第四章控制系统根轨迹绘制
自动控制原理 第四章根轨迹
第四章根轨迹法4-1 根轨迹法的基本概念4-2 常规根轨迹的绘制法则4-3 广义根轨迹4-1 根轨迹法的基本概念一、根轨迹的概念根轨迹:系统中某个参数从零到无穷变化时,系统闭环特征根在s平面上移动的轨迹。
根指的是闭环特征根(闭环极点)。
根轨迹法是根据开环传递函数与闭环传递函数的关系,通过开环传递函数直接分析闭环特征根及系统性能的图解法。
K =0 s 1=0 s 2=-40 < K <1s 1 s 2为不等的负实根K =1s 1=-2 s 2=-21 < K < ∞s 1s2 实部均为-2由根轨迹可知:1)当K =0时,s 1=0,s 2=-1,这两点恰是开环传递函数的极点,同时也是闭环特征方程的极点.2)当0<K < 1 时,s 1,2都是负实根,随着k 的增长,s 1从s 平面的原点向左移,s 2从-1点向右移。
3) 当K = 1时, s 1,2= -2,两根重合在一起,此时系统恰好处在临界阻尼状态。
4) 1 <K <∞,s 1,2为共轭复根,它们的实部恒等于-2,虚部随着K 的增大而增大,系统此时为欠阻尼状态。
★在s平面上,用箭头标明K增大时,闭环特征根移动的方向,以数值表明某极点处的增益大小。
有了根轨迹图就可以分析系统的各种性能:(1)稳定性:根轨迹均在s的左半平面,则系统对所有K>0都是稳定的。
(2)稳态性能:如图有一个开环极点(也是闭环极点)s=0。
说明属于I型系统,阶跃作用下的稳态误差为0。
在速度信号V0t作用下,稳态误差为V0/K,在加速度信号作用下,稳态误差为∞。
(3)动态性能:过阻尼临界阻尼欠阻尼K越大,阻尼比ξ越小,超调量σ%越大。
由此可知:1、利用根轨迹可以直观的分析K的变化对系统性能的影响。
2、根据性能指标的要求可以很快确定出系统闭环特征根的位置;从而确定出可变参数的大小,便于对系统进行设计。
由以上分析知:根轨迹与系统性能之间有着密切的联系,但是,高阶方程很难求解,用直接解闭环特征根的办法来绘制根轨迹是很麻烦的。
自动控制原理第第四章 线性系统的根轨迹法
2
自动控制原理
§4.1 根轨迹的基本概念
例:开环传递函数
Gs
k1
ss
a
开环系统两个极点为:P1 0, P2 a R(s)
闭环传递函数为:
GB s
s2
k1 as
k1
-
k1
C(s)
ss a
闭环特征方程: s2 as k1 0
闭环特征根:s1,2
a 2
a 2
2
k1
(闭环极点)
3
自动控制原理
在p5附近取一实验点sd, 则∠sd-p5可以认为是p5点的出射角 Sd Z Sd P1 Sd P2 Sd P3 Sd P4 Sd P5 1800
近似为 P5 Z P5 P1 P5 P2 P5 P3 P5 P4 p 1800
p Sd P5 1800
法则4 实轴上存在根轨迹的条件——
这些段右边开环零极点个数之和为奇
数。
m
n
证明:根据相角条件 S Z j S Pi 18002q 1
j 1
i 1
p4
j s平面
例:sd为实验点
p3
z2 sd
p2 z1 p1
p5
① 实验点sd右侧实 轴上零极点提供 1800相角
③ 共轭复零点,复极点提供的相角和为 3600。
2
s1=-1.172,s2=-6.828
33
自动控制原理
法则6 开环复数极点处根轨迹出射角为
p 1800
开环复数零点处根轨迹入射角为:
Z 1800
其中 z p(不包括本点)
34
自动控制原理
j p5
p5
p3 p3
p2
自动控制原理 第四章 根轨迹法
第4章 根 轨 迹 法根轨迹法是分析和设计线性控制系统的图解方法,使用简便,在控制工程上得到了广泛应用。
本章首先介绍根轨迹的基本概念,然后重点介绍根轨迹绘制的基本法则,在此基础上,进一步讨论广义根轨迹的问题,最后介绍控制系统的根轨迹分析方法。
4.1 根轨迹的基本概念4.1.1 根轨迹概念所谓根轨迹,就是系统开环传递函数的某一参数从零变化到无穷时,闭环特征根在s 平面上变化的轨迹。
例如某控制系统的结构图如图4.1所示。
图4.1 控制系统其开环传递函数为()K (0.51)KG s s s =+其闭环传递函数为22()22Ks s s KΦ=++式中:K 为系统开环增益。
于是闭环特征方程可写为2220s s k ++=对上式求解得闭环特征根为1,21s =−令开环增益K 从零变化到无穷,利用上式求出闭环特征根的全部数值,将这些值标注在s 平面上,并连成光滑的粗实线,如图4.2所示,该粗实线就称为系统的根轨迹。
箭头表示随K 值增加根轨迹的变化趋势。
这种通过求解特征方程来绘制根轨迹的方法,称之为解析法。
画出根轨迹的目的是利用根轨迹分析系统的各种性能。
通过第3章的学习知道,系统第4章 根轨迹法·101··101·特征根的分布与系统的稳定性、暂态性能密切相关,而根轨迹正是直观反应了特征根在复平面的位置以及变化情况,所以利用根轨迹很容易了解系统的稳定性和暂态性能。
又因为根轨迹上的任何一点都有与之对应的开环增益值,而开环增益与稳态误差成反比,因而通过根轨迹也可以确定出系统的稳态精度。
