高中物理带电粒子在匀强磁场中的运动
第一章 3 带电粒子在匀强磁场中的运动
3 带电粒子在匀强磁场中的运动[学习目标] 1.理解带电粒子初速度方向和磁场方向垂直时,带电粒子在匀强磁场中做匀速圆周运动.2.会根据洛伦兹力提供向心力推导半径公式和周期公式.3.会分析带电粒子在匀强磁场中运动的基本问题.一、带电粒子在匀强磁场中的运动1.若v ∥B ,带电粒子以速度v 做匀速直线运动,其所受洛伦兹力F =0.所以粒子做匀速直线运动.2.若v ⊥B ,此时初速度方向、洛伦兹力的方向均与磁场方向垂直,粒子在垂直于磁场方向的平面内运动.(1)洛伦兹力与粒子的运动方向垂直,只改变粒子速度的方向,不改变粒子速度的大小. (2)带电粒子在垂直于磁场的平面内做匀速圆周运动,洛伦兹力提供向心力. 二、带电粒子在磁场中做圆周运动的半径和周期 1.半径一个电荷量为q 的粒子,在磁感应强度为B 的匀强磁场中以速度v 运动,那么带电粒子所受的洛伦兹力为F =q v B ,由洛伦兹力提供向心力得q v B =m v 2r ,由此可解得圆周运动的半径r=m vqB.从这个结果可以看出,粒子在匀强磁场中做匀速圆周运动的半径与它的质量、速度成正比,与电荷量、磁感应强度成反比. 2.周期由r =m v qB 和T =2πr v ,可得T =2πm qB .带电粒子在匀强磁场中做匀速圆周运动的周期与轨道半径和运动速度无关.1.判断下列说法的正误.(1)运动电荷进入磁场后(无其他场)可能做匀速圆周运动,不可能做类平抛运动.( √ ) (2)带电粒子在匀强磁场中做匀速圆周运动时,轨道半径跟粒子的速率成正比.( √ ) (3)带电粒子在匀强磁场中做匀速圆周运动的周期与轨道半径成正比.( × ) (4)带电粒子在匀强磁场中做圆周运动的周期随速度的增大而减小.( × )2.两个粒子带电荷量相等,在同一匀强磁场中只受到磁场力作用而做匀速圆周运动,则( ) A .若速率相等,则半径必相等 B .若质量相等,则周期必相等 C .若动能相等,则半径必相等 D .若动量相等,则周期必相等 答案 B一、带电粒子在匀强磁场中运动的基本问题 导学探究如图所示,可用洛伦兹力演示仪观察运动电子在匀强磁场中的偏转.(1)不加磁场时,电子束的运动轨迹如何? (2)加上磁场后,电子束的运动轨迹如何?(3)如果保持出射电子的速度不变,增大磁感应强度,轨迹圆半径如何变化? (4)如果保持磁感应强度不变,增大出射电子的速度,轨迹圆半径如何变化? 答案 (1)一条直线 (2)圆 (3)变小 (4)变大 知识深化1.分析带电粒子在匀强磁场中的匀速圆周运动,要紧抓洛伦兹力提供向心力,即q v B =m v 2r .2.同一粒子在同一匀强磁场中做匀速圆周运动,由r =m v qB 知,r 与v 成正比;由T =2πmqB知,T 与速度无关,与半径无关.例1 质子p(11H)和α粒子(42He)以相同的速率在同一匀强磁场中做匀速圆周运动,轨道半径分别为R p 和R α,周期分别为T p 和T α,则下列选项中正确的是( ) A .R p ∶R α=1∶2,T p ∶T α=1∶2 B .R p ∶R α=1∶1,T p ∶T α=1∶1 C .R p ∶R α=1∶1,T p ∶T α=1∶2 D .R p ∶R α=1∶2,T p ∶T α=1∶1 答案 A解析 质子p(11H)和α粒子(42He)的带电荷量之比为q p ∶q α=1∶2,质量之比m p ∶m α=1∶4.由带电粒子在匀强磁场中做匀速圆周运动的规律可知,轨道半径R =m v qB ,周期T =2πm qB ,因为两粒子速率相同,代入q 、m ,可得R p ∶R α=1∶2,T p ∶T α=1∶2,故选项A 正确,B 、C 、D 错误.针对训练1 薄铝板将同一匀强磁场分成 Ⅰ、Ⅱ 两个区域,高速带电粒子可穿过铝板一次,在两个区域内运动的轨迹如图所示,半径R 1>R 2.假定穿过铝板前后粒子带电荷量保持不变,则该粒子( )A .带正电B .在Ⅰ、Ⅱ区域的运动速度大小相同C .在Ⅰ、Ⅱ区域的运动时间相同D .从Ⅱ区域穿过铝板运动到Ⅰ区域 答案 C解析 粒子穿过铝板受到铝板的阻力,速度将减小.由r =m vBq 可得粒子在磁场中做匀速圆周运动的轨道半径将减小,故可得粒子由Ⅰ区域运动到Ⅱ区域,结合左手定则可知粒子带负电,选项A 、B 、D 错误;由T =2πmBq可知粒子运动的周期不变,粒子在Ⅰ区域和Ⅱ区域中运动的时间均为t =12T =πmBq ,选项C 正确.二、带电粒子在匀强磁场中的圆周运动 1.圆心位置确定的两种方法 (1)圆心一定在垂直于速度的直线上已知入射方向和出射方向时,可以过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图甲所示,P 为入射点,M 为出射点). (2)圆心一定在弦的垂直平分线上已知入射方向和出射点的位置时,可以过入射点作入射方向的垂线,连接入射点和出射点,作其垂直平分线,这两条垂线的交点就是圆弧轨道的圆心(如图乙所示,P 为入射点,M 为出射点).2.半径的确定半径的计算一般利用几何知识解直角三角形.做题时一定要作好辅助线,由圆的半径和其他几何边构成直角三角形.由直角三角形的边角关系或勾股定理求解.3.粒子在匀强磁场中运动时间的确定(1)粒子在匀强磁场中运动一周的时间为T ,当粒子运动轨迹的圆弧所对应的圆心角为α时,其运动时间t =α360°T (或t =α2πT ).确定圆心角时,利用好几个角的关系,即圆心角=偏向角=2倍弦切角. (2)当v 一定时,粒子在匀强磁场中运动的时间t =lv ,l 为带电粒子通过的弧长.例2 如图所示,a 和b 所带电荷量相同,以相同动能从A 点射入磁场,在匀强磁场中做圆周运动的半径r a =2r b ,则可知(重力不计)( )A .两粒子都带正电,质量比m am b =4B .两粒子都带负电,质量比m am b =4C .两粒子都带正电,质量比m a m b =14D .两粒子都带负电,质量比m a m b =14答案 B解析 由于q a =q b ,E k a =E k b ,由动能E k =12m v 2和粒子偏转半径r =m v qB ,可得m =r 2q 2B 22E k ,可见m 与半径r 的二次方成正比,故m a ∶m b =4∶1,再根据左手定则知粒子应带负电,故选B.例3 如图所示,一带电荷量为2.0×10-9 C 、质量为1.8×10-16kg 的粒子,从直线上一点O沿与PO 方向成30°角的方向进入磁感应强度为B 的匀强磁场中,经过1.5×10-6 s 后到达直线上的P 点,求:(1)粒子做圆周运动的周期; (2)磁感应强度B 的大小;(3)若O 、P 之间的距离为0.1 m ,则粒子的运动速度的大小. 答案 (1)1.8×10-6 s (2)0.314 T (3)3.49×105 m/s解析 (1)作出粒子的运动轨迹,如图所示,由图可知粒子由O 到P 的大圆弧所对的圆心角为300°,则t T =300°360°=56,周期T =65t =65×1.5×10-6 s =1.8×10-6 s (2)由q v B =m v 2r ,T =2πr v ,得T =2πm qB ,知B =2πm qT =2×3.14×1.8×10-162.0×10-9×1.8×10-6T =0.314 T.(3)由几何知识可知,半径r =OP =0.1 m 则q v B =m v 2r得,粒子的运动速度大小为v =Bqr m =0.314×2.0×10-9×0.11.8×10-16 m/s ≈3.49×105 m/s. 