专题:关于函数不动点的研究及其应用
巴拿赫不动点定理及其应用
巴拿赫不动点定理及其应用
巴拿赫不动点定理是函数分析中的一项基本定理,又称为Banach不动点定理。
该定理是由波兰数学家斯蒂芬·巴拿赫于1922年提出的。
巴拿赫不动点定理可以简单地表述为:在完备度量空间中,连续映射必有不动点。
这个定理的意义在于,对于一些映射或者变换,必然存在一个点不会移动,这个点就被称作“不动点”。
而根据巴拿赫不动点定理,只要一个映射是连续的并且作用于完备度量空间,那么它必然存在不动点。
这个定理有很多应用,下面列举一些常见的:
1.在求解微积分方程、微分方程、积分方程时,巴拿赫不动点定理是很重要的工具。
2.在数值分析中,巴拿赫不动点定理可以用于求解线性方程组、优化问题以及非线性方程组的数值解。
3.在动力学系统中,巴拿赫不动点定理可以用于证明某些系统存在定点。
4.在实际应用中,巴拿赫不动点定理可以用于证明某些算法的收敛性以及求解某些不动点问题。
总之,巴拿赫不动点定理是数学中的一项重要定理,它的实际应用十分广泛。
不动点定理及其应用
不动点定理及其应用不动点定理及其应用1 引言大家都知道,在微分方程、积分方程以及其它各类方程的理论中,解的存在性、唯一性以及近似解的收敛性等都是相当重要的课题,为了讨论这些方程解的存在性,我们可以将它们转化成求某一映射的不动点问题.本文就这一问题作一下详细阐述.2 背景介绍把一些方程的求解问题化归到求映射的不动点,并用逐次逼近法求出不动点,这是分析中和代数中常用的一种方法.这种方法的基本思想可以追溯到牛顿求代数方程的根时所用的切线法,19世纪Picard 运用逐次逼近法解常微分方程.后来,1922年,波兰数学家巴拿赫(Banach )将这个方法加以抽象,得到了著名的压缩映射原理,也称为巴拿赫不动点定理.3 基本的定义及定理定义1[1](P4) 设X 为一非空集合,如果对于X 中的任何两个元素x ,y ,均有一确定的实数,记为),,(y x ρ与它们对应且满足下面三个条件:①非负性:0),(≥y x ρ,而且0),(=y x ρ的充分必要条件是x =y ;②对称性:),(y x ρ=),(x y ρ;③三角不等式:),(y x ρ),(),(y z z x ρρ+≤,这里z 也是X 中任意一个元素.则称ρ是X 上的一个距离,而称X 是以ρ为距离的距离空间,记为()ρ,X .注距离概念是欧氏空间中两点间距离的抽象,事实上,如果对任意的,),,,(),,,,(2121n n n R y y y y x x x x ∈==ΛΛ2/12211])()[(),(n n y x y x y x -++-=Λρ容易看到①、②、③都满足.定义2[1](P23) 距离空间X 中的点列}{n x 叫做柯西点列或基本点列,是指对任给的,0>ε存在,0>N 使得当N n m >,时,ερ<),(n m x x .如果X 中的任一基本点列必收敛于X 中的某一点,则称X 为完备的距离空间.定义3[2](P16) 设X 是距离空间,T 是X 到X 中的映射.如果存在一数,10,<≤a a 使得对所有的X y x ∈,,不等式),(),(y x a y x ρρ≤T T (1)成立,则称T 是压缩映射.压缩映射必是连续映射,因为当x x n →时,有0),(),(→≤x x a Tx Tx n n ρρ.例设[]10,X =,Tx 是[]10,上的一个可微函数,满足条件:()[][]()1,01,0∈?∈x x T ,以及()[]()1,01∈?<≤'x a x T ,则映射X X T →:是一个压缩映射.证()()[]()()y x a y x a y x y x T Ty Tx Ty Tx ,1,ρθθρ=-≤--+'=-=()10,,<<="">定义4 设X 为一集合,X X T →:为X 到自身的映射(称为自映射),如果存在,0X x ∈使得00x Tx =,则称0x 为映射T 的一个不动点.例如平面上的旋转有一个不动点,即其旋转中心,空间中绕一轴的旋转则有无穷多个不动点,即其旋转轴上的点均是不动点,而平移映射a x Tx +=没有不动点.如果要解方程(),0=x f 其中f 为线性空间X 到自身的映射(一般为非线性的),令,I f T +=其中I 为恒等映射:,x Ix =则方程()0=x f 的解恰好是映射T 的一个不动点.因此可以把解方程的问题转化为求不动点的问题.下面就来介绍关于不动点的定理中最简单而又应用广泛的压缩映射原理:定理1[3](P36) 设X 是完备的距离空间,T 是X 上的压缩映射,那么T 有且只有一个不动点.证任取,0X x ∈并令ΛΛ,,,,11201n n Tx x Tx x Tx x ===+ (2)下证()2的迭代序列是收敛的,因T 是压缩映射,所以存在,10<≤a 使得()()y x a Ty Tx ,,ρρ≤,因此 ()()()();,,,,00101021Tx x a x x a Tx Tx x x ρρρρ=≤=()()()();,,,,002212132Tx x a x x a Tx Tx x x ρρρρ=≤=…………一般地,可以证明()()()();,,,,00111Tx x a x x a Tx Tx x x nn n n n n n ρρρρ≤≤≤=--+Λ于是对任意自然数p n ,,有()()()+++≤++++Λ211,,,n n n n p n n x x x x x x ρρρ()p n p n x x +-+,1ρ≤()0011,)(Tx x a a a p n n n ρ-++++Λ()()()0000,1,11Tx x aa Tx x a a a n p n ρρ-≤--= (3)由于10<≤a ,因此,当n 充分大时,(),,ερ<+p n n x x 故}{n x 是X 中的基本点列,而X 是完备的,所以存在_0_0,x x X x n →∈使得成立.再证_0x 是T 的不动点.易证,若T 是压缩映射,则T 是连续映射,而,lim _0x x n n =∞→因此,lim _0x T Tx n n =∞→所以_0_0_0,x x x T 即=是T 的一个不动点.最后,我们证明不动点的唯一性,若存在X x ∈*,使得,**x Tx =则,,,,*_0*_0*_0??≤??? ??=??? ??x x a Tx x T x x ρρρ 而_0*_0*,0,,1x x x x a ==??<即所以ρ.证毕.注(i )由(2)定义的序列收敛,且收敛到T 的唯一不动点,且迭代与初始值0x 的取法无关.(ii )误差估计式方程x Tx =的不动点*x 在大多数情况下不易求得,用迭代程序,1n n Tx x =+即得到不动点*x 的近似解,在(3)式中令()()00*,1,,Tx x aa x x p nn ρρ-≤∞→得(4)此即误差的先验估计,它指出近似解n x 与精确解* x 之间的误差.如果事先要求精确度为(),,*ερ≤x x n 则由()ερ≤-00,1x Tx aa n,可计算出选代次数n ,在(4)式中取01,1Tx x n ==代入得()()0*0,1,x Tx aTx ρρ-≤.上式对任意初始值均成立,取10-=n x x ,即得()()1*,1,--≤n n n x x aax x ρρ,此式称为后验估计,可从n x 与其前一步迭代结果1-n x 的距离来估计近似解与精确解*x 之间的误差.所以,压缩映射原理,不仅给出了不动点的存在性,而且给出求解方法,同时还指明了收敛速度及误差.(iii )a 值越小迭代收敛的速度越快.(iv )在T 满足()()()y x y x Ty Tx ≠<,,ρρ (5)的条件下,T 在X 上不一定存在不动点.如令[)[)()+∞∈++=+∞=,011,,0x xx Tx X ,我们容易证明对一切[)y x y x ≠+∞∈,,0,时,有()()[)∞+<,但0,,,T y x Ty Tx ρρ中没有不动点.又如,若令x arctgx Tx R X +-==2π,,则T 满足条件(5),因任取,,,y x R y x ≠∈则由中值公式()()y x T y x Ty Tx ,,'在ξξ-=-之间,由于(),故得11'22<+=ξξξT ()()y x Ty Tx y x Ty Tx ,,,ρρ<-<-即, Tx 但没有不动点,因任何一个使x Tx =的x 须满足,2=arctgx 在R 内这样的x 不存在.(v )压缩映射的完备性不能少.如设(]1,0=X ,定义T 如下:2 xTx =,则T 是压缩映射,但T 没有不动点.这是由于(]1,0空间的不完备性导致的.(vi )压缩映射条件是充分非必要条件.如()[]b a x f ,映为自身,且 ()()y x y f x f -≤- ,(6)任取[],,1b a x ∈令()[]n n n x f x x +=+211 ,(7)该数列有极限**,x x 满足方程()**xxf =,但由(6),(7)可得11-+-≤-n n n n x x a x x ,相当于,1=a 不是10<定理1从应用观点上看还有一个缺点,因为映射T 常常不是定义在整个空间X 上的,而仅定义在X 的子集E 上,而其像可能不在E ,因此要对初值加以限制,有以下结果:定理2 [4](P193-194)设T 在Banach 空间的闭球()(){}r x x X x r x B B ≤∈==00_,:,ρ上有定义,在X 中取值,即T :()X r x B →,0_又设[),1,0∈?a 使得()()(),,,,,0_y x a Ty Tx r x B y x ρρ≤∈?