控制系统根轨迹的绘制

合集下载

根轨迹绘制习题及答案

根轨迹绘制习题及答案

根轨迹绘制习题及答案根轨迹绘制习题及答案根轨迹是控制系统理论中的重要概念,它可以帮助我们分析和评估系统的稳定性和动态响应。

在学习根轨迹绘制的过程中,练习习题是必不可少的。

本文将为大家提供一些根轨迹绘制的习题及答案,希望对大家的学习有所帮助。

1. 习题一:考虑一个开环传递函数为G(s) = K/(s^2 + 2s + 1)的系统,请绘制其根轨迹,并分析系统的稳定性。

解答一:首先,我们需要确定系统的极点和零点。

对于给定的传递函数G(s),我们可以将其分解为G(s) = K/(s+1)^2的形式,其中极点为-1,零点为无穷远处。

接下来,我们可以根据根轨迹的特性来绘制图形。

根轨迹是极点随着增加K的值而移动的轨迹。

当K趋近于无穷大时,根轨迹会趋近于极点的位置。

根据根轨迹的性质,我们可以得出以下结论:- 当K为正实数时,根轨迹从零点开始,逐渐向极点移动。

- 当K为负实数时,根轨迹从极点开始,逐渐向零点移动。

- 当K为纯虚数时,根轨迹会绕过零点和极点,形成一个闭合的曲线。

因此,在本例中,当K为正实数时,根轨迹从零点开始,逐渐向极点-1移动。

系统的稳定性取决于根轨迹是否穿过虚轴。

根据根轨迹的绘制,我们可以发现根轨迹没有穿过虚轴,因此系统是稳定的。

2. 习题二:考虑一个开环传递函数为G(s) = K/(s^2 + 3s + 2)的系统,请绘制其根轨迹,并分析系统的稳定性。

解答二:首先,我们需要确定系统的极点和零点。

对于给定的传递函数G(s),我们可以将其分解为G(s) = K/(s+1)(s+2)的形式,其中极点为-1和-2,零点为无穷远处。

接下来,我们可以根据根轨迹的特性来绘制图形。

根轨迹是极点随着增加K的值而移动的轨迹。

当K趋近于无穷大时,根轨迹会趋近于极点的位置。

根据根轨迹的性质,我们可以得出以下结论:- 当K为正实数时,根轨迹从零点开始,逐渐向极点移动。

- 当K为负实数时,根轨迹从极点开始,逐渐向零点移动。

控制系统的根轨迹分析

控制系统的根轨迹分析

实验四 控制系统的根轨迹分析一. 实验目的:1. 学习利用MATLAB 语言绘制控制系统根轨迹的方法。

2. 学习利用根轨迹分析系统的稳定性及动态特性。

二. 实验内容:1. 应用MATLAB 语句画出控制系统的根轨迹。

2. 求出系统稳定时,增益K 的范围。

3. 实验前利用图解法画出系统的根轨迹,算出系统稳定的增益范围,与实测值相比较。

4. 应用SIMULINK 仿真工具,建立闭环系统的实验方块图进行仿真。

观察不同增益下系统的阶跃响应,观察闭环极点全部为实数时响应曲线的形状;有共轭复数时响应曲线的形状。

(实验方法参考实验二)5. 分析系统开环零点和极点对系统稳定性的影响。

三. 实验原理:根轨迹分析法是由系统的开环传递函数的零极点分布情况画出系统闭环根轨迹,从而确定增益K 的稳定范围等参数。

假定某闭环系统的开环传递函数为)164)(1()1()()(2++-+=s s s s s K s H s G 利用MATLAB 的下列语句即可画出该系统的根轨迹。

b=[1 1]; %确定开环传递函数的分子系数向量a1=[l 0]; %确定开环传递函数的分母第一项的系数a2=[l -1]; %确定开环传递函数的分母第二项的系数a3=[l 4 16]; %确定开环传递函数的分母第三项的系数a=conv(al ,a2); %开环传递函数分母第一项和第二项乘积的系数 a=conv(a ,a3); %分母第一项、第二项和第三项乘积的系数 rlocus(b,a) %绘制根轨迹,如图(4-l )所示。