针对训练2 (多选)(2020·天津卷)如图所示,在Oxy 平面的第一象限内存在方向垂直纸面向里,磁感应强度大小为B 的匀强磁场.一带电粒子从y 轴上的M 点射入磁场,速度方向与y 轴正方向的夹角θ=45°.粒子经过磁场偏转后在N 点(图中未画出)垂直穿过x 轴.已知OM =a ,粒子电荷量为q ,质量为m ,重力不计.则( )A .粒子带负电荷B .粒子速度大小为qBa mC .粒子在磁场中运动的轨道半径为aD .N 与O 点相距(2+1)a 答案 AD解析 由题意可知,粒子在磁场中做顺时针圆周运动,根据左手定则可知粒子带负电荷,故A 正确;粒子的运动轨迹如图所示,O ′为粒子做匀速圆周运动的圆心,其轨道半径R =2a ,故C 错误;由洛伦兹力提供向心力可得q v B =m v 2R ,则v =2qBa m ,故B 错误;由图可知,ON =a +2a =(2+1)a ,故D 正确.考点一 周期公式与半径公式的基本应用1.(多选)两个粒子A 和B 带有等量的同种电荷,粒子A 和B 以垂直于磁场的方向射入同一匀强磁场,不计重力,则下列说法正确的是( ) A .如果两粒子的速度v A =v B ,则两粒子的半径R A =R B B .如果两粒子的动能E k A =E k B ,则两粒子的周期T A =T B C .如果两粒子的质量m A =m B ,则两粒子的周期T A =T B D .如果两粒子的动量大小相同,则两粒子的半径R A =R B 答案 CD解析 因为粒子在匀强磁场中做匀速圆周运动的半径r =m v qB ,周期T =2πmqB ,又粒子电荷量相等且在同一匀强磁场中,所以q 、B 相等,r 与m 、v 有关,T 只与m 有关,所以A 、B 错误,C 、D 正确.2.在匀强磁场中,一个带电粒子做匀速圆周运动,如果又顺利垂直进入另一磁感应强度是原来磁感应强度一半的匀强磁场,则( ) A .粒子的速率加倍,周期减半 B .粒子的速率不变,轨道半径减半 C .粒子的速率不变,周期变为原来的2倍D .粒子的速率减半,轨道半径变为原来的2倍 答案 C解析 因洛伦兹力对粒子不做功,故粒子的速率不变;当磁感应强度减半后,由r =m vBq 可知,轨道半径变为原来的2倍;由T =2πmBq 可知,粒子的周期变为原来的2倍,故C 正确,A 、B 、D 错误.3.一个带电粒子沿垂直于磁场的方向射入一匀强磁场.粒子的一段径迹如图所示.径迹上的每一小段都可近似看成圆弧.由于带电粒子能使沿途的空气电离,粒子的能量逐渐减小(电荷量不变).从图中情况可以确定( )A .粒子从a 到b ,带正电B .粒子从a 到b ,带负电C .粒子从b 到a ,带正电D .粒子从b 到a ,带负电 答案 C解析 由于带电粒子使沿途的空气电离,粒子的能量逐渐减小,可知速度逐渐减小;根据粒子在匀强磁场中做匀速圆周运动的半径公式r =m vqB 可知,粒子的运动半径逐渐减小,所以粒子的运动方向是从b 到a ;再根据左手定则可知粒子带正电,选项C 正确,A 、B 、D 错误. 4.质量和带电荷量都相等的带电粒子M 和N ,以不同的速率经小孔S 垂直进入匀强磁场并最终打在金属板上,运动的半圆轨迹如图中虚线所示,不计重力,下列表述正确的是( )A .M 带负电,N 带正电B .M 的速率小于N 的速率C .洛伦兹力对M 、N 做正功D .M 的运动时间大于N 的运动时间 答案 A解析 根据左手定则可知N 带正电,M 带负电,A 正确;因r =m vBq,而M 的轨迹半径大于N的轨迹半径,所以M 的速率大于N 的速率,B 错误;洛伦兹力不做功,C 错误;M 和N 的运动时间都为t =πmBq,D 错误.考点二 带电粒子做匀速圆周运动的分析5.如图,ABCD 是一个正方形的匀强磁场区域,两相同的粒子甲、乙分别以不同的速率从A 、D 两点沿图示方向射入磁场,均从C 点射出,则它们的速率之比v 甲∶v 乙和它们通过该磁场所用时间之比t 甲∶t 乙分别为( )A .1∶1,2∶1B .1∶2,2∶1C .2∶1,1∶2D .1∶2,1∶1答案 C解析 根据q v B =m v 2r ,得v =qBrm ,根据题图可知,甲、乙两粒子的轨迹半径之比为2∶1,又因为两粒子相同,故v 甲∶v 乙=r 甲∶r 乙=2∶1,粒子在磁场中的运动周期T =2πmqB ,两粒子相同,可知甲、乙两粒子的周期之比为1∶1,根据轨迹图可知,甲、乙两粒子转过的圆心角之比为1∶2,故两粒子在磁场中经历的时间之比t 甲∶t 乙=1∶2,选C.6.如图所示,MN 为铝质薄平板,铝板上方和下方分别有垂直于纸面的匀强磁场(未画出),一带电粒子从紧贴铝板上表面的P 点垂直于铝板向上射出,从Q 点穿越铝板后到达PQ 的中点O .已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变,不计重力.铝板上方和下方的磁感应强度大小之比为( )A .2∶1 B.2∶1 C .1∶1 D.2∶2 答案 D解析 根据几何关系可知,带电粒子在铝板上方做匀速圆周运动的轨迹半径r 1是其在铝板下方做匀速圆周运动的轨迹半径r 2的2倍,设粒子在P 点的速度大小为v 1,动能为E k ,根据牛顿第二定律可得q v 1B 1=m v 12r 1,则B 1=m v 1qr 1=2mE kqr 1;同理,B 2=m v 2qr 2=2m ·12E kqr 2=mE kqr 2,则B 1B 2=2r 2r 1=22,D 正确.7.(多选)如图所示,分界线MN 上、下两侧有垂直纸面的匀强磁场,磁感应强度分别为B 1和B 2,一质量为m 、电荷量为q 的带电粒子(不计重力)从O 点出发以一定的初速度v 0沿纸面垂直MN 向上射出,经时间t 又回到出发点O ,形成了图示心形轨迹,则( )A .粒子一定带正电荷B .MN 上、下两侧的磁场方向相同C .MN 上、下两侧的磁感应强度的大小之比B 1∶B 2=1∶2D .时间t =2πm qB 2答案 BD解析 题中未给出磁场的方向和粒子绕行的方向,所以不能判定粒子所带电荷的正负,选项A 错误;粒子越过磁场的分界线MN 时,洛伦兹力的方向没有变,根据左手定则可知MN 上、下两侧的磁场方向相同,选项B 正确;设MN 上方的轨迹半径是r 1,下方的轨迹半径是r 2,根据几何关系可知r 1∶r 2=1∶2;洛伦兹力充当粒子做圆周运动的向心力,由q v 0B =m v 02r ,解得B =m v 0qr ,所以B 1∶B 2=r 2∶r 1=2∶1,选项C 错误;由题图知,时间t =T 1+T 22=2πmqB 1+πm qB 2,由B 1∶B 2=2∶1得t =2πm qB 2,选项D 正确. 8.如图所示,两个速度大小不同的同种带电粒子1、2沿水平方向从同一点垂直射入匀强磁场中,磁场方向垂直纸面向里,当它们从磁场下边界飞出时相对入射方向的偏转角分别为90°、60°,则粒子1、2在磁场中运动的( )A .轨迹半径之比为2∶1B .速度之比为1∶2C .时间之比为2∶3D .周期之比为1∶2答案 B解析 带电粒子在匀强磁场中运动时,洛伦兹力提供向心力,由牛顿第二定律有q v B =m v 2r,可得r =m v qB ,又T =2πr v ,联立可得T =2πmqB ,故两粒子运动的周期相同,D 错误;速度的偏转角等于轨迹所对的圆心角,故粒子1的运动时间t 1=90°360°T =14T ,粒子2的运动时间t 2=60°360°T=16T ,则时间之比为3∶2,C 错误;粒子1和粒子2运动轨迹的圆心O 1和O 2如图所示,设粒子1的轨迹半径R 1=d ,对于粒子2,由几何关系可得R 2sin 30°+d =R 2,解得R 2=2d ,故轨迹半径之比为1∶2,A 错误;由r =m vqB可知,速度之比为1∶2,B 正确.9.