催化作用导论第五章氧化还原型催化剂及其催化作用

合集下载

工业催化原理PPT

工业催化原理PPT

1.2.1催化反应分类
按催化反应系统物相的均一性进行分类
均相催化反应
非均相(又称多 相)催化反应
酶催化反应
均相催化反应是指 反应物和催化剂居 于同一相态中的反 应。
非均相催化反应是 指反应物和催化剂 居于不同相态的反 应。
酶催化反应同时 具有均相和非均 相反应的性质。
1.2.1催化反应分类
按反应类型进行分类
表1-3 催化剂对可能进行的特定反应的选择催化作
反应类用型
常用催化剂
加氢 脱氢 氧化
羰基化
聚合 卤化 裂解 水合 烷基化,异构化
Ni,Pt,Pd,Cu,NiO,MoS2,WS2,Co(CN)63Cr2O3,Fe2O3,ZnO,Ni,Pd,Pt V2O3,MoO3,CuO,Co3O4,Ag,Pd,Pt,PdCl2 Co2(CO)8,Ni(CO)4,Fe(CO)3,PdCl(Pph3)3*,RhCl2(CO)Pp
问题2:请同学们举二个以上的实例?
1.1.4催化剂对加速化学反应具有选择性
表1-2 催化剂对可能进行的特定反应的选择催化作 用
反应物 催化剂及反应条件
Rh/Pt/SiO2,573K,7×105Pa
CO+H
2
Cu-Zn-O,Zn-Cr-O,573K, 1.0133×107~ 2.0266×107Pa
1.1.2催化作用不能改变化学平衡
问题1:实际工业上催化正反应、逆反应 时为什么往往选用不同的催化剂?
❖ 第一,对某一催化反应进行正反应和进行逆反应的操 作条件(温度、压力、进料组成)往往会有很大差别, 这对催化剂可能会产生一些影响。
❖ 第二,对正反应或逆反应在进行中所引起的副反应也 是值得注意的,因为这些副反应会引起催化剂性能变 化。