p=1.5i ; % p 为离根轨迹较近的虚轴上的一个点。

[k ,poles]=rlocfind(b ,a ,p) %求出根轨迹上离p 点很近的一个根及所对应的增益K 和其它三个根。

K=22.5031, poles= -1.5229+2.7454i -1.5229-2.7454i0.0229+1.5108i 0.0229-1.5108i再令p=1.5108i ,可得到下面结果:k=22.6464, poles=-1.5189+2.7382i -1.5189-2.7382i0.0189+1.5197i 0.0189-1.5197i再以此根的虚部为新的根,重复上述步骤,几步后可得到下面的结果: k=23.316, poles=-1.5000+2.7040i -1.5000-2.7040i0.0000+1.5616i 0.0000-1.5616i这就是根轨迹由右半平面穿过虚轴时的增益及四个根。

线性系统的根轨迹-自动控制原理实验报告

线性系统的根轨迹-自动控制原理实验报告

自动控制原理实验报告实验题目:线性系统的根轨迹班级:学号:姓名:指导老师:实验时间:一、实验目的1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。

2. 利用MATLAB 语句绘制系统的根轨迹。

3. 掌握用根轨迹分析系统性能的图解方法。

4. 掌握系统参数变化对特征根位置的影响。

二、实验内容同时得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围。

2.1绘制下面系统的根轨迹曲线)136)(22()(22++++=s s s s s Ks G程序:G=tf([1],[1 8 27 38 26 0]); rlocus (G); %绘制系统的根轨迹[k,r]=rlocfind(G) %确定临界稳定时的增益值k 和对应的极点r G_c=feedback(G,1); %形成单位负反馈闭环系统 step(G_c) %绘制闭环系统的阶跃响应曲线-12-10-8-6-4-20246-10-8-6-4-20246810Root LocusReal AxisI m a g i n a r y A x i s0204060801001201400.10.20.30.40.50.60.70.80.91Step ResponseTime (sec)A m p l i t u d e得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围:K>28.74252.2绘制下面系统的根轨迹曲线)10)(10012)(1()12()(2+++++=s s s s s K s G 程序:G=tf([1 12],[1 23 242 1220 1000]); rlocus (G); %绘制系统的根轨迹[k,r]=rlocfind(G) %确定临界稳定时的增益值k 和对应的极点r G_c=feedback(G,1); %形成单位负反馈闭环系统 step(G_c) %绘制闭环系统的阶跃响应曲线-60-50-40-30-20-100102030-50-40-30-20-1001020304050Root LocusReal AxisI m a g i n a r y A x i s01234560.0020.0040.0060.0080.010.012Step ResponseTime (sec)A m p l i t u d e得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围: K>1.1202e+032.3绘制下面系统的根轨迹曲线)11.0012.0)(10714.0()105.0()(2++++=s s s s s K s G 程序:G=tf([5 100],[0.08568 1.914 17.14 100 0]); rlocus (G); %绘制系统的根轨迹[k,r]=rlocfind(G) %确定临界稳定时的增益值k 和对应的极点r G_c=feedback(G,1); %形成单位负反馈闭环系统step(G_c) %绘制闭环系统的阶跃响应曲线-60-50-40-30-20-10010203040-60-40-200204060Root LocusReal AxisI m a g i n a r y A x i s012345670.10.20.30.40.50.60.70.80.91Step ResponseTime (sec)A m p l i t u d e得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围:K> 7.8321根据实验结果分析根轨迹的绘制规则:⑴绘制根轨迹的相角条件与系统开环根轨迹增益 值的大小无关。

