概率论 第5章 极限定理
概率第五章_大数定律与中心极限定理090505

P ( − Eξ ε ) = ξ ≥
P(ξ ≥ Eξ + ε ) + P (ξ ≤ Eξ − ε )
k
=
≤
k : xk ≥ E +
∑ξ ε p
k
+
k : xk ≤ E −
∑ξ ε p
pk +
k :xk ≥ E +
∑ξ ε
( x − Eξ ) 2
ε
2
k :xk ≤ E −
∑ξ ε
( x − Eξ ) 2
, 方差 Dξ n ( n = 1, 2,L),且 Dξi < l (i = 1, 2,L) 其中 l 与 i 无关的
1 Eξ = (1 + 2 + 3 + L + 6) 6
35 7 故 Eξ = Dξ = 12 2
4 2 = P (ξ = 5) + P(ξ = 6) + P (ξ = 1) + P (ξ = 2) = = 6 3 7 1 P( − 2 ) = P(ξ ≥ 5.5) + P(ξ ≤ 1.5) = P (ξ = 6) + P (ξ = 1) = ξ ≥
即
lim P ( − p < ε ) = 1 n →∞ n
ξ
此定理表明:当试验在不变的条件下重复进行很多次时, 随机事件的频率 频率在它的概率 概率附近摆动。 频率 概率 由贝努里大数定律可知,若事件A的概率很小很小时,则 它的频率也很小很小,即事件A很少发生或几乎不发生, 这种事件叫小概率事件。反之,若随机事件的概率很接近1, 则可认为在个别试验中这事件几乎一定发生。 同分布的两个或多个随机变量: 同分布的两个或多个随机变量 离散型: 它们的概率分布律相同. 离散型 它们的概率分布律相同 连续型: 它们的概率密度函数相同. 连续型 它们的概率密度函数相同 所以它们的期望与方差一定相同. 所以它们的期望与方差一定相同
概率论与数理统计 第五章

Xn ⎯ ⎯→ X 2. 依概率收敛与依分布收敛的关系
依概率收敛 ⇒ 依分布收敛
L
3. 定义:中心极限定理 设随机变量 X ~ N(0,1),{Xi },i = 1, 2, … 相互独 立,且数学期望和方差都存在, 若标准化随机变量序列
∑
n
i =1
Xi −
∑ E(X
i =1
n
i
)
∑
n
i =1
D(X i)
所以结论成立。 由此有,若X ~ B( n, p ),对于足够大的n,有 ⎧ m1 − np X − np m2 − np ⎫ ⎪ ⎪ < ≤ P{m1 < X ≤ m2 }= P ⎨ ⎬ np(1 − p) np(1 − p) ⎪ ⎪ np(1 − p) ⎩ ⎭
⎧ Yn − np ⎫ ⎪ ⎪ ≤ x ⎬ = Φ( x ) lim P ⎨ n →∞ ⎪ np(1 − p ) ⎪ ⎩ ⎭
证明:对于任意正整数n,随机变量Yn 可表示为 证明:对于任意正整数n Yn = X1+ X2+…+ Xn X1, X2,…, Xn 相互独立,Xi ~ B( 1, p ),且有 E( Xi ) = p , D( Xi ) = p(1-p) 所以随机变量序列{ Xi }, i =1,2,…满足独立同分布 中心极限定理条件。即有
切比雪夫不等式的应用 1)估计随机变量落在某个区间内的概率 (P125例5.5.2) 2)估计ε的值, 使 P(│X - E(X)│<ε) ≥ a (0<a<1) 3)证明大数定律。
二. 大数定律 定义: 依概率收敛 设{Xn}是一个随机变量序列,X 是一个随机变量 或常数,若对于任意的ε> 0,有 lim P{| X n − X |≥ ε } = 0
概率论与数理统计第五章大数定律及中心极限定理