可以看出,根轨迹与系统性能之间有着比较密切的联系。
图4.2 控制系统根轨迹4.1.2 根轨迹方程对于高阶系统,求解特征方程是很困难的,因此采用解析法绘制根轨迹只适用于较简单的低阶系统。
而高阶系统根轨迹的绘制是根据已知的开环零、极点位置,采用图解的方法来实现的。
下面给出图解法绘制根轨迹的根轨迹方程。
自动控制原理根轨迹法
21
二、根轨迹绘制的基本法则(4)
法则2
根轨迹的分支数和对称性 根轨迹的分支数与开环极点数n相等(n>m),或与开
环有限零点数m相等(n<m)。 根轨迹连续:根轨迹增益是连续变化导致特征根也连
续变化。 实轴对称:特征方程的系数为实数,特征根必为实数
或共轭复数。
22
二、根轨迹绘制的基本法则(5)
法则3
s(s 2.5)( s 0.5 j1.5)( s 0.5 j1.5)
试绘制该系统概略根轨迹。
解:将开环零、极点画在后面图中。按如下典型步骤
1)确定实轴上的根轨迹。本例实轴上区域
和
为轨迹。
0,-1.5
2)确定-根2.轨5,迹-的渐 近线。本例n=4,m=3,故只有
一条 的渐近线。 180
36
K均* 有关。
15
一、 根轨迹法的基本概念(13)
4 -1- 4 根轨迹方程
1、系统闭环特征方程
由闭环传函可得系统闭环特征方程为:
(s)
G(s)
1 G(s)H(s)
1 G(s)H (s) 0
2 、根轨迹方程
当系统有m个开环零点和n个开环极点时,下式称为
根轨迹方程
m
(s z j )
K * j1 n
i 1
j 1
n
n
n
(s si ) sn ( si )sn1 ... (si ) 0
i 1
i 1
i 1
式中,s i 为闭环特征根。
31
二、根轨迹绘制的基本法则(14)
当n m 2 时,特征方程第二项系数与K * 无关,无
论 K * 取何值,开环n个极点之和总是等于闭环特征方程n
自动控制原理第四章根轨迹法
i 1
j 1
开环极点到此被测零点 (终点)的矢量相角
8. 根轨迹的平衡性(根之和) ( n-m 2)
特征方程 Qs KPs 0
sn an1sn1 a1s a0 K sm bm1sm1 b1s b0 0
n
Qs KPs s p j sn cn1sn1 c1s c0 0 j 1
i 1
j1
k 0,1,2,
s zoi i 开环有限零点到s的矢量的相角
s poj j 开环极点到s的矢量的相角
矢量的相角以逆时针方向为正。
幅值条件:
s
m
m
s zoi
li
A s
i 1 n
i 1 n
s poj
Lj
j 1
j1
li αi
-zoi
Lj βj
×
-poj
开 环 有 限 零 点 到s的 矢 量 长 度 之 积 开环极点到s的矢量长度之积
, 2 2
c 2k 11800 2
由此可推理得到出射角:
其余开环极点到被测极 点(起点)的矢量相角
n1
m
c 2k 1180o j i
j 1
i 1
有限零点到被测极点
(起点)的矢量相角
同理入射角:
其余开环有限零点到被测 零点(终点)的矢量相角
m1
n
r 2k 1180o i j
1 GsHs 0
m
GsHs
KPs Qs
K
i 1
n
s
s
zoi
poj
j 1
P s sm bm1sm1 b1s b0
Q s sn an1sn1 a1s a0
于是,特征方程
第四章控制系统的根轨迹法
应掌握的内容
180度,0度根轨迹的绘制 参数根轨迹的绘制 增加开环零、极点对根轨迹和系统性能的影响 分析系统的稳定性 分析系统的瞬态和稳态性能 对于二阶系统(及具有闭环主导共轭复数极点的高阶 系统),根据性能指标的要求在复平面上划出满足这一 要求的闭环极点(或高阶系统主导极点)应在的区域。
10
[例4-1]系统的开环传递函数为:Gk (s)
由根轨迹图可知,当0 k 0.858时,闭环系统有一对
不等的负实数极点,其瞬态响应呈过阻尼状态。当 0.858 k 29.14 时,闭环系统有一对共轭复数极点,其瞬 态响应呈欠阻尼状态。当29.14 k 时,闭环系统又有一 对不等的负实数极点,瞬态响应又呈过阻尼状态。
14
[例4-3]控制系统的结构图如下图所示。试绘制以a为参变 量时的根轨迹。
解得 k 5, 5 由图可知当k 5 时直线OB与圆相切,系统的阻 尼比 1 ,特征根为 5 j5 。
2
13
对于分离点 2.93 ,由幅值条件可知
2.93 5 2.93 k1 10 2.93 0.858
对于会合点17.07 ,有
45
17.07 5 17.0 k2 10 17.07 29.14
论过,利用根轨迹可清楚地看到开环根轨迹增益或其他参 数变化时,闭环系统极点位置及其瞬态性能的改变情况。
利用根轨迹确定系统的有关参数 对于二阶系统(及具有闭环主导共轭复数极点的高阶系 统),通常可根据性能指标的要求在复平面上划出满足 这一要求的闭环极点(或高阶系统主导极点)应在的区 域。如下页图所示,具有实部 和阻尼角 划成的左区域 满足的性能指标为:
17
例4-4(续2)
其分离回合点计算如下:
N(s) s2 3s, N ' (s) 2s 3
自动控制原理 第四章.
