复变函数2011-2012(A)期末考试

合集下载

复变函数_期末试卷及答案

复变函数_期末试卷及答案

一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列复数中,位于第三象限的复数是( )A. 12i +B. 12i --C. 12i -D. 12i -+ 2.下列等式中,不成立的等式是( ) 3.下列命题中,正确..的是( ) A. 1z >表示圆的内部B. Re()0z >表示上半平面C. 0arg 4z π<<表示角形区域D. Im()0z <表示上半平面4.关于0limz zz zω→=+下列命题正确的是( ) A.0ω=B. ω不存在C.1ω=-D.1ω=5.下列函数中,在整个复平面上解析的函数是( ) 6.在复平面上,下列命题中,正确..的是( )A. cos z 是有界函数B. 22Lnz Lnz =7.在下列复数中,使得ze i =成立的是( ) 8.已知31z i =+,则下列正确的是( ) 9.积分||342z dz z =-⎰的值为( )A. 8i πB.2C. 2i πD. 4i π10.设C 为正向圆周||4z =, 则10()zC e dz z i π-⎰等于( ) A.110!B.210!iπ C.29!iπ D.29!iπ- 11.以下关于级数的命题不正确的是( )A.级数0327nn i ∞=+⎛⎫⎪⎝⎭∑是绝对收敛的B.级数212(1)n n in n ∞=⎛⎫+ ⎪-⎝⎭∑是收敛的 C. 在收敛圆内,幂级数绝对收敛D.在收敛圆周上,条件收敛12.0=z 是函数(1cos )ze z z -的( )A. 可去奇点B.一级极点C.二级极点D. 三级极点13.1(2)z z -在点 z =∞ 处的留数为( )A. 0.1BC.12D. 12-14.设C 为正向圆周1||=z , 则积分 sin z c e dzz⎰等于( )A .2πB .2πiC .0D .-2π 15.已知()[()]F f t ω=F ,则下列命题正确的是( ) A. 2[(2)]()j f t eF ωω-=⋅FB. 21()[(2)]j ef t F ωω-⋅=+FC. [(2)]2(2)f t F ω=FD. 2[()](2)jte f t F ω⋅=-F二、填空题(本大题共5小题,每小题2分,共10分) 16. 设121,1z i z =-=,求12z z ⎛⎫=⎪⎝⎭____________. 17. 已知22()()()f z bx y x i axy y =++++在复平面上可导,则a b +=_________. 18. 设函数)(z f =cos zt tdt ⎰,则)(z f 等于____________.19. 幂极数n n2n 1(2)z n ∞=-∑的收敛半径为_______. 20. 设3z ω=,则映射在01z i =+处的旋转角为____________,伸缩率为____________. 20. 设函数2()sin f t t t =,则()f t 的拉氏变换等于____________.三、计算题(本大题共4小题,每题7分,共28分) 21.设C 为从原点到3-4i 的直线段,计算积分[()2]CI x y xyi dz =-+⎰22. 设2()cos ze f z z z i=+-. (1)求)(z f 的解析区域,(2)求).(z f ' 24.已知22(,)4u x y x y x =-+,求一解析函数()(,)(,)f z u x y iv x y =+,并使(0)3f =。

复变函数与积分变换期末考试题

复变函数与积分变换期末考试题

哈尔滨工程大学本科生考试试卷( 2010-2011 年 第一 学期)2011-01-04得分评卷人选择题(每小题2分,共10分)一、1、00Im Im limz z z z z z →-=- ( ).A.i B.i - C.0 D.不存在2、若0(1)n n n a z ∞=-∑在3z =发散,则它在 ( ).A . 1z =-收敛 B.2z =收敛 C . 2z i =发散 D . 均不正确3、已知函数212()1cos f z z z=--,则0z =,z =∞分别是()f z 的 ( ).A.二阶极点、孤立奇点 B.二阶极点、非孤立奇点 C.可去奇点、孤立奇点 D.可去奇点、非孤立奇点4、映射3z iw z i-=+在02z i =处的旋转角为 ( ). A./2π- B.0 C ./2π D . π5、下列命题或论断中,正确的个数是 ( ).I :Ln z Ln z =Ⅱ:设()(,)(,)f z u x y iv x y =+解析,则u -是v 的共轭调和函数III :()(,)(,)f z u x y iv x y =+的导数()f z '存在的充要条件是,u v 的偏导数分别存在Ⅳ:()tan(1/)f z z =在任意圆环域0z R <<不能展开为洛朗级数A.0 B.1 C.2 D.3得分评卷人填空题(每小题2分,共10分)二、6、设z i e i =,则Re z = .7、若函数32(,)v x y x axy =+为某一解析函数的虚部,则常数=a .8、设函数cos ze z 的泰勒展开式为∑∞=0n n n z c ,则它的收敛半径为 .9、设信号()(1)f t t δ=-,则通过Fourier 变换得到的频谱函数()F ω= .10、设1()(1)F s s s =-,则通过Laplace 逆变换得到()f t = . 得分评卷人计算题Ⅰ(每小题5分,共25分)三、11、函数33()23f z x i y =+在何处可导?何处解析?12、设()(,)(,)f z u x y iv x y =+是解析函数,且22()(4)u v x y x xy y -=-++,求()f z .13、计算积分()n Cz z dz +⎰,其中:1C z =为负向,n 为整数.14、计算积分(21)(2)C zdzz z +-⎰,其中:3C z =为正向.15、利用留数定理计算定积分201cos d πθθ+⎰.得分评卷人计算题Ⅱ(每小题6分,共18分)四、16、求函数23()32z f z z z -=-+在下列要求下的级数(泰勒或者洛朗级数)展开:(1) 圆1z <内;(2) 环12z <<内;(3) 环11z <-<∞内.17、设2321sin (),:32C e f z d C z iz ξξξξπξξ=-=-⎰正向,试求:(1) ()f z 在复平面上除去3z =的点处的函数表达式; (2) ()f i '及()f i π.18、按照要求逐步完成下列有关保形映射的问题.(1) Z 平面阴影部分是角形区域/6arg /6z ππ-<<,如下图所示。

