析物体受力情况,千万别臆想出一个向心力来。

(4)建立直角坐标系(以指向圆心方向为x 轴正方向)将力正交分解。

(5)⎪⎩⎪⎨⎧=∑===∑02222y x F R Tm R m R v m F )(建立方程组πω3.离心运动在向心力公式F n =mv 2/R 中,F n 是物体所受合外力所能提供的向心力,mv 2/R 是物体作圆周运动所需要的向心力。

竖直面内的圆周运动模型分析

竖直面内的圆周运动模型分析

竖直面内的圆周运动模型分析作者:柴彦龙来源:《卷宗》2013年第05期高中物理教学中,竖直面内的圆周运动问题较为常见。

相关内容也是学生普遍感觉到难以理解、难以处理的。

本文中就此问题进行了系统的总结,希望对广大物理教师的教学和学生的学习有所启发。

竖直平面内的圆周运动一般是变速圆周运动(带电粒子在匀强磁场中运动除外),运动的速度大小和方向在不断发生变化,运动过程复杂,合外力不仅要改变运动方向,还要改变速度大小,所以一般不研究任意位置的情况,只研究特殊的临界位置──最高点和最低点。

一、两类模型——轻绳模型和轻杆模型1.轻绳模型运动质点在一轻绳的作用下绕中心点作变速圆周运动。

由于绳子只能提供拉力而不能提供支持力。

所以:(1)质点过最高点的临界条件:质点达最高点时绳子的拉力刚好为零,质点在最高点的向心力全部由质点的重力来提供,这时有mg=m,式中的vmin是小球通过最高点的最小速度。

(2)质点能通过最高点的条件是v≥vmin=;在最高点可能存在两种情况:(1)即由重力和拉力的合力提供向心力(2)只有重力提供向心力在最低点只有一种情况绳上一定有拉力2.轻杆模型运动质点在一轻杆的作用下,绕中心点作变速圆周运动,由于轻杆能对质点提供支持力和拉力,所以质点过最高点时受的合力可以为零,质点在最高点可以处于平衡状态。

所以质点过最高点的最小速度为零,(临界速度)在最高点可能存在四种情况:(1)当v=0时,轻杆对质点有竖直向上的支持力,其大小等于质点的重力,即N=mg;(2)杆上弹力为零,由重力提供向心力v=(3)当v>,质点的重力不足以提供向心力,杆对质点有指向圆心的拉力;即(4)当0在最低点只有一种情况杆上一定有向上的拉力两类模型的最大区别在于,在圆周最高点能否提供向上的支持力。

实际中可依据此判断具体题目中物理情境下属于哪种模型。

例1(07年全国2)如图所示,位于竖直平面内的光滑有轨道,由一段斜的直轨道与之相切的圆形轨道连接而成,圆形轨道的半径为R。

竖直平面内的圆周运动

竖直平面内的圆周运动

分析:
F2
A
最高点:
V1(V2)
v mg F1 m R

2 1
v mg F2 m R
2 2
F1 G
;
R
F3
V3 G
v 最低点: F3 mg m R
思考:小球在最高点的最小速度 可以是多少?什么时候外管壁对 小球有压力,什么时候内管壁对 小球有支持力?什么时候内外管 壁都没有压力?
要通过最高点,此时轻杆的拉力需要大 于等于5mg,速度 V 5gR
拓展:物体在管型轨道内的运动
如图,有一内壁光滑竖直放 置的管型轨道半径为R,内 有一质量为m的小球,沿其 竖直方向上的做变速圆周运 动,小球的直径刚好与管的 内径相等
(1)小球在运动到最高点的时候速度与受力 的关系是怎样的? (2)小球运动到最低点的时候速度与受力的 关系又是怎样?
练习5
杆长为 L ,球的质量为 m ,杆连球在竖直平面内绕 轴 O 自由转动,已知在最高点处,杆对球的弹力大小 为F=1/2mg,求这时小球的速度大小。 解:小球所需向心力向下,本题中 F=1/2mg<mg, 所以弹力的方向可能向上,也可能向下。
⑴若F 向上,则
mv 2 mg F , L
⑵若F 向下,则
v vmin gr

