大学物理刚体力学基础习题思考题及答案
《大学物理》刚体力学练习题及答案解析
《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。
然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。
刚体力学基础 习题 解答
衡水学院 理工科专业 《大学物理B 》 刚体力学基础 习题命题教师:郑永春 试题审核人:张郡亮一、填空题(每空1分)1、三个质量均为m 的质点,位于边长为a 的等边三角形的三个顶点上。
此系统对通过三角形中心并垂直于三角形平面的轴的转动惯量J 0=__ ma 2 _,对通过三角形中心且平行于其一边的轴的转动惯量为J A =__12ma 2_,对通过三角形中心和一个顶点的轴的转动惯量为J B =__21ma 2 。
2、两个质量分布均匀的圆盘A 和B 的密度分别为ρA 和ρ B (ρA >ρB ),且两圆盘的总质量和厚度均相同。
设两圆盘对通过盘心且垂直于盘面的轴的转动惯量分别为J A 和J B ,则有J A < J B 。
3、 一作定轴转动的物体,对转轴的转动惯量J =3.0 kg ·m 2,角速度ω0=6.0 rad/s .现对物体加一恒定的制动力矩M =-12 N ·m ,当物体的角速度减慢到ω=2.0 rad/s 时,物体已转过了角度∆θ =__4.0rad4、两个滑冰运动员的质量各为70 kg ,均以6.5 m/s 的速率沿相反的方向滑行,滑行路线间的垂直距离为10 m ,当彼此交错时,各抓住一10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量L =__2275 kg·m 2·s 1 _;它们各自收拢绳索,到绳长为5 m 时,各自的速率υ =__13 m·s 1_。
5、有一质量均匀的细棒,可绕垂直于棒的一端的水平轴转动。
如将此棒放在水平位置,然后任其下落,则在下落过程中的角速度大小将 变大 ,角加速度大小将 变小 。
二、单项选择题(每小题2分)( A )1、有两个力作用在一个有固定转轴的刚体上,下列说法正确的是:A.这两个力都平行于轴作用时,它们对轴的合力矩一定是零;B.这两个力都垂直于轴作用时,它们对轴的合力矩一定是零;C.当这两个力的合力为零时,它们对轴的合力矩也一定是零;D.当这两个力对轴的合力矩为零时,它们的合力也一定是零。
大学物理练习册习题及答案4
习题及参考答案第3章 刚体力学参考答案思考题3-1刚体角动量守恒的充分而必要的条件是 (A )刚体不受外力矩的作用。
(B )刚体所受合外力矩为零。
(C)刚体所受的合外力和合外力矩均为零。
(D)刚体的转动惯量和角速度均保持不变。
答:(B )。
3-2如图所示,A 、B 为两个相同的绕着轻 绳的定滑轮。
A 滑轮挂一质量为M 的物体, B 滑轮受拉力F ,而且F =Mg 。
设A 、B 两 滑轮的角加速度分别为βA 和βB ,不计滑轮 轴的摩擦,则有(A )βA = βB (B )βA > βB(C )βA < βB (D )开始时βA = βB ,以后βA < βB 答:(C )。
3-3关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关。
(B)取决于刚体的质量和质量的空间分布,与轴的位置无关。
(C )取决于刚体的质量、质量的空间分布和轴的位置。
(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无 答:(C )。
3-4一水平圆盘可绕通过其中心的固定铅直轴转动,盘上站着一个人,初始时整个系统处于静止状态,当此人在盘上随意走动时,若忽略轴的摩擦,则此系统(A)动量守恒; (B)机械能守恒; (C)对转轴的角动量守恒;(D)动量、机械能和角动量都守恒; (E)动量、机械能和角动量都不守恒。
答:(C )。
3-5光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点o 且垂直于杆的竖直光滑固定轴自由转动,其转动惯量为213mL,起初杆静止,桌面上有两个质量均为m 的小球,各自在 垂直于杆的方向上,正对着杆的一端,以相同速率v 相向 运动,如图所示,当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为AMF思考题3-2图v思考题3-5图(A)23L v (B)45L v (C)67L v (D)89L v (E)127L v答:(C )。
大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第3章 刚体力学
第三章 刚体力学3-1 一通风机的转动部分以初角速度ω0绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。
若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转? 解:(1)由题可知:阻力矩ωC M -=,又因为转动定理 dtd JJ M ωβ== dtd JC ωω=-∴ dt JC d t ⎰⎰-=∴00ωωωω t JC-=0lnωω t JCe-=0ωω当021ωω=时,2ln CJt =。
(2)角位移⎰=tdt 0ωθ⎰-=2ln 00C J t JC dt eωCJ 021ω=,所以,此时间内转过的圈数为CJ n πωπθ420==。
3-2 质量面密度为σ的均匀矩形板,试证其对与板面垂直的,通过几何中心的轴线的转动惯量为)(1222b a ab J +σ=。
其中a ,b 为矩形板的长,宽。
证明一:如图,在板上取一质元dxdy dm σ=,对与板面垂直的、通过几何中心的轴线的转动惯量为 dm r dJ ⎰=2dxdy y x a a b b σ⎰⎰--+=222222)()(1222b a ab +=σ证明二:如图,在板上取一细棒bdx dm σ=,对通过细棒中心与棒垂直的转动轴的转动惯量为2121b dm ⋅,根据平行轴定理,对与板面垂直的、通过几何中心的轴线的转动惯量为22)2(121x adm b dm dJ -+⋅=dx x ab dx b 23)2(121-+=σσ 33121121ba a b dJ J σσ+==∴⎰)(1222b a ab +=σ3-3 如图3-28所示,一轻绳跨过两个质量为m 、半径为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 2和m 的重物,绳与滑轮间无相对滑动,滑轮轴光滑,求重物的加速度和各段绳中的张力。
解:受力分析如图ma T mg 222=- (1) ma mg T =-1 (2) βJ r T T =-)(2 (3) βJ r T T =-)(1 (4)βr a =,221mr J =(5) 联立求出g a 41=, mg T 811=,mg T 451=,mg T 232=3-4 如图3-29所示,一均匀细杆长为L ,质量为m ,平放在摩擦系数为μ的水平桌面上,设开始时杆以角速度0ω绕过细杆中心的竖直轴转动,试求:(1)作用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。
第03章(刚体力学)习题答案
轮子的角速度由w =0 增大到w =10 rad/s,求摩擦力矩 Mr. [5.0 N·m]
解:摩擦力矩与外力矩均为恒力矩,所以刚体作匀角加速转动。其角加速度为:
b = w - w0 = 10 - 0 = 1rad / s2
Dt
10
合外力矩为: M合 = Jb = 15 ´1 = 15(N × m) = M - M r Þ M r = 5.0(N × m)
所以机械能也不守恒。
3-3 一圆盘绕过盘心且与盘面垂直的光滑固定轴 O 以角速度w按图示方向转动.若如图
所示的情况那样,将两个大小相等方向相反但不在同一条直线的力
F 沿盘面同时作用到圆盘上,则圆盘的角速度w 如何变化?
