第二次月考理科数学试题

合集下载

四川省凉山州宁南中学2022-2023学年高二下学期第二次月考理科数学试题

四川省凉山州宁南中学2022-2023学年高二下学期第二次月考理科数学试题

【详解】解:∵ A = {x 1 < x < 2}, B = {x 1 £ x £ 2} ,
∴ A Ç B = {x 1 < x < 2} ,
故选:D. 2.C 【分析】由复数运算法则可得 z 代数形式,后可得其虚部.
【详解】
z
=
3 + 2i 1+ i
=
(3 + 2i)(1- i) (1+ i)(1- i)
=
5
2
i
=
5 2
-
1 2
i
,则
z
的虚部是
-
1 2
.
故选:C 3.B
【分析】根据点 P ( x, y) 在椭圆上得
x2 a2
+
y2 b2
= 1,且 -a
£
x
£ a ,再利用两点距离求得
PF1
=
c a
x + a ,从而可确定
PF1
a, c 的最大值与最小值,即可求得 的值,即可得离心率
e
=
c a
的值.
【详解】设椭圆的半焦距为 c ,若椭圆上一点 P ( x,
为圆柱下底面圆
O
的直径,C
是下底面圆周上一点,已知
ÐAOC
=
π 3

OA
=
2
,圆柱的高为
5.若点
D
在圆柱表面上运动,且满足
uuur BC
×
uuur CD
=
0
,则点
D
的轨
迹所围成图形的面积为________.
试卷第31 页,共33 页
16.已知函数 f ( x) = aln2x +1- x (a Î R) 有且仅有一条切线经过点 (0, 0) .若"x Î[1, +¥) , f ( x) + mlnx £ 0 恒成立,则实数 m 的最大值是______.

高三数学理科第二次月考试题及答案

高三数学理科第二次月考试题及答案

从化中学高三数学月考理科试题(/9)命题:黄小斌 审题: 李希胜一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、若i 为虚数单位,图中复平面内点Z 表示复数Z , 则表示复数的点是( ) (A) E (B) F (C) G (D) H2、若集合,则=A C R ( )(A ) (B ) (C ) (D ) 3、设是首项大于零的等比数列,则“”是“数列是递增数列”的( ) (A )充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件4、 下列函数中,周期为,且在上为减函数的是( ) (A ) (B ) (C ) (D )5、已知和点M 满足.若存在实数m 使得成立,则m 的值为( )(A) 2 (B )3 (C )4 (D )56、设0a >,0b >,则以下不等式中,不恒成立的是( )(A) 114a b a b++≥()() (B)22b ba a+>+ (C)111a b a b a b a b+<+++++ (D)a b b aa b a b ≥7、在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( )(A) 10 (B) 11 (C) 12 (D) 151zi+121log 2A x x ⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭2(,0],2⎛⎫-∞+∞ ⎪ ⎪⎝⎭22⎛⎫+∞ ⎪ ⎪⎝⎭2(,0][,)2-∞+∞2)2+∞{}n a 12a a <{}n a π[,]42ππsin(2)2y x π=+cos(2)2y x π=+sin()2y x π=+cos()2y x π=+ABC ∆0MA MB MC --→--→--→+=+AB AC AM m --→--→--→+=8、已知,函数,若满足关于的方程,则下列选项的命题中为假命题的是( )(A )(B )(C ) (D )二、填空题:本大题共7小题.考生作答6小题.每小题5分,满分30分(一) 必做题(9~13题)9、若点p (m ,3)到直线的距离为4,且点p 在不等式<3表示的平面区域内,则m= 。

陕西省西安市第八十九中学2021-2022学年高二上学期第二次月考理科数学试题

陕西省西安市第八十九中学2021-2022学年高二上学期第二次月考理科数学试题
A
分别使用表面积公式、体积公式计算后即可发现结论.
设两个球的半径分别为 , .
这两个球的半径比为: ,
表面积比为: ,
体积比为: ,
所以,两个球是相似体.故选:A.
10.函数 图象上一点 到直线 的最短距离为()
A. B. C. D.
C
设与直线 平行且与曲线 相切 直线的切点坐标为 ,利用导数的几何意义,求得切点坐标为 ,结合点到直线的距离公式,即可求解.
[解法一]:因为 , 且 ,所以 为圆 上的点,令 ,即 ,依题意可知圆 与直线 有公共点,所以圆心到直线的距离 ,即 ,解得 ,即 ;
[解法二]:由柯西不等式得 ,
当且仅当 时取等号.
则 故选:B.
4.某班数学课代表给全班同学们出了一道证明题.甲和丁均说自己不会证明;乙说:丙会证明;丙说:丁会证明.已知四名同学中只有一人会证明此题,且只有一人说了真话.据此可以判定能证明此题的人是()
12.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周盒体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式 中“…”即代表无限次重复,但它却是个定值,它可以通过方程 求得 .类似上述过程,则 ()
A. B. 4C. 3D. 3或
C
利用类比推理,令 求解.
(1) ,则切线的斜率为 ,
所以曲线在点P处的切线方程为 ,
即 .
(2)设过点 的切线与曲线 相切于点 ,
∴曲线 在点R处切线斜率为 ,
故切线方程为 ,
又因为切线过点 ,∴ ,
解得 或 ,
故切点R分别 和 ,
所以过点P的切线方程为 或 ,
所以过点Q的切线方程为: 和 .

重庆市中山外国语学校高二数学上学期第二次月考试题 理

重庆市中山外国语学校高二数学上学期第二次月考试题 理

重庆市中山外国语学校高二第二次月考理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:人教必修5第一、二章。

5.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知ABC △中,三个内角,,A B C 的对边分别为,,a b c ,a =1,b,B =45°,则A 等于 A .150°B .90°C .60°D .30°2.设等比数列{}n a 的前n 项和为n S ,且满足638a a =,则63S S = A .4B .5C .8D .93.在ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,若120B =,则222a ac c b ++-的值 A .大于0B .小于0C .等于0D .不确定4.在数列{}n a 中,1112,1n na a a +=-=-,则2018a 的值为 A .−2 B .13C .12D .325.公比不为1的等比数列{}n a 的前n 项和为n S ,且12a -,212a -,3a 成等差数列,若11a =,则4S = A .−5B .0C .5D .76.在ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,且222.b c a b c +=+若sin sin B ⋅2sin C A =,则ABC△的形状是A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形7.在ABC △中,π3B =,2AB =,D 为AB 的中点,BCD △,则AC 等于A .2BCD8.朱世杰是历史上最伟大的数学家之一,他所著的《四元玉鉴》卷中“如像招数”五问中有如下问题:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升”。

河北省唐山高三数学第二次月考试题(理科)

河北省唐山高三数学第二次月考试题(理科)

河北省唐山地区2007-2008学年度高三数学第二次月考试题(理科)总分:150分 考试时间:120分钟第Ⅰ卷(选择题 共50分)一、选择题(每小题5分,共50分) 1.已知)4tan(,43tan παα+-=则等于 ( )A .71 B .7C .-71 D .-7 2.函数2cos 2sin 1xx y -=的图象( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于2π=x 轴对称3.已知0)3(:,1|32:|<-<-x x q x p ,则p 是q 的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 4.函数)23sin(2x y -=π单调增区间为( )A .]125,12[ππππ+-k k B .]1211,125[ππππ++k kC .]6,3[ππππ+-k kD .Z k k k ∈++其中]32,6[ππππ5.设向量,,2),4,3(),2,1(-==若表示向量的有向线段首位相接能够成三角形,则向量为( )A .(4,6)B .(-4,6)C .(-4,-6)D .(4,-6)6.下列函数中,图象的一部分如右图所示的是( )A .⎪⎭⎫⎝⎛+=6sin πx y B .⎪⎭⎫ ⎝⎛-=62sin πx yC .⎪⎭⎫⎝⎛-=34cos πx y D .⎪⎭⎫⎝⎛-=62cos πx y 7.已知O 为△ABC 所在平面内一点,满足OA OC OC OB OB OA ⋅=⋅=⋅,则O 为△ABC的 ( )A .外心B .内心C .垂心D .重心 8.若互不相等的实数a ,b ,c 成等差数列,c ,a ,b 成等比数列,且103=++c b a ,则a=( )A .4B .2C .-4D .-29.已知实数a ,b 均不为零,ab,6,tan sin cos cos sin 则且παββαααα=-=-+b a b a 等于( )A .3B .33 C .-3D .-33 10.有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的 中点.已知 最底层正方体的棱长为2,且该塔形的表面积 (含最底层正方体的底面面积)超过39,则该塔形中正方 体的个数至少是 ( ) A .5; B .6; C .7;D .8;第Ⅱ卷(非选择题 共100分)二、填空题(每小题4分,共24分)11.设1,0≠>a a ,函数)32(log )(2+-=x x x f a 有最小值,则不等式0)1(log >-x a 的解集为 .12.若2tan =θ,则θθθcos sin 3sin 22-= .13.把函数)3cos(π+=x y 的图象向左平移m 个单位(m >0),所得图象关于y 轴对称,则m的最小值是 .14.在等差数列}{n a 中,7413,0a a a =>,前n 项和为S n ,若S n 取得最大值,则n= .15.在△ABC 中,A ,B ,C 成等差数列,则2tan 2tan 32C tan 2tan CA A ++= . 16.①存在31cos sin )2,0(=+∈a a 使πα ②存在区间(a,b )使x y cos =为减函数而0sin <x ③x y tan =在其定义域内为增函数 ④)2sin(2cos x x y -+=π即有最大、最小值,又是偶函数⑤|62|sin π+=x y 最小正周期为π以上命题错误的为 .三、解答题(17—20每题13分,21—22每题12分,共76分)17.已知}5|21||{},0,0944|{22≤-=>≤-+-=x x B m m x x x A ,若A 是B 的真子集,求实数m 的取值范围.18.若函数)2cos(2sin )2sin(42cos 1)(x x a x x x f --++=ππ(1)若3=a ,求)(x f 的单调增区间.(2)若)(x f 的最大值为2,试确定常数a 的值.19.(13分)在△ABC 中,∠A 、∠B 、∠C 的对边分别为a ,b ,c ,且满足.cos cos )2(C b B c a =- (1)求角B 的大小.(2)设k k A A ⋅>==),1)(1,4(),2cos ,(sin 的最大值为5,求k 的值.20.已知x=1是函数1)1(3)(23+++-=nx x m mx x f 的一个极值点,其中0,,<∈m R n m (1)求m 与n 的关系表达式;(2)当]1,1[-∈x 时,函数y=)(x f 的图象上任意一点的切线斜率恒大于3m ,求m 的取值范围.21.设函数)(x f 的定义域为(0,+∞),且对任意的正实数x,y 都有)()()(y f x f xy f +=恒成立.已知0)(,1,1)2(>>=x f x f 且.(1)判断),0()(+∞=在x f y 上的单调性,并说明理由. (2)一个各项为正数的数列}{n a 满足*)(1)1()()(N n a f a f s f n n n ∈-+==,其中n s 是数列}{n a 的前n 项的和,求数列的通项n a .22.(12分)设数列}{n a 的前n 项和,...3,2,1,32231341=+⨯-=+n a S n n n (1)求首项a 1; (2)求数列的通项a n ;(3)设∑=<==ni i n n n T n S T 1.23,...,3,2,1,2求证参考答案一、选择题1.A 2.D 3.B 4.B 5.C 6.D 7.C 8.C 9.B 10.B1. A 解析:,71tan 1tan 1)4tan(,43tan =-+=+-=ααπαα选A. 6. D 解析:从图象看出,,461241πππ=+=T 所以函数的最小正周期为π,函数应为x y 2sin =向左平移了6π个单位, 即)32sin()6(2sin ππ+=+=x x y)322cos(ππ++-=x),62cos(π-=x 选D.8. D 解:由互不相等的实数a ,b ,c 成等差数列可设a=b -d ,c=b +d ,由103=++c b a 可得b=2,所以a=2-d ,c=2+d ,又c,a,b 成等比数列可得d=6,所以a=-4,选D. 9.Bβααααtan sin cos cos sin =-+b a b aαβαβcos cos cos cos b a +⇒ αβαβsin sin sin cos b a -= )sin sin sin (cos αβαβ+⇒b )sin cos cos (sin αβαβ-=a )sin()cos(αβαβ-=-⇒a b336tan )tan(==-=⇒παβa b 10.解:一个正方体时表面记为24,二个正方体时表面记为24+4×;32)2(2=三个正方体时表面记为24+4×;3614)2(2=⨯+-d四个正方体时表面记为24+4×;38)22(414)2(22=⨯+⨯+五个正方体时表面记为.39)21(4)22(414)2(424222=⨯+⨯+⨯+⨯+ 二、填空题11.}2|{>x x 12.52 13.32π14.8 15.3 16.①②③⑤ 15.解:)2tan 2tan 1)(22tan(2tan2tan CA C A C A -+=+ )2tan 2tan 1(60tan CA -︒=)2tan 2tan 1(3CA -= 3=∴原式16.①当)2,0(πα∈时,1cos sin >+αα故错; ②x y cos = 为减函数时,)2,2(πππ+∈k k x 0sin >∴x 故错;③错;④1cos cos 22-+=x x y 故对; ⑤无周期.三、解答题17.解:集合A :;2332+≤≤-m x m集合B :32≤≤-x⎩⎨⎧=+-=-323232m m 时,m 无解, 3100323232≤<∴>⎩⎨⎧≤+-≥-∴m m m m 且18.解:(1))6sin(sin 23cos 212cos 2sin cos 4cos 2)(2π+=+=+=x x x x x a x x x f 又0cos ≠x2ππ=≠∴k x)(x f ∴的单调增区是为Z k k k k k ∈+-⋃--),32,22()22,322(ππππππππ(2))sin(441sin 2cos 212cos 2sin cos 4cos 2)(22ϕ++=+=+=x a x a x x x a x x x f由已知有,54412=+a 解之得15±=a 19.解:(1).cos cos )2(Cb Bc a =-C B B C A cos sin cos )sin sin 2(⋅=-∴整理得A C B B C C B B A sin )sin(cos sin cos sin cos sin 2=+=⋅+= ),,0(π∈A 0s i n ≠∴A321cos π=∴=∴B B(2))32,0(,1sin 4sin 22cos sin 42π∈++-=+=⋅A A k A A A k n m 其中 设]1,0(sin ∈=t A ,则]1,0(.1422∈++-=⋅t kt t ∵对称轴,1>=k t∴当t=1时,⋅取得最大值. 即23,5142==++-k k 解得 20.解:(1),)1(63)(2n x m mx x f ++-='0)1(='f0)1(63=++-∴n m m 63+=∴m n(2)02)1(2,3)(2>++->'x m mx m x f 即0<m]1,1[,02)1(22-∈<++-∴x mx m m x设mx m m x x g 2)1(2)(2++-=⎩⎨⎧<<-∴0)1(0)1(g g⎪⎩⎪⎨⎧<-<+++∴0102221mm 34<∴m 又034,0<<-∴<m m 21.解:(1)设)()()()(),,0(,11211222121x f x xf x x x f x f x x x x +=⋅=<+∞∈则且 0)(1>>x f x 时)(),()(0)(1212x f x f x f x x f 故>>∴为增函数.(2)由)()(1)(1++=+n n n a f a f s f)()()2()(1++==∴n n n a f a f f s f ,2,21时当≥⋅=∴+n a a s n n n ,211n n n a a s ⋅=∴--两式相减得:12122----+=n n n n n a a a a a)2(0)1)((11≥=--+∴--n a a a a n n n n n a n a a n n n =∴≥=-∴-)2(1122.(1)324313432231341111+⨯-==+⨯-=+a S a a S n n n 得 21=∴a 再由)2(322313411≥+⨯-=--n a S n n n)22(31)(34111n n n n n n n a a S S a -⨯--=-=∴+--整理得)2(4211--+=+n n n n a a}2{n n a +∴是首项为421=+a ,公比为4的等比数列.即n n n a 44421=⨯=+-*.24N n a n n n ∈-=∴(2)将32231)24(34,241+⨯--=-=+n n n n nnn S a 代入 )12)(12(32)22)(12(31111--=--=+++n n n n)121121(23)12)(2(223211---=-⨯==∴++n n n n n n n n S T23)121121(23)121121(2311111<---=---=+=+=∑∑n n i i i ni Ti。

2020-2021学年湖南省雅礼中学高三(下)第二次月考数学试卷(理科) Word版含解析

2020-2021学年湖南省雅礼中学高三(下)第二次月考数学试卷(理科) Word版含解析

2022-2021学年湖南省雅礼中学高三(下)其次次月考数学试卷(理科)一.选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.把答案填在答题卡中对应题号的框框内.)1.已知集合A={﹣2,﹣1,0,1,2,3},集合,则A∩B等于()A.{﹣2,﹣1,0,1} B.{﹣1,0,1} C.{﹣1,0,1,2} D.{﹣1,0,1,2,3}2.若A、B均是非空集合,则A∩B≠∅是A⊆B的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件3.(中诱导公式、基本公式)已知,且,则tan(2π﹣α)的值为()A.B.C.D.4.如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥面A1B1C1,正视图是边长为2的正方形,俯视图为一个等边三角形,该三棱柱的左视图面积为()A.2B.C.2D.45.已知向量满足:,与的夹角为,则=()A.2 B.4 C.2D.86.设x,y 满足约束条件,则目标函数z=的最小值为()A.2 B.1 C.D.﹣27.设f(x)定义如下面数表,{x n}满足x0=5,且对任意自然数n均有x n+1=f(x n),则x2022的值为()x 1 234 5f(x)4 135 2A.4 B.1 C.3 D.28.如图,长沙河西先导区某广场要划定一矩形区域ABCD,并在该区域内开拓出三块外形大小相同的矩形绿化区,这三块绿化区四周和绿化区之间设有1米宽的走道.已知三块绿化区的总面积为800平方米,则该矩形区域ABCD占地面积的最小值为()平方米.A.900 B.920 C.948 D.9689.已知函数,若存在x1<x2,使得f(x1)=f(x2),则x1•f(x2)的取值范围为()A.B.C.D.10.设定义在R上的偶函数f(x)满足f(x+2)=f(x),f′(x)是f(x)的导函数,当x∈[0,1]时,0≤f(x)≤1;当x∈(0,2)且x≠1时,x(x﹣1)f′(x)<0.则方程f(x)=lg|x|根的个数为()A.12 B.1 6 C.18 D.20二.填空题:本大题共1小题,考生作答5小题,每小题5分,共25分,把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在第11、12、13题中任选两题作答,假如全做,则按前两题给分)【几何证明选讲】11.如图,PC切⊙O于点C,割线PAB经过圆心O,弦CD⊥AB于点E,已知⊙O的半径为3,PA=2,则OE=.【极坐标系与参数方程选讲】12.已知曲线C的参数方程为(θ为参数),直线l的极坐标方程为,它们的交点在平面直角坐标系中的坐标为.【不等式选讲】1011•天津)已知集合A={x∈R||x+3|+|x﹣4|≤9},B=,则集合A∩B=.(二)必做题(14~16题)14.设(其中e为自然对数的底数),则的值为.15.动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是,则当0≤t≤12时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是.16.已知数列{a n}的前n项和S n=(﹣1)n •n,若对任意正整数n,(a n+1﹣p)(a n﹣p )<0恒成立,则实数P 的取值范围是.三.解答题:本大题共6小题,共75分.解答应写出必要的文字说明,证明过程或演算步骤.17.设函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)当时,求函数f(x)的最大值和最小值.18.设数列{a n}的前n项和为S n,已知对任意正整数n,都有S n+2=2a n成立.(1)求数列{a n}的通项公式;(2)设,数列{b n}的前n项和为T n,求证:T n<3.19.如图所示,在平面四边形ABCD中,,与的夹角为,与的夹角为.(1)求△CDE的面积S;(2)求.20.已知函数f(x )=lnx﹣ax+﹣1(a∈R)(1)当a=﹣1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)当a≤时,争辩f(x)的单调性.21.若数列{a n}(n∈N*)满足:①a n≥0;②a n﹣2a n+1+a n+2≥0;③a1+a2+…+a n≤1,则称数列{a n}为“和谐”数列.(1)已知数列{a n},(n∈N*),推断{a n}是否为“和谐”数列,说明理由;(2)若数列{a n}为“和谐”数列,证明:.(n∈N*)22.已知函数f(x)=(1)当x>0时,证明:f(x)>;(2)当x>﹣1且x≠0时,不等式f(x)<恒成立,求实数k的值.2022-2021学年湖南省雅礼中学高三(下)其次次月考数学试卷(理科)参考答案与试题解析一.选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.把答案填在答题卡中对应题号的框框内.)1.已知集合A={﹣2,﹣1,0,1,2,3},集合,则A∩B等于()A.{﹣2,﹣1,0,1} B.{﹣1,0,1} C.{﹣1,0,1,2} D.{﹣1,0,1,2,3}考点:交集及其运算.专题:集合.分析:依据集合的基本运算进行求解即可.解答:解:∵A={﹣2,﹣1,0,1,2,3},集合,∴A∩B={﹣1,0,1},故选:B点评:本题主要考查集合的基本运算,比较基础.2.若A、B均是非空集合,则A∩B≠∅是A⊆B的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件考点:必要条件、充分条件与充要条件的推断.专题:规律型.分析:推断出“A∩B≠∅”成立推不出“A⊆B”反之,若“A⊆B”成立,则能推出A∩B≠∅”确定成立,利用充要条件的有关定义得到结论.解答:解:若“A∩B≠∅”成立推不出“A⊆B”反之,若“A⊆B”成立,则有A∩B=A≠∅,所以A∩B≠∅”确定成立,所以A∩B≠∅是A⊆B的必要不充分条件,故选B.点评:本题考查推断一个条件是另一个的什么条件,应当先化简各个条件,若条件是数集的形式,常转化为推断集合间的包含关系.3.(中诱导公式、基本公式)已知,且,则tan(2π﹣α)的值为()A.B.C.D.考点:同角三角函数基本关系的运用.专题:计算题.分析:先依据诱导公式化简已知条件,得到sinα的值,然后由α的范围,利用同角三角函数间的基本关系求出cosα的值,把所求的式子利用诱导公式化简后,再依据同角三角函数间的基本关系把切化弦后,将sinα和cosα的值代入即可求出值.解答:解:由,又,得,则.故选B点评:此题考查同学机敏运用诱导公式及同角三角函数间的基本关系化简求值,是一道中档题.同学在求cosα的值时应留意α的范围.4.如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥面A1B1C1,正视图是边长为2的正方形,俯视图为一个等边三角形,该三棱柱的左视图面积为()A.2B.C.2D.4考点:简洁空间图形的三视图.专题:计算题;空间位置关系与距离.分析:三棱柱的左视图是一个矩形,矩形的长是三棱柱的侧棱长,宽是底面三角形的一条边上的高,在边长是2的等边三角形中做出底边上的高的长度,得到结果.解答:解:由题意知三棱柱的左视图是一个矩形,矩形的长是三棱柱的侧棱长,宽是底面三角形的一条边上的高,在边长是2的等边三角形中,底边上的高是,∴侧视图的面积是2故选:A.点评:本题考查简洁的空间图形三视图,考查三视图的面积的计算,考查通过原图观看三视图的大小,比较基础.5.已知向量满足:,与的夹角为,则=()A.2 B.4 C.2D.8考点:平面对量数量积的运算.。