当质点的速度小于这一值时,质点将运动不到最
2、最低点: 最低点的向心力方程:
mV FN mg R
2
V
可知此时绳子的拉力不可能为零,其最小值为 mg,速度为零,但不能通过最高点。 要通过最高点,此时绳子的拉力需要大于等 于6mg,速度 V 5gR
拓展:物体沿竖直内轨运动
练习1
绳系着装有水的桶,在竖直平面内做圆周运动, 水的质量为0.5Kg,绳长60Cm,求: (1)最高点水不流出的最小速率; (2)水在最高点速率为3m/s时,水对桶底的压力。

高三物理 圆周运动的临界条件 知识精讲

高三物理 圆周运动的临界条件 知识精讲

高三物理 圆周运动的临界条件 知识精讲在竖直平面内,圆周运动的临界条件:1. 绳拉小球在竖直平面内的运动,是变速运动,在上端v v 小大,在下端BA 位置v AGN小球受到重力G ,绳的拉力为T ,A 位置的向心力F mg N mg N mv RA =++=2/mg N 重力与运动状态无关,为轨道对物体的弹力,该力的大小与运动状态有关。

N mv R mg A =-2/ (1)当时绳提供弹力向下,是N mv R mg A >>02/由绳的形变而引起的,小球维持圆周运动。

()当时重力提供向心力,202N mv R mg A ==/小球与绳间无相互作用。

()当时除提供向心力外还有余力,302N mv R mg mg A <</必须由绳提供,向上拉力以抵消该余力,这是绳所做不到的,所以,受力大于向心力而下落。

A. 该时v 称为临界速度,是小球刚好越过顶点,作圆周运动速度的最小值。

B. 临界速度与物体质量⋅⋅无关,只取决于竖直平面内,绳长和重力加速度gC. 当v v <临,小球下落,v v ≥临,小球保持⋅⋅圆周运动。

尚未达到最高点,作抛体运动。

在B 位置重力为mg 为切向力,使小球在切向加速,T 提供力作为向心力 T mv R B =2/在C 位置重力为mg ,拉力为T 在一条直线上,合力指向圆心,充当向心力T mg mv R C -=2/TmgvD. 如果在该题中,绳拉球,改为球在单侧内轨道运动,物体做圆周运动情况相同。

物体在绳,单侧轨道上竖直平面内,否则物体能做圆周运动的速度条件为v gR ≥在最高点。

2. 杆带球在竖直平面内作圆周运动,可以做到是匀速圆周运动。

CA 位置N mgv小球受到重力,杆的拉力N ,A 位置的向心力,F mg N =+ N F mg mv R mg A =-=-2/mg 与运动状态无关,N 与运动状态有关。