有()(),1,00r a Tx x -≤ρ且则迭代序列(2)收敛于T 在B 中的唯一不动点.证只需证明(),,B x B B T ∈?? ()Tx x ,0ρ()()Tx Tx Tx x ,,000ρρ+≤()r a -≤1()x x a ,0ρ+()r ar r a =+-≤1,因此()B ,B T B Tx ?∈所以,由定理1B 在知T 中有唯一的不动点,证毕.有时T 不是压缩映射,但T 的n 次复合映射nT 是压缩映射,为了讨论更多方程解的存在性、唯一性问题,又对定理1进行了推广.定理3[5](P21)设T 是由完备距离空间X 到自身的映射,如果存在常数10,<≤a a 以及自然0n ,使得()()()X y x y x y T x Tn n ∈≤,,,00ρρ,(8)那么T 在X 中存在唯一的不动点.证由不等式(8),0n T 满足定理1的条件,故0n T存在唯一的不动点,我们证明0x 也是映射T唯一的不动点.其实,由()()()000100Tx x T T x T Tx Tnn n ===+,可知0Tx 是映射0n T 的不动点.由0n T 不动点的唯一性,可得00x Tx =,故0x 是映射T 的不动点,若T 另有不动点1x ,则由,1111100x Tx Tx T x T n n ====-Λ可知1x 也是0n T 的不动点,再由0n T 的不动点的之唯一性,得到,01x x =证毕.4 不动点定理的应用4.1 不动点定理在数学分析中的应用该定理在数学分析中主要用于证明数列的收敛性、方程解的存在性和唯一性及求数列极限.定理4.1.1 ① 对任一数列{}n x 而言,若存在常数r ,使得10,,11<<-≤-∈?-+r x x r x x N n n n n n 恒有 ()A ,则数列{}n x 收敛.② 特别,若数列{}n x 利用递推公式给出:()n n x f x =+1 (),,2,1Λ=n 其中f 为某一可微函数,且()()(),1',B R x r x f R r ∈?<≤∈?使得则{}n x 收敛.证①此时rr x x r r r x x x x rx xx x np n n pn n k k pn n k k kn p n --≤---=-≤-≤-+++=-++=-+∑∑11.0101011111应用Cauchy 准则,知{}n x 收敛,或利用D ,Alenber 判别法,可知级数()1--∑n n x x 绝对收敛,从而数列()()ΛΛ,2,1011=+-=∑=-n x x xx nk k kn 收敛.② 若()B 式成立,利用微分中值定理:()()()()Λ,3,2,1111=-≤-'≤-=----+n x x r x x f x f x f x x n n n n n n n n ξ即此时()A 式亦成立,故由①知{}n x 收敛.注若()B 式只在某区间I 上成立,则必须验证,{}n x 是否保持在区间I 中.例1 设数列{}n x 满足压缩性条件,,,3,2,10,11Λ=<<-≤--+n k x x k x x n n n n 则{}n x 收敛.证只要证明{}n x 是基本点列即可,首先对一切n ,我们有11-+-≤-n n n n x x k x x ,121212x x k x x k n n n -<<-<---Λn m >设,则 n n m m m m n m x x x x x x x x -++-+-≤-+---1211Λ123122x x k x x k m m -+-<--121x x k n -++-Λ()01121∞→→--<-n x x kk n ,证毕.注该题体现了不动点定理证明数列的收敛性.例2 证明若()x f 在区间[]r a r a I +-≡,上可微,()1<≤'αx f ,且()()r a a f α-≤-1 , (9)任取()()(),,,,,,112010ΛΛ-===∈n n x f x x f x x f x I x 令则**,lim x x x n n =∞-为方程()x f x =的根(即*x 为f 的不动点)证已知I x ∈0,今设I x n ∈,则()()()a a f a f x f a x n n -+-=-+1()()a a f a x f n -+-'≤ξ ()之间与在a x n ξ[由(9)](),1r r r =-+≤ααI x n ∈+1即这就证明了:一切I x n ∈应用微分中值定理,1,+?n n x x 在ξ之间(从而I ∈ξ)()()()()111--+-'=-=-n n n n n n x x f x f x f x x ξ 1--≤n n x x α ()10<<α,这表明()1-=n n x f x 是压缩映射,所以{}n x 收敛.因f 连续,在()1-=n n x f x 里取极限知{}n x 的极限为()x f x =的根.注该题体现了不动点定理证明方程解的存在性.例 3 ()x f 满足()()(),10<<-≤-k y x k y f x f (),,10n n x f x R x =∈?+令取则{}n x 收敛,且此极限为方程()x x f =的唯一解.证① 因为()()01212111x x k x x k x x k x f x f x x nn n n n n n n n -≤≤-≤-≤-=-----+Λ所以 n n p n p n p n p n n p n x x x x x x x x -++-+-≤-+-+-+-+++1211Λ()01121x x k k k k n n p n p n -++++≤+-+-+Λ()10101<<--<="" p="" x="">k n因为01lim01=--∞→x x k k n n ,所以εε<--<->>?+011,,,,0x x kk x x N n p N nn p n 有,由Cauchy 准则,知{}n x 收敛.② 设,lim *x x n n =∞→已知()n n x f x =+1,所以()()**lim x f f x f x n n 连续∞→=,所以()x f x x =是*的解.若另有解*y 是()x f x =的解,即()**yf y =,而()()()10******<<-≤-=-k x y k x f y f x y .所以**x y =,所以()x f x x =是*的唯一解.注该题既体现了不动点定理证明数列的收敛性又体现了方程解的存在唯一性.定理4.1.2 已知数列{}n x 在区间I 上由()()Λ,2,11==+n x f x n n 给出,f 是I 上连续函数,若f 在I 上有不动点()()***xf x x =即满足()()()()*0*111≥--x x x f x,则此时数列{}n x 必收敛,且极限A 满足()A f A =,若()*式"""">≥改为对任意I ∈1x 成立,则意味着*x 是唯一不动点,并且,*x A =特别,若f 可导,且()(),10I x x f ∈<'<当则f 严增,且不等式()() """"*>≥可该为会自动满足()I x ∈?1,这时f 的不动点存在必唯一从而*x A =,证(分三种情况进行讨论):① 若*1x x >,则()()**12x x f x f x =≥=,一般地,若已证到*x x n ≥,则()()**1x x f x f x n n =≥=+.根据数学归纳法,这就证明了,一切*:x x n n ≥(即*x 是n x 之下界)另一方面,由()*式条件,已有()112x x f x ≤=,由f 单调增,知()()2123x x f x f x =≤=,….一般地若已证到1-≤n n x x ,由f 单调增,知()()n n n n x x f x f x =≤=-+11,这就证明了n x 单调减,再由单调有界原理,知{}n x 收敛.在()n n x f x =+1里取极限,因()x f 连续,可知{}n x 的极限A 适合方程()A f A =.② *1x x <的情况,类似可证.③ *1x x =若,则一切n ,*x x n =结论自明.最后,假若()(),10I x x f ∈?<'<由压缩映射原理可知{}n x 收敛.事实上,这时也不难验证()*条件成立,如:对函数()()x f x x F -≡应用微分中值定理,(注意到()()0,0*>'=x F x F ),知*x在ξ?与x 之间,使得()()()()()()(),***x x F x x F xF x F x f x -'=-'+=≡-ξξ可见()()(),0*>--xx x f x 即条件()*严格成立,故*lim x xnn =∞→.例4 设()nn n x c x c x x ++=>+1,011(1>c 为常数),求n n x ∞→lim .解法一(利用压缩映射)因0>n x ,且0>x 时,0))(()1()1()('2'>-=++=x f c c x c x c x f x ,又由1>c 知111)1()()1()('022<-=-≤+-=x ,故)(1n n x f x =+为压缩映射,{}n x 收敛,在nn n x c x c x ++=+)1(1中取极限,可得c x n n =∞→lim .法二(利用不动点)显然一切0>n x ,令()()x xc x c x f =++=1,知不动点c x =*,而f 单调增加且0)()()()1(22>-++=-+---=-++-c x x c c x c x x c cx c x cx c x x c xc x .表明()()()0*111≥--xx x f x 成立,根据不动点方法原理c xnn =∞→lim .