各种催化剂及其催化作用

各种催化剂及其催化作用

各种催化剂及其催化作用催化剂是指在化学反应中参与反应过程,但在反应结束后仍能够恢复原状,不发生永久变化的物质。

催化剂能够降低反应的活化能,从而加速反应速率,提高反应的效率。

以下是一些常见的催化剂及其催化作用。

1.酶类催化剂:酶是生物体内的一类催化剂,它们能够加速和控制细胞内的化学反应。

例如,淀粉酶可以催化淀粉分解为葡萄糖;脱氢酶可以催化乳酸转化为丙酮酸。

2.金属催化剂:金属催化剂是最常见的一类催化剂,可以分为均相催化剂和异相催化剂。

均相催化剂溶解在反应物中,例如铂金催化剂可以催化氢气与氧气的反应生成水。

异相催化剂存在于反应物的表面,例如铁催化剂可以催化氧气和一氧化碳反应生成二氧化碳。

3.酸碱催化剂:酸和碱都可以作为催化剂,它们能够提供可用于化学反应的质子或氢离子。

例如,硫酸催化剂可以催化脂肪酸的酯化反应,碱催化剂可以催化酯类的水解反应。

4.过渡金属催化剂:过渡金属催化剂是一类特殊的金属催化剂,由过渡金属元素组成。

它们可以在反应中形成中间物种,从而加速反应的进行。

例如,氨合成反应中使用的铁催化剂能够促使氢气和氮气反应生成氨。

5.醇酶催化剂:醇酶是一类催化剂,可以催化香蕉、苹果等水果中的醇类物质从醛、酮分化成醇。

6.光催化剂:光催化剂是通过吸收光能并产生电荷转移,从而促进化学反应的催化剂。

例如,二氧化钛是一种常见的光催化剂,可以催化水的光解反应,产生氢气和氧气。

7.植物色素催化剂:植物色素是一类具有催化性质的有机化合物,可以催化光合作用中的反应。

例如,叶绿素是光合作用中的重要催化剂,能够催化光能的吸收和转化。

以上仅是一些常见的催化剂及其催化作用,实际上还有许多其他催化剂和催化作用。

催化剂在化学工业和生命科学领域中起着至关重要的作用,能够提高反应速率、增加产物产量和节约能源等。

随着科学技术的发展,对催化剂的研究和应用还将进一步深化,为人类的生活和工业生产带来更多的便利和进步。

各类催化剂的组成结构及其催化作用规律与催化机理

各类催化剂的组成结构及其催化作用规律与催化机理

各类催化剂的组成结构及其催化作用规律与催化机理催化剂是一种能够加速化学反应速率而不发生化学变化的物质。

不同类型的催化剂在组成、结构和催化作用规律及催化机理上存在差异。

1.金属催化剂:金属催化剂主要由一种或多种金属元素组成。

它们的结构可以是单质金属,合金或金属氧化物。

金属催化剂的催化作用规律是活性中心和反应物之间的相互作用。

催化机理有两种类型:双电子传递和继承。

2.酸碱催化剂:酸碱催化剂是通过提供或接受质子(酸)或氢氧根离子(碱)来促进反应的催化剂。

它们的组成可以是无机酸或碱(如氢氟酸和氢氧化钠),也可以是有机酸或碱(如有机酸和胺)。

酸碱催化剂的催化作用规律是在酸碱性环境中,反应物与催化剂之间的反应活性。

3.酶催化剂:酶是一种生物催化剂,是由蛋白质组成的大分子催化剂。

它们的组成是由酶蛋白质和辅助物质(如金属离子和辅酶)组成。

酶催化剂的催化作用规律是酶与底物形成酶底物复合物,并通过改变底物的反应活性、方向和速率来催化反应。

4.氧化剂:氧化剂是一种能够在反应中接受电子的催化剂。

它们的组成可以是金属氧化物(如铬酸和二氧化锰)或有机化合物(如过氧化物和过氧硫酸氢钠)。

氧化剂的催化作用规律是通过在反应中接受电子,使反应底物发生氧化反应。

5.还原剂:还原剂是一种能够在反应中捐赠电子的催化剂。

它们的组成可以是金属(如钠和锌)或有机化合物(如氢化钠和氢气)。

还原剂的催化作用规律是通过在反应中捐赠电子,使反应底物发生还原反应。

催化剂的催化机理是根据不同的催化剂类型而不同的。

例如,金属催化剂通过吸附反应底物并与其发生反应来催化反应。

酸碱催化剂通过给予或接受质子或氢氧根离子来改变反应底物的反应性质。

酶催化剂通过形成酶底物复合物并在酶的活性位点上发生催化反应。

氧化剂通过向底物接受电子来氧化底物,而还原剂则捐赠电子给底物来还原底物。

总之,不同类型的催化剂在组成、结构、催化作用规律和催化机理上存在差异。

了解和掌握不同催化剂的特点和催化机理对于合理设计和选择催化剂,并优化催化反应至关重要。

催化作用导论 第五章 氧化还原型催化剂及其催化作用

催化作用导论 第五章 氧化还原型催化剂及其催化作用

在八面体场中


这些轨道以不同的角度与表面相交,这种差 别会影响到轨道健合的有效性。 用这种模型,原则上可以解释金属表面的化 学吸附。不仅如此,它还能解释不同晶面之间化 学活性的差别;不同金属间的模式差别和合金效 应。如吸附热随覆盖度增加而下降,最满意的解 释是吸附位的非均一性,这与定域键合模型的观 点一致。Fe催化剂的不同晶面对NH3合成的活性不 同,如以[110]晶面的活性为1,则[100]晶面的活性 为它的21倍;而[111]晶面的活性更高,为它的440 倍。这已为实验所证实。 上述金属键合的三种模型,都可用特定的参 量与金属的化学吸附和催化性能相关联,它们是 相辅相成的。
2、金属能带的特征
(1)d能带的能级密度大
能级密度( N ( E )):单位能量间隔中拥有的精 细能级的数目。 由量子力学计算知: 能级的宽度:s带 > p带 > d带;
能带拥有能级数:s带 < p带 < d带;
所以,d能带的能级密度大。
( 2)金属的满带与空带之间是连续的,没有能量间隙。 价带和导带间能量也是连续的。
所谓d空穴就是d能带上有能级而无电子,它具有获 得电子的能力。 d带空穴愈多,则说明末配对的 d电子 愈多(磁化率愈大),对反应分子的化学吸附也愈强。 “ d 带空穴”概念对于理解过渡金属的化学吸附 和催化作用是非常重要的。如果金属能带的电子全充 满时,它就难于成键了。
对于Pd和IB族(Cu、Ag、Au)元素d轨道是填满的, 但相邻的S轨道上没有填满电子。在外界条件影响下, 如升高温度时d电子仍可跃辽到S轨道上,从而形成d空 穴,产生化学吸附。
二、化学吸附与催化性能
1、气体在金属上的吸附能力
常见气体在各种金属(Au例外)上化学吸附的 强弱与其化学活泼顺序相一致,即: O2>C2H2>C2H4>CO>CH4>H2>CO2>N2 根据不同金属对气体的化学吸附能力的不同, 可将它们分成几组:

各种催化剂及其催化作用

各种催化剂及其催化作用

各种催化剂及其催化作用催化剂是在化学反应中加速反应速率但本身并不参与反应的物质。

通过提供一个能量有效的反应途径,催化剂可以降低活化能,从而促进反应的进行。

催化剂在各个行业都有广泛的应用,包括化学、能源、环境和医药等领域。

下面是一些常见催化剂及其催化作用的例子。

1.酶催化剂:酶是生物催化剂的代表。

酶在生物体内促进化学反应的进行,如消化食物、合成物质等。

酶催化剂具有高效、高选择性、低能量消耗等优点。

2.转金属催化剂:金属催化剂广泛应用于有机合成反应中。

例如,钯催化剂常用于氢化反应、交叉缩合反应等。

金属催化剂可以提供有效的活化位点,加速反应的进行。

3.齐特尔催化剂:齐特尔催化剂常用于聚合反应中。

例如,钛齐特尔催化剂被广泛用于聚合丙烯、乙烯等。

4.五氧化二钒催化剂:五氧化二钒催化剂可用于氮氧化物的催化还原。

五氧化二钒可将氮氧化物(如NOx)还原为氮气和水。

5.铂催化剂:铂催化剂常用于汽车尾气处理中。

它可以将一氧化碳(CO)和氮氧化物(NO)转化为无害的二氧化碳和氮气。

6.锂催化剂:锂催化剂可用于有机合成中的各种反应,如还原、氧化等。

锂催化剂在有机合成中具有高效、高选择性和环境友好的特点。

7.过渡金属催化剂:过渡金属催化剂广泛应用于有机合成和不对称合成中。

它们可以催化诸多反应,如氧化反应、还原反应、偶联反应等。

8.碱催化剂:碱催化剂可用于酯化、烷基化等反应。

对于许多有机反应,碱催化可大大提高反应速率。

9.氧化剂催化剂:氧化剂催化剂可用于氧化反应,如醇的氧化、烃的氧化等。

例如,二氧化锰常用作氧化剂。

10.鲍耳催化剂:鲍耳催化剂可用于烯烃的水化反应。

鲍耳催化剂可以将烯烃转化为醇。

除了以上提到的催化剂,还有很多其他种类的催化剂被广泛应用于各个领域。

催化剂的运用不仅可以提高化学反应的速率和产率,还可以使反应更加环保和节能。

催化剂的发展和应用在加速科学和工业的进步中起到了至关重要的作用。

中科院研究生课件《催化原理》第五章配合物催化剂及其作用机理

中科院研究生课件《催化原理》第五章配合物催化剂及其作用机理
Cu-Zn-Al Zeolit CO + H2 CH3OH Gasoil (Mobil) 低压
催化原理
第三章:催化作用的化学基础 化学反应的电子概念;基元化学 反应机理;晶体场和配位场理论;均相、多相和酶催
化反应机理的同一性;催化剂结构对其催化性能的影
响 第四章:酸、碱催化及其作用机理 酸、碱的定义;一般酸、碱
催化反应;特殊酸碱催化反应;一般酸、碱和特殊
酸、碱催化反应的区别;酸函数和酸强度; Bronsted 规 规则; Lewis酸催化 第五章 配合物催化剂及其作用机理 配合物催化剂分类;配合 物催化剂的作用特点;配位催化中的有效原子规则及 其基元反应分类;配位催化中的多催化剂体系;各种
热烈欢迎
来自五湖四海的朋友们
进入中科院研究生院深造
催化原理
无机化学 有机化学 物理化学 分析化学 无机化工 化学工程 化学工艺 应用化学 生物化工 工业催化
催化科学与 化工机械 应用化学
化学工程
与技术
我国1971年开始
催化原理
无机:合成氨、硝酸和硫酸 ,自然涉及Fe, Pt, V2O5催化剂, 有机:生产甲醇、乙酸(甲醇+CO)和苯乙烯(乙苯脱氢)就 会涉及Cu-Zn-Al,Rh络合物,Fe3O4-K2O-Cr2O3; 分析:化学传感器;
加热方法
光化学方法 电化学方法 辐射化学方法
缺乏足够的化学选择性,消耗能量
消耗额外的能量
催化方法 既能提高反应速度,又能对反应方向进行控制, 且催化剂原则上是不消耗的。 应用催化剂是提高反应速度和控制反应方向较为有效的方法。 故催化作用和催化剂的研究应用,成为现代化学工业的重要 课题之一。
催化原理
第一章 绪论 1.1 催化科学和技术的发展历史 1.1 1.催化剂的发展历程 1.1 2.催化理论的发展过程 1.1 3.催化原理的有关资料 1.1 4.催化研究进展对工艺的影响 1.2 催化作用的化学本质 1.3 催化研究中的方法论

化学反应中的催化剂和催化作用

化学反应中的催化剂和催化作用

化学反应中的催化剂和催化作用化学反应是物质的转化过程,而催化剂在化学反应中扮演着至关重要的角色。

催化剂可以显著加速反应速率,降低所需的能量,并且在反应结束时可以被回收再利用。

本文将介绍催化剂的作用机理、分类以及在实际应用中的重要性。

一、催化剂的作用机理催化剂通过提供适宜的反应路径来改变化学反应的速率。

在反应中,催化剂与反应物发生物理或化学相互作用,形成活化复合物,从而降低了反应所需的活化能。

具体来说,催化剂可以通过以下几种方式发挥作用:1. 提供活化官能团:催化剂能够与反应物中的官能团相互作用,使其更容易发生反应。

例如,金属催化剂可以提供活性位点,促使气体分子吸附,并改变分子间相互作用从而促进反应。

2. 降低反应的活化能:催化剂能够降低反应物转化为中间体的活化能,使反应更容易发生。

催化剂通过与反应物形成键合,改变键的极性和键长,从而降低活化能。

例如,酶作为生物催化剂,在生物体内可以加速许多反应。

3. 提供新的反应机制:催化剂能够介导新的反应机制,从而改变反应路径。

有些催化剂能够提供反应的新的活化途径,从而产生具有不同化学性质的产物。

二、常见的催化剂分类根据催化剂的组成和性质,我们可以将其分为以下几类:1. 酸催化剂:酸性催化剂通过向反应体系中提供质子(H+),可以促进酸碱反应、羰基化反应等。

