《经济数学基础》线性代数

合集下载

经济数学基础线性代数

经济数学基础线性代数

《经济数学基础》线性代数第2章 矩阵1.了解或理解一些基本概念 具体要求如下:(1) 了解矩阵和矩阵相等的概念;(2) 了解单位矩阵、数量矩阵、对角矩阵、三角形矩阵和对称矩阵的定义和性质. (3) 理解矩阵可逆与逆矩阵概念,知道矩阵可逆的条件; (4) 了解矩阵秩的概念; (5) 理解矩阵初等行变换的概念.2.熟练掌握矩阵的加法、数乘、乘法和转置等运算,掌握这几种运算的有关性质; 3.熟练掌握用矩阵的初等行变换将矩阵化为阶梯形矩阵、行简化阶梯形矩阵,熟练掌握用矩阵的初等行变换求矩阵的秩、逆矩阵.矩阵乘法是本章的重点之一,在复习矩阵乘法时,要注意:矩阵乘法不满足交换律,即AB BA =一般不成立(若矩阵A , B 满足AB BA =,则称A , B 为可交换的).矩阵乘法不满足消去律,即由矩阵AC BC =及矩阵C ≠0,不能推出A B =.但当C 可逆时,AC BC =⇒A B =. 矩阵A B ≠≠00,,可能有AB =0.例1 若A ,B 是两个n阶方阵,则下列说法正确是( ).A .000=或=,则=若B A ABB .2222)+(B B A A B A +⋅+= C .若秩,0)(≠A 秩,0)(≠B 则秩0)(≠AB D .若秩,)(n A = 秩,)(n B =则秩n AB =)(解 选项A : 00=或=B A 只是0=AB 的充分条件,而不是必要条件,故A 错误;选项B :222)+(B A B B A A B A +⋅+⋅+=,矩阵乘法一般不满足交换律,即A B B A ⋅≠⋅,故B 错误;选项C :由秩,0)(≠A 秩,0)(≠B 说明A ,B 两个矩阵都不是0矩阵,但它们的乘积有可能0矩阵,如⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0011,1010B A ,则⎥⎦⎤⎢⎣⎡=0000AB .故秩0)(≠AB 不一定成立,即C 错误;选项D :两个满秩矩阵的乘积还是满秩的,故D 正确.例2 设矩阵[]021-=A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100112B ,则AB = . 解 因为 AB =[]021- ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100112= [4 1] 所以,应该填写:[4 1]例3 矩阵13210011000010001000-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥的秩是( ) A. 1 B. 2 C. 3 D. 4 解 因为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-000000010000110012310010000100001100123100010001000011001231 对应的阶梯形矩阵有3个非0行,故该矩阵的秩为3. 正确选项是:C例4 设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--913210063,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=801962B 则矩阵A 与B 的乘积AB 的第3行第1列的元素的值是 .解 根据乘法法则可知,矩阵A 与B 的乘积AB 的第3行第1列的元素的值是A 的第3行元素与B 的第1列元素的乘积之和,即3×2+(-1)×9+9×0 = -3应该填写:-3例5 设A 是m ⨯n 矩阵,B 是s ⨯n 矩阵, 则运算有意义的是( ). A .TAB B .AB C .B A TD .TTB A 解 根据乘法法则可知,两矩阵相乘,只有当左矩阵的行数等于右矩阵的列数时,它们的乘积才有意义,故矩阵TAB 有意义.正确选项是A .例6 设方程XA -B =X ,如果A -I 可逆,则X = .解 由XA -B = X ,得XA -X = B ,X (A -I ) = B 故X = B (A -I )-1. 所以,应该填写:B (A -I )-1注意:矩阵乘法中要区分“左乘”与“右乘”,若答案写成 (A -I )-1B ,它是错误的.例7. 设矩阵 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-1111032311A ,求矩阵A . 解 因为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-100010001111103231][1I A⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→101340013790001231 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→101340211110001231 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→943100211110632101→⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥100113010237001349 所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=943732311A 例8 已知矩阵⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡367601012b b a a ,求常数a ,b . 解 因为⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡3676010122a abb a ab b b a a 所以 6,3==ab a ,得b = 2 . 例9.设矩阵A ,B 满足矩阵方程AX =B ,其中⎥⎦⎤⎢⎣⎡-=0121A ,⎥⎦⎤⎢⎣⎡=2003B , 求X .解法一:先求矩阵A 的逆矩阵.因为[]⎥⎦⎤⎢⎣⎡-=10010121I A ⎥⎦⎤⎢⎣⎡→11200121⎥⎥⎦⎤⎢⎢⎣⎡-→2121101001所以 ⎥⎥⎦⎤⎢⎢⎣⎡-=-2121101A 且 B A X 1-=⎥⎦⎤⎢⎣⎡⋅⎥⎥⎦⎤⎢⎢⎣⎡-=2003212110⎥⎥⎦⎤⎢⎢⎣⎡-=1 2320 解法二: 因为 []⎥⎦⎤⎢⎣⎡-=20010321B A⎥⎦⎤⎢⎣⎡→23200321⎥⎥⎦⎤⎢⎢⎣⎡-→123102001 所以 ⎥⎥⎦⎤⎢⎢⎣⎡-=12320X例10 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=451001413101B A试计算A -1B .解 因为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=100010001001413101][I A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→101100013110001101→--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥1001010411001101 所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-1011141001A且 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⋅⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-51344511011141001B A例11 设A ,B 均为n 阶对称矩阵,则AB +BA 也是对称矩阵. 证 因为 A ,B 是对称矩阵,即B B A A ==T T ,且 TTT)()()(BA AB BA AB +=+TTTTB A A B +=AB BA +=BA AB +=根据对称矩阵的性质可知,AB +BA 是对称矩阵.例12 设A 是n 阶矩阵,若3A = 0,则21)(A A I A I ++=--. 证 因为 ))((2A A I A I ++-=322A A A A A I ---++ =3A I -= I所以 21)(A A I A I ++=--。

《经济数学基础》课程说

《经济数学基础》课程说
生产者利润最大化模型
运用数学手段探讨生产者在技术约束和市场环境下如何实现利润最 大化,从而得出供给函数。
宏观经济模型的构建与分析
国民收入决定模型
基于宏观经济学的理论框架,运用数学方法分析国民收入的决定 因素及其变动规律。
货币与财政政策效果模型
通过数学模型模拟和分析货币政策和财政政策对宏观经济变量的影 响及政策效果。
其他数学软件在经济数学中的应用
01
Mathematica软件
Mathematica是一款符号计算软件,可用于进行经济数学中的符号计
算、函数求解、极限运算等。
02
ቤተ መጻሕፍቲ ባይዱ
Python编程语言
Python是一种通用的编程语言,具有丰富的数学库和强大的数据处理
能力,可用于进行经济数学中的数值计算、统计分析、机器学习等。
导数与微分
导数
掌握导数的概念、几何意义及运算法则,了解导数在经济分析中的应用(如弹性分析、最优化问题) 。
微分
理解微分的概念,掌握微分的基本公式和运算法则,了解其在经济模型中的应用。
积分学基础
不定积分
掌握不定积分的概念、性质及基本积 分公式,了解其在经济学中的应用。
定积分
理解定积分的概念、几何意义及性质 ,掌握定积分的计算方法,了解其在 经济分析中的应用(如总量分析、消 费者剩余等)。
教材与参考资料
教材
《经济数学基础》教材应选用内容全面、系统、深入浅出的优秀教材,如《经 济数学基础》(第二版)等。
参考资料
推荐学生阅读相关领域的经典著作和学术论文,如《微积分学教程》、《线性 代数及其应用》、《概率论与数理统计》等,以便更深入地了解和掌握相关知 识。
02 数学知识在经济中的应用

2022年经济数学基础学习材料第三篇及期末复习提要

2022年经济数学基础学习材料第三篇及期末复习提要

第三篇 线性代数第1章 行列式 (不作为考试内容) 第2章 矩 阵§1 矩阵旳概念我们懂得,线性方程组⎩⎨⎧-=-=+1352y x y x 旳系数及常数项构成一张数表⎪⎪⎭⎫⎝⎛---131512,线性方程组旳解取决于这张数表。

定义 由n m ⨯个数ij a 排成m 行n 列旳矩形阵表,称为n m ⨯矩阵⎪⎪⎪⎭⎫ ⎝⎛mn m m n n a a a a a a a a a .................212222111211,记为mn ij a A )(= 当n m =时,称为方阵,如⎪⎪⎭⎫ ⎝⎛-3211,⎪⎪⎪⎭⎫⎝⎛111110101等;当1=m 时,),(11211n a a a 称为行矩阵;当1=n 时,⎪⎪⎪⎭⎫⎝⎛12111m a a a 称为列矩阵;当0=ij a 时,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0......00...............0.....000.....00称为零矩阵;记为o ,如⎪⎪⎭⎫ ⎝⎛0000,⎪⎪⎪⎭⎫⎝⎛000000000等。

矩阵只是一张数表,不是一种数,因此,不能展开,不能求值,也不能比较大小。

如 ⎪⎪⎭⎫⎝⎛-1011=1,⎪⎪⎭⎫ ⎝⎛-1011<⎪⎪⎭⎫ ⎝⎛-2012, ⎪⎪⎭⎫⎝⎛-10113<等都是错误旳。

定义 设mn ij a A )(=,mn ij b B )(=是两个矩阵,若(1)、A 、B 同阶;(2)、ijij b a =则称B A =。

例 设=A ⎪⎪⎭⎫⎝⎛232221131211a a a a a a ,=B ⎪⎪⎭⎫⎝⎛--412503 若B A =,则311=a ,012=a ,513-=a ,221-=a ,122=a ,423=a 。

例 设=A ⎪⎪⎭⎫ ⎝⎛-7321x,=B ⎪⎪⎭⎫ ⎝⎛721x ,且B A =,则=x 。

§2 矩阵旳运算设mn ij a A )(=,mn ij b B )(=是两个同阶矩阵。

《经数》考试分析(线性代数)

