液晶的分类
液晶电视屏分类
液晶电视主要由四种屏:(1)IPS屏:屏体象素是全象素的鱼鳞状,方向朝左,俗称“人”字状。
只有LG 和Philip合资的制造商LPL提供,仅产于韩国坡州7.5 代线,此生产线2006年1月已实现量产,月产能130K;切割技术成熟,成品率极高。
轻触42”LCD 屏幕,若无水纹现象,则可确认为42”S-IPS面板,容易确认;早期的IPS已经实现了好的可视角度。
S-IPS则为第二代IPS技术,LG-飞利浦购在IPS的基础上,通过导入人字形电极和双畴模式,改善了特定角度的灰阶逆转现象并进一步拓宽视角,实现了S-IPS(Super IPS)178度广视角技术。
为求更完美的视角特性表现,日立进一步把此补偿膜将会加在其第三代的Advanced Super-IPS(AS-IPS)上。
AS-IPS还将增加整体光穿透率,进一步改善液晶的动画特性。
最后,最先进技术的IPS-ALPHA面板,也就是在AS-IPS面板的基础上会引入了新技术来改善某些特定角度的灰阶逆转现象,加强了面板的响应时间。
(2)CPA屏:屏体象素是蜂窝状或六角形,俗称点状。
(3)PVA屏:屏体象素是半象素鱼鳞状,方向朝右手指轻按成梅花状,俗称“八”字状(4)MVA屏:屏体象1、首先我们要对四大液晶屏体来一个直观的识别:字串1字串8(1)IPS屏:屏体象素是全象素的鱼鳞状,方向朝左,俗称“人”字状。
只有LG和Philip合资的制造商LPL提供,仅产于韩国坡州7.5 代线,此生产线2006年1月已实现量产,月产能130K;切割技术成熟,成品率极高。
轻触42”LCD 屏幕,若无水纹现象,则可确认为42”S-IPS面板,容易确认;早期的IPS已经实现了好的可视角度。
S-IPS则为第二代IPS技术,LG-飞利浦购在IPS的基础上,通过导入人字形电极和双畴模式,改善了特定角度的灰阶逆转现象并进一步拓宽视角,实现了S-IPS(Super IPS)178度广视角技术。
液晶屏的等级分类
液晶屏的等级分类1: A+屏是指无斑,没有亮点和暗点,显示稳定无抖动,在TFT-LCD专业测试软件下% L7 s-g3 a5 a/ k2 J符合上述标注;2、A 屏:是指无斑,亮点和暗点2个以内,显示稳定无抖动,在TFT-LCD专业测试软0 v* h%K7 N& W- h& M7 B& D2 B1 u4 k- f/ m! _0 d! N件下符合上述标注;3、B 屏:业界普遍把超过2个以上亮点的称为B屏;4、C 屏:带有亮线的A屏称为C屏。
# @/ n/ I. ]3 M! ~ u* e J |+ E) F8 ' J*. 所谓亮点:在液晶显示器开机状态下有一个像素没有工作一直发亮5 W; y7 L1 i7 Z:y, W0 |& f;1 H) u6 ?!d3 R. B8 w+ l$ j+ u4 y" ~( V5 w0 q1 w*.所谓暗点:在液晶显示器开机状态下看不到,在TFT-LCD专业测试软件下可以看到;:k/ p' n' e4 @. }*.所谓有斑:在TFT-LCD专业测试软件下会有明显的表现,一般使用中9 C3 O A- H0 D7r% K) z9 f, i2 G9 U$ y# Y7 Y$ o4 G不太明显;*. 所谓亮线:液晶显示器的色彩是由横竖扫描线扫描产生的,每根线大约是0."03 毫米宽,它们的哪一一根线出现短路和开路现象那就是亮线。
9 q0 i5 L T( P7 q4 Q7 R _1 E:L5 L7 G1 v4 W9 J液晶显示屏在生产过程中都会有亮线和亮点出现,这种现象是无法避免的,但除此之外其他性能均符合行业标准" i) G9 C, k4 t5 P8 c& o2 J; p+ f; B# [0 o! l7 d 以下是各品牌液晶屏原厂等级从高到低依次排列次序参考:AUO:Z-P-N-V-B;$ t* H P3 J$ }1 [5 c9 N+ |% c5 aCMO:A -A-(A-)-B;4 b' }+ Y% c+ l+ F, vCPT:A-Y-D-Z;6 i7 p6 N" w$ E4 nLPL:A-A1-B;; m* T) Y2 n' P+ qSVA:E-G-N-B;9 E3 p7 y* p5 P* {2 y. t6 s HSD :A-N1-Y0-V2;Innolux:E-G1-G3-G5-G7-GE;$ x) ?1 e3 U) c$ q SamSung:A-Bin1-Bin3-Bin5-Bin7-Bin10-B;。
液晶显示技术分类
液晶显示技术分类一、液晶显示技术概述液晶显示技术,是一种利用液晶材料电光特性的技术,通过电场的作用改变液晶分子的排列状态,从而实现图像显示。
这种技术在现代电子产品中应用广泛,如手机、电视、电脑等。
液晶显示技术具有低功耗、体积小、重量轻、视角大等优点,已成为当今显示技术的主流。
二、液晶显示技术分类1.TN液晶显示技术TN液晶显示技术是最早的液晶显示技术,其特点是视角较小,响应速度较慢。
TN液晶显示器在扭曲向列型态时,其分子会以一种较快的速度进行90度扭曲,以向着更亮或更暗的方向移动。
但由于其响应速度较慢,现已逐渐被淘汰。
2. STN液晶显示技术STN液晶显示技术是一种改进型的TN液晶显示技术,其特点是视角大、亮度高、响应速度快。
STN液晶显示器由于采用了双层薄膜晶体管,使得其亮度、响应速度和视角都得到了显著提高。
但是,STN液晶显示器的颜色效果比较单一,通常为黄绿模式。
