8 基本体的投影及表面交线
工程制图PPT【第3章 基本体的投影及表面交线】
e’
e”
b” b’
[例]完成圆锥被切割后的水平投影和侧面投影。
5’6’ 3 ’4’ 1 ’2 ’
6” 4”
2”
5” 3”
1”
2
4
6
5
1
3
圆球的截交线
投影面平行面与球相交
截交线总是圆
[例] 完成圆球被正垂面切割后的水平投影和侧面投影。
b’
b”
g’h’ c’d ’ e’f ’
a’
h” d”
f”
g” c”
结论1
结论2
相贯线向大圆柱 的轴线方向凸起
两圆柱相交
[例]求两圆柱的相贯
线。
1 ’ 5’ 6’ 3 ’ 2 ’4’
1 ”3” 5”6”
4”
2”
01 分析形状 02 作特殊点
03 作一般点
4
1
3
5
6
2
Ⅳ Ⅲ
Ⅰ Ⅴ
Ⅵ Ⅱ
04 判断可见性 05 平滑连接 06 整理轮廓
两圆柱正交产生相贯线的形式 两外表面相交 外表面与内表面相交 两内表面相交
外表面与内表面相交
1’
3’
2 ’4’
1 ”3”
4”
2”
4
1
3
2
两内表面相交
1’
3’
2 ’4’
1 ”3” 2”
4”
4
1
3
2
求圆柱被穿竖孔和横孔后的相贯线
圆柱与圆锥相交 [例]求圆柱与圆锥正交时相贯线的投影。
3’
4’
5’7’
6’8’
1 ’2’
3“4”
7”8“
5”6“
1”
2”
第三章_基本体及表面交线
二. 圆锥体及其表面的点
s'
s"
最左
最右
m΄
最后
(m˝)
辅助平面法 最前
s
m
②作最能反映形状、特征的图形 ①作三视图中的中心线 ⑤圆锥面的投影 ④顶点的投影 ③在V面、W面上作底面积聚投影
三、 圆球及其表面的点
形成:
圆母线绕直径旋转而成。
构成: 球由曲面所围成。 视图分析: 三个视图分别为三个和圆球的直径相等的 圆,它们分别是圆球三个方向轮廓线的投影。
绘制它们的投影时,由于它们的表面没有明显
的棱线,绘制曲面立体的投影,就是绘制组成
曲面立体的所有曲面或曲面与平面的投影,曲
面的投影是绘制曲面可见与不可见的分界线。
一、圆柱及其表面的点 形成:
圆柱面可看作直线绕与它平行的轴线旋转而成。
构成: 圆柱体由圆柱面、顶面、底面所围成。 视图分析:
圆柱的投影一个是圆,另二个视图是两个全等
辅助平面法
P
2、辅助平面法
例 求圆台与圆球的相贯线
例5 求圆台与圆球的相贯线 。
分析:由于圆锥与 圆球的投影均无积聚性, 相贯线的点不能再用表 面取点法求得,须用辅 助平面的方法求取。 思路:用一个水平 辅助平面切割物体,与 圆锥相交为圆,与球相 交也为圆,两圆的交点 即为相贯线上的点。
2、辅助平面法 例 求圆台与圆球的相贯线 。 作图步骤: (1) 求特殊点:点I、II是 1’ 相贯线的最左和最右点, 也是最高和最低点,点III、 3’(4’) 5’(6’) 2’ IV是最前和最后点。 (2) 求一般点:相贯线V、 VI两点; 4 6 (3) 依次光滑连接相贯线 2 1 上各点; (4) 连线并判断可见性, 5 3 最后完成轮廓线的投影。
经典课件:基本体的投影及表面交线
主视俯视长相等且对正 主视左视高相等且平齐 俯视左视宽相等且对应
.
宽 高
宽
三等关系
长对正 高平齐 宽相等
3
3.三视图之间的方位对应关系
上
上
左
右后 前
下
下
后
左
右
前
• 主视图反映:上、下 、左、右 • 俯视图反映:前、后 、左、右 • 左视图反映:上、下 、前、后
.
4
基本体的形成及其三视图
常见的基本几何体
s●
k(n)
n● s
k
Байду номын сангаас
SO
●
A O1 ●s
●(n) k
如过何锥在顶圆作锥面 一圆上条的作素半直线径线。??
