指数函数的图像的性质 说课课件
合集下载
指数函数图像和性质_完整ppt课件
-1.5
-1
-0.5
-0.2
-0.4
0.5
1
1.5
2
2.5
3.2
3
2.8
2.6
2.4
2.2
2 1.8
f x = 0.9 x
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
-0.5 -0.2
-0.4
0.5
1
1.5
2
2.5
3
3.5
4
13
练习: 1、已知下列不等式,试比较m、n的大小:
(2)m (2)n
ppt精选版
1
y y=x3
y=x
y=x2
1
y=x1/2
0
1
X
a>0
y y=x-2
y=x-1
1
y=x-1/2
0
1
X
a<0
(1)图象都过(0,0)点和 (1,1)点;
(2)在第一象限内,函数值 随x 的增大而增大,即
在(0,+∞)上是增函
数。
(1)图象都过(1,1)点;
(2)在第一象限内,函数值随 x 的增大而减小,即在
解 :根据指数函数的性质, 由图像得,
1.70.3 1 且 0.93.1 1 从而有
1.70.3 > 0.93.1
或者
1.70.3 > 1.7 0 > 0.90 > 0.93.1
ppt精选版
f x = 1.7
3.2
3
2.8
2.6
2.4
2.2
2
1.8
x
1.6
指数函数的概念图象及性质PPT课件
栏目 导引
第4章 指数函数、对数函数和幂函数
(4)y=(a2+2)-x=a2+1 2x,底数a2+1 2∈0,12,前面系数为 1, 指数为自变量 x,故它是指数函数. (5)y=2×3x+a(a≠0),3x 前面系数为 2≠1,故它不是指数函 数. 故(1)(3)(4)为指数函数.
栏目 导引
第4章 指数函数、对数函数和幂函数
指数式的比较大小问题 比较下列各组数的大小. (1)1.8-π,1.8-3;(2)1.7-0.3,1.9-0.3; (3)0.80.6,0.60.8.
栏目 导引
第4章 指数函数、对数函数和幂函数
【解】 (1)构造函数 f(x)=1.8x. 因为 a=1.8>1,所以 f(x)=1.8x 在 R 上是增函数. 因为-π<-3,所以 1.8-π<1.8-3. (2)因为 y=11..79x在 R 上是减函数, 所以11..79--00..33=11..79-0.3>11..790=1. 又因为 1.7-0.3 与 1.9-0.3 都大于 0, 所以 1.7-0.3>1.9-0.3.
栏目 导引
第4章 指数函数、对数函数和幂函数
(3)取中间值 0.80.8. 因为 y=0.8x 在 R 上单调递减,而 0.6<0.8, 所以 0.80.6>0.80.8. 又因为00..6800..88=00..860.8>00..680=1,且 0.60.8>0, 0.80.8>0,所以 0.80.8>0.60.8.所以 0.80.6>0.60.8.
x=0 时,__y_=__1___; 质 y值
x<0 时__0_<_y_<_1__
x>0 时,_0_<__y_<_1__; x=0 时,_y_=__1____;
第4章 指数函数、对数函数和幂函数
(4)y=(a2+2)-x=a2+1 2x,底数a2+1 2∈0,12,前面系数为 1, 指数为自变量 x,故它是指数函数. (5)y=2×3x+a(a≠0),3x 前面系数为 2≠1,故它不是指数函 数. 故(1)(3)(4)为指数函数.
栏目 导引
第4章 指数函数、对数函数和幂函数
指数式的比较大小问题 比较下列各组数的大小. (1)1.8-π,1.8-3;(2)1.7-0.3,1.9-0.3; (3)0.80.6,0.60.8.
栏目 导引
第4章 指数函数、对数函数和幂函数
【解】 (1)构造函数 f(x)=1.8x. 因为 a=1.8>1,所以 f(x)=1.8x 在 R 上是增函数. 因为-π<-3,所以 1.8-π<1.8-3. (2)因为 y=11..79x在 R 上是减函数, 所以11..79--00..33=11..79-0.3>11..790=1. 又因为 1.7-0.3 与 1.9-0.3 都大于 0, 所以 1.7-0.3>1.9-0.3.