(1)当N mv R mg >>02,/ 杆提供向下弹力,是由于杆对球拉力,可以做到。

物理建模系列(七) 竖直平面内圆周运动的两种模型

物理建模系列(七) 竖直平面内圆周运动的两种模型

物理建模系列(七)竖直平面内圆周运动的两种模型1.模型构建在竖直平面内做圆周运动的物体,运动至轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接,沿内轨道的“过山车”等),称为“轻绳模型”;二是有支撑(如球与杆连接,小球在弯管内运动等),称为“轻杆模型”.2.模型条件(1)物体在竖直平面内做变速圆周运动.(2)“轻绳模型”在轨道最高点无支撑,“轻杆模型”在轨道最高点有支撑.3.常用模型面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g .当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )A .Mg -5mgB .Mg +mgC .Mg +5mgD .Mg +10mg【解析】 解法一:以小环为研究对象,设大环半径为R ,根据机械能守恒定律,得mg ·2R =12m v 2,在大环最低点有F N -mg =m v 2R ,得F N =5mg ,此时再以大环为研究对象,受力分析如图,由牛顿第三定律知,小环对大环的压力为F ′N =F N ,方向竖直向下,故F =Mg +5mg ,由牛顿第三定律知C 正确.解法二:设小环滑到大环最低点时速度为v ,加速度为a ,根据机械能守恒定律12m v 2=mg ·2R ,且a =v 2R,所以a =4g ,以整体为研究对象,受力情况如图所示.F -Mg -mg =ma +M ·0 所以F =Mg +5mg ,C 正确. 【答案】 C[高考真题]1.(2016·上海卷,16)风速仪结构如图(a)所示.光源发出的光经光纤传输,被探测器接收,当风轮旋转时,通过齿轮带动凸轮圆盘旋转,当圆盘上的凸轮经过透镜系统时光被挡住.已知风轮叶片转动半径为r ,每转动n 圈带动凸轮圆盘转动一圈.若某段时间Δt 内探测器接收到的光强随时间变化关系如图(b)所示,则该时间段内风轮叶片( )A .转速逐渐减小,平均速率为4πnr ΔtB .转速逐渐减小,平均速率为8πnrΔtC .转速逐渐增大,平均速率为4πnrΔtD .转速逐渐增大,平均速率为8πnrΔt【解析】 据题意,从b 图可以看出,在Δt 时间内,探测器接收到光的时间在增长,圆盘凸轮的挡光时间也在增长,可以确定圆盘凸轮的转动速度在减小;在Δt 时间内可以从图看出有4次挡光,即圆盘转动4周,则风轮叶片转动了4n 周,风轮叶片转过的弧长为l =4n ×2πr ,叶片转动速率为:v =8n πrΔt,故选项B 正确.【答案】 B2.(2016·浙江卷,20)如图所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R =90 m 的大圆弧和r =40 m 的小圆弧,直道与弯道相切.大、小圆弧圆心O 、O ′距离L =100 m .赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍.假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动.要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g =10 m/s 2,π=3.14),则赛车( )A .在绕过小圆弧弯道后加速B .在大圆弧弯道上的速率为45 m/sC .在直道上的加速度大小为5.63 m/s 2D .通过小圆弧弯道的时间为5.58 s【解析】 赛车用时最短,就要求赛车通过大、小圆弧时,速度都应达到允许的最大速度,通过小圆弧时,由2.25mg =m v 21r 得v 1=30 m/s ;通过大圆弧时,由2.25mg =m v 22R得v 2=45 m/s ,B 项正确.赛车从小圆弧到大圆弧通过直道时需加速,故A 项正确.由几何关系可知连接大、小圆弧的直道长x =50 3 m ,由匀加速直线运动的速度位移公式:v 22-v 21=2ax得a ≈6.50 m/s 2,C 项错误;由几何关系可得小圆弧所对圆心角为120°,所以通过小圆弧弯道的时间t =13×2πrv 1≈2.79 s ,故D 项错误.