2011.9-2012.1复变函数试卷--A答

2011.9-2012.1复变函数试卷--A答

2011.9-2012.1复变函数试卷--A答得分评阅人一、判断分析题(要求写出充分的理由.每小题4分,共8分)1.函数22()f z xy ix y =+在z 平面上处处解析。

解答:该命题错误。

记2(,)u x y xy =,2(,)v x y x y =,显然它们在平面上具有连续的偏导数,且2u y x ?=?,2u xy y ?=?,2vxy x ?=? ,2v x y=? 要使柯西—黎曼条件条件满足,只须 22u vy x x y===??,22u v xy xy y x==-=-??,即0x =,0y =故此函数仅在点0z =可导,而在复平面上处处不解析.2.0=z 是函数)/1sin(1)(z z f =的孤立奇点。

解答:该命题错误。

因为)/1sin(1)(z z f =的奇点有,...)2,1,0(1,0±±===k k z z π,所以在0=z 的任意去心邻域内,总包括奇点πk z 1=,当∞→k 时,0=z 。

从而0=z 不是)/1sin(1)(z z f =的孤立奇点。

3.函数sin z 在z 平面上是有界的.解答:该命题错误。

…………………………1分sin z 在z 平面上无界。

这是因为sin 2iz ize e z i --=,令(0)z iy y =<,则|sin |||()2iz ize e z y i--=→∞→-∞…3分得分评阅人二、填空题(将正确的内容填在各题干预备的横线上,内容填错或未填者,该空无分.共8小题,每小题2分,共16分)1. 设i z 43+-=,则arg z =32arctan-π. 2. i +12=,...1,0),2ln sin 2ln (cos )22(ln ±=+-k i e k π.3.若C 是单位圆周,n 是自然数,则=-?C ndz z z )(10??∈≠∈=D z D z n Dz n i 000,01,0,1,2,π.或者??≠∈=Dz n Dz n i 00,1,0,1,2π 4.幂级数∑+∞=02n nz n 的收敛半径为 =R 1 .幂级数12nn n nz ∞=∑的收敛半径R = 2 .5.函数)(z f 在区域D 内解析是指 )(z f 在区域D 内每一点可导 . 6.在扩充复平面上亚纯函数在各奇点的残(留)数之和为_0__. 7.指数函数z e ω=的基本周期为i π2.8. 设 2sin iw e π=,则 =)Re(w 0 .9. ()f z ,()g z 分别以z a =为m 级极点与n 级极点,则z a =为()()f zg z 的m n -级极点()m n >,n m -级零点()m n <,可去奇点()m n =. 得分评阅人三、单项选择题(将正确的内容填在各题干预备的横线上,内容填错或未填者,该空无分.共8小题,每小题2分,共16分)1.区域12z <<的边界是1z =,2z =,它们的正方向( B ).(A)1z =,2z =都是“逆时针” (B)1z =“顺时针”,2z =“逆时针” (C)1z =,2z =都是“顺时针” (D)1z =“逆时针”,2z =“顺时针” 2.设)(z f 在单连通区域D 内解析, L 为D 内一条简单闭曲线, 则必有( D ).A .2 Im[()]d 0.Lf z z =? B .2 Re[()]d 0.Lf z z =?C .2()d 0.Lf z z =?D .2()d 0.Lf z z =?3.()f z 的孤立奇点a 为本性奇点的充要条件是( B ).A .lim ()0z af z →= B .lim ()z af z →不存在 C .lim ()()z af z b →=≠∞ D .lim ()z af z →=∞4.设32z i =--,则arg z =( C ). A . 2ar 3ctgB . 3ar 2ctgC . 2ar 3ctg π-D . 2ar 3ctg π+ 5.设()f z 在1z <内除三个五级极点外解析,并有四个四级零点,在1z =时解析且无零点,则1()()z f z dz f z ='=?( B ). A .2i π- B .2i π C .1- D .1 6.69)4sin 4(cos )sin (cos θθθθ?i i ei +-=,则?=( A ). A .θ33- B .θ15- C .θ15 D .θ33 7.设C 为不经过点与-1的正向简单闭曲线,则?+-c z z zdz2)1)(1(为( D ).A .2iπ B .i-π C .0 D . A 、B 、C 都有可能 8.设)(z f 在区域D 内解析,C 为D 内任一条正向简单闭曲线,它的内部全属于D .如果)(z f 在C 上的值为9,那么对C 内任一点)(,00z f z ( C ).A .等于10B .等于0C .等于9D .919. 复级数11()n n n n n a a ib ∞∞===+∑∑收敛的充要条件是( C ).A .0n a →B .1n n a ∞=∑收敛 C .实级数1n n a ∞=∑及1n n b ∞=∑皆收敛D .实级数1n n a ∞=∑及1n n b ∞=∑至少有一个收敛得分评阅人四、计算题(共5小题,每小题9分,共45分)1.设)(z f 在1||z dz z f zz z )()]1(4[12?=+±.解:z dz z f z z z )()]1(4[1||22?=+±=dz zz f z zf z z f z ?=±±1||3)])()()(4[……………4分 =)0(8]2)0(4[2]2)0()0(4[2f i i f i f f i ''±=''±=''±ππππ………4分2. 试求函数zz z z f 6tan )(2π-=的所有有限孤立奇点,并判断它们的类型。