s1.2 1 1 K1 1 1 2 K
第 4章
根轨迹
根轨迹的基本概念(续)
s1 0 ① K 0 s 2 2
j
2
② K 0.5 s1 s2 1 ③ K 1 s1 , 2 1 j ④ K 2.5 s1 , 2 1 j 2 p2
由于实际控制系统闭环特征方程的系数或为已知
实数,或为根轨迹增益Kg 的函数,所以当Kg 由0→∞
连续变化时,闭环特征根的变化必然也是连续的,所
以根轨迹具有连续性。 系统闭环特征方程的系数仅与系统的参数有关。
对于实际控制系统而言,这些参数都是实数。具有实
系数的闭环特征方程的根为共轭复数的形式,必然对
称于实轴。因而,根轨迹也必然பைடு நூலகம்于实轴对称。
s pi s zj
j 1
n
而 ( s z j ) ( s pi ) ( 2 K 1) ——相角方程
j 1 i 1
m
n
第 4章
根轨迹
根轨迹的基本概念(续)
若s平面上的点是闭环极点,则它与zj 、pi所组成
的相量必定满足上述两方程,而且模值方程与Kg有
第四章 根轨迹法
§4-1 根轨迹的基本概念 §4-2 绘制根轨迹的基本法则 §4-3 广义根轨迹
主要内容
1.根轨迹基本概念和根轨迹方程
2.绘制常规根轨迹的九大法则
3.参量根轨迹与零度根轨迹
第 4章
根轨迹
重点与难点
重 点
1、绘制常规根轨迹的九大法则 2、参量根轨迹与零度根轨迹 3、控制系统根轨迹法分析
§4—2 绘制根轨迹的基本法则
绘制根轨迹的基本法则(续)
控制工程基础第4章 根轨迹法
n 3, m 0, 故三条根轨迹趋向处。
渐进线与实轴交点的坐标为
[S]
a
0
1
3
2
0
1
渐进线与实轴正向的夹角为
a -2 -1 0
a
2k
1180
3
60 , 180
六、根轨迹的起始角与终止角
起始角:起始于开环极点的根轨迹在起点 处的切线与水平线正方向的夹角。
终止角:终止于开环零点的根轨迹在终点 处的切线与水平线正方向的夹角。
s4
2
1
s3 -2 s20 s1
s3 180 , s3 2 180 s4 1, s4 2 2
若s4位于根轨迹上,则必满足
幅角条件,即1 2 180,
N
s4一定在 2,0的中垂线MN上。
利用幅值条件可算出各根轨迹上的 K 值。
例
Gs
K
s0.5s 1
2K
ss 2
K
ss 2
终止于 zb 的根轨迹在终点处
的切线与水平正方向的夹角
j 1
i 1
ib
其它零点到 zb 的向量夹角
七、分离点的坐标
几条根轨迹在[S]平面上相遇后又分开的点, 称为根轨迹的分离点(或会合点)。
分离点坐标的求法:
1 d (G(s)H (s)) 0
ds
2 由根轨迹方程
令:dK 0 解出s ds
n
1 180 p1 z p1 p2
180 116.57 90
206.57
由于对称性
2 206.57
会合点 -3
206.57
p1
[S]
z116.57
2.12
-2 -1 0
自动控制原理第四章根轨迹法
第四章 根轨迹法
第一节 根轨迹与根轨迹方程 根轨迹 系统的某个参数(如开环增益K)由0到∞变化时, 闭环特征根在S平面上运动的轨迹。
例: GK(S)= K/[S(0.5S+1)] = 2K/[S(S+2)] GB(S)= 2K/(S2+2S+2K) 特征方程:S2+2S+2K = 0
-P1)(S-P2)…(S-Pn)
单击此处可添加副标题
当n>m时,只有m条根轨迹趋向于开环零点,还有(n-m)条? m,S→∞,有: (S-Z1)(S-Z2)…(S-Zm) -1 -1 ———————-— = —— = —— P1)(S-P2)…(S-Pn) K* AK 可写成:左边 = 1/Sn-m = 0 当K=∞时,右边 = 0 K=∞(终点)对应于S→∞(趋向无穷远). 即:有(n-m)条根轨迹终止于无穷远。
分解为:
03
例:GK(S)= K/[S(0.05S+1)(0.05S2+0.2S+1)] 试绘制根轨迹。 解: 化成标准形式: GK(S)= 400K/[S(S+20)(S2+4S+20)] = K*/[S(S+20)(S+2+j4)(S+2-j4)] K*=400K——根迹增益 P1=0,P2=-20,P3=-2+j4,P4=-2-j4 n=4,m=0
一点σa。
σa= Zi= Pi
ΣPi-ΣZi = (n-m)σa
σa= (ΣPi-ΣZi)/(n-m)
绘制根轨迹的基本法则
K*(S-Z1)(S-Z2)…(S-Zm)
—————————— = -1 (S-P1)(S-P2)…(S-Pn)
第4章 控制系统的根轨迹分析
绘制根轨迹如图4-13所示。
第4章 控制系统的根轨迹分析
图4-13 例4-5系统的根轨迹
第4章 控制系统的根轨迹分析
图中根轨迹与虚轴的交点可从系统临界稳定的条件