如图所示,在x 轴上方存在垂直于纸面向里的匀强磁场,磁场的磁感应强度为B ,在xOy 平面内,从原点O 处与x 轴正方向成θ角(0<θ<π),以速率v 发射一个带正电的粒子(重力不计),则下列说法正确的是( )A .若v 一定,θ越大,则粒子离开磁场的位置距O 点越远B .若v 一定,θ越大,则粒子在磁场中运动的时间越短C .若θ一定,v 越大,则粒子在磁场中运动的角速度越大D .若θ一定,v 越大,则粒子在磁场中运动的时间越短 答案 B解析 画出粒子在磁场中运动的轨迹如图所示,由几何关系得,轨迹对应的圆心角α=2π-2θ,粒子在磁场中运动的时间t =α2πT =2π-2θ2π·2πm qB =(2π-2θ)m qB ,可得,若v 一定,θ越大,粒子在磁场中运动的时间t 越短,若θ一定,则粒子在磁场中的运动时间一定,故B 正确,D 错误;设粒子的轨迹半径为r ,则r =m v qB ,由图有,AO =2r sin θ=2m v sin θqB ,可得,若θ是锐角,θ越大,AO 越大,若θ是钝角,θ越大,AO 越小,故A 错误;粒子在磁场中运动的角速度ω=2πT ,又T =2πm qB ,则得ω=qBm,与速度v 无关,故C 错误.10.(2019·全国卷Ⅲ)如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B 和B 、方向均垂直于纸面向外的匀强磁场.一质量为m 、电荷量为q (q >0)的粒子垂直于x 轴射入第二象限,随后垂直于y 轴进入第一象限,最后经过x 轴离开第一象限.粒子在磁场中运动的时间为( )A.5πm 6qBB.7πm 6qBC.11πm 6qBD.13πm 6qB答案 B解析 设带电粒子进入第二象限的速度为v ,在第二象限和第一象限中运动的轨迹如图所示,对应的轨迹半径分别为R 1和R 2,由洛伦兹力提供向心力,有q v B =m v 2R、T =2πR v ,可得R 1=m v qB 、R 2=2m v qB 、T 1=2πm qB 、T 2=4πm qB ,带电粒子在第二象限中运动的时间为t 1=T 14,在第一象限中运动的时间为t 2=θ2πT 2,又由几何关系有cos θ=R 2-R 1R 2=12,可得t 2=T 26,则粒子在磁场中运动的时间为t =t 1+t 2,联立以上各式解得t =7πm 6qB,选项B 正确,A 、C 、D 错误.11.一带电粒子的质量m =1.7×10-27 kg ,电荷量q =+1.6×10-19 C ,该粒子以大小为v =3.2×106 m/s 的速度沿垂直于磁场同时又垂直于磁场边界的方向进入匀强磁场中,磁场的磁感应强度为B =0.17 T ,磁场的宽度L =10 cm ,如图所示.(粒子重力不计,g 取10 m/s 2,结果均保留两位有效数字)(1)带电粒子离开磁场时的速度多大?(2)带电粒子在磁场中运动多长时间?(3)带电粒子在离开磁场时偏离入射方向的距离d 为多大?答案 (1)3.2×106 m/s (2)3.3×10-8 s (3)2.7×10-2 m解析 (1)由于洛伦兹力不做功,所以带电粒子离开磁场时的速度大小仍为3.2×106 m/s.(2)由q v B =m v 2r 得, 轨迹半径r =m v qB =1.7×10-27×3.2×1061.6×10-19×0.17m =0.2 m. 由题图可知偏转角θ满足:sin θ=L r =0.1 m 0.2 m=0.5, 所以θ=30°=π6, 由q v B =m v 2r 及v =2πr T可得 带电粒子在磁场中运动的周期T =2πm qB, 所以带电粒子在磁场中运动的时间t =θ2π·T =112T , 所以t =πm 6qB = 3.14×1.7×10-276×1.6×10-19×0.17s ≈3.3×10-8 s. (3)带电粒子在离开磁场时偏离入射方向的距离d =r (1-cos θ)=0.2×(1-32) m ≈2.7×10-2 m.12.(2020·江苏卷改编)空间存在两个垂直于Oxy 平面的匀强磁场,y 轴为两磁场的边界,磁感应强度分别为2B 0、3B 0.质量为m 、带电荷量为q 的粒子从原点O 沿x 轴正向射入磁场,速度为v .粒子第1次、第2次经过y 轴的位置分别为P 、Q ,其轨迹如图所示.不考虑粒子重力影响.求:(1)Q 到O 的距离d ;(2)粒子两次经过P 点的时间间隔Δt .答案 (1)m v 3qB 0 (2)2πm qB 0解析 (1)粒子先后在两磁场中做匀速圆周运动,设半径分别为r 1、r 2由q v B =m v 2r 可知r =m v qB故r 1=m v 2qB 0,r 2=m v 3qB 0且d =2r 1-2r 2,解得d =m v 3qB 0(2)粒子先后在两磁场中做匀速圆周运动,设运动时间分别为t 1、t 2由T =2πr v =2πm qB 得t 1=πm 2qB 0,t 2=πm 3qB 0, 且Δt =2t 1+3t 2解得Δt =2πm qB 0.。
带电粒子在匀强磁场中的运动
带电粒子在匀强磁场中的运动带电粒子在匀强磁场中的运动在带电粒子只受洛伦兹力作用、重力可以忽略的情况下,其在匀强磁场中有两种典型的运动:(1)若带电粒子的速度方向与磁场方向平行时,不受洛伦兹力,做匀速直线运动.(2)若带电粒子的速度方向与磁场方向垂直,带电粒子在垂直于磁感线的平面内以入射速度v做匀速圆周运动,其运动所需的向心力即洛伦兹力.可见T与v及r无关,只与B及粒子的比荷有关.荷质比q/m相同的粒子在同样的匀强磁场中,T,f和ω相同.(3)圆心的确定.因为洛伦兹力f指向圆心,根据f⊥v,画出粒子运动轨迹上任意两点(一般是射入和出磁场的两点)的f的方向,其延长线的交点即为圆心.(4)半径的确定和计算.圆心找到以后,自然就有了半径(一般是利用粒子入、出磁场时的半径).半径的计算一般是利用几何知识,常用解三角形的方法及圆心角等于圆弧上弦切角的两倍等知识.(5)在磁场中运动时间的确定.利用圆心角与弦切角的关系,或者是四边形内角和等于360°计算出圆心角θ的大小,由公式t=θ/360°×T可求出运动时间.有时也用弧长与线速度的比.如图所示,注意到:①速度的偏向角ψ等于弧AB所对的圆心角θ.②偏向角ψ与弦切角α的关系为:ψ<180°,ψ=2α;ψ>180°,ψ=360°-2α;(6)注意圆周运动中有关对称规律如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等;在圆形磁场区域内,沿径向射入的粒子,必沿径向射出.确定粒子在磁场中运动圆心的方法①已知粒子运动轨迹上两点的速度方向,作这两速度方向的垂线,交点即为圆心。
②已知粒子入射点、入射方向及运动轨迹上的一条弦,作速度方向的垂线及弦的垂直平分线,交点即为圆心。
③已知粒子运动轨迹上的两条弦,作出两弦垂直平分线,交点即为圆心。
④已知粒子在磁场中的入射点、入射方向和出射方向(不一定在磁场中),延长(或反向延长)两速度方向所在直线使之成一夹角,作出这一夹角的角平分线,角平分线上到两直线距离等于半径的点即为圆心。
高中物理第一章 第3节带电粒子在匀强磁场中的运动
第3节 带电粒子在匀强磁场中的运动核心素养导学一、带电粒子在匀强磁场中的运动1.带电粒子沿着与磁场垂直的方向射入匀强磁场,由于带电粒子初速度的方向和洛伦兹力的方向都在与磁场方向 的平面内。
所以,粒子只能在该平面内运动。
2.洛伦兹力总是与粒子运动方向垂直,只改变粒子速度的方向,不改变粒子速度的大小。