复变函数期末考试复习题及答案详解

复变函数期末考试复习题及答案详解

《复变函数》考试试题(一) 1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin_________.3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数n n nz ∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz es ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设Ciy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(l i m 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数nn nz∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________.8. 设211)(z z f +=,则)(z f 的孤立奇点有_________.9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz .三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z =处的值.3. 计算积分:⎰-=iiz z I d ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)二. 填空题. (20分) 1. 设11)(2+=z z f ,则f (z )的定义域为___________. 2. 函数e z的周期为_________.3. 若n n ni n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n nnx的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=z e ,则___=z . 9. 若0z是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze.三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn nz nn ∑+∞=!的收敛半径. 3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

复变函数与积分变换2011A答案

复变函数与积分变换2011A答案
1) 题目一:两个复数乘积的模和辐角分别等于两复数模与辐角的乘积。( F )
2)题目二:函数 不仅在 可导,则必然在 解析。( F )
3)题目三:函数 在定义域内一点 可导的充分条件是 和 在点 可微且满足C-R方程。(F)
4)题目四:若级数 在 处收敛则该级数对任意 的z都绝对收敛。T
5)题目五: 是 的m阶极点的充分必要条件是 。(T)
命题方式:独立命题
佛山科学技术学院2011—2012学年第1学期
《复变函数与积分变换》课程期末考试试题A答案
专业、班级:电子信息工程10级1、2班姓名:学号:
题号










十一
十二总Leabharlann 绩得分一、单选题(每小题2分七小题共14分)
1)题目一:下面正确的是( )B
A、 B、 C、 D、
2)题目二: C
A、1 B、-1 C、2 D、0
6)题目六:函数 在孤立奇点 的留数是( )C
A、 B、- C、0 D、1
7)题目七:级数 :(C)
A 绝对收敛 B 条件收敛 C 发散 D既不收敛又不发散
共7页第1页
二、填空题(每小题2分七小题共14分)
1)题目一:设复数 ,则乘方 ,当 时,有_____________。
3)题目三:试求幂级数 在收敛圆内的收敛函数
解:简单计算可知收敛半径为1。当
4)题目四:求正弦函数 的复频函数(其中k为任意复数)。
5)题目五:证明,如果 在区域D内解析且 为常数,则 在D内为一常数。
证明:设 ,那么由已知得到

共页第页
五、综合题(每题15分两小题共30分)

复变函数期末考试试卷及答案详解

复变函数期末考试试卷及答案详解

复变函数期末考试试卷及答案详解《复变函数》考试试题(一) 三.计算题(40分):dz1,1、 __________.(为自然数)nn,f(z),|z,z|,10(zz),0D,{z:0,|z|,1}(z,1)(z,2)f(z),求在1. 设22sinz,cosz,2. _________. 内的罗朗展式.1sinz3.函数的周期为___________. dz.,|z|,1cosz2. 12f(z),,,,,3712,f(z)fzd,()z,1C,{z:|z|,3}f'(1,i).,C4.设,则的孤立奇点有__________. ,z,3. 设,其中,试求,z,1nw,nz5.幂级数的收敛半径为__________. ,z,14. 求复数的实部与虚部. n0,6.若函数f(z)在整个平面上处处解析,则称它是__________. 四. 证明题.(20分)zzz,,...,1. 函数在区域D内解析. 证明:如果在D内为常数,f(z)|f(z)|12n,limlimz,,n,,nnn,,7.若,则______________.D那么它在内为常数. zesRe(,0),n0Re1,,z2. 试证: 在割去线段的平面内能分出两zfzzz()(1),,z8.________,其中n为自然数.z,,10Re1,,z个单值解析分支, 并求出支割线上岸取正值的那支在sinz的值.9. 的孤立奇点为________ .《复变函数》考试试题(二) z二. 填空题. (20分)limf(z),___zf(z)z,z0010.若是的极点,则.13sin(2z)1. 设,则 z,,i|z|,__,argz,__,z,__的幂级数展开式. 1. 求函数2222.设,则f(z),(x,2xy),i(1,sin(x,y),,z,x,iy,C2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数在正z实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点________. limf(z),z,1,i处的值. z,idz,3. _________.(为自然数) inn,|z,z|,10(zz),0I,|z|dz3. 计算积分:,积分路径为(1)单位圆()|z|,1,,i,nnz4. 幂级数的收敛半径为__________ . 的右半圆. ,n0,sinzdz,z,25. 若z是f(z)的m阶零点且m>0,则z是的_____零点. ,f'(z)002(,)z24. 求 .z6. 函数e的周期为__________.四. 证明题. (20分) 537. 方程在单位圆内的零点个数为________. 2z,z,3z,8,0f(z)1. 设函数f(z)在区域D内解析,试证:f(z)在D内为常数的充要条件是1f(z),8. 设,则的孤立奇点有_________. f(z)2在D内解析. 1,z2. 试用儒歇定理证明代数基本定理. 9. 函数的不解析点之集为________.f(z),|z|《复变函数》考试试题(三)二. 填空题. (20分) z,1110. . Res(,1),____f(z),1. 设,则f(z)的定义域为___________. 42z,1zz三. 计算题. (40分) 2. 函数e的周期为_________.2n,21n,,z,,i(1,)3. 若,则__________. limz,nnn!n,,1,nnn的收敛半径.2. 试求幂级数z,n22n4. ___________. sinz,cosz,n,dzzedz,5. _________.(为自然数) nn,|z,z|,13. 算下列积分:,其中是.C|z|,10(zz),22,0Cz(z,9),nnx6. 幂级数的收敛半径为__________. ,962n,0z,2z,z,8z,2,04. 求在|z|<1内根的个数.四. 证明题. (20分) 1f(z),7. 设,则f(z)的孤立奇点有__________. 21. 函数在区域D内解析. 证明:如果在D内为常f(z)|f(z)|z,1z数,那么它在D内为常数. 8. 设,则. z,___e,,12. 设是一整函数,并且假定存在着一个正整数n,以及两个正数f(z)z9. 若是的极点,则. f(z)limf(z),___0z,z0R及M,使得当时 |z|,Rzen10. Res(,0),____. n|f(z)|,M|z|, z三. 计算题. (40分) 证明是一个至多n次的多项式或一常数。