《经数》考试分析(线性代数)
且AB=BA ,证明AB是对称 矩 阵。 证明:因为
ABT BT AT BA AB
所以,AB是对称矩阵
3、设A是 m n 矩阵,
试证明 AAT 是对称矩阵
证明:因为
AAT T AT T AT AAT
所以 AAT 是对称矩阵
三、矩阵的初等行变换 与矩阵 的秩、逆矩阵
矩阵的初等行变换是一种 很重要的运算方法,用这种方 法我们可以求矩阵的阶梯形、 矩阵的秩和逆矩阵等. 下一章讨 论线性方程组的问题,初等行 变换同样是重要的方法.
1 0 0
1 1 0
1 0 1
0
1 1
2
1
0 1
2
0
0
1
2
1 1 0 0 1 0
0 0 1
1
2 1 1
3 2 0
1
1
2 0
1
1 0 0
00 10 01
3
2 1 1
3 2 0
1
1
2 0
1
2 2 2
2 2 2
3
(A
B ) 1
2 1
1
3 2 0
1
1
2 0方程组
1、线性方程组 1 3
2 6
x1 x2
5 9
满足结论( )
(A) 有惟一解 (B) 有解
(C) 有无穷多解 (D) 无解
思路:
用方程组解的情况判定定理来判别

A
1 3
2 6
5 9
(2)(1)(3)10
2 0
5 6

r(A) r(A)
所以原方程无解 选项是D
2、若线性方程组的增广
矩阵为
1 2

《经济数学基础》线性代数

《经济数学基础》线性代数

《经济数学基础》线性代数第1章 行列式一、n 阶行列式下面介绍线性代数中另一个基本概念——行列式,由于内容较多,我们主要介绍行列式的定义及其简单的计算,行列式的性质等内容请大家自己学习教材.定义2.9 对任一n 阶矩阵 A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a 212222111211用式nnn n n n a a a a a a a a a212222111211表示一个与A 相联系的数,称为A 的行列式,记作A . 规定:当n = 1时,1111a a A ==; 当n = 2时,2112221122211211a a a a a a a a A -==;当n > 2时,∑==+++=nj j jn n A aA a A a A a A 1111112121111 ,其中j A 1=j jM 11)1(+-,称j M 1为A 中元素j a 1的余子式,它是A 中划去第一行、第j 列后剩下的元素按原来顺序组成的n – 1阶行列式;j A 1为A 中元素j a 1的代数余子式. (由定义可知,一个n 阶矩阵行列式表示一个数,而这个数可以由第一行的元素与其相应的代数余子式的乘积之和求出.应该指出的是,方阵是一个数表,不能求数值的;而与它相应的行列式则表示一个数,是可以计算数值的.) 行列式的性质性质2 互换行列式的两行(列),行列式的值改变符号. 性质3 n 阶行列式等于任意一行(列)所有元素与其对应的代数余子式的乘积之和,即其中 i = 1, 2, …, n ( j = 1, 2, …, n ) .性质4 n 阶行列式中任意一行(列)的元素与另一行(列)的相应元素的代数余子式的乘积之和等于零.即当k i ≠时,有01=∑=nj kj ijA a.性质5 行列式一行(列)的公因子可以提到行列式符号的外面.即性质6 若行列式的某一行(列)元素都是两数之和:(下面通过例题简单介绍行列式的计算方法)例1 计算 =A 2112123212230121313231-----解 首先按性质5,从第一行提出公因子31,再从第四行提出21,即 =A 12132122301231212131-----⨯⨯再利用性质7把第三列的元素尽可能多的化为零,即作“第三行加上第一行的1倍,第四行加上第一行的-2倍”的变换,得12132122301231212131-----⨯⨯=505510013012312161---⨯再利用性质3按第3列展开,即505510013012312161---⨯=555101312)1(16131--⨯-⨯⨯+ 再作“第三列加上第一列的-1倍”的变换,并按第二行展开,即55510131261--⨯=105500111261--⨯=⎥⎦⎤⎢⎣⎡--⨯-⨯⨯+10511)1(16112 =65)510(61=+-⨯-例2 计算 =A 3351110243152113------解 首先交换第一列与第二列,然后作“第二行加上第一行的-1倍,第四行加上第一行的5倍”的变换,得=A 3315112043512131------=72160112064802131-----首先交换第二行与第三行,然后作“第三行加上第二行的4倍,第四行加上第二行的-8倍”的变换,得72160112064802131-----=1510001080011202131----再作“第四行加上第三行的45倍”,化成三角形行列式,其值就是对角线上的元素乘积,即1510001080011202131----=25001080011202131---=4025821=⨯⨯⨯(关于矩阵行列式,有一个重要结论请大家记住.) 定理2.1 对于任意两个方阵A ,B ,总有B A AB =即方阵乘积的行列式等于行列式的乘积.。

《经济数学基础》综合练习(线性代数)

《经济数学基础》综合练习(线性代数)

《经济数学基础》综合练习(线性代数)一、单项选择题1.设A 为23⨯矩阵,B 为32⨯矩阵,则下列运算中( )可以进行. A .AB B .AB T C .A +B D .BA T 2.设B A ,为同阶可逆矩阵,则下列等式成立的是( ) A . T T T )(B A AB = B . TT T )(A B AB = C . 1T 11T)()(---=B A AB D . T 111T )()(---=B A AB3.设B A ,为同阶可逆方阵,则下列说法正确的是( ). A . 若AB = I ,则必有A = I 或B = I B .TTT)(B A AB = C . 秩=+)(B A 秩+)(A 秩)(B D .111)(---=A B AB4.设B A ,均为n 阶方阵,在下列情况下能推出A 是单位矩阵的是( ). A .B AB = B .BA AB = C .I AA = D .I A=-15.设A 是可逆矩阵,且A AB I +=,则A -=1( ). A . B B . 1+B C . I B + D . ()I AB --16.设)21(=A ,)31(-=B ,I 是单位矩阵,则I B A -T=( ).A .⎥⎦⎤⎢⎣⎡--6231 B .⎥⎦⎤⎢⎣⎡--6321 C .⎥⎦⎤⎢⎣⎡--5322 D .⎥⎦⎤⎢⎣⎡--5232 7.设下面矩阵A , B , C 能进行乘法运算,那么( )成立.A .AB = AC ,A ≠ 0,则B = C B .AB = AC ,A 可逆,则B = C C .A 可逆,则AB = BAD .AB = 0,则有A = 0,或B = 08.设A 是n 阶可逆矩阵,k 是不为0的常数,则()kA -=1( ).A .kA -1B .11kA n- C . --kA 1D . 11k A - 9.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=314231003021A ,则r (A ) =( ). A .4 B .3 C .2 D .110.设线性方程组b AX =的增广矩阵通过初等行变换化为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--00000120004131062131,则此线性方程组的一般解中自由未知量的个数为( ).A .1B .2C .3D .4 11.线性方程组⎩⎨⎧=+=+012121x x x x 解的情况是( ).A . 无解B . 只有0解C . 有唯一解D . 有无穷多解 12.若线性方程组的增广矩阵为⎥⎦⎤⎢⎣⎡=01221λA ,则当λ=()时线性方程组无解.A .12B .0C .1D .2 13. 线性方程组AX =0只有零解,则AX b b =≠()0( ).A . 有唯一解B . 可能无解C . 有无穷多解D . 无解14.设线性方程组AX=b 中,若r (A , b ) = 4,r (A ) = 3,则该线性方程组( ). A .有唯一解 B .无解 C .有非零解 D .有无穷多解15.设线性方程组b AX =有唯一解,则相应的齐次方程组O AX =( ). A .无解 B .有非零解 C .只有零解 D .解不能确定二、填空题1.两个矩阵B A ,既可相加又可相乘的充分必要条件是 .2.计算矩阵乘积[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡10211000321= .3.若矩阵A = []21-,B = []132-,则A T B=.4.设A 为m n ⨯矩阵,B 为s t ⨯矩阵,若AB 与BA 都可进行运算,则m n s t ,,,有关系式 .5.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=13230201a A ,当a = 时,A 是对称矩阵. 6.当a 时,矩阵⎥⎦⎤⎢⎣⎡-=a A 131可逆. 7.设B A ,为两个已知矩阵,且B I -可逆,则方程X BX A =+的解=X.8.设A 为n 阶可逆矩阵,则r (A )= .9.若矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--330204212,则r (A ) = .10.若r (A , b ) = 4,r (A ) = 3,则线性方程组AX = b.11.若线性方程组⎩⎨⎧=+=-002121x x x x λ有非零解,则=λ.12.设齐次线性方程组01=⨯⨯n n m X A ,且秩(A ) = r < n ,则其一般解中的自由未知量的个数等于 .13.齐次线性方程组0=AX 的系数矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=000020103211A 则此方程组的一般解为 .14.线性方程组AX b =的增广矩阵A 化成阶梯形矩阵后为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-→110000012401021d A则当d 时,方程组AX b =有无穷多解.15.若线性方程组AX b b =≠()0有唯一解,则AX =0 .三、计算题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=113421201A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=303112B ,求B A I )2(T -.2.设矩阵 ⎥⎦⎤⎢⎣⎡-=021201A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200010212B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=242216C ,计算C BA +T .3.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1121243613,求1-A .4.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-012411210,求逆矩阵1-A . 5.设矩阵 A =⎥⎦⎤⎢⎣⎡--021201,B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡142136,计算(AB )-1. 6.设矩阵 A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011,B =⎥⎦⎤⎢⎣⎡--210321,计算(BA )-1. 7.解矩阵方程⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡--214332X .8.解矩阵方程⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡02115321X . 9.设线性方程组⎪⎩⎪⎨⎧=-+=-+=+bax x x x x x x x 321321312022讨论当a ,b 为何值时,方程组无解,有唯一解,有无穷多解.10.设线性方程组 ⎪⎩⎪⎨⎧=+-=-+--=+052231232132131x x x x x x x x ,求其系数矩阵和增广矩阵的秩,并判断其解的情况.11.求下列线性方程组的一般解:⎪⎩⎪⎨⎧=-+-=+-+-=-+03520230243214321431x x x x x x x x x x x 12.求下列线性方程组的一般解:⎪⎩⎪⎨⎧=-+-=-+-=+-126142323252321321321x x x x x x x x x 13.设齐次线性方程组⎪⎩⎪⎨⎧=+-=+-=+-0830352023321321321x x x x x x x x x λ问λ取何值时方程组有非零解,并求一般解.14.当λ取何值时,线性方程组⎪⎩⎪⎨⎧=+-=-+=++1542131321321x x x x x x x x λ 有解?并求一般解.15.已知线性方程组b AX =的增广矩阵经初等行变换化为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→→300000331013611λ A问λ取何值时,方程组b AX =有解?当方程组有解时,求方程组b AX =的一般解.四、证明题1.试证:设A ,B ,AB 均为n 阶对称矩阵,则AB =BA .2.试证:设A 是n 阶矩阵,若3A = 0,则21)(A A I A I ++=--. 3.已知矩阵 )(21I B A +=,且A A =2,试证B 是可逆矩阵,并求1-B . 4. 设n 阶矩阵A 满足A I 2=,T AA I =,证明A 是对称矩阵.5.设A ,B 均为n 阶对称矩阵,则AB +BA 也是对称矩阵.。