得到τ=1。τ=1时系统的特征方程为
得与虚轴交点的坐标为jω=±j。从根轨迹得到系统稳定时τ
的取值范围为0<τ<1。
第4章 控制系统的根轨迹分析
θj(j=1,2,3,4)。选取实轴上一点s0,若s0为根轨迹上的点,必满足
相角条件,有
第4章 控制系统的根轨迹分析
图4-5 实轴上根轨迹相角示意
第4章 控制系统的根轨迹分析
下面分别分析开环零、极点对相角条件的影响,进而分
析对实轴上根轨迹的影响。
(1)共轭复数极点p4和p5到点s0的向量的相角和为
φ4+φ5=2π,共轭复数零点到s0点的向量的相角和也为2π。
(2)实轴上,s0点左侧的开环极点p3和开环零点z2到点s0所
构成的向量的夹角φ3和θ2均为零度。
(3)实轴上,s0点右侧的开环极点p1、p2和开环零点z1到点
s0 所构成的向量的夹角φ1、φ2和θ1均为π。
第4章 控制系统的根轨迹分析
第4章 控制系统的根轨迹分析
若系统稳定,由劳斯表的第一列系数,有以下不等式成立:
得0<K* <78.47。
由此可知,当 Kc* =78.47时,系统临界稳定,此时根轨迹穿
过虚轴。K* =78.4ω 值由以下辅助方程确定:
将 K* =78.47代入辅助方程,得
解得s=±j2.16。
第4章 控制系统的根轨迹分析
对于例4-1,其在实轴上的根轨迹一条始于开环极点,止于
开环零点(根轨迹位于-2到-5之间),另两条始于开环极点,止于
第四章 控制系统根轨迹分析法
4.1 根轨迹的概念
模条件与角条件的作用: 1、角条件与k无关,即s平面上所有满足角条件的 点都属于根轨迹。(所以绘制根轨迹只要依据角条 件就足够了)。 2、模条件主要用来确定根轨迹上各点对应的根轨 I 迹增益k值。
m
k
j 1 m
n
s p
j
s Zi
args Z i
1
所以结论:实轴上线段右侧的零、极点数目之和为奇 数时,此区段为根轨迹。
jω
例
k G0 ( s ) Ts 1
1 T
×
×
×
×
σ
1 p T
j
1 1 T F 1 T 2k 1 1
k' G0 ( s ) s( s 0.5 )
j
p1 0 p2 0.5
k G0 s 举例: 开环传函: ss 1
K为开环增益(因为标准型) 有两个开环极点 无开环零点
rs
k ss 1
C s
k G s 2 闭环传函: s sk
2 D s s sk 0 则闭环特征方程为:
1 1 闭环特征根(即闭环传函的极点): s1 1 4k
0 0 .5 F 0.25 2 2k 1 3 , 2 2 2
-0.5 0
4.2 根轨迹的绘制规则
规则四:根轨迹的渐近线: (1)条数: (n-m)条 (2)与实轴所成角度 当
m n 2k 1
n m
s 时,认为所有开环零极点引向s的角相同
Z1 Z m p1 p n
G 0 s k
m
为m个开环零点
自动控制原理第四章--根轨迹法
2.相角条件:
G(s)H(s) (2k 1)
k 0,1, 2
为了把幅值条件和相角条件写成更具体的形 式,把开环传递函数写成如下形式:
m
(s zi )
G(s)H(s) Kg
i 1 n
(s pj)
j 1
式中:K
g 称为根轨迹增益;
zi ,
p
为开环零极
j
点。
∴ 幅值条件:
m
n
pl (2k 1) ( pl z j ) ( pl pi )
j 1
i 1
m
il
( pl z j ) ——所有开环零点指向极点-pl 矢量的相角之和。
j 1
n
( pl pi )——除-pl 之外的其余开环极点指向极点-pl 矢量
i 1
il
的相角之和。
在复数零点-zl 处的入射角为:
而s2、s3点不是根轨迹上的点。
[例]设系统的开环传递函数为 试求实轴上的根轨迹。
Gk (s)
s2(s
K g (s 2) 1)(s 5)(s
10)
[解]:零极点分布如下:
10
5
2 1 0
红线所示为实轴上根轨迹,为:[-10,-5]和[-2,-1] 。
四、根轨迹的渐近线:
渐近线包括两个内容:渐近线的倾角(渐近线与实轴的夹角) 和渐近线与实轴的交点。
n
m
zl (2k 1) (zl pi ) (zl z j )
i 1
j 1
jl
n
(zl pi )
i 1
——所有开环极点指向零点-zl 矢量的相角之和。
m
(zl z j )
j 1 jl
《自动控制原理》第4章_根轨迹分析法
因此求分离点和会合点公式: 可以判断是分离点或
N(s)D '(s) N '(s)D(s) 0 会合点,只有满足条
Kg 0
件Kg≥0的是有用解。
例4-1.设系统结构如图, 试绘制其概略根轨迹。
R(s)
k(s 1) c(s)
s(s 2)(s 3)
解:画出 s 平面上的开环零点(-1),开环极点(0, -2,-3)。
逆时针为正。(- , )
m
n