第四章控制系统的根轨迹法

第四章控制系统的根轨迹法
9
应掌握的内容
180度,0度根轨迹的绘制 参数根轨迹的绘制 增加开环零、极点对根轨迹和系统性能的影响 分析系统的稳定性 分析系统的瞬态和稳态性能 对于二阶系统(及具有闭环主导共轭复数极点的高阶 系统),根据性能指标的要求在复平面上划出满足这一 要求的闭环极点(或高阶系统主导极点)应在的区域。
10
[例4-1]系统的开环传递函数为:Gk (s)
由根轨迹图可知,当0 k 0.858时,闭环系统有一对
不等的负实数极点,其瞬态响应呈过阻尼状态。当 0.858 k 29.14 时,闭环系统有一对共轭复数极点,其瞬 态响应呈欠阻尼状态。当29.14 k 时,闭环系统又有一 对不等的负实数极点,瞬态响应又呈过阻尼状态。
14
[例4-3]控制系统的结构图如下图所示。试绘制以a为参变 量时的根轨迹。
解得 k 5, 5 由图可知当k 5 时直线OB与圆相切,系统的阻 尼比 1 ,特征根为 5 j5 。
2
13
对于分离点 2.93 ,由幅值条件可知
2.93 5 2.93 k1 10 2.93 0.858
对于会合点17.07 ,有
45
17.07 5 17.0 k2 10 17.07 29.14
论过,利用根轨迹可清楚地看到开环根轨迹增益或其他参 数变化时,闭环系统极点位置及其瞬态性能的改变情况。
利用根轨迹确定系统的有关参数 对于二阶系统(及具有闭环主导共轭复数极点的高阶系 统),通常可根据性能指标的要求在复平面上划出满足 这一要求的闭环极点(或高阶系统主导极点)应在的区 域。如下页图所示,具有实部 和阻尼角 划成的左区域 满足的性能指标为:
17
例4-4(续2)
其分离回合点计算如下:
N(s) s2 3s, N ' (s) 2s 3

用直接求解闭环特征根绘制根轨迹的方法

用直接求解闭环特征根绘制根轨迹的方法

用直接求解闭环特征根绘制根轨迹的方法根轨迹是控制系统分析和设计中常用的一种图形工具,通过绘制系统的根轨迹可以直观地了解系统的稳定性和动态性能。

在控制系统的闭环传递函数中,根轨迹是由系统的特征根或极点的轨迹形成的。

那么,如何使用直接求解闭环特征根的方法来绘制根轨迹呢?我们需要了解控制系统的闭环传递函数。

控制系统的闭环传递函数是指系统输出与输入之间的关系,它包含了系统的控制器、传感器和执行器等组成部分。

闭环传递函数常用的表示形式是分子多项式与分母多项式的比值,即G(s) = N(s)/D(s),其中N(s)和D(s)分别是闭环传递函数的分子和分母多项式,s是复变量。