概率论与数理统计第五章大数定律及中心极限定理课前导读概率论是研究大量试验后呈现出的统计规律性的一门理论。
数学中研究大量的工具是极限。
因此这一章学习概率论中的极限定理。
第一节大数定律随着试验次数的增大,事件的频率逐步稳定到事件的概率。
意味着随着试验次数的增多,在其中一种收敛意义下,频率的极限是概率。
大数定律解释了这一结论。
首先介绍切比雪夫不等式。
一、切比雪夫(Chebyshev)不等式随机变量X的取值总是围绕着其期望变动,若X的分布已知时,可以计算事件\{,X-E(X),\geq \epsilon \}的概率。
切比雪夫不等式:对切比雪夫不等式的直观理解:方差越小,X在其期望附近取值的密集程度越高,原理期望的区域的概率上加越小。
进一步说明了方差的概率意义,方差时随机变量取值与其中心位置的偏离程度的一种度量指标。
当随机变量X的分布未知时,可由X的观测数据估计得到X的期望和方差,然后使用切比雪夫不等式估计X关于E(X)的偏离程度。
二、依概率收敛随机变量序列即由随机变量构成的一个序列。
不能用类似定义数列极限的方式定义随机变量序列的极限,因为序列中的每一个元素X_n是随机变量,取值不确定,不可能和一个常数c的距离任意小。
只能说一些事件A发生的频率f_n(A)收敛到A的概率P(A)。
依概率收敛的定义:定理2:三、大数定律三个大数定律:切比雪夫大数定律、辛钦大数定律和伯努利大数定律。
注意这三个大数定律的条件有何异同。
定理3 切比雪夫大数定律:若随机变量序列相互不相关,方差存在且一致有上界,当n充分大时,随机序列的前n项的算术平均值和自身的期望充分接近几乎总是发生的。
定理4 相互独立同分布的大数定律(辛钦大数定律):辛钦大数定律为算术平均值法则提供了理论依据。
伯努利大数定律:伯努利大数定律是相互独立同分布大数定律的特例,限定分布为两点分布。
伯努利大数定律体现了:随着试验次数的增大,事件的频率逐步稳定到时间的概率,这里的稳定即为依概率收敛。
李贤平-概率论基础-Chap5

1 1 1/ 2 1/ 2
(2)
若对一切 n ,令 n ( ) ( ),显然 n ( )的分布列也是 (2) L ( ) 。 ,因此 n ( )
但是, 对任意的 0 2 ,因
P{| n ( ) ( ) | } P() 1
当然,当F(x) 是一个分布函数时,分布函数的左连续 性保证了 F 在不连续点上的值完全由它在连续点集 CF 上的值唯一确定,因此此时分布函数列的弱收敛极限是 唯一的.
以下我们研究一个分布函数序列弱收敛到一个分布 函数的充要条件,为此先建立一些重要的分析结果。
引理. 设{ Fn ( x )}是实变量x 的非降函数序列,D是R上的 稠密集. 若对于D中的所有点, 序列 { Fn ( x )}收敛于F(x),
所以,我们有
F ( x) Fn ( x) P{n x, x}
因为 { n } 依概率收敛于 ,则
P{n x, x} P{| n | x x} 0
因而有
F ( x) lim Fn ( x)
n
同理,对 x x,
i 1 i , 1, ki ( ) k k , i 1, 2, 0, otherwise
取 P 为勒贝格测度,则
, k.
1 0, P (| ki ( ) | ) , i 1, 2, k
, k . (*)
将 ki 依次记为 n , 如图:
n
则称 {n ( )}依概率收敛于 ( ) ,并记为
n ( ) ( )
P
定义3 (r阶矩收敛) 设对随机变量 n 及 有E | n |r , E | |r , 其中 r 0 为常数,如果
第五章大数定律及中心极限定理

k 1
其中 X1, X2 ,, Xn是相互独立的、服从同一
均值为μ,方差为σ2>0的独立同分布的随机变量
n
X1,X2,…,Xn之和 X k 的标准化变量,当n充分
大时,有
k 1
n
k 1
Xk
nm
~近似N(0,1)
ns
n
这样可以用(标准)正态分布来对 X k 作
k 1
理论分析或实际计算,不必求分布函数
19/41
§5.2 中心极限定理
将上式改写为
即对任意的正数ε,当n充分
lim P n
1 n
n k 1
Xk
m
1.
大时,不等式 立的概率很大
|
X
m | 成
3/41
证 由随机变量X1,X2,…,Xn,…相互独立,且具有 相同的数学期望和方差,有
E
1 n
n k 1
Xk
lim
n
P
1 n
(X1
X2
Xn)
p
1,
即
lim
n
P
nA n
p
1.
伯努利大数定理表明,事件发生的频率nA/n依概率收敛
于事件的概率p,以严格的数学形式表达了频率的稳定性和概
率的合理性
近似:当n很大时,事件发生的频率nA/n与概率有较大偏差的 可能性很小,因此由实际推断原理,由于小概率事件几乎不
辛钦定 理
X P m
概率论与数理统计 第五章 大数定律与中心极限定理