典型的酸催化剂包括硫酸、HCl等。

2. 碱催化剂:碱性催化剂以提供氢氧根离子(OH-)为主,可以促进酸碱反应、酯化反应等。

氢氧化钠和氢氧化钾是常见的碱催化剂。

3. 金属催化剂:金属催化剂通常以过渡金属为主,如铂、铁、钯等。

金属催化剂在许多有机反应中具有广泛应用,如氢化反应、烯烃的加成反应等。

4. 酶催化剂:酶是一类高度特异性的生物催化剂,通过空间结构和活性位点的调节来加速反应速率。

例如,酶催化剂可以促进葡萄糖转化为乳酸的反应。

三、催化剂在实际应用中的重要性催化剂在各个领域的应用都非常广泛,从化学合成到环境保护都离不开催化剂的存在。

工业催化--第5章+金属氧化物和金属硫化物催化剂及其催

工业催化--第5章+金属氧化物和金属硫化物催化剂及其催
• 催化剂的电导率应该由第一步所引起, 总的结果 为N型电导下降, P型电导上升。这与实验结果一 致。
• 反应速率由第二步控制, 所以要加快反应速率, 必须提高催化剂接受电子的速率。由于P型半导 体的空穴能位比N型半导体的导带能位更低, 所 以接受电子的速率快得多, 这就解释了P型半导 体的活性较高的原因。
导带, 电子导电; • 满带则因电子移去而留下空穴, 空穴可以跃迁半导体 • N 型半导体 • P型半导体
本征半导体能带结构
• 不含杂质, 具有理想 • 的完整的晶体结构, 具
有电子和空穴两种载流 子
• 电子和空穴都可以参与 导电, 统称为“载流子 ”
(2) 当I> 时
• 电子从半导体催化剂转移到吸附物, 于 是吸附物是带负电荷的粒子吸附在催化 剂上, 可以把吸附物视作为受主分子。
• 对N型半导体其电导减小, 而P型半导体 则电导增加, 吸附作用相当于增加了受 主杂质从而增加了逸出功。
(3) 当I 时
• 半导体与吸附物之间无电子转移, 此时形成 弱化学吸附, 吸附粒子不带电。
有的组分作为助 Bi2O3中MoO3是主
化反应。 有的组分是主 化剂, 化剂或者载体。MoO3化剂;
Bi2O3(铋)是助 化剂, 作用是调控电子迁移
速度、促进活性相形成 过渡元素, 又称半导体
化剂
金属氧化物催化剂特点
• 常为多组分复合氧化物, • 二组分: V2O5-MoO3,MoO3-Bi2O3等;三组分: TiO2-
杂质对费米能级、逸出功和电导率的影响
■ 费米能级E 是半导体中价电子 ■F ■ 的平均位能。 ■ 本征半导体中, E 在满带和导 ■F ■ 带之间; ■ N型半导体中, E 在施主能级和 ■F ■ 导带之间; ■ P型半导体中, E 在受主能级和 ■F ■ 满带之间。