3.粒子速度大小不变,粒子在匀强磁场中所受洛伦兹力大小也不改变,洛伦兹力提供粒子做圆周运动的向心力,粒子做 运动。
带电粒子在匀强磁场中做匀速圆周运动,带电粒子的重力忽略不计,洛伦兹力提供向心力。
二、带电粒子在磁场中做圆周运动的半径和周期1.半径公式由洛伦兹力提供向心力q v B =m v 2r ,可得圆周运动的半径r = 。
2.周期公式匀速圆周运动的周期T =2πr v ,将r =m v qB 代入,可得T = 。
1.电子以某一速度进入洛伦兹力演示仪中。
(1)励磁线圈通电前后电子的运动情况相同吗?提示:①通电前,电子做匀速直线运动。
②通电后,电子做匀速圆周运动。
(2)电子在洛伦兹力演示仪中做匀速圆周运动时,什么力提供向心力?提示:洛伦兹力提供向心力。
2.如图,带电粒子在匀强磁场中做匀速圆周运动。
判断下列说法的正误。
(1)运动电荷在匀强磁场中做匀速圆周运动的周期与速度有关。
( )(2)带电粒子做匀速圆周运动的半径与带电粒子进入匀强磁场时速度的大小有关。
( )(3)带电粒子若垂直进入非匀强磁场后做半径不断变化的运动。
( )新知学习(一)⎪⎪⎪带电粒子做圆周运动的半径和周期[任务驱动]美丽的极光是由来自太阳的高能带电粒子流进入地球高空大气层出现的现象。
科学家发现并证实,向地球两极做螺旋运动的这些高能粒子的旋转半径是不断减小的,这主要与哪些因素有关?提示:一方面磁场在不断增强,另一方面由于大气阻力粒子速度不断减小,根据r =m v qB,半径r 是不断减小的。
[重点释解]1.由公式r =m v qB 可知,带电粒子在匀强磁场中做圆周运动的半径r 与比荷q m 成反比,与速度v 成正比,与磁感应强度B 成反比。
带电粒子在匀强磁场中的运动
即 eUd2=evB1,代入 v 值得 U2=B1d
2eU1 m
(3)在 c 中,e 受洛伦兹力作用而做圆周运动,回
转半径 R=Bm2ve,代入 v 值得 R=B12
2U1m e
答案:(1)
2eU1 m
(2)B1d
2eU1 m
1 (3)B2
2U1m e
点评:解答此类问题要做到: (1)对带电粒子进行正确的受力分析和运动过程 分析. (2)选取合适的规律,建立方程求解.
[错误解法]由 Bqv0=mvR02,得 B=
mqvR0. 则
B
=
3×10-20×105 10-13× 3×10-1
T≈0.17T.
[错因点评]对公式中有关物理量不甚明了,在套
用公式 Bqv0=mRv20时,误将 R 的值代为磁场区域半径 之值了.
[正确解答]作进、出磁场点处 速度的垂线 PO、QO 得交点 O,O 点即粒子做圆周运动的圆心.据此
A.增大匀强电场间的加速电压 B.增大磁场的磁感应强度 C.增加周期性变化的电场的频率 D.增大 D 形金属盒的半径 答案:BD
解析:粒子最后射出时的旋转半径为 D 形盒的最 大半径 R,R=mqBv,Ek=12mv2=q22Bm2R2.可见,要增大 粒子的动能,应增大磁感应强度 B 和增大 D 形盒的 半径 R,故正确答案为 B、D.
︵ 作出运动轨迹如图中的PQ.此圆半 径为 PO,记为 r.
易知∠POQ=60°,则 r=PQ= 3R=0.3m. 由 Bqv0=mvr20得 B=mqvr0.则 B=3×101-01-3 ×20×0.1305T =0.1T.
[正确答案]0.1T
[感悟心语]像这种不太复杂的带电粒子在匀强磁 场中的圆周运动问题,解题要点在于作出带电粒子实 际运动的轨迹.方法有两种:
1.3带电粒子在匀强磁场中的运动
依据所给数据分别计算出带电粒子所受的重力和洛伦兹力,就可求出
所受重力与洛伦兹力之比。带电粒子在匀强磁场中受洛伦兹力并做匀速圆
周运动,由此可以求出粒子运动的轨道半径及周期。
完全解答:
重力与洛伦兹力之比
(1)粒子所受的重力
G= mg = 1.67×10-27kg×9.8 N= 1.64×10-26N
匀强磁场中。求电子做匀速圆周运动的轨道半径和周期。
解:洛伦兹力提供向心力,首先列:
2
v
qvB m
r
2πr
T
v
mv
9.110 31 1.6 10 6
2
.
55
10
m
r
19
4
1.6 10 2 10
qB
2m
T
qB
2 9.110 31
7
5
.
6875
洛伦兹力提供向心力
v2
qvB m
r
圆周运动的半径
mv
r
qB
粒子在匀强磁场中做匀速圆周运动的半径与它的质量、速度成
正比,与电荷量、磁感应强度成反比。
观察带电粒子的运动径迹
洛伦兹力演示仪示意图
洛伦兹力演示仪
励磁线圈
玻璃泡
电子枪
加速极电压
励磁电流
选择档
选择档
电子枪可以发射电子束
玻璃泡内充有稀薄的气体,在电
2 m
T
eB
电子在矩形磁场中沿圆弧从
a点运动到c点的时间
t
T
带电粒子在匀强磁场中运动轨迹
带电粒子在匀强磁场中运动轨迹带电粒子在匀强磁场中运动轨迹一、带电粒子在匀强磁场中运动轨迹带电粒子只受洛伦兹力作用的条件下,在匀强磁场中的运动有:1.粒子初速度方向平行磁场方向(V ∥B ):运动轨迹:匀速直线运动2.粒子初速度方向垂直磁场方向(V ⊥B ):(1)动力学角度:洛伦兹力提供了带电粒子做匀速圆周运动所需的向心力(2)运动学角度:加速度方向始终和运动方向垂直,而且加速度大小不变。
运动轨迹:匀速圆周运动二、轨道半径和运动周期1.轨道半径r :qBm v r = 在匀强磁场中做匀速圆周运动的带电粒子,轨道半径跟运动速率成正比。
2.运动周期T :qBm T π2= (1)周期跟轨道半径和运动速率均无关(2)粒子运动不满一个圆周的运动时间:qB m t θ=,θ为带电粒子运动所通过的圆弧所对的圆心角三、有界磁场专题:(三个确定)1、圆心的确定已知进出磁场速度方向已知进出磁场位置和一个速度方向2. 半径的确定:半径一般都在确定圆心的基础上用平面几何知识求解,常常要解三角形带电粒子在匀强磁场中运动轨迹3、时间的确定(由圆心角确定时间)粒子速度的偏转角(?)等于回旋角(α),并等于AB 弦与切线的夹角(弦切角θ)的2倍即.θα?2==粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间可由下式表示:T t πα2= (1)直界磁场区: 如图,虚线上方存在无穷大的磁场B ,一带正电的粒子质量m 、电量q 、若它以速度v 沿与虚线成o o o o o o*****6030、、、、、角分别射入,请你作出上述几种情况下粒子的轨迹、并求其在磁场中运动的半径和时间。
粒子在直界磁场(足够大)的对称规律:从同一边界射入的粒子,从同一边界射出时,速度与边界的夹角相等。
(2)、圆界磁场带电粒子在匀强磁场中运动轨迹偏转角:rR =2tan θR :磁场半径r:圆周运动半径经历时间:qBmt θ= 圆运动的半径:qBm v r = 圆界磁场对称规律:在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。
带电粒子在匀强磁场中的运动
k k
e2 r2 e2 r2
>Bev >Bev
,则电子不能做匀速圆周运动
e
,则电子角速度
ω
可能有两个值
解见下页
解: 设F= ke2 /r2 f=Bev 受力情况如图示:
若F<f ,若磁感线指向纸外,则电子不能做匀速圆周运动
若F<f , 若磁感线指向纸内,磁场力和电场力之和作为 向心力, A对。
若F>f ,若磁感线指向纸外, F-f =mω1 r2 若F>f ,若磁感线指向纸内, F+f =mω2r2 所以,若F>f ,角速度可能有两个值,D对C错。
有各种不同的数值.若这些粒子与三角形框架碰撞时
均无能量损失,且每一次碰撞时速度方向垂直于被碰
的边.试求:
(1)带电粒子的速度v为多大时,能够打到E点?
