数学物理方法 分离变量法习题 刁元胜

合集下载

数学物理方法第八章

数学物理方法第八章

(7 ) ⎧ A0 = 0 ⎪ α1′ ⎪ A1a = − Ea + (8) a ⎪ ′ ⎨ A an = αn (9) n ⎪ n a ⎪ ′ βn n (10) ⎪ Bn a = n a ⎩
Wuhan University
习题课
一、正交曲线坐标系中的分离变量
【求解】
∂u I ε ∂ρ

∂u II ρ =a = ∂ρ
2 l nπ 2 l nπ An = ∫ ϕ (α ) sin αdα , Bn = ∫0ψ (α ) sin l αdα 0 l l nπa
Wuhan University
习题课
二、齐次问题
1、求解
解:u ( x, t ) =
∑(A
n =1
⎧utt = a 2u xx , 0 < x < π , t > 0 ⎪ ⎪u ( x,0) = 3 sin x ⎫ ⎨ ⎬,0≤ x ≤π ⎭ ⎪ut ( x,0) = 0 ⎪u (0, t ) = u (π , t ) = 0; ∞ ⎩
n =1
′ ′ + ∑ (α n cos nϕ + β n sin nϕ ) ρ − n u
II

ρ →∞
= − Eρ cos ϕ →
n =1
α 0 = 0, β 0 = 0; α n = 0(n ≠ 1), β n = 0; α1 ρ = − Eρ → α1 = − E
′ ′ u ( ρ , ϕ ) = − Eρ cos ϕ + ∑ (α n cos nϕ + β n sin nϕ )ρ − n
(3)
(2)
ρ =a
( 4)
习题课
一、正交曲线坐标系中的分离变量

《数学物理方法》第十一章分离变量法

《数学物理方法》第十一章分离变量法
将尝试解 y = erx 代入方程得 r2 - 2 = 0 特征根为±,
将r = ±代入尝试解得方程的二个特解 ,其线性组合即为通解 y = c1ex+c2e-x . (1)
2020/7/9
12
2.方程 y"+ 2y = 0 的通解有三种形式.将尝试解
y = erx 代入方程得 r2 + 2 = 0 特征根为±i
2020/7/9
18
u'y1+ v'y2 =0
→ u"y1+ u'y1'+ v "y2 + v'y2'= 0
→ u"y1+ v"y2 = (u'y1'+ v 'y2')
(uy1+vy2)"+p(uy1+vy2)'+q(uy1+vy2)=f(x) (10)
(uy1+vy2)"
= (u"y1+2u'y1'+ uy1") + (v"y2+2v'y2'+ vy2")
化。
(4) 分离变量法的适用范围: 波动、输运、稳定场问题等(比行波法适用范围要广)
5
2020/7/9
5
2020/7/9
6
§11.1.1 齐次方程及齐次边界条件的定解问 • 首先通过实例说明用题分离变量法解题的六个
基本步骤.
• 【例11.1.1】求两端固定的弦自由振动的规律 .
解 定解问题为
1.分离变量
y = eax (c1cosbx + c2sinbx) (7)

数学物理方法答案(科学出版社)

数学物理方法答案(科学出版社)
(2)由表 11-2 得本征值与本征函数分别为
λn (x )=(
nπ 2 nπ x ) , X n (x )=sin l l
(3)特解的线性叠加
n 2π 2 a 2t − ∞ nxπ u ( x , t ) = ∑ Cn e sin l2 l n =1
(4)根据本征函数正交性,由初始条件定系数. 由 x (l
n

( 2n + 1) π at 得 A
=0,
得Bn =
8lv0 2 (2 n +1)π x l dx = ∫0 v0 sin (2 n +1)π a 2l (2 n +1)2 π 2 a
8lv0 ∞ 1 (2 n +1)π at (2 n +1)π x sin sin ∑ 2l 2l π 2 a n = 0 (2 n +1)2
l nxπ − x ) = u ( x , 0) = ∑ Cn sin l n =1
nxπ 2 l 4l 2 n C = ∫0 x (l − x ) sin dx = [1 − ( −1) ] n l l n3π 3 (2 n +1)2 π 2a 2 2 − 8l ∞ ( 2 n +1) xπ 1 2 ∑ ∴ u ( x, t ) = e sin l l π 3 n =0 (2 n +1)3
段的相对伸长为
( X =0端固定)
1 (n+ )π x 2 X (x )=sin n l
(3)通解为:
,λ
n
(x )=(
(2n+1)π 2 ) 2l
∞ 2 n +1 2 n +1 2 n +1 u ( x , t ) = ∑ [A cos( at ) + B sin( at )]sin( π π π x) n n 2 l 2 l 2 l n =0 (4)由 u ( x , 0) = 0 得 B = 0 t n ∞ F0 x 2 n +1 π x ) 得: = u( x , 0) = ∑ An sin( YS l 2 时,上式中的 x ± at 就会超出这个区间.考虑本题是第一内 边界条件,这里的 ϕ ( x ) 与ψ ( x ) 应理解为经过奇沿拓的,周期为 2l 的初位移与初速 度.

数理方法习题参考答案(1)

数理方法习题参考答案(1)

x
P0
(x)dx
=
1 xdx = 1
0
2
∫ ∫ c2n
=
4n +1 2
1 −1
x P2n (x)dx
= (4n +1)
1 0
xP2n
(x
)dx
∫ ( ) =
(4n +1) 22n (2n)!
1
x
0
d 2n dx 2n
x 2 − 1 2n dx
( ) ∫ ( ) ( ( )) ( ( )) =
4n 22n
+ c3
1 2
5x3
− 3x
=
5c3 2
x3
+
3c2 2
x2
+
⎜⎛ ⎝
c1

3c3 2
⎟⎞ ⎠
x
+
c0
5c3 2
= 1,3c2 2
= 0,c1
− 3c3 2
= 0,c0
=0
c0 = 0,
c1
=
3, 5
c2
= 0,
c3
=2 5
∴ x3
=
3 5
P1(x) +
2 5
P3 (x)
待定系数法只能适用于 f (x) 为 xn 多项式或者可以展开 xn 多项式的情况。
1 x2
−1
d l−1 dx l−1
x 2 − 1 l dx
∫ ( ) ( ) =

3
2l + 1 2l+1 l!
1 x2d
−1
d l−2 dx l−2
x2 −1 l
( ) ∫ ( ) ( ) ( ) =

数学物理方法(10)--期末考试试卷(4)答案

数学物理方法(10)--期末考试试卷(4)答案

k 2
k 0
� w( z )
2c2 +

[(k + 2)(k +1)ck+2 - ck-1]zk
0
k 1
将代入方程
c2 0c,3ckkk+23kk((ck33kkk--+-33-12c)1)k-()1k + 1)
即亦即
c3k

c3k -3 3k(3k -1)

1 3k (3k
-1)
代换,有


f1
t -
e- pt dt

0
f1

e- p + d

0
f1 e-p d
0
f2
第e- p d1
页F(1共p F23 p页 )
f (x) lim
n e -nx2
n
3. 试证明:是函数的一种表达式。
答: 函数的傅里叶变换:,又称为的像函数;
F -1 G

f
xGfx21
G eixd
-
函数的傅里叶逆变换:,又称为的像原函数。
专业:
院(系):
得分 评阅人 二、证明题:(共 3 题,每题 9 分,共 27 分)
1. 已知,试证明: ()
证明:将对 r 求导
ᆬ 1
1+ r2 - 2rx< 1)
(l +1)Pl+1(x) - (2l +l 1ᆬ)1xPl (x) + lPl-1(x) 0
ᆬ 1
1+ r2 - 2rx

ᆬ l0
Pl (x)rl
( x < 1)

数学物理方法课本答案第三章分离变量法

数学物理方法课本答案第三章分离变量法

第三章 分离变量法3。

2 基础训练3.2.1 例题分析例1 解下列定解问题:⎪⎪⎪⎩⎪⎪⎪⎨⎧=∂∂-==∂∂=><<∂∂=∂∂====0,20,00,0020022222t t lx x t u lx x u x uu t l x x u a t u (1) 解:分离变量,即令(,)()()u x t X x T t = (2) 代入方程((1)中第一式),得0)()(2=+''t T a t T λ (3)0)()(=+''x X x X λ (4)其中λ为分离常数。

(2)式代入边界条件((1)中第二式),得0)()0(='=l X X (5)相应的本证值问题为求⎩⎨⎧='==+''0)()0(0)()(l X X x X x X λ (6) 的非零解.下面针对λ的取值情况进行讨论: (1)当0λ<时,(6)式中方程的通解是()X x Ae =+ (7)其中A ,B 为积分常数,(7)代入(6)中边界条件,得A B Ae+=⎧⎪⎨-+=⎪⎩ (8)由(8)得A=B=0,得X (x )=0,为平凡解,故不可能有0λ<。