栏目 导引
第4章 指数函数、对数函数和幂函数
(3)取中间值 0.80.8. 因为 y=0.8x 在 R 上单调递减,而 0.6<0.8, 所以 0.80.6>0.80.8. 又因为00..6800..88=00..860.8>00..680=1,且 0.60.8>0, 0.80.8>0,所以 0.80.8>0.60.8.所以 0.80.6>0.60.8.
x=0 时,__y_=__1___; 质 y值
x<0 时__0_<_y_<_1__
x>0 时,_0_<__y_<_1__; x=0 时,_y_=__1____;
人教版指数函数图象及其性质-高中数学(共40张PPT)教育课件
• 【答案】C
13
探究一 指数函数的概念
• 【练】已知指数函数y=(2b-3)ax经过点(1,2),求a,b的值.
14
解析:
• 【解析】由指数函数定义可知2b-3=1,即b=2.
•
将点(1,2)代入y=ax,得a=2.
15
探究二 指数函数的图象问题
• 【例】若函数y=ax+b-1(a>0且a≠1)的图象经过第二、三、四象限,则一定有( )
全
没
有
用
他
会
不
开
心
。
•
■
电
:
“
色
情
男
女
是
你
和
尔
东
升
合
导
的
?
口
罗
其
实
不
是
合
的
。
•
■电 你 是 否有 这 样 经历 , 当 你在 做 某 一项 工 作 和学 习 的 时候 , 脑 子里 经 常 会蹦 出 各 种不 同 的 需求 。 比 如你 想 安 心 下来 看 2 小时 的 书 ,大 脑 会 蹦出 口 渴 想喝 水 , 然后 喝 水 的时 候 自 然的 打 开 电视 。 。 。。 。 。 ,一 个 小 时过 去 了 , 可能 书 还 没看 2 页 。很 多 时 候甚 至 你 自己 都 没 有意 思 到, 你 的 大脑 不 停地 超 控你 的 注 意力 , 你就 这 么 轻易 的 被你 的大 脑 所 左右 。 你已 经 不知 不 觉 地变 成 了大 脑 的 奴隶 。 尽管 你 在 用它 思 考, 但 是你 要 明 白你 不 应该 隶 属 于你 的 大 脑, 而 应 该是 你 拥有 你 的大 脑 , 并且 应 该是 你 可 以控 制 你的 大 脑 才对 。 一切 从 你意 识 到 你可 以 控制 你 的 大脑 的 时 候, 会 改 变你 的 很多 东 西。 比 如 控制 你 的情 绪 , 无论 身 处何 种 境 地, 都 要明 白 自己 所 面 临的 痛 苦并 没 有 自己 所 感 受的 那 么 强烈 , 我们 当 前再 痛 苦 ,在 目 前这 个 阶 段自 己 也不 是 最 痛苦 的 人, 尝 试着 运 用 心智 将 注意 力 转 移到 其 他 的地 方 , 痛苦 就 会自 动 消失 , 在 你重 新 注意 到 它 的时 候 ,它 不 会 回来。
指数函数的性质和图象说课课件.ppt
教材分析
教 学 过 程
一、教材分析
1、 教材的地位和作用
本小节是现行高教版教材第一册第四章第 五节 ,是在把指数从整数范围扩充到实数的基 础上引入指数函数的,而指数函数是本章的重 要内容。学生在初中已经初步探讨了简单的函 数,对函数有了一定的感性认识,初步了解了 函数的意义。本节通过学习研究指数函数的概 念、性质和图象,帮助学生进一步认识函数, 熟悉函数的思想方法,对后续内容如三角函数 等基本初等函数学习打下基础,起到承上启下 的作用。
2、 教法选择
(1)教学上以启发式为主,启发帮助学生(采 用边问边答的方式)分析。通过实例引入,培 养学生严谨的思维,利用指数函数的图像让学 生发现、概括、记忆函数的性质。尽可能引导 学生通过观察图像,自己归纳概括。
(2)充分应用多媒体教具的电教手段,增大教 学容量,提高教学效率,展现准确完整的图 像,给学生一个规范的模式。
的掌过握程指中数,函启数动的认图识象、和研性究质、,
提初炼步、学应会用运、用总指结数等函思数维解活决动,
培问养题学生的思维能力,体会数
知识与技能目标: 过程与方法目标:
学多主学功概媒动习的通生方力探念体探数乐过获法;索的的索学趣本得;养,.学教指规节研提成不习学数律课究高积断方手函的的函学极创法段数方学 数 生 主 新; , 性 法习 的 的 动 的通 引 质 ,, 规 学 , 学过 领 , 体使 律 习 勇 习运 学 体 验学 和 能 于 习用 生 会 成
2、 教材的分析和处理
指数函数共分2个课时, 本节课是第1 课时,主要研究指数函数的定义、图像及 性质,从而进一步深化学生对函数概念的 理解与认识,使学生得到较系统的函数知 识和研究函数的方法,并且为学习对数函 数作好准备,是本章的重点内容之一。
教 学 过 程
一、教材分析
1、 教材的地位和作用
本小节是现行高教版教材第一册第四章第 五节 ,是在把指数从整数范围扩充到实数的基 础上引入指数函数的,而指数函数是本章的重 要内容。学生在初中已经初步探讨了简单的函 数,对函数有了一定的感性认识,初步了解了 函数的意义。本节通过学习研究指数函数的概 念、性质和图象,帮助学生进一步认识函数, 熟悉函数的思想方法,对后续内容如三角函数 等基本初等函数学习打下基础,起到承上启下 的作用。
2、 教法选择
(1)教学上以启发式为主,启发帮助学生(采 用边问边答的方式)分析。通过实例引入,培 养学生严谨的思维,利用指数函数的图像让学 生发现、概括、记忆函数的性质。尽可能引导 学生通过观察图像,自己归纳概括。
(2)充分应用多媒体教具的电教手段,增大教 学容量,提高教学效率,展现准确完整的图 像,给学生一个规范的模式。
的掌过握程指中数,函启数动的认图识象、和研性究质、,
提初炼步、学应会用运、用总指结数等函思数维解活决动,
培问养题学生的思维能力,体会数
知识与技能目标: 过程与方法目标:
学多主学功概媒动习的通生方力探念体探数乐过获法;索的的索学趣本得;养,.学教指规节研提成不习学数律课究高积断方手函的的函学极创法段数方学 数 生 主 新; , 性 法习 的 的 动 的通 引 质 ,, 规 学 , 学过 领 , 体使 律 习 勇 习运 学 体 验学 和 能 于 习用 生 会 成
2、 教材的分析和处理
指数函数共分2个课时, 本节课是第1 课时,主要研究指数函数的定义、图像及 性质,从而进一步深化学生对函数概念的 理解与认识,使学生得到较系统的函数知 识和研究函数的方法,并且为学习对数函 数作好准备,是本章的重点内容之一。
指数函数图像及性质说课课件
评估学生作业的完成度和 正确率,了解学生对课堂 知识的掌握程度。
测验成绩
通过测验成绩了解学生对 指数函数图像及性质的理 解和应用能力。
ቤተ መጻሕፍቲ ባይዱ
解题思路
关注学生在解题过程中所 展现的思路和方法,判断 其是否能够灵活运用所学 知识。
学生反馈和建议收集
问卷调查
通过问卷调查了解学生对 指数函数图像及性质说课 课件的满意度和改进建议。
指数函数图像及性质说课 课件
• 引言 • 指数函数的图像 • 指数函数的性质 • 指数函数的应用 • 教学方法和手段 • 教学评价与反馈 • 结语
01
引言
课程背景
指数函数是数学中的基本函数 之一,广泛应用于实际生活中。
在高中数学中,指数函数是重 要的知识点,也是学生需要掌 握的基本数学技能之一。
02
当 $a > 1$ 时,函数图像在第一 象限和第四象限;当 $0 < a < 1$ 时,函数图像在第二象限和第 三象限。
指数函数的图像特点
当底数 $a > 1$ 时,函数图像是单 调递增的;当 $0 < a < 1$ 时,函 数图像是单调递减的。
无论底数为何值,指数函数的图像都 会经过点 $(0,1)$。
不同底数指数函数的图像比较
当底数大于1时,随着底数增大,函数值也增大,图像上升速度加快;当底数小 于1时,随着底数减小,函数值也减小,图像下降速度加快。
比较不同底数指数函数的图像时,可以通过观察图像的上升或下降趋势、与坐标 轴的交点等特征来进行比较。
03
指数函数的性质
定义域和值域
定义域
对于底数a>0且a≠1的指数函数 y=a^x,其定义域为全体实数R。
测验成绩