注该题体现了不动点定理用于求数列极限.定理4.1.3 (不动点方法的推广)设),(y x f z =为二元函数,我们约定,将),(x x f z =的不动点,称为f 的不动点(或二元不动点),已知),(y x f z =为0,0>>y x 上定义的正连续函数,z 分别对x ,对y 单调递增,假若:(1)存在点b 是),(x x f 的不动点;(2)当且仅当b x >时有()x x f x ,>,令()()()()()ΛΛ,4,3,,0,,,21121==>==--n a a f a a a a f a a a f a n n n ,(10)则{}n a 单调有界有极限,且其极限A 是f 的不动点.证只需证明{}n a 收敛,因为这样就可在(10)式中取极限,知A 是f 的不动点,下面分两种情况进行讨论:① 若1a a ≤,由f 对x ,对y 的单增性知112),(),(a a a f a a f a =≥=,进而2111123),(),(),(a a a f a a f a a f a =≥≥=,类似:若已推得121,---≥≥n n n n a a a a ,则),4,3(),(),(2111Λ==≥=---+n a a a f a a f a n n n n n n ,如此得{}n a 单调递增.又因a a a f a ≥=),(1,按已知条件这时只能b a ≤(否则b a >按已知条件(2),应有1),(a a a f a =>,产生矛盾),进而),(),(,),(),(121a b f a a f a b b b f a a f a ≤==≤= Λ,),(b b b f =≤,用数学归纳法可得一切b a n ≤,总之n a 单调递增有上界,故{}n a 收敛.② 若a a ≤1,类似可证{}n a 单调递减有下界b ,故{}n a 收敛.注按b 的条件可知b 是f 的最大不动点,b x >时不可能再有不动点,情况②时极限b A ≥是不动点,表明此时b A =.例5 若ΛΛ,)(,,)(,)(,031312131311231311--+=+=+=>n n n a a a a a a a a a a ,试证(1)数列{}n a 为单调有界数列;(2)数列{}n a 收敛于方程313x x x +=的一个正根.证(利用定理 4.1.3)设3131)(),(y x y x f z +==,显然f 当0,0>>y x 是正值连续函数,对y x ,单增,只需证明①b ?使得),(b b f b =;②),(x x f x >当且仅当b x >① 注意到 f 的不动点,亦即是方程0313=--x x x 的根,分析函数313)(x x x x g --=,因0926)(",3113)('35322>+=--=xx x g xx x g (0>x 时),0)1(',)00('>-∞=+g g ,可知g 在(0,1)内有唯一极小点c x c >,时g x g ,0)('>严增,0)2(,0)1(><="" (即f="" ,故g="">② b x >时0)()(=>b g x g ,即),(x x f x >;事实上,在0>x 的范围也只有在b x >时才有),(x x f x >,因为0)(,0)0(==b g g ,在),0(c 上)(x g 严减,),(b c 上)(x g 严增,所以),0(b 上0)(<.证毕.<="" bdsfid="663" f="" g="" p="" x="" ,即),(x="">4.2 不动点定理在积分方程中的应用该定理在积分方程用于证明方程解的存在性、唯一性及连续性.例6 第二类Fredholm 积分方程的解,设有线性积分方程τττμ?d x t k t t x b a )(),()()(?+=,(11)其中[]b a L ,2∈?为一给定的函数,λ为参数,),(τt k 是定义在矩形区域b a b t a ≤≤≤≤τ,内的可测函数,满足+∞a b a 2),(.那么当参数λ的绝对值充分小时,方程(11)有唯一的解[]b a L x ,2∈.证令τττμ?d x t k t t Tx ba )(),()()(?+=.由 []d t d x d t k d x t k ba b a b a ba b a τττττττ222)(),()(),(≤??ττττd x dt d t k ba ba b a 22)(),(=及T 的定义可知,T 是由[]b a L ,2到其自身的映射,取μ充分小,使[]1),(2/12d t k a ba b a ττμ,于是 2/12))()()(,(),(??-??=dt ds s y s x t k Ty Tx b a b a τμρ()()2/122/12)()(),(ds s y s x dtd t k b a b ab a -≤ττμ()),(),(2/12y x dtd t k b a b aρττμ??=),(y x a ρ=故T 为压缩映射,由定理1可知,方程(11)在[]b a L ,2内存在唯一的解.注该题体现了不动点定理证明第二类Fredholm 积分方程解的存在唯一性.例7 设),(τt k 是定义在三角形区域t a b t a ≤≤≤≤τ,上的连续函数,则沃尔泰拉积分方程)()(),()(t d x t k t x t a ?τττμ+?= (12)对任何[]b a C ,∈?以及任何常数μ存在唯一的解[]b a C x ,0∈.证作[]b a C ,到自身的映射()()()()(),,:t f d x t k t Tx T ta+=?τττμ则对任意的[],,,21b a C x x ∈有 ()()()()()()()[]?-=-tad x x t k t Tx t Tx ττττμ2121,()()()t x t x a t M bt a 21max --≤≤≤μ()(),,21x x a t M ρμ-=其中M 表示),(τt k 在t a b t a ≤≤≤≤τ,上的最大值,ρ表示[]b a C ,中的距离,今用归纳法证明),()!/)(()()(21221x x n a t M t x T t x T nnnnρλ-≤- (13)当1=n 时,不等式(13)已经证明,现设当k n =时,不等式(13)成立,则当1+=k n 时,有[]ττττμd x T x T t k t x T t x T k k t a k k )()(),()()(212111-?= -++[]),()(!/2111x x ds a s k M k t a k k ρμ-?≤++[]),()!1/()(21111x x k a t M k k k ρμ+-=+++,故不等式(13)对1+=k n 也成立,从而对一切自然数n 成立.由(13)()!/)()()(m ax ),(2121n a b M t x T t x T x T x T n n nn n bt a n n -≤-=≤≤μρ ),(21x x ρ对任何给定的参数μ,总可以选取足够大的n ,使得1!/)(<-n a b M n n nμ,因此n T 满足定理3的条件,故方程在[]b a C ,中存在唯一的解.注该题体现了不动点定理证明沃尔泰拉积分方程在三角形区域上解的存在唯一性.例8 设),(τt k 是[][]b a b a ,,?上的连续函数,()[]b a C t f ,∈,λ是参数,方程)()(),()(t f d x t k t x b a +?=τττλ,(14)当λ充分小时对每一个取定的)(t f 有唯一解.证在[]b a C ,内规定距离)()(max ),(t y t x y x bt a -=≤≤ρ.考虑映射())(),())((t f d x t k t Tx b a +?=τττλ (15)当λ充分小时T 是[][]b a C b a C ,,→的压缩映射.因为()()()()()()()()()?-=-=≤≤≤≤ba bt a bt a d y x t k t Ty t Tx Ty Tx ττττλρ,m ax max ,τττλd t y x t k b a bt a )()(),(max -≤≤≤),(y x M ρλ?≤此处ττd t k M ba bt a ),(max ?=≤≤.故当λ1<="">[]b a C t f ,)(∈解存在唯一,任取初始值逼近,令()()()()t f d x t k t x b a+=?τττλ01,,则),(1)*,(01x x MM x x nnn ρλλρ?-≤,)(t x n 是第n 次的近似,)(*t x 是精确解.注该题体现了不动点定理证明沃尔泰拉积分方程在矩形区域上解的存在唯一性.例9 设[]1,0C f ∈,求出积分方程ds s x t f t x to )()()(?+=λ []()1,0∈t 的连续解.解法一据例7方程对一切λ存在唯一解[]1,0)(∈t x ,改写方程))(()(),()()(10t kx ds s x s t k t f t x =?+=λ,其中??≥<=.,1,,0),(s t s t s t k 由逐次逼近法,取0)(0=t x ,得002201,,,x k x x k x kx x nn ===Λ,则)(lim )(t x t x n n ∞→=在[]1,0C 中收敛,即为原方程之解,容易看出,,)(),()()(),()(1021Λds s f s t k t f t x t f t x ?+==λ)(1t x n +()()()∑?