的概率很小” ,用数学语言表达,就是要证明: 0 ,有
nA nA lim P p 0 lim P p 1 n ,或 n n . n
另一种提法是:研究随机变量 n A 的分布的极限行为,即讨 论分布函数
nA lim P p 0 lim P n n 或 n
nA p 1 . n
证 引入
1 , 第i次试验中事件A发生 Xi ,i 1 , 2 , , n , 0 , 第i次试验中事件A不发生
下面我们进一步来讨论贝努利试验.若记 n A 为 n 次贝努利试
nA 验中事件 A 发生的次数, 则事件 A 发生的频率为 n . 所谓 “频 率的稳定性” ,无非是指当试验次数 n 无限增大(即 n )时,
nA 频率 n 无限接近于某个固定常数.这个固定的常数就是“事 件 A 在一次试验中发生的的概率 p” . nA 由此可见,讨论频率 n 的极限行为,是理解概率论中最基本
2019年1月14日星期一
11 / 102
§5.1
大数定律
作为预备知识,我们先明确随机变量序列收敛的
相关概念,同时给出一个重要的不等式,它是以下理 论证明所用的主要工具之一.
定 义 1.1 设 a 是常数,对于随机变量序列 ,如果 0 ,有
X1 , X 2 ,
, Xn ,
lim P
n
个常数,即在这个常数的附近摆动,这就是所谓的“频
率稳定性”.但对这一点,至今为止我们尚未给予理论 上的说明.另外,在第二章我们给出了二项分布的泊松 逼近,那么更一般的近似计算方案又是怎样呢?
第五章 大数定律与中心极限定理 《概率论》PPT课件

概率论与数理统计
§5.2 中心极限定理
2)中 心极限 定理表明,若 随 机 变 量 序 列
X 1 , X 2 , , X n 独立同分布,且它们的数学期
望及方差存在,则当n充分大时,其和的分布,
n
即 X k 都近似服从正态分布. (注意:不一定是 k 1
标准正态分布)
3)中心定理还表明:无论每一个随机变量 X k ,
概率论与数理统计
§5.1 大数定律
定理1(Chebyshev切比雪夫大数定律)
假设{ Xn}是两两不相关的随机
变量序列,EXn , DXn , n 1,2, 存在,
其方差一致有界,即 D(Xi) ≤L,
i=1,2, …, 则对任意的ε>0,
lim P{|
n
1 n
n i1
Xi
1 n
n i1
E(Xi ) | } 1.
概率论与数理统计
§5.2 中心极限定理
现在我们就来研究独立随机变量之和所 特有的规律性问题.
在概率论中,习惯于把和的分布 收敛于正态分布这一类定理都叫做中心 极限定理.
下面给出的独立同分布随机变量序 列的中心极限定理, 也称列维——林德 伯格(Levy-Lindberg)定理.
概率论与数理统计
§5.2 中心极限定理
大量的随机现象平均结果的稳定性
大量抛掷硬币 正面出现频率
生产过程中的 字母使用频率 废品率
概率论与数理统计
§5.1 大数定律
一、大数定律
阐明大量的随机现象平均结果的稳定性的一系
列定理统称为大数定律。
定义1 如果对于任意 0, 当n趋向无穷时,事件
" Xn X " 的概率收敛到1,即
概率论与数理统计----第五章大数定律及中心极限定理

= 1 − Φ(3.54)
=0.0002
一箱味精净重大于20500的概率为 的概率为0.0002. 一箱味精净重大于 的概率为
推论:
特别,若X~B(n,p),则当n充分大时, 特别, ~B(n 则当n充分大时,
X~N(np,npq) X~N(np,npq) np
若随机变量X~B( X~B(n, ),则对任意实数x有 ),则对任意实数 即 若随机变量X~B( ,p),则对任意实数 有
不等式证明 P{-1<X<2n+1}≥(2n+1)/(n+1)(n+1)
3. 设P{|X-E(X)|<ε}不小于 不小于0.9,D(X)=0.009.则用 不小于 则用
切比绍夫不等式估计ε的 最小值是( 切比绍夫不等式估计 的 最小值是
0.3 ).
4.(894) 设随机变量 的数学期望为 设随机变量X的数学期望为 的数学期望为µ, 标准差为σ,则由切比绍夫不等式 标准差为 则由切比绍夫不等式 P{|X-µ|≥3σ}≤( ). 1/9 5. 设随机变量X的分布律为 设随机变量 的分布律为 P{X=0.3}=0.2, P{X=0.6}=0.8, 用切比绍夫不等式估计 |X-E(X)|<0.2的概率 的概率. 的概率
1 n lim P ∑ Xi − µ < ε = 1 n→∞ n i =1
定理(贝努里利大数定律) 设每次实验中事件A发生的概率 定理(贝努里利大数定律) 设每次实验中事件A 为p,n次重复独立实验中事件A发生的次数为nA,则对任 次重复独立实验中事件A发生的次数为n 意的ε>0 意的ε>0 ,事件的频率 nA ,有 ε>
∫
+∞
−∞
第五章 大数定律与中心极限定理