(2)为使S点发出的粒子最终又
F
回到S点,且运动时间最短,v应
B
为多大?最短时间为多少?
(a)D
S
E
L
v 第3页 第4页
(3)若磁场是半径为 a ( 3 1 )L. 的圆柱形区域,
题目
20 、 如图所示,在区域足够大的空间中充满磁感应
强度大小为B的匀强磁场,其方向垂直于纸面向里.在纸
面内固定放置一绝缘材料制成的边长为L的等边三角
形框架DEF, ,DE中点S处有一粒子发射源,发射粒
子的方向皆在图中截面内且垂直于DE边向下,如图
(a)所示.发射粒子的电量为+q,质量为m,但速度v
若2F=f , 磁感线一定指向纸内,
f
F+f =mωr2 3f =mωr2
3Bev =mωr2 =mωv
3Be
带电粒子在匀强磁场中的运动
带电粒⼦在匀强磁场中的运动1.若v∥B,带电粒⼦不受洛伦兹⼒,在匀强磁场中做匀速直线运动.2.若v⊥B,带电粒⼦仅受洛伦兹⼒作⽤,在垂直于磁感线的平⾯内以⼊射速度v做匀速圆周运动.3.半径和周期公式:(v⊥B)【解题⽅法点拨】带电粒⼦在匀强磁场中的匀速圆周运动⼀、轨道圆的“三个确定”(1)如何确定“圆⼼”①由两点和两线确定圆⼼,画出带电粒⼦在匀强磁场中的运动轨迹.确定带电粒⼦运动轨迹上的两个特殊点(⼀般是射⼊和射出磁场时的两点),过这两点作带电粒⼦运动⽅向的垂线(这两垂线即为粒⼦在这两点所受洛伦兹⼒的⽅向),则两垂线的交点就是圆⼼,如图(a)所⽰.②若只已知过其中⼀个点的粒⼦运动⽅向,则除过已知运动⽅向的该点作垂线外,还要将这两点相连作弦,再作弦的中垂线,两垂线交点就是圆⼼,如图(b)所⽰.③若只已知⼀个点及运动⽅向,也知另外某时刻的速度⽅向,但不确定该速度⽅向所在的点,如图(c)所⽰,此时要将其中⼀速度的延长线与另⼀速度的反向延长线相交成⼀⾓(∠PAM),画出该⾓的⾓平分线,它与已知点的速度的垂线交于⼀点O,该点就是圆⼼.⼆、解题思路分析1.带电粒⼦在磁场中做匀速圆周运动的分析⽅法.2.带电粒⼦在有界匀强磁场中运动时的常见情形.3.带电粒⼦在有界磁场中的常⽤⼏何关系(1)四个点:分别是⼊射点、出射点、轨迹圆⼼和⼊射速度直线与出射速度直线的交点.(2)三个⾓:速度偏转⾓、圆⼼⾓、弦切⾓,其中偏转⾓等于圆⼼⾓,也等于弦切⾓的2倍.三、求解带电粒⼦在匀强磁场中运动的临界和极值问题的⽅法由于带电粒⼦往往是在有界磁场中运动,粒⼦在磁场中只运动⼀段圆弧就飞出磁场边界,其轨迹不是完整的圆,因此,此类问题往往要根据带电粒⼦运动的轨迹作相关图去寻找⼏何关系,分析临界条件,然后应⽤数学知识和相应物理规律分析求解.(1)两种思路①以定理、定律为依据,⾸先求出所研究问题的⼀般规律和⼀般解的形式,然后再分析、讨论临界条件下的特殊规律和特殊解;②直接分析、讨论临界状态,找出临界条件,从⽽通过临界条件求出临界值.(2)两种⽅法物理⽅法:①利⽤临界条件求极值;②利⽤问题的边界条件求极值;③利⽤⽮量图求极值.数学⽅法:①利⽤三⾓函数求极值;②利⽤⼆次⽅程的判别式求极值;③利⽤不等式的性质求极值;④利⽤图象法等.(3)从关键词中找突破⼝:许多临界问题,题⼲中常⽤“恰好”、“最⼤”、“⾄少”、“不相撞”、“不脱离”等词语对临界状态给以暗⽰.审题时,⼀定要抓住这些特定的词语挖掘其隐藏的规律,找出临界条件.。
带电粒子在匀强磁场中的运动
〔思考与讨论〕
◎带电教粒材子在资匀料强分磁场析中做匀速圆周运动的圆半径,与粒
子的速度、磁场的磁感应强度有什么关系? 点拨: 由演示实验知,粒子做圆周运动的半径与速度、
磁感应强度有关系,分析可知,因洛伦兹力提供向心力,即 qvB=mrv2,可得:r=mqBv.
可见,粒子圆周运动的半径与速度大小成正比,与磁感 应强度 B 成反比.
质谱仪可以求出该粒子的比荷(电荷量与质量之比)mq =B22Ur2.
(2)回旋加速器 ①工作原理 利用电场对带电粒子的加速作用和磁场对
运a.动磁电场的荷作的用 偏 转 作 用 来 获 得 高 能 粒 子 , 这 些带电过粒程子在以某回一旋速度加垂速直器磁场的方核向心进入部匀件强磁——场两后,个在D 洛伦形兹盒力作和用其下间做匀的速窄圆缝周运内动完,其成周.期与速率、半径均无
(1)M点与坐标原点O间的距离; (2)粒子从P点运动到M点所用的时间.
解析:(1)带电粒子在匀强电场中做类平抛 运 负OP方动=l向,=12上在at1做x2,正初O方Q速=向2度上3为l=做零v匀0t1的,速a匀=直加qmE线速运运动动,,在设y 加 用解得速 的v度时0=大间小为6qmt为E1l,a;进粒入子磁从场P时点速运度动方到向Q与点x所轴 正方向的夹角为θ,则
解析: 粒子在电场中加速时,只有静电力做功,由动
能定理得 qU=12mv2,故EEkk12=qq12UU=qq12=12,同时也能求得 v = 2mqU,因为粒子在磁场中运动的轨迹半径 r=mqBv=qmB
2mqU=B1
2mqU,所以有rr12=
m1 q1 = 1 ,粒子做圆周运 m2 2 q2
动的周期 T=2qπBm,故TT21=mm12//qq12=12.