w
答:左边力的力矩比右边的大,所以刚体会被加速,其角加速
F
F
度增大。 3-4 刚体角动量守恒的充分而必要的条件是什么? 答:刚体所受的合外力矩为零。
解:此过程角动量守恒
Jw0
=
1 3
Jw
Þ
w
=
3w0
3-10 一轴承光滑的定滑轮,质量为 M=2.00 kg,半径为 R=0.100 m,
一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为 m=5.00
kg 的物体,如图所示.已知定滑轮的转动惯量为 J= 1 MR 2 ,其初角速 2
w 0
R M
度w0 =10.0 rad/s,方向垂直纸面向里.求:
(1) 定滑轮的角加速度的大小和方向; (2) 定滑轮的角速度变化到w=0 时,物体上升的高度;
m
习题 310 图
(3) 当物体回到原来位置时,定滑轮的角速度的大小和方向.
[ 81.7 rad/s2 ,垂直纸面向外; 6.12×10-2 m; w = 10.0 rad/s,垂直纸面向外]
大学物理(第四版)课后习题及答案 刚体
题4.1:一汽车发动机曲轴的转速在s 12内由13min r 102.1-⋅⨯均匀的增加到13min r 107.2-⋅⨯。
(1)求曲轴转动的角加速度;(2)在此时间内,曲轴转了多少转?题4.1解:(1)由于角速度ω =2πn (n 为单位时间内的转数),根据角加速度的定义td d ωα=,在匀变速转动中角加速度为()200s rad 1.132-⋅=-=-=tn n t πωωα(2)发动机曲轴转过的角度为()t n n t t t 0020221+=+=+=πωωαωθ在12 s 内曲轴转过的圈数为 圈390220=+==t n n N πθ 题4.2:某种电动机启动后转速随时间变化的关系为)1(0τωωte --=,式中10s rad 0.9-⋅=ω,s 0.2=τ。
求:(1)s 0.6=t 时的转速;(2)角加速度随时间变化的规律;(3)启动后s 0.6内转过的圈数。
题4.2解:(1)根据题意中转速随时间的变化关系,将t = 6.0 s 代入,即得100s 6.895.01--==⎪⎪⎭⎫⎝⎛-=ωωωτte(2)角加速度随时间变化的规律为220s 5.4d d ---===tte e t ττωωα(3)t = 6.0 s 时转过的角度为 rad 9.36d 1d 60060=⎪⎪⎭⎫⎝⎛-==⎰⎰-s tst e t τωωθ 则t = 6.0 s 时电动机转过的圈数圈87.52==πθN 题4.3:如图所示,一通风机的转动部分以初角速度0ω绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。
若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转?题4.3解:(1)通风机叶片所受的阻力矩为ωM C -=,由转动定律αM J =,可得叶片的角加速度为JC t ωωα-==d d (1) 根据初始条件对式(1)积分,有⎰⎰-=ωωω00d d d t t J C t由于C 和J 均为常量,得t JC e-=0ωω当角速度由0021ωω→时,转动所需的时间为2ln CJt = (2)根据初始条件对式(2)积分,有⎰⎰-=tt JC t e00d d ωθθ即CJ 20ωθ=在时间t 内所转过的圈数为 CJ N πωπθ420==题4.4:一燃气轮机在试车时,燃气作用在涡轮上的力矩为m N 1003.23⋅⨯,涡轮的转动惯量为2m kg 0.25⋅。
大学物理第三章刚体力学基础习题答案培训课件
1 )
t2
下次上课内容:
§5-1 简谐运动 §5-2 旋转矢量表示法 §5-3 单摆和复摆 §5-4 振动的能量
角动量定理
t2 Mdt
t1
J2
J1
角动量守恒 M 0, J 恒矢量
力的功
W
r F
drr
力矩的功 W Md
动 能 1 mv2
2
动能定理
W
1 2
mv22
1 2
mv12
转动动能 1 J 2
2
转动动能定理W
1 2
J22
1 2
J12
习 题 课 (三)
3-1 一轻绳绕在有水平轴的定滑轮上,绳下端挂一
的角加速度 =
。从开始制动到 =1/3 0所经过
的时间t = 。
M k2 J
k 2 k02
J 9J
k2 J d
dt
t k dt
0J
1 3
0
d
0
2
t 2J
k0
3-6 一长为L的轻质细杆,两端分别固定有质量为
m 和2m 的小球,此系统在铅直平面内可绕过中心点
O且与杆垂直的水平固定轴转动。开始时杆与水平成
方向上,正对着杆的一端以相同的速率v相向运动,
如图所示。当两小球同时与杆的两端发生完全非弹性
碰撞后,就与杆粘在一起转动,则这一系统碰撞后的
转动角速度为
m
(A) 2v
4v (B)
v
3L
✓(C)
6v 7L
5L (D) 8v
9L
(E) 12v v m
o
7L
2mvL 1 mL2 2mL2
3
6v
7L
大学物理刚体力学中难题及解析
B
5
解 设杆的质量为m, 机械能守恒:
l 1 1 2 2 2 mg sin 0 sin m(vCx vCy ) I C 2 2 2 1 2 重力势能转化成质心平动动能和刚体转动动能 I C ml y A 12 l 运动学条件: vCx sin 2 C 质心速度沿 l 水平竖直方 v cos Cy 向分解 2 mg B x
16
正确解法:隔离,分别用角动量定理。 o
R1 f r t J11 J10 J2 R2 2 O2 对轮 2 : f r fr 1 R 1 R2 fr t J2 2 0 J1 O1
对轮1:
稳定条件:
1 R1 2 R 2