复变函数期末考试复习题及答案详解

复变函数期末考试复习题及答案详解

最新范本,供参考!《复变函数》考试试题(一) 1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin_________.3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数n n nz ∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz es ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)二. 填空题. (20分)最新范本,供参考!1. 设i z -=,则____,arg __,||===z z z2.设Ciy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(l i m 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数nn nz∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________.8. 设211)(z z f +=,则)(z f 的孤立奇点有_________.9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz .三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z =处的值.3. 计算积分:⎰-=iiz z I d ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)二. 填空题. (20分) 1. 设11)(2+=z z f ,则f (z )的定义域为___________. 2. 函数e z的周期为_________.最新范本,供参考!3. 若n n ni n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n nnx的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=z e ,则___=z . 9. 若0z是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze.三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn nz nn ∑+∞=!的收敛半径. 3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

复变函数期末考试复习题及答案详解

复变函数期末考试复习题及答案详解

《复变函数》考试试题(一) 1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin_________.3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数n n nz ∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz es ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设Ciy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(l i m 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数nn nz∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________.8. 设211)(z z f +=,则)(z f 的孤立奇点有_________.9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz .三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z =处的值.3. 计算积分:⎰-=iiz z I d ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)二. 填空题. (20分) 1. 设11)(2+=z z f ,则f (z )的定义域为___________. 2. 函数e z的周期为_________.3. 若n n ni n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n nnx的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=z e ,则___=z . 9. 若0z是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze.三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn nz nn ∑+∞=!的收敛半径. 3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

(完整)复变函数_期末试卷及答案,推荐文档

(完整)复变函数_期末试卷及答案,推荐文档

复变函数与积分变换 第 3 页共 6 页
23. 将函数 f (z)
1
在点 z 0 处展开为洛朗级数.
(z 1)(z 2)
dz
25. 计算 |z|3 (z 1)2 (z i)(z 4) .
四、综合题(共 4 小题,每题 8 分,共 32 分)
2
25. 计算
1
d .
0 5 4 cos
A. 3 4i 的主辐角为 arctan 4 3
C. a rg(3 4i)2 2 arg(3 4i)
B. arg(3i) arg(i) D. z z | z |2
3.下列命题中,正确的是( )
A. z 1表示圆的内部
B. Re(z) 0 表示上半平面
C. 0 arg z 表示角形区域 4
19.
( 2)n
幂极数
n2
n 1
zn
的收敛半径为_______.
复变函数与积分变换 第 2 页 共 6 页
20. 设 z3 ,则映射在 z0 1 i 处的旋转角为____________,伸缩率为____________. 20. 设函数 f (t) t 2 sin t ,则 f (t) 的拉氏变换等于____________.
15.已知 F () F[ f (t)] ,则下列命题正确的是( )
A. F[ f (t 2)] e2 j F ()
B. e2 j f (t) F 1[F ( 2)]
C. F[ f (2t)] 2F (2)
D. F[e2 jt f (t)] F ( 2)
二、填空题(本大题共 5 小题,每小题 2 分,共 10 分)
解:设曲线 C 的参数方程为 C : z (2 3i)t 0 t 1.

(完整版)《复变函数》考试试题与答案(二)

(完整版)《复变函数》考试试题与答案(二)

《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续.( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( ) 6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f . ( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( )10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f . ( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f i z ________.3. =-⎰=-1||00)(z z n z z dz _________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________.8. 设211)(z z f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z =处的值.3. 计算积分:⎰-=ii z z I d ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求 dz z z z ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(二)参考答案一. 判断题.1.√ 2.×3.√ 4.√ 5.×6.×7.×8.√ 9.×10.×.二. 填空题1.1,2π-, i ;2. 3(1sin 2)i +-;3. 2101i n n π=⎧⎨≠⎩; 4. 1; 5. 1m -. 6. 2k i π,()k z ∈. 7. 0; 8. i ±; 9. R ; 10. 0.三. 计算题1. 解 3212163300(1)(2)(1)2sin(2)(21)!(21)!n n n n n n n z z z n n +++∞∞==--==++∑∑. 2. 解 令i z re θ=.则22(),(0,1)k i f z k θπ+===.又因为在正实轴去正实值,所以0k =.所以4()i f i e π=.3. 单位圆的右半圆周为i z e θ=, 22ππθ-≤≤.所以22222i i i i z dz de e i ππθθππ---===⎰⎰.4. 解 dz z zz ⎰=-22)2(sin π2)(sin 2ππ='=z z i 2cos 2ππ==z zi =0.四. 证明题.1. 证明 (必要性) 令12()f z c ic =+,则12()f z c ic =-. (12,c c 为实常数). 令12(,),(,)u x y c v x y c ==-. 则0x y y x u v u v ====. 即,u v 满足..C R -, 且,,,x y y x u v u v 连续, 故()f z 在D 内解析. (充分性) 令()f z u iv =+, 则 ()f z u iv =-,因为()f z 与()f z 在D 内解析, 所以,x y y x u v u v ==-, 且(),()x y y y x x u v v u v v =-=-=--=-. 比较等式两边得 0x y y x u v u v ====. 从而在D 内,u v 均为常数,故()f z 在D 内为常数.2. 即要证“任一 n 次方程 101100(0)n n n n a z a z a z a a --++⋅⋅⋅++=≠ 有且只有 n 个根”.证明 令1011()0n n n n f z a z a z a z a --=++⋅⋅⋅++=, 取10max ,1n a a R a ⎧⎫+⋅⋅⋅+⎪⎪>⎨⎬⎪⎪⎩⎭, 当z 在:C z R =上时, 有 111110()()n n n n n n z a R a R a a a R a R ϕ---≤+⋅⋅⋅++<+⋅⋅⋅+<. ()f z =.由儒歇定理知在圆 z R < 内, 方程10110n n n n a z a z a z a --++⋅⋅⋅++= 与 00n a z = 有相同个数的根. 而 00n a z = 在 z R < 内有一个 n 重根 0z =. 因此n 次方程在z R <内有n 个根.。