.
9
3.圆球
⑴ 圆球的形成
圆母线以它的直 径为轴旋转而成。
⑵ 圆球的三视图
k
⑶个 圆和,面轮三圆它可廓个球 们见线视的 分性的图直 别的投分径是判影别相圆为等球断与三的三曲 ⑷个方圆向球轮面廓上线取的投点影。
⑵ 圆圆锥锥体面是的由三直视线图SA绕与 ⑶它成在轮相。图廓交示的线位轴素置线,线O俯的O视1投旋图影转为而与一 圆 角为形。曲S母称,另面线为三两。的锥角个圆可顶形视锥见,的图面直性底为上线边等的过S为边判锥A圆三称顶断 ⑷锥的底圆任面一锥的直面投线上影称取,为两点圆腰锥分面别的
为 轮素★廓圆线辅素锥。助线面直的不线投同法影方。向的两条 ★辅助圆法
平面体的截切
一、平面截切的基本形式
截交线的性质:
•截交线是一个由直线组成的封闭的平面多边形。 •截交线形状取决于平面体的形状及截平面对平面体 的截切位置。 • 截交线的每条边是截平面与棱面的交线。
第3章 基本体的投影及表面交线
机械制图与AutoCAD基础课程配套课件
1
第3章 基本体的投影及表面交线
3.1基本体的投影
一、平面立体的投影及其表面取点
平面立体由若干个平面多边形所围成的。因此,绘制平面立体的 投影,就是绘制它的所有多边形表面的投影,也就是绘制多边形各个 边和各个顶点的投 反映底面实形的投影,根据投影 规律画两底的其他投影,最后再 根据投影规律画侧棱的各个投影 (注意区分可见性)。如果某个 投影的图形对称,则应该画出对 称中心线 。
a' c'(d')
b'
a"
d"
c"
b"
d
b
a
c
(a)求特殊点
g'(h')
h"
g"
h g
(c)求一般点
e'(f')
f"
e"
f
e
(b)求最右点
a' e'(f')
c'(d') g'(h') b'
f"
d" h"
a" e"
c" g" b"
df h
b
a
g
ce
(d)光滑连接
四、相贯线的特殊情况 1.两轴线平行共底的圆柱相交,其相贯线是两条平行于轴线的直线,
2. 辅助平面法
辅助平面法就是利用三面共点的原理求相贯线上的一 系列的点,即假想用一个辅助平面截切两相贯回转体 ,得两条截交线,两截交线的交点,即为两相贯立体 表面共有的点,也是辅助平面上的点。为了能方便地 作出相贯线上的点,最好选用特殊位置平面(投影面 的平行面或垂直面)作为辅助平面,并使辅助平面与 两回转体交线的投影为最简单(为直线或圆)。
项目八形体投影图的绘制
任务2 组合体的尺寸标注
学习情境1 组合体的尺寸标注
【学习目标】 了解组合体尺寸标注要求,掌握组合体尺寸标注的方法和步骤。 【情境描述】 画出如图8-13所示盥洗台的三面投影,并标注尺寸。
【任务实施】 绘制盥洗台的三面投影,如图8-12所示 。 标注尺寸 标注组合体的尺寸的基本方法同样是形体分析法。具体步骤为: (1)形体分析 将组合体分解为若干基本形体及其切割体。本例中形体分析及尺寸情况如图8-13所示。
根据三部分的前后、左右、上下位置关系及表面连接关系,想象出组合体的整体形状。初学者可将想象出的组合体化成立体草图,有助于三面投影图与整体形状的对应。
将想象出的组合体整体形状(或绘制出的草图)与图8-17所示的形体三面投影进行比对,验证无误,完成识读。 如图8-18d所示为该形体的立体图。
整体联想
学习情境2 切割型组合体三面投影图的绘制
【学习目标】 运用形体分析法 绘制切割型组合体三面投影图 【情境描述】 绘制如图 8-18 a所示切割型组合体的三面投影图。 【任务实施】 画切割型组合体的三面投影图时,应先画出切割前完整基本体的三面投影图,然后按照切割过程逐个画出被切部分的投影,从而得到切割体的三面投影图。同画叠加型组合体类似,对于被切去的形体也应从反映形状特征的投影图入手,然后通过三等关系,画出其它两面投影。 ⑴ 形体分析 该组合体的原始形体是四棱柱,在此基础上用不同位置的截平面分别切去形体1(四棱柱)、形体2(三棱柱)、形体3(四棱柱),最后形成切割型组合体,如图8-8 b所示。