通过测验成绩了解学生对 指数函数图像及性质的理 解和应用能力。
ቤተ መጻሕፍቲ ባይዱ
解题思路
关注学生在解题过程中所 展现的思路和方法,判断 其是否能够灵活运用所学 知识。
学生反馈和建议收集
问卷调查
通过问卷调查了解学生对 指数函数图像及性质说课 课件的满意度和改进建议。
指数函数图像及性质说课 课件
• 引言 • 指数函数的图像 • 指数函数的性质 • 指数函数的应用 • 教学方法和手段 • 教学评价与反馈 • 结语
01
引言
课程背景
指数函数是数学中的基本函数 之一,广泛应用于实际生活中。
在高中数学中,指数函数是重 要的知识点,也是学生需要掌 握的基本数学技能之一。
02
当 $a > 1$ 时,函数图像在第一 象限和第四象限;当 $0 < a < 1$ 时,函数图像在第二象限和第 三象限。
指数函数的图像特点
当底数 $a > 1$ 时,函数图像是单 调递增的;当 $0 < a < 1$ 时,函 数图像是单调递减的。
无论底数为何值,指数函数的图像都 会经过点 $(0,1)$。
不同底数指数函数的图像比较
当底数大于1时,随着底数增大,函数值也增大,图像上升速度加快;当底数小 于1时,随着底数减小,函数值也减小,图像下降速度加快。
比较不同底数指数函数的图像时,可以通过观察图像的上升或下降趋势、与坐标 轴的交点等特征来进行比较。
03
指数函数的性质
定义域和值域
定义域
对于底数a>0且a≠1的指数函数 y=a^x,其定义域为全体实数R。
高一数学必修教学课件第三章指数函数的图像和性质
伸缩变换
对于形如$y = a^{bx}$的指数函数,可以通过伸缩基本指数函数的图像得到。具体地,当$b > 1$时,图像在纵 坐标方向上进行压缩,同时在横坐标方向上进行拉伸;当$0 < b < 1$时,图像在纵坐标方向上进行拉伸,同时 在横坐标方向上进行压缩。
图像特点总结与对比分析
指数函数图像特点
THANKS
感谢观看
阅读材料
推荐了一些与指数函数相 关的阅读材料,供学生课 后阅读,以拓宽视野。
下节课预习内容提示
下节课内容
简要介绍了下节课将要学 习的内容,包括指数函数 的运算性质和应用等。
预习要求
要求学生提前预习下节课 的内容,了解指数函数的 运算性质和应用场景,为 下节课的学习做好准备。
问题思考
提出了一些与下节课内容 相关的问题,引导学生进 行思考和预习。
解析
考察指数函数$y = 1.7^{x}$的单调性,由于底数大于1,函数在全体实数范围 内单调递增。因此,$1.7^{3} > 1.7^{2.5} > 1.7^{-1.5}$。
例题2
已知函数$f(x) = a^{x}(a > 0$且$a neq 1)$在区间$[-1,2]$上的最大值为4,最 小值为$m$,且函数$g(x) = (1 - 4m)sqrt{x}$在区间$[0, + infty)$上是单调函 数,求$a$和$m$的值。
明确任务要求
教师需要向学生明确任 务的要求,包括任务的 目标、完成时间、提交 方式等。
学生自主查阅资料及整理成果展示
1 2 3
学生自主查阅资料
学生可以利用图书馆、互联网等资源,自主查阅 与指数函数相关的资料,包括教材、参考书、学 术论文等。
对于形如$y = a^{bx}$的指数函数,可以通过伸缩基本指数函数的图像得到。具体地,当$b > 1$时,图像在纵 坐标方向上进行压缩,同时在横坐标方向上进行拉伸;当$0 < b < 1$时,图像在纵坐标方向上进行拉伸,同时 在横坐标方向上进行压缩。
图像特点总结与对比分析
指数函数图像特点
THANKS
感谢观看
阅读材料
推荐了一些与指数函数相 关的阅读材料,供学生课 后阅读,以拓宽视野。
下节课预习内容提示
下节课内容
简要介绍了下节课将要学 习的内容,包括指数函数 的运算性质和应用等。
预习要求
要求学生提前预习下节课 的内容,了解指数函数的 运算性质和应用场景,为 下节课的学习做好准备。
问题思考
提出了一些与下节课内容 相关的问题,引导学生进 行思考和预习。
解析