=+=nk k k ds s f s t k t f 11,λ,其中),,(),(1s t k s t k =du s u k u t k s t k n t n ),(),(),(10-?= )2(≥n ,从而 ??≥--<=-,,)()!1(10),(1s t s t n s t s t k n n ()()()()()()()ds s f n s t s t s t t f t x tn n n--++-+-++=--+011221!1!21λλλλΛ,故.)()()(lim )()(01ds s f et f t x t x s t t n n -+∞→?+==λλ法二令ds s x t y t)()(0?=,则)()('t x t y =,如果)(t x 满足原方程,则)(t y 必满足方程=+=0)0()()()('y t y t f t y λ (16)易知方程(16)的解为 ds s f e t y s t t )()()(0-?=λ再令 ()()()()()()?-+=+=ts t ds s f et f t y t f t x 0λλλ (17)下面证明)(t x 为原方程之解,事实上,因为()t y 满足(16),则)()()()('t x t y t f t y =+=λ 所以ds s x t y t )()(0?=,由(17)知ds s x t f t x t )()()(0?+=λ,故ds s f e t f t x s t t )()()()(0-?+=λλ为原方程的连续解.4.3 不动点定理在线性代数方程组中的应用该定理在线性代数方程组用于证明方程解的存在性、唯一性.例10 设有线性方程组()n i b x ax i nj j iji ,2,11Λ==-∑=, (18)如对每个1,1<≤∑=a ai nj ij(19)则该方程组有唯一解.证在空间n R 中定义距离()i i ni y x y x -=≤≤11max ,ρ (其中i x 与i y 分别是x 与y 的第i 分量),则n R 按照1ρ是一个距离空间,且是完备的.在这个空间中,定义Tx y R R T nn =→,:由下式确定()∑==+=nj i j iji n i b x ay 1,,2,1Λ ,如令 ()()()()2211,y Tx y Tx==,则有()()()()()()()()()()()21112112121max max ,,j j nj ij ni iini x x a y yyyTxTx -=-==∑=≤≤≤≤ρρ()()2111max jj nj ij ni x x a -≤∑=≤≤()()∑-≤=≤≤≤≤nj ij n i j j nj a x x 11211max max由条件(19)可得()()()()()()2121,,x x a TxTx ρρ≤,即T 是压缩映射,从而它有唯一的不动点,即方程有唯一解且可用迭代法求得.上述结果可用于方程组(),,,,,21n n R x x x x b Ax ∈==Λ()()'21,,,n nn ijb b b b a A Λ==? (20)可知,当n i a aii nj,2,1,,1Λ=<∑≠=时(19)存在唯一的解x ,且用如下的Jacobi 法求出x ,将(20)改写成+----=+--+-=+---=nn n n nn n nn n nnn n n a b a a a a a b a a a a a b a a a a ξξξξξξξξξξξξ000221122222221222121111112111211ΛΛΛΛΛΛΛ记=------=nn n nnn nnn n n a b ab a b b a a a a a a aa a a a a A ΛΛΛΛΛΛΛΛ2221112122222211111112000 即为b x A x +=,任取()()()(),,,,002010nRx ∈'=ξξξΛ用迭代法,令n n b x A x n n ,,2,1,1Λ=+=-,则x x n n =∞→lim .4.4 不动点定理在微分方程中的应用该定理在微分方程用于证明方程解的存在性、唯一性.例11 考察微分方程()y x f dxdy,=,00y y x =,(21)其中()y x f ,在整个平面上连续,此外还设()y x f ,关于y 满足利普希茨(R .Lipschtz )条件:()(),,,,,,2'''R y y x y y k y x f y x f ∈-≤-其中0>k 为常数,那么通过点()00,y x ,微分方程(21)有一条且只有一条积分曲线.证微分方程(21)加上初值条件00 y yx =,等价于下面的积分方程()()()dt t y t f y x y xx ,00?+=.我们取0>δ,使1<δk ,在连续函数空间[]δδ+-00,x x C 内定义映射:T()()()()[]()δδ+-∈+=?000,,0x x x dt t y t f y x Ty xx ,则有()()(()()[]?-=≤-xx x x dt t y t f t y t f Ty Ty 002121,,max,δρ()()?-≤≤-xx x x dt t y t y k 0021max δ()()().,m ax 21210y y k t y t y k x t δρδδ=-≤≤-因,1<δk 由定理1,存在唯一的连续函数()[]()δδ+-∈000,x x x x y 使()()()dt t y t f y x y xx ?+=0000,,由这个等式可以看出,()x y 0是连续可微函数,且()x y y 0=就是微分方程(21)通过点()00,y x 的积分曲线,但只定义在[]δδ+-00,x x 上,考虑初值条件(),000δδ±=±x y yx 并再次应用定理1,使可将解延拓到[]δδ2,200+-x x 上,依次类推,于是可将解延拓到整个直线上.通过上文的论述,我们加深了对不动点定理的理解,了解了求不动点的方法以及相应例题的证明技巧,知道了此定理应用的广泛性,而随着理论和实践的蓬勃发展对不动点定理的研究也将不断深化,所以我们研究的脚步不能停下.。
不动点方法的实际应用
不动点方法的实际应用不动点方法是数学中一个重要的工具,用于求解各种问题,特别是在非线性分析和迭代计算中。
传统的不动点方法通常关注找到一个函数的不动点,即满足f(x) = x 的点x。
然而,这种方法在某些情况下可能受到限制,因此需要进行推广。
以下是关于不动点方法推广的详细解释:一、推广背景在实际应用中,许多问题不能仅仅通过找到一个不动点来解决。
例如,在经济学、物理学、工程学等领域,可能需要找到满足特定条件的多个不动点,或者需要处理更为复杂的映射关系。
因此,有必要对传统的不动点方法进行推广,以适应更广泛的问题和应用场景。
二、推广目的推广不动点方法的主要目的是扩展其应用范围和提高求解效率。
通过引入新的概念、技巧和方法,可以处理更为复杂和多样化的问题。
此外,推广后的方法还可以提供更多的求解策略和灵活性,以便更好地适应不同的实际需求。
三、具体方法步骤推广不动点方法的具体步骤可以根据不同的推广方向和问题特性而有所不同。
以下是一些常见的推广方法和步骤:1.引入参数化不动点:在传统的不动点方法中,不动点是固定的。
然而,通过引入参数化不动点的概念,可以将不动点表示为一个参数化的函数或方程。
这样,就可以通过调整参数来找到满足特定条件的多个不动点。
2.拓展映射类型:传统的不动点方法通常关注单一映射的不动点。
然而,通过拓展映射类型,可以处理更为复杂的映射关系。
例如,可以考虑多值映射、集值映射或非线性映射等。
这些拓展使得不动点方法能够应用于更广泛的问题和领域。
3.结合其他数学工具:不动点方法可以与其他数学工具相结合,以提供更强大的求解能力。
例如,可以与微积分、线性代数、拓扑学等相结合,形成更为复杂和高效的不动点求解方法。
这些结合可以根据具体问题的特性进行选择和应用。
四、应用范围和优势推广后的不动点方法具有更广泛的应用范围和优势。
首先,它可以应用于更多领域的问题求解,如经济学中的均衡问题、物理学中的相变问题、工程学中的优化问题等。
关于实函数不动点的原理及应用
V 13 SiN . ,0 2 o , c. o 3 2 1 .
关 于实 函数不动点 的原理及应用
The The r nd App i a i n ft x d i n Re lVa i bl o ya lc to o he Fi e Po nto a ra e Func i n tO
王国贤 , 罗
鑫
(. 1黑河学 院 数学系 , 黑龙江 黑河 14 0 2 黑河市逸夫中学 , 6 30;. 黑龙江 黑河 1 30) 4 6 0 W ANG Guo in a -x a nd LUO n Xi
(. te ais e at n, eh ol e H ie1 4 0 , hn ; 1 hmt pr Ma cD metH ieC l g, eh 6 3 0 C ia e 2 Heh MideS ho, i 6 3 o C i . iey d l c olHeh 14 o, hn e a)
p n il a e n e poe n u i r cpe h sb e x lrd a d s mmaie nt efn t n o n a a l. ers lsso h ttefx d p itt e r a e i it n d a g f r d i h u ci fo e v r be Th eut h w t a h e on h oyh saf xbly a d wier eo z o i i l i n
.