联立可得稳定后的角速度
J1 R J 1 R1 R2 1 0 , 2 0 2 2 2 2 J 1 R2 J 2 R1 J1 R2 J 2 R1 17
N maCt , f maCr
2 2
B
杆无滑动地绕圆环外侧运动,要求
f aCr (l 3r )r 4l ,因 r l 则 。 N f , a 2 R N Ct 24 lR
【9】质量为M,长度为 2l 的梯子上端靠在光 滑墙面上,下端放在粗糙地面上,地面与梯子 的静摩擦系数为 μ,一质量为 m 的人攀登到距 下端 l0 的位置,求梯子不滑动的条件。
0
f
R
vC 0
摩擦力的作用: 对质心的运动 vC
对绕质心的转动
当 vC 0, 而 0 时,乒乓球返回!
3
(2)前进一段后会自动返回的条件:
0
R
•质心运动定理: f maC
vc 0
最新大学物理(第四版)课后习题及答案 刚体
题4.1:一汽车发动机曲轴的转速在s 12内由13min r 102.1-⋅⨯均匀的增加到13min r 107.2-⋅⨯。
(1)求曲轴转动的角加速度;(2)在此时间内,曲轴转了多少转?题4.1解:(1)由于角速度ω =2πn (n 为单位时间内的转数),根据角加速度的定义td d ωα=,在匀变速转动中角加速度为 ()200s rad 1.132-⋅=-=-=tn n t πωωα(2)发动机曲轴转过的角度为 ()t n n t t t 0020221+=+=+=πωωαωθ在12 s 内曲轴转过的圈数为圈390220=+==t n n N πθ 题4.2:某种电动机启动后转速随时间变化的关系为)1(0τωωte --=,式中10s rad 0.9-⋅=ω,s 0.2=τ。
求:(1)s 0.6=t 时的转速;(2)角加速度随时间变化的规律;(3)启动后s 0.6内转过的圈数。
题4.2解:(1)根据题意中转速随时间的变化关系,将t = 6.0 s 代入,即得100s 6.895.01--==⎪⎪⎭⎫⎝⎛-=ωωωτte(2)角加速度随时间变化的规律为220s 5.4d d ---===tte e t ττωωα(3)t = 6.0 s 时转过的角度为 rad 9.36d 1d 60060=⎪⎪⎭⎫⎝⎛-==⎰⎰-s tst e t τωωθ 则t = 6.0 s 时电动机转过的圈数圈87.52==πθN 题4.3:如图所示,一通风机的转动部分以初角速度0ω绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。
若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转?题4.3解:(1)通风机叶片所受的阻力矩为ωM C -=,由转动定律αM J =,可得叶片的角加速度为 JC t ωωα-==d d (1) 根据初始条件对式(1)积分,有⎰⎰-=ωωω00d d d t t J C t由于C 和J 均为常量,得t JC e-=0ωω当角速度由0021ωω→时,转动所需的时间为2ln CJt = (2)根据初始条件对式(2)积分,有⎰⎰-=tt JC t e00d d ωθθ即 CJ 20ωθ=在时间t 内所转过的圈数为CJ N πωπθ420==题4.4:一燃气轮机在试车时,燃气作用在涡轮上的力矩为m N 1003.23⋅⨯,涡轮的转动惯量为2m kg 0.25⋅。
大学物理刚体力学基础习题思考题与答案
习题55-1.如图,一轻绳跨过两个质量为m、半径为r的均匀圆盘状定滑轮,绳的两端分别挂着质量为2m和m的重物,绳与滑轮间无相对滑动,滑轮轴光滑,两个定2滑轮的转动惯量均为m r/2,将由两个定滑轮以及质量为2m和m的重物组成的系统从静止释放,求重物的加速度和两滑轮之间绳内的张力。
解:受力分析如图,可建立方程:2mgT22ma┄①T1┄②mgmaT(TT)rJ┄③2(TT)1rJ┄④a,r2Jmr┄⑤/2 1联立,解得:ag411,Tmg8。
5-2.如图所示,一均匀细杆长为l,质量为m,平放在摩擦系数为的水平桌面上,设开始时杆以角速度0绕过中心O且垂直与桌面的轴转动,试求:(1)作用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。
解:(1)设杆的线密度为:ml,在杆上取一小质元dmdx,有微元摩擦力:dfdmggdx,微元摩擦力矩:dMgxdx,考虑对称性,有摩擦力矩:l1M2gxdxmgl;24(2)根据转动定律MJJ ddt,有:tMdtJd,112mgltml,∴0 412 t30lg。
或利用:MtJJ,考虑到0,12 Jml,12有:0t3 l g 。
5-3.如图所示,一个质量为m的物体与绕在定滑轮上的绳子相联,绳子的质量可以忽略,它与定滑轮之间无滑动。
假设定滑轮质量为M、半径为2R,其转动惯量为M R/2,试求该物体由静止开始下落的过程中,下落速度与时间的关系。
解:受力分析如图,可建立方程:mgTma┄①TR┄②JaR,12 JmR┄③22mgMmg联立,解得:aT,,M2m M2m考虑到a dvdt,∴vt2mgdvdt00M2m,有:v2m gtM2m。
5-4.轻绳绕过一定滑轮,滑轮轴光滑,滑轮的质量为M/4,均匀分布在其边缘上,绳子A端有一质量为M的人抓住了绳端,而在绳的另一端B系了一质量为M/4的重物,如图。