催化剂与催化作用

催化剂与催化作用

催化剂与催化作用催化剂是化学反应中常用的一种物质,它能够加速反应速率而本身不参与反应。

催化剂在许多工业生产过程中起着重要的作用,它们能够提高反应的效率、降低反应温度和能量消耗,并减少有害副产物的生成。

本文将从催化剂的定义、分类、催化作用的原理和应用等方面进行探讨。

一、催化剂的定义和分类催化剂是指在反应中可以改变反应速率而不参与反应本身的物质。

催化剂能够通过提供反应物之间的有效碰撞、改变反应物的电子结构或改变反应的活化能等方式来促进反应的进行。

根据催化剂的物理状态,可以将其分为两大类:气相催化剂和固相催化剂。

气相催化剂通常以气体形式存在,如氧气、氮气等。

固相催化剂则以固体形式存在,如金属、金属氧化物、金属酸和金属碱等。

固相催化剂在工业生产中得到了广泛应用,因为它们具有较好的稳定性和可重复使用性。

二、催化作用的原理催化作用的原理主要包括以下几个方面:1. 提供活化能:催化剂能够提供反应所需的能量,降低反应的活化能,使反应更容易发生。

通过提供中间体、吸附反应物或改变反应物的构型等方式,催化剂能够降低反应的能量阈值,从而加速反应速率。

2. 改变反应路径:催化剂能够改变反应的路径,使其经过一个更低能量的途径。

催化剂通过与反应物发生相互作用,改变反应物的电子结构或构型,从而降低反应的能量消耗。

3. 提高反应速率:催化剂能够提高反应的速率,使反应更快达到平衡。

催化剂通过提供更多的反应活性位点、增加反应物的有效碰撞频率或增加反应物在催化剂表面的吸附时间等方式,促进反应的进行。

三、催化剂的应用催化剂在许多工业生产过程中得到了广泛应用。

以下是一些常见的催化剂及其应用:1. 铂金催化剂:铂金催化剂广泛应用于汽车尾气处理中。

它能够催化氧气与一氧化碳反应生成二氧化碳,将有害的一氧化碳转化为无害的二氧化碳。

2. 铁催化剂:铁催化剂被用于合成氨和合成甲醇等化学反应中。

它能够促进反应的进行,提高反应速率和产率。

3. 酶催化剂:酶是一种天然的催化剂,广泛存在于生物体内。

催化剂与催化作用

催化剂与催化作用

催化剂与催化作用催化剂是一种可以加速化学反应速率的物质,而不参与反应本身的物质。

催化剂能够通过提供一个新的反应路径,降低反应的活化能,从而加速反应速率。

催化剂在反应结束后可以被再生,并且可以多次使用,因此只需少量的催化剂就可以促使大量的反应发生,节省了原料和能源的消耗。

催化剂的作用机理可以通过表面反应理论来解释。

催化剂的表面具有许多活性位点,这些位点能够与反应物分子发生相互作用,并降低反应物分子之间的键能。

当反应物分子吸附到催化剂表面上时,它们会经历一系列的化学变化,最终形成产物并离开催化剂表面。

这个过程称为催化循环。

催化剂的选择对于反应的效果至关重要。

合适的催化剂能够提供适当的表面活性位点,并且能够与反应物分子发生特定的相互作用,从而提高反应的选择性和效率。

催化剂的选择需要考虑诸多因素,如反应类型、反应条件、催化剂的稳定性等。

催化剂广泛应用于化学工业、能源领域、环境保护等众多领域。

在化学工业中,催化剂常用于有机合成、聚合反应和氧化反应等。

例如,合成氨的哈伯-博斯曼过程中使用铁催化剂,使氮气和氢气在适当的条件下反应生成氨气。

在能源领域,催化剂被广泛应用于燃料电池和催化裂化等反应中。

燃料电池中的催化剂可以促进氢气和氧气的反应,产生电能,从而实现能源的高效转换。

而催化裂化是将重质石油馏分转化为轻质石油产品的重要工艺,其中催化剂起到了关键的作用。

催化作用的过程中,催化剂与反应物之间的相互作用是至关重要的。

催化剂通常通过吸附反应物分子来实现与之的相互作用。

吸附是指分子或离子在固体表面上的附着过程。

在催化作用中,反应物分子会与催化剂表面的活性位点发生吸附,并与之发生化学反应。

吸附的强弱和选择性是影响催化作用效果的重要因素之一。

强吸附会使反应物分子在催化剂表面停留的时间较长,有利于催化反应的进行;而选择性吸附可以使特定的反应物分子优先吸附,并与之发生化学反应,提高反应的选择性。

催化作用可以是正向的,也可以是逆向的。

《工业催化原理》第五单元 金属氧化物催化剂及其催化作用(13)5

《工业催化原理》第五单元 金属氧化物催化剂及其催化作用(13)5

M2O3
MO2
MO3 层状 M2O 结构 MO M2O3 M2O5 MO3 链状结构 分子结构
第一节
金属氧化物的组成和结构特性
(3)复合金属氧化物
复合金属氧化物通常是指由两种不同金属元素A和B和氧元素形成的金属氧化物,根据金属元素 和氧元素的化学计量比不同,可以分为如下几种: (一) ABO2型复合金属氧化物 如表(ABO2型复合金属氧化物的结构)所示 金属原子的配位 4配位(四面体配位) 结构 闪锌矿型超结构 红锌矿(wurtzite)型超结构 β-BeO 6配位(六面体配位) 岩盐型超结构: 正方晶系 LiFeO2, LiEuO2 菱面体晶系 LiNiO2, NaInO2 LiVO2, NaFeO2, LiInO2, LiScO2, 例子 LiBO2(高压变态) LiGaO2 γ-LiAlO2
第一节
金属氧化物的组成和结构特性
(2)单一金属氧化物
这是由一种金属元素和氧元素形成的金属氧化物,其结构特性如表(金属氧化物的晶体结构)所 示,表中所列的各项都是对催化有较大影响的结构因素。1)平面4配位;2)三角锥3配位;3)正方锥4配位
结构类 组成式 型 立体结 M2O 构 MO M 4 2 6 4 4 41))) 41)) 6 7 7,6 6 6 4 8 6 4 6 32) 43) 3 5 6 配位数 O 8 4 6 4 4 1) 4 ) 4 4 4 4 4 4 2 4 3 3 2 6 4 2 1,2,3 1,2,3 晶体结构 反萤石型 Cu2O型 岩盐型 纤锌矿型 β-BeO型 NbO型 PdO型 刚玉型 A-M2O3型 B-M2O3型 C-M2O3型 复杂M2O3型 B 2 O3 型 萤石型 金红石型 硅石型 ReO3型 反碘化镉型 PbO (红色)型 As2O3型 例子 Li2O, Na2O, K2O, Rb2O Cu2O, Ag2O MgO, CaO, SrO, BaO, TiO, VO, MnO 等 BeO, ZnO BeO (高温型) NbO PdO, PtO, CuO, (AgO) Al2O3,Ti2O,V2O3,Fe2O3,Cr2O3,Rh2O3等 4f,5f氧化物 Mn2O3, Sc2O3, Y2O3, In2O3, Tl2O3 B2O3 (α, β, γ 相) B 2 O3 ZrO2, HfO2, CeO2, ThO2, UO2 TiO2, VO2, CrO2, MoO2, WO2, MnO2等 TiO2, GeO2 ReO3, WO3 Cs2O PbO (红色), SnO As2O3 V2O5 MoO3 HgO, SeO2, CrO3, Sb2O5 RuO4, OsO4, Tc2O7, Sb4O6

工业催化--第五章 各类催化剂的催化作用

工业催化--第五章 各类催化剂的催化作用
– 酸量也叫酸度,指酸的浓度。
– 因为对于不同的酸强度的酸度存在分布,故测量酸 强度的同时就测出了酸量。
– 较常用的方法有:
指示剂法 TPD法 量热法
– 指示剂法又称非水溶液正丁胺法。
3.3 固体碱强度与碱量
– 固体碱的强度,定义为表面吸附的酸转变为共轭碱 的能力,也定义为表面给予吸附酸分子一对电子的 能力。
– 杂化轨道中d原子轨道所占的百分数称为d特性百 分数,用d%表示。
• Ni原子形成金属后,Ni原于有两种杂化方 式,即d2sp3和d3sp2
图中[↑]代表原子电子,[·]代表成键电子
–价键理论用d特性百分数来关联金属催化活性。
金属的d%越大,相应的d能带中电子填充越多,d空穴 就越少。
d%与d空穴是从不同的角度反映金属电子结构的参量, 且是相反的结构表征。
例如,加氢反应,Pt、Pd 等是合适的,尤其是Ni具有较高加氢活性。
如果金属能带的电子全充满时,它就难于成键了。
2.2 价键模型
– 金属的价键理论早期由Pauling提出。
– 该理论认为过渡金属原子杂化轨道相结合,杂化 轨道通常为s、p、d等原子轨道的线性组合,称为 spd或dsp杂化。
2、酸碱的分类
– 按物质形态,可区分为液体酸碱和固体酸碱。
常用的液体酸催化剂有硫酸、盐酸、磷酸和醋酸。 常用的液体碱有氢氧化钠、氢氧化钾水溶液等。
固体酸分类表:
固体碱的分类 表:
3、 固体表面酸碱性能的测定
– 固体表面酸碱性质包括:
酸、碱中心类型 酸、碱强度 酸、碱量
3.1 酸中心类型
3、金属和金属表面的几何构造与催化活性
3.1 金属的晶体结构与催化活性