【解】 设 X i 表示“该射手第 i 次射击的得分”,则 Y = X i 表示射手所得总分,
i=1
Xi (i =1, 2, , 200) 独立同分布,分布表如下:
Xi
0
2
3
4
5
p
由于
0.1
0.1
0.2
0.2
0.4
E( Xi ) = 0×0.1+ 2×0.1+ 3×0.2 + 4×0.2 + 5×0.4 = 3.6 ;
试验中发生的概率,这个定律以严格的数学形式刻画了频率的稳定性,在实际应用中,当试 验次数很大时,便可以用事件发生的频率来替代事件的概率.
3、辛钦大数定律
设随机变量序列 X , X , 12
,Xn,
相互独立且服从相同的分布,具有相同的数学期望
E(X i
)
=
μ
,(
i
=
1,
2,
) ,则对任意给定的正数 ε ,有
) ,则对任意实数 x ,有
∑ ⎧
⎪
n
X − nμ i
⎫ ⎪
⎨ lim P i=1
≤ x⎬ =
⎪ n→∞
nσ
⎪
⎩
⎭
∫ 1
2π
x −t2
e
−∞
2 dt = Φ(x) .
154
第五章 大数定律与中心极限定理
n
∑ 【评注】 n 个相互独立同分布、方差存在的随机变量之和 Xi ,当 n 充分大时,近似 i =1
第五章 大数定律与中心极限定理
本章学习要点
① 了解切比雪夫不等式; ② 了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量的大
东华大学《概率论与数理统计》课件 第五章 大数定律与中心极限定理

7 8.75E-06 6.2863E-05 7.19381E-05 7.28862E-05 7.2992E-05
8 3.65E-07 7.3817E-06 8.93826E-06 9.1053E-06 9.124E-06
4 0.01116 0.01494171 0.015289955 0.015324478 0.01532831
5 0.001488 0.00289779 0.003048808 0.003063976 0.00306566
6 0.000138 0.00046345 0.0005061 0.000510458 0.00051094
ln n) + 1 ( 2
ln n) = 0
Dn
=
E
2 n
=
1 2
(ln n) +
1 2
(ln n)
=
ln n
→
但 1
n2
n
D( i ) =
i =1
1 n2
n i =1
Di
=
1 n2
n
ln i
i =1
1 n2
n
ln n =
i =1
ln n n
→0
满足马尔可夫条件,{
}服从大数定律
n
注意: 辛钦大数定律只要求一阶矩存在,但是 随机变量序列是独立同分布的. 若所讨论的 随机变量序列是不服从同分布的要求或不独 立可应用切比雪夫大数定律 或者马尔可夫大 数定律 .
(2)设 n 为 n 次独立重复试验中 A 出现的次数, p 是事件 A 在每次试验中出现的概率, 0 ,
则
lim
n→
P{
n
n
−
p
概率论与数理统计 第三版 第五章 大数定律和中心极限定理

依概率收敛的序列还有以下性质: 设 X n p a, Yn pb, 且函数 g(x,y) 在点 (a,b)连续,
具有数学期望 E(X ) 和方差 D(X ) , 0 ,有
P{
X
E
(
X
)
≥
}≤
D(
X
2
)
,
或
P{ X E(X ) }≥1 D(X ) .
2
上页 下页 返回
证 以连续型随机变量X为例.
P{ X E( X ) ≥} f (x)dx x E ( X ) ≥
≤ x E ( X ) ≥
x E(X ) 2
E(
X
k
)
,D(
X
k
)
2
(k
1,2,
上页
,
n).
下页
返回
则对任意的ε>0, 有
1
lim P{ n n
n
Xk
k 1
}1
证 由于
lim P X 1.
n
E
1 n
n k 1
X
k
1 n
n k 1
E(X
k
)
1 n
n
,
D
1 n
n k 1
Xk
1 n2
n
D
k 1
XK
1 n2
n
2
2
n
,
上页 下页 返回
由切比雪夫不等式知
P
1 n
n
Xk
k 1
≥1
2
n
2
.
令n , 并注意到概率不能大于1, 即得
1
lim
n
P
概率论与数理统计 第五章