《经济数学基础》线性代数.doc

《经济数学基础》线性代数.doc

《经济数学基础》线性代数第3章 线性方程组1.了解n 元线性方程组、线性方程组的矩阵表示、系数矩阵、增广矩阵、一般解的概念.2. 理解并熟练掌握线性方程组的有解判定定理;熟练掌握用消元法求线性方程组的一般解.• 线性方程组AX = b 的解的情况归纳如下:AX = b 有唯一解的充分必要条件是秩(A ) = 秩(A ) = n ;AX = b 有无穷多解的充分必要条件是秩(A ) = 秩(A ) < n ;AX = b 无解的充分必要条件是秩(A ) ≠ 秩(A ).• 相应的齐次线性方程组AX = 0的解的情况为:AX = 0只有零解的充分必要条件是 秩(A ) = n ;AX = 0有非零解的充分必要条件是 秩(A ) < n .例1 线性方程组⎩⎨⎧=-=+0223221x x x x 的系数矩阵是( ) .A .2×3矩阵B .3×2矩阵C .3阶矩阵D .2阶矩阵 解 此线性方程组有两个方程,有三个未知量,故它的系数矩阵是2×3矩阵. 正确的选项是A .例2 线性方程组AX = B 有唯一解,那么AX = 0 ( ) .A .可能有解B .有无穷多解C .无解D .有唯一解 解 线性方程组AX = B 有唯一解,说明秩,)(n A =故AX = 0只有唯一解(零解).正确的选项是D .例3 若线性方程组的增广矩阵为⎪⎪⎭⎫ ⎝⎛=41221λA ,则当λ=( )时线性方程组有无穷多解.A .1B .4C .2D .12解 将增广矩阵化为阶梯形矩阵, ⎪⎪⎭⎫ ⎝⎛=41221λA ⎪⎪⎭⎫ ⎝⎛λ-λ→021021此线性方程组未知量的个数是2,若它有无穷多解,则其增广矩阵的秩应小于2,即021=λ-,从而λ=12. 正确的选项是D .例4 若非齐次线性方程组A m ×n X = B 有唯一解,那么有 ( ).A .秩(A ,B ) = n B .秩(A ) = rC . 秩(A ) = 秩(A ,B )D .秩(A ) = 秩(A ,B ) = n 解 根据非齐次线性方程组解的判断定理可知选项D 是正确.例5 求解线性方程组⎪⎩⎪⎨⎧=-+--=+-+-=++-1232122023432143214321x x x x x x x x x x x x解 将增广矩阵化成阶梯形矩阵,即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=001001301038001002001311001231131101311001231123211212101231A 因为 ,秩(⎺A ) = 秩(A ) = 3,所以,方程组有解.一般解为⎪⎩⎪⎨⎧=+=+=0318334241x x x x x (x 4是自由未知量)例6 设线性方程组212132123123123x x x x x x x x x c-+=--+=--+=⎧⎨⎪⎩⎪试问c 为何值时,方程组有解?若方程组有解时,求一般解.解 因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=13501350112123111211112c c A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→c 00013501121 可见,当c = 0时,方程组有解.且⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→0000515310535101A 所以,原方程组的一般解为⎪⎪⎩⎪⎪⎨⎧+=-=323153515153x x xx(x 3是自由未知量)。

经济数学基础(春)线性代数部分期末复习指导

经济数学基础(春)线性代数部分期末复习指导

经济数学基础(08春)线性代数部分期末复习指导线性代数部分第二章,矩阵考试要求:⑴ 了解矩阵概念,理解矩阵可逆与逆矩阵概念,知道矩阵可逆的条件,了解矩阵秩的概念;⑵ 熟练掌握矩阵的加法、数乘、乘法和转置等运算,掌握这几种运算的有关性质;⑶ 了解单位矩阵、数量矩阵、对角矩阵、三角形矩阵和对称矩阵的定义和性质.⑷ 理解矩阵初等行变换的概念,熟练掌握用矩阵的初等行变换将矩阵化为阶梯形矩阵、行简化阶梯形矩阵,熟练掌握用矩阵的初等行变换求矩阵的秩、逆矩阵.重点:矩阵概念,矩阵可逆与逆矩阵概念,矩阵可逆的条件,矩阵秩的概念及求法;矩阵的运算和矩阵的求逆,矩阵的初等行变换。

典型例题一、单项选择题1.设A 为23⨯矩阵,B 为32⨯矩阵,则下列运算中( )可以进行. A .AB B .AB T C .A +B D .BA T 答案:A2.设B A ,为同阶可逆矩阵,则下列等式成立的是( ) A . T T T )(B A AB =B .T T T )(A B AB =C .1T 11T )()(---=B A ABD .T 111T )()(---=B A AB 答案:B3.设B A ,为同阶可逆方阵,则下列说法正确的是( ). A . 若AB = I ,则必有A = I 或B = I B .T T T )(B A AB =C . 秩=+)(B A 秩+)(A 秩)(BD .111)(---=A B AB 答案:D4.设B A ,均为n 阶方阵,在下列情况下能推出A 是单位矩阵的是( ).A .B AB = B .BA AB =C .I AA =D .I A =-1 答案D5.设A 是可逆矩阵,且A AB I +=,则A -=1( ). A .B B .1+B C .I B +D .()I AB --1 答案C6.设)21(=A ,)31(-=B ,I 是单位矩阵,则I B A -T =( ).A .⎥⎦⎤⎢⎣⎡--6231B .⎥⎦⎤⎢⎣⎡--6321C .⎥⎦⎤⎢⎣⎡--5322D .⎥⎦⎤⎢⎣⎡--5232 答案D7.设下面矩阵A , B , C 能进行乘法运算,那么( )成立.A .AB = AC ,A ≠ 0,则B = C B .AB = AC ,A 可逆,则B = C C .A 可逆,则AB = BAD .AB = 0,则有A = 0,或B = 0 答案:B二、填空题1.两个矩阵B A ,既可相加又可相乘的充分必要条件是 . 答案:同阶矩阵2.若矩阵A = []21-,B = []12-,则A T B=.答案⎥⎦⎤⎢⎣⎡--2412 3.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=13230201a A ,当a =时,A 是对称矩阵. 答案:0=a4.当a 时,矩阵⎥⎦⎤⎢⎣⎡-=a A 131可逆. 答案:3-≠a5.设B A ,为两个已知矩阵,且B I -可逆,则方程X BX A =+的解=X .答案:A B I 1)(--6.设A 为n 阶可逆矩阵,则r (A )=. 答案:n7.若矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--330204212,则r (A ) = . 答案:22.计算题(1)设矩阵 A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011,B =⎥⎦⎤⎢⎣⎡--210321,计算(BA )-1. 解 因为BA =⎥⎦⎤⎢⎣⎡--210321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011=⎥⎦⎤⎢⎣⎡--2435 (BAI )=⎥⎦⎤⎢⎣⎡--→⎥⎦⎤⎢⎣⎡--1024111110240135 ⎥⎦⎤⎢⎣⎡---→54201111⎥⎥⎦⎤⎢⎢⎣⎡--→2521023101 (2)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--------=843722310A ,I 是3阶单位矩阵,求1)(--A I . 解:由矩阵减法运算得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---------⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-943732311843722310100010001A I 利用初等行变换得113100237010349001113100011210010301⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥ →----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥113100011210001111110233010301001111 →---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥100132010301001111即 ()I A -=---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥-1132301111 (3)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=112,322121011B A ,求B A 1-. 解:利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--102340011110001011100322010121001011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→146100135010001011146100011110001011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→146100135010134001 即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-1461351341A 由矩阵乘法得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-7641121461351341B A第三章 线性方程组考试要求:⑴ 了解线性方程组的有关概念,熟练掌握用消元法求线性方程组的一般解;⑵ 理解并熟练掌握线性方程组的有解判定定理.重点:线性方程组有解判定定理、线性方程组解的表示及求解非齐次线性方程组AX = b 的解的情况归纳如下: AX = b 有唯一解的充分必要条件是秩(A ) = 秩(A ) = n ; AX = b 有无穷多解的充分必要条件是秩(A ) = 秩(A ) < n ;AX = b 无解的充分必要条件是秩(A )≠秩(A ). 相应的齐次线性方程组AX = 0的解的情况为: AX = 0只有零解的充分必要条件是秩(A ) = n ; AX = 0有非零解的充分必要条件是秩(A ) < n .典型例题:一、单项选择题1.若线性方程组的增广矩阵为⎥⎦⎤⎢⎣⎡=41221λA ,则当λ=( )时线性方程组有无穷多解.A .1B .1-C .2D .21 (答案D)2.若非齐次线性方程组A m ×n X =b 的( ),那么该方程组无解.A .秩(A ) = nB .秩(A )=mC .秩(A )≠ 秩 (A )D .秩(A )= 秩(A )(答案C)3.线性方程组⎩⎨⎧=+=+012121x x x x 解的情况是( ).A . 无解B . 只有0解C . 有唯一解D . 有无穷多解 答案 A4. 线性方程组AX =0只有零解,则AX b b =≠()0( ).A . 有唯一解B . 可能无解C . 有无穷多解D . 无解 答案B5.设线性方程组AX=b 中,若r (A , b ) = 4,r (A ) = 3,则该线性方程组().A .有唯一解B .无解C .有非零解D .有无穷多解 答案B6.设线性方程组b AX =有唯一解,则相应的齐次方程组O AX =(). A .无解B .有非零解 C .只有零解 D .解不能确定 答案C二、填空题1.若r (A , b ) = 4,r (A ) = 3,则线性方程组AX = b . 答案:无解2.若线性方程组⎩⎨⎧=+=-02121x x x x λ有非零解,则=λ.答案:-1=λ3.设齐次线性方程组01=⨯⨯n n m X A ,且秩(A ) = r < n ,则其一般解中的自由未知量的个数等于.答案:r n -4.齐次线性方程组0=AX 的系数矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=000020103211A 则此方程组的一般解为.5.线性方程组AX b =的增广矩阵A 化成阶梯形矩阵后为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-→110000012401021d A 则当d 时,方程组AX b =有无穷多解.答案:1-=d三.计算题1.求解线性方程组的一般解⎪⎩⎪⎨⎧=-+-=+-+-=++-0232022023432143214321x x x x x x x x x x x x 解:将方程组的系数矩阵化为阶梯形⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----010030101031020031101231311031101231232121211231 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→010********* 一般解为⎪⎩⎪⎨⎧===03834241x x x x x (4x 是自由未知量) 2.求当λ取何值时,线性方程组⎪⎩⎪⎨⎧+=+++=+++-=--+1479637222432143214321λx x x x x x x x x x x x有解,在有解的情况下求方程组的一般解. 解 将方程组的增广矩阵化为阶梯形⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---1000010511102121119102220105111021211114796371221211λλλ 所以,当1=λ时,方程组有解,且有无穷多解,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→00000105111084901 答案:⎩⎨⎧++-=--=43243151110498x x x x x x 其中43,x x 是自由未知量.3.求当λ取何值时,线性方程组⎪⎩⎪⎨⎧=+-+=+-+=++-λ432143214321114724212x x x x x x x x x x x x 解:将方程组的增广矩阵化为阶梯形⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---273503735024121114712412111112λλ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→500003735024121λ 当5=λ时,方程组有解,且方程组的一般解为⎪⎪⎩⎪⎪⎨⎧-+=--=432431575353565154x x x x x x 其中43,x x 为自由未知量.。