3. LCD液晶显示技术LCD液晶显示技术是目前最常用的液晶显示技术,其特点是图像质量高、稳定性好、寿命长。
LCD液晶显示器利用了液晶和光线在穿过偏振片时的相互作用,通过改变偏振片的旋光状态来实现图像的显示。
LCD液晶显示器可以提供高分辨率、高对比度和高亮度的图像,颜色效果也非常丰富。
三、各类液晶显示技术的子类别1.乐观态度和研究方向随着科技的不断发展,液晶显示技术也在不断创新和进步。
目前的研究方向主要包括提高响应速度、扩大视角、提高亮度和色彩效果等方面。
同时,柔性显示、透明显示等新型液晶显示技术的应用也越来越广泛。
2. 面临的挑战虽然液晶显示技术已经取得了很大的进展,但仍存在一些挑战。
例如,如何进一步提高响应速度和色彩效果,如何降低生产成本和提高生产效率等。
同时,随着物联网、智能家居等新型科技领域的快速发展,对于新型液晶显示技术的需求也越来越迫切。
四、显示性能评估与提升方法1.现有评估方法对于液晶显示器的性能评估,通常采用亮度、对比度、响应速度、色彩效果等指标进行评估。
液晶屏分类
数码产品液晶屏分类通常情况下,液晶屏所使用的材质与显示效果是息息相关的,所以从液晶屏的材质上对液晶屏进行分类,可以让大家更加清楚地了解到各种液晶屏的特点。
1.STN液晶屏STN是“Super Teisted Nematic”的缩写,它属于无源被动矩阵式LCD,几乎所有黑白屏手机的液晶屏都是这种材料。
彩色STN液晶屏就是在单色的STN液晶屏基础上加个彩色滤光片,并将单色显示矩阵中的每个像素分成三个子像素,分别通过彩色滤光片显示红、绿、蓝三种颜色,从而实现彩色画面。
由于技术的限制,目前STN液晶屏最高只有65536种色彩,市场上见到的大多数都是4096色的STN产品,所以STN也被称为“伪彩”。
STN技术目前已经发展得相当成熟了,它的最大优点是功耗小,所以相当省电,不过STN 液晶屏的响应时间较长,最快的响应时间一般就是200ms,并且它的响应时间很难提高,在屏幕上容易出现明显的闪烁和水波纹现象。
另外STN液晶屏由于没有背光设计,它的画面边缘往往会出现失真现象,而且由于STN液晶屏的色泽和亮度都不太好,在户外等强光环境下很难看清屏幕。
2.GF液晶屏GF是“Glass Fine Color”的缩写,或许大家对GF液晶屏较为陌生,因为现在市面上采用GF液晶屏数码产品非常少,其实GF属于STN的一种,GF的主要特点是:在保证功耗较小的前提下亮度有所提高,但GF液晶屏有些偏色。
3.TFT液晶屏TFT是“Thin Film Transistor”的缩写,又称为“真彩”,它属于有源矩阵液晶屏,它是由薄膜晶体管组成的屏幕,它的每个液晶像素点都是由薄膜晶体管来驱动,每个像素点后面都有四个相互独立的薄膜晶体管驱动像素点发出彩色光,可显示24bit色深的真彩色。
在分辨率上,TFT液晶屏最大可以达到UXGA(1600×1200)。
TFT的排列方式具有记忆性,所以电流消失后不会马上恢复原状,从而改善了STN液晶屏闪烁和模糊的缺点,有效地提高了液晶屏显示动态画面的效果,在显示静态画面方面的能力也更加突出,TFT液晶屏的龙点是响应时间比效短,并且色彩艳丽,所以它被广泛使用于笔记本电脑和DV、DC上。
液晶屏的等级分类
液晶屏的等级分类
1、A+屏:是指无斑,没有亮点和暗点,显示稳定无抖动,在TFT-LCD专业测试软件下符合上述标注;
2、A屏:是指无斑,亮点和暗点2个以内,显示稳定无抖动,在TFT-LCD专业测试软件下符合上述标注;
3、B屏:业界普遍把超过2个以上亮点的屏称为B屏;
4、C屏:带有亮线的A屏称为c屏
所谓亮点:在液晶显示器开机状态下有一个像素没有工作一直发亮;
所谓暗点:在液晶显示器开机状态下看不到,在TFT-LCD专业测试软件下可以看到,
所谓有斑:在TFT-LCD专业测试软件下会有明显的表现,一般使用中不太明显;
所谓亮线:液晶显示器的色彩是由横竖扫描线扫描产生的,每根线大约0.03毫米宽,他们的那一个根线出现短路和开路现象那就是亮线。
液晶显示屏在生产过程都会有亮线和亮点出现,这种现象是无法避免的,但除此之外其他性能均符台行业标准。
以下是各品牌液晶屏原厂等级从高到低依次排列次序参考
AUO: Z-P-N-V-B;
CMO: A-A-(A-)-B;
CPT:A-Y-D-Z;
LPL:A-A1-B;
SVA:E-G-N-B;
HSD:A-NI-YO-V2;
Innolux:E-G1-G3-G5-G7-GE;
SamSung:A-Bin1-Bin3-Bin5-Bin7-Bin10-B;。
液晶材料的分类及特性研究
液晶材料可以分为:溶致液晶、热致液晶、一些生物分子液晶以及一些聚合物液晶。
溶致液晶是能在溶剂中溶解的液晶,通常为棒状分子。
其性质取决于溶剂的性质。
热致液晶是只在加热时才显现液晶行为的物质,当温度超过其转变温度(又称相变温度)时才会出现液晶相。
这种液晶通常是棒状分子。
转变温度记作T蝉。
普通纤维状的纤维(玻璃纤维、聚酯纤维等)和工程塑料(聚酰亚胺、聚苯硫醚)在低于转变温度时是固态,而高于转变温度时则是液态。
生物分子液晶,如DNA、RNA和蛋白质等,也被归类为溶致液晶。
一些聚合物液晶,例如聚合物溶液,属于热致液晶。
液晶的特性主要包括:
1. 对光的光学性,即对光的散射和吸收。
2. 旋光性,即对偏振光进行旋转。
3. 热性,即物质的温度依赖性。
4. 流动性,即物质的液态和固态的转换速度。
5. 粘滞性,即物质的流动阻力。
液晶材料及应用.