贝努里定理. 它的叙述如下:设是n次重复独立 对于任意给定的ε>0,有
lim P{| nA p | } 1
n
n
lim P{| nA p | } 1
n
n
其中nA/n是频率,p是概率,即次数多
时事件发生的频率收敛于概率.表示频率的稳定性.
定理3
lim P{|
n
1 n
n i 1
Xi
| } 1
数理统计的方法属于归纳法,由大量的资料作依据,而不
是从根据某种事实进行假设,按一定的逻辑推理得到的.例
如统计学家通过大量观察资料得出吸烟和肺癌有关,吸烟
者得肺癌的人比不吸烟的多好几倍.因此得到这个结论.
数理统计的应用范围很广泛.在政府部门要求有关的资
料给政府制定政策提供参考.由局部推断整体,学生的假期
第五章 大 数 定 律 与 中 心 极 限 定 律
§ 5.1大 数 定 律
定理1(切比雪夫定理) 设X1,X2,...,Xn,...是相互独立的随机变
量序列若存在常数C,使得D(Xi)≤C. (i=1,2,...n),则对任意给
定的ε>0,有
lim P{|
n
1 n
n i 1
[Xi
E( X i )] |
7200 6800 2
200 1
D 2
1
2100 2002
0.95
可见虽有10000盏灯,只要电力供应7200盏灯即有相当大的保 证率切贝谢夫不等式对这类问题的计算有较大价值,但它的精度 不高.为此我们研究下面的内容.
2021/9/5
10
§ 5.2 中 心 极 限 定 理
在随机变量的一切可能性的分布律中,正态分布占有特殊的
概率论第五章大数定律与中心极限定理讲解

1 P
1200
Xk
k 1
10
0
2
1[
2
2
]
2 22 2 0.0228 0.0456
例2 根据以往经验,某种电器元件的寿命服从均 值为100小时的指数分布. 现随机地取16只,设它们的 寿命是相互独立的. 求这16只元件的寿命的总和大于 1920小时的概率.
可知,当 n 时,有 1nn 源自1XiP E( X1)
a
因此我们可取 n 次测量值 x1, x2, , xn 的算术平均值
作为a
得近似值,即
a
1 n
n i1
xi ,当n充分大时误差很小。
例4 如何估计一大批产品的次品率 p ? 由伯努利大数定律可知,当 n 很大时,可取频率
则对任意的 x ,有
n ~ N(np, np(1 p)) n , 近似地
即 n np ~ N (0,1)
np(1 p)
或 lim P{ n np
x
x}
1
t2
e 2 dt x
n np(1 p)
2
证 因为 n ~ b(n, p)
n
所以 n X k k 1
i 1
1200
1200
心极限定理可得 X k ~ N (n,n 2),即 X k ~ N (0,100)
k 1
k 1
则所求概率为
1200
1200
P k1 X k
20
P
Xk 0
k 1
概率统计(5)大数定律与中心极限定理

i =1 上一页 下一页
返回
定理2: 定理
上一页
下一页
返回
贝努利大数定律) (贝努利大数定律)设nA是n次独立重复试 次独立重复试 定理3: 定理 验中事件A出现的次数 是事件 出现的次数. 是事件A在每次试验中发生的 验中事件 出现的次数 p是事件 在每次试验中发生的 概率 (0<p<1),则对任意的ε >0有: 则对任意的 有 或 证明:设Xi表示第 i 次试验中事件 出现的次数, 次试验中事件A出现的次数 出现的次数, 证明: i=1,2,…,n,则X1,X2,…,Xn相互独立且均服从参数为 的 相互独立且均服从参数为p的 则 (0-1)分布,故有 E(Xi)=p, D(Xi)=p(1-p) i=1,2,…,n 分布, 分布 由契比雪夫大数定律知, 且 ,由契比雪夫大数定律知,对于任意 的 ,有
定理1: 定理
相互独立, 证 因X1,X2,…相互独立,所以 相互独立
1 n 1 n 1 l D ∑ X i = 2 ∑ D( X i ) < 2 nl = n n n i =1 n i =1
又因
1 n 1 n E ∑ X i = ∑ E ( X i ), n i =1 n i =1
ε
ε2
可见契比雪夫不等式成立. 可见契比雪夫不等式成立
上一页
下一页
返回
设电站供电网有10000盏电灯 夜晚每一盏灯开灯的 盏电灯,夜晚每一盏灯开灯的 例2 设电站供电网有 盏电灯 概率都是0.7,而假定开,关时间彼此独立 估计夜晚同时 而假定开, 概率都是 而假定开 关时间彼此独立,估计夜晚同时 开着的灯数在6800与7200之间的概率 之间的概率. 开着的灯数在 与 之间的概率 表示在夜晚同时开着的灯的数目,它服从参数为 解 设X表示在夜晚同时开着的灯的数目 它服从参数为 表示在夜晚同时开着的灯的数目 n=10000,p=0.7的二项分布 的二项分布. 的二项分布 若要准确计算,应该用贝努利公式 应该用贝努利公式: 若要准确计算 应该用贝努利公式:
《概率论与数理统计》课件第五章大数定律及中心极限定理

