北师大版八年级数学下学期期末考试测试题二

合集下载

北师大版八年级第二学期期末数学试卷及答案

北师大版八年级第二学期期末数学试卷及答案

北师大版八年级第二学期期末数学试卷及答案一、选择题(共10小题).1.下列所给图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.若x<y,则下列结论不一定成立的是()A.x﹣3<y﹣3B.﹣5x>﹣5y C.x2>y2D.﹣>﹣3.下列各式从左到右的变形为分解因式的是()A.m2﹣m﹣6=(m+2)(m﹣3)B.(m+2)(m﹣3)=m2﹣m﹣6C.x2+8x﹣9=(x+3)(x﹣3)+8x D.x2+1=x(x+)4.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35°B.40°C.45°D.50°5.已知一个多边形的内角和是540°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形6.如图,在△ABC中,∠C=90°,∠B=15°,AC=3,AB的垂直平分线l交BC于点D,连接AD,则BC的长为()A.12B.3+3C.6+3D.67.若分式方程有增根,则m等于()A.3B.﹣3C.2D.﹣28.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,2),则关于x的不等式x+m<kx﹣1的解集在数轴上表示正确的是()A.B.C.D.9.如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4cm,如果点C是OB上一个动点,则PC的最小值为()A.2B.2C.4D.410.如图,在Rt△ABC中,AC=4,∠ABC=90°,BD是△ABC的角平分线,过点D作DE⊥BD交BC边于点E.若AD=1,则图中阴影部分面积为()A.1B.1.5C.2D.2.5二、填空题(每小题3分,共18分)11.因式分解:3a2﹣27=.12.不等式﹣2x>﹣4的正整数解为.13.如果要使分式有意义,则x的取值范围是.14.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为度.15.如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于.16.如图在平面直角坐标系中,O为坐标原点,A(1,3),B(2,1),直角坐标系中存在点C,使得点O,A,B,C四点构成平行四边形,则C点坐标为.三、解答题(共52分,请写出必要的解题步骤)17.求不等式组的解集,并把解集在数轴上表示出来.18.先化简,再求值:÷(x﹣),其中x=﹣2.19.如图,在△ABC中,∠C=90°.请用尺规在AC上作点P,使点P到A、B的距离相等.(保留作图痕迹,不写作法和证明)20.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)若CD=1cm,求AC的长;(2)求证:AB=AC+CD.21.“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?22.如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.23.某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?24.如图1,边长为a的大正方形中有一个边长为b的小正方形(a>b),图2是由图1中阴影部分拼成的一个长方形.(1)观察图1、图2,当用不同的方法表示图形中阴影部分的面积时,可以获得一个因式分解公式,则这个公式是;(2)如果大正方形的边长a比小正方形的边长b多3,它们的面积相差57,试利用(1)中的公式,求a、b的值.参考答案一、选择题(共10小题).1.下列所给图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.解:A、不是中心对称图形,是轴对称图形,故此选项错误;B、不是中心对称图形,是轴对称图形,故此选项错误;C、是中心对称图形,不是轴对称图形,故此选项错误;D、是中心对称图形,也是轴对称图形,故此选项正确.故选:D.2.若x<y,则下列结论不一定成立的是()A.x﹣3<y﹣3B.﹣5x>﹣5y C.x2>y2D.﹣>﹣解:A、在不等式x<y的两边同时减去3,不等式仍成立,即x﹣3<y﹣3,故本选项不符合题意.B、在不等式x<y的两边同时乘以﹣5,不等式号方向发生改变,即﹣5x>﹣5y,故本选项不符合题意.C、当0<x<y时,x2>y2才成立,故本选项符合题意.D、在不等式x<y的两边同时除以﹣,6,不等式号方向发生改变,即﹣>﹣,故本选项不符合题意.故选:C.3.下列各式从左到右的变形为分解因式的是()A.m2﹣m﹣6=(m+2)(m﹣3)B.(m+2)(m﹣3)=m2﹣m﹣6C.x2+8x﹣9=(x+3)(x﹣3)+8xD.x2+1=x(x+)解:A、等式从左边到右边,把多项式化成了两个整式积的形式,符合因式分解的定义,故A正确;B、等式从左边到右边属于整式的乘法,故B不正确;C、等式的右边最后计算的是和,不符合因式分解的定义,故C不正确;D、在等式的右边不是整式,故D不正确;故选:A.4.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35°B.40°C.45°D.50°解:∵△ABD中,AB=AD,∠B=70°,∴∠B=∠ADB=70°,∴∠ADC=180°﹣∠ADB=110°,∵AD=CD,∴∠C=(180°﹣∠ADC)÷2=(180°﹣110°)÷2=35°,故选:A.5.已知一个多边形的内角和是540°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形解:根据多边形的内角和可得:(n﹣2)180°=540°,解得:n=5,则这个多边形是五边形.故选:B.6.如图,在△ABC中,∠C=90°,∠B=15°,AC=3,AB的垂直平分线l交BC于点D,连接AD,则BC的长为()A.12B.3+3C.6+3D.6解:∵AB的中垂线l交BC于点D,∴AD=DB,∴∠B=∠DAB=15°,∴∠ADC=30°,∵∠C=90°,AC=3,∴AD=6,CD=.BC=BD+CD=6+3故选:C.7.若分式方程有增根,则m等于()A.3B.﹣3C.2D.﹣2解:分式方程去分母得:x﹣3=m,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入整式方程得:m=﹣2,故选:D.8.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,2),则关于x的不等式x+m<kx﹣1的解集在数轴上表示正确的是()A.B.C.D.解:根据图象得,当x<﹣1时,x+m<kx﹣1.故选:D.9.如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4cm,如果点C是OB上一个动点,则PC的最小值为()A.2B.2C.4D.4解:∵P是∠AOB角平分线上的一点,∠AOB=60°,∴∠AOP=AOB=30°,∵PD⊥OA,M是OP的中点,DM=4cm,∴OP=2DM=8,∴PD=OP=4,∵点C是OB上一个动点,∴PC的最小值为P到OB距离,∴PC的最小值=PD=4.故选:C.10.如图,在Rt△ABC中,AC=4,∠ABC=90°,BD是△ABC的角平分线,过点D作DE⊥BD交BC边于点E.若AD=1,则图中阴影部分面积为()A.1B.1.5C.2D.2.5解:如图,作DH⊥BC于H,∵∠ABC=90°,BD是△ABC的角平分线,∴∠DBC=∠ABD=45°,∵DE⊥BD,∴∠DEB=45°,∴△BDE是等腰直角三角形,设DH=BH=EH=a,∵DH∥AB∴△CDH∽△CAB,∴==,∵AD=1,AC=4,∴==,∴AB=a,CE=2a,∵AB2+BC2=AC2,∴a2+16a2=16,a2=,∴图中阴影部分的面积=×a×4a﹣×2a×a=a2=1.5.故选:B.二、填空题(每小题3分,共18分)11.因式分解:3a2﹣27=3(a+3)(a﹣3).解:3a2﹣27=3(a2﹣9)=3(a+3)(a﹣3).故答案为:3(a+3)(a﹣3).12.不等式﹣2x>﹣4的正整数解为x=1.解:∵﹣2x>﹣4∴x<2∴正整数解为:x=1故答案为:x=113.如果要使分式有意义,则x的取值范围是x≠2.解:由题意,得x﹣2≠0,解得x≠2,故答案为:x≠2.14.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为50度.解:如图,∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°故答案为:50.15.如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于2.解:作PE⊥OA于E,∵CP∥OB,∴∠OPC=∠POD,∵P是∠AOB平分线上一点,∴∠POA=∠POD=15°,∴∠ACP=∠OPC+∠POA=30°,∴PE=PC=2,∵P是∠AOB平分线上一点,PD⊥OB,PE⊥OA,∴PD=PE=2,故答案为:2.16.如图在平面直角坐标系中,O为坐标原点,A(1,3),B(2,1),直角坐标系中存在点C,使得点O,A,B,C四点构成平行四边形,则C点坐标为(3,4)或(1,﹣2)或(﹣1,2).解:如图所示:∵以O、A、B、C为顶点的四边形是平行四边形,O(0,0),A(1,3),B(2,0),∴三种情况:①当AB为对角线时,点C的坐标为(3,4);②当OB为对角线时,点C的坐标为(1,﹣2);③当OA为对角线时,点C的坐标为(﹣1,2);故答案为(3,4)或(1,﹣2)或(﹣1,2).三、解答题(共52分,请写出必要的解题步骤)17.求不等式组的解集,并把解集在数轴上表示出来.解:解不等式x﹣3(x+1)<3得:x>﹣3,解不等式﹣≤1得:x≤2,∴不等式组的解集为:﹣3<x≤2,∴不等式组的解集在数轴上表示如图:18.先化简,再求值:÷(x﹣),其中x=﹣2.解:÷(x﹣)=÷=×=,当x=﹣2时,原式==﹣1.19.如图,在△ABC中,∠C=90°.请用尺规在AC上作点P,使点P到A、B的距离相等.(保留作图痕迹,不写作法和证明)解:如图作AB的垂直平分线,交AC于P.则PA=PB,点P为所求作的点.20.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)若CD=1cm,求AC的长;(2)求证:AB=AC+CD.【解答】(1)解:∵∠C=90°,AD是△ABC的角平分线,DE⊥AB,∴DE=CD=1,∵AC=BC,∠C=90°,∴∠B=45°,∴△BDE是等腰直角三角形,∴BD=DE=,∴AC=BC=CD+BD=+1;(2)证明:在△ACD和△AED中,,∴△ACD≌△AED(HL),∴AC=AE,∵△BDE是等腰直角三角形,∴BE=DE=CD,∵AB=AE+BE,∴AB=AC+CD.21.“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.22.如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠ABE=∠FCE,∵E为BC中点,∴BE=CE,在△ABE与△FCE中,,∴△ABE≌△FCE(ASA),∴AB=CF;(2)∵AD=2AB,AB=FC=CD,∴AD=DF,∵△ABE≌△FCE,∴AE=EF,∴DE⊥AF.23.某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?解:(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,依题意,得:=,解得:x=6,经检验,x=6是原方程的解,且符合题意,∴x+2=8.答:每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件.(2)设A型机器安排m台,则B型机器安排(10﹣m)台,依题意,得:,解得:6≤m≤8.∵m为正整数,∴m=6,7,8.答:共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.24.如图1,边长为a的大正方形中有一个边长为b的小正方形(a>b),图2是由图1中阴影部分拼成的一个长方形.(1)观察图1、图2,当用不同的方法表示图形中阴影部分的面积时,可以获得一个因式分解公式,则这个公式是a2﹣b2=(a+b)(a﹣b);(2)如果大正方形的边长a比小正方形的边长b多3,它们的面积相差57,试利用(1)中的公式,求a、b的值.解:(1)由图1可得阴影部分的面积=a2﹣b2,由图2可得阴影部分的面积=(a﹣b)(a+b),∴可得公式为a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b);(2)由題意可得:a﹣b=3,∵a2﹣b2=(a+b)(a﹣b)=57,∴a+b=19,∴,解得:,∴a,b的值分別是11,8.。

北师大版八年级(下)数学期末试卷(2)

北师大版八年级(下)数学期末试卷(2)

北师大版八年级(下)数学期末试卷(2)一、单项选择题(下列各题的四个选项中,只有一个选项最符合题意要求,请将最符合题意要求的选项涂在答题卡指定位置上。

每小题2分,共18分。

)1.(2分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(2分)下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1)D.ax+bx+c=x(a+b)+c3.(2分)如图,ED为△ABC的边AC的垂直平分线,且AB=5,△BCE的周长为8,则BC长()A.6B.5C.4D.34.(2分)如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC 的中点,若BD=16,则EF的长为()A.32B.16C.8D.45.(2分)如图,射线OC是∠AOB的角平分线,D是射线OC上一点,DP⊥OA于点P,DP=4,若点Q是射线OB上一点,OQ=3,则△ODQ的面积是()A.3B.4C.5D.66.(2分)如图,l1:y=x+1和l2:y=mx+n相交于P(a,2),则x+1≥mx+n解集为()A.x>﹣1B.x<1C.x≥1D.x>a7.(2分)下列分式变形正确的是()A.B.C.D.8.(2分)若分式的值为正数,则x的取值范围是()A.x>﹣2B.x<1C.x>﹣2且x≠1D.x>19.(2分)已知2x﹣y=1,xy=2,则4x3y﹣4x2y2+xy3的值为()A.﹣2B.1C.﹣1D.2二、填空题(每题2分,共18分)10.(2分)多项式x2+mx+5因式分解得(x+5)(x+n),则m=.11.(2分)已知分式,当x=1时,分式无意义,则a=.12.(2分)已知一个多边形的内角和是外角和的3倍,则这个多边形为边形.13.(2分)如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=10,将△ABC沿CB 方向向右平移得到△DEF,若四边形ABED的面积为20,则平移距离为.14.(2分)如图,在▱ABCD中,DE平分∠ADC,交BC于点E,若AD=8,BE=3,则ABCD的周长是.15.(2分)已知关于x的不等式组有且仅有三个整数解,则a的取值范围是.16.(2分)一次函数y=(2m﹣1)x+2﹣m的图象经过第一、二、四象限,则m的取值范围为.17.(2分)如果关于x的方程﹣=1的解为负数,则m的取值范围是.18.(2分)如图,将两个全等的等腰直角三角形摆成如图所示的样子,其中AB=AC=AG =FG,AF、AG分别与BC交于D、E两点,将△ACE绕着点A顺时针旋转90°得到△ABH,①BH⊥BC;②DA平分∠HDE;③若BD=3,CE=4.则AB=6;④若AB=BE,S△ABD=S△ADE,其中正确的序号有.三、解答题(19题10分;20题10分;21题8分;22题8分;23题8分;24题10分;25题10分;)19.(10分)(1)因式分解:﹣8ax2+16axy﹣8ay2;(2)解不等式组.20.(10分)(1)解分式方程:=+1;(2)先化简(﹣)÷,然后从2,0,﹣1三个数中选一个合适的数代入化简后的结果中进行求值.21.(8分)如图,等腰直角△ABC中,∠ABC=90°,点P在AC上,将△ABP绕顶点B 沿顺时针方向旋转90°后得到△CBQ.当AB=4,AP=时,求PQ的大小.22.(8分)某村计划对面积为1600m2的农场进行数字化硬件改造升级,经投标由甲、乙两个工程队来完成.已知甲队每天能完成改造的面积是乙队每天能完成改造面积的3倍,如果两队各自独立完成面积为720m2区域的改造时,甲队比乙队少用8天.(1)求甲、乙两工程队每天各能完成多少面积的改造;(2)若甲队每天改造费用是2.7万元,乙队每天改造费用为0.8万元,要使这次改造的总费用不超过22万元,则至少应安排乙工程队改造多少天?23.(8分)如图,已知点A、B、C、D在一条直线上,BF、CE相交于O,AE=DF,∠E =∠F,OB=OC.(1)求证:△ACE≌△DBF;(2)如果把△DBF沿AD折翻折使点F落在点G,连接BE和CG.求证:四边形BGCE 是平行四边形.24.(10分)甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的八折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价的九折优惠.设顾客预计累计购物x元(x>300).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)试比较顾客到哪家超市购物更优惠?说明你的理由.25.(10分)(1)【问题发现】小明遇到这样一个问题:如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系.小明发现,过点D 作DF∥AC,交AB于点F,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系:;(2)【类比探究】如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件不变),试猜想AD与DE之间的数量关系,并证明你的结论.(3)【拓展应用】当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,请直接写出△ABC与△ADE的面积之比.。

北师大版八年级下学期数学期末试卷含答案(共5套)

北师大版八年级下学期数学期末试卷含答案(共5套)