高二数学下学期第二次月考试题 理含解析 试题

高二数学下学期第二次月考试题 理含解析 试题

智才艺州攀枝花市创界学校二中二零二零—二零二壹高二下学期第二次月考数学试卷(理科)一、选择题〔此题一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的〕1.,且,那么实数的值是〔〕A.0B.1C. D.【答案】C【解析】【分析】先计算,再求得,利用模的计算公式求得a.【详解】∵,∴∴=3,得,那么,∴a=,应选:C.【点睛】此题主要考察复数模的运算、虚数i的周期,属于根底题.2.①是三角形一边的边长,是该边上的高,那么三角形的面积是,假设把扇形的弧长,半径分别看出三角形的底边长和高,可得到扇形的面积;②由,可得到,那么①、②两个推理依次是A.类比推理、归纳推理B.类比推理、演绎推理C.归纳推理、类比推理D.归纳推理、演绎推理【答案】A【解析】试题分析:根据类比推理、归纳推理的定义及特征,即可得出结论.详解:①由三角形性质得到圆的性质有相似之处,故推理为类比推理;②由特殊到一般,故推理为归纳推理.应选:A.点睛:此题考察的知识点是类比推理,归纳推理和演绎推理,纯熟掌握三种推理方式的定义及特征是解答此题的关键.满足,那么〔〕A. B.C. D.【答案】A【解析】【分析】由求得,利用复数的除法运算法那么化简即可.【详解】由得,所以=,应选A.【点睛】复数是高考中的必考知识,主要考察复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、一共轭复数、复数的模这些重要概念,复数的运算主要考察除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.=(i是虚数单位),那么复数的虚部为〔〕A.iB.-iC.1D.-1【答案】C【解析】故答案为C的导数是()A. B. C. D.【答案】D【解析】【分析】将f〔x〕=sin2x看成外函数和内函数,分别求导即可.【详解】将y=sin2x写成,y=u2,u=sinx的形式.对外函数求导为y′=2u,对内函数求导为u′=cosx,故可以得到y=sin2x的导数为y′=2ucosx=2sinxcosx=sin2x应选:D.【点睛】此题考察复合函数的求导,熟记简单复合函数求导,准确计算是关键,是根底题=的极值点为()A. B.C.或者D.【答案】B【解析】【分析】首先对函数求导,判断函数的单调性区间,从而求得函数的极值点,得到结果.【详解】==,函数在上是增函数,在上是减函数,所以x=1是函数的极小值点,应选B.【点睛】该题考察的是有关利用导数研究函数的极值点的问题,属于简单题目.()A.5B.6C.7D.8【答案】D【解析】时,时,应选D.与直线及所围成的封闭图形的面积为()A. B. C. D.【答案】D【解析】曲线与直线及所围成的封闭图形如下列图,图形的面积为,选.考点:定积分的简单应用.9.某校高二(2)班每周都会选出两位“进步之星〞,期中考试之后一周“进步之星〞人选揭晓之前,小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生〞,小赵说:“一定没有我,肯定有小宋〞,小宋说:“小马、小谭二人中有且仅有一人是进步之星〞,小谭说:“小赵说的对〞.这四人中有且只有两人的说法是正确的,那么“进步之星〞是()A.小马、小谭B.小马、小宋C.小赵、小谭D.小赵、小宋【答案】C【解析】【分析】根据题意,得出四人中有且只有小马和小宋的说法是正确的,“进步之星〞是小赵和小谭.【详解】小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生〞,假设小马说假话,那么小赵、小宋、小谭说的都是假话,不合题意,所以小马说的是真话;小赵说:“一定没有我,肯定有小宋〞是假话,否那么,小谭说的是真话,这样有三人说真话,不合题意;小宋说:“小马、小谭二人中有且仅有一人是进步之星〞,是真话;小谭说:“小赵说的对〞,是假话;这样,四人中有且只有小马和小宋的说法是正确的,且“进步之星〞是小赵和小谭.应选:C.【点睛】此题考察了逻辑推理的应用问题,分情况讨论是关键,是根底题目.,直线过点且与曲线相切,那么切点的横坐标为()A. B.1 C.2 D.【答案】B【解析】【分析】设出切点坐标,求出原函数的导函数,得到曲线在切点处的切线方程,把点〔0,﹣e〕代入,利用函数零点的断定求得切点横坐标.【详解】由f〔x〕=e2x﹣1,得f′〔x〕=2e2x﹣1,设切点为〔〕,那么f′〔x0〕,∴曲线y=f〔x〕在切点处的切线方程为y〔x﹣〕.把点〔0,﹣e〕代入,得﹣e,即,两边取对数,得〔〕+ln〔〕﹣1=0.令g〔x〕=〔2x﹣1〕+ln〔2x﹣1〕﹣1,显然函数g〔x〕为〔,+∞〕上的增函数,又g〔1〕=0,∴x=1,即=1.应选:B.【点睛】此题考察利用导数研究过曲线上某点处的切线方程,考察函数零点的断定及应用,是中档题.f(x)的导函数f'(x)的图象如下列图,f(-1)=f(2)=3,令g(x)=(x-1)f(x),那么不等式g(x)≥3x-3的解集是() A.[-1,1]∪[2,+∞) B.(-∞,-1]∪[1,2]C.(-∞,-1]∪[2,+∞)D.[-1,2]【答案】A【解析】【分析】根据图象得到函数f〔x〕的单调区间,通过讨论x的范围,从而求出不等式的解集.【详解】由题意得:f〔x〕在〔﹣∞,1〕递减,在〔1,+∞〕递增,解不等式g〔x〕≥3x﹣3,即解不等式〔x﹣1〕f〔x〕≥3〔x﹣1〕,①x﹣1≥0时,上式可化为:f〔x〕≥3=f〔2〕,解得:x≥2,②x﹣1≤0时,不等式可化为:f〔x〕≤3=f〔﹣1〕,解得:﹣1≤x≤1,综上:不等式的解集是[﹣1,1]∪[2,+∞〕,应选:A.【点睛】此题考察了函数的单调性问题,考察导数的应用,分类讨论思想,准确判断f(x)的单调性是关键,是一道中档题.在上存在导函数,对于任意的实数,都有,当时,.假设,那么实数的取值范围是〔〕A. B. C. D.【答案】A【解析】试题分析:∵,设,那么,∴为奇函数,又,∴在上是减函数,从而在上是减函数,又等价于,即,∴,解得.考点:导数在函数单调性中的应用.【思路点睛】因为,设,那么,可得为奇函数,又,得在上是减函数,从而在上是减函数,在根据函数的奇偶性和单调性可得,由此即可求出结果.二、填空题〔此题一共4小题,每一小题5分,一共20分〕为纯虚数,那么实数的值等于__________.【答案】0【解析】试题分析:由题意得,复数为纯虚数,那么,解得或者,当时,〔舍去〕,所以.考点:复数的概念.,,那么__________〔填入“〞或者“〞〕.【答案】.【解析】分析:利用分析法,逐步分析,即可得到与的大小关系.详解:由题意可知,那么比较的大小,只需比较和的大小,只需比较和的大小,又由,所以,即,即.点睛:此题主要考察了利用分析法比较大小,其中解答中合理利用分析法,逐步分析,得出大小关系是解答的关键,着重考察了推理与论证才能.15..【答案】.【解析】试题分析:根据定积分性质:,根据定积分的几何意义可知,表示以为圆心,1为半径的圆的四分之一面积,所以,而,所以.考点:定积分.,假设对任意实数都有,那么实数的取值范围是____________.【答案】【解析】构造函数,函数为奇函数且在上递减,即,即,即,所以即恒成立,所以,所以,故实数的取值范围是.三、解答题〔本大题一一共6小题,一共70分.解容许写出文字说明、证明过程或者演算步骤〕〔i为虚数单位〕.〔1〕当时,求复数的值;〔2〕假设复数在复平面内对应的点位于第二象限,求的取值范围.【答案】〔Ⅰ〕〔Ⅱ〕【解析】【分析】〔Ⅰ〕将代入,利用复数运算公式计算即可。

高二数学(理)下学期第二次月考试题(含答案)

高二数学(理)下学期第二次月考试题(含答案)

上学期第二次月考高二数学卷(理)考试时间:120分钟 满分:150一、选择题(每小题5分,共12题)1、已知全集{,,,,}U a b c d e =,{,,}M a c d =,{,,}N b d e =,则N M C U ⋂)( = ( )A .{}bB .{}dC .{,}b eD .{,,}b d e2、 5()a x x +(x R ∈)展开式中3x 的系数为10,则实数a 等于( )A .-1B .12 C .1 D .23、某公司新招聘8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,则不同的分配方案共有( )A. 24种B. 36种C. 38种D. 108种4、计算888281808242C C C C ++++ =( )A 、62B 、82C 、83 D 、63 5、一个盒子里有6只好晶体管,4只坏晶体管,任取两次,每次取一只,每次取后不放回,则若已知第一只是好的,则第二只也是好的概率为( ) A.23 B.512 C.59 D.796、已知△ABC 的重心为P ,若实数λ满足:AB AC AP λ+=,则λ的值为A .2B .23C .3D .67、在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A 只能出现在第一或最后一步,程序B 和C 在实施时必须相邻,问实验顺序的编排方法共有 ( )A .34种B .48种C .96种D .144种8、35(1(1+的展开式中x 的系数是(A )4- (B )2- (C )2 (D )49、某体育彩票规定: 从01到36共36个号码中抽出7个号码为一注,每注2元 某人想先选定吉利号18,然后再从01到17中选3个连续的号,从19到29中选2个连续的号,从30到36中选1个号组成一注,则此人把这种要求的号买全,至少要花( )A.1050元B. 1052元C. 2100元D. 2102元10、9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品来检查,至少有两件一等品的种数是( )A.2524C C ⋅ B.443424C C C ++ C.2524C C + D.054415342524C C C C C C ⋅+⋅+⋅11、已知,)(为偶函数x f x x f x x f x f 2)(,02),2()2(=≤≤--=+时当,若*,(),n n N a f n ∈=则2011a = ( )A .1B .21C . 14D .1812、如图,在A 、B 间有四个焊接点,若焊接点脱落,而可能导致电路不通,如今发现A 、B 之间线路不通,则焊接点脱落的不同情况有 ( )A .10B .13C .12D .15二、填空题(每小题5分,共4小题)13、已知(1-2x)n的展开式中,二项式系数的和为64,则它的二项展开式中,系数最大的是第_____________项.14、乒乓球比赛采用7局4胜制,若甲、乙两人实力相当,获胜的概率各占一半,则打完5局后仍不能结束比赛的概率等于_.15、同时投掷三颗骰子,至少有一颗骰子掷出6点的概率是_____________ (结果要求写成既约分数).16、用5种不同颜色给图中的A 、B 、C 、D 四个区域涂色,规定一个区域只涂一种颜色,相邻的区域颜色不同,共有_______种不同的涂色方案。

银川一中2021届高三第二次月考数学(理科)试题

银川一中2021届高三第二次月考数学(理科)试题

银川一中2021届高三年级第二次月考理 科 数 学命题人:张国庆注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,务必将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}{}312,log 1A x x B x x =-≤≤=≤,则AB = A .{}02x x <≤ B .{}12x x -≤≤C .{}12x x ≤≤D .{}03x x <≤2.如果42ππα<<,那么下列不等式成立的是A .sin cos tan ααα<<B .tan sin cos ααα<<C .cos sin tan ααα<<D .cos tan sin ααα<<3.要将函数()2log f x x =变成()()2log 2g x x =,下列方法中可行的有 ①将函数()f x 图像上点的横坐标压缩一半②将函数()f x 图像上点的横坐标伸长一倍 ③将函数()f x 的图像向下平移一个单位 ④将函数()f x 的图像向上平移一个单位 A .①③B .①④C .②③D .②④4.1626年,阿贝尔特格洛德最早推出简写的三角符号:sin 、tan 、sec (正割),1675年,英国人奥屈特最早推出余下的简写三角符号:cos 、cot 、csc (余割),但直到1748年,经过数学家欧拉的引用后,才逐渐通用起来,其中1sec cos θθ=,1csc sin θθ=.若(0,)a π∈,且322csc sec αα+=,则tan α=. A .513B .1213C .0D .125-5.已知角α和角β的终边垂直,角β的终边在第一象限,且角α的终边经过点34,55P ⎛⎫- ⎪⎝⎭,则sin β=A .35 B .35C .45-D .456.设函数23()e x x f x -=(e 为自然底数),则使()1f x <成立的一个充分不必要条件是A .01x <<B .04x <<C .03x <<D .34x <<7.已知042a ππβ<<<<,且sin cos αα-=4sin 45πβ⎛⎫+= ⎪⎝⎭则sin()αβ+=A.10-B.5-C.5D8.已知定义在R 上的奇函数()f x ,对任意实数x ,恒有()()3f x f x +=-,且当30,2x ⎛⎤∈ ⎥⎝⎦时,()268f x x x =-+,则()()()()0122020f f f f +++⋅⋅⋅+=A .6B .3C .0D .3-9.已知函数()|sin ||cos |f x x x =+,则以下结论错误的是 A .()f x 为偶函数 B .()f x 的最小正周期为2π C .()f x 的最大值为2D .()f x 在423,ππ⎡⎤⎢⎥⎣⎦上单调递增10.已知函数x x x x f ln )(+=,曲线)(x f 在0x x =的切线l 的方程为1-=kx y ,则切线l 与坐标轴围成的三角形的面积为A .21B .41C .2D .4 11.已知函数()sin()(0)cos(),(0)x a x f x x b x +≤⎧=⎨+>⎩是偶函数,则,a b 的值可能是A .3a π=,3b π= B .23a π=,6b π=C .3a π=,6b π= D .23a π=,56b π=12.设函数()ln xf x x=,若关于x 的不等式()f x ax >有且只有一个整数解,则实数a 的取值范围为A .ln 3ln 2,94⎛⎤⎥⎝⎦ B .ln 3ln 2,94⎡⎫⎪⎢⎣⎭ C .ln 21,42e ⎛⎤ ⎥⎝⎦ D .ln 21,42e ⎡⎫⎪⎢⎣⎭ 二、填空题:(本大题共4小题,每小题5分,共20分) 13.正弦函数sin y x =在[0,]3π上的图像与x 轴所围成曲边梯形的面积为__________.14.已知扇形AOB 面积为π34,圆心角AOB 为︒120,则该扇形的半径为_________. 15.x x x x x f 2cos 432cos 6sin )(+++=在0x x =处取得极值,则=02cos x _________. 16.对于任意实数12,x x ,当120x x e <<<时,有122121ln ln x x x x ax ax ->-恒成立,则实数a 的取值范围为___________三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答。

陕西省榆林市府谷中学2022-2023学年高二上学期第二次月考理科 数学试题(原卷版)

陕西省榆林市府谷中学2022-2023学年高二上学期第二次月考理科 数学试题(原卷版)
A. B. C. D.
9.已知命题 :若 ,则 ,在命题 与其逆命题、否命题、逆否命题这四个命题中,真命题的个数是()
A.0B.2C.3D.4
10.一程序框图运行的结果 ,则判断框中应填写的关于 的条件为()
A. ?B. ?
C. ?D. ?
11.如图,在长方体 中, , ,P,M分别为线段BC, 的中点,Q,N分别为线段 ,AD上的动点,若 ,则线段QN的长度的最小值为()
21.如图,在四棱锥 中,底面 为矩形, 平面 .
(1)证明:平面 平面 ;
(2)若 为 中点,求二面角 平面角的余弦值.
22.已知椭圆 的左、右焦点分别为 ,离心率为 ,过左焦点 的直线 与椭圆 交于 两点( 不在 轴上), 的周长为 .
(1)求椭圆 的标准方程;
(2)若点 在椭圆 上,且 为坐标原点),求 的取值范围.
4.本卷命题范围:北师大版必修3,选修2-1.
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.抛物线 的焦点到其准线的距离是()
A.5B. C. D.
2.椭圆 的焦点坐标是()
A. , B. ,
C. , D. ,
3.已知向量 ,若 ,则实数 值为()
15.若“ ”是假命题,则实数 的取值范围是__________.
16.如图,在四棱锥S-ABCD中,底面ABCD是矩形, ,P为棱AD的中点,且 , ,若点M到平面SBC的距离为 ,则实数 的值为____________.
三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
A. B.2C. D.1
4.已知命题 :若 ,则 ;命题 :若 ,则 .则下列是真命题的是()