) 动点 。 的不
不动 点原理
定 理 【 : 如 果 厂是 n l维 实 心 球 体 B 。 】 + = 存 在一个 不动点 EB 。 即满 足 (
0 ) )
{∈ I I 到 自身的连续 映射 (=, …)则. R ≤1) nl, , 厂 2
专题:关于函数不动点的研究及其应用
关于函数不动点的研究及其应用相关概念:定义:一般地,对于定义在区间D 上的函数()y f x =(1)若存在0x D ∈,使得00()f x x =,则称0x 是函数()y f x =的一阶不动点,简称不动点;(2)若存在0x D ∈,使00(())f f x x =,则称0x 是函数()y f x =的二阶不动点,简称稳定点; 说明:(1)不动点实际上是方程组⎩⎨⎧==xy x f y )(的解),(00y x 的横坐标,或两者图象的交点的横坐标(2)稳定点是函数图象与它的反函数(可以是多值的)的图象的交点的横坐标.(3)令()0f x t =,则()()00f x t x t =≠,故函数()y f x =有两个二阶不动点0,x t 就是二元方程()()00f x t f t x =⎧⎪⎨=⎪⎩有解,即点()()00,,,t x x t 都在函数()y f x =图象上,所以()y f x =得二阶不动点就是函数()y f x =图象上关于直线y x =对称两点的横坐标。
(4)若0x 为函数)(x f y =的不动点,则0x 必为函数)(x f y =的稳定点,但稳定点不一定就是不动点,但若函数()y f x =单调递增,则它的不动点与稳定点是完全等价的。
(证明)相关习题:1.(2013年四川文科).设函数a x e x f x -+=)((R a ∈,e 为自然对数的底数). 若存在]1,0[∈b 使b b f f =))((成立,则a 的取值范围是( )A. ],1[eB. ]1,1[+eC. ]1,[+e eD.]1,0[分析:题目的等价于()y f x =存在二阶不动点]1,0[∈b ,而易知()y f x =在定义域内为单调递增函数,故二阶不动点与一阶不动点等价,进而转化为()y f x =存在一阶不动点]1,0[∈b ,即[]0,1x ∃∈,使得x a x e x f x =-+=)(在]1,0[∈x 有解,整理可得,2x x e a x -+=,在]1,0[∈x 有解令2)(x x e x g x -+=,]1,0[∈x∵021121)(=-+>-+='x e x g x ,∴)(x g 在]1,0[∈x 单调递增 1)0(=g ,e g =)1(,],1[e a ∈,故选择A变式:(2013四川理科)设函数a x e x f x -+=)((R a ∈,e 为自然对数的底数). 若曲线x y sin =上存在点),(00y x 使00))((y y f f =成立,则a 的取值范围是( )A . ],1[e B. ]1,1[1--e C. ]1,1[+e D. ]1,1[1+--e e2.如果函数()()2f x x a a R =+∈的二阶不动点恰是它的一阶不动点,求实数a 的取值范围。
数学论文关于函数不动点的性质及应用
. - 2021届本科毕业论文(设计) 题目:关于函数不动点的性质及应用所在学院:数学科学学院专业班级:数学09-3班学生:帕孜丽娅·阿布都热习题指导教师:塔实甫拉提副教授辩论日期:2021年5 月5 日--XX师大学教务目录引言11 函数不动点的根本概念11.1 函数不动点的定义与定理及推论12 函数不动点的性质22.1不动点的不唯一33 函数不动点的应用43.1 求函数的不动点43.2 利用函数不动点求函数解析式73.3 利用函数不动点解方程83.4 利用函数不动点求数列通项93.5 利用函数不动点求函数极限114 总结13参考文献13致13关于连续函数的不动点及应用摘要:不动点定理是20世纪数学开展中的重大课题,其影响普及整个数学界。
此定理涉及数学分析、拓扑学、非线性分析等多种问题,运用不动点定理,可以解决数学中出现的许多问题,简单、方便、实用。
本论文以介绍布劳威尔不动点定理为主线,详细研究迭代法的思想,简介不动点定理的起源和根本容,考虑了连续函数和单调函数的不动点问题,最后研究了不动点定理在数列极限中的应用。
关键词:不动点定理;迭代法;函数;数列极限。
引言不动点定理的产生是数学开展史上的一次重大突破,它涉及诸多数学分支,其应用十分广泛,相关领域的研究至今仍呈现勃勃生机。
数学中的许多重要的定理,如隐函数定理、微分方程解的存在性定理等,都可以用不动点定理给出简洁的证明。
本论文简单粗浅地介绍了对不动点定理的认识、理解,以及它的应用。
1 函数不动点的根本概念1.1 函数不动点的定义与定理及推定义1.1.1 对函数)(x f ,假设存在实数0x ,满足00)(x x f =,那么称0x 为)(x f 的不动点。
对此定义有两方面的理解:〔1〕代数意义:假设方程x x f =)(有实数根0x ,那么)(x f y =有不动点0x ; 〔2〕几何意义:假设函数)(x f y =与x y =有交点),(00y x ,那么0x 为)(x f y =的不动点。
不动点定理及其应用 - 西安交通大学苏州附属中学
不动点定理及其应用215021 西安交通大学苏州附属中学 蒋亚军摘 要:本文研究了不动点定理的一些典型问题的经典解法,并对不动点理论在高中数学中的应用作了一些探究。
关键词:不动点;函数1 引言1912年,荷兰数学家布劳维证明,任意一个把n 维球体映入自己的连续映象(即拓扑变换)至少有一个不动点。
这就是著名的拓扑不动点定理。
我们知道,直线是一维空间,平面是二维空间,普通空间是三维空间,四维、五维以上至n 维空间就很抽象了,下面对一维球体做出一个有趣的例子。
某学生进城早晨六点从家里出发,下午六点到达。
第二天沿原路返回,早晨六点离城,下午六点到达。
他对老师谈一上述经过。
老师告诉他:“你知道吗?途中有一个地点,你昨天进城和今天经过那个地方时,所用的时间完全相同。
”学生说:“没有这么巧的事吧?我在路上走得时快时慢,有时还停下来休息、吃东西,两次经过某地的时间怎么会完全相同呢?”老师说:“不是不可能的,而是肯定有这一点,虽说我不知道它到底在哪里。
”究竟谁是正确的呢?看起来,学生理由充足,振振有词;而老师既然“肯定”有这一点,又“知道”这点在哪里,似乎自相矛盾。
其实,老师是正确的。
道理很简单,设想进城和回家发生在同一天,学生离家出走,而学生的“替身”则同时离城回家(途中经过情况与学生回家完全相同)。
那么两人必定路上相遇,进城和回家经过这相遇点的时间不是完全相同了吗?所以老师是正确的。
这个有趣的问题给著名的“拓扑不动定理”提供了一个极其生动简明的例证。
我们对上面一维球体的例证再用数学模型建立起来研究一下,直观化一些,设甲同学从家里往学校走,乙同学从学校往甲同学的家里走,所走的路线是一样的,而且两人出发的时间都是早上6点,那么他们在某一时刻一定会相遇,这一点就是上面提及的不动点。
用个图形来简单的描绘一下: 甲同学 乙同学理想化假设两人都是匀速行走的,那么设甲的速度为1v ,乙的速度为2v ,从学校到甲的家里的路程为s ,则两人相遇的时间为t ,从而得到式子12s v t v t =⋅+⋅,一旦速度确定了,这个不动点就肯定确定了,而且就是在距甲的家里1v t ⋅的点处或者距学校2v t ⋅的点处。
不动点定理及应用张石生
不动点定理及应用张石生不动点定理是数学分析中的一个重要定理,也是实分析的基础之一。
它是通过将函数与自身的某个值进行比较,来研究函数性质的一个方法。
在实际问题中,不动点定理具有广泛的应用,如经济学、物理学、计算机科学等领域。
不动点定理的基本概念是,对于一个给定的函数f(x),如果存在一个点c使得f(c)=c,那么c就是f的一个不动点。
换句话说,不动点是指函数f的输入和输出相等的点。
不动点定理的核心思想是通过迭代法逼近不动点。
最著名的不动点定理是B a n a c h不动点定理(也称为完备性原理),它的形式是:在完备度量空间中,任何一个压缩映射都有唯一的不动点。
其中,完备度量空间指的是一个具有一个完整的度量的空间,而压缩映射指的是一个将空间元素映射到自身并保持距离不变的映射。
不动点定理的应用非常广泛。
以下列举一些典型的应用领域。
1.经济学:在经济学中,不动点定理常常用于证明经济学模型中的均衡存在和稳定性。
例如,通过将供求函数模型转化为一个演化方程,可以证明在某些条件下存在一个不动点,表示市场均衡;而通过分析不动点的稳定性,可以研究市场的长期发展趋势。
2.物理学:在物理学中,不动点定理常用于分析非线性方程的解的存在性与性质。
例如,在动力系统的研究中,可以将动力学方程表示为一个不动点问题,通过分析不动点的性质来研究系统的稳定性和演化行为。
3.计算机科学:在计算机科学中,不动点定理常常用于程序的求解和优化。
例如,在编译器优化中,可以将程序转化为一个抽象语法树,通过对抽象语法树的变换来求解程序的不动点,以达到提高程序性能的目的。
4.几何学:在几何学中,不动点定理常用于证明几何变换的存在性和特性。
例如,在拓扑学中,可以通过不动点定理来研究拓扑空间的连续映射和同胚映射的性质。
综上所述,不动点定理是数学分析中的一个重要定理,它通过引入不动点的概念,研究函数的性质和方程的解的存在性。
在实际应用中,不动点定理被广泛用于经济学、物理学、计算机科学等领域,为解决实际问题提供了有力的工具和方法。