pj (2k 1) ( z j pi ) pj pi
j 1
j 1
ji
m
n
zi (2k 1) ( z j zi ) p j zi
j 1
j 1
j i
k 0,1,
k 0, 1,
例3.设系统开环传递函数为: G(s) Kg(s 1.5)(s 2 j)(s 2 j) s(s 2.5)(s 0.5 j1.5)(s 0.5 j1.5)
K
s1
00
0.5 1
1 1 j1
s2
K
K 2.5
2
K 1
1 K 0
1 j1
2 1
2 1 j 3 1 j 3
1 j 1 j
j
2
1
0
K 0.5
1
2
一、根轨迹的一般概念
开环系统(传递函数)的某一个参数从零变化到 无穷大时,闭环系统特征方程根在 s 平面上的轨迹 称为根轨迹。
根轨迹法:图解法求根轨迹。 借助开环传递函数来求闭环系统根轨迹。
nm
独立的渐近线只有(n-m)条 u=0,1…,(n-m-1)
(2)渐近线与实轴的交点
分子除以分母
(完整版)第四章根轨迹法
j
8K * (1 K * )2 j
2
2
(1 K * ) K * 2 1
2
2 8K * (1 K * )2 8(2 1) 4 2 2 4 2
4
4
2 4 4 2 2
( 2)2 2
第四章 根轨迹法
自动控制原理课程的任务与体系结构
时域:微分方程 复域:传递函数 频域:频率特性
描述
控制系统
校正
时域法 复域法 频域法
评价系统的性能指标 稳定性 快速性(动态性能) 准确性(稳态性能)
分析
自动控制原理
§4 根轨迹法
§4.1 根轨迹法的基本概念 §4.2 绘制根轨迹的基本法则 §4.3 广义根轨迹 §4.4 利用根轨迹分析系统性能
• s平面上满足相角条件的点(必定满足模值条件) 一定在根轨迹上。 满足相角条件是s点位于根轨迹上的充分必要条件。
• 根轨迹上某点对应的 K* 值,应由模值条件来确定。
§4.2
m
绘制根轨迹的基本法则(1) G(s)H(s) =
K* s - z1 L s - zm s - p1 s - p2 L s - pn
K*
(s zi )
i 1 n
1
(s pj)
— 模值条件
j 1
m
n
G(s)H (s) (s zi ) (s p j ) (2k 1)
i 1
j1
— 相(s)H(s) =
K* s - z1 L s - zm s - p1 s - p2 L s - pn
§4 根 轨 迹 法
根轨迹法: 三大分析校正方法之一
特点: (1)图解方法,直观、形象。 (2)适合于研究当系统中某一参数变化时,系统性能的变化
《控制工程基础》第四章根轨迹
4.2 根轨迹幅值条件与相角条件
LOGO
相角条件:
s1,2 1 1 2K
K s(0.5s 1)
G s H s s (s 2) 180 2k 1k 0,1,2,
(0,+ ∞ ) ;
(-2,0);
(- ∞,-2 ) ;
实轴以外 ;
用幅值条件可以计算
出各根轨迹点上的开环根
轨迹增益K*。
Page 12
ds
即s2 12s 24 0
解之,得 s1 2.54, s 2 9.46
相应的增益为
K
1
1 .0 7 , Page 21
K
2
14.9
4.3 绘制根轨迹的基本法则
LOGO
方法2 设系统开环传递函数为
GsH s
K s s
z1 s z2 s zm p1 s p2 s pn
Gs
H
s
K s
1s 12s
T s 1 T s 1 Page 10
2
1 1
4.2 根轨迹幅值条件与相角条件
LOGO
G s H
s
K* s s
z1 s z2 p1 s p2
s zm s pn
K * Az1e jz1 A e j p1
p1
A e jzm zm
A e j pn pn
LOGO
传递函数:
Gb
s
1
Gs G s H
s
特征方程(根轨迹方程):1+G(s)H(s)=0 或写作 G(s)H(s)= -1
相角条件: GsH s 180 2k 1 k 0,1,2,
幅值条件: GsHs 1
GsH s
自动控制原理PrinciplesofAutomaticControl
第4章 根轨迹法
由上述两式可见,幅值条件与k有关,而 相角条件与k无关。因此,把满足相角条件 的值代入到幅值条件中,一定能求得一个 与之相对应的k值。这就是说,相角条件是 确定s平面上的根轨迹的充分必要条件。换 言之,凡是满足相角条件的点必然也同时满 足幅值条件,反之,满足幅值条件的点未必都 能满足相角条件.
n
m
(s pl ) K (s zi ) 0
l 1
i 1
1
K
n
(s pl )
l 1
m
(s zi ) 0
i 1
当 K 时,它将蜕化成为m次方程,而m≤n。
m
(s zi ) 0
i 1
通常m < n , 还有n-m 条根轨迹终止在什么地方?