晶格而形成的液晶,就是由于温度变化而出现的液晶相。
目前显示方面的都为此种液晶。 B. 溶致液晶: 把某些有机物放在一定的溶剂中,由于溶剂 破坏结晶晶格而形成的液晶,就是由于溶液浓度发生变 化而出现的液晶相,最常见的有肥皂水等。
2)热致液晶根据液晶分子的排列不同,可以分为近晶相、向列
相、胆甾相三类。
液晶材料及应用
产品开发部 应妙德 2009-4-24
目录
一.液晶的定义和基本分类 二.液晶材料性能参数 三.手性剂介绍 四.液晶的选择 五.液晶调配和使用注意事项
一、液晶的定义和基本分类
1.1 、液晶的由来 液晶的由来: 1888年由奥地利的植物学家莱尼茨尔 在测定物质溶点时发现某些物质溶化后会经过一个不透 明呈白色浑浊并且发出多彩而美丽的光泽,继续加热会
液晶态物质既具有液体的流动性和连续性,又保留了晶
体的有序排列性, 物理上呈现各向异性。 液晶这种中间态的物质外观是流动性的混浊液体,同时
又有光、电学各向异性和双折射特性。
1.3 、液晶基本分类 1)根据成分和出现液晶相的物理条件,可分为:热致液晶
和溶致液晶两大类 。
A. 热致液晶: 把某些有机物加热溶解,由于加热破坏结晶
ε
△
ε 的频 率 依 赖性
25
20
90%
15
10
50%
5
0
8.5
-5 6 8
11.5
10 12 14
ln(f)
2.5 、阈值电压和陡度
V10,Vth-------阈值电压(透过率变化10%时的电压) V90 -----------饱和电压(透过率变化90%时的电压) 陡度(Steepness)=(V90/V10-1)*100%
液晶显示器TN、TFT、STN和TFD详解!
以前发表过关于液晶显示器的文章,但感觉不如下面的内容清晰,所以现在给大家参考参考!液晶显示器的分类。
常见的液晶显示器分为TN-LCD(Twisted Nematic-LCD,扭曲向列LCD)、STN-LCD(Super TN-LCD,超扭曲向列LCD)、DSTN-LCD(Double layer STN-LCD,双层超扭曲向列LCD)和TFT-LCD(Thin Film Transistor-LCD,薄膜晶体管LCD)四种。
其中TN-LCD、STN-LCD和DSYN-LCD三种基本的显示原理都相同,只是液晶分子的扭曲角度不同而已。
STN-LCD的液晶分子扭曲角度为180度甚至270度。
而TFT-LCD则采用与TN系列LCD截然不同的显示方式。
TN由于无法显示细腻的字符,通常应用在电子表、计算器上。
作为显示器TN系列的液晶显示器已基本被淘汰,STN由于扭转角度较大,字符显示比TN细腻,同时也支持基本的彩色显示,多用于液晶电视、摄像机的液晶显示器、掌上游戏机等。
而随后的DSTN和TFT 则被广泛制作成液晶显示设备,DSTN液晶显示屏多用于早期的笔记本电脑,由于支持的彩色数有限,所以也称为伪彩显。
TFT则既应用在笔记本电脑上,又逐步进入主流台式显示器市场。
三、TFT液晶显示器的原理。
TFT液晶显示器与TN系列液晶显示器的原理大不相同,但在构造上和TN液晶仍有相似之处,如玻璃基板、ITO膜、配向膜、偏光板等,它也同样采用两夹层间填充液晶分子的设计,只不过把TN上部夹层的电极改为FET晶体管,而下层改为共同电极。
在光源设计上,TFT的显示采用“背透式”照射方式,即假想的光源路径不是像TN液晶那样的从上至下,而是从下向上,这样的作法是在液晶的背部设置类似日光灯的光管。
光源照射时先通过下偏光板向上透出,它也借助液晶分子来传导光线,由于上下夹层的电极改成FET电极和共通电极。
在FET电极导通时,液晶分子的表现如TN液晶的排列状态一样会发生改变,也通过遮光和透光来达到显示的目的。
液晶材料和液晶显示器的分类
液晶可以分为三类:1、近晶相液晶近晶相液晶分子分层排列,根据层内分子排列的不同,又可细分为近晶相A近晶相B等多种。
层内分子长轴互相平行,而且垂直于层面液晶拼接屏。
分子质心在层内的位置无一定规律。
这种排列称为取向有序,位置无序。
近晶相液晶分子间的侧向相互作用强于层间相互作用,所以分子只能在本层内活动,而各层之间可以相互滑动。
2.、胆甾相液晶胆甾相液晶是一种乳白色粘稠状液体,是最早发现的一种液晶,其分子也是分层排列,逐层叠合。
每层中分子长轴彼此平行,而且与层面平行。
不同层中分子长轴方向不同,分子的长轴方向逐层依次向右或向左旋转过一个角度。
3.、向列相液晶向列相液晶中,分子长轴互相平行,但不分层,而且分子质心位置是无规则的。
液晶显示面板的物理结构分类:(1)扭曲向列型(TN-Twisted Nematic);(2)超扭曲向列型(STN-Super TN);(3)双层超扭曲向列型(DSTN-Dual Scan Tortuosity Nomograph);(4)薄膜晶体管型(TFT-Thin Film Transistor)。
1.TN型采用的是液晶显示器中最基本的显示技术,而之后其它种类的液晶显示器也是以TN型为基础来进行改良。
而且,它的运作原理也较其它技术来的简单。
请参照下方的图片。
图中所表示的是TN型液晶显示器的简易构造图,包括了垂直方向与水平方向的偏光板,具有细纹沟槽的配向膜,液晶材料以及导电的玻璃基板。
广泛应用于入门级和中端的面板,在性能指标上并不出彩,不能表现16.7M色彩,并且可视角度有天然痼疾。
市场上看到的TN面板都是改良型的TN+film,film即补偿膜,用于弥补TN面板可视角度的不足,同时色彩抖动技术的使用也使得原本只能显示26万色的TN面板获得了16.2M的显示能力。
要说TN面板唯一胜过前面两种面板的地方,就是由于他的输出灰阶级数较少,液晶分子偏转速度快,致使它的响应时间容易提高,目前市场上8ms以下液晶产品均采用的是TN面板。
液晶的分类及应用
液晶的分类及应用液晶是一种特殊的光学材料,具有电光效应和液晶效应,广泛应用于各种电子产品中。
根据不同的特性和应用,液晶可以分为主动矩阵液晶和被动矩阵液晶。
下面将详细介绍液晶的分类及应用。