经济数学基础学习材料(第三篇及期末复习提要)

经济数学基础学习材料(第三篇及期末复习提要)

第三篇 线性代数第1章 行列式 (不作为考试内容) 第2章 矩 阵§1 矩阵的概念我们知道,线性方程组⎩⎨⎧-=-=+1352y x y x 的系数及常数项组成一张数表⎪⎪⎭⎫ ⎝⎛---131512,线性方程组的解取决于这张数表。

定义 由n m ⨯个数ij a 排成m 行n 列的矩形阵表,称为n m ⨯矩阵⎪⎪⎪⎭⎫ ⎝⎛mn m m n n a a a a a a a a a .................212222111211,记为mn ij a A )(= 当n m =时,称为方阵,如⎪⎪⎭⎫ ⎝⎛-3211,⎪⎪⎪⎭⎫⎝⎛111110101等; 当1=m 时,),(11211n a a a 称为行矩阵;当1=n 时,⎪⎪⎪⎭⎫⎝⎛12111m a a a 称为列矩阵;当0=ij a 时,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0......00...............0.....000.....00称为零矩阵;记为o ,如⎪⎪⎭⎫ ⎝⎛0000,⎪⎪⎪⎭⎫⎝⎛000000000等。

矩阵只是一张数表,不是一个数,因此,不能展开,不能求值,也不能比较大小。

如 ⎪⎪⎭⎫⎝⎛-1011=1,⎪⎪⎭⎫ ⎝⎛-1011<⎪⎪⎭⎫ ⎝⎛-2012, ⎪⎪⎭⎫⎝⎛-10113<等都是错误的。

定义 设mn ij a A )(=,mn ij b B )(=是两个矩阵,若(1)、A 、B 同阶;(2)、ijij b a =则称B A =。

例 设=A ⎪⎪⎭⎫⎝⎛232221131211a a a a a a ,=B ⎪⎪⎭⎫⎝⎛--412503若B A =,则311=a ,012=a ,513-=a ,221-=a ,122=a ,423=a 。

例 设=A ⎪⎪⎭⎫⎝⎛-7321x ,=B ⎪⎪⎭⎫ ⎝⎛721x ,且B A =,则=x 。

§2 矩阵的运算设mn ij a A )(=,mn ij b B )(=是两个同阶矩阵。

经济数学基础线性代数部分重难点解析

经济数学基础线性代数部分重难点解析

第三部 线性代数 第1章 行列式1.了解或理解一些基本概念(1)了解n 阶行列式、余子式、代数余子式等概念; (2)了解n 阶行列式性质,尤其是:性质1 行列式D 和其转置行列式T D 相等;性质2 若将行列式的任意两行(或列)互换,则行列式的值改变符号; 性质3 行列式一行(或列)元素的公因子可以提到行列式记号的外面;性质5 若将行列式的某一行(或列)的倍数加到另一行(或列)对应的元素上,则行列式的值不变.例1 设行列式211201231--=D ,则D 中元素223=a 的代数余子式23A = 。

解 由代数余子式的定义ij A ij ji M +-=)1(,其中ij M 为ij a 的余子式,可知 23A =11311131)1(32-=-+。

应该填写 1131-。

例2 下列等式成立的是( ) ,其中d c b a ,,,为常数。

A .acb d dc ba -= B .111111c bd a d c b a +=++C .d c b a d c ba 22222= D .111111c b d a d c b a ⋅=⋅⋅ 解 因为 dc ba d cb acd a b a b c d a c b d ≠-==-=-,所以选项A 是错误的。

由行列式性质4可知,111111c b d a d c b a +=++,所以选项B 是正确的。

因为d c ba d cb a dc b a 242222≠=,所以选项C 是错误的。

因为1111,11c b d a cd ab d c b a ⋅-=⋅⋅=))((c b d a --,111111c b d a d c b a ⋅≠⋅⋅,所以选项D 是错误的。

例3 行列式4321100001000010=D = 。

解 按第1列展开行列式,得6300020001)1(432130000200001014-=-==+D故应该填写 –6。

2.掌握行列式的计算方法化三角形法:利用行列式性质化成上(或下)三角行列式,其主对角线元素的乘积即为行列式的值。

经济数学基础线性代数之第1章行列式

经济数学基础线性代数之第1章行列式

第一单元 行列式的定义一、学习目标通过本节课学习,理解行列式的递归定义,掌握代数余子式的计算,知道任何一个行列式就是代表一个数值,是可以经过特定的运算得到其结果的.二、内容讲解行列式 行列式的概念什么叫做行列式呢?譬如,有4个数排列成一个行方块,在左右两边加竖线。