已知滑轮对O2轴的转动惯量J/4,设人从静止开始以相对绳匀速向上爬MR时,绳与滑轮间无相对滑动,求B端重物上升的加速度?解一:分别对人、滑轮与重物列出动力学方程Mg T1人MaAMMT2ga物B44T1RTRJ滑轮22由约束方程:aaRJ,解上述方程组A和MR/4B得到g a. 2解二:选人、滑轮与重物为系统,设u为人相对绳的速度,v为重du物上升的速度,注意到u 为匀速,0dt,系统对轴的角动量为:1M32LMvRM(uv)R(R)MvRMu 442R(B 物体)(人)(A 物体)而力矩为: M13 MgRMgRMgR , 44根据角动量定理dL3d3 M 有:MgR(MvRMuR),∴dt4dt2 g a 。
大学物理2-1第四章(刚体力学)习题答案
习 题 四4-1 一飞轮的半径为2m ,用一条一端系有重物的绳子绕在飞轮上,飞轮可绕水平轴转动,飞轮与绳子无相对滑动。
当重物下落时可使飞轮旋转起来。
若重物下落的距离由方程2at x =给出,其中2s m 0.2=a 。
试求飞轮在t 时刻的角速度和角加速度。
[解] 设重物的加速度为t a ,t 时刻飞轮的角速度和角加速度分别为ω和β,则a txa 2d d 22t ==因为飞轮与绳子之间无相对滑动,所以 βR a =t则 2t rad/s 0.220.222=⨯===R a R a β 由题意知 t =0时刻飞轮的角速度00=ω 所以 rad 0.20t t t ==+=ββωω4-2 一飞轮从静止开始加速,在6s 内其角速度均匀地增加到200minrad,然后以这个速度匀速旋转一段时间,再予以制动,其角速度均匀减小。
又过了5s 后,飞轮停止转动。
若该飞轮总共转了100转,求共运转了多少时间 [解] 分三个阶段进行分析10 加速阶段。
由题意知 111t βω= 和 11212θβω= 得22111211t ωβωθ==20 匀速旋转阶段。
212t ωθ= 3制动阶段。
331t βω= 33212θβω= 22313213t ωβωθ== 由题意知 100321=++θθθ 联立得到πωωω210022312111⨯=++t t t所以 s 1836020025602002660200210022=⨯⨯⨯-⨯⨯-⨯=ππππt 因此转动的总时间 s 19418356321=++=++=t t t t4-3 历史上用旋转齿轮法测量光速的原理如下:用一束光通过匀速旋转的齿轮边缘的齿孔A ,到达远处的镜面反射后又回到齿轮上。
设齿轮的半径为5cm ,边缘上的齿孔数为500个,齿轮的转速,使反射光恰好通过与A 相邻的齿孔B 。
(1)若测得这时齿轮的角速度为600s r ,齿轮到反射镜的距离为500 m ,那么测得的光速是多大(2)齿轮边缘上一点的线速度和加速度是多大[解] (1) 齿轮由A 转到B 孔所需要的时间5103126005002⨯=⨯==ππωθt所以光速 s m 10310315002285⨯=⨯⨯==TL c(2) 齿轮边缘上一点的线速度s m 1088.1260010522⨯=⨯⨯⨯==-πωR v齿轮边缘上一点的加速度()25222s m 1010.71052600⨯=⨯⨯⨯==-πωR a4-4 刚体上一点随刚体绕定轴转动。
大学物理课后习题及答案刚体
题:一汽车发动机曲轴的转速在s 12内由13min r 102.1-⋅⨯均匀的增加到13min r 107.2-⋅⨯。
(1)求曲轴转动的角加速度;(2)在此时间内,曲轴转了多少转题解:(1)由于角速度2n (n 为单位时间内的转数),根据角加速度的定义t d d ωα=,在匀变速转动中角加速度为()200s rad 1.132-⋅=-=-=tn n t πωωα (2)发动机曲轴转过的角度为()t n n t t t 0020221+=+=+=πωωαωθ在12 s 内曲轴转过的圈数为圈390220=+==t n n N πθ 题:某种电动机启动后转速随时间变化的关系为)1(0τωωt e --=,式中10s rad 0.9-⋅=ω,s 0.2=τ。
求:(1)s 0.6=t 时的转速;(2)角加速度随时间变化的规律;(3)启动后s 0.6内转过的圈数。
题解:(1)根据题意中转速随时间的变化关系,将t s 代入,即得100s 6.895.01--==⎪⎪⎭⎫ ⎝⎛-=ωωωτt e(2)角加速度随时间变化的规律为220s 5.4d d ---===tt e e t ττωωα (3)t = s 时转过的角度为rad 9.36d 1d 60060=⎪⎪⎭⎫ ⎝⎛-==⎰⎰-s t s t et τωωθ 则t = s 时电动机转过的圈数圈87.52==πθN 题:如图所示,一通风机的转动部分以初角速度0ω绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。
若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半(2)在此时间内共转过多少转题解:(1)通风机叶片所受的阻力矩为ωM C -=,由转动定律αM J =,可得叶片的角加速度为J C t ωωα-==d d (1)根据初始条件对式(1)积分,有⎰⎰-=ωωω00d d d t t J C t 由于C 和J 均为常量,得t J C e -=0ωω 当角速度由0021ωω→时,转动所需的时间为 2ln CJ t = (2)根据初始条件对式(2)积分,有⎰⎰-=t t J C t e 000d d ωθθ即CJ 20ωθ= 在时间t 内所转过的圈数为CJ N πωπθ420== 题:一燃气轮机在试车时,燃气作用在涡轮上的力矩为m N 1003.23⋅⨯,涡轮的转动惯量为2m kg 0.25⋅。
华理工大学大学物理习题之刚体力学习题详解
华理工大学大学物理习题之-刚体力学习题详解习题三一、选择题1.一根长为l 、质量为M 的匀质棒自由悬挂于通过其上端的光滑水平轴上。