不动点的性质与应用
不动点的性质与应用一、不动点:对于函数()()f x x D ∈,我们把方程()f x x =的解x 称为函数()f x 的不动点,即()y f x =与y x =图像交点的横坐标.例1:求函数12)(-=x x f 的不动点.例2:求函数12)(2-=x x g 的不动点.二、稳定点:对于函数()()f x x D ∈,我们把方程[()]f f x x =的解x 称为函数()f x 的稳定点,即[()]y f f x =与y x =图像交点的横坐标.很显然,若0x 为函数)(x f y =的不动点,则0x 必为函数)(x f y =的稳定点.证明:因为00)(x x f =,所以000)())((x x f x f f ==,故0x 也是函数)(x f y =的稳定点. 例3:求函数12)(-=x x f 的稳定点.例4:求函数12)(2-=x x g 的稳定点.例5、对于函数f (x ),我们把使得f (x )=x 成立的x 称为函数f (x )的不动点。
把使得f (f (x ))=x 成立的x 称为函数的f (x )的稳定点,函数f (x )的不动点和稳定点构成集合分别记为A 和 B. 即A ={x |f (x )=x },B ={x |f (f (x ))=x },(1)请证明:A ⊆B ;(2)2()(,)f x x a a R x R =-∈∈,且A =B ≠∅,求实数a 的取值范围.例6、已知函数(),y f x x D =∈,若存在0x D ∈,使得00()f x x =,则称0x 为函数()f x 的不动点;若存在0x D ∈,使得00[()]f f x x =,则称0x 为函数()f x 的稳定点,则下列结论中正确的是_________(填上所有正确结论的序号).①112-、是函数2()21f x x =-的两个不动点;②若0x 为函数()y f x =的不动点,则0x 必为函数()y f x =的稳定点; ③若0x 为函数()y f x =的稳定点,则0x 必为函数()y f x =的不动点; ④函数2()21f x x =-共有三个稳定点;⑤()f x =例7、设函数())f x a R =∈.若方程f (f (x ))=x 有解,则a 的取值范围为( )A.1(,]4-∞B. 1[0,]8C. 1(,]8-∞ D.[1,+∞)例8:已知()bx x x f -=3,若()x f 在[1,)+∞上单调.(1)求b 的取值范围;(2)已知()bx x x f -=3,若设001,()1x f x ≥≥,且满足00[()]f f x x =,求证:00()f x x =.例9:已知()()20f x ax bx c a =++≠,且方程()f x x =无实根。
不动点的性质与应用
不动点的性质与应用一、不动点:对于函数()()f x x D ∈,我们把方程()f x x =的解x 称为函数()f x 的不动点,即()y f x =与y x =图像交点的横坐标.例1:求函数12)(-=x x f 的不动点. 解:有一个不动点为1例2:求函数12)(2-=x x g 的不动点. 解:有两个不动点121、- 二、稳定点:对于函数()()f x x D ∈,我们把方程[()]f f x x =的解x 称为函数()f x 的稳定点,即[()]y f f x =与y x =图像交点的横坐标.很显然,若为函数)(x f y =的不动点,则必为函数)(x f y =的稳定点.证明:因为00)(x x f =,所以000)())((x x f x f f ==,故也是函数)(x f y =的稳定点. 例3:求函数12)(-=x x f 的稳定点.解:设12)(-=x x f ,令x x =--1)12(2,解得1=x 故函数12-=x y 有一个稳定点1【提问】有没有不是不动点的稳定点呢答:当然有 例4:求函数12)(2-=x x g 的稳定点.解:令[()]g g x x =,则018801)144(21)12(2242422=+--⇒=--+-⇒=--x x x x x x x x , 因为不动点必为稳定点,所以该方程一定有两解1,2121=-=x x⇒18824+--x x x 必有因式12)12)(1(2--=+-x x x x可得0)124)(12)(1(2=-++-x x x x ⇒另外两解4514,3±-=x , 故函数12)(2-=x x g 的稳定点是1、21-、451451--+-、,其中451±-是稳定点,但不是不动点 下面四个图形,分别对应例1、2、3、4.由此可见,不动点是函数图像与直线x y =的交点的横坐标,稳定点是函数))((D x x f y ∈=图像与曲线))((D y y f x ∈=图像交点的横坐标(特别,若函数有反函数时,则稳定点是函数图像与其反函数图像交点的横坐标).由图1和图3,我们猜测命题:若函数))((D x x f y ∈=单调递增,则它的不动点与稳定点或者相同,或者都没有.证明:(1)ο1若函数))((D x x f y ∈=有不动点0x ,即00)(x x f =000)())((x x f x f f ==⇒,故也是函数)(x f y =的稳定点;ο2若函数))((D x x f y ∈=有稳定点0x ,即00))((x x f f =,假设0x 不是函数的不动点,即00)(x x f ≠①若f (x 0)>x 0,则 f (f (x 0))>f (x 0),即x 0>f (x 0)与f (x 0)>x 0矛盾,故不存在这种情况; ②若f (x 0)<x 0,则f (f (x 0))<f (x 0),即x 0<f (x 0)与f (x 0)<x 0矛盾,故不存在这种情况; 综上,f (x 0)=x 0⇒x 0是f (x )的不动点.(2)ο1若函数))((D x x f y ∈=无不动点,由(1)知若函数有稳定点,则函数必有不动点,矛盾,故函数无稳定点;ο2若函数))((D x x f y ∈=无稳定点,由(1)知若函数有不动点,则函数必有稳定点,矛盾,故函数无不动点;综上,若函数))((D x x f y ∈=单调递增,则它的不动点与稳定点或者相同,或者都没有.121例5、对于函数f (x ),我们把使得f (x )=x 成立的x 称为函数f (x )的不动点。
不动点理论及其应用
不动点理论及其应用主要内容:●不动点理论—压缩映像原理●不动点理论在微分方程中的应用●不动点理论在中学数学中的应用目录:一、引言二、压缩映像原理三、在微分方程中的应用四、在中学数学中的应用五、其它一、 引言取一张照片,按比例缩小,然后把小照片随手放在大照片上,那么大小两张照片在同一个部位,一定有一个点是重合的。
这个重合点就是一个不动点。
函数的不动点, 在数学中是指被这个函数映射到其自身的一个点, 即函数)(x f 在取值过程中, 如果有一个点0x 使00)(x x f =,则 0x 就是一个不动点。
二、 压缩映像原理定理:(Banach 不动点定理—压缩映像原理)设 ),(ρX 是一个完备的距离空间, T 是),(ρX 到其自身的一个压缩映射,则T 在X 上存在唯一的不动点。
这里有三个概念:距离空间,完备的距离空间,压缩映射距离空间又称为度量空间。
定义:(距离空间)设 X 是一个非空集合。
X 称为距离空间,是指在X 上定义了一个双变量的实值函数 ),(y x ρ, 满足下面三个条件:(1)。
0),(≥y x ρ, 而且0),(=y x ρ, 当且仅当 y x =; (2)。
),(),(x y y x ρρ=;(3)。
),(),(),(z y y x z x ρρρ+≤, (X ,,∈∀z y x )。
这里 ρ 叫做 X 上的一个距离,以 ρ 为距离的距离空间 X 记作),(ρX 。
定义:(完备的距离空间)距离空间),(ρX 中的所有基本列都是收敛列,则称该空间是完备的。
定义:(压缩映射)称映射 ),(),(:ρρX X T → 是一个压缩映射,如果存在 10<<a , 使得 ),(),(y x a Ty Tx ρρ≤ ),(X y x ∈∀成立。
三、 在微分方程中的应用定理:(存在和唯一性)考虑如下初值问题⎪⎩⎪⎨⎧==.00)(),,(y x y y x f dx dy假设 ),(y x f 在矩形区域b y y a x x R ≤-≤-||,||:00内连续,而且对 y 满足Lipschitz 条件,则上述问题在区间],[00h x h x I +-= 上有且仅有一个解,其中.|),(|max },,min{),(y x f M Maa h R y x ∈>=(1)。
不动点定理在数列中的应用
不动点定理在数列中的应用不动点定理(Fixed-point theorem)是数学中的一个重要定理,它在许多数学领域中都有广泛的应用。
数列是数学中一个重要的概念,在实际问题中也经常涉及到数列的应用。
下面我们就来探讨一下不动点定理在数列中的应用。
不动点定理是说,如果一个函数f在一些区间上连续,并且满足存在一个点c,使得f(c)=c,那么在这个区间上一定存在一个不动点。
而不动点就是满足f(x)=x的点。
不动点定理告诉我们,在一些条件下,可以通过寻找不动点来解决一些问题。
首先,我们来看一个简单的例子,以说明不动点定理在数列中的应用。
考虑一个数列a_1,a_2,a_3,...,a_n,假设该数列满足以下条件:a_n+1=f(a_n),其中f是一个连续函数。