4.大样本统计推断的理论基础
是什么?
大数定律中心极限定理
随机现象中平均结果的稳定性
大数定律的客观背景
大量抛掷硬币正面出现频率
字母使用频率
生产过程中的废品率
§5.1 大数定律
背景:1. 频率稳定性2. 大量测量结果算术平均值的稳定性
回顾
随机现象的主要研究方法
概率分布
01
证:_x001A__x001B__x001B_,_x001A__x001B__x001B_,⋯, _x001A__x001B__x001B_, ⋯相互独立同分布,则_x001A__x001B__x001B__x001B_,_x001A__x001B__x001B__x001B_, ⋯,_x001A__x001B__x001B__x001B_, ⋯也相互独立同分布,由辛钦大数定律得证.
第五章 大数定律及中心极限定理
§5.1 大数定律§5.2 中心极限定理
要点:用切比雪夫不等式估算概率独立同分布,用中心极限定理计算对于二项分布,当n很大时,计算
本章要解决的问题
1.为何能以某事件发生的频率
作为该事件的概率的估计?
2.为何能以样本均值作为总体
期望的估计?
3.为何正态分布在概率论中占
解:(1)设X表示一年内死亡的人数,则~(, ),其中=,=.%. 设Y表示保险公司一年的利润,=×−.需要求的是_x001A_<_x001B_.
由中心极限定理
_x001A_<_x001B_=_x001A_×−<_x001B_ =_x001A_>_x001B_=−_x001A_≤_x001B_
且,
由中心极限定理
解:设为第i个螺丝钉的重量, 相互独立同分布. 于是,一盒螺丝钉的重量为
概率论5

lim P Yn Y 0,
特别地,当Y c为一常数时,称{Yn , n 1} 依概率收敛于常数c.
c c c
P P 性质: X n a, Yn b,当n 时. 若
函数(x,y)在点(a,b)连续,则 g g ( X n , Yn) g (a, b),当n 时.
例4 设随机变量X 1 , , X n , , 相互独立同分布, X 1 ~ U (1, 1). 则 1 n 1 n 1 n 2 () X k,(2) X k ,(3) X k 1 n k 1 n k 1 n k 1 分别依概率收敛吗? 如果依概率收敛,分别收敛于什么?
1 n P 因为,E( X1 ) 0, 故, X k 0, n k 1 1 1 1 1 n P 1 同理,E ( X 1 ) x dx , X k , 1 2 2 n k 1 2 1 1 1 n 2 P 1 2 2 1 E ( X 1 ) x dx , X k . 1 2 3 n k 1 3
1 100 5 /100 P{| X i | 0.5} 1 0.52 0.8; 100 i 1
(2)同样利用切比雪夫不等式,要使得
1 n 5/ n P{| X i | 0.5} 1 2 0.95, n需满足n 400. n i 1 0.5
例2 在n重贝努里试验中,若已知每次试验 事件A出现的概率为0.75,试利用切比雪夫不 等式, (1)若n=7500,估计A出现的频率在0.74至0.76 之间的概率至少有多大; (2)估计n,使A出现的频率在0.74至0.76之 间的概率不小于0.90。
n
n
即,条件(5.1.8)满足,由定理5.1.3知结论成立.
概率论-第5章 大数定律及中心极限定理

§1 大数定律
一、问题的引入
生产过程中的 字母使用频率 废品率 启示:从实践中人们发现大量测量值的算术平均值 有稳定性.
大量抛掷硬币 正面出现频率
§1 大数定律
一、问题的引入
大数定律的概念 概率论中用来阐明大量随机现象平均结果的 稳定性的一系列定理,称为大数定律(law of large number)
§2 中心极限定理
即考虑随机变量X k (k 1, n)的和 X k的标准化变量
k 1 n
Yn
X
k 1
n
k
E ( X k )
k 1 n
n
D ( X k )
2
说明每一个随机变量都有相同的数学期望。
§1 大数定律
检验是否具有相同的有限方差?
Xn P
2
( na ) 1 2 2n
2 n
2
0 1 1 2 n
2
( na ) 1 2 2n
2
1 2 a , E ( X ) 2( na ) 2 2n 2 ) [ E ( X n )]2 a 2 . D( X n ) E ( X n
使得当 x a y b 时,
g( x , y ) g(a , b)பைடு நூலகம் ,
§1 大数定律
于是 { g( X n , Yn ) g(a, b) }
{ X n a Yn b }
X n a Yn b , 2 2
§2 中心极限定理
自从高斯指出测量误差服从正态分布之后,人 们发现,正态分布在自然界中极为常见.
如果一个随机变量是由大量相互独立的随机因 素的综合影响所造成,而每一个别因素对这种综合 影响中所起的作用不大. 则这种随机变量一般都服 从或近似服从正态分布. 现在我们就来研究独立随机变量之和所特有 的规律性问题.
极限定理