各类催化剂及其催化作用

各类催化剂及其催化作用

各类催化剂及其催化作用催化剂是能够加速化学反应速率和控制反应选择性的物质。

催化剂可以参与反应过程,并在反应后恢复其初始状态,因此能够循环使用。

现在我们来介绍一些常见的催化剂及其催化作用。

1.酸催化剂:酸催化剂能够提供质子,使反应发生在酸性条件下。

常见的酸催化剂包括硫酸、磷酸、硼酸等。

酸催化作用广泛应用于酸碱中和、酯化反应、糖类转化、脱水反应等。

2.碱催化剂:碱催化剂可以提供氢氧根离子,使反应发生在碱性条件下。

常见的碱催化剂包括氢氧化钠、氢氧化钾等。

碱催化作用常用于酯水解、羟酰胺反应等。

3.高温催化剂:高温催化剂常用于高温下的化学反应。

它们能够降低反应的活化能,并提高反应速率。

常见的高温催化剂有铂、铑、铱等稀贵金属。

高温催化作用广泛应用于汽车尾气净化、甲烷重整反应等。

4.金属催化剂:金属催化剂常用于氢化、氧化、加氢、加氧、加氨等反应。

常见的金属催化剂有铂、钯、铑、铱等。

金属催化剂在有机合成中具有广泛的应用,如选择性加氢、还原、还原偶联等反应。

5.酶催化剂:酶是一种具有催化作用的生物大分子。

由于酶拥有立体特异性和高催化效率,所以在生物体内参与了许多生物转化反应,并具有重要的应用价值。

酶可以催化多种反应,例如葡萄糖氧化、脱氢酶反应等。

6.基团转移催化剂:基团转移催化剂能够在不改变催化剂本身的数量的情况下,实现催化反应中基团的转移。

常见的基团转移催化剂有高锰酸钾、过氧化氢等。

基团转移催化剂广泛应用于有机合成中的酮缩、氧化反应以及有机波斯反应等。

以上只是催化剂中的一些典型例子,实际上催化剂种类繁多,根据不同的化学反应还有其他类型的催化剂。

催化剂通过改变反应的路径和降低反应的活化能来加速化学反应速率,具有广泛的应用前景。

在工业、农业和生物医药等领域,催化剂都发挥着重要的作用。

催化剂及催化作用

催化剂及催化作用

知识讲解:1、在化学反应里能改变其他物质的化学反应速率,而本身的质量和化学性质在化学反应前后都没有改变的物质叫做催化剂,催化剂在化学反应里所起的作用叫做催化作用。

2、全面理解“改变”二字的意义。

它包括增大和减小化学反应速率两个方面。

如二氧化锰可增大氯酸钾的分解反应速率,而在塑料、橡胶中加入“防老剂”是减小化学反应速率。

3、催化剂在化学反应前后本身的质量和化学性质都不改变,但不能说催化剂都不参加反应,实际上许多催化剂都参与了反应,只是经过一系列变化后又变成原来的物质。

4、催化剂只能改变化学反应速率,不能增加或减少生成物的质量。

5、某个反应的催化剂,并不一定对其他反应也能起催化作用。

一个反应的催化剂也不一定只是一种。

如二氧化锰是加速氯酸钾分解的催化剂,但不是任何反应的催化剂;氯酸钾分解制氧气的催化剂可以是二氧化锰,还可以是氧化铁和氧化铬等。

javascript:void(null)返回顶部【例题】[例1]催化剂的作用是( )A.只能加快化学反应速率B.只能减慢化学反应速率C.改变化学反应速率D.改变本身的化学性质详解:准确理解催化剂的概念,即催化剂“在化学反应里能改变其他物质的化学反应速率”一句中的“改变”包含“加快”和“减慢”两层含义.而催化剂“本身的质量和化学性质在化学反应前后都没有变化”.所以核对选项易知只有C符合题意.答案:C[例2]同类质量相等的两份过氧化氢溶液a和b,向a中加入二氧化锰,同时把b加热,完全反应后,收集到氧气的量随反应时间变化的函数图像正确的是( )A.B.C.D.详解:本题从量的方面探讨催化剂对过氧化氢分解后产生氧气多少的影响.事实上,催化剂只能改变分解速率,不能改变产生氧气的量,氧气的量是由过氧化氢的质量决定的,所以答案应在A、C中选择,而b份物质产生氧气的时间应相对滞后,应选C。