(2) 当0λ=时,(6)式中方程的通解是 ()X x Ax B =+由边界条件得A=B=0,得X (x )=0,为平凡解,故也不可能有0λ=。

(3)当02>=βλ时,上述固有值问题有非零解.此时式(6)的通解为x B x A x X ββsin cos )(+=代入条件(6)中边界条件,得0cos ,0==l B A β由于 0≠B ,故 0cos =l β,即),2,1,0(212 =+=n ln πβ从而得到一系列固有值与固有函数2224)12(ln n πλ+= ),2,1,0(2)12(sin)( =+=n x ln B x X n n π与这些固有值相对应的方程(3)的通解为),2,1,0(2)12(sin 2)12(cos )( =+'++'=n tlan D t l a n C t T n nn ππ于是,所求定解问题的解可表示为x l n t l a n D t l a n C t x u n n n 2)12(sin 2)12(sin 2)12(cos ),(0πππ+⎪⎭⎫ ⎝⎛+++=∑∞=利用初始条件确定其中的任意常数n n D C ,,得0=n D33202)12(322)12(sin )2(2ππ+-=+-=⎰n l xdxln lx x l C l n故所求的解为x l n t l a n n l t x u n 2)12(sin 2)12(cos )12(132),(0332πππ++⨯+-=∑∞=例2 演奏琵琶是把弦的某一点向旁边拨开一小段距离,然后放手任其自由振动。

第四章分离变量法(1)

第四章分离变量法(1)

习题3.11.考察长为l 的均匀细杆的导热问题,若(1)杆的两端温度保零度; (2)杆的两端均绝热;(3)杆的一端为恒温零度,另一端绝热,而初始温度分布均为)(x ϕ; 试用分离变量法求解在这三种情况下的杆的导热问题的解。

解:(1)该问题的数学模型为⎪⎩⎪⎨⎧=>==><<=)()0,(0,0),(),0(0,0,2x x u t t l u t u t l x u a u xx t ϕ 其D a =2Step1:分离变量:令)()(),(t T x X t x u =,代入齐次方程及齐次边界条件有:)()()()0()()()()(2==''='t T l X t T X t T x x a t T x X由于0)(,0)(≠≠t T x X 所以有:)()0()()()()(2==='=''∆l X X t T a t T x X x X λ 整理得)()(0)()0(0)()(2=-'===-''t T a t T l X X x X x X λλStep2:求解特征值问题⎩⎨⎧===-''0)()0(0)()(l X X x X x X λ 讨论:若0=λ,则0)(=''x X此时Dx C x X +=)(将0)()0(==l X X 代入得0==D C ,于是0)(=x X ∴λ=0不合适,舍去。

若0>λ时方程0)()(=-''x X x X λ的特征方程为02=-λr ∴ λ±=2,1r∴ xxDe Cex X λλ-+=)(将0)()0(==l X X 代入得⎪⎩⎪⎨⎧=+=+-00ll DeCe D C λλ 得C=-D=0∴ 0)(=x X ∴ 0>λ也不合适,舍去。

若0<λ时方程0)()(=-''x X x X λ的特征方程为02=-λr ∴ i r λ-±=2,1∴ x D x C x X λλ-+-=s i n c o s )( 将0)0(=X 代入有C=0将0)(=l X 代入有0sin =-l D λ ∵ 0≠D ∴ 0s i n =-l λ ∴πλn l =- ∴ ,2,1,)(2=-=n ln n πλ 此时 ,2,1 sin )(==n x ln D x X n n πStep3:将2)(ln n πλ-=代入关于)(t T 的常微分方程有 0)()()(2=+'t T la n t T n n π ∴ ,2,1 )(2)(==-n eC t T t la n n n π∴ t la n n n n n n e C lx n D t T x X t x u 2)(s i n )()(),(ππ-==x ln ea t la n n ππsin2)(-= ,2,1=n 其中n a 待求。

数学物理方法习题

数学物理方法习题

第一章 分离变量法1、求解定解问题:200000000,(01),||0,,(0),|(),(),|0,(0).tt xx x x l t t u a u x u u n h l x x l n u h l l x x l l n l n u x l ====-=<<==⎧≤≤⎪⎪⎪=⎨-≤≤⎪-⎪⎪⎩=≤≤(P-223) 2、长为l 的弦,两端固定,弦中张力为T ,在距一端为0x 的一点以力0F 把弦拉开,然后撤出这力,求解弦的震动。

[提示:定解问题为200000000,(0),(0,)(,)0,,(0),(,0)(),(),|0.tt xx t t u a u x l u t u l t F l x x x x T l u x F x l x x x l T lu =-=<<==-⎧<<⎪⎪=⎨⎪-<<⎪⎩= ] (P-227)3、求解细杆导热问题,杆长l ,两端保持为零度,初始温度分布20|()/t u bx l x l ==-。

[定解问题为220200,()(0),||0,|()/.t xx x x l t k u a u a x l C u u u bx l x l ρ===⎧-==≤≤⎪⎪⎪==⎨⎪=-⎪⎪⎩] (P-230) 4、求解定解问题2220,0,0220,0.03sin ,0.00u u a x l t t x u u x x l x u u A t l t t π⎧∂∂⎪-=<<>⎪∂∂⎪==⎨==⎪∂⎪===⎪∂=⎩4、长为l 的均匀杆,两端受压从而长度缩为(12)l ε-,放手后自由振动,求解杆的这一振动。

[提示:定解问题为20000,(0),||0,2|2(),|0.tt xx x x x x l t t t u a u x l u u u x l u ε====⎧-=<<⎪==⎪⎪⎨=-⎪⎪=⎪⎩](P-236) 5、长为l 的杆,一端固定,另一端受力0F 而伸长,求解杆在放手后的振动。

第三章分离变量法(2)

第三章分离变量法(2)

习题3.21.求解具有放射性衰变的热传导议程。

解:由于对应的齐次方程具有第一类边界条件,故令:,代入方程和初始条件得:即其中得其中故得原定解问题的解为:2.一长为l的均匀弦,弦上每一点受外力作用,其力密度为bxt,若弦的两端是自由的,而初始位移为零,初始速度为(l-x),试求弦的横振动。

解:该问题的数学模式为:解:由于该问题所对应的边界条件是第二类边界条件,故可令代入方程和初始条件有:整理得:其中∴将代入上式得将代入上式有∴∴3.求解下列定解问题(1)解:该方程所对应的齐次方程是第一基边齐条件,于是可设其中∴代入方程和初始条件有:整理得:∴将代入上式得将代入得∴∴(2)解:该问题对应的齐次方程的特征函数为故令,代入方程和初始条件有:其中证则有:将代入上式得(3)解:令则代入方程和边齐条件,并比较系数有:其中⑥对应的齐次方程的通解为⑥的特解为则⑥的通解为将代入a得∴∴原方程的解为(4)解:该方程所对应的齐次问题的特征函数为:于是原方程的解可以设为(1)并且(2)将(2)变形为类比知将(1)代入原方程和初始条件有:整理即为将(1)代入齐次初始条件有∴当n = 0时有(3)的通解为:∵代入上式得代入上式得∴当时∴将(6)代入上式有∴∴,其中4:试用冲量原理推理有界弦纯强迫振动解,即用冲量原理证明下列方程的解为其中证明:(1)引进瞬时力的概念外力f(x,t)是持续作用的,应对弦上各点的位移均产生影响。

因此t时刻的位移u(x,t),应是外力从t=0持续到时刻t的结果。

现将持续力f(x,t)看成一系列前后相继的瞬时力f(x,)的叠加。

由函数的定义,瞬时力作用从开始,到结束,根据叠加原理,定解问题的解,应是所有瞬时力引起的位移的叠加。

即(2)求的定解问题由于弦两端固定的情况没有变,交且时刻的瞬时x不可能引起时刻的初始位移和初速度,因此,应满足如下位移。

(3)利用冲量定理将非齐次方程齐次化。

由于瞬时力的作用仅发生在时段内,若将初始时刻设为,则的定解问题中,方程就变成齐次了。

大学物理-分离变量法例题

大学物理-分离变量法例题
所以 (6-1-8)
相应的本征函数为
思考:n 只取正整数的原因?
3. 求解关于 T(t) 的常微分方程

代入(6-1-6),得到
其通解为
由此得到 u(x,t) 的特解
(6-1-9) (6-1-10)
(6-1-11)
4. 利用叠加原理,将特解进行叠加,得到通解 一般说来,un(x,t) 不可能满足初始条件,但特解的线性叠 加仍满足方程与边界条件。将特解线性叠加,得到通解:
(x) C1 x C2
而由 (7) 式有
C1a C2 0 C1a C2 0
于是有 C1= C2 = 0,从而有φ(x) = 0,所以λ≠ 0。
2. 若λ< 0,则由式 (6' ) 有
x C1e x C2e x
而由 (7) 式有 C1e x C2e x 0 C1e x C2e x 0
(k 1, 2,
)
故本征值问题 (6' ) ~ (7) 的本征值为
En
n 2 2
n2 2 2 8a2
(n 1, 2,
)
(13)
这是能量本征值,而由(10)和(12)式可得相应的本征函数为
n
(
x)
Cn
sin
n
2a
(
x
a)
(14)
这是第 n 个定态 (即不含时的) 波函数。
方法二 通过坐标平移利用已知结果来求解。 我们已看到上述求解本征值问题 (6' ) ~ (7) 的过程是相

i f '(t) 2 ''(x) 令 E (能量) f (t) 2 (x)
于是得
i
d f Ef dt
(5)