北师大版八年级下学期期末调研测试题一、选择题(本大题共12小题,每小题4分,共48分)1.“抛一枚均匀的硬币,落地后正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件2.下列条件中不能判断四边形是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC3.方程x(x+3)=0的根是()A.x=0B.x=-3C.x1=0,x2=3D.x1=0,x2=-34.某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方形C.球D.圆锥5.如图,在口ABCD中,过点C的直线CE⊥AB,垂足为E,∠EAD=53°,则∠BCE的度数为()A.37°B.47°C.53°D.127°EDAB C6.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是()A.k>-1B.k≥-1C.k≠0D.k>-1且k≠07.同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米,小明的身高为1.6米,则旗杆的高为()A.3.2米B.4.8米C.5.2米D.5.6米8.若菱形的周长为8cm,高为1cm,则菱形两邻角的度数比为()A.3∶1B.4∶1C.5∶1D.6∶19.下列各组图形可能不相似的是( )A .各有一个角是45°的两个等腰三角形B .各有一个角是60°的两个等腰三角形C .各有一个角是105°的两个等腰三角形D .两个等腰直角三角形10.如图,P 为口ABCD 的边AD 上的一点,E 、F 分别是PB 、PC 的中点,△PEF 、△PDC 、△P AB 的面积分别为S 、S 1、S 2,若S =3,则S 1+S 2的值是( ) A .3 B .6 C .12 D .2411.如图,正方形ABCD 的边长为3,点E 、F 分别在边BC 、CD 上,将AB 、AD 分别沿AE 、AF 折叠,点B 、D 恰好都落在点G 处,已知BE =1,则EF 的长为( )A .32B .52C .94D .312.如图,已知在Rt △ABC 中,AB =AC =2,在△ABC 内作第一个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ,再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形……依次进行下去,则第n 个内接正方形的边长为( )A .23×(12)n -1B .223×(12)n -1C .23×(12)nD .223×(12)n二、填空题(本大题共6小题,每小题4分,共24分)13.一个多边形图案在一个有放大功能的复印机上复印出来,它的一条边由原来的1cm 变成了2cm ,那么它的面积会由原来的6cm 2变为___________.14.有一个正多边形的每一个外角都是60°,则这个多边形的边数是_______________.15.如图所示,直线a经过正方形ABCD的顶点A,分别过此正方形的顶点B、D作BF⊥a于点F、DE⊥a于点E,若DE=4,BF=3,则EF的长为____________.16.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长为____________.17.设a,b是方程x2+x-2017=0的两个不相等的实数根,则a2+2a+b的值为_________________.18.如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是___________________.三、解答题(本大题共9小题,共78分)19.解方程:(1)x2-2x-3=0; (2)x2-4x+1=020.如图,在口ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F.求证:BF=DE.21.小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平面上放一面平面镜,镜子与教学楼的距离EA=12米,当她与镜子的距离CE=2米时,她刚好能从镜子中看到教学楼的顶端B.已知她的眼睛距地面的高度DC=1.5米.请你帮助小玲计算出教学楼的高度AB是多少米(根据光的反射定律:反射角等于入射角.)22.某市为改善生态环境,积极开展向雾霾宣战,还碧水蓝天专项整治活动.已知2014年共投资1000万元,2016年共投资1210万元.(1)求2014年到2016年的平均增长率;(2)该市预计2017年的投资增长率与前两年相同,则2017年的投资预算是多少万元?23.小明和小丽用形状大小相同,面值不同的5张邮票设计了一个游戏,将面值1元、2元、3元的邮票各一张装入一个信封,面值4元、5元的邮票各一张装入另一个信封,游戏规定:分别从两个信封中各抽取1张邮票,若它们的面值和是偶数,则小明赢;若它们的面值之和是奇数,则小丽赢.请你判断这个游戏是否公平,并说明理由.24.如图1,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处,如图2.(1)求证:EG=CH;(2)已知AF=2,求AD和AB的长.25. 如图,在萎形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.26. 如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t(0<t≤15).过点D作DE⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.27. 如图1,四边形ABHC与四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由;(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G,交AC于点M,求证:BD⊥CF;(3)在(2)的条件下,当AB=4,AD=2时,求线段CM的长.参考答案八年级第二学期期末考试数学试卷(北师大版)考试时间90分钟 满分100分一、选择题(每小题3分,共24分) 1.下列关于的方程:①;②;③;④();⑤1x =-1,其中一元二次方程的个数是( ) A .1 B .2 C .3 D .42.已知α为锐角,且sin(α-10°)=22,则α等于( )A .45°B .55°C .60°D .65°3.如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A 向右平移2个单位,向后平移1个单位后,所得几何体的视图( ) A.主视图改变,俯视图改变 B.主视图不变,俯视图不变 C.主视图不变,俯视图改变 D.主视图改变,俯视图不变4.二次函数y=ax 2+bx 的图象如图所示,若一元二次方程ax 2+bx+m=0有两个不相等的实数根,则整数m 的最小值为( )A .﹣3B .﹣2C .﹣1D .2(第4题图) (第5题图) (第6题图)5.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以点C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( )A .(6,0)B .(6,3)C .(6,5)D .(4,2) 6.如图,将一个长为,宽为 的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为( ) A. B. C. D.DCBA7.如图,平面直角坐标系中,直线y=﹣x+a与x、y轴的正半轴分别交于点B和点A,与反比例函数y=﹣的图象交于点C,若BA:AC=2:1,则a的值为( )A.2 B.﹣2 C.3 D.﹣38.观察二次函数y=ax2+bx+c(a≠0)的图象,下列四个结论:①4ac﹣b2>0;②4a+c<2b;③b+c<0;④n(an+b)﹣b<a(n≠1).正确结论的个数是()A. 4个 B. 3个 C. 2个 D. 1个(第7题图) (第8题图) (第12题图) (第13题图)二、填空题(每小题3分,共21分)9.计算:﹣14+﹣4cos30°= .10.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数=-2+6y x 的图象无.公共点,则这个反比例函数的表达式是(只写出符合条件的一个即可).11.若关于x的一元二次方程..(m-2)x²+2x-1=0有实数根,求m的取值范围。

北师大版八年级下学期数学期末考试试题(含答案)(山东地区)

北师大版八年级下学期数学期末考试试题(含答案)(山东地区)

八年级下学期数学期末考试试题(满分:150分时间:120分钟)一.单选题。

(每小题4分,共40分)(第2题图)(第3题图)3.如图,△ABC沿直线m向右平移2cm,得到△DEF,下列说法错误的是()A.AC∥DFB.AB=DEC.CF=2cmD.DE=2cm8.如图,将△ABC绕点A按逆时针方向旋转110°得到△AB’C’,连接BB’,若AC’∥BB’,则∠CAB’的度数为()A.75°B.80°C.85°D.90°(第8题图) (第9题图) (第10题图)9.如图,在Rt △ABC 中,∠C=90°,D ,E 分别为CA ,CB 中点,BF 平分∠ABC ,交DE 于点F ,若AC=2√5,BC=4,则DF 的长为( ) A.0.5 B.1 C.1.5 D.2二.填空题。

(每小题4分,共24分) 11.因式分解:2ab -4a= .12.已知一个正n 变形的每个内角都为120°,则n= .13.如图,随机闭合开关S 1,S 2,S 3中的两个,能够让灯泡发亮的概率为 .(第13题图) (第15题图) (第16题图)14.关于x 的方程a x+4-x -1x+4=0产生增根,则m= .三.解答题。

17.(6分)解方程x 2-4x -2=0.18.(6分)计算:2aa 2- 4-1a+2.19.(6分)如图,已知平行四边形ABCD 中,AC ,BD 交于点O ,点E ,F 分别在OA ,OC 上,且AE=CF ,求证:∠EBO=∠FDO.20.(8分)解不等式组{4x >2x -6x+13≥x -1,把解集表示在数轴上,并写出所有整数解.答案1.C2.B3.D4.D5.C6.D7.C8.A9.B 10.C14.﹣5 16.711.2a(b-2)12.6 13.2317.x1=2+√6,x2=2-√6.18.1a-219.略20.不等式组解集:﹣3<x≤2 整数解:﹣2,﹣1,0,1,221.(1)略(2)B2(2,2)(3)(0,﹣1)22.(1)2÷3=23(2)4923.(1)8米(2)115 200元24.(1)略(2)2025.(1)(m+1)(m-7)(2)x=2,y=﹣3时,最小值为3.(3)最大值为1326.(1)略(2)∠BAD=60°(3)3√32。

北师大版八年级下册数学《期末》考试及答案【必考题】

北师大版八年级下册数学《期末》考试及答案【必考题】

北师大版八年级下册数学《期末》考试及答案【必考题】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2 C .m <3 D .m <3且m ≠25.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x<5,化简2(1)x-+|x-5|=________.2.若最简二次根式1a+与8能合并成一项,则a=__________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a,b,c,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=________.5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x y x y -=⎧⎨+=⎩ (2)272253x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E .(1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,ABCD 的面积是 .5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、B4、D5、D6、C7、C8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、42、13、如果两个角互为对顶角,那么这两个角相等4、a+c5、36、6三、解答题(本大题共6小题,共72分)1、(1)11xy=⎧⎨=⎩;(2)23xy=⎧⎨=⎩2、11a-,1.3、(1)略(2)1或24、(1)略;(2)4.5、CD的长为3cm.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。

八年级数学下册期末考试卷附答案(北师大版)

八年级数学下册期末考试卷附答案(北师大版)

八年级数学下册期末考试卷附答案(北师大版)(满分:120分;考试时间:120分钟)一.单选题。

(每小题4分,共40分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )2.若x >y ,则下列不等式一定成立的是( )A.x+4>y+6B.x -8<y -8C.x9>y9 D.﹣a >﹣b 3.下列各式:①3x ;②a+b 4;③y 3y ;④xyπ+2,其中是分式的是( )A.①③B.③④C.①②D.①②③④ 4.关于x 的方程5x x -2=ax -2+1有增根,则a 的值是( )A.0B.2或3C.2D.3 5.如果把5a a+b中的a ,b 同时扩大10倍,那么这个代数式的值( )A.不变B.扩大50倍C.扩大10倍D.缩小大原来的1106.如图,在四边形ABCD 中,AB ∥CD ,要使四边形ABCD 是平行四边形,下列添加的条件不正确的是( )A.AB=CDB.BC=ADC.∠A=∠CD.BC ∥AD(第6题图) (第7题图) (第8题图) 7.如图,正五边形ABCDE 中,连接BE ,则∠ABE 的度数为( ) A.30° B.36° C.54° D.72°8.如图,一个长为2,宽为1的长方形以所示姿态从直线l的左侧水平平移至右侧(图中的虚线是水平线),其中,平移的距离是()A.1B.2C.3D.2√29.若不等式组{x<1x<a的解集是x<a,则a的取值范围是()A.a≤1B.a=1C.a≥1D.a<1二.填空题。

(每小题4分,共24分)11.因式分解:a2-6a= .12.若分式x+1x-1的值为0,则x的值是 .13.如图,正方形AMNP的边AM在正五边形ABCDE的边AB上,则∠PAE等于 .(第13题图)(第15题图)(第16题图)14.若不等式(a-4)x>1的解集是x<1a-4,则m的取值范围是 .15.如图,在平行四边形ABCD中,CE平分∠BCD,若CD=5,BC=3,则AE的长是 .16.如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为15,则点C的坐标为 .三.解答题。