一、主动矩阵液晶(Active Matrix Liquid Crystal)主动矩阵液晶是液晶显示技术的主流,它通过像素点阵列和TFT(薄膜晶体管)构成,可以实现高分辨率、高对比度和快速响应的显示效果。
主动矩阵液晶广泛应用于平板电视、电脑显示器、智能手机、平板电脑等电子产品中。
1. 平板电视:主动矩阵液晶是平板电视的核心技术,它能够显示高清、清晰的图像,并具有较高的刷新率和色彩饱和度,使得观看体验更加逼真。
2. 电脑显示器:主动矩阵液晶广泛应用于电脑显示器,提供高清晰度、高对比度和广泛的可视角度,满足用户对于工作和娱乐的需求。
3. 智能手机和平板电脑:主动矩阵液晶是现代手机和平板电脑的关键显示技术,它具有低功耗、高亮度和快速响应的特点,使得设备更加便携、易于操控和观看。
4. 军事航天和医疗设备:主动矩阵液晶的高分辨率和可视性使得它成为军事和医疗设备的理想选择,如飞机仪表盘、手术器械显示屏等。
二、被动矩阵液晶(Passive Matrix Liquid Crystal)被动矩阵液晶是液晶显示技术中的传统形式,它由若干行和列的导电线构成,通过变化的电场控制液晶的状态。
被动矩阵液晶的制造成本较低,但其显示速度和分辨率较低,只适用于低端产品和特定的应用领域。
1. 数码相框:被动矩阵液晶广泛应用于数码相框,展示照片和视频的画面。
虽然分辨率较低,但被动矩阵液晶具有低功耗、成本较低的优势。
2. 便携式游戏机:由于被动矩阵液晶是一种经济实惠的显示技术,因此常用于便携式游戏机中,如掌上游戏机。
3. 低端手表和小型数码设备:被动矩阵液晶适用于制造成本要求较低的小型数码产品,如智能手表、计算器等。
综上所述,液晶根据不同的特性和应用可以分为主动矩阵液晶和被动矩阵液晶。
液晶分子分类
液晶分子分类
液晶是一种特殊的物质状态,具有介于固体和液体之间的特性。
液晶分子是构成液晶的基本单位,根据其结构和性质的不同,可以分
为几个不同的类别。
第一类是非极性液晶分子。
这类液晶分子具有相对较简单的结构,其中最常见的是直链液晶。
这些分子由长链烷基基团和极性末端团组成,具有良好的流动性和取向性。
非极性液晶分子在较高温度下呈现
液晶相,但在低温下则形成固态晶体。
第二类是极性液晶分子。
极性液晶分子与非极性液晶分子相比,
具有更加复杂的结构和性质。
极性液晶分子通常含有极性基团,如氮、氧、硅等。
这些分子倾向于在液晶相中形成有序排列,从而形成高度
取向性的液晶材料。
极性液晶分子可根据其结构特征进一步细分为垂
直型、平行型和傾斜型液晶分子。
第三类是手性液晶分子。
手性液晶分子具有手性结构,即具有非
对称性。
手性液晶分子可以形成手性取向的液晶相,具有光学活性。
手性液晶分子可以进一步分为垂直相和斜相两个子类。
手性液晶分子可以用于制备液晶显示器、光学器件和化学传感器
等应用。
极性液晶分子在液晶显示器中具有重要应用,其高度取向性
和光学活性可以实现高分辨率和彩色的图像显示。
非极性液晶分子在
染料和涂料等领域也有广泛的应用。
总结而言,液晶分子根据其结构和性质的不同,可以分为非极性、极性和手性液晶分子。
这些液晶分子在不同的应用领域具有重要的意义,对液晶显示技术、光学器件和化学传感器等领域的发展具有指导
意义。
液晶培训资料教材课程
通过多次结晶过程,去除液晶材料中的杂质。
3
色谱法
利用色谱柱对液晶分子进行分离和纯化。
液晶取向技术
摩擦取向
通过摩擦基底表面,使液晶分子沿特定方向排列。
光控取向
利用偏振光或紫外光照射,使液晶分子发生光化 学反应而排列。
电场取向
在电场作用下,液晶分子发生转动而排列成特定 方向。
液晶灌注与封装工艺
基于市场和技术发展趋 势,预测未来液晶显示 产业的发展方向和市场 需求变化。
政策法规对产业影响解读
政策法规概述
介绍与液晶显示产业相关的政策法规,如环保政策、贸易 政策和产业政策等。
对产业的影响
分析政策法规对液晶显示产业的影响,包括对企业经营、 技术创新和市场格局等方面的影响。
应对策略建议
针对政策法规的影响,提出企业应对策略和建议,如加强 技术研发、优化产品结构和拓展国际市场等。
液晶分类
根据分子排列方式和性质不同, 液晶可分为热致液晶和溶致液晶 两大类。
液晶物理性质
光学性质
液晶具有双折射现象, 即光在液晶中传播时, 会发生折射率的改变。
电学性质
磁学性质
力学性质
液晶分子在外加电场作用下 ,会发生排列方式的改变,
从而影响其光学性质。
某些液晶分子具有磁性, 可在磁场作用下发生排
产业链环节。
03
竞争格局
分析全球液晶显示产业的竞争格局,包括领先企业、市场份额和技术实
力等方面的对比。
主要厂商及产品竞争力分析
主要厂商介绍
列举全球液晶显示产业的主要厂商,如三星、LG、京东方 等,并简要介绍其发展历程和业务范围。
产品竞争力分析
从技术水平、产品质量、价格和市场占有率等方面,对比 分析各厂商的产品竞争力。
液晶种类及特点
液晶种类及特点
液晶是一种物质状态,既有固体的有序性,又有液体的流动性。
根据分子结构和性质,液晶可以分为多种类型,每种类型具有其独特的特点,适用于不同的显示技术和应用场景。
具体如下:
1、联苯液晶:这类液晶材料通常具有良好的化学稳定性和较宽的工作温度范围。
它们经常用于制作具有高可靠性和长寿命的液晶显示器件。
2、苯基环己烷液晶:这种类型的液晶材料以其高速响应时间而闻名,适合用于需要快速刷新的屏幕,如游戏显示器和智能手机屏幕。
3、酯类液晶:酯类液晶材料在光学性能和电光效应方面表现出优异的特点。
它们被广泛用于各种液晶显示器中,包括便携式设备和家用电子产品的显示屏。
除了上述基于分子结构的分类外,液晶显示器(LCD)技术也可以根据显示面板的类型进行分类:
1、TN(扭曲向列型):这是最常见的LCD类型,特点是成本低,响应时间快,但视角相对较窄,色彩还原度一般。
2、VA(垂直对齐型):提供更宽的视角和更好的对比度,但响应时间不如TN屏快。
3、IPS(平面内切换型):拥有最宽广的视角和优秀的颜色表现,适合图像密集型的应用程序,如图形设计和照片编辑。
液晶单体材料
液晶单体材料液晶单体材料液晶是一种介于固体和液体之间的物质,具有自组织、可调控性和响应性等特点。