高三数学上学期第二次月考试卷 理(含解析)-人教版高三全册数学试题

高三数学上学期第二次月考试卷 理(含解析)-人教版高三全册数学试题

2015-2016学年某某省马某某市红星中学高三(上)第二次月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.设全集U是实数集R,M={x|y=ln(x2﹣2x) },N={y|y=},则图中阴影部分表示的集合是( )A.{x|﹣2≤x<2} B.{x|1<x≤2}C.{x|1≤x≤2}D.{x|x<1}2.已知函数f(x)=且f(a)=﹣3,则f(6﹣a)=( ) A.﹣B.﹣C.﹣D.﹣3.给出如下命题,正确的序号是( )A.命题:∀x∈R,x2≠x的否定是:∃x0∈R,使得x02≠xB.命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5C.若ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件D.命题:∃x0∈R,x02+a<0为假命题,则实数a的取值X围是a>04.已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( )A.B.C.D.5.设F1、F2为椭圆+y2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P、Q两点,当四边形PF1QF2面积最大时,•的值等于( )A.0 B.2 C.4 D.﹣26.设a=log37,b=21.1,c=0.83.1,则( )A.b<a<c B.c<a<b C.c<b<a D.a<c<b7.执行如图所示的程序框图,如果输入P=153,Q=63,则输出的P的值是( )A.2 B.3 C.9 D.278.若点(16,tanθ)在函数y=log2x的图象上,则=( ) A.B.C.4 D.49.已知函数f(x)=()x﹣log3x,若实数x0是方程f(x)=0的解,且x0<x1,则f(x1)的值( )A.恒为负B.等于零C.恒为正D.不大于零10.已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2,则a2+a4+a5+a9的值等于( )A.52 B.40 C.26 D.2011.函数y=e|lnx|﹣|x﹣1|的图象大致是( )A.B. C.D.12.已知定义在R上的奇函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>2f(﹣x),若g(x)=x2f(x),则不等式g(x)<g(1﹣3x)的解集是( )A.(,+∞)B.(﹣∞,)C.(0,)D.(﹣∞,)∪(,+∞)二、填空题:本大题共4小题,每小题5分.13.计算:()+lg+lg70+=__________.14.设变量x,y满足约束条件,则z=x﹣3y的最小值是__________.15.已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=__________.16.关于函数f(x)=(x≠0),有下列命题:①f(x)的最小值是lg2;②其图象关于y轴对称;③当x>0时,f(x)是增函数;当x<0时,f(x)是减函数;④f(x)在区间(﹣1,0)和(1,+∞)上是增函数,其中所有正确结论的序号是__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知p:|1﹣|≤2;q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要不充分条件,某某数m的取值X围.18.已知函数f(x)=﹣x2+2ex+m﹣1,g(x)=x+(x>0).(1)若y=g(x)﹣m有零点,求m的取值X围;(2)确定m的取值X围,使得g(x)﹣f(x)=0有两个相异实根.19.已知函数f(x)=log a(x+1)(a>1),若函数y=g(x)的图象上任意一点P关于原点的对称点Q的轨迹恰好是函数f(x)的图象.(1)写出函数g(x)的解析式;(2)当x∈[0,1)时,总有f(x)+g(x)≥m成立,求m的取值X围.20.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.21.已知函数f(x)=+xlnx,g(x)=x3﹣x2﹣3.(1)讨论函数h(x)=的单调性;(2)如果对任意的s,t∈[,2],都有f(s)≥g(t)成立,某某数a的取值X围.四、选做题:请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.已知曲线C1的参数方程是(θ为参数)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=﹣4cosθ.(1)求曲线C1与C2交点的极坐标;(2)A、B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).23.已知不等式|2x+2|﹣|x﹣1|>a.(1)当a=0时,求不等式的解集(2)若不等式在区间[﹣4,2]内无解.某某数a的取值X围.2015-2016学年某某省马某某市红星中学高三(上)第二次月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.设全集U是实数集R,M={x|y=ln(x2﹣2x) },N={y|y=},则图中阴影部分表示的集合是( )A.{x|﹣2≤x<2} B.{x|1<x≤2}C.{x|1≤x≤2}D.{x|x<1}【考点】Venn图表达集合的关系及运算.【专题】应用题;集合思想;定义法;集合.【分析】由图知,阴影部分表示的集合中的元素是在集合N中的元素但不在集合M中的元素组成的,即N∩C U M.【解答】解:由韦恩图知阴影部分表示的集合为N∩(C U M)M={x|y=ln(x2﹣2x) }∴x2﹣2x>0,解得x<0,或x>2,∴M={x|x<0,或x>2},∴C U M={x|0≤x≤2}=[0,2],N={y|y=}={y|y≥1}=[1,+∞),∴N∩(C U M)=[1,2],故选:C【点评】本小题主要考查Venn图表达集合的关系及运算、二次不等式的解法等基础知识,属于基础题2.已知函数f(x)=且f(a)=﹣3,则f(6﹣a)=( ) A.﹣B.﹣C.﹣D.﹣【考点】分段函数的应用;函数的零点.【专题】函数的性质及应用.【分析】由f(a)=﹣3,结合指数和对数的运算性质,求得a=7,再由分段函数求得f(6﹣a)的值.【解答】解:函数f(x)=且f(a)=﹣3,若a≤1,则2a﹣1﹣2=﹣3,即有2a﹣1=﹣1<0,方程无解;若a>1,则﹣log2(a+1)=﹣3,解得a=7,则f(6﹣a)=f(﹣1)=2﹣1﹣1﹣2=﹣.故选:A.【点评】本题考查分段函数的运用:求函数值,主要考查指数和对数的运算性质,属于中档题.3.给出如下命题,正确的序号是( )A.命题:∀x∈R,x2≠x的否定是:∃x0∈R,使得x02≠xB.命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5C.若ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件D.命题:∃x0∈R,x02+a<0为假命题,则实数a的取值X围是a>0【考点】命题的真假判断与应用.【专题】计算题;规律型;简易逻辑.【分析】利用命题的否定判断A的正误;四种命题的逆否关系判断B的正误;充要条件判断C 的正误;命题的真假判断D的正误;【解答】解:对于A,命题:∀x∈R,x2≠x的否定是:∃x0∈R,使得x02≠x0,不满足命题的否定形式,所以不正确;对于B,命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5,不满足否命题的形式,所以不正确;对于C,若ω=1是函数f(x)=cosx在区间[0,π]上单调递减的,而函数f(x)=cosωx在区间[0,π]上单调递减的,ω≤1,所以ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件,正确.对于D,命题:∃x0∈R,x02+a<0为假命题,则命题:a≥0,∀x∈R,x2+a≥0是真命题;所以,命题:∃x0∈R,x02+a<0为假命题,则实数a的取值X围是a>0,不正确;故选:C.【点评】本题考查命题的真假的判断与应用,基本知识的考查.4.已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( )A.B.C.D.【考点】由三视图求面积、体积.【专题】图表型.【分析】先由三视图还原成原来的几何体,再根据三视图中的长度关系,找到几何体中的长度关系,进而可以求几何体的体积.【解答】解:由三视图可得该几何体的上部分是一个三棱锥,下部分是半球,所以根据三视图中的数据可得:V=××=,故选C.【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是组合体的体积,一般组合体的体积要分部分来求.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是高考的新增考点,不时出现在高考试题中,应予以重视.5.设F1、F2为椭圆+y2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P、Q两点,当四边形PF1QF2面积最大时,•的值等于( )A.0 B.2 C.4 D.﹣2【考点】椭圆的简单性质.【专题】计算题.【分析】通过题意可推断出当P、Q分别在椭圆短轴端点时,四边形PF1QF2面积最大.进而可根据椭圆的方程求得焦点的坐标和P的坐标,进而求得和,则•的值可求得.【解答】解:根据题意可知当P、Q分别在椭圆短轴端点时,四边形PF1QF2面积最大.这时,F1(﹣,0),F2(,0),P(0,1),∴=(﹣,﹣1),=(,﹣1),∴•=﹣2.故选D【点评】本题主要考查了椭圆的简单性质.考查了学生数形结合的思想和分析问题的能力.6.设a=log37,b=21.1,c=0.83.1,则( )A.b<a<c B.c<a<b C.c<b<a D.a<c<b【考点】对数值大小的比较.【专题】函数的性质及应用.【分析】分别讨论a,b,c的取值X围,即可比较大小.【解答】解:1<log37<2,b=21.1>2,c=0.83.1<1,则c<a<b,故选:B.【点评】本题主要考查函数值的大小比较,根据指数和对数的性质即可得到结论.7.执行如图所示的程序框图,如果输入P=153,Q=63,则输出的P的值是( )A.2 B.3 C.9 D.27【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序,依次写出每次循环得到的R,P,Q的值,当Q=0时,满足条件Q=0,退出循环,输出P的值为3.【解答】解:模拟执行程序,可得P=153,Q=63不满足条件Q=0,R=27,P=63,Q=27不满足条件Q=0,R=9,P=27,Q=9不满足条件Q=0,R=0,P=9,Q=0满足条件Q=0,退出循环,输出P的值为9.故选:C.【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的R,P,Q的值是解题的关键,属于基本知识的考查.8.若点(16,tanθ)在函数y=log2x的图象上,则=( ) A.B.C.4 D.4【考点】三角函数的化简求值.【专题】计算题;转化思想;转化法;三角函数的求值.【分析】先根据对数的运算性质求出tanθ,再化简代值计算即可.【解答】解:点(16,tanθ)在函数y=log2x的图象上,∴tanθ=log216=4,∴====,故选:B.【点评】本题考查了二倍角公式,函数值的求法,以及对数的运算性质,属于基础题.9.已知函数f(x)=()x﹣log3x,若实数x0是方程f(x)=0的解,且x0<x1,则f(x1)的值( )A.恒为负B.等于零C.恒为正D.不大于零【考点】函数的零点与方程根的关系.【专题】函数的性质及应用.【分析】由函数的性质可知,f(x)=()x﹣log3x在(0,+∞)上是减函数,且可得f(x0)=0,由0<x0<x1,可得f(x1)<f(x0)=0,即可判断【解答】解:∵实数x0是方程f(x)=0的解,∴f(x0)=0.∵函数y()x,y=log3x在(0,+∞)上分别具有单调递减、单调递增,∴函数f(x)在(0,+∞)上是减函数.又∵0<x0<x1,∴f(x1)<f(x0)=0.∴f(x1)的值恒为负.故选A.【点评】本题主要考查了函数的单调性的简单应用,解题的关键是准确判断函数f(x)的单调性并能灵活应用.10.已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2,则a2+a4+a5+a9的值等于( )A.52 B.40 C.26 D.20【考点】数列的求和.【专题】等差数列与等比数列.【分析】首先根据题中的已知条件已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2,进一步求出数列的通项公式,然后根据通项公式求出各项的值,最后确定结果.【解答】解:已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2则:∴a n=3n﹣5a2+a4+a5+a9=40故选:B【点评】本题考查的知识点:根据点的斜率求出数列的通项公式,由通项公式求数列的项.11.函数y=e|lnx|﹣|x﹣1|的图象大致是( )A.B. C.D.【考点】对数的运算性质;函数的图象与图象变化.【分析】根据函数y=e|lnx|﹣|x﹣1|知必过点(1,1),再对函数进行求导观察其导数的符号进而知原函数的单调性,得到答案.【解答】解:由y=e|lnx|﹣|x﹣1|可知:函数过点(1,1),当0<x<1时,y=e﹣lnx﹣1+x=+x﹣1,y′=﹣+1<0.∴y=e﹣lnx﹣1+x为减函数;若当x>1时,y=e lnx﹣x+1=1,故选D.【点评】本题主要考查函数的求导与函数单调性的关系.12.已知定义在R上的奇函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>2f(﹣x),若g(x)=x2f(x),则不等式g(x)<g(1﹣3x)的解集是( )A.(,+∞)B.(﹣∞,)C.(0,)D.(﹣∞,)∪(,+∞)【考点】函数奇偶性的性质.【专题】转化思想;数学模型法;函数的性质及应用;导数的综合应用.【分析】f(x)是定义在R上的奇函数,可得:f(﹣x)=﹣f(x).对任意正实数x满足xf′(x)>2f(﹣x),可得:xf′(x)+2f(x)>0,由g(x)=x2f(x),可得g′(x)>0.可得函数g(x)在(0,+∞)上单调递增.即可得出.【解答】解:∵f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x).对任意正实数x满足xf′(x)>2f(﹣x),∴xf′(x)+2f(x)>0,∵g(x)=x2f(x),∴g′(x)=2xf(x)+x2f′(x)>0.∴函数g(x)在(0,+∞)上单调递增.又g(0)=0,g(﹣x)=x2f(﹣x)=﹣g(x),∴函数g(x)是R上的奇函数,∴g(x)是R上的增函数.由不等式g(x)<g(1﹣3x),∴x<1﹣3x,解得.∴不等式g(x)<g(1﹣3x)的解集为:.故选:B.【点评】本题考查了函数的奇偶性与单调性,考查了推理能力与计算能力,属于中档题.二、填空题:本大题共4小题,每小题5分.13.计算:()+lg+lg70+=.【考点】对数的运算性质;有理数指数幂的化简求值.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】根据对数和幂的运算性质计算即可.【解答】解:()+lg+lg70+=+lg()+1﹣lg3=+lg+1=+1+1=,故答案为:.【点评】本题考查了对数和幂的运算性质,关键是掌握性质,属于基础题.14.设变量x,y满足约束条件,则z=x﹣3y的最小值是﹣8.【考点】简单线性规划.【专题】不等式的解法及应用.【分析】将z=x﹣3y变形为,此式可看作是斜率为,纵截距为的一系列平行直线,当最大时,z最小.作出原不等式组表示的平面区域,让直线向此平面区域平移,可探求纵截距的最大值.【解答】解:由z=x﹣3y,得,此式可看作是斜率为,纵截距为的直线,当最大时,z最小.画出直线y=x,x+2y=2,x=﹣2,从而可标出不等式组表示的平面区域,如右图所示.由图知,当动直线经过点P时,z最小,此时由,得P(﹣2,2),从而z min=﹣2﹣3×2=﹣8,即z=x﹣3y的最小值是﹣8.故答案为:﹣8.【点评】本题考查了线性规划的应用,为高考常考的题型,求解此类问题的一般步骤是:(1)作出已知不等式组表示的平面区域;(2)运用化归思想及数形结合思想,将目标函数的最值问题转化为平面中几何量的最值问题处理.15.已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=﹣8.【考点】奇偶性与单调性的综合;函数的周期性.【专题】数形结合.【分析】由条件“f(x﹣4)=﹣f(x)”得f(x+8)=f(x),说明此函数是周期函数,又是奇函数,且在[0,2]上为增函数,由这些画出示意图,由图可解决问题.【解答】解:此函数是周期函数,又是奇函数,且在[0,2]上为增函数,综合条件得函数的示意图,由图看出,四个交点中两个交点的横坐标之和为2×(﹣6),另两个交点的横坐标之和为2×2,所以x1+x2+x3+x4=﹣8.故答案为﹣8.【点评】数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.16.关于函数f(x)=(x≠0),有下列命题:①f(x)的最小值是lg2;②其图象关于y轴对称;③当x>0时,f(x)是增函数;当x<0时,f(x)是减函数;④f(x)在区间(﹣1,0)和(1,+∞)上是增函数,其中所有正确结论的序号是①②④.【考点】命题的真假判断与应用;奇偶性与单调性的综合.【专题】函数思想;定义法;函数的性质及应用.【分析】是结合复合函数单调性的关系进行判断.②根据基本由函数奇偶性的定义判断函数为偶函数判断;③利用对勾函数的单调性判断;④由对勾函数的最值及函数奇偶性的性质进行判断即可.【解答】解:①函数f(x)=lg,(x∈R且x≠0).∵=2,∴f(x)=lg≥2,即f(x)的最小值是lg2,故①正确,②∵f(﹣x)==f(x),∴函数f(x)为偶函数,图象关于y轴对称,故②正确;③当x>0时,t(x)=,在(0,1)上单调递减,在(1,+∞)上得到递增,∴f(x)=lg在(0,1)上单调递减,在(1,+∞)上得到递增,故③错误;④∵函数f(x)是偶函数,由③知f(x)在(0,1)上单调递减,在(1,+∞)上得到递增,∴在(﹣1,0)上单调递增,在(﹣∞,﹣1)上得到递减,故④正确,故答案为:①②④【点评】本题考查了命题的真假判断与应用,考查了函数奇偶性的性质,考查了复合函数的单调性,是中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知p:|1﹣|≤2;q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要不充分条件,某某数m的取值X围.【考点】必要条件;绝对值不等式的解法.【专题】规律型.【分析】先求出命题p,q的等价条件,利用¬p是¬q的必要不充分条件转化为q是p的必要不充分条件,建立条件关系即可求出m的取值X围.【解答】解:由||=,得|x﹣4|≤6,即﹣6≤x﹣4≤6,∴﹣2≤x≤10,即p:﹣2≤x≤10,由x2+2x+1﹣m2≤0得[x+(1﹣m)][x+(1+m)]≤0,即1﹣m≤x≤1+m,(m>0),∴q:1﹣m≤x≤1+m,(m>0),∵¬p是¬q的必要不充分条件,∴q是p的必要不充分条件.即,且等号不能同时取,∴,解得m≥9.【点评】本题主要考查充分条件和必要条件的应用,将¬p是¬q的必要不充分条件转化为q 是p的必要不充分条件是解决本题的关键.18.已知函数f(x)=﹣x2+2ex+m﹣1,g(x)=x+(x>0).(1)若y=g(x)﹣m有零点,求m的取值X围;(2)确定m的取值X围,使得g(x)﹣f(x)=0有两个相异实根.【考点】函数零点的判定定理;根的存在性及根的个数判断.【专题】计算题;函数的性质及应用;导数的综合应用;不等式的解法及应用.【分析】(1)由基本不等式可得g(x)=x+≥2=2e,从而求m的取值X围;(2)令F(x)=g(x)﹣f(x)=x++x2﹣2ex﹣m+1,求导F′(x)=1﹣+2x﹣2e=(x﹣e)(+2);从而判断函数的单调性及最值,从而确定m的取值X围.【解答】解:(1)∵g(x)=x+≥2=2e;(当且仅当x=,即x=e时,等号成立)∴若使函数y=g(x)﹣m有零点,则m≥2e;故m的取值X围为[2e,+∞);(2)令F(x)=g(x)﹣f(x)=x++x2﹣2ex﹣m+1,F′(x)=1﹣+2x﹣2e=(x﹣e)(+2);故当x∈(0,e)时,F′(x)<0,x∈(e,+∞)时,F′(x)>0;故F(x)在(0,e)上是减函数,在(e,+∞)上是增函数,故只需使F(e)<0,即e+e+e2﹣2e2﹣m+1<0;故m>2e﹣e2+1.【点评】本题考查了基本不等式的应用及导数的综合应用,同时考查了函数零点的判断与应用,属于中档题.19.已知函数f(x)=log a(x+1)(a>1),若函数y=g(x)的图象上任意一点P关于原点的对称点Q的轨迹恰好是函数f(x)的图象.(1)写出函数g(x)的解析式;(2)当x∈[0,1)时,总有f(x)+g(x)≥m成立,求m的取值X围.【考点】求对数函数解析式;函数解析式的求解及常用方法;函数最值的应用.【专题】计算题;转化思想.【分析】(1)由已知条件可知函数g(x)的图象上的任意一点P(x,y)关于原点对称的点Q (﹣x,﹣y)在函数f(x)图象上,把Q(﹣x,﹣y)代入f(x),整理可得g(x)(2)由(1)可令h(x)=f(x)+g(x),先判断函数h(x)在[0,1)的单调性,进而求得函数的最小值h(x)min,使得m≤h(x)min【解答】解:(1)设点P(x,y)是g(x)的图象上的任意一点,则Q(﹣x,﹣y)在函数f (x)的图象上,即﹣y=log a(﹣x+1),则∴(2)f(x)+g(x)≥m 即,也就是在[0,1)上恒成立.设,则由函数的单调性易知,h(x)在[0,1)上递增,若使f(x)+g(x)≥m在[0,1)上恒成立,只需h(x)min≥m在[0,1)上成立,即m≤0.m的取值X围是(﹣∞,0]【点评】本题(1)主要考查了函数的中心对称问题:若函数y=f(x)与y=g(x)关于点M (a,b)对称,则y=f(x)上的任意一点(x,y)关于M(a,b)对称的点(2a﹣x,2b﹣y)在函数y=g(x)的图象上.(2)主要考查了函数的恒成立问题,往往转化为求最值问题:m≥h(x)恒成立,则m≥h(x)m≤h(x)恒成立,max则m≤h(x)min20.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.【考点】基本不等式在最值问题中的应用.【专题】计算题.【分析】(1)赢利总额y元即x年中的收入50x减去购进机床的成本与这x年中维修、保养的费用,维修、保养的费用历年成等差数增长,,(2)由(1)的结论解出结果进行判断得出何年开始赢利.(3)算出每一种方案的总盈利,比较大小选择方案.【解答】解:(1)y=﹣2x2+40x﹣98,x∈N*.(2)由﹣2x2+40x﹣98>0解得,,且x∈N*,所以x=3,4,,17,故从第三年开始盈利.(3)由,当且仅当x=7时“=”号成立,所以按第一方案处理总利润为﹣2×72+40×7﹣98+30=114(万元).由y=﹣2x2+40x﹣98=﹣2(x﹣10)2+102≤102,所以按第二方案处理总利润为102+12=114(万元).∴由于第一方案使用时间短,则选第一方案较合理.【点评】考查审题及将题中关系转化为数学符号的能力,其中第二问中考查了一元二次不等式的解法,第三问中考查到了基本不等式求最值,本题是一个函数基本不等式相结合的题.属应用题中盈利最大化的问题.21.已知函数f(x)=+xlnx,g(x)=x3﹣x2﹣3.(1)讨论函数h(x)=的单调性;(2)如果对任意的s,t∈[,2],都有f(s)≥g(t)成立,某某数a的取值X围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【专题】综合题;导数的综合应用.【分析】(1)求导数,利用导数的正负,即可讨论函数h(x)=的单调性;(2)求出g(x)max=g(2)=1,当x∈[,2]时,f(x)=+xlnx恒成立,等价于a≥x﹣x2lnx 恒成立,然后利用导数求函数u(x)=x﹣x2lnx在区间[,2]上取得最大值,则实数a的取值X围可求.【解答】解:(1)h(x)==+lnx,h′(x)=,①a≤0,h′(x)≥0,函数h(x)在(0,+∞)上单调递增②a>0时,h'(x)>0,则x∈(,+∞),函数h(x)的单调递增区间为(,+∞),h'(x)<0,则x∈(0,),函数h(x)的单调递减区间为(0,),.(2)g(x)=x3﹣x2﹣3,g′(x)=3x(x﹣),x 2g′(x)0 ﹣0 +g(x)﹣递减极小值递增 13由上表可知,g(x)在x=2处取得最大值,即g(x)max=g(2)=1所以当x∈[,2]时,f(x)=+xlnx≥1恒成立,等价于a≥x﹣x 2lnx恒成立,记u(x)=x﹣x2lnx,所以a≥u(x)max,u′(x)=1﹣x﹣2xlnx,可知u′(1)=0,当x∈(,1)时,1﹣x>0,2xlnx<0,则u′(x)>0,∴u(x)在x∈(,2)上单调递增;当x∈(1,2)时,1﹣x<0,2xlnx>0,则u′(x)<0,∴u(x)在(1,2)上单调递减;故当x=1时,函数u(x)在区间[,2],上取得最大值u(1)=1,所以a≥1,故实数a的取值X围是[1,+∞).【点评】本题考查了利用导数研究函数的单调性,考查了导数在最大值、最小值问题中的应用,考查了数学转化思想方法和函数构造法,训练了利用分离变量法求参数的取值X围,属于中档题.四、选做题:请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.已知曲线C1的参数方程是(θ为参数)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=﹣4cosθ.(1)求曲线C1与C2交点的极坐标;(2)A、B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).【考点】参数的意义;简单曲线的极坐标方程.【专题】选作题;转化思想;综合法;坐标系和参数方程.【分析】(1)把参数方程和极坐标方程化为直角坐标方程,联立方程组求出交点的坐标,再把交点的直角坐标化为极坐标;(2)画出图象,由平面几何知识可知,A,C1,C2,B依次排列且共线时|AB|最大.【解答】解:(1)由(θ为参数),消去参数得:x2+(y﹣2)2=4,即x2+y2﹣4y=0;由ρ=﹣4cosθ,得ρ2=﹣4ρcosθ,即x2+y2=﹣4x.两式作差得:x+y=0,代入C1得交点为(0,0),(﹣2,2).其极坐标为(0,0),(2,);(2)如图,由平面几何知识可知,A,C1,C2,B依次排列且共线时|AB|最大.此时|AB|=2+4,O到AB的距离为.∴△OAB的面积为S=×(2+4)×=2+2.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程,考查了推理能力与计算能力,属于基础题.23.已知不等式|2x+2|﹣|x﹣1|>a.(1)当a=0时,求不等式的解集(2)若不等式在区间[﹣4,2]内无解.某某数a的取值X围.【考点】绝对值不等式的解法.【专题】不等式的解法及应用.【分析】(1)把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(2)求得f(x)=|2x+2|﹣|x﹣1|=在区间[﹣4,2]内的值域,结合|2x+2|﹣|x﹣1|>a无解,求得a的X围.【解答】解:(1)当a=0时,不等式即|2x+2|﹣|x﹣1|>0,可得①,或②,或③.解①求得 x<﹣3,解②求得﹣<x<1,解③求得x≥1.综上可得,原不等式的解集为{x|x<﹣3,或x>﹣}.(2)当x∈[﹣4,2],f(x)=|2x+2|﹣|x﹣1|=的值域为[﹣2,3],而不等式|2x+2|﹣|x﹣1|>a无解,故有a≤3.【点评】本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想;还考查了分段函数的应用,求函数的值域,属于中档题.。