北师大版八年级下册数学期末考试试题含答案

北师大版八年级下册数学期末考试试题含答案

北师大版八年级下册数学期末考试试卷一、单选题1.若m n >,则下列不等式中不成立...的是()A .22m n +>+B .22m n->-C .2>2m n --D .22m n>2.下列图形:平行四边形、等腰三角形、线段、正六边形、圆,其中既是中心对称图形又是轴对称图形的有()A .1个B .2个C .3个D .4个3.下列各式从左到右的变形中,是因式分解的是()A .()()2339a a a +-=-B .()()2211a b a b a b -+=+-+C .()()2422m m m -=+-D .2211m m m m ⎛⎫+=+ ⎪⎝⎭4.下列各式中x 、y 的值均扩大为原来的2倍,则分式的值一定保持不变的是()A .2x y B .1x x y-+C .2x y-D .y x y+5.若关于x 的分式方程311-=-m x 的解为2x =,则m 的值为()A .5B .4C .3D .26.如图,在ABC 中,AB AC =,AD AB ⊥交BC 于点D ,120BAC ∠=︒,4=AD ,则BC 的长()A .8B .10C .11D .127.如图,将ABC 绕点A 按逆时针方向旋转80°,得到ADE ,连接BE ,若//AD BE ,CAE ∠的度数为()A .20°B .30°C .25°D .35°8.如图,一次函数1y kx b =+图象经过点()2,0A ,与正比例函数22y x =的图象交于点B ,则不等式02kx b x <+<的解集为()A .0x >B .1x >C .01x <<D .12x <<9.如图,在ABC 中,AB AC =,46BAC ∠=︒,BAC ∠的平分线与AB 的垂直平分线OD 交于点O ,点E 在BC 上,点F 在AC 上,连接EF ,将C ∠沿EF 折叠,点C 与点O 恰好重合时,则OEC ∠的度数()A .90°B .92°C .95°D .98°二、填空题10x 的取值范围是______.11.已知一个正多边形的一个内角是120º,则这个多边形的边数是_______.12.若1n m -=,则22242m mn n -+的值为______.13.如图:在ABC 中,90ACB ∠=︒,AD 平分CAB ∠交BC 于点D ,且2BD CD =,9BC cm =,则点D 到AB 的距离为______.14.不等式5132x x -+>-的正整数解为______.15.如图,ABC ∆,D 、E 分别是BC 、AC 的中点,BF 平分ABC ∠,交DE 于点F ,若10AB =,8BC =,则EF 的长是______.16.关于x 的分式方程2433x m mx x++=--的解为非负数,则实数m 的取值范围______.17.如图,四边形ABCD 中,//AB DC ,6DC =cm ,9AB =cm ,点P 以1cm/s 的速度由A 点向B 点运动,同时点Q 以2cm/s 的速度由C 点向D 点运动,其中一点到达终点时,另一点也停止运动,当线段PQ 将四边形ABCD 截出一个平行四边形时,此时的运动时间为______s .18.如图,BD 是ABC 的内角平分线,CE 是ABC 的外角平分线,过A 分别作AF BD ⊥、AG CE ⊥,垂足分别为F 、G ,连接FG ,若6AB =,5AC =,4BC =,则FG 的长度为____三、解答题19.(1)因式分解:32231212x x y xy -+(2)解不等式组:()3241213x x x x ⎧--<⎪⎨+>-⎪⎩,并把解集表示在数轴上.20.(1)先化简,再求值:236214422m m m m m m+-÷++++-,其中5m =.(2)解方:2231111x x x +=+--21.如图,在平面直角坐标系中,网格的每个小方格都是边长为1个单位长度的正方形,ABC 的顶点均落在格点上.(1)将ABC 先向右平移6个单位长度再向下平移1个单位长度,得到111A B C △,在网格中画出111A B C △;(2)作ABC 关于x 轴的轴对称图形,得到222A B C △,在网格中画出222A B C △.22.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,E 、F 分别是AB ,AC 上的点,且BE AF =,连接AD 、DE 、DF 、EF .求证:①BED ≌AFD V ②DE DF⊥23.某服装厂准备加工260套运动服,在加工了60套后,采用新技术,使每天的工作效率是原来的2倍,结果共用了8天完成,求该厂原来每天加工多少套运动服.24.如图,在ABCD 中,过点B 作BM AC ⊥,交AC 于点E ,交CD 于点M ,过点D 作DN AC ⊥,交AC 于点F ,交AB 于点N .(1)求证:四边形BMDN 是平行四边形;(2)已知125AF EM ==,,求AN 的长.25.甲、乙两家商场以相同的价格出售同样的商品,为了吸引顾客各自推出不同的优惠方案:在甲商场购买商品超过300元之后,超过部分按8折优惠;在乙商场购买商品超过200元之后,超过部分按8.5折优惠,设甲商场实际付费为1y 元,乙商场实际付费为2y 元,顾客购买商品金额为x 元()300x >.(1)分别求出1y ,2y 与x 的函数关系式;(2)比较顾客到哪个商场更优惠,并说明理由.26.在ABC 中,5AB BC ==,6AC =,将ABC 沿BC 方向平移得到DCE ,A ,C 的对应点分别是D 、E ,连接BD 交AC 于点O .(1)如图1,将直线BD 绕点B 顺时针旋转,与AC 、DC 、DE 分别相交于点I 、F 、G ,过点C 作//CH BG 交DE 于点H .①求证:IBC ≌HCE ②若DF CF =,求DG 的长;(2)如图2,将直线BD 绕点O 逆时针旋转()90αα<︒,与线段AD 、BC 分别交于点P 、Q ,在旋转过程中,四边形ABQP 的面积是否发生变化?若不变,求出四边形ABQP 的面积,若变化,请说明理由;(3)在(2)的旋转过程中,AOP 能否为等腰三角形,若能,请直接写出PQ 的长,若不能,请说明理由.参考答案1.B 【详解】解:A .∵m n >,不等式两边同时加2,不等号方向不变,∴22m n +>+,故A 不符合题意;B .∵m n >,不等式两边同时乘以-2,-2<0,不等号方向改变,∴22m n -<-,故B 符合题意;C .∵m n >,不等式两边同时加-2,不等号方向不变,∴22m n ->-,故C 不符合题意;D .∵m n >,不等式两边同时乘以12,12>0,不等号方向不变,∴22m n>,故D 不符合题意;故选B .2.C 【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:平行四边形不是轴对称图形,但是中心对称图形;等腰三角形是轴对称图形,不是中心对称图形;线段、正六边形、圆既是中心对称图形又是轴对称图形,所以既是中心对称图形又是轴对称图形的有3个.故选:C .3.C 【分析】将多项式写成几个整式的积的形式,叫做将多项式分解因式,也叫因式分解,根据定义解答.【详解】解:A 、()()2339a a a +-=-不是因式分解;B 、()()2211a b a b a b -+=+-+不是因式分解;C 、()()2422m m m -=+-是因式分解;D 、2211m m m m ⎛⎫+=+ ⎪⎝⎭不是因式分解;故选:C .【点睛】此题考查因式分解,掌握因式分解的定义及因式分解的方法是解题的关键.4.D 【解析】【分析】根据分式的基本性质,分子分母同时乘除同一个不为零的数或式,分式的值不发生改变进行变形即可求解.【详解】解:根据题意,将x 变成2x,y 变成2y 化简求解:A.2x y 变成22222(2)4x x xy y y =≠,该选项不符合题意,B.1x x y -+变成21122x x x y x y --≠++,该选项不符合题意,C.2x y -变成2222x y x y ≠--,该选项不符合题意,D.yx y+变成22()y y x y x y =++,该选项符合题意,【点睛】本题考查了分式的基本性质,属于基础题,掌握分式的性质是解题关键. 5.B【解析】【详解】分析:直接解分式方程进而得出答案.详解:解分式方程311mx-=-得,x=m-2,∵关于x的分式方程311mx-=-的解为x=2,∴m-2=2,解得:m=4.故选B.点睛:此题主要考查了分式方程的解,正确解方程是解题关键.6.D【解析】【分析】依据等腰三角形的内角和,即可得到∠C=∠B=30°,依据AD⊥AB交BC于点D,即可得到BD=2AD=8,∠CAD=30°=∠B,CD=AD=4,进而得出BC的长.【详解】解:∵△ABC中,AB=AC,∠BAC=120°,∴∠C=∠B=30°,∵AD⊥AB交BC于点D,∴BD=2AD=8,∠CAD=30°=∠B,∴CD=AD=4,∴BC=BD+CD=8+4=12.故选:D.【点睛】本题主要考查了含30°角的直角三角形的性质以及等腰三角形的性质,解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.【解析】【分析】由旋转的性质可知AB AE =,CAD BAE ∠=∠,即可求出50AEB ABE ∠=∠=︒.再由平行线的性质可知EAD AEB ∠=∠,最后由CAE CAD EAD ∠=∠-∠,即可求出CAE ∠的大小.【详解】∵ADE 是由ABC 绕点A 按逆时针方向旋转80︒得到,∴AB AE =,80CAD BAE ∠=∠=︒,∴1(180)502AEB ABE BAE ∠=∠=︒-∠=︒.∵//AD BE ,∴50EAD AEB ∠=∠=︒,∴805030CAE CAD EAD ∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题考查旋转的性质,等腰三角形的判定和性质,平行线的性质.利用数形结合的思想是解答本题的关键.8.D 【解析】【分析】当x >1时,直线y=2x 都在直线y=kx+b 的上方,当x <2时,直线y=kx+b 在x 轴上方,于是可得到不等式0<kx+b <2x 的解集.【详解】解:当x >1时,2x >kx+b ,∵函数y=kx+b (k≠0)的图象经过点B (2,0),∴x <2时,kx+b >0,∴不等式0<kx+b <2x 的解集为1<x <2.故选D .【点睛】本题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.9.B 【解析】【分析】连接OB 、OC .由角平分线和垂直平分线的性质可求出1232ABO BAC ∠=∠=︒,再由等腰三角形的性质可求出67ABC ACB ∠=∠=︒,由OBC ABC ABO ∠=∠-∠,即可求出OBC ∠的大小.在AOB 和AOC △中,利用“SAS”易证AOB AOC ≅ ,即得出OB=OC ,从而可求出44OBC OCB ∠=∠=︒.再由题意折叠可知OE=CE ,即得出44EOC ECO ∠=∠=︒,最后由180OEC EOC ECO ∠=︒-∠-∠,即可求出OEC ∠的大小.【详解】如图,连接OB 、OC.∵46BAC ∠=︒,BAC ∠的平分线与AB 的垂直平分线OD 交于点O ,∴1232OAB OAC ABO BAC ∠=∠=∠=∠=︒.∵AB=AC ,∴1(180)672ABC ACB BAC ∠=∠=︒-∠=︒,∴44OBC ABC ABO ∠=∠-∠=︒.在AOB 和AOC △中,AB AC OAB OAC AO AO =⎧⎪∠=∠⎨⎪=⎩,∴()AOB AOC SAS ≅ ,∴OB=OC ,∴44OBC OCB ∠=∠=︒.由题意将C ∠沿EF 折叠,点C 与点O 恰好重合,∴OE=CE ,∴44EOC ECO ∠=∠=︒,∴18092OEC EOC ECO ∠=︒-∠-∠=︒.故选:B .【点睛】本题考查角平分线、线段垂直平分线的性质,等腰三角形的性质,全等三角形的判定和性质,折叠的性质.作出辅助线构造等腰三角形是解答本题的关键.综合性强,较难.10.1≥x 且3x ≠【解析】【分析】直接利用二次根式有意义被开方数是非负数、分式有意义则分母不为零,进而得出答案.【详解】由题意知:x−1≥0且x−3≠0,解得:x≥1且x≠3.故答案为:x≥1且x≠3.【点睛】此题主要考查了二次根式有意义、分式有意义,正确掌握相关有意义的条件是解题关键.11.6【解析】【详解】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解:外角是180-120=60度,360÷60=6,则这个多边形是六边形.故答案为六.12.2【解析】先把所求式子的前三项分解因式得到()2222422m mn n m n -+=-,然后整体代入计算即得答案.【详解】解:∵1m n -=,∴()22222422212m mn n m n -+=-=⨯=.故答案为:2.【点睛】本题考查了多项式的因式分解和代数式求值,属于常考题型,熟练掌握分解因式的方法和整体的数学思想是解题的关键.13.3cm【解析】【分析】先求出CD 的长,再根据角平分线的性质证得DE=CD 即可.【详解】解:∵2BD CD =,9BC cm =,∴133CD BC ==cm ,过点D 作DE ⊥AB 于E ,∵AD 平分CAB ∠交BC 于点D ,90ACB ∠=︒,∴DE=CD=3cm ,故答案为:3cm .【点睛】此题考查角平分线的性质:角平分线上的点到角两边的距离相等,熟记性质定理是解题的关键.14.1,2【解析】【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.解:去分母得:x−5+2>2x−6,移项得:x−2x >−6+5−2,合并同类项得:−x >−3,系数化为1得:x <3.故不等式的正整数解是1,2,故答案为1,2.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15.1.【解析】【分析】根据三角形中位线定理得到DE ∥AB ,DE=0.5AB=5,根据平行线的性质、角平分线的定义求出DF ,计算即可.【详解】解:D Q 、E 分别是BC 、AC 的中点,152DE AB ∴==,//DE AB ,142BD BC ==,ABF DFB ∴∠=∠,BF 平分ABC ∠,ABF DBF ∴∠=∠,DBF DFB ∠=∠,4DF DB ∴==,1EF DE DF ∴=-=,故答案为1.【点睛】本题考查的是角平分线的定义、三角形中位线定理,掌握平行线的性质、角平分线的定义是解题的关键.16.12m ≤且3m ≠【分析】先解得分式方程的解为43m x =-,再由题意可得43m -≥0,又由x≠3,即可求m 的取值范围.【详解】解:2433x m m x x ++=--,方程两边同时乘以x−3,得x +m−2m =4(x−3),去括号得,x−m =4x−12,移项、合并同类项得,3x =12−m ,解得:43m x =-,∵解为非负数,∴43m -≥0,∴m≤12,∵x≠3,∴m≠3,∴m 的取值范围为m≤12且m≠3,故答案为为:m≤12且m≠3.【点睛】本题考查分式方程的解,熟练掌握分式方程的解法,注意增根的情况是解题的关键.17.2或3【解析】【分析】设运动时间为t ,有题意可得AP=tcm ,PB=(9-t )cm ,CQ=2tcm ,DQ=(6-2t )cm ,然后分当四边形APQD 是平行四边形时,DQ=AP 和当四边形BPQC 是平行四边形时,CQ=BP ,进行求解即可.【详解】解:设运动时间为t ,有题意可得AP=tcm ,PB=(9-t )cm ,CQ=2tcm ,DQ=(6-2t )cm ,∵AB ∥CD∴当四边形APQD 是平行四边形时,DQ=AP ,解得t=2;当四边形BPQC 是平行四边形时,CQ=BP ,∴9-t=2t ,解得t=3,∴当t=2或3时,线段PQ 将四边形ABCD 截出一个平行四边形,故答案为:2或3.【点睛】本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握相关知识进行求解.18.32【解析】【分析】延长AF 交BC 延长线于H ,延长AG 交BC 延长线于I ,由BD 平分∠ABC ,AF ⊥BF ,可得∠CBF=∠ABF ,∠HFB=∠AFB=90°,可证△HBF ≌△ABF (ASA ),可得BH=BA=6,HF=AF ,由CE 平分∠ACI ,AG ⊥CE ,可得∠ICG=∠ACG ,∠IGC=∠AGC=90°,可证△ICG ≌△ACG (ASA ),可得CI=CA=5,IG=AG,可证FG 为△AHI 的中位线即可.【详解】解:延长AF 交BC 延长线于H ,延长AG 交BC 延长线于I ,∵BD 平分∠ABC ,AF ⊥BF ,∴∠CBF=∠ABF ,∠HFB=∠AFB=90°,在△HBF 和△ABF 中,HBF ABF BF BF HFB AFB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△HBF ≌△ABF (ASA ),∴BH=BA=6,HF=AF ,∵CE 平分∠ACI ,AG ⊥CE ,∴∠ICG=∠ACG ,∠IGC=∠AGC=90°,在△ICG 和△ACG 中,ICG ACG CG CG IGC AGC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ICG ≌△ACG (ASA ),∴CI=CA=5,IG=AG ,∴IH=BC+CI-BH=4+5-6=3,∵HF=AF ,IG=AG ,∴FG 为△AHI 的中位线,∴FG=1133222HI =⨯=.故答案为32.【点睛】本题考查角平分线定义,垂线定义,三角形全等判定与性质,三角形中位线性质,线段和差,本题难度不大,训练画图构思能力,通过辅助线画出准确图形是解题关键.19.(1)()232x x y -;(2)14x <<,图见解析【解析】【分析】(1)先提公因式3x ,再利用完全平方公式进行因式分解即可;(2)先分别求出每一个不等式的解集,进而求出其公共解即可.【详解】解:(1)原式2223(44)3(2)x x xy y x x y =-+=-;(2)()3241213x x x x ⎧--<⎪⎨+>-⎪⎩①②解不等式①,得1x >,解不等式②,得4x <,在同一数轴上表示不等式①②的解集如下:∴不等式组的解集为:14x <<.【点睛】本题考查提公因式法、公式法分解因式,解一元一次不等式组,熟练掌握因式分解的方法以及解一元一次不等式组的基本步骤是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(1)22m -,23;(2)0x =【解析】【分析】(1)先利用完全平方公式和分式混合运算法则进行化简,然后代值计算即可;(2)先把方程两边同时乘以()()11x x +-化为整式方程,然后求解即可.【详解】解:(1)236214422m m m m m m+-÷++++-()()23221222m m m m m ++=⨯---+3122m m =---22m =-,当5x =时,原式22523==-.(2)2231111x x x +=+--方程两边同时乘以()()11x x +-得()()21311x x -++=,整理得22331x x -++=,解得0x =.检验:将0x =代入原方程,左边1=-=右边,∴原方程的根是0x .【点睛】本题主要考查了分式的化简求值,解分式方程,解题的关键在于能够熟练掌握相关知识进行求解.21.(1)见解析;(2)见解析【解析】【分析】(1)利用点平移的坐标特征写出A 1、B 1、C 1的坐标,然后描点即可;(2)利用关于x 轴对称的点的坐标特征写出A 2、B 2、C 2的坐标,然后描点即可.【详解】解:(1)由图可得:A (-4,5)、B (-5,2)、C (-3,1)∴平移后的坐标:A 1(2,4)、B 1(1,1)、C 1(3,0)如图,111A B C △即为所求.(2)对称后的坐标:A 2(-4,-5)、B 2(-5,-2)、C 2(-3,-1)如图,222A B C △即为所求.【点睛】本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.22.①见解析;②见解析【解析】【分析】①证明:根据等腰直角三角形的性质推出1452DAF DAB BAC ∠=∠=∠=︒,45B C ∠=∠=︒,BD AD =,即可证得结论;②根据全等的性质证得BDE ADF ∠=∠,利用AD BC ⊥证得结论.【详解】解:①证明:在ABC 中,AB AC =,90BAC ∠=︒,点D 是BC 的中点,∴1452DAF DAB BAC ∠=∠=∠=︒,45B C ∠=∠=︒,∵B DAB ∠=∠,∴BD AD =,∵B DAF ∠=∠,BE AF =,∴BED ≌AFD V ;②证明:由①可知,BED ≌AFD V ,∴BDE ADF ∠=∠,∵AB AC =,点D 是BC 的中点,∴AD BC ⊥,∴90ADB ∠=︒,∴90ADE BDE ∠+∠=︒,∴90ADE ADF ∠+∠=︒,∴90EDF ∠=︒,∴DE DF ⊥.【点睛】此题考查了等腰直角三角形的性质,全等三角形的判定及性质,熟记等腰直角三角形的性质及全等三角形的判定定理是解题的关键.23.该厂原来每天加工20套运动服.【解析】【分析】设该厂原来每天加工x 套运动服,则采用新技术后每天加工2x 套运动服,由题意:某服装厂准备加工260套运动服,在加工了60套后,采用新技术,使每天的工作效率是原来的2倍,结果共用了8天完成,列出分式方程,解方程即可.【详解】解:设该厂原来每天加工x 套运动服,则采用新技术后每天加工2x 套运动服.根据题意得:602606082x x-+=解这个方程得20x =,经检验:20x =是原方程的根.答:该厂原来每天加工20套运动服.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.(1)见解析;(2)13【解析】【分析】(1)只要证明DN ∥BM ,DM ∥BN 即可;(2)只要证明△CEM ≌△AFN ,可得FN =EM =5,在Rt △AFN 中,根据勾股定理AN =.【详解】(1)∵四边形ABCD 是平行四边形,∴CD AB .∵BM AC DN AC ⊥⊥,,∴DN BM ,∴四边形BMDN 是平行四边形.(2)∵四边形ABCD ,BMDN 都是平行四边形,∴AB CD DM BN CD AB ==,,∥,∴CM AN MCE NAF =∠=∠,.又∵90CEM AFN ∠=∠=︒,∴()CEM AFN AAS ≌,∴5FN EM ==.在Rt AFN 中,13AN =.【点睛】本题考查平行四边形的性质和判定、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(1)10.860y x =+,20.8530y x =+;(2)当600x =时,选择甲、乙两个商场均可,当300600x <<时,选择乙商场更优惠,当x 600>时,选择甲商场更优惠.【解析】【分析】(1)在甲超市购物所付的费用:300元+0.8×超过300元的部分,在乙超市购物所付的费用:200+0.85×超过200元的部分;(2)根据(1)中解析式的费用分类讨论即可.【详解】(1)由题意得,()13000.8300y x =+-,即10.860y x =+,22000.85(200)y x =+-,即20.8530y x =+(2)当300x >时,由12y y <得:0.8600.8530x x +<+,解得:x 600>,由12y y =得:0.8600.8530x x +=+,解得:600x =,由12y y >得:0.8600.8530x x +>+,解得:600x <.∴当600x =时,选择甲、乙两个商场均可,当300600x <<时,选择乙商场更优惠,当x 600>时,选择甲商场更优惠.【点睛】本题考查了一次函数以及一元一次不等式的应用,根据题意列出正确的甲、乙两家商场的实际费用与购买商品金额x 之间的函数关系式是本题的关键.26.(1)①见解析;②2;(2)不变,12;(3)能,5PQ =或6【解析】【分析】(1)①由平移的特征可以推出三角形全等的条件,证明△IBC ≌△HCE ;②由①得IC =HE ,再证明四边形ICHG 是平行四边形,得IC =GH ,再证明△DFG ≌△CFI ,得DG =IC ,于是得DG =GH =HE =13DE =13AC ,可求出DG 的长;(2)由平行四边形的性质可证明线段相等和角相等,证明△AOP ≌△COQ ,将四边形ABQP 的面积转化为△ABC 的面积,说明四边形ABQP 的面积不变,求出△ABC 的面积即可;(3)按OP =OA 、PA =OA 、OP =AP 分类讨论,分别求出相应的PQ 的长,其中,当PA =OA 时,作OL ⊥AP 于点L ,构造直角三角形,用面积等式列方程求OL 的长,再用勾股定理求出OP 的长即可.【详解】(1)证明:①如图1,∵DCE 是由ABC 平移得到的,∴//AC DE BC CE =,∴ACB DEC ∠=∠,∵//CH BG ,∴GBC HCE∠=∠∴IBC ≌HCE②如图1,由①可知:IBC ≌HCE ,∴IC HE =,∵//AC DE ,//CH BG ,∴CI //GH ,CH //GH ,∴四边形ICHG 是平行四边形,∴IC GH =,∵//AC DE ,∴CDG DCI∠=∠∵CFI DFG ∠=∠,DF CF =,∴DFG ≌CFI △,∴DG IC =,∴DG GH HE ==,∴11233DG DE AC ===.(2)面积不变;如图2:由平移可知//AB CD ,AB CD =,∴四边形ABCD 是平行四边形,∴OA OC =,∵//AD BC ,∴APO CQO ∠=∠,∵AOP COQ ∠=∠,∴APO △≌CQO ,∴APO CQO S S =△△,APO CQO ABC ABQP AOQB AOQB S S S S S S =+=+=四边形四边形四边形△△△,∴四边形ABQP 的面积不变.∵5AB BC ==132OA OC AC ===,∴OB AC ⊥,∴90AOB ∠=︒,在Rt BOC 中222OB OC BC +=∴4OB ==,∴11641222ABC S AC OB ==⨯⨯= ,∴12ABQP S =四边形(3)如图3,OP =OA =3,由(2)得,△AOP ≌△COQ ,∴OQ =OP =3,∴PQ =3+3=6;如图4,PA =OA =3,作OL ⊥AP 于点L ,则∠OLA =∠OLP =90°,由(2)得,四边形ABCD是平行四边形,OA=3,∠AOB=90°,∴OD=OB=4,∠AOD=180°−∠AOB=90°,∵AO⊥BD,OD=OB,∴AO垂直平分BD,∴AD=AB=5,由12AD•OL=12OA•OD=AODS得,1 2×5OL=12×3×4,解得,OL=12 5,∴2222129355 AL OA OL⎛⎫=-=-=⎪⎝⎭,∴96355 PL=-=,∴222212665555OP OL PL⎛⎫⎛⎫=+=+=⎪ ⎪⎝⎭⎝⎭,∴PQ=2OP 125 5如图5,OP=AP,∵AD=AB,AC⊥BD,∴∠DAC=∠BAC,∴∠POA =∠DAC =∠BAC ,∴PQ //AB ,∵AP //BQ ,∴四边形ABQP 是平行四边形,∴PQ =AB =5,综上所述,5PQ 或6或5.【点睛】此题重点考查平行四边形的判定与性质、全等三角形的判定与性质、等腰三角形的判定、平移的特征、勾股定理以及根据面积等式列方程求线段的长度等知识与方法,解第(3)题时要进行分类讨论,求出所有符合条件的值,此题难度较大,属于考试压轴题.。