【答案】 AB3.(2015·课标卷Ⅰ,22)某物理小组的同学设计了一个粗测玩具小车通过凹形桥最低点时的速度的实验.所用器材有:玩具小车、压力式托盘秤、凹形桥模拟器(圆弧部分的半径为R =0.20 m).完成下列填空:(1)将凹形桥模拟器静置于托盘秤上,如图(a)所示,托盘秤的示数为1.00 kg.(2)将玩具小车静置于凹形桥模拟器最低点时,托盘秤的示数如图(b)所示,该示数为 ________ kg.(3)将小车从凹形桥模拟器某一位置释放,小车经过最低点后滑向另一侧,此过程中托盘秤的最大示数为m ;多次从同一位置释放小车,记录各次的m 值如下表所示.(4)N ;小车通过最低点时的速度大小为 ________ m/s.(重力加速度大小取9.80 m/s 2,计算结果保留2位有效数字)【解析】 (2)由题图(b)可知托盘秤量程为10 kg ,指针所指的示数为1.40 kg.(4)由多次测出的m 值,利用平均值可求m =1.81 kg.而模拟器的重力为G =m 0g =9.8 N ,所以小车经过凹形桥最低点时对桥的压力为F N =mg -m 0g ≈7.9 N ;根据径向合力提供向心力,即7.9 N -(1.40-1.00)×9.8 N =0.4v 2R,解得v ≈1.4 m/s.【答案】 (2)1.40 (4)7.9 1.4[名校模拟]4.(2018·山东烟台高三上学期期中)如图所示,水平圆盘可以绕竖直转轴OO ′转动,在距转轴不同位置处通过相同长度的细绳悬挂两个质量相同的物体A 、B .不考虑空气阻力的影响,当圆盘绕OO ′轴匀速转动达到稳定状态时,下列说法正确的是( )A .A 比B 的线速度小B .A 与B 的向心加速度大小相等C .细绳对B 的拉力大于细绳对A 的拉力D .悬挂A 与B 的细绳与竖直方向夹角相等【解析】 物体A 、B 绕同一轴转动,角速度相同,由v =ωr 知,v A <v B ,由a =ω2r 知,a A <a B ,由T sin θ=ma ,T cos θ=mg 及a A <a B 得T A <T B ,θA <θB ,故A 、C 正确.【答案】 AC5.(2018·广东惠州市高三上学期第二次调研)如图甲所示是中学物理实验室常用的感应起电机,它是由两个大小相等直径约为30 cm 的感应玻璃盘起电的.其中一个玻璃盘通过从动轮与手摇主动轮链接如图乙所示,现玻璃盘以100 r/min 的转速旋转,已知主动轮的半径约为8 cm ,从动轮的半径约为2 cm ,P 和Q 是玻璃盘边缘上的两点,若转动时皮带不打滑,下列说法正确的是( )A .玻璃盘的转动方向与摇把转动方向相反B .P 、Q 的线速度相同C .P 点的线速度大小约为1.6 m/sD .摇把的转速约为400 r/min【解析】 若主动轮做顺时针转动,从动轮通过皮带的摩擦力带动转动,所以从动轮逆时针转动,所以玻璃盘的转动方向与摇把转动方向相反,故A 正确;线速度也有一定的方向,由于线速度的方向沿曲线的切线方向,由图可知,P 、Q 两点的线速度的方向一定不同,故B 错误;玻璃盘的直径是30 cm ,转速是100 r/min ,所以线速度:v =ωr =2n πr =2×10060×π×0.32m/s =0.5π m/s ≈1.6 m/s ,故C 正确;从动轮边缘的线速度:v c =ωr c =2×10060×π×0.02m/s =115π m/s ,由于主动轮的边缘各点的线速度与从动轮边缘各点的线速度的大小相等,即v z =v c ,所以主动轮的转速:n z =ωz 2π=v z r z 2π=115π2π×0.08=12.4r/s =25 r/min.故D 错误.【答案】 AC6.(2018·华中师大第一附中高三上学期期中)如图所示,ABC 为在竖直平面内的金属半圆环,AC 连线水平,AB 为固定的直金属棒,在金属棒上和圆环的BC 部分分别套着两个相同的小环M 、N ,现让半圆环绕对称轴以角速度ω做匀速转动,半圆环的半径为R ,小圆环的质量均为m ,棒和半圆环均光滑,已知重力加速度为g ,小环可视为质点,则M 、N 两环做圆周运动的线速度之比为( )A.gR 2ω4-g 2B .g 2-R 2ω4gC.g g 2-R 2ω4D .R 2ω4-g 2g【解析】 AB 杆倾角45°,对于M 环:mg =mrω2=m v 2Mr2v M =g ω.