现有一质量为m 的子弹以水平速度v 0射向棒的中心,并以v 0/2的水平速度穿出棒,此后棒的最大偏转角恰为90︒,则v 0的大小为 [ ](A; (B; (C(D )22163M glm 。
答案:A 解:11122,1122J J J J Mg l ωωωω=+⎧⎪⎨=⋅⎪⎩ 22211, 243l ml J m J Ml ⎛⎫=== ⎪⎝⎭0012/2v v l lω==,0021/21/22v v l l ωω===,111121()2J J J Jωωωω-==21122J Mgl ω=,2112J J Mgl J ω⎛⎫⋅= ⎪⎝⎭,22114J Mgl Jω=22202244143v ml l MglMl ⎛⎫ ⎪⎝⎭=⋅,Mgl Mv m =⋅202163,2202163M v glm =,所以 340gl mM v =12.圆柱体以80rad/s 的角速度绕其轴线转动,它对该轴的转动惯量为24kg m ⋅。
在恒力矩作用下,10s 内其角速度降为40rad/s 。
圆柱体损失的动能和所受力矩的大小为 [ ](A )80J ,80N m ⋅; (B )800J ,40N m ⋅;(C )4000J ,32N m ⋅;(D )9600J ,16N m ⋅。
答案:D 解:80=ω,40=ω,10=t ,4J = 221122k E J J ωω-∆=- 2211()4(64001600)9600(J)22kE J ωω∆=-=⨯⨯-= M恒定,匀变速,所以有0tωωα=-,0t ωωα-=,08040416N m 10M J J t ωωα--==⋅=⨯=⋅3.一个转动惯量为J 的圆盘绕一固定轴转动,初角速度为0ω。
设它所受阻力矩与转动角速度成正比M k ω=- (k 为正常数)。
刚体转动思考题参考答案
J2,
m1v1r m2 v2 r 0
(1)若m1 m2,则v1 v2 (2)若m1 m2,则v1 v2 (3)若m1 m2,则v1 v2
4-6 由转动定律可知,刚体运动状态的改变,原因在于力矩,而不是力,因此, 研究刚体转动时,必须研究力矩的作用。 力矩与作用在刚体上的力、转动半径,以及作用力与转动半径之间的夹角有关。 4-9 由两个轮子的质量分布特征可知, J 1 (1)若外力矩相同,则由 M
J ,可知, 1 2 (2)若角加速度相同,则 M 1 M 2 (3)若角动量相同,由 L J 可知, 1 2 4-10 由转动定律 M J 可知,飞轮会受到一个阻力矩的作用,从而获得一个
4-1.不是平动 4-2 有右手螺旋定则可知,地球角速度方向由南极指向北极 4-3 由角动量守恒定律可知,表面向外推出后,转动惯量增大,角速度减小,故 地球自转速度减慢,绕太阳公转时由于距离远大于自身半径,故对公转速度基 本没有影响 4-4 有些情况下能够运动,如杠杆,方向盘等
4-5 由转动定律 M J 可知,力或者力矩与角加速度有关而与角速度无关。
不是平动42有右手螺旋定则可知地球角速度方向由南极指向北极43由角动量守恒定律可知表面向外推出后转动惯量增大角速度减小故地球自转速度减慢绕太阳公转时由于距离远大于自身半径故对公转速度基本没有影响44有些情况下能够运动如杠杆方向盘等45由转动定律可知力或者力矩与角加速度有关而与角速度无关
大学物理《力学》课后思考题题解
大学物理《力学》课后思考题题解(共11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--思考题参考答案1.1 国际单位制中的基本单位是哪些答: m (米)、kg (千克,公斤)、s (秒)、A (安培)、K (开尔文)、mol (摩尔)和cd (坎德拉).中学所学匀变速直线运动公式为2021at t v s +=,各量单位为时间:s (秒),长度:m(米). (1)若改为以h (小时)和km (公里)作为时间和长度的单位,上述公式如何(2)若仅时间单位改为h,如何(3)若仅0v 单位改为km/h,又如何答: (1)因为加速度的单位是m/s 2,所以需将时间t 乘上系数3600化成秒,再与a相乘后单位变成了m,最后再乘上系数10001从而将单位化成km,故2202110003600at t v s ⋅+=(2) 220213600at t v s ⋅+=(3) 202136001000at t v s +=设汽车行驶时所受阻力F 与汽车的横截面S 成正比且和速率v 之平方成正比.若采用国际单位制,试写出F 、S 和2v 的关系式;比例系数的单位如何其物理意义是什么 答: 2kSvF = k 的单位为:()()322222mkg s mm s m kg s mm N=⨯⋅=⨯ 物理意义:汽车行驶时所受的空气阻力与空气的密度成正比.某科研成果得出⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=--1321312910110m m m m m m p α 其中m 、1m 、2m 和P m 表示某些物体的质量,310-、2910-、α和1为纯数即量纲为1.你能否初步根据量纲判断此成果有误否?答: 等式两边的量纲相等,均为1,所以,此成果无误.质点位置矢量方向不变,质点是否一定作直线运动质点沿直线运动,其位置矢量是否一定方向不变答: 位置矢量:由参考点引向质点所在位置的矢量.(1)当位置矢量方向不变时有21t t r k r(t 1、t 2为任意两个时刻,k 为常数),说明质点各个时刻必处于1t r所在方向的直线上,所以质点做直线运动.(2)当质点沿直线运动时,其位置矢量的方向改变与否可分以下三种情况进行讨论.○1若所选的参考点O 在质点运动轨迹的延长线上,那么其位置矢量的方向不变.