复变函数期末考试复习题及答案详解

复变函数期末考试复习题及答案详解

《复变函数》考试试题(一) 1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin_________.3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数n n nz ∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz es ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设Ciy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(l i m 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数nn nz∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________.8. 设211)(z z f +=,则)(z f 的孤立奇点有_________.9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz .三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z =处的值.3. 计算积分:⎰-=iiz z I d ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)二. 填空题. (20分) 1. 设11)(2+=z z f ,则f (z )的定义域为___________. 2. 函数e z的周期为_________.3. 若n n ni n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n nnx的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=z e ,则___=z . 9. 若0z是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze.三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn nz nn ∑+∞=!的收敛半径. 3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

(完整版)《复变函数》期末试卷及答案(A卷)(可编辑修改word版)

(完整版)《复变函数》期末试卷及答案(A卷)(可编辑修改word版)

a - b1- abn (z -1) n (z -1) XXXX 学院 2016—2017 学年度第一学期期末考试复变函数 试卷7.幂级数∑(-1)n n =0z n2nn !的和函数是()学号和姓名务必正确清 A. e -zz B. e2- zC. e2dzD. sin z楚填写。

因填写错误或不清 8. 设C 是正向圆周 z = 2 ,则⎰C z2=()楚造成不良后果的,均由本 A. 0 B. - 2i C. iD. 2i人负责;如故意涂改、乱写 的,考试成绩 答一、单项选择题(本大题共 10 小题,每题 3 分,共 30 9. 设函数 f (z ) 在0 < z - z 0 < R (0 < R ≤ +∞) 内解析,那么 z 0 是 f (z ) 的极点的充要条件是()A. lim f (z ) = a ( a 为复常数)B. lim f (z ) = ∞视为无效。

题分,请从每题备选项中选出唯一符合题干要求的选项,z → z 0z → z 0请勿1.Re(i z ) =并将其前面的字母填在题中括号内。

)()10. 10. C. lim f (z ) 不存在D.以上都对z → z 0ln z 在 z = 1处的泰勒级数展开式为 ()超 A. - Re(i z )B. Im(i z )∞(z -1)n +1∞ (z -1)n A. ∑(-1)n, z -1 < 1B. ∑(-1)n, z -1 < 1过C. - Im z此 D. Im zn =1∞n +1n +1n =1 n∞n2. 函数 f (z ) =z 2在复平面上()C. ∑(-1) , z -1 < 1D. ∑(-1) , z -1 < 1密 封 A.处处不连续B.处处连续,处处不可导线 C.处处连续,仅在点 z = 0 处可导D.处处连续,仅在点 z = 0 处解析,3. 设复数 a 与b 有且仅有一个模为 1,则的值()n =0n +1 n =0n 否 则 A.大于 1 B.等于 1 C.小于 1D.无穷大视 4. 设 z = x + i y ,f (z ) = - y + i x ,则 f '(z ) = ()二、填空题(本大题共 5 小题,每题 3 分,共 15 分)为A.1+ i无B. isin zC. -1D. 011. z = 1+ 2i 的5. 设C 是正向圆周 z = 1 , ⎰C dz = 2i ,则整数n 等于 ()zn A. -1B. 0e z -1C.1D. 26. z = 0 是 f (z ) =的()z2A.1阶极点B. 2 阶极点C.可去奇点D.本性奇点∞系别专业姓名班级学号(最后两位)总分 题号 一 二 三四统分人 题分 30203030复查人得分得分评卷人复查人得分评卷人复查人⎰18.求在映射 w = z 2 下, z _ _ _ _ 平面上的直线 __ _z = (2 + i)t 被映射成 w 平面上的曲线的方程.12.设 z = (2 - 3i)(-2 + i) ,则arg z =.13.在复平面上,函数 f (z ) = x 2 - y 2 - x + i(2xy - y 2 ) 在直线上可导.cos 5z.19.求e z 在 z = 0 处的泰勒展开式.14. 设C 是正向圆周 z = 1 ,则 ⎰Cdz = .z∞ ∞∞15. 若级数∑ zn 收敛,而级数∑ zn 发散,则称复级数∑ zn 为.n =1n =1n =1三、计算题(本大题共 5 小题,每小题 8 分,共 40 分)16. 利用柯西-黎曼条件讨论函数 f (z ) = z 的解析性.20.计算积分1+iz 2dz .2017 + n i 17.判断数列 z n = n +1的收敛性. 若收敛,求出其极限.三、证明题(本大题共1 小题,每小题15 分,共15 分)nn !⎩ 21.试证明柯西不等式定理:设函数 f (z ) 在圆C : z - z 0 = R 所围的区域内解析,且在C因此在任何点(x , y ) 处, ∂u ≠∂v,所以 f (z ) 在复平面内处处不解析。