考察指数函数$y = 1.7^{x}$的单调性,由于底数大于1,函数在全体实数范围 内单调递增。因此,$1.7^{3} > 1.7^{2.5} > 1.7^{-1.5}$。
例题2
已知函数$f(x) = a^{x}(a > 0$且$a neq 1)$在区间$[-1,2]$上的最大值为4,最 小值为$m$,且函数$g(x) = (1 - 4m)sqrt{x}$在区间$[0, + infty)$上是单调函 数,求$a$和$m$的值。
明确任务要求
教师需要向学生明确任 务的要求,包括任务的 目标、完成时间、提交 方式等。
学生自主查阅资料及整理成果展示
1 2 3
学生自主查阅资料
学生可以利用图书馆、互联网等资源,自主查阅 与指数函数相关的资料,包括教材、参考书、学 术论文等。
指数函数的概念、图象及性质ppt课件
栏目 导引
2.指数函数的图象和性质
a 的范围
a>1
图象
第四章 指数函数与对数函数
0<a<1
PPT模板:./moban/
PPT素材:./sucai/
PPT背景:./beijing/
PPT图表:./tubiao/
PPT下载:./xiazai/
PPT教程: ./powerpoint/
资料下载:./ziliao/
科学课件:./kejian/kexue/ 物理课件:./kejian/wuli/
化学课件:./kejian/huaxue/ 生物课件:./kejian/shengwu/
地理课件:./kejian/dili/
历史课件:./kejian/lishi/
定义域
__R___
值域
_(_0_,__+__∞__) _
性
质
过定点 单调性
__(0_,__1_)___
在 R 上是__增__函__数____ 在 R 上是__减__函___数___
奇偶性
非奇非偶函数
栏目 导引
第四章 指数函数与对数函数
■名师点拨
PPT模板:./moban/
PPT素材:./sucai/
PPT背景:./beijing/
PPT图表:./tubiao/
PPT下载:./xiazai/
PPT教程: ./powerpoint/
资料下载:./ziliao/
范文下载:./fanwen/
试卷下载:./shiti/
教案下载:./jiaoan/
PPT论坛:
PPT课件:./kejian/
语文课件:./kejian/yuwen/ 数学课件:./kejian/shuxue/
指数函数的图像和性质+课件
则 f(x1)-f(x2)=a- 2x1 1 -a+ 2x2 1 =(2x1 1)(2x2 1).
因为 x1<x2,所以 2 x1 -2 x2 <0,又(1+2 x1 )(1+2 x2 )>0.
所以 f(x1)-f(x2)<0,即 f(x1)<f(x2).
所以不论 a 为何实数,f(x)在(-∞,+∞)上为增函数.
即2-2x--x 1+m=-2x2-x 1-m 恒成立.
2m=-2-2x--x 1-2x2-x 1=-1-1 2x-2x2-x 1=12-x-21x=-1,解得:m=
-1,∴存在 2
m=-12,使得
f(x)为奇函数.
【方法归纳】 (1)求解含参数的由指数函数复合而成的奇、偶函数中的参数问题, 可利用奇、偶函数的定义,根据 f(-x)=-f(x)或 f(-x)=f(x),结合 指数运算性质建立方程求参数; (2)若奇函数在原点处有定义,则可利用 f(0)=0,建立方程求参数.
还需要画出更多的具体指数函数的图象进行观察.用同样的方 法,在同一直角坐标系内画出函数 y (1)x 的图象,并与函数y
2 =2x的图象进行比较,它们有什么关系?能否利用函数y=2x的 图象,画出函数 y (1)x 的图象?
2
新知探究
因为 y (1)x 2x,点(x,y)与点(-x,y)关于y轴对称,所以函数y=2x
针对练习
1 x2-2
跟踪训练 1 (1)解不等式 3
≤3.
(2)已知(a2+2a+3)x>(a2+2a+3)1-x,求 x 的取值范围.
1
解析:(1)
3
=3 x2-2
2-x2
≤3,∵y=3x 是 R
上的增1,∴原不等式的解集是{x|x≥1 或 x≤-1}.