答案:C[例3]生活在密闭狭小的特殊环境(如潜艇、太空舱)里,越来越少,越来越多,因此将转化为,不仅有科学意义也有重要的实用价值。

化学催化剂的种类与作用原理

化学催化剂的种类与作用原理

化学催化剂的种类与作用原理化学催化剂在化学反应中起到了至关重要的作用,它们能够显著提高反应速率和选择性,从而降低反应的能量要求。

催化剂的种类非常多样,每种催化剂都有其独特的作用原理。

本文将介绍几种常见的化学催化剂及其作用原理。

一、金属催化剂金属催化剂是应用最广泛的催化剂之一。

金属催化剂通过调节反应物的吸附能力、改变反应活化能等方式提高反应速率。

常见的金属催化剂有钯、铂、铑等。

以钯催化剂为例,其作用原理可以通过活化态与反应物之间的键合来解释。

钯催化剂能够吸附反应物,并形成与反应物之间的共价键,从而降低反应的能量要求,加速反应速率。

二、酶催化剂酶是一类天然催化剂,存在于生物体内,负责调节和加速众多生物反应。

酶具有高度选择性和反应速率加快的特点。

酶催化剂可通过活性位点上的氨基酸残基来与底物发生特异性的相互作用。

酶能够提供适宜的环境条件,如合适的 pH 值和温度,加速底物的转化过程。

三、氧化剂催化剂氧化剂催化剂可加速氧化反应的进行。

常见的氧化剂催化剂有过氧化氢、过氧化氧化铷等。

氧化剂催化剂能够向反应中提供高效的氧离子,从而促进反应底物的氧化。

氧化剂催化剂的作用原理是通过氧化剂与底物中的还原性物质发生电子转移反应,实现氧化过程的催化。

四、酸碱催化剂酸碱催化剂是一类重要的催化剂,它们通过提供或接受质子来促进反应的进行。

酸催化剂可以使底物发生质子化反应,形成更容易发生反应的中间体。

碱催化剂则在反应中接受质子,促进反应的进行。

常见的酸催化剂有硫酸、盐酸等,而碱催化剂则有氢氧化钠、氢氧化钾等。

五、氧化还原催化剂氧化还原催化剂促进氧化还原反应的进行。

这类催化剂通过调节反应物的氧化还原态以及电子转移过程,实现反应的加速。

常见的氧化还原催化剂有过渡金属离子、还原糖等。

催化剂可与反应物中的氧化还原反应参与者发生配位作用,参与电子的转移和催化。

综上所述,化学催化剂是一类在化学反应中起到重要作用的物质。

金属催化剂、酶催化剂、氧化剂催化剂、酸碱催化剂以及氧化还原催化剂都是常见的催化剂种类。

第五章_金属氧化物和金属硫化物催化剂及其催化作用2

第五章_金属氧化物和金属硫化物催化剂及其催化作用2

第五章_金属氧化物和金属硫化物催化剂及其催化作用2第五章_金属氧化物和金属硫化物催化剂及其催化作用2金属氧化物催化剂是由金属元素和氧元素组成的化合物。

常见的金属氧化物催化剂有二氧化钛、氧化铁、氧化铝等。

这些催化剂具有良好的化学稳定性和热稳定性,能够在高温条件下保持催化活性。

此外,金属氧化物催化剂具有较高的表面积和孔隙度,有利于催化反应物的吸附和扩散。

金属氧化物催化剂广泛应用于有机合成、氧化反应、脱硫反应等领域。

金属硫化物催化剂是由金属元素和硫元素组成的化合物。

常见的金属硫化物催化剂有硫化钼、硫化铜、硫化铁等。

这些催化剂具有较高的催化活性和选择性,能够在相对温和的条件下促进各种催化反应。

金属硫化物催化剂具有较高的电导率和导电性,能够促进电子转移和催化反应的进行。

金属硫化物催化剂广泛应用于石油加工、氨合成、脱硫反应等领域。

金属氧化物和金属硫化物催化剂的催化作用主要包括以下几个方面:1.氧化反应:金属氧化物催化剂能够促进物质的氧化反应,如氧化还原反应、羰基化反应等。

以二氧化钛为例,它可以催化苯酚的氧化反应,将苯酚氧化为苯醌。

此外,金属硫化物催化剂也能够催化氧化反应,如硫化钼催化剂能够催化苯胺的氧化反应,将苯胺氧化为苯酚。

2.脱硫反应:金属氧化物和金属硫化物催化剂能够催化硫化物的脱硫反应,将硫化物转化为无毒的化合物。

以硫化钼为例,它可以催化硫化氢的脱硫反应,将硫化氢转化为水和硫。

3.氢化反应:金属氧化物和金属硫化物催化剂能够催化物质的氢化反应,如氢化加成反应、氢解反应等。

以氧化铝为例,它可以催化苯酚的氢化反应,将苯酚氢化为环己醇。

此外,金属硫化物催化剂也能够催化氢化反应,如硫化铁催化剂能够催化乙烯的氢化反应,将乙烯氢化为乙烷。

4.烷基化反应:金属氧化物和金属硫化物催化剂还能催化烷基化反应,将有机化合物中的烯烃或芳香化合物转化为烷烃。

以氧化铁为例,它可以催化芳烃的烷基化反应,将芳烃转化为相应的烷烃。

总之,金属氧化物和金属硫化物催化剂具有广泛的应用前景。

污水处理中的催化剂

污水处理中的催化剂

污水处理中的催化剂催化剂在污水处理过程中起到了至关重要的作用。

它们能够加速反应速率,降低能量消耗,并提高处理效率。

本文将详细介绍污水处理中常用的催化剂及其应用。

1. 活性炭催化剂活性炭是一种常见的催化剂,具有较大的比表面积和丰富的孔隙结构。

它能够吸附有机物和重金属离子,从而净化水体。

在污水处理中,活性炭常用于去除异味、有机物和色度。

其工作原理是通过吸附作用将污染物从水中去除。

2. 金属氧化物催化剂金属氧化物催化剂如二氧化锰、二氧化钛等常用于催化氧化反应。

它们能够将有机物氧化为无害的物质,并降解有毒物质。

此外,金属氧化物还能够催化氧化污水中的重金属离子,使其沉淀或转化为不溶于水的形式。