○2若所选的参考点O 在质点运动轨迹上,那么其位置矢量的方向会发生改变.○3若所选的参考点O 在质点运动所在直线之外,那么其位置矢量的方向会发生改变.O若质点的速度矢量的方向不变仅大小改变,质点作何种运动速度矢量的大小不变而方向改变,作何种运动答:(1)若质点的速度矢量的方向不变仅大小改变,质点将作变速直线运动; (2)若质点的速度矢量的大小不变而方向改变,质点将作匀速率曲线运动(比如匀速圆周运动)“瞬时速度就是很短时间内的平均速度”,这一说法是否正确如何正确表述瞬时速度的定义我们是否能按照瞬时速度的定义通过实验测量瞬时速度答: 不正确. 质点在t 时刻的瞬时速度等于t 至t+△t 时间内平均速度△r /△t当△t →0时的极限.即t rv v t t ∆∆==→∆→∆lim lim 00.按照瞬时速度的定义,瞬时速度不能通过实验测量.试就质点直线运动论证:加速度与速度同符号时,质点作加速运动;加速度与速度反号时作减速运动.是否可能存在这样的直线运动,质点速度逐渐增加但其加速度却逐渐减小?答:(1)设质点做直线运动的初速度0v 的方向为正,由加速度定义dtdva =得⎰⎰=tt v v adt dv t,()00t t a v v t -=-则○1当加速度与初速度同符号时,即0>a ,有()00>-t t a ,所以0v v t>即质点作加速运动;○2当加速度与初速度反号时,即0<a ,有()00<-t t a ,所以0v v t<即质点作减速运动。
大学物理第3章-刚体力学习题解答
第3章 刚体力学习题解答3.13 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。
求t 时刻的角速度和角加速度。
解:23212643ct bt ct bt a dt d dtd -==-+==ωθβω3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转?解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。
显然,汽车前进的速度就是驱动轮边缘的线速度,909.0/2212Rn Rn v ππ==,所以:min/1054.1/1024.93426.014.3210166909.02909.013rev h rev n R v ⨯=⨯===⨯⨯⨯⨯π3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。
解:设圆柱体长为h ,则半径为r ,厚为dr 的薄圆筒的质量dm 为:2..dm h r dr ρπ=对其轴线的转动惯量dI z 为232..z dI r dm h r dr ρπ==212222112..()2r z r I h r r dr m r r ρπ==-⎰ 3.17 如题3-17图所示,一半圆形细杆,半径为 ,质量为 ,求对过细杆二端轴的转动惯量。
解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过轴的转动惯量为12mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端轴的转动惯量为:214AA I mR '=3.18 在质量为M ,半径为R 的匀质圆盘上挖出半径为r 的两个圆孔,圆孔中心在半径R 的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。
大学物理习题参考解答物理习题参考解答刚体基本运动_转动定律_动能定理
选择题_03图示单元四 刚体基本运动 转动动能 1一 选择题01. 一刚体以每分钟60转绕z 轴做匀速转动(ω沿转轴正方向)。
设某时刻刚体上点P 的位置矢量为345r i j k =++,单位210m -,以210/m s -为速度单位,则该时刻P 点的速度为: 【 B 】(A) 94.2125.6157.0v i j k =++;(B) 25.118.8v i j =-+;(C) 25.118.8v i j =--;(D) 31.4v k =。
02. 轮圈半径为R ,其质量M 均匀布在轮缘上,长为R ,质量为m 的均质辐条固定在轮心和轮缘间,辐条共有2N 根。
今若将辐条数减少N 根但保持轮对通过轮心,垂直于轮平面轴的转动惯量保持不变,则轮圈的质量为 【 D 】(A)12N m M +; (B) 6N m M +; (C) 23N m M +; (D) 3Nm M +。
03. 如图所示,一质量为m 的均质杆长为l ,绕铅直轴OO '成θ角转动,其转动惯量为 【 C 】(A)2112ml ;(B) 221sin 4ml θ;(C) 221sin 3ml θ; (D) 213ml 。
04. 关于刚体对轴的转动惯量,下列说法中正确的是 【 C 】 (A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关; (B) 取决于刚体的质量和质量的空间分布,与轴的位置无关; (C) 取决于刚体的质量、质量的空间分布和轴的位置;(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关。