指数函数的图象及性质 完整课件PPT
【拓展提升】 1.处理指数函数图象问题的两个要点 (1)牢记指数函数y=ax的图象恒过定点(0,1),分布在第一和 第二象限. (2)明确影响指数函数图象特征的关键是底数.
2.底数变化对指数函数图象形状的影响 指数函数y=ax的图象如图所示,由指数函数y=ax的图象与 直线x=1相交于点(1,a)可知: (1)在y轴右侧,图象从上到下相应的底数由大变小; (2)在y轴左侧,图象从下到上相应的底数由大变小. 如图中的底数的大小关系为 0<a4<a3<1<a2<a1.
22
答案:3 或 1
22
【类题试解】已知a>0,且a≠1,若函数f(x)=2ax-4在区间
[-1,2]上的最大值为10,则a=______.
【解析】(1)若a>1,则函数y=ax在区间[-1,2]上是递增的,
当x=2时,f(x)取得最大值f(2)=2a2-4=10,
即a2=7,又a>1,∴a= 7.
【解析】>1时,函数y=ax的图象过点(0,1),分布在第一、 二象限,且从左到右是上升的. 直线y=x+a过第一、二、三象 限,与y轴的交点为(0,a),在点(0,1)的上方. A,B,C,D四 项均不符合此要求.当0<a<1时,函数y=ax的图象过点 (0,1),分布在第一、二象限,且从左到右是下降的. 直线 y=x+a过第一、二、三象限, 与y轴的交点为(0,a),在点(0,1) 和点(0,0)项符合此要求.
=af(x)定义域、值域的求法 (1)定义域 函数y=af(x)的定义域与y=f(x)的定义域相同. (2)值域 ①换元,令t=f(x); ②求t=f(x)的定义域x∈D; ③求t=f(x)的值域t∈M; ④利用y=at的单调性求y=at,t∈M的值域.
高中数学人教A版 必修1《4.2.2指数函数的图象和性质》说课课件ppt(23张PPT)(说课稿)
4 教学过程
——探索指数函数的图象
教学活动
设计意图
问 题2:
怎样作出指数函数的图象?
引导学生发现从特殊 到一般的研究方法。
列表—描点—连线
4 教学过程
——新课讲解
教学活动
问题3:
根据教材116页表格,能利
用描点法在同一坐标系中画
指数函数
y
2
x
与y=
1 2
x
的图象?
设计意图
让学生动手操作,独立 画图;使学生掌握了画 图的基本方法。
4 教学过程
——典例剖析
例3: 比较下列各题中两值的大小
单调性的应用
(1)1.72.5 1.73;
(2) 0.8- 2 0.8- 3
(3)1.70.3
0.93.1
同底比较大小
底不同,指数也不同
设计意图: 通过应用函数的单调性比较大小,进一步
理解指数函数的性质。
4 教学过程
——典例剖析
例4:如图,某城市人口呈指数增长。
(2).初中已经掌握 了用描点法描绘函数 图象,通过幂函数的 学习,也有了函数研 究的过程与方法,即 按“背景-概念-图象 和性质-应用”的顺序 进行研究。
3 说教法学法
教师点拨启发 引导归纳总结
以教学内容设计四个问题与两个探究为载体的任务驱动 式教学方法。
启发 引导
自主 探究
学生主动观察, 主动思考,动手 操作。
设计意图
既可以培养学生观察,分析, 归纳等思维能力,又可以培养 学生的合作意识和创新精神, 同时也让学生体会到分类讨论、 数形结合的数学思想。
学生活动:结合图象自主完成下列表格后,小组内 探讨,得出答案。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)探索、归纳 指数函数的图像和性质
a>1
y
0<a<1
y=ax (0<a<1) y=1 x 0 y (0,1) x
图 象
y=1 0
y=ax (a>1)
a>1 0<a<1 1.定义域为R,值域为(0,+). 性 2.当x=0时,y=1 3.在R上是增 3.在R上是减 函数 函数
质 4.当x>0时,y>1; 当x<0时,0<y<1. 非奇非偶函数
一种新的函数模型 应用研究函数一般方法的一次实践
学 情 分 析
随着学生身心的发展、知识的 增加,高一学生已具备了从事物的 表象分析、归纳出其本质特征的能 力。就我班学生而言,学生绝大部 分来自农村,由于多种因素的影响, 学生学习能力还存在着一定的不足。 多数学生的思维能力较弱,学生的 思维往往还要依赖于直观具体的形 象,且具有好动,强烈的好奇心, 希望被关注等特点。
教学过程设计
1、创设情境,形成概念 游戏情境 问题情境
1,进一步理解函数概念; 2,让学生感受指数函数 与实际生活的联系,感 受指数型模型.