概 率 论
柯尔莫哥洛夫定理 对相互独立同分布随机变量序列 n ,若满足条件 E| n |<, 则 1 n 1 n P lim i E ( i ) 0 1. n i 1 n n i 1
返 回
前一页
后一页
概 率 论
故而当 n 很大时, 事件发生的频率与概率 有较大偏差的可能性很小. 在实际应用中, 当试 验次数很大时, 便可以用事件发生的频率来代 替事件的概率.
返 回
前一页
后一页
概 率 论
3、泊松大数定律(定理5.1.2)
设随机变量 X 1 , X 2 , , X n , 为相互独立的随机变量序列,
P { X n 1} pn , P { X n 0} q n .
1 n 1 n lim P {| X i EX i | } 1 n n i 1 n i 1
或
1 n 1 n lim P {| X i EX i | } 0 n n i 1 n i 1
即{ X n } 服从 大数定律.
µ
1 n lim P {| X | } lim P X k 1. n n n k 1
返 回 前一页 后一页
1 n lim P {| X | } lim P X k 1. n n n k 1 n n
概 率 论
证明
1 1 E X k E( X k ) n k 1 n k 1
根据上述方法,例1不收敛。
定义
| X n X | :| X n ( ) X () |
lim P{| X n X | } 1
概率论第五章 大数定律及中心极限定理

的标准化变量为
n
X i n
Yn i1 n
则Yn的分布函数Fn(x)对任意的x∈(-∞,+∞)都有
n X i n
lim
n
Fn
(
x)
lim
n
P(Yn
x)
lim
n
P
i 1
n
x
x
1
t2
e 2 dt
2
该定理说明,当n充分大时, Yn近似地服从标准正 态分布,Yn~N(0,1), (n )
P|
X
|
2 2
P X
1
2 2
证明 (1)设X的概率密度为p(x),则有
P{| X | } p(x)dx
| x |2
p(x)dx
|x|
|x|
2
1
2
(x
)2
p(
x)dx
2 2
Xi 2
0
pi
1 4
1 2
2
(i 1,2, , n, )
1 4
解
因为 X1, X 2 , , X n ,
相互独立, EX i 0 , E
X
2 i
1
又
DX i
E
X
2 i
EX i
2
1 0
1, i
1,2,
, n,
所以,满足切比雪夫大数定理的条件,可使用大数定理.
概率论快班课件慢班真题概率论课件第五章大数定律及中心极限定理