液晶单体是构成液晶的基本单元,其结构和性质对于液晶的性能具有重要影响。
本文将从液晶单体的分类、结构、性质以及应用等方面进行详细介绍。
一、液晶单体的分类1. 根据分子结构可分为:(1)杯状型:如四苯基甲烷(TPM)、四苯基乙烷(TPE)等;(2)棒状型:如4-正辛氧基苯基-4'-氟联苯(8OCB)、4-正辛氧基苯基-4'-氢联苯(8OHB)等;(3)锥形型:如4-(n-十二烷氧基)苯酰胺-4'-氢联苯(12OHB)、4-(n-十二烷氧基)苯酰胺-4'-氟联苯(12OCB)等。
2. 根据相变温度可分为:(1)低温相变型:相变温度在室温以下,如N-(p-methoxybenzylidene)-p-butylaniline(MBBA)、4'-n-正辛基-4-cyanobiphenyl(8CB)等;(2)高温相变型:相变温度在室温以上,如4-cyano-4'-alkoxybiphenyl(nOCB)、4-cyano-4'-alkylbiphenyl(nCB)等;(3)室温相变型:相变温度在室温左右,如N-(p-methylbenzylidene)-p-butylaniline(MBBA)、N-(p-ethoxybenzylidene)-p-butylaniline(EBBA)等。
二、液晶单体的结构液晶单体的分子结构决定了其液晶性质。
一般来说,液晶单体分子由两个基团组成,一个是长链基团,另一个是偏极基团。
长链基团通常是苯环或联苯环,偏极基团则包括氨基、酰胺基、醚氧基、亚甲基等。
液晶单体的结构可以通过核磁共振波谱和红外光谱等手段进行表征。
三、液晶单体的性质1. 光学性质液晶单体具有光学各向异性,在不同方向上具有不同的折射率和吸收率。
当液晶单体处于平行排列时,其折射率最小;而当液晶单体处于垂直排列时,其折射率最大。
液晶的结构类型
液晶的结构类型液晶是一种特殊的物质,具有介于固体和液体之间的性质。
它在电场或磁场作用下会发生形变,因此被广泛应用于液晶显示器、电子手表、计算机屏幕等领域。
液晶的结构类型决定了其物理特性和应用范围,本文将对液晶的结构类型进行详细介绍。
一、什么是液晶液晶是由长链分子、环状分子或柔性分子组成的有机化合物,其特点是具有高度有序排列的分子结构。
这种高度有序排列使得液晶具有各种独特的光学和电学性质。
二、液晶的分类根据分子排列方式不同,可以将液晶分为以下几类:1.向列型液晶向列型液晶(nematic liquid crystal)是最简单也是最常见的一种液晶结构类型。
在向列型液晶中,长链分子沿着一个方向排列,并且沿着这个方向具有相同的取向。
这种排列方式使得向列型液晶在没有外界作用力时呈现出透明无色状态,但当加入电场或磁场时,分子会发生形变,导致液晶呈现出不同的颜色和形态。
2.扭曲向列型液晶扭曲向列型液晶(twisted nematic liquid crystal)是一种在向列型液晶基础上进行了扭曲的结构类型。
在扭曲向列型液晶中,长链分子沿着一个方向排列,并且沿着这个方向具有相同的取向,但是在垂直于这个方向的平面上,分子会逐渐旋转。
这种排列方式使得扭曲向列型液晶具有更高的对比度和更快的响应速度。
3.螺旋桨型液晶螺旋桨型液晶(chiral nematic liquid crystal)是一种具有螺旋结构的液晶类型。
在螺旋桨型液晶中,长链分子沿着一个方向排列,并且沿着这个方向具有相同的取向,但是在垂直于这个方向的平面上,分子会呈现出螺旋状排列。
这种排列方式使得螺旋桨型液晶具有非常独特的光学性质,在光学传感器、光学滤波器等领域有广泛应用。
4.列型液晶列型液晶(smectic liquid crystal)是一种分子排列方式非常有序的液晶类型。
在列型液晶中,长链分子沿着一个方向排列,并且沿着这个方向具有相同的取向,但是在垂直于这个方向的平面上,分子会呈现出层状排列。
液晶分子的分类
液晶分子的分类液晶分子是构成液晶物质的基本单元,它们的结构和性质对液晶的性能有着重要的影响。
根据液晶分子的结构和排列方式,可以将液晶分子分为不同的类型。
下面将详细介绍几种常见的液晶分子分类。
1. 直链型液晶分子直链型液晶分子是指分子主链呈直线状的液晶分子。
这类分子通常具有较长的主链,主链上可能还连接有一些侧链。
直链型液晶分子的特点是具有较高的熔点和较好的热稳定性,适用于高温液晶材料的制备。
此外,直链型液晶分子还可以通过调节主链和侧链的长度、取代基的种类和位置等来调控其液晶相的稳定性和性质。
2. 环状液晶分子环状液晶分子是指分子主链形成环状结构的液晶分子。
这类分子通常具有较小的分子体积和较低的熔点,适用于低温液晶材料的制备。
环状液晶分子的特点是分子之间的相互作用较强,形成较稳定的液晶相。
此外,环状液晶分子还可以通过调节环状结构的大小、取代基的种类和位置等来调控其液晶相的稳定性和性质。
3. 侧链型液晶分子侧链型液晶分子是指分子主链上连接有较长侧链的液晶分子。
这类分子通常具有较大的分子体积和较低的熔点,适用于低温液晶材料的制备。
侧链型液晶分子的特点是侧链的长度、取代基的种类和位置等对其液晶相的稳定性和性质有着重要的影响。
通过调节侧链的结构和性质,可以实现液晶分子的定向排列、相互作用的调控,从而调节液晶材料的光学、电学和热学性能。
4. 双亲性液晶分子双亲性液晶分子是指同时具有亲水基团和疏水基团的液晶分子。
这类分子通常具有较大的分子体积和较低的熔点,适用于低温液晶材料的制备。
双亲性液晶分子的特点是可以在水相和有机相中形成液晶相,具有良好的溶解性和界面活性。
双亲性液晶分子在生物医药、涂料、纳米材料等领域具有广泛的应用前景。
5. 扭曲型液晶分子扭曲型液晶分子是指分子主链呈弯曲或扭曲状的液晶分子。
这类分子通常具有较大的分子体积和较低的熔点,适用于低温液晶材料的制备。
扭曲型液晶分子的特点是分子之间的相互作用较强,形成较稳定的液晶相。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液晶(LC: liquid crystal)的分类我们一般都认为物质像水一样都有三态,分别是固态液态跟气态。