教学过程设计
创设情境 建构概念
x y=2
x y=0.84
[问题1] 这些函数有什 么共同特点?能否用 一般形式表示?
抓住自变量在指数位置这一 本质特征,引出指数函数的 概 念.
y=ax (a>1)
a>1
图 象 特
0<a<1
1.图象全在x轴上方,与x轴无限接近. 2.图象过定点(0,1) 3.自左向右图 3.自左向右图 象逐渐上升 象逐渐下降 4.图象分布在左 下和右上两个 区域内 4.图象分布在左 上和右下两个区 域内
征 不关于Y轴对称不关于原点中心对称
你能依据图形特征探索出指数函数的性质吗?
与
——不同底但可化同底
(5)(0.3) ,(0.2) ——底不同但同指数 不同底数幂比大小,利用图像与底之间的关系,结合函数图像进行比较 0.3 3.1 (6)1.7 ,0.9 ——底不同,指数也不同 利用函数图像或中间变量进行比较 意图:在利用函数单调性的同时呈现转化、代换思想
4、小结归纳,拓展深化 在小结归纳中我将从学生的知识,方法和
高中数学必修一 (湘教版)
指数函数的图像和性质
说 课
重庆第 23中学校 曹邦亮
说课程序
★ 教材分析 ★ 学情分析
★ 教学目标分析 ★ 教法学法分析 ★ 教学过程分析
★ 板书设计
教材分析
函数的概念和 图象
基本初等函数
函数的应用
刻画两个 变量及其 关系的数 学模型
指 数 函 数
对 数 函 数
幂 函 数
★教学重点:
目 标 分 析
指数函数的概念、图像和性质.
★教学难点:
1、对底数的分类讨论. 2、指数函数的应用 .
教 法 学 法 分 析
直观教学法
教
法:
探究式教学法 自主学习
学
法:
探究学习
1、创设情境,形成概念
教 学 程 序
2、 问题导向,运用直观 3、训练反馈,检验效果 4、小结归纳,拓展深化
知识目标:理解指数函数的定义,掌握 指数函数的图像、性质及其简单应用.
目 标 分 析
能力目标:通过教学培养学生观察、分 析、归纳等思维能力,体会数形结合和 分类讨论思想以及从特殊到一般,从一般 到特殊等学习数学的思想方法 ,增强识 图用图的能力.
情感目标:通过学习,使学生学会认识 事物的特殊性与一般性之间的关系,构 建和谐的课堂氛围,培养学生勇于提问, 善于探索的思维品质.
以情境为导入,以问题为导向,以 学生活动为载体,充分调动学生的参与 和思维,让学生经历思考、探索、交流 合作等学习过程。教师在尊重学生主体 地位的基础上发挥自己的主导作用。 不足:有的想法因技艺得不到充分展现。
4.当x>0时, 0<y<1;当x<0 时, y>1.
3、训练反馈,检验效果 例 1:比较下列各题中两值的大小 2.5 3 -01 -02 (1)1.7 , 17 ; (2)0.8 , 0.8 ;—— 同底指数幂比较大小. 同底数幂比大小,构造指数函数,利用函数单调性
(3) 与
-0.3
(4)
-0.3
体验入手,通过本节课的学习,你学到了那些知识?
(2)你又掌握了哪些学习方法和数学思想? (3)你能将指数函数的学习与实际生活联系 起来吗?
5、布置作业,提高升华 必做题 选作题
指数函数的图象与性质
板 书 设 计
指数函数的概念
指数函数的图象性质:
学生展示区
设计思想和反思
(a>0且a≠1)
辨析:下面哪些是指数涵数
(1) (3) (2)
(4)
教学过程设计
2、问题导向,运用直观
(1)怎样得到指数函数的图像?
2、问题导向,运用直观
(2)指数函数图像有什么特征
读出指数函数图象的特征
a>1
y
0<a<1
y=ax (0<a<1) y=1 x 0 y (0,1) x
图 象
y=1 0