带电粒子在匀强磁场中的运动(知识小结)
带电粒子在匀强磁场中的运动(知识小结)一.带电粒子在磁场中的运动(1)带电粒子在磁场中运动时,若速度方向与磁感线平行,则粒子不受磁场力,做匀速直线运动;即 ① 为静止状态。
② 则粒子做匀速直线运动。
(2)若速度方向与磁感线垂直,带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力起向心力作用。
(3)若速度方向与磁感线成任意角度,则带电粒子在与磁感线平行的方向上做匀速直线运动,在与磁感线垂直的方向上做匀速圆周运动,它们的合运动是螺线运动。
二、带电粒子在匀强磁场中的圆周运动1.运动分析:洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动.(4)运动时间: (Θ 用弧度作单位 )1.只有垂直于磁感应强度方向进入匀强磁场的带电粒子,才能在磁场中做匀速圆周运动.2.带电粒子做匀速圆周运动的半径与带电粒子进入磁场时速率的大小有关,而周期与速率、半径都无关.三、带电粒子在有界匀强磁场中的匀速圆周运动(往往有临界和极值问题)(一)边界举例:1、直线边界(进出磁场有对称性)规律:如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等。
速度与边界的夹角等于圆弧所对圆心角的一半,并且如果把两个速度移到共点时,关于直线轴对称。
2、平行边界(往往有临界和极值问题)(在平行有界磁场里运动,轨迹与边界相切时,粒子恰好不射出边界)3、矩形边界磁场区域为正方形,从a 点沿ab 方向垂直射入匀强磁场:若从c 点射出,则圆心在d 处若从d 点射出,则圆心在ad 连线中点处4.圆形边界(从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两圆相交问题。
)特殊情形:在圆形磁场内,沿径向射入时,必沿径向射出一般情形:磁场圆心O 和运动轨迹圆心O ′都在入射点和出射点连线AB 的中垂线上。
或者说两圆心连线OO ′与两个交点的连线AB 垂直。
(二)求解步骤:(1)定圆心、(2)连半径、(3)画轨迹、(4)作三角形.(5)据半径公式求半径,2.其特征方程为:F 洛=F 向. 3.三个基本公式: (1)向心力公式:qvB =m v 2R ; (2)半径公式:R =mv qB ; (3)周期和频率公式:T =2πm qB =1f ; 222m t qB m qB T θππθπθ==⨯=⨯v L =t再解三角形求其它量;或据三角形求半径,再据半径公式求其它量(6)求时间1、确定圆心的常用方法:(1)已知入射方向和出射方向(两点两方向)时,可以作通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图3-6-6甲所示,P 为入射点,M 为出射点,O 为轨道圆心.(2)已知入射方向和出射点的位置时(两点一方向),可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心,如图3-6-6乙所示,P 为入射点,M 为出射点,O 为轨道圆心.(3)两条弦的中垂线(三点):如图3-6-7所示,带电粒子在匀强磁场中分别经过O 、A 、B 三点时,其圆心O ′在OA 、OB 的中垂线的交点上.(4)已知入射点、入射方向和圆周的一条切线:如图3-6-8所示,过入射点A 做v 垂线AO , 延长v 线与切线CD 交于C 点,做∠ACD 的角平分线交AO 于O 点,O 点即为圆心,求解临界问题常用到此法.(5)已知入射点,入射速度方向和半径大小2.求半径的常用方法 :由于已知条件的不同,求半径有两种方法:一是:利用向心力公式求半径;二是:利用平面几何知识求半径。
匀强磁场中带电粒子的运动
匀强磁场中带电粒子的运动
带电粒子在匀强磁场中的运动是如下。
匀速直线运动:当v∥B时,带电粒子以速度v做匀速直线运动。
匀速圆周运动:当v⊥B时,带电粒子在垂直于磁感线的平面内以入射速度做匀速圆周运动。
带电粒子的运动问题
1、电场中的加速问题
带电粒子在电场中只受电场力作用的问题。
如果在匀强电场中问题可以根据牛顿运动定律结合运动学公式或动能定理进行处理。
但对于非匀强电场中的问题只能根据动能定理来解决了。
2、电场中的偏转问题
带电粒子以一定的速度和电场成一定角度进入电场,这样带电粒子的受力方向与速度方向不在同一直线上,粒子将做曲线运动。
常见的是带电粒子垂直电场方向射入电场,这类问题的分析方法和平抛运动问题的分析方法一样,把粒子的运动分解成沿受力方向的匀加速运动和沿初速度方向的匀速运动。
主要解决的问题是带电粒子的末速度、偏转距离、偏转角度。
3、磁场中的偏转问题
射入磁场的带电粒子,只要它的速度方向与磁场成一定的角度。
它就受到磁场对它的洛伦兹力作用。
如果垂直射入匀强磁场的带电粒子,它的初速度方向和所受洛伦兹力的方向都在跟磁场方向垂直的平面内,没有作用使粒子离开这个平面,所以粒子只能在这个平面运动。
4、复合场中的运动问题
所谓复合场中的运动,就是在两个或两个以上的场中运动的问题。
带电粒子在复合场中要受到两个或两个以上的力的作用,运动情况一般比较复杂,高中阶段很难解决。
但可设计出粒子匀速运动或匀速圆周运动的问题。
解题方法是分析出受力情况,根据粒子的运动特点来判断未知量。
高中物理选修三3.6带电粒子在匀强磁场中的运动
知识点一 带电粒子在匀强磁场中的运动:
1.运动轨迹: 带电粒子(不计重力)以一定的速度 v 进入磁感应强度为 B 的匀 强磁场时:
(1)当 v∥B 时,带电粒子将做_匀__速__直__线_运动. (2)当 v⊥B 时,带电粒子将做_匀__速__圆__周_运动.
2.圆周运动轨道半径和周期:
(1)由
提示:(1)带电粒子以某一速度垂直磁场方向进入匀强磁场后, 在洛伦兹力作用下做匀速圆周运动,其运动周期与速率、半径均无
关(T=2qπBm),带电粒子每次进入 D 形盒都运动相等的时间(半个周 期)后平行电场方向进入电场中加速.
(2)回旋加速器两个 D 形盒之间的窄缝区域存在周期性变化的 并垂直于两个 D 形盒正对截面的匀强电场,带电粒子经过该区域时 被加速.
(2)圆弧 PM 所对应圆心角 α 等于弦 PM 与切线的夹角(弦切角)θ 的 2 倍,即 α=2θ,如图所示.
拓展 (1)关于半径的计算,还有直接观察法(不借助数学方法而直接 观察得到半径)、三角函数法、勾股定理法、正弦定理法、余弦定 理法等,但经常用到的是利用三角函数和勾股定理求解.实际应用 中要根据题目中提供的有关条件,构建三角形后灵活选择合适的方 法求出半径,进而求得相关物理量. (2)直线边界:进出磁场具有对称性,如图所示.
(3)为了保证带电粒子每次经过盒缝时均被加速,使其能量不断
提高,交变电压的周期必须等于带电粒子在回旋加速器中做匀速圆
周运动的周期,即 T=2Bπqm.因此,交变电压的周期由带电粒子的质 量 m、带电量 q 和加速器中磁场的磁感应强度 B 决定.
(4)带电粒子在磁场中做圆周运动,洛伦兹力充当向心力,qvB =mvR2,Ek=12mv2,因此,带电粒子经过回旋加速器加速后,获得 的动能 Ek=q22Bm2R2.