数学物理方程-第二章分离变量法

数学物理方程-第二章分离变量法

第二章 分离变量法分离变量法是求解偏微分方程定解问题最常用的方法之一,它和积分变换法一起统称为Fourier 方法. 分离变量法的本质是把偏微分方程定解问题通过变量分离,转化为一个所谓的特征值问题和一个常微分方程的定解问题,并把原定解问题的解表示成按特征函数展开的级数形式. 本章介绍两个自变量的分离变量法,更多变量的情形放在其他章节中专门讨论.§21 特征值问题⋅2.1.1 矩阵特征值问题在线性代数中,我们已学过线性变换的特征值问题. 设为一阶实矩阵,A n 可视为到自身的线性变换。

该变换的特征值问题(eigenvalue problem )A n R 即是求方程:,,n Ax x x R λ=∈(1.1)的非零解,其中为待定常数. 如果对某个,问题(1.1)有非零解C λ∈λ,则就称为矩阵的特征值(eigenvalue),相应的称为矩阵n x R λ∈λA n x R λ∈的特征向量(eigenvector). 一般来讲,特征值问题(1.1)有不多于个相A n 异的特征值和线性无关的特征向量. 但可证明: 任一阶矩阵都有个线性无n n 关的广义特征向量,以此个线性无关的广义特征向量作为的一组新基,矩n n R 阵就能够化为标准型.Jordan 若为一阶实对称矩阵,在线性代数中有一个重要结果,即存在一个正A n 交矩阵使得T , 1T AT D -=(1.2)其中diag 为实对角阵. 设,为矩阵的第列D =12(,,...,)n λλλ12[ ... ]n T T T T =i T T i 向量,则式(1.2)可写为如下形式(1)i n ≤≤ ,1212 [ ... ][ ... ]n n A T T T T T T D =或, 1.i i i A T T i n λ=≤≤(1.3)上式说明,正交矩阵的每一列都是实对称矩阵的特征向量,并且这T A 个特征向量是相互正交的. 由于此结论在一定意义下具有普遍性,我们以定n 理的形式给出.定理1.1 设为一阶实对称矩阵,考虑以下特征值问题A n ,,n Ax x x R λ=∈则的所有特征值为实数,且存在个特征向量,它们是相互正交的A n ,1i T i n ≤≤(正交性orthogonality ),可做为的一组基(完备性completeness ).n R 特征值问题在线性问题求解中具有重要的意义,下面举例说明之.为简单起见,在下面两个例子中取为阶非奇异实矩阵,故的所有特A n A 征值非零,并且假设有个线性无关的特征向量 相应的特征值为A n ,i T ., 1i i n λ≤≤例1.1 设,求解线性方程组 .n b R ∈Ax b =解 由于向量组线性无关,故可做为的一组基. 将按此{1}i T i n ≤≤n R ,x b 组基分别展开为,则等价于11 ,nni i i i i i x x T b bT ====∑∑Ax b =,11nni ii ii i x AT bT ===∑∑或,11nni i ii ii i x T bT λ===∑∑比较上式两边的系数可得i T ,1, 1i i i x b i n λ-=≤≤便是原问题的解.12( ... )n x x x x T =例1.2 设,. 求解非齐次常微0n x R ∈12()((),(),...,()), 0n n f t x t x t x t R t T =∈>分方程组, 0(), (0)dxAx f t x x dt=+=(1.4)其中 . '''12((),(),...,()),0n dx x t x t x t t dtT =>解 类似于上例,将按基分别展开为0,,()x x f t {1}i T i n ≤≤ .0111, , ()()nn n i i i ii i i i i x x T x x T f t f t T ======∑∑∑则(1.4)等价于,0111()() +(), (0), 1n n ni i i i i i i i i i i dx t T x t AT f t T x x i n dt =====≤≤∑∑∑或,011()(()()), (0),1nni i i i i i i i i i dx t T x t f t T x x i n dt λ===+=≤≤∑∑比较上式两边的系数可得i T . 0()()(), (0), 1i i i i i i dx t x t f t x x i n dtλ=+=≤≤(1.5)(1.5)是个一阶线性方程的初始值问题,很容易求出其解.请同学们给出解n 的具体表达式.(),1i x t i n ≤≤2.1.2 一个二阶线性微分算子的特征值问题在这一小节,我们讨论在本章常用的一些特征值问题. 代替上节的有限维线性空间和阶实对称矩阵,在这儿要用到线性空间的某个子空间n R n A [0,]C l 和该子空间上的二阶线性微分算子. 一般地取H A在满足齐次边界条件.2{()[0,]()H X x C l X x =∈0,x l =}(1.6)下面我们讨论二阶线性微分算子的特征值问题. 先取边界条件为22d A dx=-,设是的特征函数,即且满足(0)0,()0X X l ==()X x H ∈A ()0X x ≠.()()AX x X x λ=此问题等价于是下面问题的非零解()X x "()()0, 0(0)()0 .X x X x x l X X l λ⎧+=<<⎨==⎩(1.7)(1.7)便是二阶线性微分算子的特征值问题,即要找出所有使22d A dx=-得该问题有非零解的. 下面求解特征值问题(1.7).λ首先证明要使(1.7)具有非零解,必须非负.λ设是相应于的一个非零解,用乘(1.7)中的方程,并在)(x X λ)(x X 上积分得[]l ,0,0)()()()("=+x X x X x X x X λ,0)()()( 0 2 0 "=+⎰⎰dx x X dx x X x X llλ.0)())(()()( 0 2 0 2'0'=+-⎰⎰dx x X dx x X x X x X lll λ由于,故有0)()0(==l X X ,2'2 0()(())llX x dx X x dx λ=⎰⎰.'22 0(())()0llX x dxX x dx λ=≥⎰⎰(1.8)当时,方程的通解为. 利用边界条件0λ=0)()("=+x X x X λ12()X x c c x =+可得,即. 因此,不是特征值.0)()0(==l X X 120c c ==()0X x =0λ=当时,方程的通解为0λ>0)()("=+x X x X λ. (1.9x C x C x X λλsin cos )(21+=)利用边界条件确定常数如下0)()0(==l X X 21,C C , ,10C =l C l C λλsin cos 021+=或.0sin 2=l C λ由于要求(1.7)中齐次微分方程的非零解,故不能为零. 故有2C .0sin =l λ,从而有0> , ,πλn l =1n ≥, .2)(ln n πλ=1n ≥将代入到(1.8)中,并略去任意非零常数得n C C λ,,212C , .x ln x X n πsin)(=1n ≥故特征值问题(1.7)的解为, , 2(l n n πλ=x ln x X n πsin )(=1n ≥(1.10)注1 特征值问题是分离变量法的理论基础. 上面已求出特征值问题(1.7)的解为. 在高等数学中知道,在一定条件下区间{ sin 1 }n x n lπ≥的任一函数可按特征函数系展开为Fourier 级数. 换言[0 , ]l { sin 1 }n x n lπ≥之,特征函数系是区间上满足一定条件的函数所成无穷维空间的一组基,{ sin 1 }n x n lπ≥[0 , ]l 而且还是该空间上的一组正交基,即有. 特征函0sinsin 0 , ln m x n m l lππ=≠⎰数系的这两个根本性质:正交性和完备性(基),和定理1.1{ sin1 }n x n lπ≥有限维空间中相应结论很相似,只是现在的特征值和特征函数是无穷个. 另n R 外,若改变(1.7)中的边界条件,其相应的特征值和特征函数也会有所变化.如将边界条件变为,则特征值和特征函数分别为(0)0,'()0X X l ==. 2(21)(21)(),()sin ,022n n n n X x x n l lππλ++==≥该特征函数系也具有和特征函数系类似(21){ sin1 }2n x n l π+≥{ sin 1 }n x n lπ≥的性质,既正交性和完备性.此类问题的一般结果便是著名的Sturm—Liouville定理,有兴趣的同学可参阅参考文献.[1][4]-将以上的结果以定理的形式给出.定理1.2 考虑二阶线性微分算子的特征值问题[1],[4]22d A dx=- "()()()()0 , 0 ,(0)0,()0 .k m X x X x x l X X l λ⎧+=<<⎪⎨==⎪⎩(1.11)其中. 则该问题的特征值非负,且满足0,1k m ≤≤.120......n λλλ≤<<<<→∞相应的特征函数系在上是相互正交的. 且对于任一在区间上1{()}n n X x ≥[0,]l [0,]l 分段光滑的函数,可按特征函数系展开为如下的级数()f x 1{()}n n X x ≥Fourier ,1()()n n n f x f X x ∞==∑其中系数为Fourier .20()(), 1()l nn lnf x Xx dxf n Xx dx =≥⎰⎰为后面需要,下面再求解二阶线性微分算子带有周期边界条件的22d A dx=-特征值问题. 在偏微分方程教材中,习惯上用表示周期函数,即考虑下面()θΦ二阶线性微分算子的周期边值问题22d A dx=- "()()0, () (2), .θλθθθπθθ⎧Φ+Φ=-∞<<+∞⎨Φ=Φ+-∞<<+∞⎩(1.12)可证(1.12)和以下问题等价"''()()0, 02(0) (2), (0) (2).θλθθπππ⎧Φ+Φ=≤≤⎪⎨Φ=ΦΦ=Φ⎪⎩(1.13)和(1.8)的证明相似易得(1.13)中的特征值.当时,0≥λ0λ=, 由周期边界条件可得. 所以为特征函数.12()c c θθΦ=+20c =0()1θΦ=当时,方程通解为0λ>,θλθλθsin cos )(21c c +=Φ求导得.'()c c θΦ=-+由周期边界条件可得112cos(2sin(2c c c c c c ππ⎧=+⎪⎨=-+⎪⎩或1212[1cos(2sin(20sin(2[1cos(20.c c c c ππ⎧--=⎪⎨+-=⎪⎩(1.14)由于要求非零解,故不能同时为零. 因此,齐次方程组(1.14)的系数矩12,c c 阵行列式必为零,即 .解之可得1cos(20-=,2n n =λ()cos sin .n n n c n d n θθθΦ=+此时对每个正特征值,特征函数有二个,既,. 总结所得2n n =λθn cos θn sin 结果为如下定理.定理1.3 考虑二阶线性微分算子带有周期边界条件的特征值问22d A d θ=-题"''()()0, 02(0) (2), (0) (2).