天津市南开大学附属中学2021届高三上学期第二次月考数学试卷(理科) Word版含解析

天津市南开大学附属中学2021届高三上学期第二次月考数学试卷(理科) Word版含解析

天津市南开高校附属中学2021届高三上学期其次次月考数学试卷(理科)一、选择题(每题5分,共40分)1.(3分)已知复数z满足(3+4i)z=25,则z=()A.3﹣4i B.3+4i C.﹣3﹣4i D.﹣3+4i2.(3分)“a3>b3”是“log3a>log3b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(3分)设变量x,y 满足约束条件,则目标函数z=x+2y的最小值为()A.2B.3C.4D.54.(3分)若﹣9、a、﹣l成等差数列,﹣9、m、b、n、﹣1成等比数列,则ab=()A.15 B.﹣l5 C.±l5 D.105.(3分)已知函数y=2sinx的定义域为[a,b],值域为[﹣2,1],则b﹣a的值不行能是()A.B.πC.2πD .6.(3分)已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m⊥α,n⊥m则n∥αB.若α⊥β,β⊥γ则α∥βC.若m⊥β,n⊥β则m∥n D.若m∥α,m∥β,则α∥β7.(3分)已知f(x)=bx+1为x的一次函数,b为不等于1的常数,且g(n)=,设a n=g(n)﹣g(n﹣1)(n∈N*),则数列{a n}是()A.等差数列B.等比数列C.递增数列D.递减数列8.(3分)在平面四边形ABCD中,AB=3,BC=4,∠ABC=90°,△ACD 是正三角形,则•的值为()A.﹣2 B.2C.D .二、填空题(本大题共6小题,每小题5分,共30分)9.(5分)为了解某校高中同学的近视眼发病率,在该校同学中进行分层抽样调查,已知该校2022-2021学年高一、2022-2021学年高二、2021届高三分别有同学800名、600名、500名.若2021届高三同学共抽取25名,则2022-2021学年高一同学共抽取名.10.(5分)如图是一个空间几何体的三视图,则该几何体的体积大小为.11.(5分)已知=(3,﹣2).=(1,0),向量λ与﹣2垂直,则实数λ的值为.12.(5分)对于任意x∈R,满足(a﹣2)x2+2(a﹣2)x﹣4<0恒成立的全部实数a构成集合A,使不等式|x ﹣4|+|x﹣3|<a的解集为空集的全部实数a构成集合B,则A∩∁R B=.13.(5分)如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,则线段AE的长为.14.(5分)若a是1+2b与1﹣2b 的等比中项,则的最大值为.三、解答题:本大题共6小题,共80分,解题应写出文字说明、证明过程或演算步骤.15.(16分)已知函数.(Ⅰ)求函数f(x)的最小正周期和图象的对称轴方程;(Ⅱ)求函数f(x )在区间上的值域.16.(16分)在△ABC中,内角A、B、C的对边分别为a,b,c,且a>c ,已知•=2,cosB=,b=3,求:(Ⅰ)a和c的值;(Ⅱ)cos(B﹣C)的值.17.(16分)如图所示,四棱锥P﹣ABCD的底面是边长为1的正方形,PA⊥CD,PA=1,PD=,E为PD 上一点,PE=2ED.(Ⅰ)求证:PA⊥平面ABCD;(Ⅱ)求二面角D﹣AC﹣E的余弦值;(Ⅲ)在侧棱PC上是否存在一点F,使得BF∥平面AEC?若存在,指出F点的位置,并证明;若不存在,说明理由.18.(16分)已知单调递增的等比数列{a n}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设的前n项和S n.19.(16分)已知数列{a n},a1=1,前n项和S n满足nS n+1﹣(n+3)S n=0,(Ⅰ)求{a n}的通项公式;(Ⅱ)若b n=4()2,求数列{(﹣1)n b n}的前n项和T n;(Ⅲ)设C n=2n (﹣λ),若数列{C n}是单调递减数列,求实数λ的取值范围.20.(16分)已知函数f(x)=(x2﹣3x+3)•e x定义域为[﹣2,t](t>﹣2),设f(﹣2)=m,f(t)=n.(Ⅰ)试确定t的取值范围,使得函数f(x)在[﹣2,t]上为单调函数;(Ⅱ)求证:n>m;(Ⅲ)求证:对于任意的t>﹣2,总存x0∈(﹣2,t),满足,并确定这样的x0的个数.天津市南开高校附属中学2021届高三上学期其次次月考数学试卷(理科)参考答案与试题解析一、选择题(每题5分,共40分)1.(3分)已知复数z满足(3+4i)z=25,则z=()A.3﹣4i B.3+4i C.﹣3﹣4i D.﹣3+4i考点:复数相等的充要条件.专题:数系的扩充和复数.分析:依据题意利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得z的值.解答:解:∵复数z满足(3+4i)z=25,则z====3﹣4i,故选:A.点评:本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.2.(3分)“a3>b3”是“log3a>log3b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的推断.专题:函数的性质及应用;简易规律.分析:依据指数函数和对数函数的图象和性质,求出两个命题的等价命题,进而依据充要条件的定义可得答案.解答:解:“a3>b3”⇔“a>b”,“log3a>log3b”⇔“a>b>0”,故“a3>b3”是“log3a>log3b”的必要不充分条件,故选:B点评:推断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤推断命题p与命题q所表示的范围,再依据“谁大谁必要,谁小谁充分”的原则,推断命题p与命题q的关系.3.(3分)设变量x,y 满足约束条件,则目标函数z=x+2y的最小值为()A.2B.3C.4D.5考点:简洁线性规划.专题:不等式的解法及应用.分析:作出不等式对应的平面区域,利用线性规划的学问,通过平移即可求z的最大值.解答:解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点B(1,1)时,直线y=﹣的截距最小,此时z最小.此时z的最小值为z=1+2×1=3,故选:B.点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.4.(3分)若﹣9、a、﹣l成等差数列,﹣9、m、b、n、﹣1成等比数列,则ab=()A.15 B.﹣l5 C.±l5 D.10考点:等比数列的性质;等差数列的性质.专题:等差数列与等比数列.分析:利用等差数列与等比数列的性质可求得a=﹣5,b=﹣3,从而可得答案.解答:解:∵﹣9、a、﹣l成等差数列,﹣9、m、b、n、﹣1成等比数列,∴2a=﹣1﹣9=﹣10,b2=9,∴a=﹣5,b=﹣3(b为第三项,b<0),∴ab=15.故选:A.点评:本题考查等差数列与等比数列的性质,b=﹣3的确定是易错点,属于中档题.5.(3分)已知函数y=2sinx的定义域为[a,b],值域为[﹣2,1],则b﹣a的值不行能是()A.B.πC.2πD .考点:三角函数的最值.专题:计算题.分析:结合三角函数R上的值域[﹣2,2],当定义域为[a,b],值域为[﹣2,1],可知[a,b]小于一个周期,从而可得.解答:解:函数y=2sinx在R上有﹣2≤y≤2函数的周期T=2π值域[﹣2,1]含最小值不含最大值,故定义域[a,b]小于一个周期b﹣a<2π故选C点评:本题考查了正弦函数的图象及利用图象求函数的值域,解题的关键是生疏三角函数y=2sinx的值域[﹣2,2],而在区间[a,b]上的值域[﹣2,1],可得函数的定义域与周期的关系,从而可求结果.6.(3分)已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m⊥α,n⊥m则n∥αB.若α⊥β,β⊥γ则α∥βC.若m⊥β,n⊥β则m∥n D.若m∥α,m∥β,则α∥β考点:空间中直线与平面之间的位置关系;平面与平面之间的位置关系.专题:空间位置关系与距离.分析:对选项逐一分析,依据空间线面关系,找出正确选项.解答:解:对于A,直线n有可能在平面α内;故A 错误;对于B,α,γ还有可能相交,故B 错误;对于C,依据线面垂直的性质以及线线平行的判定,可得直线m,n平行;对于D,α,β有可能相交.故选C.点评:本题主要考查了平面与平面之间的位置关系,考查空间想象力量、运算力量和推理论证力量,属于基础题.7.(3分)已知f(x)=bx+1为x的一次函数,b为不等于1的常数,且g(n)=,设a n=g(n)﹣g(n﹣1)(n∈N*),则数列{a n}是()A.等差数列B.等比数列C.递增数列D.递减数列考点:等比关系的确定.专题:计算题.分析:依据g(n)的通项公式可求得g(1),g(2),g(3)直至g(n),进而可求a1,a2,a3,┉,a n进而发觉数列{a n}是等比数列解答:解:已知f(x)=bx+1为x的一次函数,b为不等于1的常数,且g(n)=,则g(1)=b+1,g(2)=b2+b+1,g(3)=b3+b2+b+1,┉,g(n)=b n+┉+b2+b+1.a1=b,a2=b2,a3=b3,┉,a n=b n故数列{a n}是等比数列点评:本题主要考查等比关系的确定.属基础题.8.(3分)在平面四边形ABCD中,AB=3,BC=4,∠ABC=90°,△ACD 是正三角形,则•的值为()A.﹣2 B.2C.D .考点:平面对量数量积的运算.专题:平面对量及应用.分析:如图所示,建立直角坐标系.取AC的中点E,连接DE,BE.由A(0,3),C(4,0),可得.由于,可得=0.利用•==即可得出.解答:解:如图所示,建立直角坐标系.取AC的中点E,连接DE,BE.∵A(0,3),C(4,0),∴.∵,∴=0.∴•====8﹣=.故选:C.点评:本题考查了向量垂直与数量积的关系、数量积运算性质、向量的三角形法则,考查了推理力量与计算力量,属于中档题.二、填空题(本大题共6小题,每小题5分,共30分)9.(5分)为了解某校高中同学的近视眼发病率,在该校同学中进行分层抽样调查,已知该校2022-2021学年高一、2022-2021学年高二、2021届高三分别有同学800名、600名、500名.若2021届高三同学共抽取25名,则2022-2021学年高一同学共抽取40名.考点:分层抽样方法.专题:概率与统计.分析:依据分层抽样在各部分抽取的比例相等求解.解答:解:依据分层抽样在各部分抽取的比例相等,分层抽样抽取的比例为=,∴2022-2021学年高一应抽取的同学数为800×=40.故答案为:40.点评:本题考查了分层抽样的定义,娴熟把握分层抽样的特征是关键.10.(5分)如图是一个空间几何体的三视图,则该几何体的体积大小为.考点:由三视图求面积、体积.专题:计算题.分析:由三视图可知,该几何体时一个边长为2,2,1的长方体挖去一个半径为1的半球.代入长方体的体积公式和球的体积公式,即可得到答案.解答:由三视图可知,该几何体时一个边长为2,2,1的长方体挖去一个半径为1的半球.所以长方体的体积为2×2×1=4,半球的体积为,所以该几何体的体积为.故答案为:.点评:本题考查的学问点是由三视图求体积,其中依据已知中的三视图推断出几何体的外形是解题的关键.11.(5分)已知=(3,﹣2).=(1,0),向量λ与﹣2垂直,则实数λ的值为.考点:数量积推断两个平面对量的垂直关系.专题:计算题.分析:由题意得(λ)•(﹣2)=λ+(1﹣2λ)﹣2=13λ+3(1﹣2λ)﹣2=0,解得λ值,即为所求.解答:解:由题意得(λ)•(﹣2)=λ+(1﹣2λ)﹣2=13λ+3(1﹣2λ)﹣2=0,解得λ=﹣,故答案为﹣.点评:本题考查两个向量的数量积公式的应用,两个向量垂直的性质,求得13λ+3(1﹣2λ)﹣2=0,是解题的关键.12.(5分)对于任意x∈R,满足(a﹣2)x2+2(a﹣2)x﹣4<0恒成立的全部实数a构成集合A,使不等式|x ﹣4|+|x﹣3|<a的解集为空集的全部实数a构成集合B,则A∩∁R B=(1,2].考点:交、并、补集的混合运算.专题:集合.分析:分a﹣2为0与不为0两种状况求出(a﹣2)x2+2(a﹣2)x﹣4<0恒成立a的范围,确定出A ,求出访不等式|x﹣4|+|x﹣3|<a的解集为空集的全部实数a的集合确定出B,求出B补集与A的交集即可.解答:解:(a﹣2)x2+2(a﹣2)x﹣4<0,当a﹣2=0,即a=2时,﹣4<0,满足题意;当a﹣2≠0,即a≠2时,依据题意得到二次函数开口向下,且与x轴没有交点,即a﹣2<0,△=4(a﹣2)2+16(a﹣2)<0,解得:a<2,﹣2<a<2,综上,a的范围为﹣2<a≤2,即A=(﹣2,2],使不等式|x﹣4|+|x﹣3|<a的解集为空集的全部实数a构成的B=(﹣∞,1),∴∁R B=[1,+∞),则A∩∁R B=(1,2].故答案为:(1,2]点评:此题考查了交、并、补集的混合运算,娴熟把握各自的定义是解本题的关键.13.(5分)如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,则线段AE的长为4.考点:与圆有关的比例线段.专题:计算题.分析:连接OC,BE,由圆角定定理,我们可得BE⊥AE,直线l是过C的切线,故OC⊥直线l,△OBC 为等边三角形,结合等边三角形的性质及30°所对的直角边等于斜边的一半,我们易求出线段AE的长.解答:解:连接OC,BE,如下图所示:则∵圆O的直径AB=8,BC=4,∴△OBC为等边三角形,∠COB=60°又∵直线l是过C的切线,故OC⊥直线l又∵AD⊥直线l∴AD∥OC故在Rt△ABE中∠A=∠COB=60°∴AE=AB=4故答案为:4点评:本题考查的学问点是切线的性质,圆周角定理,其中依据切线的性质,圆周角定理,推断出△ABE 是一个∠B=30°的直角三角形是解答本题的关键.14.(5分)若a是1+2b与1﹣2b的等比中项,则的最大值为.考点:等比数列的性质.专题:综合题;等差数列与等比数列.分析:由a是1+2b与1﹣2b的等比中项得到4|ab|≤1,再由基本不等式法求得的最大值.解答:解:a是1+2b与1﹣2b的等比中项,则a2=1﹣4b2⇒a2+4b2=1≥4|ab|.∴.∵a2+4b2=(|a|+2|b|)2﹣4|ab|=1.∴≤=∵∴≥4,∴的最大值为=.故答案为:.点评:本题考查等比中项以及不等式法求最值问题,考查同学分析解决问题的力量,属于中档题.三、解答题:本大题共6小题,共80分,解题应写出文字说明、证明过程或演算步骤.15.(16分)已知函数.(Ⅰ)求函数f(x)的最小正周期和图象的对称轴方程;(Ⅱ)求函数f(x )在区间上的值域.考点:三角函数的周期性及其求法;正弦函数的定义域和值域;正弦函数的对称性.专题:三角函数的图像与性质.分析:(1)先依据两角和与差的正弦和余弦公式将函数f(x)开放再整理,可将函数化简为y=Asin(wx+ρ)的形式,依据T=可求出最小正周期,令,求出x的值即可得到对称轴方程.(2)先依据x的范围求出2x ﹣的范围,再由正弦函数的单调性可求出最小值和最大值,进而得到函数f(x)在区间上的值域.解答:解:(1)∵=sin2x+(sinx﹣cosx)(sinx+cosx)===∴周期T=由∴函数图象的对称轴方程为(2)∵,∴,由于在区间上单调递增,在区间上单调递减,所以当时,f(x)取最大值1,又∵,当时,f(x )取最小值,所以函数f(x )在区间上的值域为.点评:本题主要考查两角和与差的正弦公式和余弦公式,以及正弦函数的基本性质﹣﹣最小正周期、对称性、和单调性.考查对基础学问的把握状况.16.(16分)在△ABC中,内角A、B、C的对边分别为a,b,c,且a>c ,已知•=2,cosB=,b=3,求:(Ⅰ)a和c的值;(Ⅱ)cos(B﹣C)的值.考点:余弦定理;平面对量数量积的运算;两角和与差的余弦函数.专题:三角函数的求值.分析:(Ⅰ)利用平面对量的数量积运算法则化简•=2,将cosB的值代入求出ac=6,再利用余弦定理列出关系式,将b,cosB以及ac的值代入得到a2+c2=13,联马上可求出ac的值;(Ⅱ)由cosB的值,利用同角三角函数间基本关系求出sinB的值,由c,b,sinB,利用正弦定理求出sinC的值,进而求出cosC的值,原式利用两角和与差的余弦函数公式化简后,将各自的值代入计算即可求出值.解答:解:(Ⅰ)∵•=2,cosB=,∴c•acosB=2,即ac=6①,∵b=3,∴由余弦定理得:b2=a2+c2﹣2accosB,即9=a2+c2﹣4,∴a2+c2=13②,联立①②得:a=3,c=2;(Ⅱ)在△ABC中,sinB===,由正弦定理=得:sinC=sinB=×=,∵a=b>c,∴C为锐角,∴cosC===,则cos(B﹣C)=cosBcosC+sinBsinC=×+×=.点评:此题考查了正弦、余弦定理,平面对量的数量积运算,以及同角三角函数间的基本关系,娴熟把握定理是解本题的关键.17.(16分)如图所示,四棱锥P﹣ABCD的底面是边长为1的正方形,PA⊥CD,PA=1,PD=,E为PD 上一点,PE=2ED.(Ⅰ)求证:PA⊥平面ABCD;(Ⅱ)求二面角D﹣AC﹣E的余弦值;(Ⅲ)在侧棱PC上是否存在一点F,使得BF∥平面AEC?若存在,指出F点的位置,并证明;若不存在,说明理由.考点:用空间向量求平面间的夹角;直线与平面平行的判定;直线与平面垂直的判定.专题:计算题;证明题;综合题.分析:(I)依据勾股定理的逆定理,得到△PAD是以PD为斜边的直角三角形,从而有PA⊥AD,再结合PA⊥CD,AD、CD 相交于点D,可得PA⊥平面ABCD;(II)过E作EG∥PA 交AD于G,连接BD交AC于O,过G作GH∥OD,交AC于H,连接EH.利用三垂线定理结合正方形ABCD的对角线相互垂直,可证出∠EHG为二面角D﹣AC﹣E的平面角.分别在△PAB中和△AOD中,求出EH=,GH=,在Rt△EHG中利用三角函数的定义,得到tan∠EHG==.最终由同角三角函数的关系,计算得cos∠EHG=.(III)以AB,AD,PA为x轴、y轴、z轴建立空间直角坐标系.分别给出点A、B、C、P、E的坐标,从而得出=(1,1,0),=(0,,),利用向量数量积为零的方法,列方程组可算出平面AEC的一个法向量为=(﹣1,1,﹣2 ).假设侧棱PC上存在一点F,使得BF∥平面AEC ,则=+=(﹣λ,1﹣λ,λ),且有⋅=0.所以⋅=λ+1﹣λ﹣2λ=0,解之得λ=,所以存在PC的中点F,使得BF∥平面AEC.解答:解:(Ⅰ)∵PA=AD=1,PD=,∴PA2+AD2=PD2,可得△PAD是以PD为斜边的直角三角形∴PA⊥AD﹣﹣﹣(2分)又∵PA⊥CD,AD、CD 相交于点D,∴PA⊥平面ABCD﹣﹣﹣﹣﹣﹣﹣(4分)(Ⅱ)过E作EG∥PA 交AD于G,∵EG∥PA,PA⊥平面ABCD,∴EG⊥平面ABCD,∵△PAB中,PE=2ED∴AG=2GD,EG=PA=,﹣﹣﹣﹣﹣﹣(5分)连接BD交AC于O,过G作GH∥OD,交AC于H,连接EH.∵OD⊥AC,GH∥OD∴GH⊥AC∵EG⊥平面ABCD,HG是斜线EH在平面ABCD内的射影,∴EH⊥AC,可得∠EHG为二面角D﹣AC﹣E的平面角.﹣﹣﹣﹣﹣(6分)∴Rt△EGH中,HG=OD=BD=,可得tan∠EHG==.由同角三角函数的关系,得cos∠EHG==.∴二面角D﹣AC﹣E 的平面角的余弦值为﹣﹣﹣﹣﹣﹣﹣(8分)(Ⅲ)以AB,AD,PA为x轴、y轴、z轴建立空间直角坐标系.则A(0,0,0),B(1,0,0),C(1,1,0),P(0,0,1),E(0,,),=(1,1,0),=(0,,)﹣﹣﹣(9分)设平面AEC 的法向量=(x,y,z),依据数量积为零,可得,即:,令y=1,得=(﹣1,1,﹣2 )﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)假设侧棱PC上存在一点F ,且=λ,(0≤λ≤1),使得:BF∥平面AEC ,则⋅=0.又∵=+=(0,1,0)+(﹣λ,﹣λ,λ)=(﹣λ,1﹣λ,λ),∴⋅=λ+1﹣λ﹣2λ=0,∴λ=,所以存在PC的中点F,使得BF∥平面AEC.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)点评:本题给出一个特殊的棱锥,通过证明线面垂直和求二面角的大小,着重考查了用空间向量求平面间的夹角、直线与平面平行的判定与性质和直线与平面垂直的判定与性质等学问点,属于中档题.18.(16分)已知单调递增的等比数列{a n}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设的前n项和S n.考点:等差数列与等比数列的综合;数列的求和.专题:计算题.分析:(I)依据a3+2是a2,a4的等差中项和a2+a3+a4=28,求出a3、a2+a4的值,进而得出首项和a1,即可求得通项公式;(II)先求出数列{b n}的通项公式,然后求出﹣S n﹣(﹣2S n),即可求得的前n项和S n.解答:解:(I)设等比数列{a n}的首项为a1,公比为q∵a3+2是a2,a4的等差中项∴2(a3+2)=a2+a4代入a2+a3+a4=28,得a3=8∴a2+a4=20∴∴或∵数列{a n}单调递增∴a n=2n(II)∵a n=2n∴b n ==﹣n•2n∴﹣s n=1×2+2×22+…+n×2n①∴﹣2s n=1×22+2×23+…+(n﹣1)×2n+n2n+1②∴①﹣②得,s n=2+22+23+…+2n﹣n•2n+1=2n+1﹣n•2n+1﹣2点评:本题考查了等比数列的通项公式以及数列的前n项和,对于等差数列与等比数列乘积形式的数列,求前n项和一般实行错位相减的方法.19.(16分)已知数列{a n},a1=1,前n项和S n满足nS n+1﹣(n+3)S n=0,(Ⅰ)求{a n}的通项公式;(Ⅱ)若b n=4()2,求数列{(﹣1)n b n}的前n项和T n;(Ⅲ)设C n=2n (﹣λ),若数列{C n}是单调递减数列,求实数λ的取值范围.考点:数列的求和;数列的函数特性;数列递推式.专题:等差数列与等比数列.分析:(Ⅰ)对已知等式整理成数列递推式,然后用叠乘法,求得S n,最终利用a n=S n﹣S n﹣1求得答案.(Ⅱ)依据(Ⅰ)中a n,求得b n,设出C n,分n为偶数和奇数时的T n.(Ⅲ)依据数列为递减数列,只需满足C n+1﹣C n<0,求得﹣的最大值,即可求得λ的范围.解答:解:(Ⅰ)由已知=,且S1=a1=1,当n≥2时,S n=S1••…•=1•••…•=,S1也适合,当n≥2时,a n=S n﹣S n﹣1=,且a1也适合,∴a n =.(Ⅱ)b n=4()2=(n+1)2,设C n=(﹣1)n(n+1)2,当n为偶数时,∵C n﹣1+C n=(﹣1)n﹣1•n2+(﹣1)n•(n+1)2=2n+1,T n=(C1+C2)+(C3+C4)+…(C n﹣1+C n)=5+9+…+(2n﹣1)==,当n为奇数时,T n=T n﹣1+C n =﹣(n+1)2=﹣,且T1=C1=﹣4也适合.综上得T n =(Ⅲ)∵C n=2n (﹣λ),使数列{C n}是单调递减数列,则C n+1﹣C n=2n (﹣﹣λ)<0,对n∈N*都成立,则(﹣)max<λ,∵﹣==,当n=1或2时,(﹣)max =,∴λ>.点评:本题主要考查了数列的求和问题,求数列通项公式问题.对于利用a n=S n﹣S n﹣1肯定要a1对进行验证.20.(16分)已知函数f(x)=(x2﹣3x+3)•e x定义域为[﹣2,t](t>﹣2),设f(﹣2)=m,f(t)=n.(Ⅰ)试确定t的取值范围,使得函数f(x)在[﹣2,t]上为单调函数;(Ⅱ)求证:n>m;(Ⅲ)求证:对于任意的t>﹣2,总存x0∈(﹣2,t),满足,并确定这样的x0的个数.考点:利用导数争辩函数的单调性;利用导数求闭区间上函数的最值.专题:压轴题.分析:(Ⅰ)首先求出函数的导数,然后依据导数与函数单调区间的关系确定t的取值范围,(Ⅱ)运用函数的微小值进行证明,(Ⅲ)首先对关系式进行化简,然后利用根与系数的关系进行判定.解答:(Ⅰ)解:由于f′(x)=(2x﹣3)e x+(x2﹣3x+3)e x,由f′(x)>0⇒x>1或x<0,由f′(x)<0⇒0<x<1,∴函数f(x)在(﹣∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,∵函数f(x)在[﹣2,t]上为单调函数,∴﹣2<t≤0,(Ⅱ)证:由于函数f(x)在(﹣∞,0)∪(1,+∞)上单调递增,在(0,1)上单调递减,所以f(x)在x=1处取得微小值e,又f(﹣2)=13e﹣2<e,所以f(x)在[﹣2,+∞)上的最小值为f(﹣2),从而当t>﹣2时,f(﹣2)<f(t),即m<n,(Ⅲ)证:由于,∴,即为x02﹣x0=,令g(x)=x2﹣x ﹣,从而问题转化为证明方程g(x)==0在(﹣2,t)上有解并争辩解的个数,由于g(﹣2)=6﹣(t﹣1)2=﹣,g(t)=t(t﹣1)﹣=,所以当t>4或﹣2<t<1时,g(﹣2)•g(t)<0,所以g(x)=0在(﹣2,t)上有解,且只有一解,当1<t<4时,g(﹣2)>0且g(t)>0,但由于g(0)=﹣<0,所以g(x)=0在(﹣2,t)上有解,且有两解,当t=1时,g(x)=x2﹣x=0,解得x=0或1,所以g(x)=0在(﹣2,t)上有且只有一解,当t=4时,g(x)=x2﹣x﹣6=0,所以g(x)=0在(﹣2,t)上也有且只有一解,综上所述,对于任意的t>﹣2,总存在x0∈(﹣2,t),满足,且当t≥4或﹣2<t≤1时,有唯一的x0适合题意,当1<t<4时,有两个x0适合题意.点评:本小题主要考查导数的概念和计算,应用导数争辩函数单调性的方法及推理和运算力量.。