即2153-称为二阶行列式;有几个概念要清楚,即上式中,横向称行,共有两行;竖向称列,共有两列; 一般用ija 表示第i 行第j 列的元素,如上例中的元素311=a ,512=a ,121-=a ,222=a .再看一个算式075423011--称为三阶行列式,其中第三行为5,-7,0;第二列为–1,2,-7;元素423=a ,531=a又如1321403011320---,是一个四阶行列式.而11a 的代数余子式为()07421111111--=-=+M A代数余子式就是在余子式前适当加正负号,正负号的规律是-1的指数是该元素的行数加列数.()43011322332-=-=+M A问题思考:元素ija 的代数余子式ijA 是如何定义的? 代数余子式ijA 由符号因子j i +-)1(与元素ij a 的余子式ij M 构成,即()ijji ijM A +-=1三、例题讲解例题1:计算三阶行列式542303241---=D分析:按照行列式的递归定义,将行列式的第一行展开,使它成为几个二阶行列式之和, 二阶行列式可以利用对角相乘法,计算出结果.解:()()()5233145430112111---⋅-+--⋅=++D ()42031231--⋅++7212294121=⋅+⋅+⋅=四、课堂练习计算行列式hg f ed c b a D 00000004=利用n 阶行列式的定义选择答案.将行列式中的字母作为数字对待,利用递归定义计算.注意在该行列式的第一行中,有两个零元素,因此展开式中对应的两项不用写出来了.4D =⋅-⋅+11)1(a h f ed c 00+41)1(+-⋅b 000g f ed c ⋅五、课后作业1.求下列行列式的第二行第三列元素的代数余子式23A(1)210834021-- (2)3405122010141321---2.计算下列行列式(1)622141531-- (2)612053124200101---3.设00015413010212014=D(1)由定义计算4D ;(2)计算2424232322222121A a A a A a A a +++,即按第二行展开; (3)计算3434333332323131A a A a A a A a +++,即按第三行展开;(4)按第四行展开.1.(1)1021)1(32--+ (2)305120121)1(32---+2.(1)20 (2)243.(1)1 (2)1 (3)1 (4)1第二单元 行列式的性质一、学习目标通过本节课的学习,掌握行列式的性质,并会利用这些性质计算行列式的值.二、内容讲解 行列式的性质用定义计算行列式的值有时是比较麻烦的,利用行列式的性质能够使计算变的比较容易了.行列式的性质有七条,下面讲一讲几条常用的性质.在讲这些性质前,先给出一个概念:把行列式D 中的行与列按原顺序互换以后得到的行列式,称为D 的转置行列式,记为TD .如987654321=D ,963852741T =D1.行列式的行、列交换,其值不变.如264536543-==这条性质说明行列式中,行与列的地位是一样的.2.行列式的两行交换,其值变号.如243656543-=-=3.若行列式的某一行有公因子,则可提出.如d c b a dc ba333=注意:一个行列式与一个数相乘,等于该数与行列式的某行(列)的元素相乘. 4.行列式对行的倍加运算,其值不变.如倍加运算就是把一行的常数倍加到另一行上2113-- 5513-=注意:符号“À+2Á”放在等号上面,表示行变换,放在等号下面表示列变换. 问题1:将n 阶行列式的最后一行轮换到第一行, 这两个行列式的值有什么关系?答案设n 阶行列式nD ,若将nD 的最后一行轮换到第一行,得另一个n 阶行列式nC ,那么这两个行列式的值的关系为: n C =n nD 1)1(--问题2:如果行列式有两行或两行以上的行都有公因子,那么按性质3应如何提取? 答案按顺序将公因子提出.三、例题讲解例1计算行列式dc b a 675081004000--.分析:利用性质6,行列式可以按任一行(列)展开.本题按第一行逐步展开,计算出结果.解:dc b a 675081004000--=dc b a 670800-=d c ab 60=abcdÀ+2Á我们将行列式中由左上角至右下角的对角线, 称为主对角线.如例1中,行列式在主对角线以上的元素全为零,则称为下三角行列式. 由例1的计算过程,可得这样规律:下三角行列式就等于主对角线元素的积. 同理,主对角线以下元素全为零的行列式,则称为上三角行列式,且上三角行列式也等于主对角线元素之积.今后,上、下三角行列式统称为三角行列式.例2 计算行列式4977864267984321----分析:原行列式中第三行的元素是第一行的2倍,因此,利用行列式的倍加运算(性质5),使第三行的元素都变为0,得到行列式的值.解:4977864267984321----497700067984321----= 0例3 计算行列式2211132011342211----分析:利用行列式的倍加运算(性质5),首先将某行(列)的元素尽可能化为0,再利用行列式可以按任一行(列)展开的性质(性质6),逐步将原行列式化为二阶行列式,计算出结果.解:2211132011342211---- 2411142010342011---Â+Ã111142010342011----=111134211)1(433-----⨯+1101312104----⨯=1121)1(412----⨯+12)21(4=---=通过此例可知,行列式两行成比例,则行列式为零.三、课堂练习练习1 若d a a a a a a a a a =333231232221131211,求行列式232221131211313231222333a a a a a a a a a ---利用行列式的性质3,将第一行的公因子3、第二行的公因子(-1)、第三行的公因子2提出.利用行列式的性质3和性质2,将所要计算的行列式化为已知的行列式,再求其值.练习2 计算行列式540554129973219882310391----由性质4,若行列式中某列的元素均为两项之和,则可将其拆写成两个行列式之和.在着手具体计算前,先观察一下此行列式有否特点?有,其第三列的数字较大,但又都分别接近100、200、300和400,故将第三列的元素分别写成两项之和, 再利用行列式的性质4将其写成两个行列式之和.注意,将第三列的元素分别写成两À+Á项之和时,还要考虑到结论“行列式中两列元素相同(或成比例),则该行列式的值为0”的利用.五、课后作业1.计算下列行列式(1)75701510--- (2)253132121-(3) ww w w ww22111 (0≠w ) (4)38790187424321--2.证明(1)0=---------cb b a ac b a a c c b a c c b b a (2)()32211122b a b b a a b ab a -=+1.(1)0 (2) -2 (3) 22)1(--w w (4)02. (1)提示:利用性质5,将第一行化成零行.(2)提示:利用性质5,将第三行的元素化成“0 0 1”,再按第三行展开,并推出等号右边结果.第三单元 行列式的计算一、学习目标通过本节课的学习,掌握行列式的计算方法.二、内容讲解行列式的计算行列式=按任何一行(列)展开 下面用具体例子说明.d c b a =bc ad -1156)1(5232153=+=-⋅-⋅=-一个具体的行列式就是代表具体的一个数.再看一个三阶行列式.75423011--可以按任何一行(列)展开按第一行展开=752300543107421-⨯+⨯+-⨯=02028+-=8 按第三列展开=231107511475230-⨯+--⨯--⨯=0)57(40++-⨯-=8注意:1.行列式计算一般按零元素较多的行(列)展开.2.代数余子式的正负号是有规律的,一正一负相间隔.问题:试证 2222222211110000d c b a d c b a d c b a d c dc b a b a =答案左边=222211122222111100)1(00)1(d c b a b a bc d c b a d c d a ++-+-222211)1(d c b a ad +-=222211)1(d c b a cb +--22222222)(d c b a d c b a d c b a cb ad =-==右边三、例题讲解例 计算行列式214200131000211---分析:由性质6可知,行列式可以按任何一行(列)展开来求值.因为第二、三行,第四列的零元素都较多,所以可选择其一展开,再进一步将其展成二阶行列式,并计算结果.解:按第三行展开214200131000211---=214100211)1(2021315021)1(14313----⨯+----⨯++=1411)1()1(22121)1(33232--⨯-⨯----⨯++==10)41(2)22(3-=+--⨯-四、课堂练习练习1 计算行列式dcb a 100110011001---根据定义,按第一行展开,使其成为两个三阶行列式之和.因为行列式第一行有较多的零元素,所以可采用“降阶法”,即先按第一行展开,使其成为两个三阶行列式之和,然后再计算两个三阶行列式降阶,最后求出结果.dcb a 100110011001--- =dcd cb a 101011101101-----练习2 计算行列式24524288251631220223------为了避免分数运算,先作变换“第一行加上第二行的2倍,即À+Á 2;第三行加上第二行的-2倍,即Â+Á(-2);第四行加上第二行的-2倍,即Ã+Á(-2)”.该行列式没有明显特点,采用哪种方法计算都可以,这里用“化三角行列式”的方法进行计算.注意尽量避免分数运算.21524288251631220223------111042011631212401----五、课后作业1.计算下列行列式:(1)881441221---- (2)4222232222222221À+Á2 Â+Á(-2(3) 4321651065311021 (4)00312007630050131135362432142.计算n阶行列式xaaa x a a a x/media_file/jjsx/4_1/3/khzy/khzy.htm - #1.(1)48 (2)4 (3)-3 (4)-3402. ])1[()(1x a n a x n +---第四单元 克拉默法则一、学习目标克拉默法则是行列式在解线性方程组中的一个应用,通过本节课的学习,要知道克拉默法则求线性方程组解的条件,了解克拉默法则的结论.二、内容讲解克拉默法则设n 个未知数的线性方程组为 ⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 (1)记行列式nnn n n na a a a a a a a a D 212222111211=称为方程组(1)的系数行列式.将D 中第j 列的元素njj j a ,,a ,a 21分别换成常数n b ,,b ,b 21而得到的行列式记作jD .克拉默法则 如果线性方程组(1)的系数行列式0≠D ,那么它有惟一解D D x D Dx D D x n n ===,,,2211 (2)证将(2)式分别代入方程组(1)的第i 个方程的左端的nx x x ,,,21 中,有D D a D Da D D a n in i i +++ 2211(3)将(3)中的jD 按第j 列展开, 再注意到j D中第j 列元素的代数余子式和D 中第j 列元素的代数余子式ij A是相同的, 因此有),,2,1(2211n j A b A b A b D njn j j j =+++= (4)把(4)代入(3),有D D a D Da D D a n in i i +++ 2211(){1121211111n n i i i A b A b A b A b a D+++=()222221212n n i i i A b A b A b A b a ++++…+…()}nn n in i n n in A b A b A b A b a ++++2211把小括弧打开重新组合得(){()()()}i nn in n i n i n in in i i i i i n in i i n in i i b A a A a A a b A a A a A a b A a A a A a b A a A a A a b D=+++++++++++++++++=2211221122222112112211111因由性质6和性质7⎩⎨⎧=≠=+++k i D ki A a A a A a kn in k i k i 02211 故上式等于i b ,即i n in i i b D D a D Da D D a =+++ 2211下面再证明方程组(1)的解是惟一的.设nn c x c x c x ===,,,2211为方程组(1)的任意一组解.于是 ⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++n n nn n n n n n n b c a c a c a b c a c a c a b c a c a c a 22112222212111212111 (5)用j A 1,j A 2,…j n A 分别乘以(5)式的第一、第二、…、第n 个等式,再把n 个等式两边相加,得++++11221111)(c A a A a A a nj n j j +++++j nj nj j j j j c A a A a A a )(2211n nj nn j n j n c A a A a A a )(2211++++ njn j j A b A b A b +++= 2211根据性质6和性质7,上式即为),,2,1(n j D c D j j ==因为0≠D ,所以),,2,1(n j DD c j j ==克拉默法则有以下两个推论:推论1 如果齐次线性方程组的系数行列式0≠D , 那么 它只有零解.推论2 齐次线性方程组有非零解的必要条件是系数行列式0=D . 问题:对任一线性方程组都可用克拉默法则求解吗?答案 不对.当线性方程组中的未知量个数与方程个数不一样;或未知量个数与方程个数相同,但其系数行列式等于零时,不能使用克拉默法则.三、例题讲解例 利用克拉默法则解下列方程组⎩⎨⎧-=-=+-7526432121x x x x分析:这是一个两个变量、两个方程的方程组,它满足了克拉默法则一个条件.克拉默法则的另一个条件是要求系数行列式的值不等于零.因此,先求出方程组的系数行列式的值,若它的值不等于零,说明该方程组有惟一解,然后求常数项替代后的行列式的值,再用克拉默法则给出的公式求出解. 解:因为系数行列式()()24535243⨯--⨯-=--=D 07815≠=-= 且257461-=--=D ,972632=--=D ,所以7211-==D D x ,7922==D D x四、课堂练习k 取什么值时,下列方程组有唯一解?有唯一解时求出解.⎪⎩⎪⎨⎧=+--=++-=++0211321321321x x x x kx x kx x x对行列式作变换“第二行加上第一行的1倍,即Á+À;第三行加上第一行的-1倍,即Â+À(-1)”.这是三个未知量三个方程的线性方程组,由克拉默法则知,当系数行列式D ≠0时,方程组有唯一解.所以,先求系数行列式的值.2111111--=kk Dkk k k --++2211011五、课后作业用克莱姆法则解下列方程组1.⎪⎩⎪⎨⎧=+=++=-12 142 23232121x x x x x x x 2.⎪⎪⎩⎪⎪⎨⎧-=+++-=+-+=---=+++422222837432143214314321x x x x x x x x x x x x x x x 1.31=x ,42=x ,233-=x ,2. 21-=x ,3352=x ,2103=x ,204-=x。