其实物质的三态是针对水而言,对于不同的物质,可能有其它不同的状态存在。
以我们要谈到的液晶态而言,它是介于固体跟液体之间的一种状态,其实这种状态仅是材料的一种相变化的过程(请见图1),只要材料具有上述的过程,即在固态及液态间有此一状态存在,物理学家便称之为液态晶体。
图1:物态的相变化这种液态晶体的首次发现,距今已经度过一百多个年头了。
在公元1888年,被奥地利的植物学家Friedrich Reinitzer 所发现,其在观察从植物中分离精制出的安息香酸胆固醇(cholesterylbenzoate)的融解行为时发现,此化合物加热至145.5度℃时,固体会熔化,呈现一种介于固相和液相间之半熔融流动白浊状液体。
这种状况会一直维持温度升高到178.5度℃,才形成清澈的等方性液态(isotropic liquid)。
隔年,在1889年,研究相转移及热力学平衡的德国物理学家O.Lehmann,对此化合物作更详细的分析。
他在偏光显微镜下发现,此黏稠之半流动性白浊液体化合物,具有异方性结晶所特有的双折射率(birefringence)之光学性质,即光学异相性(optical anisotropic)。
故将这种似晶体的液体命名为液晶。
此后,科学家将此一新发现的性质,称为物质的第四态-液晶(liquid crystal)。
它在某一特定温度的范围内,会具有同时液体及固体的特性。
一般以水而言,固体中的晶格因为加热,开始吸热而破坏晶格,当温度超过熔点时便会溶解变成液体。
而热致型液晶则不一样(请见图2),当其固态受热后,并不会直接变成液态,会先溶解形成液晶态。
当您持续加热时,才会再溶解成液态(等方性液态)。
这就是所谓二次溶解的现象。
图2:各种热致型液晶分布的温度范围而液晶态顾名思义,它会有固态的晶格,及液态的流动性。
当液态晶体刚发现时,因为种类很多,所以不同研究领域的人对液晶会有不同的分类方法。
在1922年由G. Friedel利用偏光显微镜所观察到的结果,将液晶大致分为Nematic Smectic及Cholesteric三类,但是如果是依分子排列的有序性来分(请见图3),则可以分成四类。
图3:液晶的种类液晶(LC, liquid crystal)的分类- 1.层状液晶1.层状液晶(Sematic):其结构是由液晶棒状分子聚集一起,形成一层一层的结构。
其每一层的分子的长轴方向相互平行。
且此长轴的方向对于每一层平面是垂直或有一倾斜角。
由于其结构非常近似于晶体,所以又称做近晶相。
其秩序参数S(order parameter)趋近于1。
在层状型液晶层与层间的键结会因为温度而断裂,所以层与层间较易滑动。
但是每一层内的分子键结较强,所以不易被打断。
因此就单层来看,其排列不仅有序且黏性较大。
如果我们利用巨观的现象来描述液晶的物理特性的话,我们可以把一群区域性液晶分子的平均指向定为指向矢(director),这就是这一群区域性的液晶分子平均方向。
而以层状液晶来说,由于其液晶分子会形成层状的结构,因此又可就其指向矢的不同再分类出不同的层状液晶。
当其液晶分子的长轴都是垂直站立的话,就称之为"SematicA phase"。
如果液晶分子的长轴站立方向有某种的倾斜(tilt)角度,就称之为"SematicC phase"。
以A,C等字母来命名,这是依照发现的先后顺序来称呼,依此类推,应该会存在有一个"SematicB phase"才是。
不过后来发觉B phase其实是C phase的一种变形而已,原因是C phase如果带chiral的结构就是B phase。
也就是说Chiral sematic C phase就是SematicB phase(请见图4)。
而其结构中的一层一层液晶分子,除了每一层的液晶分子都具有倾斜角度之外,一层一层之间的倾斜角度还会形成像螺旋的结构。
图4:Chiral sematic C phase液晶(LC, liquid crystal)的分类- 2.线状液晶2.线状液晶(Nematic) :Nematic这个字是希腊字, 代表的意思与英文的thread是一样的. 主要是因为用肉眼观察这种液晶时, 看起来会有像丝线一般的图样. 这种液晶分子在空间上具有一维的规则性排列, 所有棒状液晶分子长轴会选择某一特定方向(也就是指向矢)作为主轴并相互平行排列. 而且不像层状液晶一样具有分层结构. 与层列型液晶比较其排列比较无秩序, 也就是其秩序参数S较层状型液晶较小. 另外其黏度较小, 所以较易流动(它的流动性主要来自对于分子长轴方向较易自由运动)。
线状液晶就是现在的TFT液晶显示器常用的TN(Twisted nematic)型液晶.液晶(LC, liquid crystal)的分类- 3.胆固醇液晶3.胆固醇液晶(cholesteric) :这个名字的来源,是因为它们大部份是由胆固醇的衍生物所生成的. 但有些没有胆固醇结构的液晶也会具有此液晶相. 这种液晶如图5所示, 如果把它的一层一层分开来看, 会很像线状液晶. 但是在Z轴方向来看, 会发现它的指向矢会随着一层一层的不同而像螺旋状一样分布, 而当其指向矢旋转360度所需的分子层厚度就称为pitch. 正因为它每一层跟线状液晶很像,所以也叫做Chiral nematicphase. 以胆固醇液晶而言, 与指向矢的垂直方向分布的液晶分子, 由于其指向矢的不同, 就会有不同的光学或是电学的差异, 也因此造就了不同的特性.图5:胆固醇液晶(Cholesteric)液晶(LC, liquid crystal)的分类- 4.碟状液晶4. 碟状液晶(disk) :也称为柱状液晶, 以一个个的液晶来说, 它是长的像碟状(disk), 但是其排列就像是柱状(discoid).如果我们是依分子量的高低来分的话则可以分成高分子液晶(polymer liquid crystal, 聚合许多液晶分子而成)与低分子液晶两种. 就此种分类来说TFT液晶显示器是属于低分子液晶的应用. 