θλθθπππ⎧Φ+Φ=≤≤⎪⎨Φ=ΦΦ=Φ⎪⎩则该问题的特征值和特征函数分别为,.00,λ=0()1;θΦ=2n n =λ(){cos ,sin }, 1n n n n θθθΦ=≥§22 分离变量法⋅本节结合具体定解问题的求解来介绍分离变量法(method of separation of variables ). 所举例子仅限于一维弦振动方程,一维热传导方程混合问题以及平面上一些特殊区域上的位势方程边值问题. 对高维问题的处理放在其它章节中介绍.以下多数例子均假定定解问题带有齐次边界条件. 否则,可利用边界条件齐次化方法转化之. 我们以弦振动方程的一个定解问题为例介绍分离变量法.2.2.1 弦振动方程定解问题例2.1求解两端固定弦振动方程的混合问题2(,), 0, 0 (2.1)(0,)0, (,)0, 0 (2.2)(,0)(), (,0)(),0. tt xx t u a u f x t x l t u t u l t t u x x u x x x l ϕψ-=<<>==≥==≤≤ (2.3)⎧⎪⎨⎪⎩解 分四步求解.第一步 导出并求解特征值问题. 即由齐次方程和齐次边界条件,利用变量分离法导出该定解问题的特征值问题并求解.令,并代入到齐次方程中得)()(),(t T x X t x u =,0)()()()(''2''=-t T x X a x X t T 或.''''2()()()()X x T t X x a T t =上式左端是的函数而右端是的函数,要二者相等,只能等于同一常数.x t 令此常数为-,则有λ , ,λ-=)()("x X x X "2()()T t a T t λ=-上面的第一个方程为.0)()("=+x X x X λ利用齐次边界条件(2.2),并结合得0)(≠t T .0)()0(==l X X 由此便得该定解问题的特征值问题为"()()0, 0(0)()0.X x X x x l X X l λ⎧+=<<⎨==⎩其解为特征值:特征函数: 2() , 1 ;n n n lπλ=≥()sin, 1 .n n X x x n lπ=≥第二步 正交分解过程. 即将初值和自由项按特征函数系展成{}1()n n X x ≥Fourier 级数,并将也用特征函数表出.),(t x u {}1()n n X x ≥ ,11()()sinn n n n n n x X x x lπϕϕϕ∞∞====∑∑(2.4), 11()()sinn n n n n n x X x x lπψψψ∞∞====∑∑(2.5), 11(,)()()()sinn n n n n n f x t f t X x f t x lπ∞∞====∑∑(2.6)(2.711(,)()()()sinn n n n n n u x t T t X x T t x lπ∞∞====∑∑)这里,和分别为,和的Fourier 系数,具体表示如n ϕn ψ)(t f n )(x ϕ)(x ψ),(t x f 下,02()sin l n n d l l πϕϕααα=⎰,02()sin l n n d l l πψψααα=⎰,02()(,)sin l n n f t f t d l lπααα=⎰而为待定函数.)(t T n 第三步 待定系数法. 即先将和的Fourier 级数代入到(2.1)),(t x f ),(t x u 中,导出关于满足的常微分方程. 再利用初值条件(2.3)得出满足)(t T n )(t T n 的初始条件.假设(2.7)中的级数可逐项求导,并将(2.6)和(2.7)代入到(2.1)中得,"2"111()()()()()()nnnnn n n n n T t Xx aT t Xx f t X x ∞∞∞===-=∑∑∑,"2111()()()(())()()nnn nnn n n n n T t Xx aT t Xx f t X x λ∞∞∞===--=∑∑∑ . (2.8"211(()())()()()nn n n n n n n T t a T t X x f t X x λ∞∞==+=∑∑)由于Fourier 展式是唯一的,比较(2.8)两端系数得)(x X n(2.9"2()()(), 1.n n n n T t a T t f t n λ+=≥)在(2.7)中令并结合(2.4)得0=t (2.10()(0)()()n n n n n n x T X x X x ϕϕ∞∞====∑∑)比较(2.10)两端系数得)(x X n(0), 1.n n T n ϕ=≥(2.11)类似地可得'(0), 1.n n T n ψ=≥(2.12)结合(2.9),(2.11)和(2.12)便得出关于满足的二阶常系数非齐)(t T n (1)n ≥次方程初始值问题"2'()()(), 0(0), (0).n n n n n n n n T t a T t f t t T T λϕψ⎧+=>⎪⎨==⎪⎩(2.13)第四步 求解关于的定解问题(2.13),并将其结果代入到(2.7)中)(t T n 即可.为简单起见,我们设. 将代入到(2.13)中可得方程的通()0,1n f t n =≥n λ解为, t lan d t l a n c t T n n n ππsin cos)(+=利用初始条件确定常数如下,n n c d.'(0), (0)n n n n nn aT c T d lπϕψ====故有. ()cossin n n n l n a n a T t t t l n a lψππϕπ=+最后将上式代入到(2.7)中便得定解问题(2.1)—(2.3)的解为12(,)()sin cos sin l n n n a n u x t d t xlll lπππϕααα∞==∑⎰ (2.14)012()sin sin sin l n n n a n d t x n a l l l πππψαααπ∞=+∑⎰注1 利用分离变量法求解(2.1)—(2.3),需要假设在(2.7)中可通过无穷求和号逐项求导. 而通过号求导要对无穷级数加某些条件,在这里就∑∑不做专门讨论了. 今后遇到此类问题,我们均假设一切运算是可行的,即对求解过程只作形式上的推导而不考虑对问题应加什么条件. 通常称这样得出的解为形式解. 验证形式解是否为真解的问题,属于偏微分方程正则性理论的范围. 一般地讲,偏微分方程定解问题的解大多数是以无穷级数或含参变量积分形式给出的. 对这两类函数可微性的研究需要较深的数学知识,也有一定的难度,有兴趣的同学可查阅参考文献和. 我们约定:本书只求定解问题的形式解.[1][2]注2 当时,由(2.14)可以看出:两端固定弦振动的解是许多(,)0f x t =简单振动的叠加,当时,对任意的(,)()sinn n n u x t T t x l π=(11)k klx x k n n==≤≤-时刻,,即在振动的过程中有个点永远保持不动,所t (,)0n k u x t =(,)n u x t (1)n +以称这样的振动为驻波,而称为该驻波的节点.显然当k x 时,在这些点上振幅最大,称这些点为驻波的21(11)2k x l k n n+=≤≤-sin 1x =腹点. 因此,求特征函数实际上就是求由偏微分方程及边界条件所构定的系统所固有的一切驻波. 利用由系统本身所确定的简单振动来表示一些复杂的振动,便是分类变量法求解波动问题的物理解释.注3 例2.1的求解方法也叫特征函数法(eigenfunction method ),现已成为固定模式,也具有普适性. 初学者似乎会感到有些繁琐,但随着进一步的学习,同学们就会熟练掌握这一方法. 特征函数法的关键之处是求解偏微分方程定解问题相应的特征值问题,而基本思想就是笛卡尔(Descartes )坐标系的思想.如在三维空间中,每个向量可由基的线性组合表出,两个向量3R {,,}i j k 111222 , a i b j c k a i b j c kαβ=++=++相等当且仅当在基下两个向量的坐标相等. 既.{,,}i j k121212 , , a a b b c c ===与此相类似,在例2.1求解中也是比较方程或初始条件两边的系数而得()n X x 到(2.13). 与三维空间相比较,例2.1中特征函数系相当3R { sin1 }n x n lπ≥于3R 中的基,而也就相当于上面的,即定解问题的解{,,}i j k{ T () 1 }n t n ≥111{,,}a b c 关于基函数的坐标. 因此,在具有可数基的无穷维空间中,特{ sin1 }n x n lπ≥征函数法也称为待定系数法.例2.2 设有一均匀细弦,其线密度为. 若端为自由端,端固ρ0x =x l =定.初始速度和初始位移分别为零,并受到垂直于弦线的外力作用,其单位长度所受外力为. 求此弦的振动. sin t ω 解 所求定解问题为(2.1521 sin , 0, 0(0,)0, (,)0, 0(,0)0, (,0)0, 0.tt xx x t u a u t x l t u t u l t t u x u x x l ρω-⎧-=<<>⎪==≥⎨⎪==≤≤⎩)利用特征函数法求解该问题.情形1 非共振问题,即.22, 0n a n ωλ≠≥ 该定解问题的特征值问题为(2.16)"'()()0, 0(0)0, ()0.X x X x x l X X l λ⎧+=<<⎪⎨==⎪⎩其解为, , 2(21)()2n n l πλ+=(21)()cos 2n n X x x lπ+=0n ≥将按特征函数展开成Fourier 级数得1sin t ρω-{}0)(≥n n x X , (2.17)11sin ()()n n n t f t X x ωρ∞==∑.021214()sin sin sin sin 2(21)l n n n f t t d t f t l l n ωπααωωρπρ+===+⎰令(,)()()n n n u x t T t X x ∞==∑(2.18)完全类似例2.1的求解过程可得,对于任意满足下面问题0, ()n n T t ≥(2.19"2'()()sin , 0(0)0, (0)0.n n n n n n T t a T t f t t T T λω⎧+=>⎪⎨==⎪⎩)初值问题(2.19)中齐次方程的通解为,12()cos sin n T t c c =+而非齐次方程的一个特解为.22()sin nn n f T t t a ωλω=-因此,(2.19)的通解为. 1222()cos sin sin nn n f T t c c t a ωλω=++-(2.20)由初始条件可确定出120, c c ==最后将所得到的代入到(2.18)中便得(2.15)的解.()n T t 情形2 共振问题,即存在某个 使得.0,n ≥22n a ωλ=不妨假设.此时,在情形1中求解所得到的不变.220a ωλ={ T () 1 }n t n ≥当时,要求解以下问题0n = "2000'00()()sin , 0(0)0, (0)0.T t T t f t t T T ωω⎧+=>⎪⎨==⎪⎩(2.21)(2.21)中齐次方程通解为.012()cos sin T t c t c t ωω=+为求得非齐次方程的一个特解,要将(2.21)中方程的自由項换为,而求0i t f e ω以下问题的一个特解"2000()().i t T t T t f e ωω+=令并代入到上面非齐次方程中可得 ,故有()i t T t Ate ω=02f iA ω=-,00()sin cos 22f t f tT t t i t ωωωω=-取其虚部便得(2.21)中方程的一个特解为. 