经济数学基础线性代数部分综合练习及答案

经济数学基础线性代数部分综合练习及答案

经济数学基础线性代数部分综合练习及答案一、单项选择题1.设A 为23⨯矩阵,B 为32⨯矩阵,则下列运算中( A )可以进行.A .AB B .AB TC .A +BD .BA T2.设B A ,为同阶可逆矩阵,则下列等式成立的是(B )A . T T T )(B A AB =B .T T T )(A B AB =C .1T 11T )()(---=B A ABD .T 111T )()(---=B A AB3.以下结论或等式正确的是( C ).A .若B A ,均为零矩阵,则有B A =B .若AC AB =,且O A ≠,则C B =C .对角矩阵是对称矩阵D .若O B O A ≠≠,,则O AB ≠4.设A 是可逆矩阵,且A AB I +=,则A -=1( C ).A .B B .1+BC .I B +D .()I AB --15.设)21(=A ,)31(-=B ,I 是单位矩阵,则I B A -T =( D ). A .⎥⎦⎤⎢⎣⎡--6231 B .⎥⎦⎤⎢⎣⎡--6321 C .⎥⎦⎤⎢⎣⎡--5322 D .⎥⎦⎤⎢⎣⎡--5232 6.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=314231003021A ,则r (A ) =(C ). A .4 B .3C .2D .17.设线性方程组b AX =的增广矩阵通过初等行变换化为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--00000120004131062131,则此线性方程组的一般解中自由未知量的个数为(A ).A .1B .2C .3D .48.线性方程组⎩⎨⎧=+=+012121x x x x 解的情况是( A ). A . 无解 B . 只有0解 C . 有唯一解 D . 有无穷多解9.若线性方程组的增广矩阵为⎥⎦⎤⎢⎣⎡=01221λA ,则当λ=( B )时线性方程组无解.A .0B .12C .1D .2 10. 设线性方程组b X A n m =⨯有无穷多解的充分必要条件是( D ).A .m A r A r <=)()(B .n A r <)(C .n m <D .n A r A r <=)()(11.设线性方程组AX=b 中,若r (A , b ) = 4,r (A ) = 3,则该线性方程组(B ).A .有唯一解B .无解C .有非零解D .有无穷多解12.设线性方程组b AX =有唯一解,则相应的齐次方程组O AX =(C ).A .无解B .有非零解C .只有零解D .解不能确定二、填空题1.若矩阵A = []21-,B = []132-,则A T2.设矩阵⎥⎦⎤⎢⎣⎡-=3421A ,I 为单位矩阵,则T )(A I - 3.设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条4.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=13230201a A ,当a A 是对称矩阵. 5.设B A ,均为n 阶矩阵,且)(B I -可逆,则矩阵X BX A =+的解X =. 应该填写:A B I 1)(--6.设A 为n 阶可逆矩阵,则r (A )=.应该填写:n7.若r (A , b ) = 4,r (A ) = 3,则线性方程组AX = b .应该填写:无解8.若线性方程组⎩⎨⎧=+=-002121x x x x λ有非零解,则λ9.设齐次线性方程组01=⨯⨯n n m X A ,且秩(A ) = r < n ,则其一般解中的自由未知量的个数等于10.O AX =中A 为53⨯矩阵,且该方程组有非0解,则)(A r11.齐次线性方程组0=AX 的系数矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=000020103211A 则此方程组的一其中43,x x 是自由未知量)12.设线性方程组b AX =,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-→010*********t A ,则有唯一解.三、计算题1.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-012411210,求逆矩阵1-A . 解 因为(AI ) =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-120001010830210411100010001012411210 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→123124112200010001123001011200210201 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→21123124112100010001 所以 A -1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----21123124112 2.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121511311,求逆矩阵1)(-+A I .解 因为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+021501310A I 且 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-110520001310010501100021010501001310 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→112100001310010501⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→1121003350105610001 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=+-1123355610)(1A I 3.设矩阵 A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011,B =⎥⎦⎤⎢⎣⎡--210321,计算(BA )-1. 解 因为BA =⎥⎦⎤⎢⎣⎡--210321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011=⎥⎦⎤⎢⎣⎡--2435 (BAI )=⎥⎦⎤⎢⎣⎡--→⎥⎦⎤⎢⎣⎡--1024111110240135 ⎥⎦⎤⎢⎣⎡---→54201111⎥⎥⎦⎤⎢⎢⎣⎡--→2521023101 所以(BA )-1=⎥⎥⎦⎤⎢⎢⎣⎡--252231 4.设矩阵⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=3221,5321B A ,求解矩阵方程B XA =. 解:因为⎥⎦⎤⎢⎣⎡10530121⎥⎦⎤⎢⎣⎡--→13100121⎥⎦⎤⎢⎣⎡--→13102501 即 ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-132553211所以,X =153213221-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡13253221= ⎥⎦⎤⎢⎣⎡-1101 5.设线性方程组 ⎪⎩⎪⎨⎧=+-=-+--=+052231232132131x x x x x x x x ,求其系数矩阵和增广矩阵的秩,并判断其解的情况.解 因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=211011101201051223111201A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→300011101201 所以 r (A ) = 2,r (A ) = 3.又因为r (A )≠r (A ),所以方程组无解.6.求线性方程组⎪⎩⎪⎨⎧=-+-=+-+-=-+03520230243214321431x x x x x x x x x x x 的一般解.解 因为系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=111011101201351223111201A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→000011101201 所以一般解为⎩⎨⎧-=+-=4324312x x x x x x (其中3x ,4x 是自由未知量) 7.求线性方程组⎪⎩⎪⎨⎧=-+-=-+-=+-126142323252321321321x x x x x x x x x 的一般解.解 因为增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=1881809490312112614231213252A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→0000194101101 所以一般解为 ⎪⎪⎩⎪⎪⎨⎧+=+=1941913231x x x x (其中3x 是自由未知量) 8.设齐次线性方程组⎪⎩⎪⎨⎧=+-=+-=+-0830352023321321321x x x x x x x x x λ问λ取何值时方程组有非零解,并求一般解.解 因为系数矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---61011023183352231λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→500110101λ 所以当λ = 5时,方程组有非零解. 且一般解为⎩⎨⎧==3231x x x x (其中3x 是自由未知量) 9.当λ取何值时,线性方程组⎪⎩⎪⎨⎧=+-=-+=++1542131321321x x x x x x x x λ有解?并求一般解.解 因为增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=26102610111115014121111λλA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→λ00026101501 所以当λ=0时,线性方程组有无穷多解,且一般解为:⎩⎨⎧+-=-=26153231x x x x (x 3是自由未知量〕。

经济数学基础(线性代数)讲义

经济数学基础(线性代数)讲义

经济数学线性代数学习讲义合川电大兰冬生1,矩阵:A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-012411210,称为矩阵。

认识矩阵第一步:行与列,横为行,竖为列, 第一行依次0,1,2, 第二行1,1,4 第一列0,1,2这是一个三行三列矩阵, 再给出一个三行四列矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=12614231213252A 教材概念的m 行n 列矩阵。

⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn m m n n a a a a a a a a a 212222111211,这个矩阵记作nm A ⨯,表明这个矩阵有m 行,n 列,注意行m 写在前面,列n 写在后面,括号里面的称为元素,记为ij a ,i 是行,j 是列, 例如:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----12614231213252是三行四列矩阵,也说成43⨯矩阵,注意行3在前面,列4在后面,这里211=a (就是指的第一行第一列那个数)123-=a (就是指的第二行第三列那个数)2,矩阵加法矩阵加法,满足行列相同的矩阵才能相加,对应位置的数相加。

例如:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--011101010+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-012411210=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-021512220 减法是对应位置的数相减。

,3,矩阵的乘法矩阵乘法参看以下法则:注意字母对应⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211a a a a a a a a a ⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211b b b b b b b b b ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯=333323321331323322321231313321321131332323221321322322221221312321221121331323121311321322121211311321121111b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a 说明:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211a a a a a a a a a ⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211b b b b b b b b b =⎦⎢⎢⎢⎣⎡33323122211211c c c c c c 乘积的结果矩阵11c 等于第一个矩阵的第一行元素11a 12a 13a 乘以第二个矩阵的第一列元素11b 21b 31b ,注意是对应元素相乘,再求和。