复变函数期末考试复习题及答案详解

复变函数期末考试复习题及答案详解

《复变函数》考试试题(一)1、__________.(为自然数)2。

_________。

3.函数的周期为___________.4.设,则的孤立奇点有__________。

5.幂级数的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________。

7.若,则______________.8。

________,其中n为自然数.9。

的孤立奇点为________。

10.若是的极点,则。

三.计算题(40分):1. 设,求在内的罗朗展式.2.3. 设,其中,试求4. 求复数的实部与虚部.四。

证明题.(20分)1。

函数在区域内解析. 证明:如果在内为常数,那么它在内为常数。

2。

试证:在割去线段的平面内能分出两个单值解析分支,并求出支割线上岸取正值的那支在的值.《复变函数》考试试题(二)二。

填空题. (20分)1。

设,则2。

设,则________。

3. _________。

(为自然数)4. 幂级数的收敛半径为__________ 。

5. 若z0是f(z)的m阶零点且m>0,则z0是的_____零点。

6. 函数e z的周期为__________.7. 方程在单位圆内的零点个数为________.8. 设,则的孤立奇点有_________。

9。

函数的不解析点之集为________。

10. .三。

计算题. (40分)1。

求函数的幂级数展开式。

2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点处的值。

3。

计算积分:,积分路径为(1)单位圆()的右半圆。

4. 求。

四。

证明题。

(20分)1. 设函数f(z)在区域D内解析,试证:f(z)在D内为常数的充要条件是在D内解析。

2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)二. 填空题. (20分)1. 设,则f(z)的定义域为___________.2。

《复变函数与积分变换》期末考试试卷A及答案

《复变函数与积分变换》期末考试试卷A及答案

《复变函数与积分变换》期末考试试卷A及答案六、(本题6分)求)()(0>=-ββtet f 的傅立叶变换,并由此证明:te d t ββπωωβω-+∞=+⎰2022cos三.按要求完成下列各题(每小题10分,共40分)(1).设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂ xvy u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。

(2).计算⎰-C zz zz e d )1(2其中C 是正向圆周: 解:本题可以用柯西公式\柯西高阶导数公式计算也可用留数计算洛朗展开计算,仅给出用前者计算过程因为函数z z e z f z2)1()(-=在复平面内只有两个奇点1,021==z z ,分别以21,z z 为圆心画互不相交互不包含的小圆21,c c 且位于c 内⎰⎰⎰-+-=-21d )1(d )1(d )1(222C z C z C zz z z e z zz e z z z e i z e iz e i z zz z πππ2)1(2)(2021=-+'===无论采用那种方法给出公式至少给一半分,其他酌情给分。

(3).⎰=++3342215d )2()1(z z z z z解:设)(z f 在有限复平面内所有奇点均在:3<z 内,由留数定理]),([Re 2d )2()1(3342215∞-=++⎰=z f s i z z z z z π -----(5分) ]1)1([Re 22z z f s i π= ----(8分)234221521))1(2()11()1(1)1(z z zz zz f ++=0,z )12()1(11)1(34222=++=有唯一的孤立奇点z z z z z f 1)12()1(11)1(]0,1)1([Re 34220202lim lim =++==→→z z z z zf z z f s z z⎰==++∴33422152d )2()1(z i z z z z π --------(10分)(4)函数2332)3()(sin )2)(1()(-+-=z z z z z z f π在扩充复平面上有什么类型的奇点?,如果有极点,请指出它的级. 解:∞±±±==-+-=,的奇点为 ,3,2,1,0,)(sin )3()2)(1()(3232k k z z z z z z z f π(1)的三级零点,)为(032103=±±±==z kk z πsin ,,,,,(2)的可去奇点,是的二级极点,为,)()(,z f z z f z z 210-=±== (3)的一级极点,为)(3z f z =(4)的三级极点;,为)(4,3,2z f z±-=(5)的非孤立奇点。