我们希望找到一个数x,使得f(x)=x。
根据不动点定理,如果x是f的一个不动点,那么x必然是数列的极限点。
因此,我们可以通过数列极限点的方法来求解不动点。
现在我们来具体讨论几个应用。
1.迭代方法求解方程:当我们想求解一个方程f(x)=0时,可以采用迭代方法来逼近方程的根。
假设我们选择一个初始值x_0,然后通过不断地迭代计算x_n+1=f(x_n),直到满足其中一种停止准则。
根据不动点定理,如果迭代函数f满足一定条件,那么迭代序列{x_n}将收敛到方程f(x)=0的解。
这种方法在数值计算中经常使用,例如牛顿法、二分法等。
2.数值逼近:不动点定理可以用于数值逼近问题。
我们可以通过构造一个递推数列来逼近一些数值解。
假设我们要求解方程f(x)=c的根,我们可以选择一个初始点x_0,并通过迭代计算x_n+1=f(x_n)来逼近方程的解。
这个逼近序列可能会发散,也可能会收敛到一个数值解。
通过不动点定理,我们可以给出一些条件来保证逼近序列的收敛性,并通过不停地迭代来提高逼近的精度。
3.动力系统:不动点定理也在动力系统中有广泛的应用。
动力系统是研究一些变化随时间的系统的一个数学分支。
函数的不动点有大用
函数的不动点有大用1神马叫不动点?对于函数y=f(x),方程f(x)=x的根称为函数f(x)的一阶不动点.方程f(f(x))=x的根成为函数f(x)的二阶不动点.依此类推,可以定义函数的n阶不动点.一阶不动点就称为不动点,二阶不动点也称为稳定点.2求不动点和稳定点看栗子.1.求函数f(x)=2x-1的不动点和稳定点.求不动点.令2x-1=x,解答x=1.所以函数f(x)的不动点是1.求稳定点.令2(2x-1)-1=x,解得x=1.所以函数f(x)的稳定点是1.2.求函数f(x)=-x的不动点和稳定点.求不动点.令-x=x,解得x=0.所以函数f(x)的不动点是0.求稳定点.令-(-x)=x,方程恒成立.所以函数f(x)的稳定点是任意实数.3.求函数f(x)=-1/x的不动点和稳定点.求不动点.令-1/x=x,方程无实数解.所以函数f(x)没有不动点.求稳定点.令-1/(-1/x)=x,方程恒成立.所以函数f(x)的稳定点是任意不为零的实数.咦,怎么有时不动点和稳定点一样,有时又不同呢?为回答这个疑惑,我们讲两个小结论.3不动点一定是稳定点,稳定点不一定是不动点先证明前半句话.再证明后半句话.举个反例即可.比如2是函数f(x)=-x的稳定点,但不是函数f(x)=-x的不动点.(就是上面第2个函数的例子)4若函数f(x)单调递增,则它的不动点和稳定点等价下面做等价条件的证明.5高考题实战2013年四川高考理科数学卷第10题.本题是选择压轴题,考察了函数的稳定点问题.经过简单分析发现,函数f(x)为单增函数,所以我们可以把稳定点问题转化为不动点问题.不动点法应用很广,比如在数列中,求复杂数列的通项公式时,经常用到不动点法.。
不动点和压缩影射的原理及其应用(5篇)
不动点和压缩影射的原理及其应用(5篇)第一篇:不动点和压缩影射的原理及其应用不动点和压缩影射的原理及其应用摘要:学习了数学分析中一些不动点问题的解题方法和递推数列的极限,将不动点和压缩映像原理运用到求一些极限问题中,使我们更容易去解决关于数列极限存在性和如何快速求出极限的值。
关键词:不动点压缩影射递推数列应用自从波兰数学家巴拿赫在1992年提出了有关压缩映像在完备的度量空间必然存在唯一的不动点的一些理论。
而后,许多数学工作者投入的大量的时间来研究,并取得了一些丰硕的成果。
今天,不动点和压缩映像原理在我们日常生活中运用十分广泛。
不动点原理在数学分析,常微方程,积分方程等很多地方都有它的应用。
而压缩映像可以用于证明一些简单的隐函数存在定理,特别是在求一些递推数列中。
然而在不少数学分析教材中一般不介绍它,这给我们带来许多问题的困扰。
建议老师将它放在微分中值定理和数列柯西收敛准则后学习,这样可以让学生更进一步了解泛函分析。
1不动点和压缩映像定义及原理定义1设X为一个非空集合,映射T是X到X的一个映射,如果存在x*X使得Tx*=x*则称x *是T的一个不动点。
定义2设X是度量空间,T是X到X中的映射,如果存在一个数c,0第二篇:管理学原理简答精华压缩1、计划工作程序:①估量机会②确定目标③确定前提条件④确定可供选择的方案⑤评价各种方案⑥选择方案⑦制订派生计划⑧用预算形式使计划数字化。
2、内部提升制优缺点:优点:1.由于对机构中的人员有较充实可靠的资料,可了解候选人的优缺点,以判断是否适合新的工作。
2.组织内成员对组织的历史和现状比较了解,能较快地胜任工作。
3.可激励组织成员的进取心,努力充实提高本身的知识和技能。
4.工作有变换机会,可提高组织成员的兴趣和士气,使其有一个良好的工作情绪。
5.可使过去对组织成员的训练投资获得回收,并判断其效益如何。
缺点:1.所能提供的人员有限,尤其是关键的管理者,当组织内有大量空缺职位时,往往会发生“表黄不接”的情况。
不动点的性质与应用(学生版)
不动点的性质与应用一、不动点:对于函数()()f x x D ∈,我们把方程()f x x =的解x 称为函数()f x 的不动点,即()y f x =与y x =图像交点的横坐标.例1:求函数12)(-=x x f 的不动点.例2:求函数12)(2-=x x g 的不动点.二、稳定点:对于函数()()f x x D ∈,我们把方程[()]f f x x =的解x 称为函数()f x 的稳定点,即[()]y f f x =与y x =图像交点的横坐标.很显然,若0x 为函数)(x f y =的不动点,则0x 必为函数)(x f y =的稳定点. 证明:例3:求函数12)(-=x x f 的稳定点.【提问】有没有不是不动点的稳定点呢?答: 例4:求函数12)(2-=x x g 的稳定点.下面四个图形,分别对应例1、2、3、4.xyx y =12)(-=x x fxyx y =12)(2-=x x g由此可见,不动点是函数图像与直线x y =的交点的横坐标,稳定点是函数))((D x x f y ∈=图像与曲线))((D y y f x ∈=图像交点的横坐标(特别,若函数有反函数时,则稳定点是函数图像与其反函数图像交点的横坐标).由图1和图3,我们猜测命题:若函数))((D x x f y ∈=单调递增,则它的不动点与稳定点或者相同,或者都没有. 证明:例5、对于函数f (x ),我们把使得f (x )=x 成立的x 称为函数f (x )的不动点。
把使得f (f (x ))=x 成立的x 称为函数的f (x )的稳定点,函数f (x )的不动点和稳定点构成集合分别记为A 和B. 即A ={x |f (x )=x },B ={x |f (f (x ))=x }, (1)请证明:A ⊆B ;(2)2()(,)f x x a a R x R =-∈∈,且A =B ≠∅,求实数a 的取值范围. xyx y =12)(-=x x f2121+=x y 图-3x yx y =12)(2-=x x g21+±=x y 图-4例6、已知函数(),y f x x D =∈,若存在0x D ∈,使得00()f x x =,则称0x 为函数()f x 的不动点;若存在0x D ∈,使得00[()]f f x x =,则称0x 为函数()f x 的稳定点,则下列结论中正确的是_________(填上所有正确结论的序号).①112-、是函数2()21f x x =-的两个不动点; ②若0x 为函数()y f x =的不动点,则0x 必为函数()y f x =的稳定点; ③若0x 为函数()y f x =的稳定点,则0x 必为函数()y f x =的不动点; ④函数2()21f x x =-共有三个稳定点; ⑤()x f x e x =+的不动点与稳定点相同.例7、设函数()()f x x a a R =-∈.若方程f (f (x ))=x 有解,则a 的取值范围为( )A.1(,]4-∞ B. 1[0,]8C. 1(,]8-∞ D.[1,+∞)例8:已知()bx x x f -=3,若()x f 在[1,)+∞上单调. (1)求b 的取值范围;(2)已知()bx x x f -=3,若设001,()1x f x ≥≥,且满足00[()]f f x x =,求证:00()f x x =.例9:已知()()20f x ax bx c a =++≠,且方程()f x x =无实根。
高考的学子们必须知晓的函数不动点知识
高考的学子们必须知晓的函数不动点知识
函数的不动点,在数学中是指被这个函数映射到其自身一个点。
例如,定义在实数上的函数,
f(x) = x2 − 3x + 4,则2是函数f的一个不动点,因为f(2) = 2。
函数的不动点在函数研究与应用中(如在函数迭代研究和应用于求数列通项),占有重要地位.
下面我们以一道例题来分析:
小伙伴先自己分析该题的思路
第一问直接根据不定点的定义直接转换为一元二次方程,求解该方程根即可
第二问就转换为求一元二次方程根的情况,讨论字母的取值范围这题稍微转换一下是不是很熟悉的解题思路,在圆锥曲线中我们采用的哟,小伙伴拿去慢慢消化吧
注:函数的不动点有两方面的理解:
①代数意义:函数f(x)的不动点x0是方程f(x)=x的实数根;
②几何意义:函数f(x)的不动点x0是函数y=f(x)与直线y=x交点的横坐标.