自动控制原理
第4章 根轨迹法
我们在上式中做置换,令 s 1
自动控制原理
第4章 根轨迹法
规则2 根轨迹的分支数、起点和终点
根轨迹的分支数等于开环极点数目与开环零点数目 大者。
系统的开环传递函数
G(s)H (s)
K (s z1 )(s z2 )(s zm ) (s p1 )(s p2 )(s pn )
系统的闭环传递函数
n
m
(s pl ) K(s zi ) 0
根据上式,用试探法寻求s平面上满足相角条件的点。
1) 在正实轴上任取一试验点 s1,如图4-4(a)所示,由 于 arg s1 0,arg(s1 1) 0 ,因 而该点不满足根轨迹的相角 条件。由此可知,在正实轴 上不存在系统的根轨迹。
自动控制原理
2)在(0,–1)间的实轴上
任取一试验点s2,如图4-
!绘制注意点 1)实轴、虚轴相同的刻度
自动控制原理4 第四节控制系统根轨迹绘制
显然,s1 0.48,不在根轨迹上。分离点为:s2 3.52 。
19
4.4 控制系统根轨迹的绘制
20
4.4 控制系统根轨迹的绘制
比较正负反馈的根轨迹方程:
m
(s zi )
若开环传递函数为:
Gk (s) Kg
i 1 n
(s pj)
j 1
则正负反馈的根轨迹方程分别为:
m
(s zi )
5
4
141.9
3
2
j2.5
Imag Axis
1
0.9
0
-1
-2
j2.5
-3
-4
-5
-4
-3
-2
-1
0
1
2
Real Axis
8
4.4 控制系统根轨迹的绘制
[例4-7]设开环系统传递函数为:Gk
(s)
(s
kg (s 1) 0.1)(s 0.5)
试绘制根轨迹。
[解]:⑴开环零点 z1 1,开环极点 p1 0.1, p2 0.5, 根轨迹有两支。起点在极点处,终点一支在开环零点处。 一支在无穷远处。
1
j4
1 (1 2 3)
( tg 1 4 tg 14 90) 141 .9
3
根据对称性,可知-3-j4处的出射
角 2 为: 2 141 .9 ⑤与虚轴的交点:闭环特征方程为:
s4 8s3 37s2 50s kg 0 劳斯阵为:
2
3 2
3
1
0 j4
s4
1
s3
8
⑥会合点与分离点(重根点):分离角为 d
2
由N(s)D(s) N (s)D(s) 0 得:4s3 24s2 74s 50 0
自动控制原理 第4章
我们知道,一个闭环系统开环传递函数的分子加分母就是该 系统闭环传递函数的特征方程,这样,由已知闭环系统的开 环传递函数确定其闭环极点分布,实际上就是解决系统特征 方程的求根问题。 1948 年,伊文思( W.R.Evans )根据反馈 系统中开、闭环传递函数间的内在联系,提出了求解闭环特 征方程根的比较简易的图解方法,称之为根轨迹法。因为根 轨迹法直观形象,使用简单,所以在控制工程中获得了广泛 应用。
当 K =0.5 时,两个闭环极点均为 -1 ,闭环特征根为二 重实根,系统为临界阻尼,单位阶跃响应仍为单调上升的非 周期过程,但比上述情况稍快;
当 K >0.5 时,闭环极点为共轭复数,系统为欠阻尼振 荡,阶跃响应为衰减振荡过程,且超调量正比于 K 值。
分析表明,根轨迹与系统性能之间有着密切的联系,利 用根轨迹可以分析当系统参数增大时系统动态性能的变化趋 势。然而,对于高阶系统,用解析方法绘制系统根轨迹图显 然是不适用的,我们希望能有简便的图解方法。因为开环传 递函数相对容易得到,因此要求能够根据已知的开环传递函 数迅速绘出闭环系统的根轨迹。为此,需要研究开环零、极 点与闭环系统的根轨迹之间的关系。
第四章 控制系统的根轨迹法
4.1 根轨迹的基本概念 4.2 常规根轨迹的绘制法则 4.3 广义根轨迹 4.4 根轨迹系统性能分析 习题四
本章主要讲述根轨迹的概念、 绘制常规根轨迹的基本 法则、 广义根轨迹以及根轨迹系统性能分析等。
4. 1 根轨迹的基本概念
从第三章分析可知,一个系统可以通过找出其闭环极点 来分析系统的稳定性情况,而系统的稳态性能和动态性能又 与闭环零、极点在 s 平面上的位置密切相关。但对于高阶系 统,采用解析法求取系统的闭环特征方程根(闭环极点)通常 很困难,特别是在系统参数(如开环增益)发生变化时求根, 每变化一次都需要重新计算一次,因此解析法就显得很不 方便。
第四章 根轨迹法
平面内满足幅角条件的所有s 在s 平面内满足幅角条件的所有 1 点,将这些点连成光 滑曲线,即是闭环系统根轨迹。反过来,如果 滑曲线,即是闭环系统根轨迹。反过来,如果s1是根轨 迹上的点,则与这一点对应的 按幅值条件确定。 迹上的点,则与这一点对应的Kg按幅值条件确定。
∏ s−z
i =1 n j =1
∏ s−z
根轨迹的幅值方程: 根轨迹的幅值方程:
i =1 n j =1
m
i
∏ s− p
1 = Kg
j
∏ ( s − zi )
根轨迹的幅角方程: 根轨迹的幅角方程:
m i =1
m
m
∏ (s − p j )
j =1
i =1 n
=∓
1 Kg
“-” 号 , 对 应 负 反 馈 “+”号对应正反馈 号对应正反馈