河南省新乡市第十一中学2020-2021学年高二下学期第二次月考理科数学试题(含答案解析)

河南省新乡市第十一中学2020-2021学年高二下学期第二次月考理科数学试题(含答案解析)

河南省新乡市第十一中学2020-2021学年高二下学期第二次月考理科数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知20211i z =+,则2z i -=()AB .C .2D2.用反证法证明“若a ,b ∈R ,220a b +≠,则a ,b 不全为0”时,假设正确的是()A .a ,b 中只有一个为0B .a ,b 至少一个不为0C .a ,b 至少有一个为0D .a ,b 全为03.下列运算正确的个数是()①(sin )cos 88ππ'=;②1(3)3x x x '-=⋅;③2()1log ln 2x x '=;④561()5x x -'-=-.A .1B .2C .3D .44.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于A .110B .18C .16D .155.记n S 为等差数列{}n a 的前n 项和.若218a =,580S =,则数列{}n a 的通项公式为n a =()A .222n +B .222n -C .202n-D .()21n n -6.若直线y x a =+和曲线ln 2y x =+相切,则实数a 的值为()A .12B .2C .1D .327.函数()cos sin f x x x x =-的导函数为()f x ',则函数()f x '的大致图象为()A .B .C .D .8.已知数列{n a }为等差数列,且1815πa a a ++=,()412cos a a +的值为a ,则1d ax x =⎰()A .1B .2C .-1D .39.某校开设了素描、摄影、剪纸、书法四门选修课,要求每位同学都要选择其中的两门课程.已知甲同学选了素描,乙与甲没有相同的课程,丙与甲恰有一门课程相同,丁与丙没有相同课程.则以下说法错误..的是()A .丙有可能没有选素描B .丁有可能没有选素描C .乙丁可能两门课都相同D .这四个人里恰有2个人选素描10.已知定义在()0,+¥上的函数()f x ,()f x ¢是()f x 的导函数,满足()()0xf x f x '-<,且()2f =2,则()0x xf e e ->的解集是()A .()20,eB .()ln2+∞,C .()ln2-∞,D .()2e +∞,11.近年来中国进入一个鲜花消费的增长期,某农户利用精准扶贫政策,贷款承包了一个新型温室鲜花大棚,种植销售红玫瑰和白玫瑰.若这个大棚的红玫瑰和白玫瑰的日销量分别服从正态分布()2,30N μ和()2280,40N ,则下列选项不正确的是()附:若随机变量X 服从正态分布()2,N μσ,则()0.6826P X μσμσ-<<+≈.A .若红玫瑰日销售量范围在()30,280μ-的概率是0.6826,则红玫瑰日销售量的平均数约为250B .红玫瑰日销售量比白玫瑰日销售量更集中C .白玫瑰日销售量比红玫瑰日销售量更集中D .白玫瑰日销售量范围在()280,320的概率约为0.341312.一件刚出土的珍费文物要在博物馆大厅中央展出,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积为0.5立方米,其底部是直径为0.9米的圆(如图),要求文物底部与玻璃罩底边间隔0.3米,文物顶部与玻璃罩上底面间隔0.2米,气体每立方米1000元,则气体费用为()A .4500元B .4000元C .2880元D .2380元二、填空题13.已知函数()f x x =,则1()f x dx ⎰=_______.14.已知数列{}n a 为各项均为正数的等比数列,n S 是它的前n 项和,若174a a =.且47522a a +=,则5S =______.15.已知函数()||x x f x e=,若关于x 的方程2()()10f x mf x m -+-=有四个不相等的实数根,则实数m 的取值范围是_________.三、双空题16.从分别标有1,2,…,5的5张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的奇偶性不同的概率是______,记随机变量X 为两张卡片的数字和,则EX =______.四、解答题17.设ABC 的内角A B C ,,所对边分别为a b c ,,,且有2sinBcosA sinAcosC cosAsinC+=(1)求角A 的大小;(2)若21b c =,=,D 为BC 中点,求AD 的长.18.在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.19.甲乙两支球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率为23外,其余每局甲队获胜的概率都是12,假设每局比赛结果相互独立.(1)求甲队分别以3:0,3:2获胜的概率;(2)若比赛结果为3:0,胜方得3分,对方得0分,比赛结果为3:1,胜方得3分,对方得1分,比赛结果为3:2,胜方得3分,对方得2分,求甲队得分的分布列和数学期望.20.已知椭圆E :()222210x y a b a b +=>>经过点()0,1A -,(1)求椭圆E 的方程;(2)过点()2,1P 的直线与椭圆E 交于不同两点B 、C .求证:直线AB 和AC 的斜率之和为定值.21.已知函数()(1),()a f x x a lnx a R x=--+∈.(1)当2a =时,求()f x 的极值;(2)若0a >,求()f x 的单调区间.22.在平面直角坐标xOy 中,已知曲线C 的参数方程为3cos 4sin x y θθ=⎧⎨=⎩(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos()74πθ+=.(1)写出曲线C 的普通方程和直线l 的直角坐标方程;(2)若直线l 上的两个动点M ,N 满足MN =P 在曲线C 上,以M ,N ,P 为顶点构造平行四边形MNPQ ,求平行四边形MNPQ 面积的最大值.参考答案:1.D【分析】化简得1z i =+,即得解.【详解】由题得1z i =+,所以21,z i i -=-所以|2||1|z i i -=-=故选:D 2.D【分析】把要证的结论否定之后,即得所求的反设.【详解】由于“a ,b 不全为0”的否定为:“a ,b 全为0”,所以假设正确的是a ,b 全为0.故选:D .3.A【分析】直接利用初等函数的导数公式运算判断得解.【详解】①(sin )08π'=,所以该运算错误;②3l 3)n (3'=x x ,所以该运算错误;③2()1log ln 2x x '=,所以该运算正确;④56()5x x -'-=-,所以该运算错误.所以正确的个数为1.故选:A.【点睛】易错点睛:(sin )cos 808ππ'=≠,因为sin 8π是一个实数,所以要代公式0C '=,不能代公式(sin )cos x x '=.所以代导数公式时,要看清函数的类型.4.D【详解】考点:古典概型及其概率计算公式.分析:从正六边形的6个顶点中随机选择4个顶点,选择方法有C 64=15种,且每种情况出现的可能性相同,故为古典概型,由列举法计算出它们作为顶点的四边形是矩形的方法种数,求比值即可.解:从正六边形的6个顶点中随机选择4个顶点,选择方法有C 64=15种,它们作为顶点的四边形是矩形的方法种数为3,由古典概型可知它们作为顶点的四边形是矩形的概率等于315=15故选D .5.B【分析】联立218a =,580S =,求出首项和公差,按照公式求通项即可.【详解】设等差数列{}n a 的公差为d ,则21511851080a a d S a d =+=⎧⎨=+=⎩,解得1202a d =⎧⎨=-⎩,所以()()2012222n a n n =+-⨯-=-.故选:B .6.C【分析】先求导1()f x x'=,再设切点坐标为00(,)x x a +,求出0x 即得解.【详解】因为()=ln 2y f x x =+,所以1()f x x'=,设切点坐标为00(,)x x a +,所以0001()=1,1f x x x '=∴=.所以00()=ln12=2=1,1f x x a a a ++=+∴=.故选:C【点睛】结论点睛:函数()y f x =在点00(,())x f x 处的切线方程为000()()()y f x f x x x '-=-.7.B【解析】先求出()f x ',判断()f x '的奇偶性可排除AD ,再判断0,2x π⎛⎫∈ ⎪⎝⎭时sin 0x >可排除C.【详解】 ()cos sin cos sin f x x x x x x x '=--=-,显然()()()=sin =sin f x x x x x f x '---=,故()f x '为偶函数,排除AD .又0,2x π⎛⎫∈ ⎪⎝⎭上,sin 0x >,()0f x '∴<,排除C.故选:B .【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.8.B【分析】由{}n a 为等差数列,且1815πa a a ++=,利用等差数列的性质得到412a a a =+的值,然后求定积分即可.【详解】因为{}n a 为等差数列,由等差数列的性质,得181583πa a a a ++==,即8π3a =.所以41282π23a a a +==,所以()4122π1cos cos 32a a a =+==-,所以()11111220d d 22102a x x x x x-===-=⎰⎰.故选:B 9.C【解析】根据题意合理推理,并作出合理的假设,最终得出正确结论.【详解】因为甲选择了素描,所以乙必定没选素描.那么假设丙选择了素描,则丁一定没选素描;若丙没选素描,则丁必定选择了素描.综上,必定有且只有2人选择素描,选项A ,B ,D 判断正确.不妨设甲另一门选修为摄影,则乙素描与摄影均不选修,则对于素描与摄影可能出现如下两种情况:由上表可知,乙与丁必有一门课程不相同,因此C 不正确.故选:C.【点睛】本题主要考查学生的逻辑推理能力,属于中档题.10.C【解析】由导数公式得出2()()()0f x xf x f x x x ''-⎡⎤=<⎢⎥⎣⎦,从而得出函数()f x x 的单调性,将不等式()0xxf ee->可化为()(2)2x xf e f e >,利用单调性解不等式即可.【详解】因为2()()()0f x xf x f x x x ''-⎡⎤=<⎢⎥⎣⎦,所以函数()f x x 在区间()0,+¥上单调递减不等式()0xxf e e->可化为()(2)2x xf e f e >,即2xe <,解得ln 2x <故选:C【点睛】关键点睛:解决本题的关键是由导数公式得出函数()f x x的单调性,利用单调性解不等式.11.C【分析】求出μ的值,可判断A 选项的正误;比较红玫瑰日销售量和白玫瑰日销售量方差的大小,可判断BC 选项的正误;计算()280320P X <<的值,可判断D 选项的正误.【详解】若红玫瑰的日销售量范围在()30,280μ-的概率是0.6826,则30280μ+=,解得250μ=,A 对;红玫瑰日销售量的方差为21900σ=,白玫瑰日销售量的方差为221600σ=,且2212σσ<,故红玫瑰日销售量比白玫瑰日销售量更集中,B 对C 错;因为32028040=+,所以,()()0.6826280320280280400.34132P X P X <<=<<+==,D 对.故选:C.12.B【分析】根据题意,先求得正四棱柱的底面棱长和高,由体积公式即可求得正四棱柱的体积,减去文物的体积,即可求得罩内的气体体积,进而求得所需费用.【详解】由题意可知,文物底部是直径为0.9米的圆形,文物底部与玻璃罩底边至少间隔0.3米所以由正方形与圆的位置关系可知:底面正方形的边长为0.920.3 1.5m +⨯=文物高1.8,文物顶部与玻璃罩上底面至少间隔0.2米所以正四棱柱的高为1.80.22m +=则正四棱柱的体积为231.52 4.5m V =⨯=因为文物体积为30.5m 所以罩内空气的体积为34.50.54m -=气体每立方米1000元所以共需费用为410004000⨯=元故选:B 13.142π+【分析】先利用数形结合求出4π=⎰,再利用定积分的运算和微积分基本原理求解.【详解】令221),+1(0,01)y x x y y x =≤≤∴=≥≤≤,它表示单位圆在第一象限的14个圆,因为⎰表示14个圆的面积,所以21144ππ=⨯⨯=⎰.所以1121000011()|4242f x dx xdx x ππ=+=+=+⎰⎰⎰.故答案为:142π+【点睛】方法点睛:定积分的计算常用的方法有:(1)利用微积分基本原理求解;(2)数形结合转化为几何图形的面积求解.要根据已知条件灵活选择方法求解.14.31【解析】化简得到42a =,714a =,故12q =,116a =,在计算5S 得到答案.【详解】21744a a a ==,故42a =,47522a a +=,故714a =,故37418a q a ==,故12q =,116a =.551121631112S ⎛⎫- ⎪⎝⎭==-.故答案为:31.【点睛】本题考查了等比数列基本量的计算,求和,意在考查学生对于等比数列公式的灵活运用.15.1(1,1)e+【分析】方程2()()10f x mf x m -+-=有四个不相等的实数根,即方程()[]()1()10f x m f x ⎡⎤---=⎣⎦有四个不相等的实数根,则()()=1f x m -或()=1f x 有四个不相等的实数根,结合图象利用分类讨论()=1f x 与()()=1f x m -的根的情况,其中当0x >时分别构造函数()xg x e x =-与()()1x h x m e x =--分析,最后由转化思想将函数()h x 有两个零点转化为()min h x 小于0构造不等式求得答案.【详解】方程2()()10f x mf x m -+-=有四个不相等的实数根,即方程()[]()1()10f x m f x ⎡⎤---=⎣⎦有四个不相等的实数根,则()()=1f x m -或()=1f x 有四个不相等的实数根,因为函数()||0101xx f x m m e =≥⇒-≥⇒≥,对方程()=1f x 的根分析,令||1||x x x x e e=⇒=,由图象分析可知,当0x <时,必有一根,当0x >时,令()xg x e x =-,则()10x g x e '=->,所以函数()g x 单调递增,故()()00010g x g e >=-=>,所以当0x >时,方程()=1f x 无根,故方程()=1f x 只有1个根,那么方程()()=1f x m -应有3个根,对方程()()=1f x m -的根分析,令()||1||1x x x m x m e e=-⇒=-,由图象分析可知,当0x <时,必有一根,当0x >时,方程()||1x x m e =-应有2两个不等的实根,其等价于方程()1||0x m e x --=有2个不等的实根,令()()1x h x m e x =--,则()()11x h x m e '=--,且其在0x >内有两个零点,显然当()()()211020x m h x m e h m ''≥⇒=-->=-≥,函数()h x 单调递增,不满足条件,则2m <;令()()110110ln 011x x h x m e e x m m '=⇒--=⇒=⇒=>--,则函数()h x 在区间10,ln 1m ⎛⎫ ⎪-⎝⎭上单调递减,在区间1ln ,1m ⎛⎫+∞ ⎪-⎝⎭单调递增;所以函数()h x 在1ln 1x m =-取得极小值,同时也为最小值,()()()1ln 1min 11ln 1ln ln 111m h x h m e e m m m -⎛⎫==--=-⎡⎤ ⎪⎣⎦--⎝⎭,函数()h x 若要有两个零点,则()()()min 10ln 10111h x e m e m m e<⇒-<⇒-<⇒<+⎡⎤⎣⎦,综上所述,实数m 的取值范围是1(1,1)e+.故答案为:1(1,1)e+【点睛】本题考查了函数与方程的数学思想,还考查了由函数零点个数求参数取值范围与利用导数分析方程的根的个数,属于难题.16.356【分析】结合组合的思想分别求出抽取2次的组合数以及奇偶性不同的组合数,即可求出概率;写出X 的可能取值,并且求出每种取值下的概率,即可求出EX .【详解】解:5张卡片中不放回地随机抽取2次共有25C 种可能,其中奇偶性不同共有3211C C 种,所以2张卡片上的奇偶性不同的概率是11322535C C C =;由题意知,3,4,5,...,9X =,则()1310P X ==,()1410P X ==,()215105P X ===,()216105P X ===,()217105P X ===,()1810P X ==,()1910P X ==,所以11111113456789610105551010EX =⨯+⨯+⨯+⨯+⨯+⨯+⨯=,故答案为:35;6.【点睛】本题考查了组合数的计算,考查了古典概型概率的求解,考查了离散型随机变量的数学期望的求解.17.(1)A =3π;(2)2.【分析】(1)对等式右边使用正弦两角和公式,化简可得;(2)用余弦定理求出a ,利用已知数据得2B π=,在直角三角形中利用勾股定理求解.【详解】解(1)由题设知,)2(sinBcosA sin A C sinB=+=因为sinB 0≠,所以1cos 2A =由于0A π<<,故3A π=(2)因为222124122132a b c bccosA 创=+-=+-,所以222a c b +=,所以2B π=.因为D 为BC中点,所以12BD AB ==,所以AD =【点睛】本题考查平面几何中解三角形问题.其求解思路:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理、勾股定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.18.(1)证明详见解析;(2)证明详见解析.【分析】(1)通过证明1//EF AB ,来证得//EF 平面11AB C .(2)通过证明AB ⊥平面1AB C ,来证得平面1AB C ⊥平面1ABB .【详解】(1)由于,E F 分别是1,AC B C 的中点,所以1//EF AB .由于EF ⊂/平面11AB C ,1AB ⊂平面11AB C ,所以//EF 平面11AB C .(2)由于1B C ⊥平面ABC ,AB ⊂平面ABC ,所以1B C AB ⊥.由于1,AB AC AC B C C ⊥⋂=,所以AB ⊥平面1AB C ,由于AB ⊂平面1ABB ,所以平面1AB C ⊥平面1ABB .【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题.19.(1)甲队分别以3:0,3:2获胜的概率分别为11,84;(2)分布列见解析;期望为178.【分析】(1)根据相互独立事件的概率公式计算可得;(2)由题意知,随机变量X 的所有可能的取值,根据事件的互斥性计算概率值,从而写出X 的分布列,求出所对应的数学期望.【详解】解:(1)甲乙两支球队进行比赛,约定先胜3局者获得比赛的胜利,记“甲队以3:0获胜”为事件A ,记“甲队以3:2获胜”为事件B ,3223234111121(),()1282234P A C P B C ⎛⎫⎛⎫⎛⎫⎛⎫===-= ⎪ ⎪ ⎪⎝⋅⋅ ⎪⎝⎭⎝⎭⎭⎝⎭,所以甲队分别以3:0,3:2获胜的概率分别为11,84.(2)若甲队得3分,则甲胜,结果可以为3:0,3:1,3:2,若甲队得0分,1分,2分,则甲败,结果可以为0:3,1:3,2:3,设甲队得分为X 则X 的可能取值为0、1、2、3,0303111(0)1228P X C ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⋅⎭⋅⎝,12131113(1)1122216P X C ⋅⋅⋅⎛⎫⎛⎫⎛⎫==--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2224111(2)1122382P X C ⎛⎫⎛⎫⎛⎫==⋅--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⋅⋅302122322334111111129(3)112222222316P X C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==+-+-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⋅⎝⎭⎝⎭⋅⋅⋅⋅⋅⋅⋅X 的分布列为:X0123P 1831618916甲队得分的数学期望31917()123168168E X =⨯+⨯+⨯=20.(1)2214x y +=;(2)证明见解析.【分析】(1)利用a b c 、、的关系直接求解即可;(2)设出BC 的方程为()()210y k x k =-+>,联立椭圆方程,再表示出AB 和AC 的斜率,最后说明之和为定值.【详解】解:(1)由椭圆E 经过点()0,1A -得,1b =.设半焦距为c ,由离心率为2得,2c a =又因为222a b c =+,所以22314a a =+,解得2a =故椭圆E 的方程为2214x y +=.(2)因为直线BC 过点()2,1P 且与轨迹E 有两个不同交点所以直线BC 的斜率一定存在且大于零.于是可设直线BC 的方程为()()210y k x k =-+>.代入2244x y +=并整理得()()()22418211610k x k k x k k +--+-=.()()()222=8124141616640k k k k k k ∆--+-=>⎡⎤⎣⎦设()11,B x y ,()22,C x y ,则()12282141k k x x k -+=+,()12216141k k x x k -=+.设直线AB 和AC 的斜率分别为1k 和2k ,则()()1212121212222211k x k x y y k k x x x x -+-++++=+=+()()()()()1212211612122161k x x k k k k k x x k k -+--=-=--()2211k k =--=为定值,此题得证.【点睛】考查椭圆方程的求法以及根据直线和椭圆的位置关系求两条直线的斜率之和为定值.直线和椭圆相交时,采用设交点坐标而不求出的方法,一定注意判别式大于零,同时用上韦达定理,可使解题简单;难题.21.(1)极大值1-;极小值132ln -;(2)答案不唯一,具体见解析.【分析】(1)首先求函数的导数,2232()(0)x x f x x x -+'=>,判断函数的单调性后得到函数的极值;(2)222(1)()(1)()x a a x x a x f x x x +-+--'==,分1a >,1a =和01a <<三种情况讨论求函数的单调递减区间.【详解】解:(1)因为当2a =时,2()3f x x lnx x =--,所以2232()(0)x x f x x x -+'=>,由()0f x '=得1x =或2x =,当x 变化时,()f x ',()f x 的变化情况列表如下:x(0,1)1(1,2)2(2,)+∞()f x '+0-0+()f x 单调递增1-单调递减132ln -单调递增所以当1x =时,()f x 取极大值1-;当2x =时,()f x 取极小值132ln -.(2)222(1)()(1)()x a a x x a x f x x x +-+--'==,12()0,1f x x a x '=⇒==①当1a >时,当(0,1)x ∈,()0f x '>,()f x 单调递增,当(1,)x a ∈,()0f x '<,()f x 单调递减,当(,)x a ∈+∞,()0f x '>,()f x 单调递增.②当1a =时,()0f x '≥在(0,)+∞恒成立,所以()f x 在(0,)+∞上单调递增;③当01a <<时,当(0,)x a ∈,()0f x '>,()f x 单调递增,当(,1)x a ∈,()0f x '<,()f x 单调递减,当(1,)x ∈+∞,()0f x '>,()f x 单调递增,综上所述,①当1a >时,()f x 单调递增区间为(0,1),(,)a +∞.单调递减区间为(1,)a ;②当1a =时,()f x 单调增区间为(0,)+∞,无减区间;③当01a <<时,()f x 单调递增区间为(0,)a ,(1,)+∞,单调递减区间为(,1)a .22.(1)221916x y +=;70x y --=;(2)【分析】(1)曲线C 的参数方程消去参数θ,即可求出C 的普通方程,再把极坐标化为直角坐标即可求出直线l 的直角坐标方程;(2)设曲线C 上的点坐标为(3cos ,4sin )P αα,利用点到直线的距离公式和辅助角公式求出d 的最大值,再利用求面积的公式代入即可.【详解】解:(1)曲线C 的参数方程为3cos 4sin x y θθ=⎧⎨=⎩,消去参数θ,可得曲线C 的标准方程为221916x y +=.直线l cos()74πθ+=,化简可得cos sin 7ρθρθ-=,∵cos ,sin x y ρθρθ==,∴70x y --=.(2)设(3cos ,4sin )P αα,则点P 到直线70x y --=的距离d =所以max d =当且仅当cos()1αϕ+=-,即2,k k Z αϕππ+=+∈取到最大值,所以平行四边形MNPQ 面积的最大值max S ==.。

2021-2022学年安徽省六安市裕安区新安中学普通班高三(上)第二次月考数学试卷(理科)(解析版)

2021-2022学年安徽省六安市裕安区新安中学普通班高三(上)第二次月考数学试卷(理科)(解析版)