《复变函数》考试试题与答案各种总结

《复变函数》考试试题与答案各种总结

《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支,并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(一)参考答案一. 判断题1.×2.√ 3.√ 4.√ 5.√ 6.√ 7.×8.×9.×10.× 二.填空题 1. 2101i n n π=⎧⎨≠⎩; 2. 1; 3. 2k π,()k z ∈; 4. z i =±; 5. 16. 整函数;7. ξ;8. 1(1)!n -; 9. 0; 10. ∞.三.计算题.1. 解 因为01,z << 所以01z <<111()(1)(2)12(1)2f z z z z z ==-----001()22nn n n z z ∞∞===-∑∑.2. 解 因为22212Re ()limlim 1cos sin z z z z s f z z z ππππ→→=+===--, 22212Re ()limlim 1cos sin z z z z s f z z zππππ→-→-=--===-. 所以22212(Re ()Re ()0cos z z z dz i s f z s f z z πππ==-==+=⎰. 3. 解 令2()371ϕλλλ=++, 则它在z 平面解析, 由柯西公式有在3z <内, ()()2()c f z dz i z z ϕλπϕλ==-⎰.所以1(1)2()2(136)2(613)z i f i i z i i i πϕππ=+''+==+=-+. 4. 解 令z a bi =+, 则 222222122(1)2(1)211111(1)(1)(1)z a bi a bw z z a b a b a b -+-+==-=-=-+++++++++. 故 2212(1)Re()11(1)z a z a b -+=-+++, 2212Im()1(1)z bz a b -=+++. 四. 证明题.1. 证明 设在D 内()f z C =.令2222(),()f z u iv f z u v c =+=+=则.两边分别对,x y 求偏导数, 得 0(1)0(2)x x yy uu vv uu vv +=⎧⎨+=⎩因为函数在D 内解析, 所以,x y y x u v u v ==-. 代入 (2) 则上述方程组变为00x x x x uu vv vu uv +=⎧⎨-=⎩. 消去x u 得, 22()0x u v v +=. 1) 若220u v +=, 则 ()0f z = 为常数.2) 若0x v =, 由方程 (1) (2) 及 ..C R -方程有0,x u = 0y u =, 0y v =. 所以12,u c v c ==. (12,c c 为常数).所以12()f z c ic =+为常数. 2.证明()f z =0,1z =. 于是割去线段0Re 1z ≤≤的z 平面内变点就不可能单绕0或1转一周, 故能分出两个单值解析分支.由于当z 从支割线上岸一点出发,连续变动到0,1z = 时, 只有z 的幅角增加π. 所以()f z =2π. 由已知所取分支在支割线上岸取正值, 于是可认为该分支在上岸之幅角为0, 因而此分支在1z =-的幅角为2π,故2(1)i f e π-==.《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续. ( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( )10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f .( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(zz f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(二)参考答案一. 判断题.1.√ 2.×3.√ 4.√ 5.×6.×7.×8.√ 9.×10.×. 二. 填空题1.1,2π-, i ; 2. 3(1sin 2)i +-; 3. 2101i n n π=⎧⎨≠⎩; 4. 1; 5. 1m -. 6. 2k i π,()k z ∈. 7. 0; 8. i ±; 9. R ; 10. 0. 三. 计算题1. 解 3212163300(1)(2)(1)2sin(2)(21)!(21)!n n n n n n n z z z n n +++∞∞==--==++∑∑.2. 解 令i z re θ=.则22(),(0,1)k if z k θπ+===.又因为在正实轴去正实值,所以0k =.所以4()if i eπ=.3. 单位圆的右半圆周为i z e θ=, 22ππθ-≤≤.所以22222ii i iz dz de ei ππθθππ---===⎰⎰.4. 解dz z zz ⎰=-22)2(sin π2)(sin 2ππ='=z z i 2cos 2ππ==z zi =0.四. 证明题.1. 证明 (必要性) 令12()f z c ic =+,则12()f z c ic =-. (12,c c 为实常数). 令12(,),(,)u x y c v x y c ==-. 则0x y y x u v u v ====. 即,u v 满足..C R -, 且,,,x y y x u v u v 连续, 故()f z 在D 内解析. (充分性) 令()f z u iv =+, 则 ()f z u iv =-, 因为()f z 与()f z 在D 内解析, 所以,x y y x u v u v ==-, 且(),()x y y y x x u v v u v v =-=-=--=-.比较等式两边得 0x y y x u v u v ====. 从而在D 内,u v 均为常数,故()f z 在D 内为常数.2. 即要证“任一 n 次方程 101100(0)n n n n a z a z a z a a --++⋅⋅⋅++=≠ 有且只有 n 个根”.证明 令1011()0nn n n f z a z a z a z a --=++⋅⋅⋅++=, 取10max ,1n a a R a ⎧⎫+⋅⋅⋅+⎪⎪>⎨⎬⎪⎪⎩⎭, 当z 在:C z R =上时, 有 111110()()n n nn n n z a R a R a a a R a R ϕ---≤+⋅⋅⋅++<+⋅⋅⋅+<.()f z =.由儒歇定理知在圆 z R < 内, 方程10110n n n n a z a z a z a --++⋅⋅⋅++= 与 00na z = 有相同个数的根. 而 00na z = 在 z R < 内有一个 n 重根 0z =. 因此n 次方程在z R <内有n 个根.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( ) 8. 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分)1. 设11)(2+=z z f ,则f (z )的定义域为___________.2. 函数e z 的周期为_________.3. 若n n n i n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze ,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze .三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

复变函数与积分变换期末考试试卷及答案

复变函数与积分变换期末考试试卷及答案

一、单项选择题(本大题共15小题,每题2分,共30分) 1.以下复数中,位于第三象限的复数是〔 〕A. 12i +B. 12i --C. 12i -D. 12i -+ 2.以下等式中,不成立的等式是〔 〕4.34arctan3A i π-+-的主辐角为 .arg(3)arg()B i i -=-2.rg(34)2arg(34)C a i i -+=-+2.||D z z z ⋅=3.以下命题中,正确的选项是......〔 〕 A. 1z >表示圆的内部B. Re()0z >表示上半平面C. 0arg 4z π<<表示角形区域D. Im()0z <表示上半平面4.关于0limz zz zω→=+以下命题正确的选项是〔 〕 A.0ω=B. ω不存在C.1ω=-D. 1ω=5.以下函数中,在整个复平面上解析的函数是〔 〕.z A z e +2sin .1z B z + .tan z C z e + .sin zD z e +6.在复平面上,以下命题中,正确的选项是......〔 〕A. cos z 是有界函数B. 22Lnz Lnz =.cos sin iz C e z i z =+.||D z =7.在以下复数中,使得ze i =成立的是〔 〕.ln 223iA z i ππ=++.ln 423iB z i ππ=++.ln 226C z i ππ=++.ln 426D z i ππ=++8.已知31z i =+,则以下正确的选项是〔 〕12.iA z e π=34.i B z eπ=712.i C z eπ=3.iD z e π=9.积分||342z dz z =-⎰的值为〔 〕A. 8i πB.2C. 2i πD. 4i π10.设C 为正向圆周||4z =, 则10()zC e dz z i π-⎰等于〔 〕 A.110!B.210!iπ C.29!iπ D.29!iπ- 11.以下关于级数的命题不正确的选项是〔 〕A.级数0327nn i ∞=+⎛⎫⎪⎝⎭∑是绝对收敛的B.级数212(1)n n i n n ∞=⎛⎫+ ⎪-⎝⎭∑是收敛的 C. 在收敛圆内,幂级数绝对收敛D.在收敛圆周上,条件收敛12.0=z 是函数(1cos )ze z z -的〔 〕A. 可去奇点B.一级极点C.二级极点D. 三级极点13.1(2)z z -在点 z =∞ 处的留数为〔 〕A. 0.1B C.12D. 12-14.设C 为正向圆周1||=z , 则积分 sin z c e dzz⎰等于〔 〕A .2πB .2πiC .0D .-2π15.已知()[()]F f t ω=F ,则以下命题正确的选项是〔 〕 A. 2[(2)]()j f t e F ωω-=⋅F B. 21()[(2)]j e f t F ωω-⋅=+F C. [(2)]2(2)f t F ω=FD. 2[()](2)jt e f t F ω⋅=-F二、填空题〔本大题共5小题,每题2分,共10分〕 16. 设121,1z i z =-=,求12z z ⎛⎫=⎪⎝⎭____________. 17. 已知22()()()f z bx y x i axy y =++++在复平面上可导,则a b +=_________. 18. 设函数)(z f =cos zt tdt ⎰,则)(z f 等于____________.19. 幂极数n n2n 1(2)z n ∞=-∑的收敛半径为_______. 20. 设3z ω=,则映射在01z i =+处的旋转角为____________,伸缩率为____________. 20. 设函数2()sin f t t t =,则()f t 的拉氏变换等于____________.三、计算题〔本大题共4小题,每题7分,共28分〕 21.设C 为从原点到3-4i 的直线段,计算积分[()2]CI x y xyi dz =-+⎰22. 设2()cos ze f z z z i=+-. (1)求)(z f 的解析区域,〔2〕求).(z f '24.已知22(,)4u x y x y x =-+,求一解析函数()(,)(,)f z u x y iv x y =+,并使(0)3f = 23. 将函数1()(1)(2)f z z z =--在点0=z 处展开为洛朗级数.25. 计算2||3(1)()(4)z dzz z i z =++-⎰.四、综合题〔共4小题,每题8分,共32分〕 25. 计算201.54cos d πθθ-⎰26. 求分式线性映射()f z ω=,使上半平面映射为单位圆内部并满足条件(2)0f i =,arg (0)1f =.27. 求函数2,10(),010,t f t t t --<≤⎧⎪=<≤⎨⎪⎩其它的傅氏变换。