学习情境1 叠加型组合体三面投影图的绘制
【学习目标】 运用形体分析法 绘制叠加型组合体三面投影图 【情境描述】 画出图 8-7a叠加型组合体的三面投影图。 【任务实施】 (1)形体分析 图8-7a所示的组合体由一个水平放置的长方体(即形体 1与右上方直立的一长方体(即形体 2右面平齐,两形体中间平放一个三棱柱(即形体3)共同组合而成。 (2)确定正立面图 如图8-7a所示,选择箭头方向作为正立面图的投影方向画投影图。 (3) 绘制三面投影图 选比例、定图幅、进行图面布置,按相对位置分别画出各组成部分的三面投影图,绘图过程如图8-7b所示。画底稿线,先画形体 1 的三面投影,再画直立的形体 2 的三面投影, 最后画形体3的三面投影。
基本体投影及表面交线
积聚性
当物体的某个面与投 影面平行时,该面的 投影会积聚成为一条 线。
积聚性在解决实际工 程问题中非常有用, 特别是在计算面积和 长度时。
同样地,当物体的某 条线与投影面平行时, 该线的投影会积聚成 为一点。
类似性
当物体与投影面倾斜时,物体的投影形状会发生 变化,但仍保持与原物体相似的特性。
类似性使得我们可以通过投影图大致判断出物体 的实际形状。
在实际工程中,由于制造和施工的限制,有时只 能通过投影图来近似地表达和实现设计意图。
05 实际应用
工程制图中的投影
投影方法的确定
01
根据工程需求选择合适的投影方法,如正投影、斜投影等,确
保图纸的准确性和易读性。
视图的选择
02
为了全面表达物体的形状和尺寸,通常需要选择主视图、俯视
图和左视图等多个视图进行绘制。
这条直线在投影图中可能被表示 为一个点,一条直线或一个平面, 具体取决于两个平面的相对位置
和投影方向。
在实际工程中,两个平面立体相 交时,其表面交线通常需要考虑
两个平面的相对位置和形状。
平面与曲面立体相交
当平面与曲面立体相交时,其交 线可能是直线、圆弧或其他曲线。
交线的形状取决于平面的位置、 方向和曲面立体的形状。
感谢您的观看
03 表面交线
平面与立体表面的交线
当平面与立体表面相交时,其交线取决于平面的位置和方向,以及立体的形状和尺 寸。
一般情况下,平面与立体表面的交线是直线或曲线,具体取决于平面与立体表面的 相对位置。
在投影图中,交线的投影取决于平面的位置和投影方向,以及立体的投影形状。
平面与平面立体相交
当两个平面相交时,其交线是一 条直线。
《机械制图》教案——第三章 立体投影及表面交线
第三章基本立体的投影、截交线、相贯线§1立体的投影1.1平面立体的投影本节教学目标:掌握平面立体的投影特性和作图方法;掌握拉伸体的形成、投影及画法;熟悉平面立体表面中特殊位置的点、线的三面投影及画法。
重点:平面立体的投影特性及表面取点、取线的投影。
难点:平面立体表面中特殊位置处点、线的投影。
引入:通过对前面知识的学习已经知道,很多的机械零件都是由一些简单的基本形体组成,比如螺栓,我们可以将它分成正六棱柱、圆柱体和圆锥台三部分。
如果我们要绘制此螺栓的三视图,同学们都应该知道必须要绘制正六棱柱、圆柱体和圆锥台的三视图。
任何一个复杂的物体都可以看成由基本体组成,按组成基本体表面的性质进行分类,基本体可分为平面体和曲面体。
平面立体侧表面的交线称为棱线若平面立体所有棱线互相平行,称为棱柱。
若平面立体所有棱线交于一点,称为棱锥。
1.1.1棱柱的投影1. 以正六棱柱为例,分析平面立体的结构,(1)正六棱柱共有几个表面?有何关系?(2)正六棱柱共有几条侧棱?有何关系?提问:1)不同位置的投影有什么不同?2)应怎样放置最合理?提示:使尽可能多的表面和棱线处于特殊位置。
2.投影特性分析(1)投影分析:上、下两个底面——平行的两个侧面——其余的几个侧面(2)三面投影图分析(3)绘图步骤:1)建立投影面系;2)根据三等原则绘制三面投影;3)区分可见性。