§1 大数定律
现象:
(1) 事件发生的频率具有稳定性,即随着试 验次数的增加,事件发生的频率逐渐稳 定于某个常数。
(2) 在实践中人们还认识到大量测量值的算 术平均值也具有稳定性。
1
定义1:
第五章 大数定律及中心极限定理
§1 大数定律
设 Y1,,Yn , 是随机变量序列, a 是一个常数;
解得 0.0124.
良种粒数X的范围为
X -1
6000 6
(1/ 6 0.0124) 6000 X (1/ 6 0.0124) 6000,
即 925 X 1075 .
返回主目16 录
第五章 大数定律及中心极限定理
例3(练习一下)
§2 中心极限定理
设一个系统由100个相互独立起作用的部件组成,
若则对称任Y意1, ,Y0n,,有依:概nl率 im收P{敛|Y于n aa,|记}为
1
Yn
P a。
定义2:
设 X1,, X n, 是随机变量序列,令Yn
1 n
n
Xk
k 1
,
若存在常数序列a1,, an, 使对任意 0 ,有
lim
n
P{|
Yn
an
|
}
1 ,或 lim n
P{|
Yn
an
|
}
0
,
则称{Xn} 服从大数定律。
设不超过的界限为 ,则应有:
P
X 6000
-
1 6
0.99
由德莫佛-拉普拉斯定理
返回主目14 录
第五章 大数定律及中心极限定理
P
X 6000
-
1 6
n 6000, p 1/ 6.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P( X ) 2 2
或
P(
X
)
1
2 2
证明 仅对 C.R.V.X 证明,设 f(x)为X 的密度函数,则
P( X ) f (x)dx x
(x u)2
x
2
f (x)dx
1
2
(x
)2
f
(x)dx
概率论与数理统计
制 作 人: 主讲教师:
第五章 极限定理
一、问题的提出
1)X1,X2,…,Xn 为多次“测量”,则
1 n
n i1 X i
n
(真值)合理吗?
2)X1 + X2 +…+ Xn ~ ?
二、切比雪夫чебьшев不等式 (P68定理4.4)
设R.V.X 有E(X)=μ ,D(X )=σ 2,则对任何ε >0有
n
1 n
n
i 1
Xi
作为D的估计,为使对D的估计的精度在±0.25光年
之间的概率大于0.98,问这位天文学家至少要作出多少次独立的观测?
解 当n充分大时
X D ~ N (0,1) 4/n
0.98 P( X D 0.25) P( X D 0.25
2/ n 2
n) 2(0.25 2
n) 1
( 0.25 2
n) 1.98 0.99 0.125
2
n 2.3264
n 346.376765
故这位天文学家至少要作出347次独立的观测。
P(a Yn b) (
b np ) ( np(1 p)
a np ) np(1 p)
随机模拟演示
例0: 对一个学生而言,来参加家长会的家长人数是
一个随机变量。设一个学生无家长、1名家长、2名家长
来参加会议的概率分别是0.05、0.8、0.15. 若学校共有400
名学生,设各学生参加会议的家长数相互独立,且服从
E(X n )
1 n
n i 1
E( X i )
, D(Xn)
1 n2
n
D(
i 1
Xi )
1 n2
n i 1
D( X i
)
2
n
1 P( XXn
)
1
22n 2
n
1
贝努利(Bernoulli)大数定理
设μ n为n重贝努利试验中A发生的次数,且P(A)=p,则 对任何ε >0,有
n
n
X1,X2,…,Xn,… 独立同分布,且
E(Xn)= (有限)
lim
n
P(
X
n
) 1
{
X
}依概率收敛于μ
n
三、中心极限定理
1、独立同分布的中心极限定理
设{Xn, n=1,2,…}是独立同分布的随机变量序列,且
E(Xi)=μ ,D(Xi)=σ 2,i=1,2,…,设标准化随机变量
lim P( n p ) 1
n
n
证明:由题意 记 Xi ~ B(1, p) , i 1,2, ,相互独立
则
E( X i ) p , D( Xi ) p(1 p) ,
n
n
1 n
n i 1
Xi
Xn
意义:Biblioteka 频率nn趋于概率p
随机模拟演示
几个著名的大数定律
同一分布。(1)求家长数X超过450的概率。(2)求恰
有一名家长参加会议的学生数Y不多于340的概率。
解 (1) P(X 450) P( X 400 1.1 450 400 1.1)
400 0.19
400 0.19
1- (1.147) 0.1357.
(2)P(Y 340) P( Y 400 0.8 340 400 0.8 ) 400 0.8 0.2 400 0.8 0.2
X 1 0.01239 6000 6
926 X 1074
例2 设有某天文学家试图观测某星球与他所在天文
台的距离D,他计划作出 n 次独立的观测X1 , X2 , …,Xn (单位:光年),
设这 n 次独立的观测的期望 EXi=D,方差DXi =4,i =1,2,…,n,现天文
学家用
X
(2.5) 0.9938.
例1 已知一批同型号的电子元件,次品率为1/6,试以 99%的把握断定:从这批电子元件中任取6000只,其中次 品所占的比例与1/6之差的绝对值不超过多少?这时6000电 子元件中,次品数又落在一个什么范围内?
解 记X为6000只电子元件中的次品数,则
X~B(6000, 1/6),要求ε 使
x
x)
n np(1 p)
1
t2
e 2 dt
2
x
n
证明:取Xi~B(1, p),i=1,2,…,相互独立,则 Yn X i i 1
而E(Xi)=p,D(Xi)=p(1-p),由独立同分布的中心极限定理 即得。
应用: Yn~B(n, p),当n充分大时
2 2
三、大数定律(0-1律)
记
Xn
1 n
n i 1
Xi
若 0
lim
n
P(
Xn
E( X n )
)
1
则称X1, X2 , ..., Xn, ...服从大数定律。
设X1, X2 , ..., Xn, ...相互独立,且E(Xn)=,D(Xn)=2存在, 则
名称 马尔科夫 切比雪夫 伯努利 辛钦
条件
结论
lim
n
1 n2
n
D(
i 1
Xi)
0
lim
n
P(
Xn
E( X n )
)
1
Cov(Xi, Xj)=0,i≠j,lim 且D(Xn)<C(有界) n
P(
Xn
E( X n )
)
1
n~B(n,p)
lim P( n p ) 1
n
X i n
Yn i1 n
的分布函数为Fn(x),则
lim
n
Fn
(
x)
(
x)
称 Yn 依分布收敛于 X ~ N(0,1).
随机模拟演示
2、德莫佛·拉普拉斯(De Moivre-Laplace)中心极限定理
设 Yn~B(n, p),n=1,2,…,则
lim P( Yn np
0.99 P(
X
1 ) P(
X
6000
1 6
6000
)
6000 6
6000
1 6
5 6
6000
1 6
5 6
2( 6 6000 ) 1 ( 60 60 ) 1.99 0.995
5
52
2.576 1 0.01239
60 12