复变函数与积分变换期末考试-11-12-1-A-试题&答案

复变函数与积分变换期末考试-11-12-1-A-试题&答案






2011-2012 学年第二学期《复变函数与积分变换》期末考试卷(A 卷)
(参考答案)
学院
专业
班级
学号
题 得 号 分 一 二
姓名
三 四 总分
阅卷人
一、填空题(每小题 3 分,共 18 分)
1. 复数 i 的指数形式为____ e 2.
i
2 k 2
______。
ln(3i)
2
π ln 3 i 2

3. 级数 1 z z
zn
的和函数的解析域是
| z |1

4.
1 e2 z 1 e2 z 4 z 0 是 4 的 3 阶极点, Re s[ 4 , 0] 。 z 3 z
2
5. 在映射 w z i z 下, z i 处的旋转角为__
(8 分)
由于 f (i) 2i ,得 c 1 (9 分) , f ( z ) (4 xy y 1) i(2 x 2 y x) (10 分)
2.
2

z
z z 1 e dz z 1
2 1 1 2 ( ) z 1 2! z 1
2
e z 1 1
v y 4 y u x , u 4 xy c( y) , v x (4 x 1) u y , (4 x 1) 4 x c( y)
c( y) 1, c( y) y c
u( x, y) 4 xy y c
2 2
我们有,
1 1 1 z 3 z 1 z1 3! 5! 7!
z =0为f ( z )的三阶极点, 1 Re s[ f ( z ),0] . 5!
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天津工业大学(2011—2012学年第一学期) 《复变函数》期末试卷(A )(2011. 12理学院)
特别提示:
请考生在密封线左侧的指定位置按照要求填写个人信息,若写在其它处视为作弊。

试卷共有六个大题,请认真核对后解答,若有疑问请与监考教师联系。


每题3分) 1. 设y x ,为实数, 当x = , y = 时,)1()35()3()1(i i y i x +=+-++成立. 2. 函数4z w =把z 平面上的区域5arg 0π<<z 映射成w 平面上的象是 . 3. 已知n i n e n πα)11(+=,则=∞→n n αlim _________. 4. ⎰=-12sin z z dz z z e =____________, ⎰=-2c o s z dz i z z =_____________. 5. 幂级数∑∞=⎥⎦⎤⎢⎣⎡+-121)1(n n n i n 的收敛性为___________(绝对收敛, 条件收敛, 发散). 6. 0=z 是23sin )(z z z f =的_____________级零点.
7. =-]0 ,sin [Re 6z z
z s ____________.
-------------------------------密

线
----------------------------------------


线
----------------------------------------密

线---------------------------------------

院 专业班
学号
姓名 装
订线装订线装订线

计算下列各题(每小题6分)
1. 求41
)1(i +-的值.
2. 求i i -1的模与主值.

计算下列各题(每小题6分)
1. 计算积分⎰c
zdz ,其中积分路径c 为 (1) 从原点出发到i +2的直线段;
(2) 从原点沿实轴至2,再由2铅直向上至i +2的折线.
2. 计算积分,)4()1(12dz z z C ⎰
+-其中曲线C 为正向圆周3||=z .
3. 计算积分⎰
+C z dz i z z e )(2,其中曲线C 为正向圆周2||=+i z .
4. 求积分
⎰=-1sin 1z z dz z z e . (提示:用留数定理)

每小题6分)
1. 将函数61
)(2-+=z z z f 在点10=z 处展为泰勒级数, 并指出收敛半径.
2. 写出函数)1)((1
)(2++=z i z z f 以i -为中心的解析圆环域,并在各圆环域内将
()f z 展为洛朗级数.

求解下列各题(第一小题6分,第二小题7分)
1. 设⎰
=-+-=23
324)(4)(ξξξξξd z z f , 其中23≠z , 求)1(),41(f i f '-.
2. 已知2222),(y x x y x v -+=, (1) 证明 ),(y x v 为调和函数;
(2) 求解析函数iv u z f +=)(,使得i f 3)1(=.

求解下列各题(每小题6分)
1. 指出函数)1(1
2)(2++=z z z z f 的有限孤立奇点及类型,若为极点,请指明级数,并
求)(z f 在各个孤立奇点处的留数.
2. 写出函数 =)(z f 11
3
)1(--z e z 在1=z 处的洛朗级数,根据洛朗级数的特点求
[]1),(Re z f s , 并计算积分dz e z z z ⎰=--3113)
1(.
七.
证明函数2
w z
在复平面上不解析.。

相关文档
最新文档