3. 棱柱体的投影特性(重点:学生应掌握)(1)当棱柱的底面平行于某一投影面时,棱柱的投影在该面上为与底面相等的正多边形。
(2)另两面投影为几个相邻的矩形线框。
4. 棱柱表面取点、线重点:所取的点、线属于棱柱的哪个面上?进而再求三面投影。
***若点所在平面的投影可见,点的投影可见;若平面的投影积聚成直线,点的投影也可见。
例:例:已知四棱柱,试完成其V、H投影。
(图7-1)图7-1四棱柱的投影1.1.2棱锥的投影棱锥的投影是棱锥各顶点同面投影连线的集合。
1. 棱锥的定义2. 棱锥的形体分析(1)投影分析:下底面——顶点——其余的几个侧面(2)三面投影图分析(3)绘图步骤:1)建立投影面系;2)根据三等原则绘制三面投影;3)区分可见性。
《机械制图习题集》习题答案——第2章
由于棱
锥体的棱面 无积聚性, 表面取点要 利用辅助线 法。
2-2 回转体的投影及表面取点
完成回转体的投影,并作出表面上各点的三面投影。
(1
)
a'
a"
b'
(b")
(b) a
回转体表面取点, 根据已知点的可见性 判断点所处的位置, 按投影关系,找出各 点的投影。
(2 )
(c') 1'
a'
b'
1" c" a"
4、完成相贯体的三视图。
1'
5'(6') 3'(4') 2' 7'(8')
1"
5" 6"
4"
3"
8"
7" 2"
4 86 21
75 3
圆锥体与圆
柱形孔正交。因 圆锥面的投影无 积聚性,利用辅 助平面求一般位 置的点。
5、完成相贯体的三视图。
1'
5'(6') 3'(4') 7'(8') 2'
1"
6"
b"
c
a
b
圆锥面的投
影无积聚性,表 面取点利用辅助 素线或辅助纬圆 法求解。底面上 的点可利用投影 关系直接求出。
(3 )
a'
b'
a" (b")
1a
圆锥台的表面
2 b
投影无积聚性,表 面上取点利用辅助
纬圆法。
(4 )
02-8基本几何体投影
一 平面基本体
平面立体的表面是由点、直线、平面等几何元素构成,因 此平面体的投影就是绘制平面体表面各点、直线、平面的投影, 并判断可见性。在投影图中,当多种图线发生重叠时,应以粗 实线、虚线、点画线等顺序优先绘制。
Z
(一)棱柱 1、 棱柱的组成
由两个底面和几个侧棱面 组成。侧棱面与侧棱面的交线 叫侧棱线,侧棱线相互平行。
转向轮廓线
转向轮廓线
(一) 圆柱
圆柱表面由圆柱面和顶面、底面所组成。圆柱面是 由一直母线绕与之平行的轴线回转而成。
1、圆柱的投影
如图所示,圆柱的轴线垂直于 H面,其上下底圆为水平面,水平 投影反映实形,其正面和侧面投影 重影为一直线。而圆柱面则用曲面 投影的转向轮廓线表示。 V a’
c’d’ A c’d’ A d b’
棱锥处于图示位置时, 其底面ABC是水平面,在 Y 俯视图上反映实形。侧棱 面SAC为侧垂面,另两个 侧棱面为一般位置平面。
A
a
b
正三棱锥的投影
2、 棱锥的投影特点
Z V s' S a' X A s" W b' Ca" c" s Bc b" Y
底边AB、BC 为水平线,AC为 侧垂线,棱线SB为 侧平线,SA、SC为 一般位置直线,它 们的投影可根据不 同位置直线的投影 特性进行分析。
Z
a'
d'
e' a" d" e" c"
b'
c'
A
D
E b"
X a
B
C e Y
b
dc
正六棱柱的投影
3、 作六棱柱的三视图
立体及其表面交线
(ቤተ መጻሕፍቲ ባይዱ)
(b)
图4-4 棱锥表面取点
4.1.2 棱 锥
2.棱锥表面上取点
【例4-2】 已知正三棱锥棱面上点N的水平投影n,求出N点的其它两投影。 【分 析】 N点位于棱面SAB上,而棱面SAB又处于一般位置,因而必须利用辅助直线作图。
作图步骤