对于N 环:mg tan θ=mR sin θ·ω2=mωv N v N =R sin θ·ω=Rω1-g 2R 2ω4 所以v M ∶v N =g ∶R 2ω4-g 2,A 对,B 、C 、D 错. 【答案】 A课时作业(十二) [基础小题练]1.如图所示,一偏心轮绕垂直纸面的轴O 匀速转动,a 和b 是轮上质量相等的两个质点,则偏心轮转动过程中a 、b 两质点( )A .角速度大小相同B .线速度大小相同C .向心加速度大小相同D .向心力大小相同【解析】同轴转动角速度相等,A 正确;由于两者半径不同,根据公式v =ωr 可得两点的线速度不同,B 错误;根据公式a =ω2r ,角速度相同,半径不同,所以向心加速度不同,C 错误;根据公式F =ma ,质量相同,但是加速度不同,所以向心力大小不同,D 错误.【答案】 A2.(2018·甘肃河西五市联考)利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图所示,用两根长为L 的细线系一质量为m 的小球,两线上端系于水平横杆上,A ,B 两点相距也为L ,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根细线承受的张力为( )A .23mgB .3mgC .2.5mgD .732mg【解析】 小球恰好过最高点时有mg =m v 21R,解得v 1=32gL ,根据动能定理得mg ·3L =12m v 22-12m v 21,由牛顿第二定律得3T -mg =m v 2232L ,联立得T =23mg ,故A 正确,B 、C 、D 错误.【答案】 A3.如图为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转速为n 1,转动过程中皮带不打滑.下列说法正确的是( )A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮边缘线速度大小为r 22r 1n 1D .从动轮的转速为r 2r 1n 1【解析】 主动轮沿顺时针方向转动时,传送带沿M →N 方向运动,故从动轮沿逆时针方向转动,故A 错误,B 正确;由ω=2πn 、v =ωr 可知,2πn 1r 1=2πn 2r 2,解得n 2=r 1r 2n 1,从动轮边缘线速度大小v =2πn 2r 2=2πn 1r 1,故C 、D 错误.【答案】 B4.(2018·山东青岛市即墨一中高三上学期期中)如图所示,甲、乙圆盘的半径之比为1∶2,两水平圆盘紧靠在一起,乙靠摩擦随甲不打滑转动.两圆盘上分别放置质量为m 1和m 2的小物体,m 1=2m 2,两小物体与圆盘间的动摩擦因数相同.m 1距甲盘圆心为r ,m 2距乙盘圆心为2r ,此时它们正随圆盘做匀速圆周运动.下列判断正确的是( )A .m 1和m 2的线速度之比为1∶4B .m 1和m 2的向心加速度之比为2∶1C .随转速慢慢增加,m 1先开始滑动D .随转速慢慢增加,m 2先开始滑动【解析】 甲、乙两轮子边缘上的各点线速度大小相等,有:ω1R =ω22R ,则得ω1∶ω2=2∶1,所以物块相对圆盘开始滑动前,m 1与m 2的角速度之比为2∶1.根据公式:v =ωr ,所以:v 1v 2=ω1r ω2·2r =11,故A 错误.根据a =ω2r 得:m 1与m 2的向心加速度之比为 a 1∶a 2=(ω21r )∶(ω222r )=2∶1,故B 正确.根据μmg =mrω2=ma 知,m 1先达到临界角速度,可知当转速增加时,m 1先开始滑动,故C 正确,D 错误.【答案】 BC5.如图所示,水平放置的圆筒可以绕中心轴线匀速转动,在圆筒上的直径两端有两个孔A 、B ,当圆筒的A 孔转到最低位置时,一个小球以速度v 0射入圆筒,圆筒的半径为R ,要使小球能够不碰到筒壁首次离开圆筒,则圆筒转动的角速度可能为(已知重力加速度大小为g )( )A.n πgv 0,n =1,2,3,… B.