00()Im(())cos 2f tT t T t t ωω==-结合以上所得结果便可得到(2.21)中方程的通解为,0012()cos sin cos 2f tT t c t c t t ωωωω=+-由初始条件确定出 ,由此可得01220, 2fc c ω==.0002()sin cos 22f f tT t t t ωωωω=-将代入到(2.18)中便得在共振条件下(2.15)的解为()n T t 000102112(,)()()()()()()(sin cos )cos ()()222 (,)(,) .n n n n n n n n n u x t T t X x T t X x T t X x f f t t t x T t X x l u x t u x t πωωωω∞=∞=∞===+=-+=+∑∑∑可以证明: 是有界的. 而在的表达式中取 ,则2(,)u x t 1(,)u x t 2k k t πω=中的基本波函数的振幅当逐渐变大时将趋于无穷大,最1(,)u x t cos2x lπ0()k T t k 终要导致弦线在某一时刻断裂,这种现象在物理上称为共振. 注意到在上面求解过程中我们取周期外力的频率等于系统的第一固有频率ω波函数分量上发生共振. 一般地讲,当周期外力的频率很接近或等于系统的ω某个固有频率时,系统都会有共振现象发生,即弦线上一些点的振幅将随着时间的增大而不断变大,导致弦线在某一时刻断裂.2.2.2 热传导方程定解问题例2.3 求解下面热方程定解问题(2.2220, 0, 0 (0,), (,)sin , 0(,0)0, 0.t xx x u a u x l t u t u u l t t t u x x l ω⎧=<<>⎪==≥⎨⎪=≤≤⎩)解 利用特征函数法求解(2.22).首先将边界条件齐次化,取,并令,则0(,)sin w x t u x t ω=+w u v -=(2.22)转化为(2.2320cos , 0, 0 (0,)0, (,)0, 0(,0), 0.t xx x v a v x t x l t v t v l t t v x u x l ωω⎧-=-<<>⎪==≥⎨⎪=-≤≤⎩)利用分离变量法可得(2.23)的特征值问题为"()()0, 0(0)0, '()0.X x X x x l X X l λ⎧+=<<⎨==⎩特征值和特征函数分别为,2(21)()2n n lπλ+=0≥n .(21)()sin 2n n X x x lπ+=0≥n 将,按特征函数展成Fourier 级数(,)cos f x t x t ωω=-0)(u x -=ϕ{}0)(≥n n x X 得, (2.24)cos ()()n n n x t f t X x ωω∞=-=∑,02(21)()(1)cos sin cos 2l n n n f t t d f t l lπωαωααω+=-=⎰其中. 1228(1)(12)n n l f n ωπ+-=+ , (2.25)00n n n u X ϕ∞=-=∑其中.00042(21)()sin 2(12)l n u n u d l l n πϕααπ-+=-=+⎰令(2.26)(,)()(), n n n v x t T x X x ∞==∑并将(2.26)代入到(2.23)中的方程得,'2"()()()()cos ()nnnnn n n n n T t Xx aT t Xx f tX x ω∞∞∞===-=∑∑∑.'2(()())()cos ()nn nnn n n n T t a T t Xx f tX x λω∞∞==+=∑∑在(2.26)中令并结合(2.25)得0=t .()(0)()()n n n n n n x T X x X x ϕϕ∞∞====∑∑比较上面两式中特征函数的系数便得()n X x(2.27'2()()cos , 0(0).n n n n n n T t a T t f t t T λωϕ⎧+=>⎪⎨=⎪⎩)(2.27)是一阶常系数常微分方程初值问题.齐次方程通解为.t a n n Ce t T λ2)(-=令,并利用待定系数法求特解可得()cos sin n T t A t B t ωω=+ ,2242242()cos sin n n nn n na f f T t t t a a λωωωωλωλ=+++故有(2.2822242242()cos sin n a tn n nn n na f f T t Cet t a a λλωωωωλωλ-=++++)在上式中代得0t =,2242n nn na f C a λϕωλ=++ . 2242n nn na f C a λϕωλ=-+最后将(2.28)代入到(2.26)中便得(2.23)的解为.0(21)(,)()sin2n n n v x t T t x lπ∞=+=∑故(2.21)的解为),(),(),(t x w t x v t x u +=0 (,)sin v x t u x t ω=++其中由(2.28)给出. )(t T n2.2.3 平面上位势方程边值问题考虑矩形域上Poisson 方程边值问题1212(,), , (,)(), (,)(), (,)(), (,)(), .xx yy u u f x y a x b c y d u a y g y u b y g y c y d u x c f x u x d f x a x b +=<<<<⎧⎪==≤≤⎨⎪==≤≤⎩(2.29)我们假设或. 否则,利用边界条件齐次化方法0)()(21==x f x f 0)()(21==y g y g 化非齐次边界条件为齐次边界条件. 当然,也可以利用叠加原理将(2.29)分解为二个问题,其中一个关于具有齐次边界条件,而另一个关于具有齐次边x y 界条件.例2.4 求解Dirichlet 问题(2.300, 02, 0 1 (0,)0, (2,)0, 01(,0)1, (,1)(1), 0 2.xx yy u u x y u y u y y u x u x x x x +=<<<<⎧⎪==≤≤⎨⎪==-≤≤⎩)解 令并将其代入到(2.29)中齐次方程得)()(),(y Y x X y x u =,0)()()()(""=+y Y x X y Y x X ,λ-=-=)()()()(""y Y y Y x X x X (2.31"()()0, 0 2(0)0, (2)0.X x X x x X X λ⎧+=<<⎨==⎩)0)()("=-y Y y Y λ(2.32)(2.31)便是(2.30)的特征值问题,其解为, , .2)2(πλn n =x n x X n 2sin)(π=1≥n 将代入到(2.32)中得n λ ,0)()("=-y Y y Y n λ(2.33)该方程有两个线性无关解,. 由于,也是(2.33)的y n e2πy n e2π-2n shy π2n ch y π解且线性无关,故(2.33)通解为.y n ch d y n shc y Y n n n 22)(ππ+=令(2.34)11(,)()()()sin 222n n n n n n n n n u x y X x Y y c shy d ch y x πππ∞∞====+∑∑则满足(2.30)中方程和关于的齐次边界条件. 利用关于的边界条),(y x u x y 件可如下确定,,n c n d ,∑∞==12sin1n n x n d π . (2.35))1(1(22sin12220n n n d n d --=⨯=⎰πααπ),x n n ch d n shc x x n n n ∑∞=+=-12sin )22()1(πππ . 22))1(1(22)1(416)1(163322ππππππn sh n chn n sh n n c n nnn -------=(2.36)故(2.30)解为(2.371(,)()sin ,222n n n n n n u x y c shy d ch y x πππ∞==+∑)其中,由(2.36)和(2.35)确定.n c n d 对于圆域,扇形域和圆环域上的Poisson 方程边值问题,求解方法和矩形域上的定解问题无本质区别,只是在此时要利用极坐标.同学们自己可验证:令,作自变量变换,则有θρcos =x θρsin =y .θθρρρρρu u u u u yy xx 211++=+令,将其代入到极坐标下的Laplace 方程中得)()(),(θρθρΦ=R u 222330216(1)164(1)(1)sin ,2222n nn n n n n n c sh d ch d n ππππααααπ----+=-=⎰,"'"211()()()()()()0R R R ρθρθρθρρΦ+Φ+Φ=,"'"211(()())()()()0R R R ρρθρθρρ+Φ+Φ=,"'"21()()()1()()R R R ρρθρλθρρ+Φ=-=-Φ故有, (2.380)()("=Φ+Φθλθ). (2.390)()()('"2=-+ρλρρρρR R R )方程(2.38)结合一定的边界条件便得相应定解问题的特征值问题,而(2.39)是欧拉(Euler )方程. 对(2.39)作自变量变换可得s e =ρ , ,s e =ρρln =s ,'1s dR dR ds R d ds d ρρρ==.2222'''2222211()ss s d R d R ds dR d s R R d ds d ds d ρρρρρ=+=-将以上各式代入到(2.39)得. (2.40''0ss R R λ-=)例2.5 求下面扇形域上Dirichlet 问题(2.4122220, 0, 0, 4(,0)0, 0 2(0,)0, 0 2 (,), 4. xx yy u u x y x y u x x u y y u x y xy x y ⎧+=>>+<⎪=≤≤⎪⎨=≤≤⎪⎪=+=⎩)的有界解.解 令,作自变量变换,(2.41)转化为θρcos =x θρsin =y(2.42)2110, 0, 0 2 2(,0)0, (,0, 022(2,)2sin 2, 0.2u u u u u u ρρρθθπθρρρπρρρπθθθ⎧++=<<<<⎪⎪⎪==≤≤⎨⎪⎪=≤≤⎪⎩令代入到(2.42)中的方程,并结合边界条件可得)()(),(θρθρΦ=R u"()()0, 0<</2(0)0, (/2)0.θλθθππ⎧Φ+Φ=⎨Φ=Φ=⎩(2.43). (2.440)()()('"2=-+ρλρρρρR R R )(2.43)便是(2.42)的特征值问题.求解特征值问题(2.43)可得, , .224)2/(n n n ==ππλθθn n 2sin )(=Φ1≥n 将代入到(2.44)中,并令作自变量变换可得n λs e =ρ,"240ss R n R -=.2222()ns ns n n n n n n n R c e d e c d ρρρ--=+=+由于是求(2.42)的有界解,故有,即. 