倘若就液晶态的形成原因, 则可以分成因为温度形成液晶态的热致型液晶(thermotropic),与因为浓度而形成液晶态的溶致型液晶(lyotropic). 以之前所提过的分类来说, 层状液晶与线状液晶一般多为热致型的液晶, 是随着温度变化而形成液晶态. 而对于溶致型的液晶, 需要考虑分子溶于溶剂中的情形. 当浓度很低时, 分子便杂乱的分布于溶剂中而形成等方性的溶液, 不过当浓度升高大于某一临界浓度时, 由于分子已没有足够的空间来形成杂乱的分布, 部份分子开始聚集形成较规则的排列, 以减少空间的阻碍. 因此形成异方性(anisotropic)之溶液. 所以溶致型液晶的产生就是液晶分子在适当溶剂中达到某一临界浓度时,便会形成液晶态. 溶致型的液晶有一个最好的例子,就是肥皂. 当肥皂泡在水中并不会立刻便成液态, 而其在水中泡久了之后, 所形成的乳白状物质, 就是它的液晶态.液晶的光电特性由于液晶分子的结构为异方性(Anisotropic),所以所引起的光电效应就会因为方向不同而有所差异,简单的说也就是液晶分子在介电系数及折射系数等等光电特性都具有异方性,因而我们可以利用这些性质来改变入射光的强度, 以便形成灰阶, 来应用于显示器组件上. 以下我们要讨论的, 是液晶属于光学跟电学相关的特性, 大约有以下几项:1.介电系数ε(dielectric permittivity) :我们可以将介电系数分开成两个方向的分量, 分别是ε//(与指向矢平行的分量)与ε⊥(与指向矢垂直的分量). 当ε//>ε⊥便称之为介电系数异方性为正型的液晶, 可以用在平行配位. 而ε//<ε⊥则称之为介电系数异方性为负型的液晶, 只可用在垂直配位才能有所需要的光电效应. 当有外加电场时,液晶分子会因介电系数异方性为正或是负值,来决定液晶分子的转向是平行或是垂直于电场, 来决定光的穿透与否。
现在TFT LCD上常用的TN 型液晶大多是属于介电系数正型的液晶. 当介电系数异方性Δε(=ε//-ε⊥)越大的时候, 则液晶的临界电压(threshold voltage)就会越小. 这样一来液晶便可以在较低的电压操作.2.折射系数(refractive index) :由于液晶分子大多由棒状或是碟状分子所形成,因此跟分子长轴平行或垂直方向上的物理特性会有一些差异,所以液晶分子也被称做是异方性晶体。
与介电系数一样, 折射系数也依照跟指向矢垂直与平行的方向, 分成两个方向的向量. 分别为n //与n⊥.此外对单光轴(uniaxial)的晶体来说, 原本就有两个不同折射系数的定义. 一个为no,它是指对于ordinary ray的折射系数, 所以才简写成no .而ordinary ray是指其光波的电场分量是垂直于光轴的称之. 另一个则是ne,它是指对于extraordinary ray的折射系数, 而extraordinary ray是指其光波的电场分量是平行于光轴的. 同时也定义了双折射率(birefrigence)Δn = ne-no为上述的两个折射率的差值.依照上面所述, 对层状液晶、线状液晶及胆固醇液晶而言,由于其液晶分子的长的像棒状, 所以其指向矢的方向与分子长轴平行. 再参照单光轴晶体的折射系数定义, 它会有两个折射率,分别为垂直于液晶长轴方向n⊥(=ne)及平行液晶长轴方向n //(=no)两种,所以当光入射液晶时,便会受到两个折射率的影响,造成在垂直液晶长轴与平行液晶长轴方向上的光速会有所不同。
若光的行进方向与分子长轴平行时的速度, 小于垂直于分子长轴方向的速度时,这意味着平行分子长轴方向的折射率大于垂直方向的折射率(因为折射率与光速成反比),也就是ne-no> 0 .所以双折射率Δn > 0 ,我们把它称做是光学正型的液晶, 而层状液晶与线状液晶几乎都是属于光学正型的液晶. 倘使光的行进方向平行于长轴时的速度较快的话,代表平行长轴方向的折射率小于垂直方向的折射率,所以双折射率Δn < 0.我们称它做是光学负型的液晶. 而胆固醇液晶多为光学负型的液晶.3.其它特性:对于液晶的光电特性来说, 除了上述的两个重要特性之外, 还有许多不同的特性. 比如说像弹性常数(elastic constant :κ11, κ22, κ33 ), 它包含了三个主要的常数, 分别是, κ11指的是斜展(splay)的弹性常数, κ22指的是扭曲(twist)的弹性常数, κ33 指的是弯曲(bend)的弹性常数. 另外像黏性系数(viscosity coefficients ,η), 则会影响液晶分子的转动速度与反应时间(response time), 其值越小越好. 但是此特性受温度的影响最大. 另外还有磁化率(magnetic susceptibility), 也因为液晶的异方性关系, 分成χ//与χ⊥.而磁化率异方性则定义成Δχ= χ//-χ⊥. 此外还有电导系数(conductivity)等等光电特性.图6:液晶的光学特性图6:液晶的光学特性图7:偏光板(polarizer)的光透过图图7:偏光板(polarizer)的光透过图图8:偏光板(polarizer)的工作原理图8:偏光板(polarizer)的工作原理TFT LCD (Thin film transistor liquid crystal display)TFT LCD的中文翻译名称就叫做薄膜晶体管液晶显示器, 我们从一开始就提到液晶显示器需要电压控制来产生灰阶. 而利用薄膜晶体管来产生电压,以控制液晶转向的显示器, 就叫做TFT LCD. 从图9的切面结构图来看, 在上下两层玻璃间, 夹着液晶, 便会形成平行板电容器, 我们称之为CLC(capacitor of liquid crystal). 它的大小约为0.1pF, 但是实际应用上, 这个电容并无法将电压保持到下一次再更新画面数据的时候. 也就是说当TFT对这个电容充好电时, 它并无法将电压保持住, 直到下一次TFT再对此点充电的时候.(以一般60Hz的画面更新频率, 需要保持约16ms的时间.) 这样一来, 电压有了变化, 所显示的灰阶就会不正确. 