(2) 0 < Kg< 1 :s1 ,s2 均是 负实数。 负实数。 Kg↑ →s1↓ ,s2 ↑。 s1从坐标原点开始沿负实轴 向左移动; 向左移动; s2从(−2,j0) , ) 点开始沿负实轴向右移动。 点开始沿负实轴向右移动。 (3) Kg= 1: s1 = s2 = −1,重根。 : ,重根。 (4) Kg >1: s1, 2 = −1 ± j K g − 1 :
一定要写 成零极点 表达式
式中, 为系统的开环比例系数 为系统的开环比例系数。 式中,K为系统的开环比例系数。 Kg = 2K 称为系统的开 根轨迹增益。 环根轨迹增益。 Kg 系统的闭环传递函数为: 系统的闭环传递函数为: Φ( s ) = 2 s + 2s + K g
系统的闭环特征方程为: s2 + 2s + Kg = 0 系统的闭环特征方程为 可求得闭环特征根为: 可求得闭环特征根为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Tuesday, December 16, 2014
总结:
开环零点对根轨迹的影响
1、改变了根轨迹在实轴上的分布; 2、改变了渐近线的条数、倾角和分离点; 3、若增加的开环零点和某个极点重合或距离很 近,构成开环偶极子,则两者相互抵消,因 此,可加入一个零点来抵消有损于系统性能 的极点; 4、根轨迹曲线将向左移,有利于改善系统的动 态性能。
2
离虚轴最近的闭环极点对系统动态过程的性能影响最大,起着决定性 的主导作用,故称它为主导极点。通常,若主导极点离虚轴的距离比 其他极点离虚轴距离的五分之一还小,而且附近又没有闭环零点存在, 则其他极点便可忽略;
4
Tuesday, December 16, 2014
闭环零点的存在,可以削弱或抵消其附近的闭环极点的作用。当某零 点Zi与其极点Sj靠得很近时,它们便称为偶极子。它们靠得越近,则Zi 对Sj得抵消作用就越强。这时由Sj所对应得暂态分量很小,可以忽略; 单位反馈系统的开环零点和闭环零点是相同的,在设计时可以有 意识的在系统中加入适当的零点,以抵消对动态过程影响较大的不利 极点,使系统的动态性能获得改善。
作出根轨迹图:
Tuesday, December 16, 2014
7
Tuesday, December 16, 2014
8
根轨迹与虚轴的交点为 s1, 2 j 2 ,对应的kc=6。 • 当K=3时,系统处于临界稳定状态(等幅振荡); • 当K>3时,有两条根轨迹进入S右半平面,系统不稳定; • 当K<3时,三个闭环极点全在S平面左半部,系统稳定。
Tuesday, December 16, 2014 9
cos60 0.5 n (0.33) 2 (0.58) 2 0.667
超调量:
系统在单位阶跃信号作 用下的性能指标为:
%=e
1 2
e
0.5
1 0.5 2
16.3%
调整时间: 4 4 ts 12( s ) n 0.5 0.667
Tuesday, December 16, 2014 16
开环极点对根轨迹的影响
1、改变了根轨迹在实轴上的分布; 2、改变了根轨迹的分支数; 3、改变了渐近线的条数、倾角和分离点; 4、根轨迹曲线将向右移,不利于改善系统的动 态性能。
Tuesday, December 16, 2014
17
开环不稳定系统和条件稳定系统
Tuesday, December 16, 2014
23
解: 该系统的特征方程式为: s(s 1)(Ts 1) k 0 等效变换得:
s 2 (Ts 1) s(Ts 1) k
写成标准形式为:
s 2 (Ts 1) 1 s(Ts 1) k
11
Tuesday, December 16, 2014
通过改造根轨迹改善系统的品质
系统根轨迹的形状、位置决定于系统的开环传递函数的 零、极点。因此,可通过增加开环的零、极点来改造根轨迹, 从而改善系统的品质。
Tuesday, December 16, 2014
12
例:已知某系统开环传递函数为 k G( s) H ( s) s( s 1) 若给此系统增设一个开环极点(p=-2),或增设一 个开环零点(z=-2)。试分别讨论对系统根轨迹和 系统动态性能的影响。 k 解:附加极点后: G ( s) H ( s) s( s 1)(s 2) 附加零点后: G( s) H ( s) k ( s 2)
Tuesday, December 16, 2014 22
参数根轨迹和一般根轨迹一样,只能确定控制 系统闭环极点的分布。
例:已知某系统开环传递函数为 k G( s) H ( s) s(s 1)(Ts 1)
其中参数 k、T已确定,而参数 (时间常数)为待定。 试绘制以待定参数 为可变参数的参数根轨 迹。
注意:
后两步可能不存在;
在判断大致形状时,需知道根轨迹的支数、连续性和对称性。
Tuesday, December 16, 2014
3
闭环零、极点的分布与系统的阶跃响应的关系