从而有∞<)0(R 0=n d .n n n c R 2)(ρρ= 上面求出的对每个都满足(2.42)中的方程和齐(,)()()n n n u R ρθρθ=Φ1n ≥次边界条件,由叠加原理得, (2.45∑∑∞=∞==Φ=1212sin )()(),(n n n n n n n c R u θρθρθρ)也满足(2.42)中的方程和齐次边界条件.为使(2.42)中的非齐次边界条件得以满足,在(2.45)中令得(2,)2sin u θθ=2ρ= ,212sin 22sin 2n n n c n θθ∞==∑(2.46)比较上式两边特征函数的系数得θθn n 2sin )(=Φ , .112c =1)( 0≠=n c n 将,代入到(2.45)中便得(2.42)的解为1c 1)(≠n c n . θρθρ2sin 21),(2=u 例2.6 求解圆域上Dirichlet 问题2110, 0, 02(,)(), 02.u u u a u a ρρρθθρθπρρθϕθθπ⎧++=<<≤<⎪⎨⎪=≤≤⎩(2.47)解 圆域上的函数相当于关于变量具有周期. 令(,)u ρθθ2π并代入到(2.46)中的方程可得)()(),(θρθρΦ=R u(2.48"()()0() (2).θλθθπθ⎧Φ+Φ=⎨Φ=Φ+⎩). (2.490)()()('"2=-+ρλρρρρR R R )(2.48)是定解问题(2.47)的特征值问题. 由定理1.3知(2.48)的解为.2, ()cos sin , 0n n n n n c n d n n λθθθ=Φ=+≥将代入到(2.49)中可得(要利用自然边界条件)n λ(0,)u θ<∞,,00)(c R =ρn n n c R ρρ=)(1≥n 利用叠加原理可得(2.47)的如下形式解.∑∞=++=10)sin cos (),(n n n n n d n c c u θθρθρ(2.50)根据边界条件得)(),(θϕθ=a u ,01()(cos sin )n n n n c a c n d n ϕθθθ∞==++∑其中,2001()2c d πϕττπ=⎰,⎰=πτττϕπ20cos )(1d n a c n n .⎰=πτττϕπ20sin )(1d n a d n n 将以上各式代入到(2.50)中便得(2.47)的解为2 2 0 0111(,)()()(()cos cos 2n n u d n d n a ππρρθϕττϕτττθππ∞==+∑⎰⎰ .)sin sin )(12 0 ⎰+πθτττϕπn d n (2.51)注4 利用等式可将(2.51)化为如下形)Re()(cos 1)(1∑∑∞=-∞==-n in n n n e c n c τθτθ式(2.522222201()()(,),22cos()a u d a a πρϕτρθτπρρθτ-=+--⎰)式(2.52)称为圆域上调和函数的Poisson 公式. 在后面学习中还将用其它方法导出它. 注5 在例2.5和例2.6中,如果方程中自由项不为零,若),(θρf 特殊,可用函数代换将自由项化为零而转化齐次方程. 对于一般的),(θρf ,要利用特征函数方法求解.),(θρf 注6 上面例2.3—例2.6几个定解问题的求解思想和主要过程,是伟大的数学家和物理学家Fourier 给出的,详细内容见参考文献. 在这部著名论著[5]中,Fourier 首次利用偏微分方程来研究热问题,并系统地介绍了分离变量法的基本思想和主要步骤. 结合本节所举例子,请同学们小结一下在本章所学过的特征值问题,二阶常系数非齐次常微分方程和欧拉方程的求解方法. 习 题 二1. 设有如下定解问题2(,), 0, 0 (0,)0, (,)0, 0(,0)(), (,0)(), 0.tt xx x t u a u f x t x l t u t u l t t u x x u x x x l ϕψ⎧-=<<>⎪==≥⎨⎪==≤≤⎩利用分离变量法导出该定解问题的特征值问题并求解.2.求解下列特征值问题 (1) "''()()0, 0 (0)()0.X x X x x l X X l λ⎧+=<<⎪⎨==⎪⎩ (2) "()()0, 1 1 (1)0,(1)0X x X x x X X λ⎧+=-<<⎨-==⎩ (3) "()()0, 0 '(0)0, ()0.X x X x x l X X l λ⎧+=<<⎨==⎩ (4) "()()0, 02 (0)(2), '(0)'(2).X x X x x l X X l X X l λ⎧+=<<⎨==⎩3 考虑下面特征值问题*"()()0, 0 (0)0, '()()0.X x X x x l X X l X l λ⎧+=<<⎨=+=⎩(1)证明一切特征值0.λ>(2)证明不同的特征值对应的特征函数是正交的.(3)求出所有的特征值和相应的特征函数.4. 设在区间一阶连续可导且 考虑如下特(),()p x q x [0,]l ()0,()0.p x q x >≥征值问题[()()]()()(), 0 (0)0, ()0.d d p x X x q x X x X x x l dx dx X X l λ⎧-+=<<⎪⎨⎪==⎩(1)证明一切特征值0.λ≥(2)证明不同的特征值对应的特征函数是正交的.5.求解下列弦振动方程的定解问题(1)20, 0<, 0(0,)0, (,)0, 0(,0), (,0)0, 0.tt xx x x t u a u x l t u t u l t t u x x u x x l ⎧-=<>⎪==≥⎨⎪==≤≤⎩ (2) 20, 0<, 0(0,)0, (,)0, 035(,0)sin , (,0)sin , 0.22tt xx x t u a u x l t u t u l t t u x x u x x x l l l ππ⎧⎪-=<>⎪==≥⎨⎪⎪==≤≤⎩(3) 240, 0<1, 0(0,)0, (1,)0, 0(,0), (,0)0, 0 1.tt xx t u u u x t u t u t t u x x x u x x ⎧-+=<>⎪==≥⎨⎪=-=≤≤⎩(4) 242sin , 0<, 0(0,)0, (,)0, 0(,0)0, (,0)0, 0.tt xx x x t u u u x x t u t u t t u x u x x πππ⎧--=<>⎪==≥⎨⎪==≤≤⎩(5) 22, 0, 0 (0,) (,)0, 0(,0)0, (,0), 0.tt xx x t u a u x l t u t u l t t u x u x A x l ⎧-=<<>⎪==≥⎨⎪==≤≤⎩6.求解下列热传导方程的定解问题(1) 2cos , 0<, 02(0,)1, (,), 0(,0)0, 0<.t xx x x u a u x t u t u t t u x x ππππ⎧-=<>⎪⎪==≥⎨⎪=<⎪⎩(2) 22, 0<1, 0(0,)0, (1,)0, 0(,0)sin , 0< 1.t xx x u a u u x t u t u t t u x x x π⎧-=<>⎪==≥⎨⎪=<⎩(3) 220, 0<, 0(0,)0, (,)0, 0(,0)(), 0.t xx u a u b u x l t u t u l t t u x x x l ϕ⎧-+=<>⎪==≥⎨⎪=≤≤⎩(4) 2, 0, 0 (0,)0, (,)0, 0(,0)1, 0.t xx x x u a u xt x l t u t u l t t u x x l ⎧-=<<>⎪==≥⎨⎪=≤≤⎩7. 求解下面位势方程定解问题(1) , 0, 0 (,0)0, (,)0, 0(0,)0, (,), 0.xx yy y y u u x x a y b u x u x b x a u y u a y Ay y b +=<<<<⎧⎪==≤≤⎨⎪==≤≤⎩(2)22220, 0, , 4 (,0)0, 02, (,)0, 0(,), 4.xx yy u u y x y x y u x x u x x x u x y x y x y ⎧+=>>+<⎪⎪=≤≤=≤≤⎨⎪=++=⎪⎩(3) 22220, 4 (,)1, 4.xx yy u u x y u x y x x y ⎧+=+<⎪⎨=++=⎪⎩(4) 222222, 1< 4 (,)0, 1 (,), 4.xx yy u u xy x y u x y x y u x y x y x y ⎧+=+<⎪⎪=+=⎨⎪=++=⎪⎩8 设在区间的Fourier 展开式为 *()x ϕ[0,]l 1()sin ,k k k x x c l πϕ∞==∑(6.1)其部分和为 求解或证明以下结果.1()sin ,n n k k k x S x c l π==∑(1)设,求.()[0,]x C l ϕ∈20[()()]l n x S x dx ϕ-⎰(2)证明下面贝塞尔(Bessel )不等式 22012().l k k c x dx l ϕ∞=≤∑⎰(6.2)(3)设,的二阶导数的Fourier 展开式为2()[0,]x C l ϕ∈()x ϕ1''()sin ,n n n x x d l πϕ∞==∑如果 ,利用分部积分法证明(0)()0l ϕϕ==2, 1,n n d An c n =≥(6.3)其中为正常数.A (4)利用(6.2)和(6.3)证明(6.1)中的三角级数在区间上一致[0,]l 收敛,并且可以逐項求导.9 考虑如下定解问题* 2, 0, 0 (0,)0, (,)0, 0(,0)(), 0.t xx x x u a u x l t u t u l t t u x x x l ϕ⎧=<<>⎪==≥⎨⎪=≤≤⎩(1)给出该定解问题的物理解释.(2)当经过充分长的时间后,导热杆上的温度分布如何?(,)u x t (3)求极限.lim (,)t u x t →+∞10 考虑如下定解问题*2, 0, 0 (0,), (,), 0(,0)(), 0.t xx x u a u x l t u t A u l t B t u x x x l ϕ⎧=<<>⎪==≥⎨⎪=≤≤⎩(1)给出该定解问题的物理解释.(2)求极限.lim (,)t u x t →+∞11 考虑下面定解问题 *20, 0<, 0(0,)(,)0, 0(,0), (,0)0, 0.tt xx t t u u u u x t u t u t t u x x u x x πππ-++=<>⎧⎪==≥⎨⎪==≤≤⎩(1)解释该定解问题方程中各项的物理意义.(2)推导出问题的特征值问题并求解.(3)写出该问题解的待定表示式并求出表达式中第一特征函数的系数.12 考虑下面定解问题 * (,), 0<, 0(0,)(,)0, 0(,0)(), (,0)(), 0.tt xx x x t u u f x t x t u t u t t u x x u x x x ππϕψπ-=<>⎧⎪==≥⎨⎪==≤≤⎩(12.1)(1)写出该定解问题的特征值和特征函数 ,(),0.n n X x n λ≥(2)如果,而,求解该定解问题.()0,()0x x ϕψ==(,)f x t t =(3)如果,证明 ,下面等式(,)0f x t =0τ∀>,222200[(,)(,)][()()]l l t x x u x u x dx x x dx ττψϕ+=+⎰⎰(12.2)成立,解释该等式的物理意义.(4)证明(12.1)的解是唯一的.。