初中数学北师大版八年级下册期末-章节测试习题(2)

初中数学北师大版八年级下册期末-章节测试习题(2)

章节测试题1.【题文】(1)计算(2)解不等式组,并写出不等式组的非负整数解。

(3)解分式方程:【答案】①+2;②0、1;③原方程无解【分析】(1)首先计算负指数次幂,0次幂,二次根式的混合运算,去掉绝对值符号,化简二次根式,然后合并同类二次根式即可求解;(2)首先解每个不等式,两个不等式解集的公共部分就是不等式组的解集.(3)中因为x2-4=(x+2)(x-2),所以最简公分母为(x+2)(x-2),确定方程的最简公分母后,方程两边乘最简公分母,把分式方程转化为整式方程求解..【解答】解(1)原式=3-1-(1-)+-1=3-1-1++2-1=+2(2)解不等式①得,x≤1,解不等式②得,x<4,所以不等式组的解集是x≤1,所以不等式组的非负整数解是0、1.故答案为:0、1.(3)方程两边同乘(x+2)(x-2),得:(x-2)2=(x+2)2+16,整理解得x=-2.经检验x=-2是增根,故原方程无解.2.【题文】已知,求的值. 【答案】-【分析】将分式通分、化简,再将已知条件变形,整体代入.【解答】解:=-÷=-=-∵∴1-即1-=1-∴-=-∴原式=-3.【题文】对x,y定义一种新运算T,规定:T(x,y)=(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==b,已知T(1,1)=2.5,T(4,-2)=4.(1)求a,b的值;(2)若关于m的不等式组恰好有2个整数解,求实数P的取值范围.【答案】(1)a,b的值分别为3和2;(2)实数P的取值范围是≤p<2【分析】(1)根据题意把T(1,1)=2.5,T(4,-2)=4代入T(x,y)=即可求出ab的值;(2)根据题意列出关于m的不等式,分别解出来再根据m有两个整数解来确定p的取值.【解答】(1)根据题意得:,①+②得:3a=9,即a=3,把a=3代入①得:b=2,故a,b的值分别为3和2;(2)根据题意得:,由①得:m≤,由②得:m>p-3,∴不等式组的解集为p-3<m≤,∵不等式组恰好有2个整数解,即m=0,1,∴-1≤p-3<0,解得≤p<2,即实数P的取值范围是≤p<2.4.【题文】如图所示,已知△ABC的三个顶点的坐标分别为A(-2,3)、B(-6,0)、C(-1,0),(1)请直接写出点A关于原点O对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,求出A′点的坐标。

北师大八年级数学第二学期期末测试卷(含答案)

北师大八年级数学第二学期期末测试卷(含答案)

年级 试卷 第1页,共 页年级 试卷 第2页,共 页学校: 班级: 姓名: 考号:八年级数学第二学期期末测试卷(含答案)一、选择题(本大题共10小题,每小题3分,共30分) 1. 下列四个图案中既是轴对称图形,又是中心对称图形的是 ( )2. 不等式062<-x 的解集在数轴上表示正确的是 ( )3.分式方程253x x =-的解是( ).3A x = .2B x =-.2C x =.D 无解4. 下列多项式可以分解因式的是 ( )2.218A x - 2.2B x y + 22.C x xy y -+ 22.D x xy y ++5.下列说法正确的是 ( ).A 平移不改变图形的形状和大小,而旋转改变图形的形状和大小 .B 平移和旋转的共同点是改变图形的位置.C 图形可以向某方向平移一定距离,也可以向某方向旋转一定距离 .D 由平移得到的图形也一定可由旋转得到6. 如果把分式22a ba b +-中的,a b 都扩大3倍,那么分式的值一定 ( )A. 是原来的3倍B. 是原来的5倍C. 是原来的13倍 D. 不变7.四边形ABCD 中,对角线AC ,BD 相交于点O ,给出下列四组条件:①AB ∥CD , AD ∥BC ;②AB =CD ,AD =BC ;③AO =CO ,BO =DO ;④AB ∥CD ,AD =BC. 其中一定能判定这个四边形是平行四边形的条件有 ( )A .1组B .2组C .3组D .4组8.已知正n 边形的每个内角为135°,则边数n 的值是 ( )A .10B .6C .7D .89. 若分式方程244x ax x =+--有增根,则a 的值为( ) A .4 B .2 C .1 D .010. 如图,在周长为20cm 的平行四边形ABCD 中,AB≠AD ,AC ,BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为( )A .4cmB .6cmC .8cmD .10cm二、填空题(本大题共8小题,每小题3分,共24分) 11.当a 时,分式12a +有意义。

【新】北师大版八年级数学下册期末测试题及答案(2套)

【新】北师大版八年级数学下册期末测试题及答案(2套)

第5题图 202X ~202X 度第二学期期末测试题八年级数学本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为36分;第Ⅱ卷共6页,满分为84分.本试题共8页,满分为120分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列从左到右的变形是因式分解的是( )A.(a +3)(a —3)=a 2-9B.()2241026x x x ++=++ C.()22693x x x -+=- D.()()243223x x x x x -+=-++ 2. 分式293x x --的值为零,则x 的取值( ).A .3B .3-C .3±D .03. 下列变形正确的是( ).A .11a ab b+=+ B .11a ab b--=-- C .221a b a b a b -=--D .22()1()a b a b --=-+ 4. 有一个三角形两边长为3和4,要使三角形为直角三角形,则第三边长为( ) A .5 BC .5D .不确定5. 如图所示,同时自由转动两个转盘,指针落在每一个数上的机会均等,转盘停止后,两个指针同时落在奇数上的概率是( )A .425B .525C .625D .9256. 下列命题中正确的是 ( )A .有两条边相等的两个等腰三角形全等B .两腰对应相等的两个等腰三角形全等C .两角对应相等的两个等腰三角形全等D .一边对应相等的两个等边三角形全等 7. 如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为( )A . 100×80﹣100x ﹣80x =7644B . (100﹣x )(80﹣x )+x 2=7644C . (100﹣x )(80﹣x )=7644D . 100x +80x =3568. 下列说法中,正确的是( ) A . 同位角相等B . 对角线相等的四边形是平行四边形C . 四条边相等的四边形是菱形D . 矩形的对角线一定互相垂直9. 已知:在△ABC 中,AB ≠AC ,求证:∠B ≠∠C .若用反证法来证明这个结论,可以假设 ( )A .∠A =∠B B .AB =BC C .∠B =∠CD .∠A =∠C10.如图,在△ABC 中,∠CAB=75°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′=( )A . 30°B . 35°C . 40°D . 50°11. 随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘乘轿车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( ) A .x x 5.28158=+ B .155.288+=x xC .x x 5.28418=+D .415.288+=x x12 . 如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .19第Ⅱ卷(非选择题 共84分)注意事项:1.第Ⅱ卷为非选择题,请考生用蓝、黑色钢笔(签字笔)或圆珠笔直接在试卷上作答. 2.答卷前,请考生先将考点、姓名、准考证号、座号填写在试卷规定的位置.二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上.)13. 当x 时,分式x-31有意义 14. 在△ABC 中,∠A:∠B:∠C =1:2:3,AB =6cm ,则BC = cm . 15. 分解因式:3223x y 2x y +xy =- 16. 若关于x 的方程2222x m x x++=--有增根,则m 的值是______ 17..两个连续整数的积为42,这两个数分别为18. 如图4,正方形ABCD 中,点E 在BC 的延长线上,AC=CE,则下列结论: (1)∠ACE=1350.(2)∠E=22.50,(3)∠2=112.50.(4)AF 平分∠DAC. (5)DF=FC. 其中正确的有三、解答题(本大题共9个小题,共66分.解答应写出文字说明,证明过程或演算步骤.)得分 评卷人(1)因式分解 m 3n -9mn . (2)计算2111a a a a -++-20. (本小题满分8分)(1)解方程)12(3)12(4+=+x x x ;(2)解分式方程22121--=--xx x21. (本小题满分8分)某市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色.此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?23(本小题满分8分)如图,在平行四边形ABCD 中,对角线AC ,BD 交于点O ,经过点O 的直线交AB 于E ,交CD 于F . 求证:OE =OF .B小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?25. (本小题满分9分)如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.26. (本小题满分10分)如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.(1)证明DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.得分评卷人得分评卷人答案一.选择CBBCD D C C CA DB二.填空13.≠3, 14. 3 15.a+b 16.0 17 6\7 或-6\-7 18. (1)(2)(3)(4)(5)19.20. -1\2 3\423. 解析:证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD ……………2′∴∠OAE=∠OCF ……………4′∵∠AOE=∠COF ……………6′∴△OAE≌△OCF(ASA)∴OE=OF ……………8′24.解答:解:设购买了x件这种服装,根据题意得出:[80﹣2(x﹣10)]x=1200,解得:x1=20,x2=30,当x=30时,80﹣2(30﹣10)=40(元)<50不合题意舍去;答:她购买了30件这种服装.25解答:解:(1)ab﹣4x2;(2分)(2)依题意有:ab﹣4x2=4x2,(4分)将a=6,b=4,代入上式,得x2=3,(6分)解得x1=,x2=﹣(舍去).(7分)即正方形的边长为26解答:(1)证明:连结CE.∵点E为Rt△ACB的斜边AB的中点,∴CE=AB=AE.∵△ACD是等边三角形,∴AD=CD.在△ADE与△CDE中,,∴△ADE≌△CDE(SSS),∴∠ADE=∠CDE=30°.∵∠DCB=150°,∴∠EDC+∠DCB=180°.∴DE∥CB.(2)解:∵∠DCB=150°,若四边形DCBE是平行四边形,则DC∥BE,∠DCB+∠B=180°.∴∠B=30°.在Rt△ACB中,sinB=,sin30°=,AC=或AB=2AC.∴当AC=或AB=2AC时,四边形DCBE是平行四边形.A B CD 202X ~202X 度第二学期期末测试题八年级数学本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为36分;第Ⅱ卷共6页,满分为84分.本试题共8页,满分为120分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 下列因式分解正确的是( ). A .)(2y x x x xy x -=+- B .2223)(2b a a ab b a a -=+- C .3)1(4222+-=+-x x xD .)3)(3(92-+=-x x a ax2.如图,所给图形中是中心对称图形但不是轴对称图形的是3.下列一元二次方程有两个相等实数根的是( )A .x 2+3=0B .x 2+2x =0C .(x +1)2=0D .(x +3)(x -1)=04.已知等腰三角形两边的长分别为4,9,则这个等腰三角形的周长为( )A. 13B. 17C. 22D. 17或22 5.若代数式x 2+kxy+9 y 2是完全平方式,则k 的值是( )A 、3 ;B 、±3;C 、 6 ;D 、±66.如图,刘伯伯家有一块等边三角形的空地ABC ,已知点E 、F 分别是边AB 、AC 的中点,量得EF =5米,他想把四边形BCFE 用篱笆围成一圈放养小鸡,则需用篱笆的长是( )第6题图FECBAA CEBF A. 15米 B.20米 C.25米 D.30米7.一个多边形的每个内角均为108°,则这个多边形是( ).A .七边形B . 六边形C .五边形D .四边形8.计算22a b a b a b---的结果为( ) A .a b + B .a b - C . 22a b a b -- D . 22a b -9.四边形ABCD 中,对角线AC ,BD 相交于点O ,给出下列四个条件:①AD ∥BC ;②AD =BC ;③OA =OC ;④OB =OD . 从中任选两个条件,能使四边形ABCD 为平行四边形的选法有( )A .3种B .4种C .5种D .6种10. 如图,△ABC 中,AB=AC ,AD 是角平分线,DE ⊥AB ,DF ⊥AC ,E 、F 为垂足,对于结论:①DE=DF ;②BD=CD ;③AD 上任一点到AB 、AC 的距离相等;④AD 上任一点到B 、C 的距离相等.其中正确的是( ).A 、仅①②B 、仅③④C 、仅①②③D 、①②③④11.如图,△ABC 中,∠ABC =90°,AB =8,BC =6,点F ,D 是直线AC 上的两个动点,且FD =AC .点B 和点E 分别在直线AD 的两侧,AB =DE ,AB //DE ,当四边形BCEF 是菱形时AF 等于( )A. 75B. 145C. 5D. 4A C DFB12题图A B C D E 16题图12.如图,将一张边长为4的正三角形纸片剪成四个全等的小正三角形,得到4个小正三角形,然后将其中的一个三角形再剪成四个全等的小正三角形,得到7个小正三角形.根据以上操作,若得到202X 个小正三角形时,则最小正三角形的面积等于( ) A. 3 B.67114 C.671134⎛⎫⋅ ⎪⎝⎭D.23第Ⅱ卷(非选择题 共84分)注意事项:1.第Ⅱ卷为非选择题,请考生用蓝、黑色钢笔(签字笔)或圆珠笔直接在试卷上作答. 2.答卷前,请考生先将考点、姓名、准考证号、座号填写在试卷规定的位置.二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上.)13.分解因式:a 3-2a 2+a =_______________.14.据调查,2011年5月兰州市的房价均价为7600/m 2,2013年同期将达到8200/m 2,假设这两年兰州市房价的平均增长率为x ,根据题意,所列方程为 15.等边△ABC 的周长为12cm ,则它的面积为 .16. 如图,在□ABCD 中,∠B =80°,∠ADC 的角平分线DE 与BC 交于点E .若BE =CE , 则∠DAE = 度.17. 在△ABC 中,AB=AC=14cm ,D 为BA 的中点,DE ⊥AB 交BC 于E .若△EBC•的周长为25cm ,则BC 长为_______cm .得分 评卷人17题18题E BCFA18. 如图,在□ABCD 中,已知∠ODA =90°,AC =10cm ,BD =6cm ,则AD 的长为三、解答题(本大题共9个小题,共66分.解答应写出文字说明,证明过程或演算步骤.)19. (本小题满分6分)(1)解方程:2430x x -+=. (2)计算:222111a a aa a -+--+.20. (本小题满分6分)解方程:(1) (2)22121--=--xx x21. (本小题满分6分)(1)如图,四边形ABCD 是平行四边形,点E 、A 、C 、F 在同一直线上,且AE =CF .求证:BE =DF . 得分 评卷人 得分 评卷人得分评卷人(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC 的长.得分评卷人22. (本小题满分7分)先简化,再求值:,其中x=.得分评卷人23. (本小题满分7分)某校为了创建书香校园,购进了一批科普书和文学书.其中科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等,则文学书有多少本?24. (本小题满分8分)把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5)洗匀后正面朝下放在桌面上.(1)如果从中随机抽取一张牌,那么牌面数字是4的概率是多少?(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面数字.当2张牌面数字相同时,小王赢;当2张牌面数字不相同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.25. (本小题满分8分)如图,已知△ABC的三个顶点的坐标分别为A(-2.3)、B(-6,0)、C(-1,0)(1)请直接写出点A关于y轴对称点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°.画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.26. (本小题满分9分)如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.得分评卷人得分评卷人27. (本小题满分9分)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE.(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,∠EFD=∠BCD,并说明理由.八年级数学试题参考答案与评分标准题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 BCCCDCCABDBA二、填空题 13.2)1(-a a14. 8200)1(76002=+x 15. 234cm 16. 50 17. 11 18. 4cm三、解答题19. (1)1,321==x x (2)11+-a 20. (1) x =3 (2)x=2 是方程的增根21、解(1)略(2)AC=8 22、22 23. 100024. (1)31(2)不公平25、解:(1)点A 关于y 轴对称的点的坐标是(2,3);(2)图形如右,点B 的对应点的坐标是(0,-6);(3)以A、B、C为顶点的平行四边形的第四个顶点D的坐标为(-7,3)或(-5,-3)或(3,3).26、27、。