解法二:过N点在SAB面上作平行于AB的直线 EF 为 辅 助 线 , 即 作 ef∥ab , e’f’∥a’b’(e”f”∥a”b”),因N点在EF 线上,N点的投影必在EF线的同面投影上,由 n可求得 和 ,如图4-4c所示。
【作 图】(1)求特殊点
(2)用辅助线法求中间点
(3)连点成线
(a)
(b)
(c)
图4-20 用辅助素线法求圆锥的截交线
(d)
(e)
4.3.2 曲面立体的截交线
【例4-12】圆锥被平行于轴线的平面截切,试补全圆锥的正面投影(图4-21a)。
4.1.2 棱 锥
⑴ 棱锥的组成:由一个底面和若干侧棱面组成。侧棱线交于有 限远的一点——锥顶。
⑵ 棱锥的三视图:棱锥处于图示位置时,其底面ABC是水平面, 在俯视图上反映实形。侧棱面SAC为侧垂面,另两个侧棱面为 一般位置平面。
⑶ 在棱锥面上取点:同样采用平面上取点法。
s
s
k n
k
(n )
a
b
第4章 立体及其表面交线
基本立体、复合立体的投影图画法;基 本立体表面上取点、取线的方法;切割 体、相贯体表面交线的特性及投影图的 画法。
学习要点
能熟练绘制两类立体的投影图;掌握在 立体表面上取点、取线的原理和方法。 了解截交线、相贯线的特性;掌握绘 制截交线、相贯线的方法;能准确绘 制切割体和相贯体的投影图。
基本体和曲面的投影
Part
03
投影的特性
实形性
当一个平面与一个基本体或曲面相交时,相交线或相交面的形状会反映出该平面的形状。 例如,当一个平面与一个立方体相交时,相交线会形成一个矩形。
在投影中,实形性可以帮助我们更好地理解物体的形状和结构,特别是在三维空间中。
积聚性
当一个平面与一个基本体或曲面相交时,相交线或相交面可 能会积聚在该平面上。例如,当一个平面与一个球体相交时 ,相交面会积聚在平面上,形成一个圆。
投影角度的选择也会影响 图像的失真程度。
如何解决投影的局限性
使用高质量的投影设备
高质量的投影设备可以减少失真和模糊。
选择合适的投影方式
根据实际情况选择合适的投影方式,以减少失真。
选择合适的投影角度和距离
根据实际情况选择合适的投影角度和距离,以减少失真。
THANKS
感谢您的观看
曲面曲线的投影
1 2
曲面曲线在平面上的投影
将曲面曲线上的每一点向平面作垂线,这些垂线 与平面的交点连成的曲线即为曲面曲线在平面上 的投影。
投影曲线的性质
投影曲线与原曲面曲线在形状上可能存在较大差 异,特别是在曲率变化较大的地方。
3
应用场景
在工程图纸绘制、产品展示等领域中,常需要将 曲面曲线投影到平面上,以方便绘制和展示。
注意各基本体的投影关系。
Part
02
曲面的投影
平面曲线的投影
平面曲线在曲面上的投影
将平面曲线上的每一点向曲面作垂线, 这些垂线与曲面的交点连成的曲线即 为平面曲线在曲面上的投影。
投影曲线的性质
应用场景
在机械设计、建筑设计等领域中,常 需要将平面曲线投影到曲面上,以实 现复杂形状的建模和设计。
第3讲 基本体的投影(无轴测图)(7-8)
2.1 棱柱
化工制图基础
2.1.1 棱柱及其表面点的投影 1. 棱柱的概念
棱柱是由两个平行的多边形底面和几 个矩形的侧棱面围成的立体。侧棱面与侧 棱面的交线叫侧棱线,侧棱线相互平行。
2. 棱柱的投影 (1) 分析 如图,为一正六棱 柱,其顶面、底面均 为水平面,它们的水 平投影反映实形,正 面及侧面投影重影为 一直线。
Ⅵ
Ⅰ Ⅴ Ⅲ Ⅶ
6 1
Ⅳ Ⅷ
7 3
5
Ⅱ
例2
化工制图基础 求切口圆柱的水平投影和侧面投影。
解题步骤 1 分析 截交线的水平投影为椭 圆,侧面投影为圆; 2 求出截交线上的特殊点Ⅰ、Ⅳ 、 Ⅴ、 Ⅷ; 3 求出若干个一般点Ⅱ、Ⅲ、 Ⅵ、Ⅶ; 4 光滑且顺次地连接各点,作出 截交线,并且判别可见性; 5 整理轮廓线。
a' d' e'
Z
a"
b'
c'
A
D
E
b"
d" e" c"
X a b
B
C e
Y
dc
正六棱柱的投影
化工制图基础