05. 两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若A B ρρ>,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为A J 和B J ,则 【 B 】(A) A B J J >; (B) B A J J >;(C) A B J J =; (D) A J 和B J 哪个大,不能确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理刚体力学基础习题思考题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2习题55-1.如图,一轻绳跨过两个质量为m 、半径为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 2和m 的重物,绳与滑轮间无相对滑动,滑轮轴光滑,两个定滑轮的转动惯量均为2/2mr ,将由两个定滑轮以及质量为m 2和m 的重物组成的系统从静止释放,求重物的加速度和两滑轮之间绳内的张力。
解:受力分析如图,可建立方程:ma T mg 222=-┄① ma mg T =-1┄②2()T T r J β-=┄③βJ r T T =-)(1┄④βr a = ,2/2J mr =┄⑤联立,解得:g a 41=,mg T 811= 。
5-2.如图所示,一均匀细杆长为l ,质量为m ,平放在摩擦系数为μ的水平桌面上,设开始时杆以角速度0ω绕过中心O 且垂直与桌面的轴转动,试求:(1)作用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。
解:(1)设杆的线密度为:lm =λ,在杆上取一小质元dm d x λ=,有微元摩擦力:d f dmg gd x μμλ==,微元摩擦力矩:d M g xd x μλ=,考虑对称性,有摩擦力矩:20124l M g xd x mgl μλμ==⎰; (2)根据转动定律d M J J dtωβ==,有:000t Mdt Jd ωω-=⎰⎰, T32011412mglt m l μω-=-,∴03l t g ωμ=。
或利用:0M t J J ωω-=-,考虑到0ω=,2112J ml =, 有:03l t gωμ=。
5-3.如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子的质量可以忽略,它与定滑轮之间无滑动。
假设定滑轮质量为M 、半径为R ,其转动惯量为2/2MR ,试求该物体由静止开始下落的过程中,下落速度与时间的关系。
解:受力分析如图,可建立方程:m g T ma -=┄①βJ TR =┄②a R β= ,212J mR =┄③ 联立,解得:22mg a M m =+,2Mmg T M m=+, 考虑到dv a dt =,∴0022v t mg dv dt M m =+⎰⎰,有:22mg t v M m=+。
5-4.轻绳绕过一定滑轮,滑轮轴光滑,滑轮的质量为4/M ,均匀分布在其边缘上,绳子A 端有一质量为M 的人抓住了绳端,而在绳的另一端B 系了一质量为4/M 的重物,如图。
已知滑轮对O 轴的转动惯量4/2MR J =,设人从静止开始以相对绳匀速向上爬时,绳与滑轮间无相对滑动,求B 端重物上升的加速度?解一:4分别对人、滑轮与重物列出动力学方程A Ma T Mg =-1人B a M g M T 442=-物 αJ R T R T =-21滑轮由约束方程: αR a a B A ==和4/2MR J =,解上述方程组 得到2g a =. 解二:选人、滑轮与重物为系统,设u 为人相对绳的速度,v 为重 物上升的速度,注意到u 为匀速,0d u dt =,系统对轴的角动量为: 213()()442M L M v R M u v R R M v R M u B A R ω=--+=-()()体人(物物体)而力矩为:13M 44M gR M gR M gR =-+=, 根据角动量定理dt dL M =有:)23(43MuR MvR dt d MgR -=,∴2g a =。
5-5.计算质量为m 半径为R 的均质球体绕其轴线的转动惯量。
解:设球的半径为R ,总重量为m ,体密度334m Rρπ=, 考虑均质球体内一个微元:2sin d m r d rd d ρθθϕ=,5由定义:考虑微元到轴的距离为sin r θ2(sin )J r dm θ=⎰,有:222000(sin )sin R J r r d rd d ππθρθθϕ=⋅⎰⎰⎰520012[(1cos )cos ]5R r d ππρθθ=⋅⨯--⎰225mR =。
5-6.一轻弹簧与一均匀细棒连接,装置如图所示,已知弹簧的劲度系数40/k N m =,当0θ=时弹簧无形变,细棒的质量kg 0.5=m ,求在0θ=的位置上细棒至少应具有多大的角速度ω,才能转动到水平位置?解:以图示下方的三角桩为轴,从00~90θθ==时,考虑机械能守恒,那么:0θ=时的机械能为:22()(2)1123l mg ml ω⋅+(重力势能转动动能), 090θ=时的机械能为:212k x 有:2221112232l mg ml k x ω⋅+=() 根据几何关系:22215.1)5.0(+=+x ,得:128.3-⋅=s rad ω5-7.如图所示,一质量为m 、半径为R 的圆盘,可绕O 轴在铅直面内转动。
若盘自静止下落,略去轴承的摩擦,求:(1)盘到虚线所示的铅直位置时,质心C 和盘缘A 点的速率;(2)在虚线位置轴对圆盘的作用力。
解:(1)设虚线位置的C 点为重力势能的零点,下降过程机械能守恒, 有:221ωJ mgR = ,而2221322J mR mR mR =+=6 ∴R g 34=ω 34Rg R v c ==ω 1623A Rg v R ω== (2)273y F mg mR mg ω=+=(重力)(向心力),方向向上。