北师大版八年级(下)期末数学试卷二(含解析)

北师大版八年级(下)期末数学试卷二(含解析)

北师大版八年级(下)期末数学试卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.(3分)下列从左到右的变形,是分解因式的是()A.x2﹣9﹣6x=(x+3)(x﹣3)﹣6x B.x2+10x+25=(x+5)2C.(x﹣2)(x﹣5)=x2﹣7x+10D.8x2y=4x2•2y2.(3分)当x=2时,下列各式的值为0的是()A.B.C.D.3.(3分)在下列字母中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(3分)如果a<b,那么下列不等式中一定成立的是()A.a2>ab B.a2<ab C.a﹣3b<﹣2b D.a2<b25.(3分)已知正多边形的一个外角是30度,这个正多边形的边数是()A.9B.10C.11D.126.(3分)如图所示,在等腰直角三角形ABC中,AC=AB,BD⊥AH于点D,CH⊥AH于点H,HE,DF分别平分∠AHC和∠ADB,给出下列结论:①DF=HE,②DF⊥HE,③AE=BF,④△AHE≌△BDF,其中正确的是()A.①②③④B.①③④C.②③④D.①②④二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)因式分解:ma2﹣mx2=.8.(3分)关于x的不等式组的解集为2<x<5,则a的值为.9.(3分)如图,在△ABC中,∠ACB=90°,∠B=22.5°,DE垂直平分AB,交BC于点E,BE=8cm,则AC 等于cm.10.(3分)如图,△ABC绕点B顺时针旋转40°得到△EBD,若AC与DE交于点F,则∠AFE的度数是.11.(3分)关于x的分式方程:﹣2=有增根,则k的值是.12.(3分)如图,在▱ABCD中,已知AD=15cm,点P在AD边上以1cm/s的速度从点A向点D运动,点Q在BC边上以4cm/s的速度从点C出发在BC上往返运动,两个点同时出发,当点P到达点D 时停止运动(同时Q点也停止),设运动时间为t(s)(t>0),若以P,D,Q,B四点为顶点的四边形是平行四边形,则t的值可以是.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)已知a+b=10,ab=6,求a2b+ab2的值.(2)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,求∠EAC的度数.14.(6分)解不等式组,并把它的解集在数轴上表示出来.15.(6分)先化简(﹣1)÷,然后从﹣2<m≤2中选一个合适的整数作为m的值代入求值.16.(6分)在平面直角坐标系中,△ABC的顶点都在格点上,位置如图所示,请按下列要求进行图形变换.(1)将△ABC向下平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕点O顺时针旋转90°得到△A2B2C2,请画出△A2B2C2,并写出A2,B2,C2的坐标.17.(6分)在▱ABCD中,点E在AD上,仅用无刻度的直尺按要求作图(保留作图痕迹).(1)在图1中,在BC上找一点F,使AE=CF.(2)在图2中,若AB=AE,作∠D的平分线DG.四、(本大题共3小题,每小题8分,共24分)18.(8分)直线y=kx+b经过点A(2,4)和点B(﹣4,0),在同一直角坐标系中画出直线AB和直线y=2x的图象.(1)求不等式2x>kx+b的解集;(2)点M是AB的中点,点N是OB的中点,求线段MN的长.19.(8分)我市某学校疫情期间,3月份在某商场购买普通口罩和N95口罩两种不同口罩,购买普通口罩共花费3000元,购买N95口罩共花费7500元,购买普通口罩数量是购买N95口罩数量的2倍,且购买一个N95口罩比购买一个普通口罩多花12元.(1)求购买一个普通口罩、一个N95口罩各需多少元;(2)4月份疫情防控工作毫不放松,这所学校决定再次购买普通口罩和N95口罩共400个,恰逢该商场对两种口罩的售价进行调整,两种口罩售价比第一次购买时都降低了20%,如果此次购买两种口罩的总费用不超过2400元,那么这所学校最多可购买多少个N95口罩?20.(8分)如图,D是等边△ABC的边BC上一点,以AD为边构造等边△ADE,点F是AB上一动点,连接BE,EF,CF.(1)若四边形CDEF是平行四边形,求证:BF=CD;(2)若AB=2,D是BC中点,求EF的最小值.五、(本大题共2小题,每小题9分,共18分)21.(9分)在△ABC中,BD平分∠ABC.观察问题:如图1,若∠C=90°,AB=5,BC=4,试说明.探索问题:如图2,若AB=5,BC=4.①问是否为定值,若是定值,求出这个定值,若不是请说明理由;②通过前两个问题的探究,我们发现,三角形内角平分线的性质:三角形内角平分线分对边所得的两条线段的比值()与夹这个角两边的比值()(填“相等”或“不相等”);解决问题:①如图3,在△ABC中,若∠C=90°,AD=CD=,则∠A=.②如图4,将图3中的△BCD逆时针旋转67.5°得△BEF,连接DF交AB于G,求.22.(9分)先阅读下面的解法,然后解答问题.例:已知多项式3x3﹣x2+m分解因式的结果中有一个因式是(3x+1),求实数m.解:设3x3﹣x2+m=(3x+1)•K(K为整式)令(3x+1)=0,则x=﹣,得3(﹣)3﹣(﹣)2+m=0,∴m=.这种方法叫特殊值法,请用特殊值法解决下列问题.(1)若多项式x2+mx﹣8分解因式的结果中有一个因式为(x﹣2),则实数m=;(2)若多项式x3+3x2+5x+n分解因式的结果中有一个因式为(x+1),求实数n的值;(3)若多项式x4+mx3+nx﹣14分解因式的结果中有因式(x+1)和(x﹣2),求m,n的值.六、(本大题共12分)23.(12分)在四边形ABCD中,∠ABC=∠ADC=α(0°<α<90°),AD∥BC.(1)如图1,求证:四边形ABCD是平行四边形;(2)如图2,BE平分∠ABC,交AD于点E,若α=30°,AB=2,求△ABE的面积;(3)如图3,BE平分∠ABC,交AD于点E,作AH⊥CD交射线DC于点H,交BE于点F,若AB=AH,请探究线段AF,DE,CH的数量关系.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.(3分)下列从左到右的变形,是分解因式的是()A.x2﹣9﹣6x=(x+3)(x﹣3)﹣6xB.x2+10x+25=(x+5)2C.(x﹣2)(x﹣5)=x2﹣7x+10D.8x2y=4x2•2y【分析】根据分解因式是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、没把一个多项式转化成几个整式积的形式,原变形错误,故此选项不符合题意;B、把一个多项式转化成几个整式积的形式,原变形正确,故此选项符合题意;C、是整式的乘法,不是分解因式,故此选项不符合题意;D、是单项式变形,不是分解因式,故此选项不符合题意;故选:B.【点评】本题考查了分解因式的定义.解题的关键是掌握因式分解的意义,判断因式分解看是否把一个多项式转化成几个整式积的形式.2.(3分)当x=2时,下列各式的值为0的是()A.B.C.D.【分析】根据分式的值为0的条件对各选项进行逐一分析即可.【解答】解:A、当x=2时,分母x﹣2=0,该分式无意义,故本选项不符合题意.B、当x=2时,分子3x﹣6=0,且分母x+2≠0,故本选项符合题意.C、当x=2时,分母x2﹣x﹣2=0,该分式无意义,故本选项不符合题意.D、当x=2时,分子x+2=4≠0,故本选项不符合题意.故选:B.【点评】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.3.(3分)在下列字母中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;C、既是轴对称图形,也是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:C.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)如果a<b,那么下列不等式中一定成立的是()A.a2>ab B.a2<ab C.a﹣3b<﹣2b D.a2<b2【分析】利用反例对A、B、D进行判断;根据不等式的性质对C进行判断.【解答】解:A、a=1,b=2,a2<ab,所以A选项的式子不成立;B、a=﹣1,b=2,则a2>ab,所以B选项的式子不成立;C、若a<,则a﹣3b<b﹣3b,所以C选项的式子成立;D、a=﹣1,b=0,a2>b2,所以D选项的式子不成立.故选:C.【点评】本题考查了不等式的性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.5.(3分)已知正多边形的一个外角是30度,这个正多边形的边数是()A.9B.10C.11D.12【分析】多边形的外角和是360°,正多边形的每个外角都相等,且一个外角的度数为30°,由此即可求出答案.【解答】解:因为360÷30=12,则正多边形的边数为12.故选:D.【点评】本题主要考查了多边形的外角和定理,已知正多边形的外角求正多边形的边数是一个考试中经常出现的问题.6.(3分)如图所示,在等腰直角三角形ABC中,AC=AB,BD⊥AH于点D,CH⊥AH于点H,HE,DF分别平分∠AHC和∠ADB,给出下列结论:①DF=HE,②DF⊥HE,③AE=BF,④△AHE≌△BDF,其中正确的是()A.①②③④B.①③④C.②③④D.①②④【分析】利用同角的余角相等,得∠CAH=∠ABD,再利用AAS判定△AHC≌△BDA,如图,延长BD与AC相交于点M,延长FD、HE,两延长线交于点G,证明CH∥BM,同旁内角∠CHD与∠MDH互补,两角的平分线互相垂直;利用角平分线的定义,得∠EHA=∠FDB,又∵∠EAH=∠FBD,AH=BD,得出△EHA≌△FDB,进而得出结论;根据△EHA≌△FDB,得AE=BF.【解答】解:∵∠CAH+∠BAD=90°,∠ABD+∠BAD=90°∴∠CAH=∠ABD又∵∠CHA=∠ADB=90°,AC=AB∴△AHC≌△BDA(AAS),∴AH=BD,如图,延长BD与AC相交于点M,延长FD、HE,两延长线交于点G,∵∠CHD+∠HDM=90°+90°=180°,∴CH∥BM,∵DF平分∠ADB,∴DG平分∠HDM,又∵HE平分∠AHC,∴∠HGD=90°,∴DF⊥HE;故②正确;∵HE,DF分别平分∠AHC和∠ADB,∴∠EHA=∠CHA,∠FDB=∠ADB,又∵∠CHA=∠ADB,∴∠EHA=∠FDB,又∵∠EAH=∠FBD,AH=BD,∴△EHA≌△FDB(SAS),故④正确;∴DF=HE;故①正确;∵△EHA≌△FDB∴AE=BF;故③正确;故选:A.【点评】本题考查了全等三角形的判定及其性质,平行线的性质,同角的余角相等等知识.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)因式分解:ma2﹣mx2=m(a+x)(a﹣x).【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=m(a2﹣x2)=m(a+x)(a﹣x).故答案为:m(a+x)(a﹣x).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.8.(3分)关于x的不等式组的解集为2<x<5,则a的值为10.【分析】先求出不等式组的解集,根据已知得出方程a﹣5=5,求出方程的解即可.【解答】解:,解不等式①得:x>2,解不等式②得:x<a﹣5,所以不等式组的解集为:2<x<a﹣5,∵关于x的不等式组的解集为2<x<5,∴a﹣5=5,解得:a=10,故答案为:10.【点评】本题考查了解一元一次不等式组和解一元一次方程,能求出a﹣5=5是解此题的关键.9.(3分)如图,在△ABC中,∠ACB=90°,∠B=22.5°,DE垂直平分AB,交BC于点E,BE=8cm,则AC 等于4cm.【分析】根据线段垂直平分线的性质得到EA=EB=8,根据等腰直角三角形的性质、勾股定理计算,得到答案.【解答】解:∵DE垂直平分AB,∴EA=EB=8,∴∠EAB=∠B=22.5°,∴∠AEC=∠EAB+∠B=45°,∴AC=EC,由勾股定理得,AC2+EC2=AE2,即AC2+AC2=82,解得,AC=4,故答案为:4.【点评】本题考查的是线段的垂直平分线的性质、等腰直角三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.10.(3分)如图,△ABC绕点B顺时针旋转40°得到△EBD,若AC与DE交于点F,则∠AFE的度数是40°.【分析】根据旋转的性质,可以得到∠A=∠E,∠ABO=40°,再根据对顶角相等可以得到∠AOB=∠FOE,然后根据三角形内角和,可以得到∠AFE的度数.【解答】解:设AC与EB交于点O,如右图所示,∵△ABC绕点B顺时针旋转40°得到△EBD,∴∠A=∠E,∠ABO=40°,又∵∠AOB=∠FOE,∴∠ABO=∠EFO=40°,∴∠AFE=40°,故答案为:40°.【点评】本题考查旋转的性质、三角形内角和,解答本题的关键是明确题意,利用数形结合的思想解答.11.(3分)关于x的分式方程:﹣2=有增根,则k的值是2.【分析】先将方程两边都乘以x﹣3得到整式方程,再将分式方程的增根x=3代入整式方程求解可得.【解答】解:两边都乘以x﹣3,得:x﹣1﹣2(x﹣3)=k①,∵分式方程有增根,∴增根为x=3,将x=3代入①,得:3﹣1=k,解得k=2,故答案为:2.【点评】本题考查了分式方程的增根,把分式方程的曾根跟代入整式方程得出关于k的一元一次方程是解题关键.12.(3分)如图,在▱ABCD中,已知AD=15cm,点P在AD边上以1cm/s的速度从点A向点D运动,点Q在BC 边上以4cm/s的速度从点C出发在BC上往返运动,两个点同时出发,当点P到达点D时停止运动(同时Q点也停止),设运动时间为t(s)(t>0),若以P,D,Q,B四点为顶点的四边形是平行四边形,则t的值可以是6或10或12.