(2n -1)πg 2v 0,n =1,2,3,…C.2n πg v 0-v 20-4Rg ,n =1,2,3,…D.2n πg v 0+v 20-4Rg,n =1,2,3,… 【解析】 若小球上升最大高度小于圆筒直径,小球从A 孔离开,则竖直上抛时间为t =2v 0g =2n πω,n =1,2,3,…,ω=n πgv 0,A 正确;若小球上升最大高度小于圆筒直径,从B 孔离开,则有t =2v 0g =(2n -1)πω,n =1,2,3,…,ω=(2n -1)πg 2v 0,B 正确;若小球上升最大高度大于直径,从B 孔离开,小球经过圆筒时间为t ,则有2R =v 0t -gt 22,圆筒转动时间为t =2n πω,n =1,2,3,…,解得ω=2n πgv 0-v 20-4Rg ,C 正确;若小球上升最大高度大于直径,从A 孔离开,则圆筒转动时间为t =(2n -1)πω,n =1,2,3,…,解得ω=(2n -1)πgv 0-v 20-4Rg,D 错误. 【答案】 ABC6.(2018·开封高三模拟)在离心浇铸装置中,电动机带动两个支承轮同向转动,管状模型放在这两个轮上靠摩擦转动,如图所示,铁水注入之后,由于离心作用,铁水紧紧靠在模型的内壁上,从而可得到密实的铸件,浇铸时转速不能过低,否则,铁水会脱离模型内壁,产生次品.已知管状模型内壁半径为R ,则管状模型转动的最低角速度ω为( )A.gR B . g 2R C.2g RD .2g R【解析】 最易脱离模型内壁的位置在最高点,转动的最低角速度ω对应铁水在最高点受内壁的作用力为零,即mg =mω2R ,得:ω=gR,A 正确. 【答案】 A[创新导向练]7.生活实际——圆周运动中的自行车问题雨天在野外骑车时,在自行车的后轮轮胎上常会粘附一些泥巴,行驶时感觉很“沉重”.如果将自行车后轮撑起,并离开地面而悬空,然后用手匀速摇脚踏板,使后轮飞速转动,泥巴就被甩下来.如图所示,图中a 、b 、c 、d 为后轮轮胎边缘上的四个特殊位置,则( )A .泥巴在图中a 、c 位置的向心加速度大于b 、d 位置的向心加速度B .泥巴在图中的b 、d 位置时最容易被甩下来C .泥巴在图中的c 位置时最容易被甩下来D .泥巴在图中的a 位置时最容易被甩下来【解析】 当后轮匀速转动时,由a =Rω2知a 、b 、c 、d 四个位置的向心加速度大小相等,A 错误.在角速度ω相同的情况下,泥巴在a 点有F a +mg =mω2R ,在b 、d 两点有F bd=mω2R ,在c 点有F c -mg =mω2R ,所以泥巴与轮胎在c 位置的相互作用力最大,容易被甩下,故B 、D 错误,C 正确.【答案】 C8.生活实际——通过“过山车”考查圆周运动最高点的临界问题如图所示甲、乙、丙、丁是游乐场中比较常见的过山车,甲、乙两图的轨道车在轨道的外侧做圆周运动,丙、丁两图的轨道车在轨道的内侧做圆周运动,两种过山车都有安全锁(由上、下、侧三个轮子组成)把轨道车套在了轨道上,四个图中轨道的半径都为R ,下列说法正确的是( )A .甲图中,当轨道车以一定的速度通过轨道最高点时,座椅一定给人向上的力B .乙图中,当轨道车以一定的速度通过轨道最低点时,安全带一定给人向上的力C .丙图中,当轨道车以一定的速度通过轨道最低点时,座椅一定给人向上的力D .丁图中,轨道车过最高点的最小速度为gR【解析】 在甲图中,当速度比较小时,根据牛顿第二定律得,mg -F N =m v 2R,即座椅给人施加向上的力,当速度比较大时,根据牛顿第二定律得,mg +F N =m v 2R,即座椅给人施加向下的力,故A 错误;在乙图中,因为合力指向圆心,重力竖直向下,所以安全带给人一定是向上的力,故B 正确;在丙图中,当轨道车以一定的速度通过轨道最低点时,合力方向向上,重力竖直向下,则座椅给人的作用力一定竖直向上,故C 正确;在丁图中,由于轨道车有安全锁,可知轨道车在最高点的最小速度为零,故D 错误.【答案】 BC9.高新科技——圆周运动中的运动学问题应用实例某计算机读卡系统内有两个围绕各自固定轴匀速转动的铝盘A 、B ,A 盘固定一个信号发射装置P ,能持续沿半径向外发射红外线,P 到圆心的距离为28 cm.B 盘上固定一个带窗口的红外线信号接收装置Q ,Q 到圆心的距离为16 cm.P 、Q 转动的线速度均为4π m/s.当P 、Q 正对时,P 发出的红外线恰好进入Q 的接收窗口,如图所示,则Q 每隔一定时间就能接收到红外线信号,这个时间的最小值为( )A.0.42 s B.0.56 s C.0.70 s D.0.84 s【解析】P的周期T P=2πr Pv=2π×0.284πs=0.14 s,同理Q的周期T Q=2πr Qv=2π×0.164πs=0.08 s,而经过的时间应是它们周期的整数倍,因此B项正确.【答案】 B10.