2021-2022学年安徽省六安市裕安区新安中学普通班高三(上)第二次月考数学试卷(理科)一、单选题(共12小题,每小题5分,共60分).1.设集合A={x|﹣2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4} 2.设x∈R,则“x3>8”是“|x|>2”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.已知函数f(x)=,则f(f(﹣1))的值为()A.﹣1B.0C.1D.24.下列函数中,既是奇函数又在定义域内递增的是()A.f(x)=x3+x B.f(x)=x3﹣1C.D.f(x)=log3|x| 5.函数y=的一段大致图象是()A.B.C.D.6.已知f(x)=sin x﹣cos x,则=()A.0B.C.D.17.已知a=(),b=log23,c=log47,则a,b,c的大小关系为()A.a<b<c B.b<a<c C.c<a<b D.a<c<b8.函数的单调递增区间是()A.(﹣∞,+∞)B.[1,+∞)C.(0,1]D.(0,+∞)9.函数f(x)=lnx+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2﹣)∪(2﹣,2)C.(2,+∞)D.(0,+∞)10.如果幂函数y=(m2﹣3m+3)的图象不过原点,则m取值是()A.﹣1≤m≤2B.m=1或m=2C.m=2D.m=111.函数y=ax3﹣x在(﹣∞,+∞)上的减区间是[﹣1,1],则()A.a=B.a=1C.a=2D.a≤012.已知函数f(x)的定义域为(0,+∞),且满足f(x)+xf′(x)>0(f′(x)是f(x)的导函数),则不等式(x﹣1)f(x2﹣1)<f(x+1)的解集为()A.(﹣∞,2)B.(1,+∞)C.(﹣1,2)D.(1,2)二、填空题(每题5分,合计20分)13.计算求值:+lg5+lg2+e ln2lg0.01=.14.已知函数y=f(x)的图象在点(1,f(1))处的切线方程是x﹣2y+1=0,则f(1)+2f′(1)的值是.15.若关于x的不等式ax2+ax+2≥0的解集为R,则a的取值范围为.16.已知函数f(x)=log a(2x﹣a)在区间上恒有f(x)>0,则实数a的取值范围为.三、解答题(17题10分,18-22每题12分,共70分)17.已知关于x的不等式(a﹣x)(x+1)≥0的解集为A,不等式|x﹣1|<1的解集为B.(1)若a=3,求A;(2)若A∪B=A,求正数a的取值范围.18.已知函数f(x)=a x+log a x(a>0,a≠1)在[1,2]上的最大值与最小值之和为6+log a2.(1)求实数a的值;(2)对于任意的x∈[2,+∞),不等式kf(x)﹣1≥0恒成立,求实数k的取值范围.19.函数f(x)是实数集R上的奇函数,当x>0时,f(x)=log2x+x﹣3.(1)求f(﹣1)的值和函数f(x)的表达式;(2)求方程f(x)=0在R上的零点个数.20.已知函数f(x)=是定义在(﹣1,1)上的奇函数,且f()=.(1)求函数的解析式;(2)判断函数f(x)在(﹣1,1)上的单调性,并用定义证明;(3)解关于t的不等式:f(t+)+f(t﹣)<0.21.已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点P(1,f(1))处的切线方程为y =﹣4x+1,y=f(x)在x=3处有极值.(1)求f(x)的解析式.(2)求y=f(x)在[0,4]上的最小值.22.已知函数f(x)=+alnx﹣2(a>0).(1)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f (x)的单调区间;(2)记g(x)=f(x)+x﹣b(b∈R).当a=1时,函数g(x)在区间[e﹣1,e]上有两个零点,求实数b的取值范围.参考答案一、单选题(共12小题,每小题5分,共60分).1.设集合A={x|﹣2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4}【分析】直接利用交集运算得答案.解:∵A={x|﹣2<x<4},B={2,3,4,5},∴A∩B={x|﹣2<x<4}∩{2,3,4,5}={2,3}.故选:B.2.设x∈R,则“x3>8”是“|x|>2”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】由x3>8得到|x|>2,由|x|>2不一定得到x3>8,然后结合查充分条件、必要条件的判定方法得答案.解:由x3>8,得x>2,则|x|>2,反之,由|x|>2,得x<﹣2或x>2,则x3<﹣8或x3>8.即“x3>8”是“|x|>2”的充分不必要条件.故选:A.3.已知函数f(x)=,则f(f(﹣1))的值为()A.﹣1B.0C.1D.2【分析】利用分段函数的性质先求f(﹣1)的值,再求f(f(﹣1))的值.解:∵函数f(x)=,∴f(﹣1)=3﹣(﹣1)=4,f(f(﹣1))=f(4)==2.故选:D.4.下列函数中,既是奇函数又在定义域内递增的是()A.f(x)=x3+x B.f(x)=x3﹣1C.D.f(x)=log3|x|【分析】由常见函数的奇偶性和单调性,可得结论.解:f(x)=x3+x,由f(﹣x)=﹣x3﹣x=﹣f(x),可得f(x)为奇函数,且f(x)在R上递增,故A符合题意;而f(x)=x3﹣1不为奇函数;f(x)=﹣是奇函数,但在定义域内不单调;f(x)=log3|x|为偶函数.故BCD不符题意.故选:A.5.函数y=的一段大致图象是()A.B.C.D.【分析】根据函数的奇偶性和特殊值即可判断.解:f(﹣x)=﹣=﹣f(x),∴y=f(x)为奇函数,∴图象关于原点对称,∴当x=π时,y=﹣<0,故选:A.6.已知f(x)=sin x﹣cos x,则=()A.0B.C.D.1【分析】根据题意,求出函数的导数,将x=代入计算可得答案.解:f(x)=sin x﹣cos x,则f′(x)=cos x+sin x,则f′()=cos+sin=,故选:C.7.已知a=(),b=log23,c=log47,则a,b,c的大小关系为()A.a<b<c B.b<a<c C.c<a<b D.a<c<b【分析】利用对数函数、指数函数的单调性直接求解.解:∵,∴0<a=()<()0=1,b=log23=log49>c=log47>log44=1,∴a,b,c的大小关系为a<c<b.故选:D.8.函数的单调递增区间是()A.(﹣∞,+∞)B.[1,+∞)C.(0,1]D.(0,+∞)【分析】化简函数的解析式,可得它的单调性.解:∵函数=,故它的单调递增区间为[1,+∞),故选:B.9.函数f(x)=lnx+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2﹣)∪(2﹣,2)C.(2,+∞)D.(0,+∞)【分析】问题等价于f′(x)=2在(0,+∞)上有解,分离出参数a,转化为求函数值域问题即可.解:函数f(x)=lnx+ax存在与直线2x﹣y=0平行的切线,即f′(x)=2在(0,+∞)上有解,而f′(x)=+a,即k=2在(0,+∞)上有解,a=2﹣,因为x>0,所以2﹣<2,所以a<2.所以a的取值范围是(﹣∞,2).当直线2x﹣y=0就是f(x)=lnx+ax的切线时,设切点坐标(m,lnm+am),可得,解得m=e,a=2﹣.所以实数a的取值范围是:(﹣∞,2﹣)∪(2﹣,2).故选:B.10.如果幂函数y=(m2﹣3m+3)的图象不过原点,则m取值是()A.﹣1≤m≤2B.m=1或m=2C.m=2D.m=1【分析】幂函数的图象不过原点,所以幂指数小于等于0,系数为1,建立不等式组,解之即可.解:幂函数的图象不过原点,所以解得m=1或2,符合题意.故选:B.11.函数y=ax3﹣x在(﹣∞,+∞)上的减区间是[﹣1,1],则()A.a=B.a=1C.a=2D.a≤0【分析】由f(x)=ax3+x的减区间为[﹣1,1],得f′(x)=3ax2﹣1=0的两个根为﹣1,1,解出a即可.解:f′(x)=3ax2﹣1由题意得3ax2﹣1=0的根为﹣1,1则3a﹣1=0,所以a=.故选:A.12.已知函数f(x)的定义域为(0,+∞),且满足f(x)+xf′(x)>0(f′(x)是f(x)的导函数),则不等式(x﹣1)f(x2﹣1)<f(x+1)的解集为()A.(﹣∞,2)B.(1,+∞)C.(﹣1,2)D.(1,2)【分析】根据条件构造函数g(x)=xf(x),求函数的导数,利用函数单调性和导数之间的关系进行转化求解即可.解:设g(x)=xf(x),则g′(x)=f(x)+x•f'(x),∵f(x)+x•f'(x)>0,∴g′(x)>0,即g(x)在(0,+∞)为增函数,则不等式(x﹣1)f(x2﹣1)<f(x+1)等价为(x﹣1)(x+1)f(x2﹣1)<(x+1)f(x+1),即(x2﹣1)f(x2﹣1)<(x+1)f(x+1),即g(x2﹣1)<g(x+1),∵g(x)在(0,+∞)为增函数,∴,即,即1<x<2,故不等式的解集为(1,2),故选:D.二、填空题(每题5分,合计20分)13.计算求值:+lg5+lg2+e ln2lg0.01=3.【分析】由指数与对数的运算性质求解即可.解:+lg5+lg2+e ln2lg0.01=+lg5×2+2+lg10﹣2=2﹣1+lg10+2+×(﹣2)=+3﹣=3.故答案为:3.14.已知函数y=f(x)的图象在点(1,f(1))处的切线方程是x﹣2y+1=0,则f(1)+2f′(1)的值是2.【分析】因为切点坐标一定满足切线方程,所以据此可以求出f(1)的值,又因为切线的斜率是函数在切点处的导数,就可求出f′(1)的值,把f(1)和f′(1)代入f(1)+2f'(1)即可.解:∵点(1,f(1))是切点,∴在切线上,∴1﹣2f(1)+1=0,f(1)=1∵函数y=f(x)的图象在点(1,f(1))处的切线方程是x﹣2y+1=0,∴切线斜率是即f′(1)=∴f(1)+2f'(1)=1+2×=2故答案为215.若关于x的不等式ax2+ax+2≥0的解集为R,则a的取值范围为[0,8].【分析】分a=0和a≠0两种情况,并结合二次函数的图象与性质,即可得解.解:当a=0时,不等式为2≥0,满足题意;当a≠0时,要使不等式的解集为R,则,解得0<a≤8,综上所述,a的取值范围为[0,8].故答案为:[0,8].16.已知函数f(x)=log a(2x﹣a)在区间上恒有f(x)>0,则实数a的取值范围为(,).【分析】由题意利用对数函数的单调性和特殊点,函数的恒成立问题,求得实数a的取值范围.解:函数f(x)=log a(2x﹣a)在区间上恒有f(x)>0,即当a>1时,2x﹣a>1,或当0<a<1时,0<2x﹣a<1.∴①,或②.由①求得a∈∅,由②求得<a<.综合可得实数a的取值范围为(,),故答案为:(,).三、解答题(17题10分,18-22每题12分,共70分)17.已知关于x的不等式(a﹣x)(x+1)≥0的解集为A,不等式|x﹣1|<1的解集为B.(1)若a=3,求A;(2)若A∪B=A,求正数a的取值范围.【分析】(1)当a=3时,可得不等式(3﹣x)(x+1)≥0,解不等式即可得到集合A;(2)由A∪B=A,得B⊆A,所以a>0,此时A={x|﹣1≤x≤a}.由B是A的子集,得a≥2.解:(1)a=3,由(3﹣x)(x+1)≥0,得(x﹣3)(x+1)≤0,解得﹣1≤x≤3,所以A={x|﹣1≤x≤3}.(2)B={x||x﹣1|<1}={x|0<x<2}.由A∪B=A,得B⊆A,所以a>0,此时A={x|﹣1≤x≤a},所以a≥2,即a的取值范围为[2,+∞).18.已知函数f(x)=a x+log a x(a>0,a≠1)在[1,2]上的最大值与最小值之和为6+log a2.(1)求实数a的值;(2)对于任意的x∈[2,+∞),不等式kf(x)﹣1≥0恒成立,求实数k的取值范围.【分析】(1)由函数f(x)在[1,2]上是单调函数,从而可得f(x)在[1,2]上的最大值与最小值之和为a+a2+log a2=6+log a2,计算即可求解a的值;(2)将已知不等式转化为对于任意的x∈[2,+∞),k≥恒成立,求出的最大值,即可求解k的取值范围.解:(1)因为函数y=a x,y=log a x(a>0,a≠1)在[1,2]上的单调性相同,所以函数f(x)=a x+log a x(a>0,a≠1)在[1,2]上是单调函数,所以函数f(x)在[1,2]上的最大值与最小值之和为a+a2+log a2=6+log a2,所以a2+a﹣6=0,解得a=2或a=﹣3(舍),所以实数a的值为2.(2)由(1)可知f(x)=2x+log2x,因为对于任意的x∈[2,+∞),不等式kf(x)﹣1≥0恒成立,所以对于任意的x∈[2,+∞),k≥恒成立,当x∈[2,+∞)时,f(x)=2x+log2x为单调递增函数,所以f(x)≥f(2)=5,所以≤,即k≥,所以实数k的取值范围是[,+∞).19.函数f(x)是实数集R上的奇函数,当x>0时,f(x)=log2x+x﹣3.(1)求f(﹣1)的值和函数f(x)的表达式;(2)求方程f(x)=0在R上的零点个数.【分析】(1)根据题意,由函数的解析式求出f(1)的值,结合函数的奇偶性可得f(﹣1)的值,设x<0,则﹣x>0,结合函数的解析式和奇偶性分析可得f(x)的表达式,又由f(0)=0,综合3种情况即可得函数的解析式;(2)根据题意,由函数的解析式分段分析:当x>0时,易得f(x)为增函数,由解析式可得f(1)<0,f(3)>0,由函数零点判定定理可得f(x)在(0,+∞)上有唯一的零点,结合函数的奇偶性可得f(x)在(﹣∞,0)上也有唯一的零点以及f(0)=0,综合即可得答案.解:(1)由题知,当x>0时,f(x)=log2x+x﹣3,则f(1)=log21+1﹣3=﹣2,又由函数f(x)是实数集R上的奇函数,则有f(﹣1)=﹣f(1)=﹣(﹣2)=2;设x<0,则﹣x>0,f(﹣x)=log2(﹣x)+(﹣x)﹣3=log2(﹣x)﹣x﹣3,又由f(x)为奇函数,则f(x)=﹣f(﹣x)=﹣log2(﹣x)+x+3,又由f(0)=0,则f(x)=;(2)根据题意,由(1)的结论,f(x)=;当x>0时,f(x)=log2x+x﹣3,易得f(x)为增函数,又由f(1)=﹣2<0,f(3)=log23>0,则f(x)在(0,+∞)上有唯一的零点,又由函数f(x)为奇函数,则f(x)在(﹣∞,0)上也有唯一的零点,又由f(0)=0,综合可得:方程f(x)=0在R上有3个零点.20.已知函数f(x)=是定义在(﹣1,1)上的奇函数,且f()=.(1)求函数的解析式;(2)判断函数f(x)在(﹣1,1)上的单调性,并用定义证明;(3)解关于t的不等式:f(t+)+f(t﹣)<0.【分析】(1)由奇函数的性质可知,f(0)=0,代入可求b,然后根据,代入可求a;(2)任取﹣1<x1<x2<1,然后利用作差法比较f(x1)与f(x2)的大小即可判断;(3)结合(2)的单调性即可求解不等式.解:(1)由奇函数的性质可知,f(0)=0,∴b=0,f(x)=,∵=.∴a=1,f(x)=;(2)函数f(x)在(﹣1,1)上是增函数.证明:任取﹣1<x1<x2<1,则,所以函数f(x)在(﹣1,1)上是增函数;(3)由,∴.故不等式的解集为(﹣,0).21.已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点P(1,f(1))处的切线方程为y =﹣4x+1,y=f(x)在x=3处有极值.(1)求f(x)的解析式.(2)求y=f(x)在[0,4]上的最小值.【分析】(1)由题意得到关于a,b的方程组,求解方程组即可确定函数的解析式;(2)结合(1)中求得的函数解析式研究函数的极值和函数在端点处的函数值确定函数的最小值即可.解:(1)f′(x)=3x2+2ax+b,f′(1)=3+2a+b.∴k=f′(1)=3+2a+b=﹣4 ①曲线y=f(x)在点P处的切线方程为y﹣f(1)=﹣4(x﹣1),即y=﹣4x+4+f(1)=﹣4x+1∴f(1)=﹣3=1+a+b+c②∵y=f(x)在x=3处有极值,所以f′(3)=0,∴27+6a+b=0 ③由①②③得,a=﹣5,b=3,c=﹣2所以f(x)=x3﹣5x2+3x﹣2…(2)由(1)知f′(x)=3x2﹣10x+3=(3x﹣1)(x﹣3).令f′(x)=0,得x1=3,x2=.当x∈[0,)时,f′(x)>0;当x∈时,f′(x)<0;当x∈[3,4]时,f′(x)>0,∴f(x)极小值=f(3)=﹣11.又因f(0)=﹣2,所以f(x)在区间[0,4]上的最小值为﹣11.22.已知函数f(x)=+alnx﹣2(a>0).(1)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f (x)的单调区间;(2)记g(x)=f(x)+x﹣b(b∈R).当a=1时,函数g(x)在区间[e﹣1,e]上有两个零点,求实数b的取值范围.【分析】(I)先求出函数f(x)的定义域和导函数f′(x),再由f′(1)=﹣1求出a的值,代入f′(x),由f′(x)>0和f′(x)<0进行求解,即判断出函数的单调区间;(II)由(I)和题意求出g(x)的解析式,求出g′(x),由g′(x)>0和g′(x)<0进行求解,即判断出函数的单调区间,再由条件和函数零点的几何意义列出不等式组,求出b的范围.解:(I)由题意得,f(x)的定义域为(0,+∞),∵f′(x)=,∴f′(1)=﹣2+a,∵直线y=x+2的斜率为1,∴﹣2+a=﹣1,解得a=1,所以f(x)=,∴f′(x)=,由f′(x)>0解得x>2;由f′(x)<0解得0<x<2.∴f(x)的单调增区间是(2,+∞),单调减区间是(0,2)(II)依题得g(x)=,则=.由g′(x)>0解得x>1;由g′(x)<0解得0<x<1.∴函数g(x)在区间(0,1)为减函数,在区间(1,+∞)为增函数.又∵函数g(x)在区间[,e]上有两个零点,∴,解得1<b≤,∴b的取值范围是(1,].。