带电粒子在匀强磁场中的运动(含各种情况)
回旋加速器
回旋加速器是一种利用磁场和电场控制带电粒子运动轨迹的装置,常用于高能物理 实验和核物理研究。
在回旋加速器中,带电粒子在磁场中做匀速圆周运动,通过改变电场强度使粒子不 断加速,最终获得高能粒子束。
回旋加速器在高能物理实验中用于研究基本粒子的性质和相互作用,对于深入理解 物质的基本结构和性质具有重要意义。
带电粒子在磁场中的偏转角度和偏转量
总结词
带电粒子在匀强磁场中的偏转角度和偏 转量取决于粒子的速度、质量和磁感应 强度。
VS
详细描述
带电粒子在匀强磁场中的偏转角度和偏转 量可以通过洛伦兹力公式和牛顿第二定律 计算得出。具体计算需要考虑粒子的速度 、质量和磁感应强度等因素。
04 带电粒子在匀强磁场中的 能量问题
1 2 3
匀速圆周运动
当带电粒子以一定的速度进入匀强磁场时,会受 到洛伦兹力的作用,使粒子做匀速圆周运动。
螺旋线运动
当带电粒子的速度方向与磁感应强度平行时,不 受洛伦兹力作用,粒子将沿磁感应强度方向做等 距螺旋线运动。
匀速直线运动
当带电粒子的速度方向与磁感应强度平行且大小 相等时,不受洛伦兹力作用,粒子将沿磁感应强 度方向做匀速直线运动。
详细描述
带电粒子在匀强磁场中做匀速圆周运动的周期T和频率f由公式T=2πm/qB和f=qB/2πm决定,其中m为粒 子的质量,q为粒子的电荷量,B为磁感应强度。这两个公式描述了粒子运动的周期和频率与各个物理量 之间的关系。
03 带电粒子在匀强磁场中的 偏转问题
垂直射入情况
总结词
当带电粒子以垂直方向射入匀强磁场 时,将做匀速圆周运动。
THANKS FOR WATCHING
感谢您的观看
线运动,从而实现带电粒子的加速。
带电粒子在匀强磁场中运动规律
2.半径的确定 用几何知识 ( 勾股定理、三角函数等 ),求出该圆的可能 半径(或圆心角).并注意以下两个重要的几何特点: ⑴粒子速度的偏向角(φ)等于回旋角 (α),并等于AB弦
与切线的夹角(弦切角θ)的2倍 (如图) ,
即.φ=α=2θ=ωt
⑵相对的弦切角(θ)相等, 与相邻的弦切角(θ′)互补, 即.θ+θ′=180° v A θ
②已知入射方向和出射点的位置时, 可以通过入射点作入射方向的垂线, 连接入射点和出射点,作其中垂线, 这两条垂线的交点就是圆弧轨迹的 圆心(ห้องสมุดไป่ตู้图所示,P为入射点,M为出 射点).
⑵带电粒子在不同边界磁场中的运动 ①直线边界(进出磁场具有对称性,如图)
②平行边界(存在临界条件,如图)
③圆形边界(沿径向射入必沿径 向射出,如图)
v ⑴向心力公式:F向 Bqv m r
⑵轨道半径公式:
2
mv r Bq
⑶周期公式:
1 Bq f T 2 m
2 m T Bq
2 Bq T m
特别提醒:T的大小与轨道半径r和运行速率v无关,只 与磁场的磁感应强度B和粒子的比荷q/m有关.
带电粒子在有界磁场中的运动 1.圆心的确定 ⑴两种情形 ①已知入射方向和出射方向时,可通 过入射点和出射点分别作垂直于入射 方向和出射方向的直线,两条直线的 交点就是圆弧轨迹的圆心 ( 如图所示, 图中P为入射点,M为出射点).
O′ v
A θ
(偏向角)
θ
B
v
O
带电粒子在匀强磁场中运动规律
带电粒子在匀强磁场中的运动规律 1、速度方向与磁场方向平行 若v∥B,带电粒子不受洛伦兹力,在匀强磁场中做匀 速直线运动. 2、速度方向与磁场方向垂直 若v⊥B,带电粒子仅受洛伦兹力作用,在垂直于磁感 线的平面内以入射速度v做匀速圆周运动. 3、带电粒子仅受洛伦兹力作用,在垂直于磁感线的 平面内做匀速圆周运动的基本公式:
带电粒子在匀强磁场中的运动
m 2Bed/v
电子穿过磁场的时间为:
30 m d t T 0 360 6eB 3v
0
O
练习1
电视机的显像管中,电子束的偏转是用磁偏转技术实现的。 电子束经过电压为U的加速电场后,进入一圆形匀强磁场区域,如图 所示。磁场方向垂直于圆面。磁场区中心为O,半径为r。当不加磁场 时,电子束将通过O点而打到屏幕的中心M点。为了让电子束射到屏幕 边缘P点,需要加一匀强磁场,使电子束偏转一已知角度θ,此时磁 场的磁感应强度B应为多少?(分别用e、m表示电子的电量和质量)
一、带电粒子在匀强磁场中的运动规律
1、带电粒子以一定的初速度进入匀强磁场, 带电粒子将做怎样的运动?(讨论)
(1)当v//B , f=0 ,带电粒子以速度v做匀速直线运动 (2)当v⊥B,带电粒子以入射速度v做匀速圆周运动
2、带电粒子在磁场中 v⊥B只受洛仑兹力, 粒子做匀
速圆周运动的规律。
洛伦兹力做向心力:qvB mv / r
p
电子束
O
M
+ -
U
练习1
电视机的显像管中,电子束的偏转是用磁偏转技术实现的。 电子束经过电压为U的加速电场后,进入一圆形匀强磁场区域,如图 所示。磁场方向垂直于圆面。磁场区中心为O,半径为r。当不加磁场 时,电子束将通过O点而打到屏幕的中心M点。为了让电子束射到屏幕 边缘P点,需要加一匀强磁场,使电子束偏转一已知角度θ,此时磁 场的磁感应强度B应为多少?(分别用e、m表示电子的电量和质量)
勤奋是成功的阶梯,成功是勤奋的结果,只要 我们勤奋学习,勤奋探索,勤奋实践,什么事情都 一定会成功!
B
v
⑵粒子进入有界磁场的特点
① 粒子进出单一直边界磁场,入射角等于出射角。 ② 粒子进出圆边界磁场沿径向入,沿径向出。
第6节 带电粒子在匀强磁场中的运动
规律:qU 1 mv2 0
2
R
mv Bq
1 B
2Um q
质谱仪最初由汤姆生 的学生阿斯顿设计的,
他用质谱仪发现了氖 20和氖22,证实了同 位素的存在,并由此获 诺贝尔化学奖
在粒子物理学中,我们需要对粒子加速,从而去轰击 其它粒子,从而撞碎粒子,以此发现粒子的内部结构。
直线加速器
结构简单 长度太长
第6节 带电粒子在匀强磁场中的运动 一 、带电粒子: 二、在匀强磁场中的运动(仅受磁场力)
1.当B//V时:匀速直线运动。 2.当B⊥V时:匀速圆周运动。
-v
B
f洛=0
× × ×B× ×
× × ×f洛× ×
× ×
f×洛 ×
× +×
× ×
v×
×
× × × ×V×0
f洛=BqV
判断图中带电 粒子(电量q, 重力不计)所 受洛伦兹力的 大小和方向:
第6节 带电粒子在匀强磁场中的运动 一 、带电粒子: 二、在匀强磁场中的运动(仅受磁场力)
1.当B//V时:匀速直线运动。 2.当B⊥V时:匀速圆周运动。
第6节 带电粒子在匀强磁场中的运动 一 、带电粒子: 二、在匀强磁场中的运动(仅受磁场力)
1.当B//V时:匀速直线运动。 2.当B⊥V时:匀速圆周运动。 3.当B与V斜交:螺旋线运动。
第6节 带电粒子在匀强磁场中的运动 一 、带电粒子:
1.基本粒子:如电子、质子、α粒子等 一般不考虑重力。(但并不能忽略质量)
2.带电体:如带电小球、液滴、尘埃 一般都考虑重力。
3.带电微粒:依据题目暗示或运动状态判定
二、在匀强磁场中的运动(仅受磁场力)
1.当B//V时:匀速直线运动。 2.当B⊥V时:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节 带电粒子在匀强磁场中的运动
一、带电粒子在匀强磁场中的运动
1.若v ∥B ,带电粒子不受洛伦兹力,在匀强磁场中做____________运动.
2.若v ⊥B ,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v 做_______运动. (1)向心力由洛伦兹力提供:qvB =__________=__________; (2)轨道半径公式:R =
mv qB
;
(3)周期:T =2πR v =2πm qB
(周期T 与速度v 、轨道半径R 无关);
(4)频率:f =1T =
qB 2πm
;
(5)角速度:ω=2π
T
=__________.