5-8.如图所示,长为l 的轻杆,两端各固定质量分别为m 和m 2的小球,杆可绕水平光滑固定轴O 在竖直面内转动,转轴O 距两端分别为l 31和l 32.轻杆原来静止在竖直位置。
今有一质量为m 的小球,以水平速度0v 与杆下端小球m 作对心碰撞,碰后以021v 的速度返回,试求碰撞后轻杆所获得的角速度。
解:根据角动量守恒,有:22002122()2()32333l l mv l m v l m m ωω⋅=-⋅⋅++⋅ 有:22004221()9933l l v l v l ω+=+ ∴032v lω=5-9.一质量均匀分布的圆盘,质量为M ,半径为R ,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为μ),圆盘可绕通过其中心O 的竖直固定光滑轴转动。
开始时,圆盘静止,一质量为m 的子弹以水平速度v 垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求:(1)子弹击中圆盘后,盘所获得的角速度;(2)经过多少时间后,圆盘停止转动。
(圆盘绕通过O 的竖直轴的转7 动惯量为221MR ,忽略子弹重力造成的摩擦阻力矩。
) 解:(1)利用角动量守恒:ωω2221mR MR mvR += 得:2(2)mv m M Rω=+; (2)选微分dm rdrd σθ=,其中:面密度2M Rσπ=, 2022π3R f M M grdm gr rdr M gR R μμμπ===⎰⎰ ∴由f M t J ω⋅∆=⋅∆有:2221()032M gR t M R mR μω⋅∆=+-, 知:()224M m t R Mgωμ+∆= 将()22m M m Rω=+v 代入,即得:32mv t M g μ∆= 。
5-10.有一质量为1m 、长为l 的均匀细棒,静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动。
另有一水平运动的质量为2m 的小滑块,从侧面垂直于棒与棒的另一端A 相碰撞,设碰撞时间极短。
已知小滑块在碰撞前后的速度分别为1v 和2v ,如图所示。
求碰撞后从细棒开始转动到停止转动的过程所需的时间。
(已知棒绕O 点的转动惯量2131l m J =) 解:由碰撞时角动量守恒,考虑到1v 和2v 方向相反,以逆时针为正向,有:22112213m v l m l m v l ω=-,得:lm v v m 1212)(3+=ω8又∵细棒运动起来所受到的摩擦力矩可由积分求得:11012l f m M g xd x m gl l μμ==⎰,利用f d M J dtω-=,有: 210011312t m l d dt m g l ωωμ=-⎰⎰,得:21212()23m v v l t g m g ωμμ+==。
5-11.如图所示,滑轮转动惯量为2m kg 01.0⋅,半径为cm 7;物体的质量为kg 5,用一细绳与劲度系数N/m 200=k 的弹簧相连,若绳与滑轮间无相对滑动,滑轮轴上的摩擦忽略不计。
求:(1)当绳拉直、弹簧无伸长时使物体由静止而下落的最大距离;(2)物体的速度达最大值时的位置及最大速率。
解:(1)设弹簧的形变量为x ,下落最大距离为max x 。
由机械能守恒:2max max 12k x mg x =,有: max 20.49mg x m k==; (2)当物体下落时,由机械能守恒:222111222k x mv J mg x ω++=, 考虑到v R ω=,有:2222111222k x m R J mg x ωω++=, 欲求速度最大值,将上式两边对x 求导,且令0d d xω=,有: 21()22d k x m R J mg d x ωω++⋅=,将0d d xω=代入,有:)(245.0m kmg x ==, ∴当0.245x =m 时物体速度达最大值,有:922max 2121()2mgx kx v J m r-=+,代入数值可算出:max 1.31/v m s = 。
5-12.设电风扇的功率恒定不变为P ,叶片受到的空气阻力矩与叶片旋转的角速度ω成正比,比例系数的k ,并已知叶片转子的总转动惯量为J 。
(1)原来静止的电扇通电后t 秒时刻的角速度;(2)电扇稳定转动时的转速为多大(3)电扇以稳定转速旋转时,断开电源后风叶还能继续转多少角度解:(1)已知f M k ω=-,而动力矩ωP M =, 通电时根据转动定律有:f d M M Jdt ω+= 代入两边积分有: ωωωωd k P J dt t ⎰⎰-=020,可求得:)1(2t J ke k P --=ω; (2)见上式,当t →∞时,电扇稳定转动时的转速:P k ω=稳定 (3)断开电源时,电扇的转速为0P kω=f M 作用,那么: d k J dt ωω-=,考虑到d d dt d ωωωθ=,有:000k d d Jθωθω-=⎰⎰, 得:0J J P k k kθω== 。
5-13.如图所示,物体A 放在粗糙的水平面上,与水平桌面之间的摩擦系数为μ,细绳的一端系住物体A ,另一端缠绕在半径为R 的圆柱形转轮B 上,物体与转轮的质量相同。
开始时,物体与转轮皆静止,细绳松弛,若转轮以0ω绕其转轴转动。
试问:细10 绳刚绷紧的瞬时,物体A 的速度多大?物体A 运动后,细绳的张力多大?解:(1)细绳刚绷紧的瞬时前后,把物体A 和转轮B 、绳看成一个系统,系统对转轴圆柱形中心角动量守恒,A Rmv J J +=ωω0,又R v A ω=,221mR J = 031ωω=⇒ (2)物体A 运动后,由牛顿定律:ma mg T =-μ (1)对转轮B ,由定轴转动定律: βJ TR =-,(2)约束关系:βR a =(3) 可求出:13T mg μ=。