内蒙古包头市高二数学下学期第二次月考试题 理

内蒙古包头市高二数学下学期第二次月考试题 理

2016-2017学年度第二学期第二次月考高二数学理科试题一、选择题(本大题共12小题,共60.0分)1.已知复数zi=()2016(i为虚数单位),则z=()A.1B.-1C.iD.-i2.已知集合A={2,3,4},B={x|2x<16},则A∩B=()A.∅B.{2}C.{2,3,4}D.{2,3}3.某校为了解1000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为()A.16B.17C.18D.194.已知集合A={x|x2-2x-3≤0},B={x|x<a},若A⊆B,则实数a的取值范围是()A.(-1,+∞)B.[-1,+∞)C.(3,+∞)D.[3,+∞)5.在下列四组函数中,f(x)与g(x)表示同一函数的是()A.f(x)=x-1,g(x)=B.f(x)=|x+1|,g(x)=C.f(x)=x+1,x∈R,g(x)=x+1,x∈ZD.f(x)=x,g(x)=6.如表为某公司员工工作年限x(年)与平均月薪y(千元)对照表.已知y关于x的线性回归方程为=0.7x+0.35,则下列结论错误的是()A.回归直线一定过点(4.5,3.5)B.工作年限与平均月薪呈正相关C.t的取值是3.5D.工作年限每增加1年,工资平均提高700元7.10张奖券中只有3张有奖,5个人购买,每人1张,至少有1人中奖的概率是()A. B. C. D.8.甲、乙、丙三人参加一次考试,他们合格的概率分别为,,,那么三人中恰有两人合格的概率是()A. B. C. D.9.执行如图所示的程序框图,则输出的S的值是()A.4B.C.D.-110.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].已知图中x=0.018,则由直观图估算出中位数(精确到0.1)的值为()A.75.5B.75.2C.75.1D.75.311.已知偶函数f(x)在区间[0,+∞)上是增函数,则f(-1)与f(a2-2a+3)的大小关系是()A.f(-1)≥f(a2-2a+3)B.f(-1)≤f(a2-2a+3)C.f(-1)>f(a2-2a+3)D.f(-1)<f(a2-2a+3)12.定义在R上的函数f(x)的导函数为f'(x),若对任意实数x,有f(x)>f'(x),且f(x)+2017为奇函数,则不等式f(x)+2017e x<0的解集是()A.(0,+∞)B.(-∞,0)C.D.二、填空题(本大题共4小题,共20.0分)13.已知函数,若,则m= ______ .14.下列四个命题:①一个命题的逆命题为真,则它的逆否命题一定为真;②命题“设a,b∈R,若a+b≠6,则a≠3或b≠3”是一个假命题;③“x>2”是“<”的充分不必要条件;④一个命题的否命题为真,则它的逆命题一定为真.其中不正确的命题是 ______ .(写出所有不正确命题的序号)15.观察下列等式:,,,…,由以上等式得= ______ .16.在平面直角坐标系内任取一个点P(x,y)满足,则点P落在曲线y=与直线x=2,y=2围成的阴影区域(如图所示)内的概率为 ______ .三、解答题(本大题共6小题,共70.0分)17.(12分)已知集合A={x|x<-3或x≥2},B={x|x≤a-3}.(1)当a=2时,求(∁R A)∩B;(2)若A∩B=B,求实数a的取值范围.18. (12分)已知函数f(x)=x2+2ax+3,x∈[-2,2].(1)当a=-1时,求函数f(x)的最大值和最小值;(2)若f(x)在区间[-2,2]上是单调函数,求实数a的取值范围;19.(12分)第31届夏季奥林匹克运动会于2016年8月5日至21日在巴西里约热内卢举行,为了选拔某个项目的奥运会参赛队员,共举行5次达标测试,选手如果通过2次达标测试即可参加里约奥运会,不用参加其余的测试,而每个选手最多只能参加5次测试,假设某个选手每次通过测试的概率都是,每次测试通过与是相互独立.规定:若前4次都没有通过测试,则第5次不能参加测试.(1)求该选手能够参加本届奥运会的概率;(2)记该选手参加测试的次数为X,求随机变量X的分布列及数学期望E(X).20.(12分)为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班进行教学实验,为了解教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出的茎叶图如图,记成绩不低于70分者为“成绩优良”.(1)分别计算甲、乙两班20个样本中,化学分数前十的平均分,并据此判断哪种教学方式的教学效果更佳;(2)甲、乙两班40个样本中,成绩在60分以下的学生中任意选取2人,求这2人来自不同班级的概率;(3)由以上统计数据填写下面2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”?附:独立性检验临界值表:21.(12分)已知函数f(x)=x2-3x+lnx.(Ⅰ)求函数f(x)的极值;(Ⅱ)若对于任意的x1,x2∈(1,+∞),x1≠x2,都有恒成立,求实数k的取值范围.22.(10分)在直角坐标系x O y中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系x O y取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为ρ=6sinθ.(I)求直角坐标下圆C的标准方程;(Ⅱ)若点P(l,2),设圆C与直线l交于点A,B,求|PA|+|PB|的值.高二第二次月考理数答案1.D2.D3.C4.C5.B6.C7.D8.B9.D 10.B 11.D 12.A13.14.①②15.=16.17.解:(1)当a=2时,B={x|x≤-1},又A={x|x<-3或x≥2},全集为R,∴∁R A={x|-3≤x<2},∴(∁R A)∩B={x|-3≤x<2}∩{x|x≤-1}={x|-3≤x≤-1};(2)∵A∩B=B,∴B⊆A,∵A={x|x<-3或x≥2},B={x|x≤a-3},∴a-3<-3,即a<0,则当A∩B=B时,实数a的取值范围是a<0.18.解:(1)当a=-1时,f(x)=x2-2x+3=(x-1)2+2,∵1∈[-2,2],∴f min(x)=2,f max(x)=f(-2)=11;(2)∵函数f(x)=x2+2ax+3的对称轴为x=-a,∴-a≤-2或-a≥2,即a≤-2或a≥2.(3)由(2)知,g(a)=,则其值域为(-∞,3].19.解:(1)记“该选手能够参加本届奥运会”为事件A,其对立事件为,P()==,∴P(A)=1-P(A)=1-=.(2)该选手参加测试次数的可能取值为2,3,4,5,P(X=2)=()2=,P(X=3)=,P(X=4)==,由于规定:若前4次都没有通过测试,则第5次不能参加测试,当X=5时的情况,说明前4次只通过了1次,但不必考虑第5次是否通过,∴P(X=5)==.∴X的分布列为:X 2 3 4 5PE(X)==.20.解:(1)甲班样本化学成绩前十的平均分为;乙班样本化学成绩前十的平均分为;甲班样本化学成绩前十的平均分远低于乙班样本化学成绩前十的平均分,大致可以判断“高效课堂”教学方式的教学效果更佳.(2)样本中成绩6(0分)以下的学生中甲班有4人,记为:a,b,c,d,乙班有2人,记为:1,2.则从a,b,c,d,1,2六个元素中任意选2个的所有基本事件如下:ab,ac,ad,a1,a2,bc,bd,b1,b2,cd,c1,c2,d1,d2,12,一共有15个基本事件,设A表示“这2人来自不同班级”有如下:a1,a2,b1,b2,c1,c2,d1,d2,一共有8个基本事件,所以.(3)根据2×2列联表中的数据,得K2的观测值为,∴能在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”.21.解:(Ⅰ)f(x)的定义域为(0,+∞),f′(x)=2x-3+=,当x变化时,f′(x),f(x)的变化情况如下表:x(0,)(,1)1 (1,+∞)f′(x)+ 0 - 0 +f(x)单调递增极大值单调递减极小值单调递增当x=时,函数f(x)取得极大值为--ln2,当x=1时,函数f(x)取得极小值为-2;(Ⅱ)由(Ⅰ)知,f(x)在区间(1,+∞)上单调递增,不妨设x1>x2>1,则f(x1)-f(x2)>0,所以原不等式等价于f(x1)-f(x2)>kx1-kx2,即f(x1)-kx1>f(x2)-kx2,令h(x)=f(x)-kx=x2-(3+k)x+lnx,则原不等式等价于h(x)在(1,+∞)上单调递增,即等价于h′(x)=2x-(3+k)+≥0在(1,+∞)上恒成立,也等价于3+k≤2x+在(1,+∞)上恒成立,令g(x)=2x+,x∈(1,+∞),因为g′(x)>0在(1,+∞)上恒成立,所以g(x)>g(1)=3,即g(x)min=3,所以3+k≤3,k≤0,故得所求实数k的取值范围为(-∞,0].22.解:(I)圆C的方程为ρ=6sinθ,即ρ2=6ρsinθ,利用互化公式可得直角坐标方程:x2+y2=6y,配方为x2+(y-3)2=9.(II)直线l的参数方程为(t为参数),代入圆的方程可得:t2-7=0,解得t1=,t2=-.∴|PA|+|PB|=|t1-t2|=2.【解析】1. 解:=,∴zi=()2016=(-i)2016=[(-i)4]504=1,∴.故选:D.直接由复数代数形式的乘除运算化简得答案.本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2. 解:由题意得,B={x|2x<16}={x|x<4},又A={2,3,4},则A∩B={2,3},故选:D.由指数函数的性质求出B,由交集的运算求出A∩B.本题考查交集及其运算,以及指数函数的性质,属于基础题.3. 解:∵从1000名学生从中抽取一个容量为40的样本,∴系统抽样的分段间隔为=25,设第一部分随机抽取一个号码为x,则抽取的第18编号为x+17×25=443,∴x=18.故选C.根据系统抽样的特征,从1000名学生从中抽取一个容量为40的样本,抽样的分段间隔为=25,结合从第18组抽取的号码为443,可得第一组用简单随机抽样抽取的号码.本题考查了系统抽样方法,关键是求得系统抽样的分段间隔.4. 解:A=[-1,3],B=(-∞,a);∵A⊆B;∴a>3;∴a的取值范围为(3,+∞).故选:C.解出集合A,集合B也给出了,根据A⊆B即可写出实数a的取值范围.考查解一元二次不等式,描述法表示集合,子集的概念,也可借助数轴求解.5. 解:A中的2个函数f(x)=x-1与g(x)=的定义域不同,故不是同一个函数.B中的2个函数f(x)=|x+1|与g(x)=具有相同的定义域、值域、对应关系,故是同一个函数.C中的2个函数f(x)=x+1,x∈R与g(x)=x+1,x∈Z的定义域不同,故不是同一个函数.D中的2个函数f(x)=x,g(x)=的定义域、对应关系都不同,故不是同一个函数.综上,A、C、D中的2个函数不是同一个函数,只有B中的2个函数才是同一个函数,故选 B.根据题意,逐一分析研究各个选项中的2个函数是否具有相同的定义域、值域、对应关系.本题考查构成函数的三要素:定义域、值域、对应关系.相同的函数必然具有相同的定义域、值域、对应关系.6. 解:由已知中的数据可得:=(3+4+5+6)÷4=4.5,=(2.5+t+4+4.5)÷4=,∵数据中心点(,)一定在回归直线上∴=0.7×4.5+0.35解得:t=3,故C错误;故=3.5,回归直线一定过点(4.5,3.5),ABD正确;故选:C.根据已知表中数据,可计算出数据中心点(,)的坐标,根据数据中心点一定在回归直线上,将(,)的坐标代入回归直线方程y=0.7x+0.35,解方程可得t的值,从而得到答案.本题考查的知识点是线性回归方程,其中数据中心点(,)一定在回归直线上是解答本题的关键.7. 解:由题意知本题是一个古典概型,∵试验发生的总事件数是从10张奖券中抽5张共有C105种方法,至少有1人中奖的对立事件是没有人中奖,也就是从7张没有奖的中抽5张,共有C75,∴由对立事件的公式得到P=1-=1-=,故选D.由题意知本题是一个古典概型,试验发生的总事件数是从10张奖券中抽5张共有C105种方法,至少有1人中奖的对立事件是没有人中奖,也就是从7张没有奖的中抽5张,共有C75.本题主要考查古典概型和对立事件,正难则反是解题是要时刻注意的,我们尽量用简单的方法来解题,这样可以避免一些繁琐的运算,使得题目看起来更加清楚明了.8. 解:由题意知本题是一个相互独立事件同时发生的概率,三个人中恰有2个合格,包括三种情况,这三种情况是互斥的∴三人中恰有两人合格的概率+=故选B.本题是一个相互独立事件同时发生的概率,三个人中恰有2个合格,包括三种情况,这三种情况是互斥的,写出三个人各有一次合格的概率的积,再求和.本题考查相互独立事件同时发生的概率,本题解题的关键是看出事件发生包括的所有的情况,这里的数字比较多,容易出错.9. 解:第一次运行得:S=-1,i=2,满足i<6,则继续运行第二次运行得:S=,i=3,满足i<6,则继续运行第三次运行得:S=,i=4,满足i<6,则继续运行第四次运行得:S=4,i=5,满足i<6,则继续运行第五次运行得:S=-1,i=6,不满足i<6,则停止运行输出S=-1,故选D.根据流程图,先进行判定条件,满足条件则运行循环体,一直执行到不满足条件即跳出循环体,求出此时的S即可.本题主要考查了当型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,属于基础题.10. 解:根据频率分布直方图,得;(0.006×2+0.01)×10=0.22<0.5,0.22+0.054×10=0.76>0.5,所以中位数应在[70,80)内,可设为x,则(x-70)×0.054+0.22=0.5,解得x≈75.2.故选:B.根据频率分布直方图,利用中位数两侧的频率相等,列出方程求出中位数的值.本题考查了利用频率分布直方图求中位数的应用问题,解题时要熟练掌握直方图的基本性质,是基础题.11. 解:a2-2a+3=(a-1)2+2≥2,f(-1)=f(1),偶函数f(x)在区间[0,+∞)上是增函数,可得:f(-1)<f(a2-2a+3).故选:D.直接利用函数的单调性,推出不等式求解即可.本题考查函数的单调性的应用,函数是奇偶性的应用,考查计算能力.12. 解:从包括甲、乙两人在内的七名老师中随机选择4名参加志愿者服务工作,根据工作特点要求甲、乙两人中至少有1人参加,且列队服务,基本事件总数n=(+)=720,甲、乙都被选中且列队服务时不相邻包含的基本事件个数m==120,甲、乙都被选中且列队服务时不相邻的概率p==.故选:C.先求出基本事件总数n=(+)=720,再求出甲、乙都被选中且列队服务时不相邻包含的基本事件个数m==120,由此能求出甲、乙都被选中且列队服务时不相邻的概率.本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.13. 解:⇔或解得m=或m=-1故答案为或-1由于函数f(x)为分段函数,故方程可转化为不等式组,分别解得方程的解即可本题主要考查了分段函数的用法,函数与方程间的关系,简单的对数方程和指数方程的解法,属基础题14. 解:①一个命题的逆命题为真,则它的逆否命题不一定为真,故①错误;②命题“设a,b∈R,若a+b≠6,则a≠3或b≠3”的逆否命题为:“若a=3且b=3,则a+b=6”,是真命题,故②错误;③由x>2,得<,反之,由<,不一定有x>2,x可能为负值,∴“x>2”是“<”的充分不必要条件,故③正确;④一个命题的否命题与逆命题互为逆否命题,∴一个命题的否命题为真,则它的逆命题一定为真,故④正确.故答案为:①②.由互为逆否命题的两个命题共真假判断①②④;由充分必要条件的判定方法结合举例判断③.本题考查命题的真假判断与应用,考查了逆命题、否命题和逆否命题,训练了充分必要条件的判断方法,是中档题.15. 解:由题意可知,得=,故答案为:根据题意,由每个等式的左边的变化规律,以及右边式子的变化规律,可得答案.本题考查了归纳推理,培养学生分析问题的能力.归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).16. 解:S阴影=2×(2-)-dx=3-lnx|=3-(ln2-ln)=3-ln4S正方形=4,则点P落在曲线y=与直线x=2,y=2围成的阴影区域(如图所示)内的概率为,故答案为:根据定积分求出阴影部分的面积,结合几何概型求出事件的概率即可.本题考查定积分的求法以及几何概型问题,是一道中档题.17.(1)将a的值代入确定出集合B,由全集R求出A的补集,即可确定出A补集与B的交集;(2)由A与B的交集为B,得到B为A的子集,根据A与B列出关于a的不等式,即可确定出a的范围.此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.18.(1)代入,由配方法求函数的最值;(2)f(x)在区间[-2,2]上是单调函数,则对称轴在区间外;(3)由(2)中的单调性可直接写出g(a),再求分段函数的值域.本题综合考查了二次函数的最值,单调区间及分段函数的值域,属于中档题.19.(1)记“该选手能够参加本届奥运会”为事件A,其对立事件为,利用对立事件概率计算公式能求出该选手能够参加本届奥运会的概率.(2)该选手参加测试次数的可能取值为2,3,4,5,分别求出相应的概率,由此能求出X的分布列、E(X).本题考查概率的求法,考查离散型随机变量的分布列、数学期望的求法,考查推理论证能力、运算求解能力、数据处理能力,考查化归与转化思想,函数与方程思想、数形结合思想,是中档题.20. 解:(1)甲班样本化学成绩前十的平均分为;乙班样本化学成绩前十的平均分为;甲班样本化学成绩前十的平均分远低于乙班样本化学成绩前十的平均分,大致可以判断“高效课堂”教学方式的教学效果更佳.(2)样本中成绩6(0分)以下的学生中甲班有4人,记为:a,b,c,d,乙班有2人,记为:1,2.则从a,b,c,d,1,2六个元素中任意选2个的所有基本事件如下:ab,ac,ad,a1,a2,bc,bd,b1,b2,cd,c1,c2,d1,d2,12,一共有15个基本事件,设A表示“这2人来自不同班级”有如下:a1,a2,b1,b2,c1,c2,d1,d2,一共有8个基本事件,所以.(3)根据2×2列联表中的数据,得K2的观测值为,∴能在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”.(1)根据茎叶图计算甲、乙两班化学成绩前10名学生的平均分即可;(2)确定基本事件的个数,即可求出这2人来自不同班级的概率;(3)填写列联表,计算K2,对照数表即可得出结论.本题考查了计算平均数与独立性检验的应用问题,考查概率的计算,解题时应根据列联表求出观测值,对照临界值表得出结论,是基础题目.21.(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,求出函数的极值即可;(Ⅱ)不妨设x1>x2>1,原不等式等价于f(x1)-f(x2)>kx1-kx2,令h(x)=f(x)-kx=x2-(3+k)x+lnx,问题等价于h′(x)=2x-(3+k)+≥0在(1,+∞)上恒成立,得到3+k≤2x+在(1,+∞)上恒成立,根据函数的单调性求出k的范围即可.本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,考查转化思想,是一道中档题.22.(I)圆C的方程为ρ=6sinθ,即ρ2=6ρsinθ,利用互化公式可得直角坐标方程,配方可得标准方程.(II)直线l的参数方程为(t为参数),代入圆的方程可得:t2-7=0,解得t1,t2.利用|PA|+|PB|=|t1-t2|,即可得出.本题考查了直线的参数方程及其应用、圆的极坐标方程化为直角坐标方程,考查了推理能力与计算能力,属于中档题.。

第二次月考数学试题与答案(文理合卷).doc

第二次月考数学试题与答案(文理合卷).doc

高三第一学期第二次月考数学试题 、(文理合卷)时量:1 、10、班次 姓名 记分一、选择题:(每小题5分共50分) 1.设集合M={1,2},N={2,3},集合P (M ∪N ),则P 的个数是 ( )A. 6 ;B. 8 ;C. 7 ;D. 5 .2、函数1sin y x =+的图象( )A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.关于直线2x π=对称3. (文科)在等差数列{n a }中,741a a a ++=45,963852,29a a a a a a ++=++则=( ) A .22 B ..18 D .13(理科)等比数列{a n }中,已知对任意正整数n ,a 1+a 2+a 3+…+a n =2n -1,则a 12+a 22+a 32+…+a n 2等于( )A 、(2n -1)2B 、31(2n-1) C 、4n -1 D 、31(4n-1) 4、函数21()1f x x=+(x R ∈)的值域是( ) A.[]0,1 B.[)0,1 C.(]0,1 D.()0,15.已知、是非零向量且满足b ⊥-3(,b ⊥-4( ,则与的夹角是( )A .6π B .3π C .32π D .65π6. (文科) 为了得到函数x x y 2cos 232sin 21-=的图象,可以将函数x y 2sin =的图象 ( )A .向左平移6π个单位长度 B .向右平移3π个单位长度C .向右平移6π个单位长度D .向左平移3π个单位长度(理科)若∈<<=+απαααα则),20(tan cos sin ( )A .)6,0(πB .)4,6(ππ C .)3,4(ππ D .)2,3(ππ7、函数1xy a =+()的反函数的图象大致是(Dxx Ax8.列函数既是奇函数,又在区间[]1,1-上单调递减的是 ( ) A.()sin f x x = B.()1f x x =-+ C. 2()ln2x f x x -=+ D. ()1()2x x f x a a -=+ 9、若函数cos 2y x =与函数()sin y x ϕ=+在区间0,2π⎡⎤⎢⎥⎣⎦上的单调性相同,则ϕ的一个值是( ) A .6π B .4π C .3π D .2π10.定义域为R 的函数lg |2|,2()1,2x x f x x -≠⎧=⎨=⎩,若关于x 的方程0)()(2=++c x bf x f恰有5个不同的实数解12345,,,,x x x x x ,则12345()f x x x x x ++++等于 ( )A .0B .2lg2C .3lg2D .l二、填空题:(每小题4分共11、已知:A={ x| |x-1|< 2 },B ={x | -1 < x < m + 1},若x∈B 成立的一个充分不必要条件是x∈A ,则实数m 的取值范围 .12、已知ΔABC 中,∠C=900, 5||=AB , |BC |=4,则向量AB 在向量BC 上的投影为 .13、已知函数1()21xf x a =-+,若()f x 为奇函数,则a = 14.(文科) .当20π<<x 时,函数x xx x f 2sin sin 82cos 1)(2++=的最小值为(理科)定义运算b a *为:()(),⎩⎨⎧>≤=*b a b b a a b a 例如,121=*,则函数f(x)=x x cos sin *的值域为.15、已知函数()43xf x a a =-+的反函数的图象经过点(1,2)-,那么a 的值等于 三、解答题:(本大题共6 个小题共80分) 16.(本小题满分12分) 已知|a |=1,|b |=2, (1)若a //b ,求a ·b ; (2)若a ,b 的夹角为135°,求|a +b |.17、(本小题满分12分)设}12|52||{1-<-=+x x x B ,}0)({322<++-=a x a a x x A ,若A B A =⋂,求实数a 的取值范围18、(本小题满分14分)设函数32()33f x x ax bx =-+的图象与直线1210x y +-= 相切于点(1,11)-(Ⅰ)求a 、b 的值. (Ⅱ)讨论函数()f x 的单调性19.(文科)(本小题满分14分)已知:a R a a x x x f ,.(2sin 3cos 2)(2∈++=为常数)(1)若R x ∈,求)(x f 的最小正周期; (2)若)(x f 在[]6,6ππ-上最大值与最小值之和为3,求a 的值; (3求在(2)条件下)(x f 的单调减区间 (理科)(1) 已知)2cos()]2cos(3)2[sin()(θθθ+⋅+++=x x x x f . 若],0[πθ∈且f(x)为偶函数,求θ的值; (2):求cos sin 1010°°-4cos10°值;本小题满分14分)某租赁公司拥有汽车100辆,当每辆车的月租金为3000元,可全部租出,当每辆车的月租金增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150 元,未租出的车每辆每月需要维护费50元(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大收益是多少? 21.(本小题满分14分) (文科)(本小题满分14分)已知函数:)(1)(a x R a xa ax x f ≠∈--+=且(Ⅰ)证明:f (x )+2+f (2a -x )=0对定义域内的所有x 都成立. (Ⅱ)当f (x )的定义域为[a +21,a +1]时,求证:f (x )的值域为[-3,-2]; (Ⅲ)设函数g(x )=x 2+|(x -a )f (x )| , 当1-=a 求g(x ) 的最小值 .(理科)已知二次函数2()f x ax x =+(a ∈R ,a ≠0).(I)当0<a <12时,(sin )f x (x ∈R)的最大值为54,求()f x 的最小值. (II )如果x ∈[0,1]时,总有|()f x |1≤.试求a 的取值范围. (III )令1=a ,当[]()+∈+∈Nn n n x 1,时,()x f 的所有整数值的个数为()n g ,求证数列()⎭⎬⎫⎩⎨⎧n n g 2的前n 项的和7<n T长沙市实验中学高三第一学期 第二次月考文理科数学试题答案一、选择题:C BD C A C A C D C 二、填空题:11、),2(+∞ 12、 - 4 ;13、1214、(文) 34 (理)[-1,23] 15、2三、解答题:16.解(1)// ,①若,同向,则2||||=⋅=⋅……3分 ②若,异向,则2||||-=⋅-=⋅……6分 (2)b a , 的夹角为135°,1135cos ||||-=⋅⋅=⋅∴b a b a……8分 12212)(||2222=-+=⋅++=+=+b a……10分1||=+∴……12分17.解:}21{<<=x x B ,}0))(({2<--=a x a x x A ………………3分 若A B A =⋂,则B A ⊆ ……………………4分 (1)若2a a =,即0=a 或1=a ,则φ=A ,满足B A ⊆; …………6分 (2)若2a a <,即0<a 或1>a ,则}{2a x a x A <<=,若有B A ⊆则⎩⎨⎧≤≥212a a 所以21≤<a ………………9分(3)若2a a <,即10<<a ,则}{2a x a x A <<=,若有B A ⊆则⎩⎨⎧≤≥212a a 所以φ∈a ……………………11分综上所述,a 的取值范围为21≤≤a 或0=a ……………………12分18、解:(Ⅰ)∵2()363f x x ax b '=-+由已知可知(1)12f '=-⇒3631225a b a b -+=-⇒-= ① 又(1)11133114f a b a b =-⇒-+=-⇒-= ② 由①②可求得1a =,3b =- (Ⅱ)由(Ⅰ)可知2()369f x x x '=--2()036903f x x x x '>⇒-->⇒>或1x <- 2()0369013f x x x x '<⇒--<⇒-<< ∴()f x 在(),1-∞-和()3,+∞上为增函数 ()f x 在()1,3-上为减函数19.解:1)62sin(22sin 32cos 1)(+++=+++=a x a x x x f π……2分(1)最小正周期ππ==22T ……4分 (2)]2,6[62]3,3[2]6,6[πππππππ-∈+⇒-∈⇒-∈x x x ……6分1)62sin(21≤+≤-∴πx …8分 即033211)(12)(min max =⇒=+∴⎩⎨⎧++-=++=a a a x f a x f ……10分(3)1)62sin(2)(++=πx x f 当 2326222πππππ+≤+≤+k x k ,……12分 即3226ππππ+≤≤+k x k 时, 1)62sin(2)(++=πx x f 为增函数……14分(理科)(1)解:)2cos()]2cos(3)2[sin()(θθθ++++=x x x x f分3.23)32sin()]2cos(1[23)2sin(21)2(cos 3)2cos()2sin(2 +++=++++=+++⋅+=πθθθθθθx x x x x x∵f(x)为偶函数。