科技生活——汽车后备箱升降学问汽车后备箱盖一般都配有可伸缩的液压杆,如图甲所示,其示意图如图乙所示,可伸缩液压杆上端固定于后盖上A点,下端固定于箱内O′点,B也为后盖上一点,后盖可绕过O 点的固定铰链转动,在合上后备箱盖的过程中()A.A点相对O′点做圆周运动B.A点与B点相对于O点转动的线速度大小相等C.A点与B点相对于O点转动的角速度大小相等D.A点与B点相对于O点转动的向心加速度大小相等【解析】在合上后备箱盖的过程中,O′A的长度是变化的,因此A点相对O′点不是做圆周运动,A错误;在合上后备箱盖的过程中,A点与B点都是绕O点做圆周运动,相同的时间绕O点转过的角度相同,即A点与B点相对O点的角速度相等,但是OB大于OA,根据v=rω,所以B点相对于O点转动的线速度大,故B错误,C正确;根据向心加速度a=rω2可知,B点相对O点的向心加速度大于A点相对O点的向心加速度,故D错误.【答案】 C[综合提升练]11.物体做圆周运动时所需的向心力F需由物体运动情况决定,合力提供的向心力F供由物体受力情况决定,若某时刻F需=F供,则物体能做圆周运动;若F需>F供,物体将做离心运动;若F需<F供,物体将做近心运动.现有一根长L=1 m的刚性轻绳,其一端固定于O 点,另一端系着质量m=0.5 kg的小球(可视为质点),将小球提至O点正上方的A点处,此时绳刚好伸直且无张力,如图所示.不计空气阻力,g取10 m/s2,则:(1)为保证小球能在竖直面内做完整的圆周运动,在A 点至少应施加给小球多大的水平速度?(2)在小球以速度v 1=4 m/s 水平抛出的瞬间,绳中的张力为多少?(3)在小球以速度v 2=1 m/s 水平抛出的瞬间,绳中若有张力,求其大小;若无张力,试求绳子再次伸直时所经历的时间.【解析】(1)小球做圆周运动的临界条件为重力刚好提供最高点时小球做圆周运动的向心力,即mg =m v 20L,解得v 0=gL =10 m/s. (2)因为v 1>v 0,故绳中有张力.根据牛顿第二定律有F 1+mg =m v 21L,代入数据得绳中张力F 1=3 N.(3)因为v 2<v 0,故绳中无张力,小球将做平抛运动,其运动轨迹如图中实线所示,有L 2=(y -L )2+x 2,x =v 2t ,y =12gt 2,代入数据联立解得t =0.6 s. 【答案】 (1)10 m/s (2)3 N (3)无张力,0.6 s12.(2018·山东潍坊高三上学期期中)如图所示,圆形餐桌中心有一半径为R 的圆盘,可绕穿过中心的竖直轴转动,圆盘与餐桌在同一水平面内且两者之间的间隙可忽略不计.当圆盘的角速度为 g 2R时,放置在圆盘边缘的小物体恰好滑上餐桌.已知小物体与餐桌间的动摩擦因数为0.25,最大静摩擦力等于滑动摩擦力,重力加速度为g.求:(1)小物体与圆盘的动摩擦因数;(2)小物体恰好不从餐桌滑落时餐桌的最小半径.【解析】(1)设小物体与圆盘间的动摩擦因数为μ1,小物体恰好滑到餐桌上时圆盘的角速度为ω0μ1mg=mω20R代入数据解得:μ1=0.5.(2)小物体从圆盘甩出时的速度v1=ω0R设小物体与餐桌间的动摩擦因数为μ2,小物体在餐桌上滑动距离x1恰不滑出桌面,0-v21=2ax1a=-μ2g餐桌的最小半径R min=R2+x21联立解得:R min=2R【答案】(1)0.5(2)2R。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

竖直平面内的变速圆周运动,是典型的变速圆周运动,对于物体在竖直平面内做变速圆周运动的问题,中学物理中只研究物体通过最高点和最低点的情况,并且经常出现临界状态。

此类问题多为讨论最高点时的情况,下面具体分析几种情况:
1、“绳模型”——外轨、绳的约束
(1)临界条件:小球到最高点时绳子的拉力(或轨道的弹力)刚好等于零,小球的重力提供做圆周运动的向心力, mg=m V临2/r, V临 =gr,即 V临是小球能通过最高点时的最小速度
(2)能通过最高点的条件:v≥v临
(3)不能通过最高点的条件v<v临。

这种情况实际上小球在到达最高点之前就脱离了轨道
2、“杆模型”——管、杆的约束
(1)临界条件:由于轻杆或管壁的支撑,小球能到达最高点的条件是小球在最高点时速度可以为零。

(2)当0<v<gr时,杆对球的作用力表现为推力,推力大小为N=mg-m V2/r,N随速度增大而减小。

(3)当v>gr时,杆对球的作用力表现为拉力,拉力的大小为T= m V2/r-mg。

相关文档
最新文档