经济数学基础线性代数-第二章_矩阵.ppt

经济数学基础线性代数-第二章_矩阵.ppt
上(下)三角矩阵。
注意:上(下)三角矩阵的转置为
下(上)三角矩阵。
(三)对称矩阵
若矩A满 阵足 :AAT,则 A为对称矩
(1)对称矩阵一定是方阵;
(2)关于主对角线对称的位置上的元素必定
相等,即 aij aji
例如:
3 2 1
1 0
0
3
2
1
2
1 2 0
都是对称矩阵
1 0 0 0 2 3 1 2
4 2
2AB
1 3
1 0
2203
1 1
14( 1 )3012( 1 ) (1 )21
3400
32021
1 12
5 8
3ABCT ABCT CTABT
利用(2)中的AB来求
1 2 1T 1 5T 0 5 1 128
1 0
1 12
2
1
5 1
1 5
12
8
23
4
16
4
1 2 3
A
a
1
0
是对称矩阵。
3 b 2
【解】 由对称矩阵的定义,可知:
a 2, b0时
矩阵A是对称矩阵。
【例6】试证:对任意方阵A,都有 AAT
是对称方阵。
证明: 根据对称矩阵的定义只需证明
AA TTAA T A A TT A TA TTAT A
AAT为对称矩阵 .
关键:利用定义来证明
2 5
11,求 1A2BT 3C;
2AB; 3ABCT.
【解】
1A2BT3C
4 2T
13
1 0
2 220 3
1 1
301
2 5

【免费下载】经济数学基础线性代数之第3章 线性方程组

【免费下载】经济数学基础线性代数之第3章 线性方程组



x1 x2
5x2 5x3
6
x3 6x4
x3 5x4 6x5 2
5x4 6x5 4
5 6 0 0 0 x1 1
1 5 6 0 0 x2 2

0
1
5
6
0 0 1 5 6 x4 2
写线性方程组的增广矩阵时,必须将每一个未知量前的系数及常数项都写出,若为 0,也必须写上 0. 写出增广矩阵
1 1 0 1 5

2
0
2 1
1 2 8 4 1
(1)
(1) 3
五、课后作业
0
将下列方程组写成矩阵形式:
2xx11
1
A

4 5 1
1 1

1 1 3
5

x1

x2
x3
5 0
1

表示一个线性方程组的增广矩阵,讨论这个线性方程组:(1)有几个未知量?(2)有
几个方程?(3)最后一行代表的方程是什么?
解:(1)根据增广矩阵的概念,可知最后一列是常数项,前 4 列是未知量的系数,故这个方
案填写 0.
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

经济数学基础线性代数之第章行列式

经济数学基础线性代数之第章行列式

第一单元队列式的定义一、学习目标经过本节课学习,理解队列式的递归定义,掌握代数余子式的计算,知道任何一个队列式就是代表一个数值,是能够经过特定的运算获得其结果的.二、内容解说队列式队列式的观点什么叫做队列式呢?比如,有 4 个数摆列成一个行方块,在左右两边加竖3 5线。