棱柱的前后两个侧棱面为正平面。其它四个侧 棱面均为铅垂面,其水平投影均重影为直线。正面 Z 投影和侧面投影均为类似形。
a'
d'
e' a" d" e" c"
b'
c'
A
D
E b"
X a b
B
C e Y
s’ 3 s 3 1
b’ c’
2
1
a’
2
a(c)
y
第三章基本体的投影
讨论1:圆柱表面切孔后的投影
2
1
圆柱1上用圆柱2穿一孔
例2:补全主视图(两圆柱内外表面都相交)
●
●
●
●
●
●
●
●
●
● ●
● ●
●
●
● ●
● ●
1、 外表面交线
• 两外表面相贯 • 一内表面和一 外表面相 贯
2、 内表面交线
• 两内表面相贯
讨论2:两正交圆柱直径的变化对其相贯线的影响
底面//H面放置
b
底面是水平面,其水平投影abc反映底面实形
已 的 影 表 思 正还辅面知 点 , 面 考面可助投M三 求 的 :内以可线的影棱 另 可 若取作以吗正M不锥 外 见点其?点面可表 两 性法它的投见面 个,
侧棱面SAB、SBC是一般位置面,SAC是侧垂面 投 结影 果。 如何?
课 后 练习 p22, p23
P
2、辅助面截两立体
辅助面
表面都能得到最简单易
L
画的交线,即尽可能使
K
交线的投影为直线或圆。
投影连线原则:
•
空间及投影分析:
在两立体上都处于相邻两
相贯线为一光滑的素封线间闭的的点空,间才曲能线相。连。
点K它 投、的 影L是侧没相面有贯投积线影聚上有 性的积 ,点聚 应性 分投, 别影同可正 求时见位面 出性于。投判两影别立、原体水则可平:见表
a"
a'
基本方法:
面内取点法
a
思考:若A点的正面投影 不可见,结果如何?
注意分析点 所在的面的 投影
2、三棱锥 三棱锥组成分析:
S
A
C
B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2:求左视图
●
●
●
●
●
●
●
截交线的 ● ●
● ●
空间● 形状?
截交线的已知投影?
截交线的侧面投
★找影特是殊什点么形状? ★补充中间点 ★光滑连接各点 ★分析轮廓素线的投影
例2:求左视图
★找特殊点 ★找中间点 ★光滑连接各点 ★分析轮廓素线的投影
椭圆的长、 短轴随截平面与 圆柱轴线夹角的 变化而改变。
例:求半球体截切后的俯视图和左视图。
两水个平侧面平截面圆截球圆的球截的交截线 交的线投的影投,影在,俯在视侧图视上图为 上部为分部圆分弧圆,弧在,侧在视俯图视上 图积上聚积为聚直为线直。线。
例:求半球体截切后的俯视图和左视图。
㈣ 复合回转体的截切
例:求作顶尖的俯视图
●
●
●●
●
●●
●
●
●
●
● ●
组成。侧棱面与侧棱面的交线 叫侧棱线,侧棱线相互平行。
⑵ 棱柱的三视图 底 实⑶点面形面棱的在为。,图水前若可柱由所示平后点见于以面位面两棱在所性上置,侧柱棱在规时在棱取的柱的定,俯面表的点平:六视是面表棱图正面都面柱中平的是上的反面平取投两映,影
其可余点见四与个,在侧点平棱面的面上投是取影铅点也垂的面可方,见法它相;们若 的平水同面平。投的影投都影积积聚聚成成直线直,线与,六点 边的形投的边影重也合可。见。
45°
什么情况下
截投平影面为与圆圆呢柱?轴 线成45°时。
㈡ 圆锥体的截切
根据截平面与圆锥轴线的相 PV 对位置不同,截交线有五种形状。
θ PV
PV
θ
α
PV
θ PV α
α
θ= 90° 过锥顶
圆
两相交直线
θ>α 椭圆
θ=α θ= 0°<α
抛物线
双曲线
例: 圆锥被正垂面截切,求 截交线,并完成三视图。
一、平面截切的基本形式
截交线的性质:
•截交线是一个由直线组成的封闭的平面多边形。 •截交线形状取决于平面体的形状及截平面对平面体 的截切位置。 • 截交线的每条边是截平面与棱面的交线。
求截交线的实质是求两平面的交线
二、平面截切体的画图
关键是正确地画出截交线的投影。
⒈ 求截交线的两种方法:
★ 求各棱线与截平面的交点→棱线法。
基本体及叠加体的三视图
பைடு நூலகம்
体的投影 —— 视图
一、体的投影
体的投影,实质上是构成该体的所 有表面的投影总和。
V
二、三面投影与三视图
1.视图的概念
视图就是将物体向投
影面投射所得的图形。
长
主视图 —— 体的正面投影 俯视图 —— 体的水平投影 左视图 —— 体的侧面投影
2.三视图之间的度量对应关系
主视俯视长相等且对正 主视左视高相等且平齐 俯视左视宽相等且对应
s
s
k n
b s n k
k (n) c a(c) b c
b
二、回转体
1.圆柱体
⑴ 圆柱体的组成 由圆柱面和两底面组成。
圆柱面是由直线AA1绕与
它平行的轴线OO1旋转而成。
直线AA1称为母线。
圆柱面上与轴线平行的任 a
一直线称为圆柱面的素线。
⑵ 圆柱体的三视图 ⑶ 轮廓圆线柱素面线的的俯投视影图与积曲聚面成的一 ⑷个两示可圆圆 个 。见柱, 方性面在 向的上另 的判取两 轮断点个廓视素图线上的分投别影以表 a
截平面与回转体轴线的相对位置。 • 截交线都是封闭的平面图形。
二、求平面与回转体的截交线的一般步骤
⒈ 空间及投影分析
☆ 分析回转体的形状以及截平面与回转体轴线 的相对位置,以便确定截交线的形状。
☆ 分析截平面与投影面的相对位置,明确截交 线的投影特性,如积聚性、类似性等。找出 截交线的已知投影,预见未知投影。
宽 高
宽
三等关系
长对正 高平齐 宽相等
3.三视图之间的方位对应关系
上
上
左
右后 前
下
下
后
左
右
前
• 主视图反映:上、下 、左、右 • 俯视图反映:前、后 、左、右 • 左视图反映:上、下 、前、后
基本体的形成及其三视图
常见的基本几何体
平面基本体
曲面基本体
一、平面基本体
1.棱柱
⑴ 棱柱的组成
由两个底面和几个侧棱面
a (b)
b
a
a b
2.棱锥
⑴ 棱锥的组成
由一个底面和几个 侧棱面组成。侧棱线交 于有限远的一点——锥 顶。
⑵ 棱锥的三视图
⑶ 在棱棱锥锥处面于上图取示位点置时,
其俯同底视样面 图采A上用B反平C映面是实上水形取平。点面侧法,棱。在
a a
面SAC为侧垂面,另两个
侧棱面为一般位置平面。
⒊ 当单体被多个截平面截切时,要逐个截 平面进行截交线的分析与作图。当只有 局部被截切时,先按整体被截切求出截 交线,然后再取局部。
⒋ 求复合回转体的截交线,应首先分析复 合回转体由哪些基本回转体组成以及它 们的连接关系,然后分别求出这些基本 回转体的截交线,并依次将其连接。
O A
O1 A1 a
利用投影 的积聚性
2.圆锥体
⑴ 圆锥体的组成 由圆锥面和底面组成。
⑵ 圆圆锥锥体面是的由三直视线图SA绕与 ⑶它成在轮相。图廓交示的线位轴素置线,线O俯的O视1投旋图影转为而与一 圆 角为形。曲S母称,另面线为三两。的锥角个圆可顶形视锥见,的图面直性底为上线边等的过S为边判锥A圆三称顶断 ⑷锥的底圆任面一锥的直面投线上影称取,为两点圆腰锥分面别的
1(2)
2 1
2●
1●
注意: 要逐个三截面平面共分点析:和绘制 截交Ⅰ线、。Ⅱ当两平点面分体只别有局
部被同截时切位时于,三先个假想面为整 体被上截。切,求出截交线后
再取局部。
例2:求四棱锥被截切后的俯视图和左视图。
回转体的截切
一、回转体截切的基本形式
截交线的性质: • 截交线是截平面与回转体表面的共有线。 • 截交线的形状取决于回转体表面的形状及
⒉ 画出截交线的投影
当截交线的投影为非圆曲线时,其作图步骤为:
☆ 先找特殊点,补充中间点。
☆ 将各点光滑地连接起来,并判断截交线的可 见性。
㈠ 圆柱体的截切
截平面与圆柱面的截交线的形状取决于 截平面与圆柱轴线的相对位置
PV
PV PV
P
垂直 圆
P
P
倾斜 椭圆
平行 两平行直线
例1:求左视图
● ● ● ●
截截交交线线 的的空投间影 如一形特何根状找轴性椭的??圆端另点?