每天进步一点点,祝各位学业有成。
Banach不动点理论及其在方程组求解中的应用
Banach不动点理论及其在方程组求解中的应用Banach不动点理论是数学中一个重要的概念,它在方程组求解等领域有着广泛的应用。
本文将介绍Banach不动点理论的基本概念和原理,并探讨其在方程组求解中的具体应用。
一、Banach不动点理论概述Banach不动点理论是由波兰数学家斯捷凡·巴拿赫(Stefan Banach)研究并提出的。
它是函数分析中的一个重要分支,研究在完备度量空间中具有某种特定性质的映射的不动点存在性问题。
在数学上,给定一个度量空间X和一个映射T:X→X,如果T存在一个点x∈X,使得T(x)=x,那么我们称x为T的不动点。
Banach不动点理论研究的是在何种条件下,一个映射T必然存在不动点。
二、Banach不动点定理Banach不动点理论的核心定理就是Banach不动点定理,也被称为压缩映像原理。
该定理给出了在完备度量空间中,压缩映射必然存在不动点的条件。
具体表述如下:定理:设X是一个完备度量空间,T:X→X是一个压缩映射。
则T 存在唯一的不动点。
这个定理的意义在于,通过找到一个满足压缩条件的映射T,在完备度量空间中总能找到该映射的不动点。
这为方程组求解提供了一种有效的方法。
三、Banach不动点理论在方程组求解中的应用Banach不动点理论在方程组求解中有着广泛的应用。
我们以线性方程组的求解为例,说明Banach不动点理论在方程组求解中的具体应用。
对于线性方程组Ax=b,其中A是一个已知的n×n矩阵,x和b是未知向量。
我们可以将方程组改写成一个不动点问题:x=T(x)+c,其中T(x)=(I-A)x和c=A·b,I是n阶单位矩阵。
这里T(x)是一个线性映射。
根据Banach不动点定理,如果T是一个压缩映射,那么方程组Ax=b就有唯一解x。
因此,我们可以通过构造一个满足压缩条件的映射T,然后使用Banach不动点定理来求解线性方程组。
在具体操作中,可以使用迭代法来逼近不动点。
Banach不动点理论及其在方程组求解中的应用
Banach不动点理论及其在方程组求解中的应用Banach不动点理论是现代数学中的一个重要理论,被广泛应用于分析学、拓扑学、微分方程等领域。
本文将探讨Banach不动点理论的基本概念和原理,并介绍它在方程组求解中的具体应用。
一、Banach不动点理论的基本概念Banach不动点理论是20世纪初波兰数学家Stefan Banach提出的,它研究的是函数的不动点问题。
对于给定的函数f(x),如果存在一个点x使得f(x)=x,那么x就是函数f的不动点。
而Banach不动点理论则是研究在特定条件下,函数的不动点是否存在、是否唯一,以及如何求解不动点的问题。
在Banach不动点理论中,主要引入了完备度的概念。
一个度量空间称为完备的,如果其中的任意Cauchy序列都收敛于该空间中的某个点。
如果一个函数f满足某些条件,并且作用在一个完备度量空间上,那么根据Banach不动点原理,这个函数一定存在唯一的不动点。
二、Banach不动点理论的原理Banach不动点原理主要有两个版本:压缩映射原理和Banach逼近定理。
其中,压缩映射原理是在完备度量空间上的应用较为广泛和重要的。
压缩映射原理指出,如果函数f作用在一个完备度量空间上,并且满足压缩映射条件,即存在一个常数k(0≤k<1),使得对于任意的x和y,有d(f(x), f(y)) ≤ k·d(x, y)(d表示度量空间中的距离),那么函数f必定有唯一的不动点x=f(x)。
根据压缩映射原理,我们可以通过构造适当的映射关系和选择适当的初值来求解方程组。
通过不断迭代逼近的方法,可以使得逐步计算的结果趋向于方程组的解。
三、Banach不动点理论在方程组求解中的应用Banach不动点理论在方程组求解中有着广泛的应用。
下面以线性方程组为例,说明其在求解中的具体应用。
考虑一个线性方程组Ax=b,其中A是一个已知的n×n矩阵,b是一个已知的n维向量,我们的目标是求解未知向量x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于函数不动点的研究及其应用
相关概念:定义:一般地,对于定义在区间D 上的函数()y f x =
(1)若存在0x D ∈,使得00()f x x =,则称0x 是函数()y f x =的一阶不动点,简称不动点;
(2)若存在0x D ∈,使00(())f f x x =,则称0x 是函数()y f x =的二阶不动点,简称稳定点; 说明:(1)不动点实际上是方程组⎩⎨⎧==x
y x f y )(的解),(00y x 的横坐标,或两者图象的交点的横坐标
(2)稳定点是函数图象与它的反函数(可以是多值的)的图象的交点的横坐标.
(3)令()0f x t =,则()()00f t x x t =≠,故函数()y f x =有两个二阶不动点0,x 则 二元方程()()00
f x t f t x =⎧⎪⎨=⎪⎩有解,即点()()00,,,t x x t 都在函数()y f x =图象上,所以()y f x =得二阶不动点就是函数()y f x =图象上关于直线y x =对称两点的横坐标。
(4)若0x 为函数)(x f y =的不动点,则0x 必为函数)(x f y =的稳定点,但稳定点不一定就是不动点,但若函数()y f x =单调递增,则它的不动点与稳定点是完全等价的。
(证明)
相关习题:
1.(2013年四川文科).设函数a x e x f x -+=)((R a ∈,e 为自然对数的底数). 若存在]1,0[∈b 使b b f f =))((成立,则a 的取值范围是( )
A. ],1[e
B. ]1,1[+e
C. ]1,[+e e
D.]1,0[
分析:题目的等价于()y f x =存在二阶不动点]1,0[∈b ,而易知()y f x =在定义域内为单调递增函数,故二阶不动点与一阶不动点等价,进而转化为()y f x =存在一阶不动点]1,0[∈b ,即[]0,1x ∃∈,使得x a x e x f x =-+=)(在]1,0[∈x 有解,
整理可得,2
x x e a x -+=,在]1,0[∈x 有解
令2)(x x e x g x -+=,]1,0[∈x
∵021121)(=-+>-+='x e x g x ,∴)(x g 在]1,0[∈x 单调递增 1)0(=g ,e g =)1(,],1[e a ∈,故选择A
变式:(2013四川理科)设函数a x e x f x -+=)((R a ∈,e 为自然对数的底数). 若曲线x y sin =上存在点),(00y x 使00))((y y f f =成立,则a 的取值范围是( )
A . ],1[e B. ]1,1[1--e C. ]1,1[+e D. ]1,1[1+--e e
2.如果函数()()2f x x a a R =+∈的二阶不动点恰是它的一阶不动点,求实数a 的取值范围。
分析:我们知道函数的不动点一定是稳定点,这里稳定点恰是不动点,即不存在非不动点的
稳定点,即()f x x =必然有解,且方程组()()()121221
f x x x x f x x =⎧⎪≠⎨=⎪⎩无解。
由()f x x =有解⇒20x x a -+=有解1140,4
a a ⇒∆=-≥≤ 由()()()121221
f x x x x f x x =⎧⎪≠⎨=⎪⎩,得()21212221x a x x x x a x ⎧+=≠⎨+=⎩两式相减,得12211,1x x x x +==- 得21110x x a +++=必然无解或仅有两个相等的实数根()31410,4a a ⇒∆=-+≥≥- 故31,44a ⎡⎤∈-⎢⎥⎣⎦
*对于方程组()()()121221
f x x x x f x x =⎧⎪≠⎨=⎪⎩无解,可进一步优化即)(x f y =图象上不存在关于直线y x =对称的两点,不妨假设存在两点,A B 关于y x =对称,设AB 中点()00,M x x
可求出直线AB 方程020x y x ++=,联立2
y x a =+,消去y ,得210x x a ++-= 存在即210x x a ++-=有两个不相等的实根,不存在即()31410,4a a ⇒∆=-+≥≥-
变式:若()()21,f x ax a R x R =-∈∈,且它的稳定点恰是它的不动点,则实数a 的取值范围为__________
3.(2013年江西理科)已知函数1()(12)2
f x a x =--,a R ∈且0a > (1)证明:函数()f x 的图像关于直线12
x =对称; (2)若0x 满足00(())f f x x =, 但00()f x x ≠,则0x 称为函数()f x 的二阶周期点,如果()f x 有两个二阶周期点12,x x ,试确定实数a 的取值范围.
(1)证明:因为12f x ⎛⎫+ ⎪⎝⎭=a (1-2|x |),12f x ⎛⎫- ⎪⎝⎭
=a (1-2|x |),
有1122f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭
, 所以函数f (x )的图像关于直线12
x =
对称. (2)解:当0<a <12时,有f (f (x ))=2214,,2141,.2a x x a x x ⎧≤⎪⎪⎨⎪(-)>⎪⎩ 所以f (f (x ))=x 只有一个解x =0,又f (0)=0,故0不是二阶周期点. 当12a =时,有f (f (x ))=1,,211,.2
x x x x ⎧≤⎪⎪⎨⎪->⎪⎩ 所以f (f (x ))=x 有解集12x x ⎧⎫≤⎨⎬⎩⎭,又当12x ≤时,f (x )=x ,故12x x ⎧⎫≤⎨⎬⎩
⎭中的所有点都不是二阶周期点. 当12a >时,有f (f (x ))=2222214,41124,,421412(12)4,,244144.4a x x a a a x x a a a a a x x a a a a x x a ⎧≤⎪⎪⎪-<≤⎪⎨-⎪-+<≤⎪⎪-⎪>⎩
,-,所以f (f (x ))=x 有四个解0,222224,,141214a a a a a a +++,又f (0)=0,22()1212a a f a a =++,22221414a a f a a ⎛⎫≠ ⎪++⎝⎭,22
22441414a a f a a ⎛⎫≠ ⎪++⎝⎭,故只有22224,1414a a a a ++是f (x )的二阶周期点.综上所述,所求a 的取值范围为12
a >. 说明:对于第(2)问,可等价转化为函数()y f x =的图象上至少存在两点关于直线y x =对
称,函数可化为()()1221212ax x f x a x x ⎧⎛⎫≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-> ⎪⎪⎝⎭⎩, 故只需1212a a >⇒>。