【分析】根据平行四边形的性质得出DP=BQ,分情况讨论,再列出方程,求出方程的解即可.【解答】解:设经过t秒,以点P、D、Q、B为顶点组成平行四边形,∵P在AD上运动,∴t≤=15,即t≤15,∵以点P、D、Q、B为顶点组成平行四边形,∴DP=BQ,分为以下情况:①点Q的运动路线是C﹣B﹣C,方程为4t﹣15=15﹣t,解得:t=6;②点Q的运动路线是C﹣B﹣C﹣B,方程为15﹣(4t﹣30)=15﹣t,解得:t=10;③点Q的运动路线是C﹣B﹣C﹣B﹣C,方程为4t﹣45=15﹣t,解得:t=12;故答案为:6或10或12.【点评】本题考查了平行四边形的判定与性质,能求出符合的所有情况是解此题的关键,用了分类讨论思想.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)已知a+b=10,ab=6,求a2b+ab2的值.(2)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,求∠EAC的度数.【分析】(1)a2b+ab2分解因式,然后代入即可求得;(2)根据平行线的性质求出∠EAB,从而求得∠ABC,根据等腰三角形的性质求得∠BAC,然后根据三角形内角和定理即可解决问题.【解答】解:(1)∵a+b=10,ab=6,∴a2b+ab2=ab(a+b)=6×10=60;(2)∵BD平分∠ABC,∴∠ABD=∠DBC,∵AE∥BD,∴∠ABD=∠BAE,∠DBC=∠E.∴∠BAE=∠E=35°,∴∠ABC=70°.∵AB=AC,∴∠ACB=∠ABC=70°,∴∠BAC=180°﹣70°×2=40°,∴∠EAC=40°+35°=75°.【点评】此题考查了等腰三角形的性质、平行线的性质以及角平分线的定义.注意等边对等角定理的应用,也考查了因式分解的应用.14.(6分)解不等式组,并把它的解集在数轴上表示出来.【分析】先求出不等式组的解集,再在数轴上表示出不等式组的解集【解答】解:,由①得:x<5,由②得:x>1,所以不等式组的解集为:1<x<5,解集在数轴上表示为:.【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能求出不等式组的解集是解此题的关键.15.(6分)先化简(﹣1)÷,然后从﹣2<m≤2中选一个合适的整数作为m的值代入求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把m的值代入计算即可求出值.【解答】解:原式=(﹣)•=•=•=,∵﹣2<m≤2,m≠2且m≠﹣1,∴m=0时,原式=﹣1;m=1时,原式=0.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.16.(6分)在平面直角坐标系中,△ABC的顶点都在格点上,位置如图所示,请按下列要求进行图形变换.(1)将△ABC向下平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕点O顺时针旋转90°得到△A2B2C2,请画出△A2B2C2,并写出A2,B2,C2的坐标.【分析】(1)根据点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出A、B、C的对应点A2,B2,C2,然后写出它们的坐标即可.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,A2(3,2),B2 (1,3),C2(2,1).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.17.(6分)在▱ABCD中,点E在AD上,仅用无刻度的直尺按要求作图(保留作图痕迹).(1)在图1中,在BC上找一点F,使AE=CF.(2)在图2中,若AB=AE,作∠D的平分线DG.【分析】(1)连接AC,BD交于点O,作直线EO交BC于F,点F即为所求.(2)连接AC,BD交于点O,作直线EO交BC于G,作射线DG,射线DG即为所求.【解答】解:(1)如图,点F即为所求.(2)如图,射线DG即为所求.【点评】本题考查作图﹣复杂作图,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.四、(本大题共3小题,每小题8分,共24分)18.(8分)直线y=kx+b经过点A(2,4)和点B(﹣4,0),在同一直角坐标系中画出直线AB和直线y=2x的图象.(1)求不等式2x>kx+b的解集;(2)点M是AB的中点,点N是OB的中点,求线段MN的长.【分析】(1)先利用描点法画出直线y=kx+b和y=2x,然后结合图象写出直线y=2x在直线y=kx+b的上方所对应的自变量的范围即可;(2)利用勾股定理计算OA的长,然后根据三角形中位线的性质得到MN的长.【解答】解(1)如图,当x>2时,2x>kx+b,∴不等式2x>kx+b的解集为x>2;(2)OA=.∵M是AB的中点,N是OB的中点,∴MN=OA=.【点评】本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.19.(8分)我市某学校疫情期间,3月份在某商场购买普通口罩和N95口罩两种不同口罩,购买普通口罩共花费3000元,购买N95口罩共花费7500元,购买普通口罩数量是购买N95口罩数量的2倍,且购买一个N95口罩比购买一个普通口罩多花12元.(1)求购买一个普通口罩、一个N95口罩各需多少元;(2)4月份疫情防控工作毫不放松,这所学校决定再次购买普通口罩和N95口罩共400个,恰逢该商场对两种口罩的售价进行调整,两种口罩售价比第一次购买时都降低了20%,如果此次购买两种口罩的总费用不超过2400元,那么这所学校最多可购买多少个N95口罩?【分析】(1)设购买一个普通口罩需x元,则购买一个N95口罩需(x+12)元,根据题意列出分式方程进行解答即可;(2)设设购买N95口罩y个.根据题意列出不等式进行解答即可.【解答】解:(1)设购买一个普通口罩需x元,则购买一个N95口罩需(x+12)元.列方程:解得:x=3.经检验x=3是原方程的解,∴x+12=15.∴购买一个普通口罩需3元,购买一个N95口罩需15元.(2)设购买N95口罩y个.依题意得:3(1﹣20%)(400﹣y)+15(1﹣20%)y≤2400.解得:y≤150.∴最多可购买150个N95口罩【点评】此题考查分式方程的应用和一元一次不等式的应用,分析题意,找到关键描述语,找到合适的数量关系是解决问题的关键.20.(8分)如图,D是等边△ABC的边BC上一点,以AD为边构造等边△ADE,点F是AB上一动点,连接BE,EF,CF.(1)若四边形CDEF是平行四边形,求证:BF=CD;(2)若AB=2,D是BC中点,求EF的最小值.【分析】(1)由等边三角形的性质可得AE=AD,AB=AC,∠DAE=∠CAB=60°,由“SAS”可证△ABE≌△ACD,可CD=BE,∠EBA=∠DCA=60°,可证△BEF是等边三角形,可得BF=EF=CD;(2)当EF⊥BF时,EF有最小值,由全等三角形的性质和直角三角形的性质是可求解.【解答】证明:(1)∵△ABC和△ADE都是等边三角形,∴AE=AD,AB=AC,∠DAE=∠CAB=60°,∴∠BAE=∠CAD=60°﹣∠BAD,∴△ABE≌△ACD(SAS),∴CD=BE,∠EBA=∠DCA=60°,∵四边形EFCD是平行四边形,∴EF=CD=BE,∴△BEF是等边三角形,∴BF=EF,∴BF=CD;(2)如图,由(1)知:CD=BE=AB=1.当EF⊥BF时,EF有最小值,此时:∵∠EBA=60°,∴∠BEF=30°,∴BF=BE=,∴EF=BF=.【点评】本题考查了旋转的性质,全等三角形的判定和性质,等边三角形的性质,平行四边形的性质,熟练运用这些性质进行推理是本题的关键.五、(本大题共2小题,每小题9分,共18分)21.(9分)在△ABC中,BD平分∠ABC.观察问题:如图1,若∠C=90°,AB=5,BC=4,试说明.探索问题:如图2,若AB=5,BC=4.①问是否为定值,若是定值,求出这个定值,若不是请说明理由;②通过前两个问题的探究,我们发现,三角形内角平分线的性质:三角形内角平分线分对边所得的两条线段的比值()与夹这个角两边的比值()相等(填“相等”或“不相等”);解决问题:①如图3,在△ABC中,若∠C=90°,AD=CD=,则∠A=45°.②如图4,将图3中的△BCD逆时针旋转67.5°得△BEF,连接DF交AB于G,求.【分析】观察问题:作DE⊥AB于点E.由角平分线的性质得出DE=DC,由三角形的面积公式可得出结论;探索问题:①如图2,作BH⊥AC于H.由三角形的面积可得出答案;②由观察问题可得,由探索问题①可得,则可得出答案;解决问题:①过点D作DE⊥AB于点E,得出AE=DE=1,则可得出答案;②证得DG平分∠ADB.由探索问题可知,则可得出答案.【解答】解:观察问题:如图1,作DE⊥AB于点E.∵BD平分∠ABC,DE⊥AB,DC⊥BC,∴DE=DC.∴;探索问题:如图2,作BH⊥AC于H.①由(1)得.∴,∴是定值,定值为.②相等.由观察问题可得,由探索问题①可得,∴.故答案为:相等.解决问题:①45°.∵AD=,∴CD=1,如图3,过点D作DE⊥AB于点E,∵BD平分∠ABC,∴CD=DE=1,∴AE=1,∴∠A=45°.故答案为:45°.②由①知:BC=AC=1+.由旋转可知∠FBC=67.5°+×45°=90°,BD=BF.∴FB∥AC,∠BDF=∠BFD,∴∠ADF=∠BFD,∴∠BDF=∠ADF,即DG平分∠ADB.由探索问题可知,∴=.【点评】本题是几何变换综合题,考查了角平分线的性质,三角形的面积,等腰直角三角形的性质,熟练掌握角平分线的性质是解题的关键.22.(9分)先阅读下面的解法,然后解答问题.例:已知多项式3x3﹣x2+m分解因式的结果中有一个因式是(3x+1),求实数m.解:设3x3﹣x2+m=(3x+1)•K(K为整式)令(3x+1)=0,则x=﹣,得3(﹣)3﹣(﹣)2+m=0,∴m=.这种方法叫特殊值法,请用特殊值法解决下列问题.(1)若多项式x2+mx﹣8分解因式的结果中有一个因式为(x﹣2),则实数m=2;(2)若多项式x3+3x2+5x+n分解因式的结果中有一个因式为(x+1),求实数n的值;(3)若多项式x4+mx3+nx﹣14分解因式的结果中有因式(x+1)和(x﹣2),求m,n的值.【分析】(1)将(x﹣2)(x+a)展开,根据所给出的二次三项式即可求出a和m的值;(2)根据题目提供的信息,把x+1=0,求出x的值,然后代入多项式进行计算即可求出n值;(3)根据题目提供的信息,把x+1=0,x﹣2=0,求出x的值,然后代入多项式得到关于m、n的二元一次方程组,解方程组即可得解.【解答】解:(1)设另一个因式为x+a,得x2+mx﹣8=(x﹣2)(x+a),则x2+mx﹣8=x2+(a﹣2)x﹣2a,∴,解得a=4,m=2.故答案为:2.(2)设:x3+3x2+5x+n=(x+1)•A(A为整式),若x3+3x2+5x+n=(x+1)•A=0,则x+1=0或A=0,当x+1=0时,x=﹣1.则x=﹣1是方程x3+3x2+5x+n=0的解,∴(﹣1)3+3×(﹣1)2+5×(﹣1)+n=0,即﹣1+3﹣5+n=0,解得,n=3;(3)设x4+mx3+nx﹣14=(x+1)(x﹣2))•B(B为整式),若x4+mx3+nx﹣14=(x+1)(x﹣2))•B=0,则x+1=0,x﹣2=0,C=0,当x+1=0时,即x=﹣1,∴(﹣1)4+m•(﹣1)3+n•(﹣1)﹣14=0,即m+n=﹣13①,当x﹣2=0时,即x=2,∴24+m•23+n•2﹣14=0,即4m+n=﹣1②,联立①②解方程组得:.【点评】本题考查因式分解的意义,解题关键是对题中所给解题思路的理解,同时要掌握因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.六、(本大题共12分)23.(12分)在四边形ABCD中,∠ABC=∠ADC=α(0°<α<90°),AD∥BC.(1)如图1,求证:四边形ABCD是平行四边形;(2)如图2,BE平分∠ABC,交AD于点E,若α=30°,AB=2,求△ABE的面积;(3)如图3,BE平分∠ABC,交AD于点E,作AH⊥CD交射线DC于点H,交BE于点F,若AB=AH,请探究线段AF,DE,CH的数量关系.【分析】(1)通过证明AB∥CD,可证四边形ABCD是平行四边形;(2)作BH⊥AD交DA的延长线于点H,由直角三角形的性质可求BH的长,由三角形的面积公式可求解;(3)分两种情况讨论,由全等三角形的判定和性质可求解.【解答】解:(1)∵∠ABC=α,AD∥BC,∴∠A+∠ABC=180°.∵∠ADC=∠ABC=α,∴∠A+∠ADC=180°.∴AB∥CD,又AD∥BC,∴四边形ABCD是平行四边形;(2)在平行四边形ABCD中,AD∥BC,∴∠EBC=∠AEB,又BE平分∠ABC,∴∠ABE=∠AEB,∴AB=AE=2,作BH⊥AD交DA的延长线于点H,∴∠AHB=90°,∵∠ABC=30°,AD∥BC,∴∠HAB=∠ABC=30°,∴BH=AB=,∴S△ABE=AE•BH=×2×=3;(3)①若点H在CD上时,作AG⊥BE交DC的延长线于G.∵AG⊥BE,AH⊥CD,∴∠G=∠BF A=90°﹣∠HAG.又∠BAF=∠AHG=90°,AB=AH,∴△AGH≌△BF A(AAS),∴GH=AF,∵BE平分∠ABC,AD∥BC,∴∠ABE=∠EBC,∠EBC=∠AEB,∴∠ABE=∠AEB,∴AB=AE=CD,∴∠BAG=∠EAG=∠G,∴AD=DG,∴DE=AD﹣AE=DG﹣CD=CG,又CG=GH﹣CH=AF﹣CH,∴DE=AF﹣CH,即DE+CH=AF;②如图4,若点H在DC的延长线上,则DE=AD﹣AE=DG﹣CD=CG,又CG=GH+CH=AF+CH,∴DE﹣CH=AF.【点评】本题是四边形综合题,考查了平行四边形的性质,直角三角形的性质,全等三角形的判定和性质,利用分类讨论思想解决问题是本题的关键.。

2024—2025学年最新北师大新版八年级下学期数学期末考试试卷(含答卷和参考答案)

2024—2025学年最新北师大新版八年级下学期数学期末考试试卷(含答卷和参考答案)