因此一般在面板的设计上, 会再加一个储存电容CS(storage capacitor 大约为0.5pF), 以便让充好电的电压能保持到下一次更新画面的时候. 不过正确的来说, 长在玻璃上的TFT本身,只是一个使用晶体管制作的开关. 它主要的工作是决定LCD source driver上的电压是不是要充到这个点来. 至于这个点要充到多高的电压, 以便显示出怎样的灰阶. 都是由外面的LCD source driver来决定的.图9:TFT LCD的切面结构图彩色滤光片(color filter, CF)如果你有机会, 拿着放大镜, 靠近液晶显示器的话. 你会发现如图10中所显示的样子.图10:放大镜下的液晶我们知道红色, 蓝色以及绿色, 是所谓的三原色. 也就是说利用这三种颜色, 便可以混合出各种不同的颜色. 很多平面显示器就是利用这个原理来显示出色彩. 我们把RGB三种颜色, 分成独立的三个点, 各自拥有不同的灰阶变化, 然后把邻近的三个RGB显示的点, 当作一个显示的基本单位, 也就是pixel. 那这一个pixel,就可以拥有不同的色彩变化了. 然后对于一个需要分辨率为1024*768的显示画面, 我们只要让这个平面显示器的组成有1024*768个pixel, 便可以正确的显示这一个画面. 在图10中,每一个RGB的点之间的黑色部分, 就叫做Black matrix. 我们回过头来看图9就可以发现, black matrix主要是用来遮住不打算透光的部分. 比如像是一些ITO的走线, 或是Cr/Al的走线, 或者是TFT的部分. 这也就是为什么我们在图10中, 每一个RGB的亮点看起来, 并不是矩形, 在其左上角也有一块被black matrix遮住的部分, 这一块黑色缺角的部份就是TFT的所在位置.图11:常见的彩色滤光片的排列图11是常见的彩色滤光片的排列方式. 条状排列(stripe)最常使用于OA的产品, 也就是我们常见的笔记型计算机,或是桌上型计算机等等. 为什么这种应用要用条状排列的方式呢? 原因是现在的软件, 多半都是窗口化的接口. 也就是说, 我们所看到的屏幕内容,就是一大堆大小不等的方框所组成的. 而条状排列,恰好可以使这些方框边缘, 看起来更笔直, 而不会有一条直线, 看起来会有毛边或是锯齿状的感觉. 但是如果是应用在AV产品上, 就不一样了. 因为电视信号多半是人物, 人物的线条不是笔直的, 其轮廓大部分是不规则的曲线. 因此一开始, 使用于AV产品都是使用马赛克排列(mosaic,或是称为对角形排列). 不过最近的AV产品, 多已改进到使用三角形排列(triangle,或是称为delta排列). 除了上述的排列方式之外, 还有一种排列, 叫做正方形排列. 它跟前面几个不一样的地方在于, 它并不是以三个点来当作一个pixel,而是以四个点来当作一个pixel. 而四个点组合起来刚好形成一个正方形.背光板(back light, BL)在一般的CRT屏幕, 是利用高速的电子枪发射出电子, 打击在银光幕上的荧光粉, 藉以产生亮光, 来显示出画面. 然而液晶显示器本身, 仅能控制光线通过的亮度, 本身并无发光的功能. 因此,液晶显示器就必须加上一个背光板, 来提供一个高亮度,而且亮度分布均匀的光源. 我们在图9中可以看到, 组成背光板的主要零件有灯管(冷阴极管), 反射板, 导光板, prism sheet, 扩散板等等. 灯管是主要的发光零件, 藉由导光板, 将光线分布到各处. 而反射板则将光线限制住都只往TFT LCD的方向前进. 最后藉由prism sheet及扩散板的帮忙, 将光线均匀的分布到各个区域去, 提供给TFT LCD一个明亮的光源. 而TFT LCD则藉由电压控制液晶的转动, 控制通过光线的亮度, 藉以形成不同的灰阶.框胶(Sealant)及spacer在图9中另外还有框胶与spacer两种结构成分. 其中框胶的用途,就是要让液晶面板中的上下两层玻璃, 能够紧密黏住, 并且提供面板中的液晶分子与外界的阻隔,所以框胶正如其名,是围绕于面板四周, 将液晶分子框限于面板之内. 而spacer主要是提供上下两层玻璃的支撑, 它必须均匀的分布在玻璃基板上, 不然一但分布不均造成部分spacer聚集在一起, 反而会阻碍光线通过, 也无法维持上下两片玻璃的适当间隙(gap), 会成电场分布不均的现象, 进而影响液晶的灰阶表现.图9:TFT LCD的切面结构图开口率(Aperture ratio)液晶显示器中有一个很重要的规格就是亮度, 而决定亮度最重要的因素就是开口率. 开口率是什么呢? 简单的来说就是光线能透过的有效区域比例. 我们来看看图12, 图12的左边是一个液晶显示器从正上方或是正下方看过去的结构图. 当光线经由背光板发射出来时, 并不是所有的光线都能穿过面板, 像是给LCD source驱动芯片及gate驱动芯片用的信号走线, 以及TFT本身, 还有储存电压用的储存电容等等. 这些地方除了不完全透光外, 也由于经过这些地方的光线并不受到电压的控制,而无法显示正确的灰阶, 所以都需利用black matrix加以遮蔽, 以免干扰到其它透光区域的正确亮度. 所以有效的透光区域, 就只剩下如同图12右边所显示的区域而已. 这一块有效的透光区域, 与全部面积的比例就称之为开口率.当光线从背光板发射出来, 会依序穿过偏光板, 玻璃, 液晶, 彩色滤光片等等. 假设各个零件的穿透率如以下所示:偏光板: 50%(因为其只准许单方向的极化光波通过)玻璃:95%(需要计算上下两片)液晶:95%开口率:50%(有效透光区域只有一半)彩色滤光片:27%(假设材质本身的穿透率为80%,但由于滤光片本身涂有色彩, 只能容许该色彩的光波通过. 以RGB 三原色来说, 只能容许三种其中一种通过. 所以仅剩下三分之一的亮度. 所以总共只能通过80%*33%=27%.)以上述的穿透率来计算, 从背光板出发的光线只会剩下6%, 实在是少的可怜. 这也是为什么在TFT LCD的设计中, 要尽量提高开口率的原因. 只要提高开口率, 便可以增加亮度, 而同时背光板的亮度也不用那么高, 可以节省耗电及花费.图12:开口率的计算。