PLC液压桥梁同步顶升技术解读

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

桥梁同步顶升技术

摘要:桥梁整体顶升技术的关键在于保证其上部结构的整体性同步顶升,本文主要介绍桥梁同步顶升技术。

关键词:PLC系统、同步顶升、监测传感、称重

随着海河两岸改造工程的启动,位于市内跨海河的桥梁的改造开始提上议事日程,这些桥梁具有结构完整,功能完好等特点,部分桥梁更是见证了天津市的历史,但是这些桥梁由于建造时间比较长,已经显得不能满足城市进一步发展的需要,特别是通航高度的不足更是如此。而采用同步顶升桥梁的上部结构是解决通航净空不足的一个很好的方法。一方面这种方法能够不损坏现有桥梁结构,另一方面在顶升过程中能尽可能的减少中断交通的时间。

桥梁顶升的重点在于保持桥梁上部结构的完整性,要保证桥梁上部结构完整,方法就是保持桥梁上部结构在现有状况下同步顶升。这就要求我们采用先进的技术方法----PLC控制液压千斤顶同步顶升系统。

一、PLC系统工作原理

PLC压控制液压同步系统由液系统(油泵、油缸等)、监测传感器、计算机控制系统等几个部分组成。

(一)液压系统

液压系统由计算机控制,可以全自动完成同步位移,实现力和位移的控制、位移误差的控制、行程的控制、负载压力的控制;误操作自动保护、过程显示、故障报警、紧急停止功能;油缸液控单向阀可防止任何形式的系统及管路失压,从而保证负载有效支撑等多种功能。该系统已在上海音乐厅整体顶升与平移工程中成功运用。

A2F型高压柱塞泵,单向阀、蓄能器、压力传感器及电磁溢流阀组成电子卸荷节能供油回路,稳定地为系统提供30.00-31.5 MPa的油压(尖峰压力值35Mpa)。

在每一个顶升缸的下腔接有减压阀,根据实测到的各顶荷重压力,将减压阀的零背压出口压力调至比实际荷重压力低2.0MPa;即减压阀的零背压出口压力=实测到的各顶荷重压力-2.0MPa。减压阀共有三个油口;进油口、出油口、回油口,如果减压阀的调定压力为P0,而回油口的压力为Pc,则出油口的压力为Po+Pc,从图一可知回油口压力受比例伺服阀控制,当比例伺服阀的出口压力Pc 为2.0 Mpa时,顶升缸的总推力与顶升物的自重平衡,当Pc>2.0 MPa时顶升物将起升,而当Pc<2.0 MPa时顶升物将回落。于是由若干个减压阀、一个比例伺服阀、一个压力传感器组成的力闭环回路与若干个顶升缸一起,组成了一个比例受控组件,这个组件与外部的位移传感器构成位置闭环系统,依靠位置闭环系统可实现精确的位置控制。

为了避免Pc变化范围过大,造成举升过快,比例伺服阀的进油口油压降至

8.0-10.0 MPa,它由减压阀将主回路的油压降压后供给。为了提高比例伺服阀的闭环稳定性在比例伺服阀的供油回路接有蓄能器。

在每一个顶升缸的下腔,另接有液控单向阀和测压接头,只要电磁阀一断电,液控单向阀立即关闭,确保顶升缸不至带载下滑。通过测压接头可向顶升缸内少量补油。

正常工作时,电磁阀的电磁铁A始终通电。电磁阀的中位,用于顶升油缸完成一步顶升时进行支垫,当电磁阀处于中位时,顶升缸上下腔油压均为零,关闭液控单向阀后,可以拆装油管。当电磁铁B通电时,顶升缸处于空载快速回缩状态。为避免举升或回缩时速度过快,在电磁阀的进油口接有调速阀,它可控制顶升缸的最大运动速度。

除单向阀、压力传感器、压力表、测压接头装在千斤顶以外,其他的元件包括控制电器组装在一个液压泵站内,液压站与千斤顶之间用3根软管相连接,分别是进油管、回油管、控制油管,这样就组成了一个完整的液压系统。

比例阀、压力传感器和电子放大器组成压力闭环,根据每个顶升缸承载的不同,调定减压阀的压力,若干个千斤顶组成一个顶升组,托举起桥梁上部结构,但是如果仅有力平衡,则桥梁的举升位置是不稳定的,为了稳定位置,在每组中间安装监测传感系统进行位置反馈,组成位置闭环,一旦测量位置与指令位置存在偏差,便会产生误差信号,该信号经放大后叠加到指令信号上,使该组总的举升力增加或减小,于是各油缸的位置发生变化,直至位置误差消除为止。由于各组顶升系统的位置信号由同一个数字积分器给出,因此可保持各个顶升组同步顶升,只要改变数字积分器的时间常数,便可方便地改变顶升或回落的速度。

技术指标

液压系统工作压力 31.5Mpa

顶升缸推力 200T

顶升缸行程 140mm

偏载能力 5。

最大顶升速度 10mm/min

组内顶升缸控制形压力闭环控制、控制精度≤5%

组与组间控制形式位置闭环控制、同步精度±5.0 mm

(二)监测传感系统

监测传感系统在整个顶升平移系统中非常重要,是我们获得数据信息的主要来源。它的灵敏度将直接影响到顶升的同步精度。监测传感系统主要是由光栅尺、信号放大器、传感线路及计算机组成,其中最重要的就是光栅尺,它的分辨率能达到0.005 mm。

光栅尺的主要作用是监测顶升的相对位移,然后将测得的位移数据通过信号放大器的处理,把经过放大后的信号通过传感线路传送到计算机,由计算机进一

步处理所收集到的数据信息。光栅尺的布设直接影响到监测的准确性,合理的布设光栅尺能客观地反映出整体的位移姿态。所以在划分控制区域时,要考虑到光栅尺的架设的位置是否能客观地反映该控制区域的整体位移。当然,光栅尺架设时应保证它的垂直度,尽量减少人为造成误差,保证光栅尺的精度。(三)计算机系统

核心控制装置是西门子S7-200系列的CPUS7-224,采用按钮方式操作,并通过触摸屏显示各个顶升油缸的受力参数,还可连接打印机,记录顶升过程数据。系统安装了UPS电源,即使意外断电,也可确保数据和工程的安全。

计算机系统是整个PLC系统的核心,他把由监测传感系统所收集到的数据进行分析处理,并把处理后的数据反馈给液压系统,由液压系统调节各千斤顶油压,从而保证整个顶升系统同步性。

二、顶升系统控制原理

(一)控制区域划分

首先我们对桥梁结构作初步的受力分析,通过对桥梁结构的分析计算桥梁各支座的支座反力,初步估算出桥梁的重量,根据各支座的支座反力来确定千斤顶的分布,以及选用相应级别的千斤顶,并确定光栅尺的布设。例如狮子林桥抬升工程:

首先分析桥梁的结构形式老桥为简支悬臂中间挂孔形式,在只有4个光栅尺和4台泵站,只能组成4个闭环回路的情况下,如果采用每墩布设一个光栅尺和由一台泵站控制的闭环回路,容易产生横向倾覆.这就要求我们对桥梁的荷载分布进行分析。根据老桥的设计施工图纸的分析,初步确定出各支座的荷载分布(见下表)

狮子林桥老桥(1974年)支座反力表

支座位置一期恒载 (kN) 二期恒载(kN) 活载合计(kN)

相关文档
最新文档