湖南省张家界市民族中学高三数学上学期第二次月考试题 理

湖南省张家界市民族中学高三数学上学期第二次月考试题 理

张家界市民族中学2018年下学期高三第二次月考理科数学试题时量:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC 中,“A >B” 是“sin A>sin B ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件2.已知sin ⎝ ⎛⎭⎪⎫π2+α=35,α∈⎝⎛⎭⎪⎫0,π2,则sin(π+α)等于( )A .35B .-35C .45D .-453.已知平面向量a ,b 满足|a |=2,|b |=1,a 与b 的夹角为2π3,且(a +λb )⊥(2a-b ),则实数λ的值为( )A .-7B .-3C .2D .34.已知奇函数f (x )在R 上是增函数.若a =-f (log 215),b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系为( )A .a <b <cB .b <a <cC .c <b <aD .c <a <b 5.已知cos ⎝⎛⎭⎪⎫2π3-2θ=-79,则sin ⎝ ⎛⎭⎪⎫π6+θ 的值为( )A.13 B .±13 C .-19 D.196.已知双曲线C :x 2a 2-y 2b 2=1 (a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )A.x 28-y 210=1B.x 24-y 25=1C.x 25-y 24=1 D .x 24-y 23=1 7.数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0172 018,则项数n 为( )A .2 016B .2 017C .2 018D .2 0198.设函数()f x 的导函数为()'f x ,若对任意x ∈R 都有()()'f x f x >成立,则( ) A .()()ln 201520150f f < B .()()ln 201520150f f =C .()()ln 201520150f f >D .()ln 2015f 与()20150f 的大小关系不能确定 9.下列函数中,在其定义域上既是偶函数又在(0,+∞)上单调递减的是( ) A .y =x2B .y =x +1C .y =-lg |x |D .y =-2x10.定义在R 上的函数f (x )满足:f (x )>1-f ′(x ),f (0)=0,f ′(x )是f (x )的导函数,则不等式e xf (x )>e x-1(其中e 为自然对数的底数)的解集为( ) A .(-∞,-1)∪(0,+∞) B .(0,+∞) C .(-∞,0)∪(1,+∞) D .(-1,+∞)11.若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-lg|x |的零点个数是( )A .多于20B .20C .18D .1012.如果函数f (x )在区间[a ,b ]上存在x 1,x 2(a <x 1<x 2<b ),满足f ′(x 1)=f (b )-f (a )b -a,f ′(x 2)=f (b )-f (a )b -a ,则称函数f (x )是区间[a ,b ]上的“双中值函数”.已知函数f (x )=x 3-x 2+a 是区间[0,a ]上的“双中值函数”,则实数a 的取值范围为 ( )A.⎝ ⎛⎭⎪⎫12,1B.⎝ ⎛⎭⎪⎫32,3 C .(0,1) D.⎝ ⎛⎭⎪⎫13,1 二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上) 13.若函数()ln e x y x a =-+的值域为R ,则实数a 的取值范围是________. 14.写出数列,-1,11,-111,1111,-11111,…的一个通项公式________. 15.设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于________. 16.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数g (x )=f (f (x ))-12的零点个数是________.三、解答题(本大题共6小题,共70分,写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分)某港湾的平面示意图如图所示,O ,A ,B 分别是海岸线l 1,l 2上的三个集镇,A 位于O 的正南方向6 km 处,B 位于O 的北偏东60°方向10 km 处. (1)求集镇A ,B 间的距离;(2)随着经济的发展,为缓解集镇O 的交通压力,拟在海岸线l 1,l 2上分别修建码头M ,N ,开辟水上航线.勘测时发现:以O 为圆心,3 km 为半径的扇形区域为浅水区,不适宜船只航行.请确定码头M ,N 的位置,使得M ,N 之间的直线航线最短.18.(本小题满分12分)某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与空气质量等级对应关系如下表(假设该区域空气质量指数不会超过300):该社团将该校区在2016年100天的空气质量指数监测数据作为样本,绘制的频率分布直方图如下图,把该直方图所得频率估计为概率.(Ⅰ)请估算2017年(以365天计算)全年空气质量优良的天数(未满一天按一天计算);(Ⅱ)该校2017年6月7、8日将作为高考考场,若这两天中某天出现5级重度污染,需要净化空气费用10000元,出现6级严重污染,需要净化空气费用20000元,记这两天净化空气总费用为X 元,求X 的分布列及数学期望.19、(本小题满分12分)已知点F 为椭圆E :x 2a 2+y 2b2=1(a >b >0)的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线x 4+y2=1与椭圆E 有且仅有一个交点M .(1)求椭圆E 的方程;(2)设直线x 4+y2=1与y 轴交于P ,过点P 的直线l 与椭圆E 交于不同的两点A ,B 若λ|PM |2=|PA |·|PB |,求实数λ的取值范围.20、(本小题满分12分)如图,在四棱锥S ­ABCD 中,底面ABCD 是矩形,平面ABCD ⊥平面SBC ,SB =SC ,M 是BC 的中点,AB =1,BC =2.(1)求证:AM ⊥SD ;(2)若二面角B ­SA ­M 的正弦值为63,求四棱锥S ­ABCD 的体积.21、(本小题满分12分)已知函数f(x)=(2-a)ln x+1x+2ax.(1)当a=2时,求函数f(x)的极值;(2)当a<0时,求函数f(x)的单调增区间.22.(本小题满分12分)已知函数f(x)=2e x+2ax-a2,a∈R.(1)求函数f(x)的单调区间;(2)若x≥0时,f(x)≥x2-3恒成立,求实数a的取值范围.张家界市民族中学2018年下学期高三第二次月考数学(理)试题时量:120分钟 满分:150分 命题人:李宝平 审题人:杨昭松、何难 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC 中,“A >B” 是“sin A>sin B ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件2.已知sin ⎝ ⎛⎭⎪⎫π2+α=35,α∈⎝⎛⎭⎪⎫0,π2,则sin(π+α)等于( )A .35B .-35C .45D .-453.已知平面向量a ,b 满足|a |=2,|b |=1,a 与b 的夹角为2π3,且(a +λb )⊥(2a-b ),则实数λ的值为( )A .-7B .-3C .2D .34.已知奇函数f (x )在R 上是增函数.若a =-f (log 215),b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系为( )A .a <b <cB .b <a <cC .c <b <aD .c <a <b 5.已知cos ⎝⎛⎭⎪⎫2π3-2θ=-79,则sin ⎝ ⎛⎭⎪⎫π6+θ 的值为( )A.13 B .±13 C .-19 D.196.已知双曲线C :x 2a 2-y 2b 2=1 (a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )A.x 28-y 210=1B.x 24-y 25=1C.x 25-y 24=1 D .x 24-y 23=17.数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0172 018,则项数n 为( )A .2 016B .2 017C .2 018D .2 0198.设函数()f x 的导函数为()'f x ,若对任意x ∈R 都有()()'f x f x >成立,则 A .()()ln 201520150f f < B .()()ln 201520150f f =C .()()ln 201520150f f >D .()ln 2015f 与()20150f 的大小关系不能确定 9.下列函数中,在其定义域上既是偶函数又在(0,+∞)上单调递减的是( ) A .y =x2B .y =x +1C .y =-lg |x |D .y =-2x10.定义在R 上的函数f (x )满足:f (x )>1-f ′(x ),f (0)=0,f ′(x )是f (x )的导函数,则不等式e xf (x )>e x-1(其中e 为自然对数的底数)的解集为( )A .(-∞,-1)∪(0,+∞)B .(0,+∞)C .(-∞,0)∪(1,+∞)D .(-1,+∞) 11.若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-lg|x |的零点个数是( )A .多于20B .20C .18D .1012.如果函数f (x )在区间[a ,b ]上存在x 1,x 2(a <x 1<x 2<b ),满足f ′(x 1)=f (b )-f (a )b -a,f ′(x 2)=f (b )-f (a )b -a ,则称函数f (x )是区间[a ,b ]上的“双中值函数”.已知函数f (x )=x 3-x 2+a 是区间[0,a ]上的“双中值函数”,则实数a 的取值范围为 ( )A.⎝ ⎛⎭⎪⎫12,1B.⎝ ⎛⎭⎪⎫32,3 C .(0,1) D.⎝ ⎛⎭⎪⎫13,1 选择答案:CDDCB BBCCB CA二、填空题(本大题共4小题,每小题5分,共20分.)13.若函数()ln e x y x a =-+的值域为R ,则实数a 的取值范围是_____. 14.写出数列,-1,11,-111,1111,-11111,…的一个通项公式________. 15.设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于________. 16.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数g (x )=f (f (x ))-12的零点个数是______.三、解答题(本大题共6小题,共70分,写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分)某港湾的平面示意图如图所示,O ,A ,B 分别是海岸线l 1,l 2上的三个集镇,A 位于O 的正南方向6 km 处,B 位于O 的北偏东60°方向10 km 处.(1)求集镇A ,B 间的距离;(2)随着经济的发展,为缓解集镇O 的交通压力,拟在海岸线l 1,l 2上分别修建码头M ,N ,开辟水上航线.勘测时发现:以O 为圆心,3 km 为半径的扇形区域为浅水区,不适宜船只航行.请确定码头M ,N 的位置,使得M ,N 之间的直线航线最短. 解:(1)在△ABO 中,OA =6,OB =10,∠AOB =120°, 根据余弦定理得AB 2=OA 2+OB 2-2·OA ·OB ·cos 120°=62+102-2×6×10×⎝ ⎛⎭⎪⎫-12=196,所以AB =14.故集镇A ,B 间的距离为14 km. (2)依题意得,直线MN 必与圆O 相切. 设切点为C ,连接OC (图略),则OC ⊥MN . 设OM =x ,ON =y ,MN =c ,在△OMN 中,由12MN ·OC =12OM ·ON ·sin 120°,得12×3c =12xy sin 120°,即xy =23c , 由余弦定理,得c 2=x 2+y 2-2xy cos 120°=x 2+y 2+xy ≥3xy ,所以c 2≥63c ,解得c ≥63, 当且仅当x =y =6时,c 取得最小值6 3.所以码头M ,N 与集镇O 的距离均为6 km 时,M ,N 之间的直线航线最短,最短距离为 6 3 km.18.(本小题满分12分)某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与空气质量等级对应关系如下表(假设该区域空气质量指数不会超过300):该社团将该校区在2016年100天的空气质量指数监测数据作为样本,绘制的频率分布直方图如下图,把该直方图所得频率估计为概率.(Ⅰ)请估算2017年(以365天计算)全年空气质量优良的天数(未满一天按一天计算); (Ⅱ)该校2017年6月7、8日将作为高考考场,若这两天中某天出现5级重度污染,需要净化空气费用10000元,出现6级严重污染,需要净化空气费用20000元,记这两天净化空气总费用为X 元,求X 的分布列及数学期望.(Ⅰ)由直方图可估算2017年(以365天计算)全年空气质量优良的天数为(0.10.2)3650.3365109.5110+⨯=⨯=≈(天). --------- 4分 (Ⅱ)由题可知,X 的所有可能取值为:0,10000,20000,30000,40000, -- 6分则: 4162(0)()525P X ===, 1441(10000)210525P X C ==⨯⨯=11417221(20000)()2210105100P X C C ==⨯+⨯⨯=1111(30000)2101050P X C ==⨯⨯=1122(40000)()210100P X C ==⨯=∴ X 的分布列为分1641711010000200003000040000252510050100EX =⨯+⨯+⨯+⨯+⨯6000=(元).----- 12分19、(本小题满分12分)已知点F 为椭圆E :x 2a 2+y 2b2=1(a >b >0)的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线x 4+y2=1与椭圆E 有且仅有一个交点M .(1)求椭圆E 的方程;(2)设直线x 4+y2=1与y 轴交于P ,过点P 的直线l 与椭圆E 交于不同的两点A ,B 若λ|PM |2=|PA |·|PB |,求实数λ的取值范围.解:(1)由题意,得a =2c ,b =3c ,则椭圆E 为x 24c 2+y 23c2=1.由⎩⎪⎨⎪⎧x 24+y 23=c 2x 4+y 2=1,得x 2-2x +4-3c 2=0.因为直线x 4+y2=1与椭圆E 有且仅有一个交点M ,所以Δ=4-4(4-3c 2)=0⇒c 2=1, 所以椭圆E 的方程为x 24+y 23=1.(2)由(1)得M (1,32),因为直线x 4+y2=1与y 轴交于P (0,2),所以|PM |2=54,当直线l 与x 轴垂直时,|PA |·|PB |=(2+3)×(2-3)=1, 所以λ|PM |2=|PA |·|PB |⇒λ=45,当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +23x 2+4y 2-12=0⇒(3+4k 2)x 2+16kx +4=0, 依题意得,x 1x 2=43+4k 2,且Δ=48(4k 2-1)>0,所以|PA |·|PB |=(1+k 2)x 1x 2=(1+k 2)·43+4k 2=1+13+4k 2=54λ,所以λ=45(1+13+4k2), 因为k 2>14,所以45<λ<1.综上所述,λ的取值范围是[45,1).20、(本小题满分12分)如图,在四棱锥S ­ABCD 中,底面ABCD 是矩形,平面ABCD ⊥平面SBC ,SB =SC ,M 是BC 的中点,AB =1,BC =2.(1)求证:AM ⊥SD ;(2)若二面角B ­SA ­M 的正弦值为63,求四棱锥S ­ABCD 的体积. 【解】 (1)证明:设AD 的中点为N ,连接MN ,由四边形ABCD 是矩形,知MN ⊥BC . 因为SB =SC ,M 是BC 的中点,所以SM ⊥BC .因为平面ABCD ⊥平面SBC ,平面ABCD ∩平面SBC =BC , 所以SM ⊥平面ABCD ,所以SM ⊥MN .所以直线MC ,MS ,MN 两两垂直.以M 为坐标原点,MC ,MS ,MN 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系Mxyz ,设SM =a .依题意得,M (0,0,0),A (-1,0,1),B (-1,0,0),C (1,0,0),D (1,0,1),S (0,a ,0).所以AM →=(1,0,-1),SD →=(1,-a ,1). 因为AM →·SD →=1×1+0×(-a )+(-1)×1=0, 所以AM →⊥SD →,即AM ⊥SD .(2)由(1)可得MS →=(0,a ,0),MA →=(-1,0,1).设平面AMS 的法向量为n 1=(x ,y ,z ),则n 1⊥MS →,n 1⊥MA →,所以⎩⎪⎨⎪⎧ay =0-x +z =0,即⎩⎪⎨⎪⎧y =0-x +z =0,令x =1,则n 1=(1,0,1)是平面AMS 的一个法向量.同理可得n 2=(a ,-1,0)是平面ABS 的一个法向量.设二面角B ­SA ­M 的大小为θ,则cos θ=n 1·n 2|n 1||n 2|=a 2×a 2+1. 所以1-cos 2θ=1-a 22a 2+2=sin 2θ=23,解得a = 2.所以四棱锥S ­ABCD 的体积V =13×S 矩形ABCD ×SM =13×2×1×2=223.21、(本小题满分12分)已知函数f (x )=(2-a )ln x +1x+2ax .(1)当a =2时,求函数f (x )的极值; (2)当a <0时,求函数f (x )的单调增区间. 解:(1)函数f (x )的定义域为(0,+∞), 当a =2时,f (x )=1x +4x ,则f ′(x )=-1x2+4.令f ′(x )=-1x 2+4=0,得x =12或x =-12(舍去). 当x 变化时,f ′(x ),f (x )的变化情况如下表:所以函数f (x )的极小值为f ⎝ ⎛⎭⎪⎫2=4,无极大值. (2)f ′(x )=2-a x -1x 2+2a =(2x -1)(ax +1)x 2, 令f ′(x )=0,得x =12或x =-1a. 当-2<a <0时,由f ′(x )>0,得12<x <-1a ,所以函数f (x )在⎝ ⎛⎭⎪⎫12,-1a 上单调递增; 当a =-2时,f ′(x )≤0,所以函数f (x )无单调递增区间;当a <-2时,由f ′(x )>0,得-1a <x <12,所以函数f (x )在⎝ ⎛⎭⎪⎫-1a ,12上单调递增.22.(本小题满分12分)已知函数f (x )=2e x +2ax -a 2,a ∈R.(1)求函数f (x )的单调区间;(2)若x ≥0时,f (x )≥x 2-3恒成立,求实数a 的取值范围.解:(1)f ′(x )=2e x +2a ,①当a ≥0时,f ′(x )>0恒成立,∴函数f (x )在R 上单调递增.②当a <0时,由f ′(x )>0,得x >ln(-a );由f ′(x )<0,得x <ln(-a ),∴函数f (x )在(-∞,ln(-a ))上单调递减,在(ln(-a ),+∞)上单调递增. 综合①②知,当a ≥0时,f (x )的单调递增区间为(-∞,+∞);当a <0时,f (x )的单调递增区间为(ln(-a ),+∞),单调递减区间为(-∞,ln(-a )).(2)令g (x )=f (x )-x 2+3=2e x -(x -a )2+3,x ≥0,则g ′(x )=2(e x -x +a ).又令h (x )=2(e x -x +a ),则h ′(x )=2(e x-1)≥0,∴h (x )在[0,+∞)上单调递增,且h (0)=2(a +1).①当a ≥-1时,h (x )≥0,即g ′(x )≥0恒成立,∴函数g (x )在[0,+∞)上单调递增, 从而需满足g (0)=5-a 2≥0,解得-5≤a ≤5,又a ≥-1,∴-1≤a ≤5;②当a <-1时,则∃x 0>0,使h (x 0)=0,且x ∈(0,x 0)时,h (x )<0,即g ′(x )<0,∴g (x )在(0,x 0)上单调递减,x ∈(x 0,+∞)时,h (x )>0,即g ′(x )>0,∴g (x )在(x 0,+∞)上单调递增.∴g (x )min =g (x 0)=2e x 0-(x 0-a )2+3≥0,又h (x 0)=2(e x 0-x 0+a )=0,从而2e x 0-(e x 0)2+3≥0,解得0<x 0≤ln 3,又由h (x 0)=0,得a =x 0-e x 0.令M (x )=x -e x 0<x ≤ln 3,则M ′(x )=1-e x <0,∴M (x )在(0,ln 3]上单调递减,∴M (x )≥M (ln 3)=ln 3-3,又M (x )<M (0)=-1,故ln 3-3≤a <-1,综上,实数a 的取值范围为[]ln 3-3,5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

遂溪一中2015—2016学年第一学期高二年级第二次月考试卷
理科数学
(试卷满分150分,时间120分) 命题人:庞静群 审题人:廖胜
参考公式:用最小二乘法求线性回归方程系数公式x b y a x
n x
y x n y
x b n
i i
n
i i
i -=--=
∑∑==,1
2
21
一.选择题:(共12小题,每小题5分,共60分)
1.已知集合⎭⎬⎫⎩
⎨⎧
=2121,,A ,{}
A x x y y
B ∈==,|2, 则B A = ( )
A .⎭
⎬⎫
⎩⎨⎧21 B .{}2 C .{}
1 D .Φ
2 .双曲线22
184
y x -=的渐近线方程为 ( )
A.y = B
.y x = C .1
2
y x =± D. x y 2±=
3.设m l ,均为直线,α为平面,其中,l m αα⊄⊂,则“//l α”是“//l m ”的( ) A .充分不必要条件 B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件 4.若()1,1,1--=→
a ,()4,0,2=→
b ,则→

b 与a 的夹角的余弦值为( ) A .
85854 B .8569 C .15
15
- D .0 5.若抛物线2
2y px =的焦点与椭圆22
162
x y +
=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D. 4 6.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随
机取一个点Q ,则点Q 取自△ABE 内部的概率等于 ( )
A .14
B . 13
C . 12
D . 2
3
7.执行右图的程序框图,如果输入的N 是6,那么输出的p 是( )
A .720
B .920
C .1 440
D .5 040
8.已知ABC ∆中,P 为边BC 上的一点,且
1()2
AP AB AC =+ ,()0AP AB AC ⋅-=
,则ABC ∆的
形状为( )
A .等边三角形
B .等腰直角三角形
C .直角三角形
D .等腰三角形
9.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.若a 、b 、c 成等比数列,且c=2a, 则cosB 等于( ) A.
41 B.43 C.42 D.3
2 10.设2,1,F F 是椭圆E :122
22=+b
y
a x (a >
b >0)的左、右焦点,P 为直线23a x =
上一点,21F PF ∆三角形是底角为030的等腰三角形,则E 的离心率为( )
A.
21 B. 32 C . 43 D .5
4
11已知实数x 、y 满足242y x
x y y ≤⎧⎪
+≤⎨⎪≥-⎩
,若存在x 、y 满足222(1)(1)(0)x y r r ++-=>,
则r 的最小值为( )
A
.3 C

33
4
12已知函数()4cos sin()16f x x x π=+-,:,:()(1)4
x p q g x π
θθ>=+函数在R 上为增
函数,若p q ∧∨为假命题,p q 为真命题,()f θ的值域为( )
A .⎥⎦

⎝⎛23,21 B .(]2,0 C .(]2,1 D .[]2,2-
二.填空题:共4小题,每小题5分,共20分。

第16题第一个横线2分,第二个横线3分
13命题“∀x ∈R ,0122≥+-x x ”的否定是
14动点M 在曲线22
1x y +=上移动,M 和定点B (3,0)连线的中点为P ,则P 点
的轨迹方程为:_________________________。

15.函数1(01)x y a a a -=>≠,的图象恒过定点A ,若点A 在直线
10(0)mx ny mn +-=>上,则
11
m n
+的最小值为
16如图,抛物线顶点在原点,圆0422=-+x y x 的圆 心恰是抛物线的焦点. (1)抛物线的方程为________;
(2)一直线的斜率等于2,且过抛物线焦点,它依次截抛物线和圆于A 、B 、C 、D 四点,则|AB |+|CD |=________.
三、解答题:80分,解答应写出文字说明,证明过程或演算步骤。

17.( 本小题满分10分)在△ABC 中,已知 AC=3, (1)求sinA 的值;
(2)若△ABC 的面积S=3,求BC 的值.
18.(本小题满分12分) 下表提供了某厂节能降耗技术改造后生产甲产品过程中
记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据:
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出回归方程y ^=b ^x +a ^;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)
19.(本小题满分12分)
在三棱锥S —ABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC ,
M 、N 分别为AB 、SB 的中点.
(1)证明:AC ⊥SB ;
(2)求二面角N —CM —B 的余弦值 (3)求点B 到平面CMN 的距离.
20. (本小题满分12分).已知数列{n a }中,1a =1,321+=+n n a a ,数列{n b }中,1b =1,且点()n n b b ,1+在直线1-=x y 上. (1)求数列{n a },{n b }的通项公式; (2)若3+=n n a c ,求数列{n n c b }的前n 项和S n .
21 (本小题满分12分).已知幂函数(2)(1)()()k k f x x k z -+=∈满足(2)(3)f f <。

(1)求整数k 的值,并写出相应的函数()f x 的解析式;
(2)对于(1)中的函数()f x ,若存在正数m ,使函数()1()(21)g x mf x m x =-+-, 在区间[]0,1上的最大值为5,求m 的值;
22. (本小题满分12分).在平面直角坐标系xOy 中,已知抛物线C :)0(22
>=p px y ,
在此抛物线上一点N (2,)m 到焦点的距离是3.
(1)求此抛物线的方程;
(2)抛物线C 的准线与x 轴交于M 点,过M 点斜率为k 的直线l 与抛物线C 交于
A 、
B 两点.是否存在这样的k ,使得抛物线
C 上总存在点),(00y x Q 满足QB QA ⊥,
若存在,求k 的取值范围;若不存在,说明理由.。

相关文档
最新文档