数学物理方程分离变量法 ()

数学物理方程分离变量法 ()

sin
n x l
n l
2 n
l
驻波法
数学物理方程与特殊函数
第2章分离变量法
驻波法: 研究的弦是有限长的,它有两个端点,波就在两个端点之间往复反射。 驻波:两列反向行进的同频率的波形形成驻波。 波腹:振幅最大的点; 节点:振幅最小的点
驻波没有波形传播现象,即各点振动周期并不依次滞后,它们按同一方式随 时间t震动,可以统一表示为T (t ),但是各点的振幅X 却随点x而异,即振幅X 是x的函数X ( x),这样,驻波的一般表示式为 :
u( x, t ) X ( x)T (t )
在x 0, (l / n), 2(l / n),..., n(l / n)即l , 这些点相应的n x / l 0, , 2 ,..., n , 从而 n x 振幅X ( x) sin 0,这些点正是节点。两相邻节点间隔l / n, 应为半个波 l 长,由此可见驻波的波长 2l / n。
数学物理方程与特殊函数
第2章分离变量法
第二章 分离变量法
一、有界弦的自由振动 二、有限长杆上的热传导 三、拉普拉斯方程的定解问题 四、非齐次方程的解法 五、非齐次边界条件的处理 六、关于二阶常微分方程特征值问题的一些结论
数学物理方程与特殊函数
第2章分离变量法
2 2u u 2 a , 0 x l, t 0 t 2 2 x t 0 u (0, t ) 0, u (l , t ) 0, u ( x, 0) u ( x, 0) ( x), ( x), 0 x l t
傅里叶级数法
数学物理方程与特殊函数
第2章分离变量法
例1:设有一根长为10个单位的弦,两端固定,初速为零,初 位移为 ( x) x(10 x) 1000,求弦作微小横向振动时的位移。

分离变量法——数学物理定解问题

分离变量法——数学物理定解问题


分离变量法是求解偏微分方程最基本和 常用的方法。

理论依据:线性方程的叠加原理和 Sturm-Liouville 理论。 基本思想:将偏微分方程的求解化为对 常微分方程的求解

2.1 有界弦的自由振动
研究两端固定均匀的自由振动. 定解问题为:
2 2u u 2 0, 0 x l 2 a 2 t x t0 u x 0 0, u x l 0, u u t 0 ( x ), ( x ), 0 x l t t 0
④ 成立 X (0) 0, X ( l ) 0
2.1 有界弦的自由振动