二、带电粒子在有界磁场中的运动
1.分析方法:找圆心、求半径、确定转过的圆心角的大小是解决这类问题的前提,确定轨道半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t 和转过的圆心角α之间的关系作为辅助. (1)圆心的确定
①基本思路:与速度方向垂直的直线和图中弦的中垂线一定过圆心. ②两种情形
a .已知入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直
线,两条直线的交点就是圆弧轨道的圆心(如图所示,图中P 为入射点,M 为出射点). b .已知入射方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图所示,图中P 为入射点,M 为出射点). (2)半径的确定
用几何知识(勾股定理、三角函数等)求出半径大小. (3)运动时间的确定
粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间为:
t =α
360°T (或t =α2πT ). 2.规律总结
带电粒子在不同边界磁场中的运动 (1)直线边界(进出磁场具有对称性,如图) (2)平行边界(存在临界条件,如图)
(3)圆形边界(沿径向射入必沿径向射出,如图)
典例分析:
例1、在磁感应强度为B 的匀强磁场中,一带电粒子做匀速圆周运动,又垂直进入磁感应强度为2B
的匀强磁场中,则( ) A .粒子速率加倍,周期减半 B .粒子速率不变,半径减半
C .粒子速率减半,半径变为原来的1/4
D .粒子速率不变,周期减半
例2.一个带电粒子沿垂直于磁场的方向射入一匀强磁场,粒子的一段径迹如图所示,径迹上的每小
段都可以近似看成圆弧,由于带电粒子使沿途空气电离,粒子的能量逐渐减小(带电荷量不变),从图中情况可以确定 ( )。
A .粒子从a 到b ,带正电
B .粒子从b 到a ,带正电
C .粒子从a 到b ,带负电
D .粒子从b 到a ,带负电
例3、如图所示,在有界匀强磁场边界线SP ∥MN ,速度不同的同种带电粒子从S 点沿SP 方向同时
射入磁场,其中穿过a 点的粒子速度v 1与MN 垂直,穿过b 点的粒子,其速度方向与MN 成60˚角.设两粒子从S 到a 、b 所需时间分别为t 1、t 2,则t 1∶t 2为( ) A .1∶3
B .4∶3
C .1∶1
D .3∶2
例4、如图所示,平面直角坐标系的第Ⅰ象限内有一匀强磁场垂直于纸面向里,磁感应强度为B .一质量为m 、电荷量为q 的粒子以速度v 从O 点沿着与y 轴夹角为30°的方向进入磁场,运动到A 点时速度方向与x 轴的正方向相同,不计粒子的重力,则( ) A .该粒子带正电
B .A 点与x 轴的距离为
mv 2qB
C .粒子由O 到A 经历时间t =
πm 3qB
D .运动过程中粒子的速度不变 例5、如图所示,在一底边长为2a ,θ=30°的等腰三角形区域内(D 在底边中点),有垂直纸面
向外的匀强磁场.现有一质量为m ,电荷量为q 的带正电的粒子,从静止开始经过电势差为
U 的电场加速后,从D 点垂直于EF 进入磁场,不计重力与空气阻力的影响. (1)若粒子恰好垂直于EC 边射出磁场,求磁场的磁感应强度B 为多少? (2)改变磁感应强度的大小,粒子进入磁场偏转后能打
到ED 板,求粒子从进入磁场到第一次打到ED 板的
最长时间是多少?
课堂针对练习: 1、关于带电粒子在匀强磁场中运动,不考虑其他场力(重力)作用,下列说法正确的是( )
A .可能做匀速直线运动
B .可能做匀变速直线运动
C .可能做匀变速曲线运动
D .只能做匀速圆周运动
2、一个带电粒子,沿垂直于磁场的方向射入一匀强磁场.粒子的一段径迹如下图所示.径迹
上的每一小段都可近似看成圆弧.由于带电粒子使沿途的空气电离,粒子的能量逐渐减小(带电量不变).从图中情况可以确定 ( )
A.粒子从a到b,带正电
B.粒子从a到b,带负电
C.粒子从b到a,带正电
D.粒子从b到a,带负电
3、如图所示,比荷为e/m的电子从左侧垂直于界面、垂直于磁场射入宽度为d、磁感受应强度为B
的匀强磁场区域,要从右侧面穿出这个磁场区域,电子的速度至少应为()
A、2Bed/m
B、Bed/m
C、Bed/(2m)
D、2Bed/m
4、如图所示,圆形区域内有垂直纸面的匀强磁场,三个质量和电荷量相同的带电粒子a、b、c,
以不同的速率对准圆心O沿着AO方向射入磁场,其运动轨迹如图。
若带电粒子只受磁场力的作用。
则下列说法正确的是( )
A.a粒子动能最大
B.c粒子速率最大
C.b粒子在磁场中运动时间最长
D.它们做圆周运动的周期T a<T b<T c
5.如图所示,质量为m,电荷量为+q的带电粒子,以不同的初速度两次从O点垂直于磁感线和磁场边界向上射入匀强磁场,在洛伦兹力作用下分别从M、N两点射出磁场,测得OM∶ON=3∶4,则下列说法中错误的是( )
A.两次带电粒子在磁场中经历的时间之比为3∶4
B.两次带电粒子在磁场中运动的路程长度之比为3∶4
C.两次带电粒子在磁场中所受的洛伦兹力大小之比为3∶4
D.两次带电粒子在磁场中所受的洛伦兹力大小之比为4∶3
6、如图所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸里,磁感应强度
为B.一带负电的粒子(质量为m、电荷量为q)以速度v0从O点射入磁场,入射方向在xy平面内,与x轴正向的夹角为θ.求:
(1)该粒子射出磁场的位置;
(2)该粒子在磁场中运动的时间.(粒子所受重力不计)
1、两个电荷量相等的带电粒子,在同一匀强磁场中只受洛伦兹力作用而做匀速圆周运动.下列说法中正确的
是( )
A.若它们的运动周期相等,则它们的质量相等
B.若它们的运动周期相等,则它们的速度大小相等
C.若它们的轨迹半径相等,则它们的质量相等
D.若它们的轨迹半径相等,则它们的速度大小相等
2、如图所示,在垂直于纸面向内的匀强磁场中,垂直于磁场方向发射出两个电子1和2,其速度
分别为v1和v2.如果v2=2v1,则1和2的轨道半径之比r1∶r2及周期之比T1∶T2分别为( ) ∶r2=1∶2,T1∶T2=1∶2
A.r
B.r1∶r2=1∶2,T1∶T2=1∶1
C.r1∶r2=2∶1,T1∶T2=1∶1
D.r1∶r2=1∶1,T1∶T2=2∶1
3、质量和电荷量都相等的带电粒子M 和N ,以不同的速率经小孔S 垂直进入匀强磁场,运行的半圆轨迹如图中虚线所示.下列表述正确的是( ) A .M 带负电,N 带正电 B .M 的速率小于N 的速率 C .洛伦兹力对M 、N 做正功
D .M 的运行时间大于N 的运行时间
4、如图所示,水平导线中有稳恒电流I 通过,导线正下方的电子初速度方向与电流方向相同,其后电子将( )
A .沿路径a 运动,轨迹是圆;
B .沿路径a 运动,曲率半径变小;
C .沿路径a 运动,曲率半径变大;
D .沿路径b 运动,曲率半径变小.
5、边长为a 的正方形,处于有界磁场,如图所示,一束电子以v 0水平射入磁场 后,分别从A 处和C 处射出,则v A :v C =____;所经历的时间之比t A :t B =____。
6.如图所示,圆形区域内有垂直纸面向里的匀强磁场,磁感应强度为B ,一带电粒子(不计重力)
以某一初速度沿圆的直径方向射入磁场,粒子穿过此区域的时间为t ,粒子飞出此区域时速度方向偏转角为60°,根据以上条件可求下列物理量中的( ) A .带电粒子的比荷 B .带电粒子的初速度
C .带电粒子在磁场中运动的周期
D .带电粒子在磁场中运动的半径
7、如图所示,M 、N 为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间
的各种数值.静止的带电粒子带电荷量为 +q ,质量为m (不计重力),从点P 经电场加速后,从小孔Q 进入N 板右侧的匀强磁场区域,磁感应强度大小为B ,方向垂直于纸面向外,CD 为磁场边界上的一绝缘板,它与N 板的夹角为θ = 45°,孔Q 到板的下端C 的距离为L ,当M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,求: ⑴ 两板间电压的最大值U m ;
⑵ CD 板上可能被粒子打中的区域的长度s ; ⑶ 粒子在磁场中运动的最长时间t m .。