3. 生物催化剂生物催化剂是一类利用微生物的代谢活性来处理污水的催化剂。

常见的生物催化剂包括活性污泥和微生物菌剂。

它们能够降解有机物、氨氮等污染物,将其转化为无害的物质。

生物催化剂具有处理效率高、能耗低的特点,在污水处理中广泛应用。

4. 光催化剂光催化剂利用光能激发催化剂表面的电子,从而产生活性氧化物,进而降解有机物。

常用的光催化剂包括二氧化钛、氧化锌等。

它们能够在可见光或紫外光的作用下催化污染物的降解,具有高效、无二次污染的优点。

5. 氧化还原催化剂氧化还原催化剂能够催化污水中的氧化还原反应。

常见的氧化还原催化剂包括铁系催化剂和铜系催化剂。

它们能够将有机物氧化为无害物质,并将重金属离子还原为金属沉淀。

氧化还原催化剂在污水处理中广泛应用,能够有效去除有机物和重金属离子。

以上是常见的污水处理中使用的催化剂及其应用。

不同的催化剂适用于不同的处理过程和污染物类型。

在实际应用中,需要根据具体情况选择合适的催化剂,并进行合理的投加量和处理工艺设计,以达到最佳的处理效果。

值得注意的是,催化剂的选择和使用需要考虑其成本、稳定性、可再生性等因素。

此外,催化剂的使用还需要遵守相关法律法规,确保处理过程安全、环保。

催化剂与催化作用基本知识

催化剂与催化作用基本知识

初级粒子 次级粒子

均匀度

金属单质

化 剂
化合态
化合物


固溶 体

积聚方式
晶态
物相
非晶态
外形
表面纹理






孔隙构造
颗 粒
组分分布
弘深学院理工5班
第20页,本讲稿共37页
1.3.2固体催化剂的结构
弘深学院理工5班
第21页,本讲稿共37页
催化剂的表示方法
通常: • 1、用“/” 来区分载体与活性组分
1.5.1多相催化反应过程的主要步 骤
弘深学院理工5班
第28页,本讲稿共37页
1.5.2多相催化反应中的物理过程
外扩散和内扩散
外扩散
内扩散
反应物分子从流体 体相通过附在气、 固边界层的静止气 膜(或液膜)达到 颗粒外表面,或者 产物分子从颗粒外 表面通过静止层进 入流体体相的过程 ,称为外扩散过程 。
催化活性在理论研究中经常采用:
• 转换频率(Turnover frequency)
• 指单位时间内每个催化活性中心上发生反应 的次数。作为真正催化活性的一个基本度量。
弘深学院理工5班
第24页,本讲稿共37页
1.4.1催化剂的反应性能
催化剂的选择性
选择性(S%)
选择性因素(选择度)
弘深学院理工5班
• 主族元素的氧化物、氢氧化物、卤化物、含氧酸及氢化物等由 于在反应中容易形成离子键,主要用做酸碱型催化剂。但是,
第Ⅳ~Ⅵ主族的部分元素,如铟、锡、锑和铋等氧化物也常 用做氧化还原型催化剂。 • 而副族元素无论是金属单质还是化合物,由于在反应中容易 得失电子,主要用做氧化还原型催化剂。特别是第Ⅷ过渡族 金属元素和它的化合物是最主要的金属催化剂、金属氧化物 催化剂和络合物催化剂。但是副族元素的一些氧化物、卤化 物 Fe和Cl3盐等类。也可用做酸碱型催化剂,如Cr2O3,NiSO4,ZnCl2和

催化剂在化学动力学中的作用

催化剂在化学动力学中的作用

催化剂在化学动力学中的作用催化剂是一类在化学反应中起加速作用的物质,通过降低反应的活化能,从而提高反应速率。

催化剂广泛应用于工业生产、生物化学、环境保护等领域,对推动化学反应的进行起着关键作用。

本文将从催化剂的定义、催化作用机理、不同类型催化剂及其应用等方面进行探讨。

一、催化剂的定义催化剂是一种物质,它能够参与到化学反应中,但在反应结束时以原来的形式出现,没有消耗掉。

催化剂通过提供新的反应路径,使反应过程中所需的能量减少,从而降低反应的活化能,促进反应的进行。

二、催化作用机理催化作用的机理可以分为表面催化和溶液催化两种。

表面催化是指催化剂与反应物之间的相互作用发生在催化剂的表面上。

催化剂表面的活性位点吸附反应物,使其与表面发生反应,并进一步生成中间体或产物。

催化剂表面的特殊结构可以提供吸附位点,从而降低反应物的活化能,促使反应发生。

常见的表面催化剂包括金属、金属氧化物、过渡金属等。

溶液催化是指催化剂以溶液中的形式存在,参与到反应物的溶液中,通过溶解、络合或配位等方式与反应物发生相互作用。

催化剂与反应物在溶液中形成络合物或活性中间体,降低反应物的活化能,促进反应的进行。

溶液催化剂常见的有酶、酸碱等。

三、不同类型催化剂及其应用1.金属催化剂金属催化剂是应用最广泛的一类催化剂,常见的金属催化剂包括铂、钯、铑等。

金属催化剂在有机合成、氢化反应、羰基化反应等方面具有重要作用。

例如,铂催化剂在汽车尾气净化中起到了氧化一氧化碳的作用,使其转化为二氧化碳,降低了尾气中有害物质的排放。

2.酶催化剂酶是一类具有催化作用的生物大分子,广泛存在于生物体内。

酶催化剂在生物化学反应中起到了极为重要的作用。

例如,消化道中的酶能够加速食物的消化,使其转化为可供人体吸收利用的物质。

酶催化剂也应用于工业生产中,如制药、食品加工等领域。

3.酸碱催化剂酸碱催化剂是催化剂的一种常见形式,如硫酸、氢氟酸等酸性催化剂,以及氢氧化钠、氢氧化钾等碱性催化剂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档