X '' X 0 ⑤ X ( 0 ) 0, X ( l ) 0
参数

特征值问题 称为特征值.
函数X(x)称为特征函数 分三种情形讨论特征值问题的求解
2. 1 有界弦的自由振动
则无穷级数解 n at n at n x u( x , t ) ( An cos l Bn sin l ) sin l 为如下混合问题的解
n1
utt a 2 uxx 0 0 xl u xl 0 u x 0 0 0 xl u t 0 ( x ) u 0 xl t t 0 ( x )
特征方程 r 2 pr q 0
p 4q r1, 2 , 2 (1) 有两个不相等的实根 ( p 2 4q 0) r 1 , r2
特征根
2
p
两个线性无关的特解
得齐次方程的通解为
y1 e ,
r1 x
y2 e ,
r2 x
y C1e
r1 x

数学物理方法答案(7) 刘连寿

数学物理方法答案(7) 刘连寿
x0
l n cos x l n l x0 I
n n cos ( x0 ) cos ( x0 ) n l l 2I n n l sin x0 Bn n l l n a n n 0,sin l l
(4)管内本征振动为:
u ( x , t ) u ( x )T (t ) n n n
2n1 2n1 2n1 [ A cos( at ) B sin( at )]sin( x) n n 2l 2l 2l
n 0,1,2
3. 一根均匀固定于 x 0 和 x l 两端,假设初始时刻速度为零,而初 始时刻弦的形状是一抛物线,抛物线的顶点为 ( , h) ,求弦振动的位 移。 解: (1)定解为
初始条件为:
u ( x, 0) 0 I x x0 2 ( , 0) u x t 0 x x0
n 第一类齐次边界条件, 故其本证值为:
n n 本征函数为: sin x , l l
2
其通解为:
第七章
分离变量法
7.1 直角坐标系中的分离变量法 1.求解下列本证值问题的本证值和本证函数 (1) X X 0, X (0) 0, X (l ) 0 ; (2) X X 0, X (0) 0, X (l ) 0 ; (3) X X 0, X (a) 0, X (b) 0 ; (4) X X 0, X (0) 0, X hX 0x l 0 .
2 T (t ) a T (t ) 0
由 u(0,t)=0 得 X(0)=0 由 u (l,t)=0 得 X(l )=0
x
(2)求解本征值 由 X( x ) X ( x ) 0

完整word版,分离变量法习题

完整word版,分离变量法习题

第十章习题解答1 求解混合问题⎪⎩⎪⎨⎧====><<=-)()0,(,0)0,(0),(,0),0()0,0(02x x u x u t l u t u t l x u a u t xx tt ϕ,其中⎪⎩⎪⎨⎧<≤++<<--≤<=lx c c x c v c x x δδδδϕ000)(0解:用分离变量法:设混合问题的非零解函数为)()(),(t T x X t x u =,则,)()(),(),()(),(t T x X t x u t T x X t x u xx tt ''=''=代入混合问题中的微分方程可得:λ-=''=''⇒=''-'')()()()(0)()()()(22t T t T a x X x X t T x X a t T x X 由初始条件可得:0)()0(0)()(),()()0(),0(==⇒====l X X t T l X t l u t T X t u 由此可得,)(x X 为如下常微分方程边值问题的非零解:⎩⎨⎧==<<=+''0)(,0)0()0(0)()(l X X l x x X x X λ若λ<0,则此定解问题的微分方程的通解为 )ex p()ex p()(21x c x c x X λλ-+=,代入边值条件后可得0)(021≡⇒==x X c c ,不符合要求。

若λ=0,则此定解问题的微分方程的通解为 x c c x X 21)(+=,代入边值条件后仍可得0)(021≡⇒==x X c c ,不符合要求。

若λ>0,则此定解问题的微分方程的通解为 x c x c x X λλsin cos )(21+=, 代入边界条件后可得:x c x X c c c X λλλsin )(00sin 0cos )0(2121=⇒==+=,22,0sin 0)(,0sin )(⎪⎭⎫⎝⎛===⇒≠==l n l x X l c l X n πλλλλ,所以可取 ),2,1(sin)()(Λ===n lx n x X x X n π由)(t T 所满足的方程可得: latn b l at n a t T t T t T at T n n n ππλsincos)()(0)()(22+==⇒=+'', 所以,原混合问题的微分方程的满足边界条件的分离变量形式解为 lxn l at n b l at n a t T x X t x u t x u n n n n n πππsin)sin cos ()()(),(),(+===, 设原混合问题的解函数为 ∑+∞=+=1sin )sin cos(),(n n nlx n l at n b l at n at x u πππ, 则由初始条件可得:),2,1(0sin)0,(01Λ==⇒==∑+∞=n a lxn a x u n n n π ∑+∞==1sin cos ),(n n t l xn l at n b l a n t x u πππ, ⎰∑=⇒==+∞-l n n n t dx l xn x a n b l x n b l at n x u x 01sin )(2sin )0,()(πϕπππϕ, ))(cos )((cos 2sin 22200l c n l c n an l v dx l x n v a n b c c n δπδππππδδ+--==⎰+- (*) 所以,原混合问题的解为 ∑+∞==1sin sin),(n n lxn l at n b t x u ππ,其中的n b 由(*)给出。

大学物理-分 离变量法例题

大学物理-分 离变量法例题

数 w (x,t) 也满足与 u (x,t) 相同的方程,而所满足的边界条
件就是齐次的了。为使 v 的形式尽可能地简单,取它为 x
的线性函数 (这必定满足原来的方程) v = Ax + B, 其中常

A, B 由边界条件
v x0
u0 和 v q0
k
x u0 定出,即
A q0 k
B u0
所以
C
(12)
一并代入通解(10)得原定解问题(1)-(3)的解为
u(x, y) (3x y)2 3 C 3 (x y)2 3 C 3x2 y2
4 44
4
思考 若改变此例中变量y的取值范围,即将此例改变为如
下的定解问题
uxx 2uxy 3uyy 0 ( x , y y0 0)
故由 (2) 式有
f1(x) f2 (x) (x)
(5)
由 (3) 式有
a f1(x) a f2(x) (x)

f1(x)
f2 ( x)
1 a
x
0
(x)d
C
(6)
其中:C = f1 (0) – f2 (0)
解 (5)、(6) 式得
f1(x)
1 2
(x)
1 2a
x
0
(
)d
C 2
(0 x )
例4:求解下列定解问题
2u 24Cxy (x2 y2 a2 ) U ra 0
解 方法一:用相应齐次方程的本征函数展开的方法 设解为
u(r,) An (r)sin n Bn (r) cos n n0
将非齐次项展开,这时只有一项,即
24Cxy 12Cr2 sin 2
将它们代入原方程及边界条件,即得

数学物理方法习题

数学物理方法习题

第一章 分离变量法1、求解定解问题:20000000,(01),||0,,(0),|(),(),|0,(0).tt xx x x l t t u a u x u u n hl x x l n u h ll x x l l n l n u x l ====-=<<==⎧≤≤⎪⎪⎪=⎨-≤≤⎪-⎪⎪⎩=≤≤(P-223)2、长为l 的弦,两端固定,弦中张力为T ,在距一端为0x 的一点以力0F 把弦拉开,然后撤出这力,求解弦的震动。

[提示:定解问题为200000000,(0),(0,)(,)0,,(0),(,0)(),(),|0.tt xx t t u a u x l u t u l t F l x x x x T lu x F x l x x x l T lu =-=<<==-⎧<<⎪⎪=⎨⎪-<<⎪⎩=] (P-227)3、求解细杆导热问题,杆长l ,两端保持为零度,初始温度分布2|()/t u bx l x l ==-。

[定解问题为220200,()(0),||0,|()/.txx x x l t k u a u a x l C u u u bx l x l ρ===⎧-==≤≤⎪⎪⎪==⎨⎪=-⎪⎪⎩] (P-230)4、求解定解问题2220,0,0220,0.03sin ,0.00u u a x l t t x u u x x l x u u A t l t t π⎧∂∂⎪-=<<>⎪∂∂⎪==⎨==⎪∂⎪===⎪∂=⎩4、长为l 的均匀杆,两端受压从而长度缩为(12)l ε-,放手后自由振动,求解杆的这一振动。

[提示:定解问题为20000,(0),||0,2|2(),|0.tt xx x x x x l t t t u a u x l u u u x l u ε====⎧-=<<⎪==⎪⎪⎨=-⎪⎪=⎪⎩] (P-236)5、长为l 的杆,一端固定,另一端受力0F 而伸长,求解杆在放手后的振动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档