2024—2025学年最新北师大新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、二十四节气是中国劳动人民独创的文化遗产,能反映季节的变化,指导农事活动.下面四副图片分别代表“芒种”、“白露”、“立夏”、“大雪”,其中是中心对称图形的是()A.B.C.D.2、若a>b﹣1,则下列结论一定正确的是()A.a+1<b B.a﹣1<b C.a>b D.a+1>b3、若点P(1﹣2a,a)在第二象限,那么a的取值范围是()A.B.C.D.4、将分式中的x,y的值同时扩大2倍,则分式的值()A.扩大2倍B.缩小到原来的C.保持不变D.无法确定5、下列命题中,假命题是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行且另一组对边相等的四边形是平行四边形C.两组对角相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形6、如图,在Rt△ABC中,∠ACB=90°,DE垂直平分AB交BC于点D,若△ACD的周长为50cm,则AC+BC=()A.25cm B.45cm C.50cm D.55cm7、甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的1.2倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工x个零件,可列方程为()A.﹣=30B.﹣=30C.﹣=D.﹣=8、如图,在▱ABCD 中,点O 是BD 的中点,EF 过点O ,下列结论:①AB ∥DC ;②EO =ED ;③∠A =∠C ;④S 四边形ABOE =S 四边形CDOF ,其中正确结论的个数为( )A .1个B .2个C .3个D .4个9、如图,在Rt △ABC 中,∠C =90°,∠B =30°,BC =6,AD 平分∠CAB 交BC 于点D ,点E 为边AB 上一点,则线段DE 长度的最小值为( )A .B .C .2D .310、关于x 的不等式组整数解仅有4个,则m 的取值范围是( )A .﹣5≤m <﹣4B .﹣5<m ≤﹣4C .﹣4≤m <﹣3D .﹣4<m ≤﹣3二、填空题(每小题3分,满分18分)11、分解因式:3a 3﹣12a= .12、如果一个多边形的每一个外角都是40°,那么这个多边形的边数为 .13、如图,在△ABC 中,∠DCE =40°,AE =AC ,BC=BD ,则∠ACB 的度数为 .14、使得分式值为零的x 的值是 .15、如图,五边形ABCDE 是正五边形.若l 1∥l 2,则∠1﹣∠2= °.16、若关于x 的方程﹣=1无解,则k 的值为 .2024—2025学年最新北师大新版八年级下学期数学期末考试试卷 第7题图 第8题图 第9题图考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、解不等式组:.18、先化简,再求值:(+1)÷,其中x=﹣3.19、已知不等式组的解集是﹣1<x<1,求(a+b)2024的值20、已知方程组的解为正数.(1)求a的取值范围;(2)化简:.21、如图,在△ABC中,CD平分∠ACB交AB于点D,E为AC上一点,且DE∥BC.(1)求证:DE=CE;(2)若∠A=90°,AD=4,BC=12,求△BCD的面积.22、某商场购进A,B两种商品,已知购进3件A商品比购进4件B商品费用多60元;购进5件A商品和2件B商品总费用为620元.(1)求A,B两种商品每件进价各为多少元?(2)该商场计划购进A,B两种商品共60件,且购进B商品的件数不少于A 商品件数的2倍.若A商品按每件150元销售,B商品按每件80元销售,为满足销售完A,B两种商品后获得的总利润不低于1770元,则购进A商品的件数最多为多少?23、如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC.(1)求证:四边形ABCD为平行四边形;(2)点E为BC边的中点,连接AE,过E作EF⊥AE交边CD于点F,连接AF.①求证:AF=AB+CF;②若AF⊥CD,CF=3,DF=4,求AE与CE的值.24、如图,在△ABC中,∠ACB=90°,AB=5,AC<BC.以AC为边向形外作等边△ACD,以BC为边向形外作等边△BCE,以AB为边向上作等边△ABF,连接DF,EF.(1)记△ACD的面积为S1,△BCE的面积为S2,求S1+S2的值(2)求证:四边形CDFE是平行四边形.(3)连接CF,若CF⊥EF,求四边形CDFE的面积.25、如图,在平面直角坐标系中,直线y=﹣x+8与x轴交于点A,与y轴交于点B,直线y=kx+b经过点B,且与x轴交于点C(﹣6,0).(1)求直线BC的表达式;(2)点E为射线BC上一点,过点E作EF∥x轴交AB于点F,且EF=7,设点E的横坐标为m.①求m的值;②在y轴上取点M,在直线BC上取点N,在平面内取点Q,使得点E,M,N,Q构成的四边形是以EN为对角线的正方形,求出此正方形的面积.2024—2025学年最新北师大新版八年级下学期数学期末考试参考答案考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、3a(a+2)(a﹣2)12、9 13、100°14、2 15、7216、2或﹣1三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、﹣<x≤4.18、,19、120、(1)﹣1<a<3;(2)3﹣a.21、(1)证明略(2)24.22、(1)A商品的进价是100元/件,B商品的进价是60元/件;(2)购进A商品的件数最多为20件.23、(1)证明略(2)①证明略②AE的长是5,CE的长是.24、(1);(2)证明略(3)四边形CDFE的面积=S=a2=.△ADC25、(1)直线BC的表达式:y=x+8(2)①m=﹣3②正方形的面积为:或450。

八年级下学期期末考试数学试卷带答案(北师大版)

八年级下学期期末考试数学试卷带答案(北师大版)

八年级下学期期末考试数学试卷带答案(北师大版)(满分:120分;考试时间:120分钟)一.单选题。

(每小题4分,共40分) 1.下列图形中,其中是中心对称的是( )A. B. C. D.2.下列因式分解正确的是( )A.x 2+y 2=(x+y )2B.5a 2-20ab=m (5m -20n )C.﹣a 2+b 2=(b -a )(a+b )D.a 3-a=a (a 2-1) 3.若x >y ,下列不等式一定成立的是( )A.2x >y+2B.x -2023>y -2023C.﹣x >﹣yD.|x |>|y |4.如图,将平行四边形ABCD 沿对角线AC 折叠,使点B 落在B’处,若∠1=∠2=44°,则∠B 为( )A.124°B.114°C.104°D.66°(第4题图) (第5题图) (第7题图)5.如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP ,CP 分别平分∠EDC ,∠BCD ,则∠P=( )A.45°B.60°C.90°D.120° 6.下列多项式中,不能用公式法因式分解的是( )A.﹣x 2+16y 2B.81(a 2-2ab+b 2)-(a+b )2C.m 2-13mn+19n 2 D.﹣a 2-b 2(第9题图)(第10题图)10.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,BD=2AD,E、F、G分别是OC,OD,AB的中点,下列结论:①BE⊥AC;②四边形BEFG是平行四边形;③△EFG≌△GBE,其中正确的个数是()A.0B.1C.2D.3二.填空题。

(每小题4分,共24分)11.若xy=2,x-y=1,则代数式2x2y-2xy2= .12.如图,在△ABC中,AD为△ABC的平分线,DE⊥AB于点E,DF⊥AC于点F,若△ABC的面积是10cm2,AB=6cm,AC=4cm,则DF= cm.(第12题图)(第14题图)(第16题图)13.正多边形的一个内角等于150°,则这个正多边形的边数是.14.如图,在平行四边形ABCD 中,∠B=60°,AE ⊥BC ,AF ⊥CD ,垂足分别为E 、F ,若AB=6,CF=2,则CE= .15.按图中程序计算:规定输入一个值x 到结果是否≥17为一次程序操作,如果程序操作进行了两次才停止,则x 的取值范围是 .16.如图,等边△ABC 内有一点O ,OA=3,OB=4,OC=5,以点B 为旋转中心将OB 逆时针旋转60°得到线段O’B ,连接O’A ,下列结论:①△BO’A 可以看成是△BOC 绕点B 逆时针旋转60°得到的;②点O 到点O’的距离为5;③∠AOB=150°;④S 四边形AOBO’=6+4√2;⑤S △AOC +S △AOB =6+94√3.其中正确的结论有 .(只填序号) 三.解答题。

北师大版八年级下册数学期末考试试题附答案

北师大版八年级下册数学期末考试试题附答案

北师大版八年级下册数学期末考试试卷一、单选题1.下列图形既是轴对称图形,又是中心对称图形的是()A .B .C .D .2.已知a b <,则下列不等式中不正确的是()A .44a b<B .44a b ++<C .4a 4b--<D .44a b --<3.当3x =-,下列分式中有意义的是()A .33x x --B .33x x -+C .()()()()3232x x x x ++--D .()()()()3232x x x x -++-4.不等式12x -≥的解集在数轴上表示正确的是()A .B .C .D .5.下列等式从左到右的变形正确的是()A .11b b a a +=+B .2b ab a a=C .22b b a a=D .32b b a a=6.下列多项式中,不能用平方差公式分解的是()A .22x y -B .22x y --C .224x y -D .24x -+7.如图,在菱形ABCD 中,不一定成立的是()A .四边形ABCD 是平行四边形B .AC BD ⊥C .ABD 是等边三角形D .CAB CAD∠=∠8.炎炎夏日,甲安装队为A 小区安装60台空调,乙安装队为B 小区安装50台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是A .6050x x 2=-B .6050x 2x=-C .6050x x 2=+D .6050x 2x=+9.若方程()()211120m m x m x +----=是关于x 的一元二次方程,则m 的值为()A .0B .±1C .1D .-110.若分式211x x -+的值为0,则x 的值为()A .0B .1C .﹣1D .±1二、填空题11.分解因式:2x y y -=_________.12.如图,函数y=2x 和y=ax+4的图象相交于点A(32,3),则不等式2x >ax+4的解集为___.13.已知关于x 的方程21+-x ax -1=0的解是正数,则a 的取值范围是________.14.如图,在△ABC 中,AB=AC=10cm ,DE 是AB 的中垂线,△BDC 的周长为16cm ,则BC 的长为______cm .15.已知关于x 的分式方程2233x kx x -=+--无解,则k 的值是__________.16.一个n 边形的各内角都等于120︒,则边数n 是_______.17.如图,在正方形ABCD 中,E 、F 分别是边BC 、CD 上的点,∠EAF =45°,△ECF 的周长为4,则正方形ABCD 的边长为_____.三、解答题18.在边长为1个单位长度的小正方形组成的网格中,点A 、B 、C 、O 都是格点.将ABC绕点O 按逆时针方向旋转180︒得到111A B C △,请画出111A B C △.19.(1)解方程:21233x x x-=+--(2)解不等式组64325213x x x x +≥-⎧⎪+⎨--⎪⎩>20.(1)用配方法解方程:2230x x --=(2)用因式分解法解方程:()()224219210x x +--=21.化简226921432a a a a a a a -++-----22.如图,过正方形ABCD 的顶点D 作DE ∥AC 交BC 的延长线于点E.(1)判断四边形ACED 的形状,并说明理由;(2)若BD=8cm ,求线段BE 的长.23.某物流公司要将300吨物资运往港口码头,现有A 、B 两种型号的车可供调用,已知A 型车每辆可装20吨,B 型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装完.如果已确定调用5辆A 型车,那么至少还需调用B 型车多少辆?24.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路钱一少用10分钟到达.求小明走路线一时的平均速度.25.如图,已知菱形ABCD ,AB=AC ,E 、F 分别是BC 、AD 的中点,连接AE 、CF .(1)求证:四边形AECF 是矩形;(2)若AB=6,求菱形的面积.26.如图,在ABC 中,点O 是AC 边上的一个动点,过点O 作直线//BC MN ,设MN 交BCA ∠的角平分线于点E ,交BCA ∠的外角ACG ∠的平分线于点F ,连接AF .(1)求证:EO FO =;(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.(3)在(2)的条件下,ABC 满足什么条件时,四边形AECF 是正方形?并说明理由.参考答案1.D 【详解】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A 、不是轴对称图形,是中心对称图形,故本选项错误;B 、是轴对称图形,但不是中心对称图形,故本选项错误;C 、是轴对称图形,但不是中心对称图形,故本选项错误;D 、既是轴对称图形,又是中心对称图形,故本选项正确.故选D .2.C【分析】根据不等式的性质逐个判断即可.【详解】解:A、∵a<b,∴4a<4b,故本选项不符合题意;B、∵a<b,∴a+4<b+4,故本选项不符合题意;C、∵a<b,∴-4a>-4b,故本选项符合题意;D、∵a<b,∴a-4<b-4,故本选项不符合题意;故选:C.【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.3.C【解析】【分析】根据分式有意义的条件是分母不为0对各个选项进行判断即可.【详解】解:A、当x=-3时,x-3=0,故A不符合;B、当x=-3时,x+3=0,故B不符合;C、当x=-3时,(x-3)(x-2)≠0,故C符合;D、当x=-3时,(x+3)(x-2)=0,故D不符合;故选:C.【点睛】本题主要考查了分式有意义的条件,掌握分式有意义的条件是分母不等于0是解题的关键.4.A【解析】先求出已知不等式的解集,然后表示在数轴上即可.【详解】不等式1-x≥2,解得:x≤-1,表示在数轴上,如图所示:故选:A .【点睛】此题考查解一元一次不等式,在数轴上表示不等式的解集,解题关键在于把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画).在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆圈表示.5.B 【解析】【分析】根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0,并且分式的值不变,由此即可判定选择项.【详解】解:A 、根据分式基本性质知道11b b a a ++≠,故选项错误;B 、2b ab a a =,其中a≠0,故选项正确;C 、等式的右边是左边的平方,显然不成立,故选项错误;D 、根据分式的基本性质可得:32b b a ab=(b≠0),故选项错误;故选B .【点睛】此题主要考查了分式的基本性质,关键是熟练掌握分式的基本性质.6.B 【解析】根据平方差公式的结构特点,两平方项的符号相反,对各选项分析判断后利用排除法求解.【详解】解:A 、x 2-y 2符合平方差公式,故本选项错误;B 、-x 2与-y 2符号相同,不能运用平方差公式,故本选项正确;C 、4x 2-y 2符合平方差公式,故本选项错误;D 、-4+x 2,符合平方差公式,故本选项错误.故选:B .【点睛】本题主要考查了运用公式法分解因式,熟记平方差公式的结构特点是解本题的关键.7.C 【解析】【分析】菱形是特殊的平行四边形,故A 正确,根据菱形的性质:对角线互相平分且平分对角得B 、D 正确.【详解】因为菱形是特殊的平行四边形,对角线互相垂直平分,且每一条对角线平分一组对角.故选:C.【点睛】考查菱形的性质,熟练掌握菱形的性质定理是解题的关键.8.D 【解析】【详解】试题分析:由乙队每天安装x 台,则甲队每天安装x+2台,则根据关键描述语:“两队同时开工且恰好同时完工”,找出等量关系为:甲队所用时间=乙队所用时间,据此列出分式方程:6050x 2x=+.故选D .9.D 【解析】【分析】根据一元二次方程的定义解答,(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.所以m 2+1=2,且m-1≠0,解得m 的值只能是-1.【详解】解:∵()()211120m m x m x +----=是关于x 的一元二次方程,∴21012m m -≠⎧⎨+=⎩,解得:m=-1,故选D .【点睛】本题考查了一元二次方程的定义,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.10.B 【解析】【分析】根据分式值为0的条件,分子为0分母不为0列式进行计算即可得.【详解】∵分式211x x -+的值为零,∴21010x x ⎧-=⎨+≠⎩,解得:x=1,故选B .【点睛】本题考查了分式值为0的条件,熟知分式值为0的条件是分子为0分母不为0是解题的关键.11.y (x+1)(x ﹣1).【解析】【详解】试题分析:x 2y ﹣y=y (x 2﹣1)=y (x+1)(x ﹣1),故答案为y (x+1)(x ﹣1).考点:提公因式法与公式法的综合运用;因式分解.12.x>3 2【解析】【分析】由于函数y=2x和y=ax+4的图象相交于点A(332,),观察函数图象得到当x>32时,函数y=2x的图象都在y=ax+4的图象上方,所以不等式2x>ax+4的解集为x>3 2.【详解】解:∵函数y=2x和y=ax+4的图象相交于点A(332,),∴当x>32时,2x>ax+4,即不等式2x>ax+4的解集为x>3 2.故答案为:x>3 2.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x轴上(或下)方部分所有的点的横坐标所构成的集合.13.a<-1且a≠-2【解析】【分析】先求得方程的解,再解x>0,求出a的取值范围.【详解】解21+-x ax-1=0得:x=-a-1,∵于x的方程21+-x ax-1=0的解是正数,∴x〉0,即-a-1>0,∴a<-1,当x-1=0时,x=1,代入得:a=-2.此为增根,∴a≠-2,综合上述可得:a<-1且a≠-2.故答案是:a<-1且a≠-2.【点睛】考查了分式方程的解,先求出分式方程的解,再求出a的取值范围.14.6【解析】【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,然后推出△BDC的周长=AC+BC,代入数据进行计算即可得解.【详解】∵DE是AB的中垂线,∴AD=BD,∴△BDC的周长=BD+CD+BC=AD+CD+BC=AC+BC,∵△BDC的周长为16cm,AC=10cm,∴10+BC=16,解得BC=6.故答案为6.【点睛】此题考查等腰三角形的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,是基础题,熟记性质是解题的关键.15.1【解析】【分析】分式方程去分母转化为整式方程,由分式方程无解得到x-3=0求出x的值,代入整式方程求出k的值即可.【详解】解:分式方程去分母得:x-2=k+2(x-3),即x=4-k,由分式方程无解得到x-3=0,即x=3,代入整式方程得:3=4-k,解得:k=1,故答案为:1.【点睛】此题考查了分式方程的解,需注意在解分式方程时要考虑分母不为0.16.6【解析】【分析】首先求出外角度数,再用360°除以外角度数可得答案.【详解】解:∵n边形的各内角都等于120°,∴每一个外角都等于180°-120°=60°,∴边数n=360°÷60°=6.故答案为:6.【点睛】此题主要考查了多边形的外角和定理,外角与相邻的内角的关系,关键是掌握各知识点的计算公式.17.2【解析】【分析】根据旋转的性质得出∠EAF′=45°,进而得出△FAE≌△EAF′,即可得出EF+EC+FC=FC+CE+EF′=FC+BC+BF′=4,得出正方形边长即可.【详解】解:将△DAF绕点A顺时针旋转90度到△BAF′位置,由题意可得出:△DAF≌△BAF′,∴DF=BF′,∠DAF=∠BAF′,∴∠EAF′=45°,在△FAE 和△EAF′中''AF AF FAE EAF AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△FAE ≌△EAF′(SAS ),∴EF=EF′,∵△ECF 的周长为4,∴EF+EC+FC=FC+CE+EF′=FC+BC+BF′=DF+FC+BC=4,∴2BC=4,∴BC=2.故答案为:2.【点睛】此题主要考查了旋转的性质以及全等三角形的判定与性质等知识,得出△FAE ≌△EAF′是解题关键.18.见解析【解析】【分析】连接AO 并延长,然后截取OA 1=OA ,则A 1就是A 的对应点,同样可以作出B 、C 的对应点,然后顺次连接即可.【详解】解:所作图形111A B C △如图所示.【点睛】本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.19.(1)x=5;(2)45<x≤3【解析】【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【详解】解:(1)21233x x x-=+--去分母得:()2231x x -=--,去括号得:2261x x -=--,移项合并得:x=5,经检验:x=5是原方程的解,∴原方程得解是x=5;(2)64325213x x x x +≥-⎧⎪⎨+--⎪⎩①>②,解不等式①得:x≤3,解不等式②得:x >45,∴不等式组的解集为:45<x≤3.【点睛】本题考查了解分式方程和解一元一次不等式组,解题的关键是掌握相应的解法.20.(1)x 1=-1,x 2=3;(2)x 1=110,x 2=52【解析】【分析】(1)方程两边加上4,再把方程左边分解得到()214x -=,然后利用直接开平方法求解;(2)利用平方差公式进行因式分解,然后求解即可.【详解】解:(1)2230x x --=,∴2214x x -+=,∴()214x -=,∴x-1=±2,解得:x 1=-1,x 2=3;(2)()()224219210x x +--=,()()2242630x x +--=,()()426342630x x x x ++-+-+=,()()101250x x --+=,10x-1=0或-2x+5=0,解得:x 1=110,x 2=52.【点睛】本题考查了解一元二次方程—因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.也考查了配方法解一元二次方程.21.22a --【解析】【分析】先将各分子和分母因式分解,再约分,最后计算减法.【详解】解:226921432a a a a a a a -++-⋅----=()()()23212232a a a a a a a -+-⋅-+---=3122a a a a -----=22a --【点睛】本题考查了分式的混合运算,解题的关键掌握运算法则以及因式分解的运用.22.(1)四边形ACED 是平行四边形.理由如下见解析(2).【解析】【分析】(1)根据正方形的对边互相平行可得AD ∥BC ,即为AD ∥CE ,然后根据两组对边互相平行的四边形是平行四边形解答.(2)根据正方形的四条边都相等,平行四边形的对边相等可得BC=AD=CE ,再根据正方形的边长等于对角线的2倍求出BC ,然后求出BE 即可.【详解】解:(1)四边形ACED 是平行四边形.理由如下:∵四边形ABCD 是正方形,∴AD ∥BC ,即AD ∥CE.∵DE ∥AC ,∴四边形ACED 是平行四边形.(2)由(1)知,BC=AD=CE=CD ,∵BD=8cm ,∴BC=2BD=2cm ,∴.23.14.【解析】【详解】试题分析:设还需要调用B 型车x 辆,根据关系式为:5辆A 型车的装载量+x 辆B 型车的装载量≥300列不等式进行求解即可得.试题解析:设还需要调用B 型车x 辆,根据题意得:20×5+15x≥300,解得x≥1313,由于x 是车的数量,应为整数,所以x 的最小值为14,答:至少需要调用14辆B 型车.【点睛】本题考查了一元一次不等式的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式.24.50千米/小时【解析】【分析】设小明走路线一的平均速度是x 千米/小时,则小明走路线二的平均速度是x (1+80%)千米/小时,根据走路线二比走路线一少用10分钟建立方程求出其解即可.【详解】解:设小明走路线一的平均速度是x 千米/小时,则走路线二的平均速度是x (1+80%)千米/小时,由题意,得()253010180%60x x =++,解得:x=50,经检验,x=50是原方程的解.故小明走路线一的平均速度是50千米/小时.答:小明走路线一的平均速度是50千米/小时.【点睛】本题考查了列分式方程解关于行程问题的运用题运用及分式方程的解法的运用,解答时根据条件找到等量关系建立方程是关键,解分式方程要验根是不可少的步骤.25.(1)证明见解析;(2)【解析】【详解】试题分析:(1)首先证明△ABC 是等边三角形,进而得出∠AEC=90°,四边形AECF 是平行四边形,即可得出答案;(2)利用勾股定理得出AE 的长,进而求出菱形的面积.试题解析:(1)∵四边形ABCD 是菱形,∴AB=BC ,又∵AB=AC ,∴△ABC 是等边三角形,∵E 是BC 的中点,∴AE ⊥BC ,∴∠AEC=90°,∵E 、F 分别是BC 、AD 的中点,∴AF=12AD ,EC=12BC ,∵四边形ABCD 是菱形,∴AD ∥BC 且AD=BC ,∴AF ∥EC 且AF=EC ,∴四边形AECF 是平行四边形,又∵∠AEC=90°,∴四边形AECF 是矩形;(2)在Rt △ABE 中,AE==,所以,S 菱形ABCD 考点:1.菱形的性质;2..矩形的判定.26.(1)见解析;(2)当点O 运动到AC 的中点时,四边形AECF 是矩形,理由见解析;(3)ABC 满足ACB ∠为直角时,四边形AECF 是正方形,理由见解析.【解析】【分析】(1)由平行线的性质和角平分线的定义得出32∠=∠,13∠=∠,得出EO=CO ,FO=CO ,即可得出结论;(2)先证明四边形AECF 是平行四边形,再由对角线相等,即可得出结论;(3)由//BC MN ,得出AOE ACB ∠=∠,当90ACB ∠=︒时,AC EF ⊥即可.【详解】(1)证明:如图,∵//BC MN ,∴32∠=∠.又∵CF 平分ACG ∠,∴12∠=∠,∴13∠=∠,∴FO CO =,同理,EO CO =,∴EO FO =.(2)解:当点O 运动到AC 的中点时,四边形AECF 是矩形,证明如下:当点O 运动到AC 的中点时,AO CO =.又∵EO FO =,∴四边形AECF 是平行四边形,由(1)可知,FO CO =,∴AO CO EO FO ===,∴AO CO EO FO +=+,即AC EF =,∴四边形AECF 是矩形.(3)当点O 运动到AC 的中点时,且△ABC 满足∠ACB 为直角的直角三角形时,四边形AECF 是正方形.在(2)的条件下,ABC 满足ACB ∠为直角时,四边形AECF 是正方形.理由:由(2)知,当点O 运动到AC 的中点时,四边形AECF 是矩形.∵//BC MN ,∴AOE ACB ∠=∠,当90ACB ∠=︒时,90AOE ∠=︒,即AC EF ⊥,∴四边形AECF 是正方形.【点睛】本题考查了平行线的性质、等腰三角形的判定、矩形的判定、正方形的性质;熟练掌握平行线的性质和矩形、正方形的判定方法,并能进行推理论证是解决问题的关键.。