要求系统稳定,则系统的全部闭环极点均应为于S平面左半部; 要求系统快速性好,则闭环极点均应远离虚轴,以便阶跃响应中的每 个分量都衰减的快; 由二阶系统的分析可知,共轭复数极点位于 45°线上时,其对应的 阻尼比 2 cos45 0.707 为最佳阻尼比,这是系统的平稳性与快速性都比较理想。超过45°线, 则阻尼比减小,振荡加剧;
按照以前讲过的规则,绘制出根轨迹图
Tuesday, December 16, 2014
24
从根轨迹图可知:
若使系统稳定,待定参 数 的取值范围是
T 0 kT 1
注意:根轨迹中将有一 个分支起始于无限极点
p3
Tuesday, December 16, 2014
25
取=0.02
Tuesday, December 16, 2014
10
分析
当0≤K≤0.192(根轨迹的分离点对应的K值)时,闭环极点 均为负实数,系统阶跃响应为非周期过程,且由于最靠近虚 轴的实数闭环极点离开虚轴向左移动,所以系统的调整时间 ts逐渐减小。 当0.192<K <3时,闭环极点有一对实部为负的共轭复数。 阶跃响应为衰减振荡过程。由于根轨迹移向虚轴,响应衰减 渐慢。 K=3时,闭环极点有一对在虚轴上,阶跃响应为等幅振荡过 程。 K>3时,两条根轨迹进入S平面右半部分,系统不稳定,阶 跃响应为发散振荡。
以上结论为我们利用根轨迹分析或设计系统提供了 主要的依据。
Tuesday, December 16, 2014
5
利用主导极点估算系统的性能指标
由于主导极点在动态过程中起主要作用,因此, 计算性能指标时,在一定的条件下,就可以只考虑主 导极点所对应的暂态分量,忽略其余的暂态分量。将 高阶系统近似看作一阶或二阶系统,直接应用第三章 中计算性能指标的公式和曲线。
系统开环传递函数的极点有一个或一个 以上在S右半平面,系统开环是不稳定的。此 类系统闭环后是否稳定,这要看闭环特征根 的分布情况,根轨迹法可以解决这一问题。
Tuesday, December 16, 2014
18
例:已知某系统开环传递函数为
k ( s 1) G( s) H ( s) s( s 1)(s 2 4s 16)
第四节 控制系统根轨迹分析
Tuesday, December 16, 2014
1
前面学习了根轨迹的基本概念和绘制基本准则(性质), 这里将手工绘制控制系统根轨迹的步骤罗列如下: 标注开环极点“ “ ”; ”和零点○ 确定实轴上的根迹区间; 画出n-m条渐进线。其与实轴的交点和倾角分别为:
(2k 1) ; , k 0,1,2,3... nm nm 计算极点处的出射角和零点处入射角: 出射角 (2k 1) (从其他极点到该极点的 矢量幅角 )
Tuesday, December 16, 2014
20
参数根轨迹
定义:前面所讲到的绘制根轨迹一般以开环 增益K作为参变量。其实,绘制根轨迹时,可 变参数可以是控制系统开环传递函数的任意 参数(如某一待定系数或校正元件的时间常 数等)。为了与以开环增益K作为可变参数的 根轨迹相区别,我们称非开环增益系数为可 变参数绘制的根轨迹为参数根轨迹。
绘制系统的根轨迹,并讨论系统的稳定性。 解: 开环有四个极点:
p1 0,p2 1,p3,4 2 j 2 3
P2位于S平面右半部,所以属于开环不稳定系统。
按照绘制根轨迹图的一般规则,绘制出该系统的根轨迹:
Tuesday, December 16, 2014 19
从根轨迹图可知:
起始于开环极点P1(=0)、 P2(=1)的两条根轨迹分支 的大部分轨迹位于S平面的右 半部,只有当23.3<k<35.7时, 其根轨迹才在左S平面内。因 此该系统稳定工作的条件是 23.3<k<35.7,而当k<23.3或 k>35.7时,系统都是不稳定的。 具有这种性质的系统称为条件 稳定系统。
j i
p z
Tuesday, December 16, 2014
(从各个零点到该极点的 矢量幅角 ) 入射角 (2k 1) (从各个极点到该零点的 (从其他零点到该零点的 矢量幅角 )
矢量幅角 )
2
计算根轨迹和虚轴的交点)D(s)- N(s)D' (s) 0求解
Tuesday, December 16, 2014
21
绘制参数根轨迹的规则与绘制一般根轨迹的规则完 全相同。只是在绘制参数根轨迹之前,需将控制系 统的特征方程进行等效变换,写成符合于以非开环 增义系数的待定参数k′为可变参数时的标准形式, 即: M (s) 1 k N (s) 其中M ( s ), N ( s )都是复变量s的多项式; k 是可变参数,而且它们必须满足方程: N ( s )+k M ( s )=1+G ( s ) H ( s )=0
Tuesday, December 16, 2014
6
例:已知某系统开环传递函数为
K G( s) H ( s) s( s 1)(0.5s 1)
其中H(s)=1,试用根轨迹分析系统的稳定性,并计算 K=0.525时的暂态性能指标。 解: K k
G( s) H ( s) s( s 1)(0.5s 1) s( s 1)(s 2)
s( s 1)
依据根轨迹的绘制规则,绘出根轨迹
Tuesday, December 16, 2014