★找特殊点 ★补充中间点 ★光滑连接各点 ★分析轮廓线的
投影
例: 圆锥被正垂面截切,求 截交线,并完成三视图。
㈢ 球体的截切
平面与圆球相交,截交线的形 状都是圆,但根据截平面与投影面 的相对位置不同,其截交线的投影 可能为圆、椭圆或积聚成一条直线。
辅助圆法
k
k
圆的半径?
平面体及回转体的截切
平面体及回转体的截切
截切: 用一个平面与立体相交,截去立体的一
部分。
• 截平面 —— 用以截切物体的平面。 • 截交线 —— 截平面与物体表面的交线。 • 截断面 —— 因截平面的截切,在物体上形
成的平面。 讨论的问题:截交线的分析和作图 。
平面体的截切
1
4 2 ●
●
●
● 3
4 ●
3
1
●
●
2●
★ 空间分析 ★几交★截求个线截左平棱截投的交视面面形交线图影与相状在上线分体交?俯的的析?、形 ★ 分析棱线状的?投影
★ 检查 尤其注意检查截 交线投影的类似性
例1:求四棱锥被截切后的俯视图和左视图。
棱线我法们采!用的是
哪种解题方法?
例2:求四棱锥被截切后的俯视图和左视图。
同一立体被多 个平面截切,要逐 个截平面进行截交 线的分析和作图。
解题步骤:
★空间及投影分析 截平面与体的相对位置 截平面与投影面的相对位置
★求截交线 ★分析圆柱体轮廓素线的投影
例1:求左视图
解题步骤:
★空间及投影分析 截平面与体的相对位置 截平面与投影面的相对位置
★求截交线 ★分析圆柱体轮廓素线的投影
★ 求各棱面与截平面的交线→棱面法。
⒉ 求截交线的步骤: ★ 空间及投影分析
☆ 截平面与体的相对位置
确定截交 线的形状
☆ 截平面与投影面的相对位置
★ 画出截交线的投影
分别求出截平面与棱面 的交线,并连接成多边形。
确定截交线 的投影特性
例1:求四棱锥被截切后的俯视图和左视图。
1 (4)2 3
三、解题方法与步骤
⒈ 空间及投影分析
⑴ 分析截平面与被截立体的相对位置,以 确定截交线的形状。
⑵ 分析截平面与被截立体对投影面的相对 位置,以确定截交线的投影特性。
⒉ 求截交线 当截交线的投影为非圆曲线时,要先
找特殊点,再补充中间点,最后光滑连接 各点。
注意分析平面体的棱线和回转体轮廓 素线的投影。
● ●
●
首先分析复合回转体由哪些基本回转体组成 以及它们的连接关系,然后分别求出这些基本回 转体的截交线,并依次将其连接。
小结
一、平面体的截交线一般情况下是由直线组成 的封闭的平面多边形,多边形的边是截平 面与棱面的交线。 求截交线的方法:棱线法 棱面法
二、平面截切回转体,截交线的形状取决于截 平面与被截立体轴线的相对位置。 截交线是截平面与回转体表面的共有线。
为 轮素★廓圆线辅素锥。助线面直的不线投同法影方。向的两条 ★辅助圆法