即12 称为二阶队列式;有几个观点要清楚,即上式中,横向称行,共有两行;竖向称列,共有两列;一般用aij表示第i行第j列的元素,如上例中的元素a11 3 , a12 5 ,a211,a222.110324再看一个算式57称为三阶队列式,此中第三行为5,-7 ,0;第二列为–1, 2,-7 ;元素a234,a3150231 1030 4123又如0010,是一个四阶队列式.a1124A11 1 M1170代数余子式就是在余子式前适合加正负号,正负号的规律是-1 的指数是该元素的行数加列数.A3213 2M321034问题思虑:元素aij的代数余子式Aij是怎样定义的?代数余子式Aij由符号因子 ( 1) i j与元素aij的余子式Mij 组成,即Aij1i jMij三、例题解说142D303例题 1:计算三阶队列式245剖析:依据队列式的递归定义,将队列式的第一行睁开,使它成为几个二阶队列式之和,二阶队列式能够利用对角相乘法,计算出结果.D1 1 1 1 034 1 123321 1 330解:4525241 12492 1272四、讲堂练习a00bD 40c d0 0e f0计算队列式g00h利用n阶队列式的定义选择答案.将队列式中的字母作为数字对待,利用递归定义计算.注意在该队列式的第一行中,有两个零元素,所以睁开式中对应的两项不用写出来了.c d00c de f00e fD4= a ( 1) 1 100h +b ( 1)1 4g 00五、课后作业1.求以下队列式的第二行第三列元素的代数余子式A23120438(1)012(2)12314101022150432.计算以下队列式135141(1)226(2)10100242135021061021D 42010 31453.设1000D( 2)计算 a 21 A 21 a 22 A 22 a 23 A 23a 24A24,即按第二行睁开;( 3)计算a 31A31a 32A32a 33A33a 34A34,即按第三行睁开;( 4)按第四行睁开.12 1( 1)2312 ( 1)232 1531.( 1)1( 2)2.( 1)20 (2)24 3.(1)1(2)1(3)1(4)1第二单元队列式的性质一、学习目标经过本节课的学习,掌握队列式的性质,并会利用这些性质计算队列式的值.二、内容解说队列式的性质用定义计算队列式的值有时是比较麻烦的,利用队列式的性质能够使计算变的比较简单了.队列式的性质有七条,下边讲一讲几条常用的性质.在讲这些性质前,先给出一个观点:把队列式 D 中的行与列按原次序交换此后获得的队列式,称为D 的转置队列式,记为 D T.1 2 31 4 7 D4 5 6 D T 2 5 8 如7 8 9 ,3 6 93 43 51.队列式的行、列交换,其值不变. 如5264 6这条性质说明队列式中,行与列的地位是同样的.3 45 622.队列式的两行交换,其值变号 .如563 4a ba b如 3c33.若队列式的某一行有公因子,则可提出.3d c d注意:一个队列式与一个数相乘,等于该数与队列式的某行(列)的元素相乘.4.队列式对行的倍加运算,其值不变.如倍加运算就是把一行的常数倍加到3 1 à +2á 3 1125 5另一行上注意:符号“ à+2á”放在等号上边,表示行变换,放在等号下边表示列变换.问题 1:将 n 阶队列式的最后一行轮换到第一行,这两个队列式的值有什么关系?答案设 n 阶队列式 D n ,若将 Dn的最后一行轮换到第一行,得另一个n 阶行列式C n,那么这两个队列式的值的关系为: C n =( 1) n 1 D n问题 2:假如队列式有两行或两行以上的行都有公因子,那么按性质3 应怎样提取?答案按次序将公因子提出 .三、例题解说a000 4b00 18c0例 1 计算队列式576 d .剖析:利用性质 6,队列式能够按任一行(列)睁开.此题按第一行逐渐展开,计算出结果.a0004b00b0018c0 a 8c0c0解:5d =abd= abcd 7676 d =6我们将队列式中由左上角至右下角的对角线,称为主对角线.如例 1 中,行列式在主对角线以上的元素全为零,则称为下三角队列式.由例 1 的计算过程,可得这样规律:下三角队列式就等于主对角线元素的积.同理,主对角线以下元素全为零的队列式,则称为上三角队列式,且上三角队列式也等于主对角线元素之积.此后,上、下三角队列式统称为三角队列式.123489762468例 2 计算队列式7794剖析:原队列式中第三行的元素是第一行的 2 倍,所以,利用队列式的倍加运算(性质 5),使第三行的元素都变成 0,获得队列式的值.123412348976897624680000解:77947 794= 01 1 2243110 231例3计算队列式1122剖析:利用队列式的倍加运算(性质5),第一将某行(列)的元素尽可能化为 0,再利用队列式能够按任一行(列)睁开的性质(性质6),逐渐将原队列式化为二阶队列式,计算出结果.112211024311?+?430102310241解:11221142110243011120 2 4 1 4 ( 1)334311101=11101241314( 1)2112à+á011114(12) 12=经过此例可知,队列式两行成比率,则队列式为零.三、讲堂练习a11a12a133a313a323a31a21a22a23da11a12a13练习 1 若a31a32a33,求队列式2a212a222a23利用队列式的性质3,将第一行的公因子3、第二行的公因子( -1 )、第三行的公因子 2 提出.利用队列式的性质 3 和性质 2,将所要计算的队列式化为已知的队列式,再求其值.191033281982372991练习 2 计算队列式454055由性质 4,若队列式中某列的元素均为两项之和,则可将其拆写成两个队列式之和.在着手详细计算前,先察看一下此队列式有否特色?有,其第三列的数字较大,但又都分别靠近 100、200、300 和 400,故将第三列的元素分别写成两项之和,再利用队列式的性质 4 将其写成两个队列式之和.注意,将第三列的元素分别写成两项之和时,还要考虑到结论“队列式中两列元素同样(或成比率),则该队列式的值为 0”的利用.五、课后作业1.计算以下队列式015121107231(1)57 0(2)3521234 1112478 w w w 20010(3) w w 2w( w 0)(4)97 832.证明a b b c c a a 2ab b 2b c c a a b 02a a b 2ba b 3(1) c a a b b c(2)1111.( 1) 0(2) -2(3)w2(w1)2(4)02.(1)提示:利用性质 5,将第一行化成零行.(2)提示:利用性质5,将第三行的元素化成“0 0 1”,再按第三行睁开,并推出等号右侧结果.第三单元队列式的计算一、学习目标经过本节课的学习,掌握队列式的计算方法.二、内容解说队列式的计算队列式 =按任何一行(列)睁开下边用详细例子说明.a b35 d= ad bc 32 5(1) 6 5 11c12一个详细的队列式就是代表详细的一个数.再看一个三阶队列式.1103 2457 0能够按任何一行(列)睁开2434321107=28按第一行睁开 =70505200=83211110402 =0(7 5) 0=8按第三列睁开 =575734注意: 1.队列式计算一般按零元素许多的行(列)睁开.2.代数余子式的正负号是有规律的,一正一负相间隔.问题:试证答案左侧=ab a 1 b 1c d c 1 d 1 a b a 2 b 2 0 0 a 2 b 2 c d c 2d 2c 2d 2dc 1d 1b a 1b 1a( 1)1 10 a 2 b 2 c( 1)2 10 a 2 b 2 ad( 1)1 1 a2b 2 cb( 1)1 1a2b 2 0c 2d 20 c 2d 2c 2d 2c 2d 2(ad cb)a 2b 2 a b a 2 b 2c 2d 2 cd c 2 d 2 =右侧三、例题解说1 12 0 0 0 1 312例计算队列式41 2 0剖析: 由性质 6 可知,队列式能够按任何一行(列)睁开来求值.由于第二、三行,第四列的零元素都许多,所以可选择其一睁开,再进一步将其展成二阶队列式,并计算结果.解:按第三行睁开1 12 00 0 1 312 0 11 2 10 021(1)3151 32 ( 1)3400 1 412 0 =12 04123 ( 1)23 1 2 2 ( 1) ( 1)2311=1241==3(2 2) 2(1 4)10四、讲堂练习a1001b1001c1练习 1 计算队列式001d依据定义,按第一行睁开,使其成为两个三阶队列式之和.由于队列式第一行有许多的零元素,所以可采纳“降阶法”,即先按第一行展开,使其成为两个三阶队列式之和,而后再计算两个三阶队列式降阶,最后求出结a1001 b10b 1 01100 1 c 1 a 1 c 10 c 1果.00 1 d =0 1 d0 1 d322202131652828练习 2 计算队列式42524为了防止分数运算,先作变换“第一行加上第二行的 2 倍,即à+á 2 ;第三行加上第二行的 -2 倍,即 ?+á(-2) ;第四行加上第二行的-2 倍,即 ?+á(-2) ”.该队列式没有显然特色,采纳哪一种方法计算都能够,这里用“化三角队列式”的方法进行计算.注意尽量防止分数运算.3 22202 1 316 5 2 828 4 2 521à+á2 ?+á (-2) ?+á (-2)1041221316102400111五、课后作业1.计算以下队列式:1222 12222221442232(1)188(2)2224421342 12013651313 135610500 015636700(3)1234(4)2 1 300x a aa x a2.计算n阶队列式aa x1.(1)48 (2)4(3)-3(4)-3402. (x a)n 1[( n 1)a x]第四单元克拉默法例一、学习目标克拉默法例是队列式在解线性方程组中的一个应用,经过本节课的学习,要知道克拉默法例求线性方程组解的条件,认识克拉默法例的结论.二、内容解说克拉默法例设n个未知数的线性方程组为a 11 x1a12x2a1 nxn b1a 21 x1a22x2a2 nxn b2a n1 x1an2x2annxn b n(1)a11a12a1 nDa21a22a2 n记队列式a n1a n2a nn称为方程组( 1)的系数队列式.将D中第j列的元素a1 j ,a2 j , , a nj分别换成常数b,b , ,b D j.12n而获得的队列式记作克拉默法例假如线性方程组( 1)的系数队列式D0,那x1D1 , x2D2 , , x n Dn(2)么它有唯一解D D D证将( 2)式分别代入方程组( 1)的第i个方程的左端的x1, x2,, x n中,有D 1ai 2D 2ainD nai1D D(3)D将( 3)中的D j按第j列睁开,再注意到Dj中第j列元素的代数余子式和 D中第j列元素的代数余子式A ij是同样的,所以有Djb1A1 jb2A2 j b nAnj( j1,2,, n)(4)把( 4)代入( 3),有ai1D 1 D 2 D nDai 2 Dain D1a i1 b1 A11 b2A21biAi1bnAn1ai 2b1A12b2A22biAi 2bnAn 2 D+ainb1A1nb2A2nbiAinbnAnn 把小括弧翻开从头组合得1 b 1 a i 1 A 11 a i2 A 12a in A 1nDb 2 a i 1 A 21 a i 2 A 22 a in A 2nb i a i 1 A i1 a i 2 A i 2a in A inb n a i 1A n1a i 2An 2a inAnnb i来由性质 6 和性质 7a i1A k1a i 2Ak 2a inAkni kDik 故上式等于 b i ,即D 1 D 2D nai1Dai 2DainDb i下边再证明方程组( 1)的解是唯一的.设 x 1 c 1 , x 2 c 2 , , x nc n为方程组( 1)的随意一组解.于是a 11c 1 a 12 c 2 a 1n c nb 1 a 21c 1 a 22c 2 a 2n c n b 2a n1c 1a n2c 2a nn c nb n( )用 A 1 j , A 2 j ,A n j分别乘以( 5)式5的第一、第二、 、第n 个等式,再把 n 个等式两边相加,得(a 11A1 ja 21 A2 ja n1A nj)c1(a 1 jA1 ja 2 j A2 ja njA nj)cj( a 1 nA1 ja 2nA2 ja nnA nj)c nb 1A 1 jb 2A2 jb nAnj依据性质 6 和性质 7,上式即为D c jD j ( j 1,2,, n)由于D,所以 c j D j ( j 1,2, ,n)D克拉默法例有以下两个推论:推论 1 假如齐次线性方程组的系数队列式 D 0,那么它只有零解.推论 2齐次线性方程组有非零解的必需条件是系数队列式D0.问题:对任一线性方程组都可用克拉默法例求解吗?答案不对.当线性方程组中的未知量个数与方程个数不同样;或未知量个数与方程个数同样,但其系数队列式等于零时,不可以使用克拉默法例.三、例题解说3x14x26例利用克拉默法例解以下方程组2 x15x27剖析:这是一个两个变量、两个方程的方程组,它知足了克拉默法例一个条件.克拉默法例的另一个条件是要求系数队列式的值不等于零.所以,先求出方程组的系数队列式的值,若它的值不等于零,说明该方程组有唯一解,而后求常数项代替后的队列式的值,再用克拉默法例给出的公式求出解.解:由于系数队列式343 54 2D5158702D1642 D 2369D12D29 7527x17 ,x27且,,所以D D 四、讲堂练习k取什么值时,以下方程组有独一解?有独一解时求出解.x1x2kx31x1kx2x31x1x22x30对队列式作变换“第二行加上第一行的 1 倍,即á+à;第三行加上第一行的-1 倍,即 ?+à(-1 )”.组有独一解.所以,先求系数队列式的值.11k11kD1k10k1k1112022k五、课后作业用克莱姆法例解以下方程组x1x2x3 x472x1x22x13x3x48x1x2 4 x31x12x2x3x421.x2 2 x312. 2x12x2 2x3x44x3335101.x13,x24 2 ,2.x1 2 ,x2x320, 3 , 2 ,x4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《经济数学基础》线性代数
第3章 线性方程组
1.了解n 元线性方程组、线性方程组的矩阵表示、系数矩阵、增广矩阵、一般解的概念.
2. 理解并熟练掌握线性方程组的有解判定定理;熟练掌握用消元法求线性方程组的一般解.
∙ 线性方程组AX = b 的解的情况归纳如下:
AX = b 有唯一解的充分必要条件是秩(A ) = 秩(A ) = n ;
AX = b 有无穷多解的充分必要条件是秩(A ) = 秩(A ) < n ;
AX = b 无解的充分必要条件是秩(A ) ≠ 秩(A ).
∙ 相应的齐次线性方程组AX = 0的解的情况为:
AX = 0只有零解的充分必要条件是 秩(A ) = n ;
AX = 0有非零解的充分必要条件是 秩(A ) < n .
例1 线性方程组⎩⎨
⎧=-=+0223221x x x x 的系数矩阵是( ) .
A .2×3矩阵
B .3×2矩阵
C .3阶矩阵
D .2阶矩阵 解 此线性方程组有两个方程,有三个未知量,故它的系数矩阵是2×3矩阵. 正确的选项是A .
例2 线性方程组AX = B 有唯一解,那么AX = 0 ( ) .
A .可能有解
B .有无穷多解
C .无解
D .有唯一解 解 线性方程组AX = B 有唯一解,说明秩,)(n A =故AX = 0只有唯一解(零解).
正确的选项是D .
例3 若线性方程组的增广矩阵为⎪⎪⎭⎫ ⎝
⎛=41221λA ,则当λ=( )时线性方程组有无穷多解.
A .1
B .4
C .2
D .12
解 将增广矩阵化为阶梯形矩阵, ⎪⎪⎭⎫ ⎝⎛=41221λA ⎪⎪⎭
⎫ ⎝⎛λ-λ→021021
此线性方程组未知量的个数是2,若它有无穷多解,则其增广矩阵的秩应小于2,即021=λ-,从而λ=12
. 正确的选项是D .
例4 若非齐次线性方程组A m ×n X = B 有唯一解,那么有 ( ).
A .秩(A ,
B ) = n B .秩(A ) = r
C . 秩(A ) = 秩(A ,B )
D .秩(A ) = 秩(A ,B ) = n 解 根据非齐次线性方程组解的判断定理可知选项D 是正确.
例5 求解线性方程组
⎪⎩⎪⎨⎧=-+--=+-+-=++-1
2321220
23432143214321x x x x x x x x x x x x
解 将增广矩阵化成阶梯形矩阵,即 ⎥⎥



⎢⎢⎢⎣⎡
--→
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢
⎢⎣⎡----→
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=00100130103800100200131100123113
11013
11001
2
31123211212101231A 因为 ,秩(⎺A ) = 秩(A ) = 3,
所以,方程组有解.
一般解为
⎪⎩⎪⎨⎧=+=+=0
31833424
1x x x x x (x 4是自由未知量)
例6 设线性方程组
21
2132123123123x x x x x x x x x c
-+
=--+=--+=⎧⎨⎪⎩⎪
试问c 为何值时,方程组有解?若方程组有解时,求一般解.
解 因为
⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-------→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=13501350112123111211112c c A ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡---→c 00013501121 可见,当c = 0时,方程组有解.且
⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣
⎡-→000
0515
3
10535
1
01A 所以,原方程组的一般解为
⎪⎪⎩⎪⎪⎨⎧+=-=3
23
153
51
51
53x x x x (x 3是自由未知量)。

相关文档
最新文档