(完整版)北师大版八年级下册数学期末测试卷及含答案(查漏补缺)

(完整版)北师大版八年级下册数学期末测试卷及含答案(查漏补缺)

北师大版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,一次函数y=kx+b(k、b为常数,且k≠0)与正比例函数y=ax(a 为常数,且a≠0)相交于点P,则不等式kx+b<ax的解集是()A.x>1B.x<1C.x>2D.x<22、如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC 与∠A互补,其作法分别如下:(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;(乙)作过B点且与AB垂直的直线,作过C点且与AC垂直的直线,交于P点,则P即为所求.对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确3、下列命题:(1)如果a<0,b>0,那么;(2)同角的补角相等;(3)同位角相等;(4)如果,那么;(5)有公共顶点且相等的两个角是对顶角。

其中正确的个数是()A.1B.2C.3D.44、如图,AD是正五边形ABCDE的一条对角线,则∠BAD等于()A.72°B.108°C.36°D.62°5、若不等式组的解集是x>4,则m的取值范围是()A.m>4B.m≥4C.m≤4D.m<46、已知整数x满足是不等式组,则x的算术平方根为()A.2B.±2C.D.47、下列基本图形中经过平移、旋转或轴对称变换后不能得到右图的是()A. B. C. D.8、若将分式中的x和y都扩大到原来的2倍,那么分式的值()A.扩大到原来的4倍B.扩大到原来的2倍C.不变D.缩小到原来的.9、如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4.将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E,F,则线段B′F的长为( )A. B. C. D.10、如图所示,在矩形ABCD中,AB= ,BC=2,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则AE的长是()A. B. C.1 D.1.511、如图,△ABC中,AB=AC=5,BC=6,M为BC的中点,MN⊥AC于N点,则MN=()A. B. C. D.12、如图,中,AC<BC,如果用尺规作图的方法在BC上确定点P,使PA+PC=BC,那么符合要求的作图痕迹是()A. B. C.D.13、如图,△ABC的顶点都在⊙O上,∠BAO=50°,则∠C的度数为()A.30°B.40°C.45°D.50°14、如图,将边长相等的正方形、正五边形、正六边形纸板,按如图方式放在桌面上,则∠a的度数是( )A.42°B.40°C.36°D.32°15、若整数使得关于的不等式组的解集为,且关于的分式方程的解为负数,则所有符合条件的整数的和为()A.0B.-3C.-5D.-8二、填空题(共10题,共计30分)16、因式分解:________ .17、若m+n=2,计算6﹣2m﹣2n=________.18、如图,在△ABC中,∠ACB=90°,∠BAC=30°,在直线BC或AC上取一点P,使得△PAB为等腰三角形,这样的点P共有________个.19、如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,依此规律,得到等腰直角三角形OA2017A2018,则点A2017的坐标为________.20、如图,在矩形中,,,那么的度数为________.21、若关于的分式方程有增根,则=________ .22、在函数y=中,自变量x的取值范围是________.23、在□ABCD中,若∠A=50°,则∠D的度数为________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版八年级数学下学期期末考试测试题二
班级姓名
一、选择题(共12小题,每小题3分)
1.下列美丽的图案中,既是轴对称图形又是中心对称图形的个数是()
A.1个个
2、下列运算中,正确的是()
A、b
a
b
a
=
+
+
1
1
B、
a
b
b
a=

÷
1
C、
b
a
a
b
-
=
-
1
1
D、
1
1
1
1
=
-
-
-
-
-
x
x
x
x
3、如图,在四边形ABCD中,∠DAC=∠ACB,要使四边形ABCD成为平行四边形,则应增加的条件不能是( )
A.AD=BC B.OA=OC
C.AB=CD D.∠ABC+∠BCD=180°
4.已知实数x, y满足
8
4=
-
+
-y
x
,则以x, y的值为两边长的等腰三角形的周长为() A.20或16 B.20 C.16 D.以上答案都不对
5.实数a、b、c在数轴上对应的点位置如图所示,下列式子正确的是()
①b+c>0 ②a+b>a+c ③bc<ac ④ab>ac
A.1个B.2个 C.3个D.4个
6、如图,在△ABC中,BD、CE是△ABC的中线,BD与CE相交于点O,点F、G分别是BO、CO的中点,连接AO.若AO=6cm,BC=8cm,则四边形DEFG的周长是()
A. 14cm
B. 18cm
C. 24cm
D. 28cm
7.如图,直线l、l'、l''表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有 ()
A.一处B.二处C.三处D.四处
8.将不等式
⎪⎩



-

-
<
+
x
x
x
x
2
3
8
2
1
1
4
8
的解集在数轴上表示正确的是()
9.关x的分式方程
1
5
=
-
x
m
,下列说法正确的是()
A.m<一5时,方程的解为负数B.方程的解是x=m+5
O
B
A D
C .m >一5时,方程的解是正数
D .无法确定
10.如图,平行四边形ABCD 的周长为16 cm ,AC 、BD 相交于点O ,OE ⊥AC 交AD 于E ,则△DCE 的周长为( )
A .4 cm
B .6 cm
C .8 cm
D .10cm
11、若关于x 的方程313
2--
=-x m
x 无解,则m 的取值为( )
A 、-3
B 、-2
C 、 -1
D 、3
12.“5·12”大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.问原计划每天修多少米?某原计划每天修x 米,所列方程正确的是( )
A .41205120=-+x x
B .45120
120=--x x C .41205120=--x x D .45120
120=+-x x
二、填空题(共8小题,每小题3分)
1、若y=2x-3,当x______时,y ≥0;当x______时,y<5.
2、若
)4)(2(2
-+=++x x q px x ,则p = ,q = 。

3、若a <b <0,则1,1-a ,1-b 这三个数按由小到大的顺序用“<”连接起来: .
4、如图,有一张直角三角形纸片,两直角边AC=5cm ,BC=10cm ,将△
ABC 折叠,点B 与点A 重合,折痕为DE ,则CD 的长为________.
5、如图,A 、B 两点被池塘隔开,在 AB 外选一点 C , 连结 AC 和 BC ,并分别找出它们的中点 M 、N . 若测得MN =15m ,则A 、B 两点的距离为
6、直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标
系中的
图象如图所示,则关于x 的不等式x k b x k 21>+的解为___________。

7、若
161
2+
+kx x 是一个完全平方式,则k =
8、 若关于x 的分式方程
3232
-=
--x m x x 无解,则m 的值为___________ 三、解答题(共6小题,60分)
1.(5分)分解因式:2
2
)(16)(4b a b a ++-- 23.(5分)解方程:1
42
22=-+-x x x
2.(6分)先化简,再求值11)1
113(
2
-÷+--x x x ,其中x=2
3.(5分)解不等式组⎪
⎩⎪⎨⎧-≥+-<-x x x 221
132,并把解集在数轴上表示出来。

4.(6分)如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,4),请解答下列
问题:
(1)画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点A 1
的坐标.
(2)画出△A 1B 1C 1绕原点O 旋转180°后得到的△A 2B 2C 2,
并写出点A 2的坐标.
5. (7分)如图,在△ABC 中,D 、E 分别是边AB 、AC 的中点,O 是三角形内部一点,连接OB 、OC ,G 、H 分别是OC 、OB 的中点,试说明四边形DEGH 是平行四边形
6.(9分)某校餐厅计划购买12张餐桌和一批餐椅,现从
甲、乙两商场了解到:同一型号的餐桌报价每张均为200元,餐椅报价每把均为50元.甲商场称:每购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌椅均按报价的八五折销售.那么,什么情况下到甲商场购买更优惠?
H
G D
E
B O。

相关文档
最新文档