接下来,我们可以通过直接求解闭环传递函数的特征根来绘制根轨迹。

特征根是闭环传递函数的分母多项式的根,它决定了系统的稳定性和动态性能。

我们将闭环传递函数的分母多项式D(s)表示为(s+z1)(s+z2)...(s+zn)的形式,其中z1、z2、...、zn是特征根。

然后,我们可以通过将特征根代入根轨迹的极点条件来求解根轨迹的方程。

对于给定的特征根z,根轨迹的方程为|G(s)| = 1,其中G(s)是控制系统的开环传递函数。

根轨迹的方程可以进一步化简为|N(s)| = |D(s)|,即分子多项式N(s)与分母多项式D(s)的模相等。

通过求解根轨迹的方程,我们可以得到根轨迹的形状和位置。

根轨迹的形状取决于特征根的实部和虚部,而根轨迹的位置取决于特征根在复平面上的分布。

在绘制根轨迹时,我们可以通过改变特征根的值来观察系统的动态响应。

当特征根的实部或虚部发生变化时,根轨迹的形状和位置也会相应改变。

通过绘制根轨迹,我们可以判断系统的稳定性和动态性能。

如果根轨迹的所有点都位于左半平面,则系统是稳定的;如果根轨迹与虚轴相交,则系统是振荡的;如果根轨迹与实轴相交,则系统是不稳定的。

通过根轨迹还可以估计系统的动态性能。

根轨迹的形状越接近虚轴,系统的动态响应越快;根轨迹的形状越远离虚轴,系统的动态响应越慢。

自动控制原理第四章根轨迹法

自动控制原理第四章根轨迹法

第四章 根轨迹法
第一节 根轨迹与根轨迹方程 根轨迹 系统的某个参数(如开环增益K)由0到∞变化时, 闭环特征根在S平面上运动的轨迹。
例: GK(S)= K/[S(0.5S+1)] = 2K/[S(S+2)] GB(S)= 2K/(S2+2S+2K) 特征方程:S2+2S+2K = 0
-P1)(S-P2)…(S-Pn)
单击此处可添加副标题
当n>m时,只有m条根轨迹趋向于开环零点,还有(n-m)条? m,S→∞,有: (S-Z1)(S-Z2)…(S-Zm) -1 -1 ———————-— = —— = —— P1)(S-P2)…(S-Pn) K* AK 可写成:左边 = 1/Sn-m = 0 当K=∞时,右边 = 0 K=∞(终点)对应于S→∞(趋向无穷远). 即:有(n-m)条根轨迹终止于无穷远。
分解为:
03
例:GK(S)= K/[S(0.05S+1)(0.05S2+0.2S+1)] 试绘制根轨迹。 解: 化成标准形式: GK(S)= 400K/[S(S+20)(S2+4S+20)] = K*/[S(S+20)(S+2+j4)(S+2-j4)] K*=400K——根迹增益 P1=0,P2=-20,P3=-2+j4,P4=-2-j4 n=4,m=0
一点σa。
σa= Zi= Pi
ΣPi-ΣZi = (n-m)σa
σa= (ΣPi-ΣZi)/(n-m)
绘制根轨迹的基本法则
K*(S-Z1)(S-Z2)…(S-Zm)
—————————— = -1 (S-P1)(S-P2)…(S-Pn)

(自动控制)第四章:根轨迹法

(自动控制)第四章:根轨迹法

动态性能:从根轨迹图可以分析出系统的工作状态,
如过阻尼状态、欠阻尼状态……
根轨迹增益、闭环零极点与开环零极点的关系 l f
* G(s)= KG
∏( s-p ) i i=1
f i i 1 H q
q
∏( s-z ) i i=1
;
l
j=1 * H (s)= KH h
f l m
∏(s-zj )
C(s)
C ( s) 2k 2 R ( s ) S 2 S 2k
特征方程(闭环):
S2+2s+2k=0

k s(0.5s+1)
特征根:s1,2= -1±√1-2k k=0时, s1=0, s2=-2
K:0 ~ ∞
0<k<0.5 时,两个负实根 ;若s1=-0.25, s2=? k=0.5 时,s1=s2=-1 0.5<k<∞时,s1,2=-1±j√2k-1 j
注意:一组根对应同一个K;
K一变,一组根变; K一停,一组根停;
-2
-1
0
由以上分析,s1、s2两条根轨迹反映了系统特征根随参 数k变化的规律,组成了系统的根轨迹。 1.二阶系统有两个特征根,它的根轨迹有两条分支; 一个n阶系统的根轨迹则应有n条分支。 2.k=0时的闭环极点,s1=0、s2=-2正好是开环传递函 数的两个极点,因此说,系统开环极点就是它各条根轨 迹的起点。 3. k=∞时的闭环极点,是根轨迹的终点。 4.特征方程的重根点是根轨迹的分支离开负实轴进入复 数平面的分支点。
a.系统响应单调上升(ξ>1)系统具有两个不相等的负实根┈ 过阻尼响应。 b.系统响应衰减振荡(0<ξ<1)系统具有一对负实部的共 轭复根┈欠阻尼响应。

参数根轨迹的matlab绘制原理

参数根轨迹的matlab绘制原理

参数根轨迹的matlab绘制原理参数根轨迹是控制系统分析和设计中非常重要的概念,可以帮助我们分析控制系统的稳定性和动态响应特性。

在Matlab中,可以通过一些简单的指令实现参数根轨迹的绘制,从而更好地理解控制系统的行为。

本文将简要介绍参数根轨迹的概念和Matlab中绘制参数根轨迹的原理,以及具体的绘制方法。

一、什么是参数根轨迹?我们知道,在控制系统中,控制器的传递函数通常是由若干个参数构成的,例如比例控制器的传递函数为$K_p$,积分控制器的传递函数为$\frac{K_i}{s}$等。

参数根轨迹是指控制器参数变化时,系统极点和极点轨迹的变化关系。

在某些情况下,通过控制器参数的设计和调节,我们可以使得系统的极点轨迹穿过我们所期望的点(通常是一条直线),从而使系统的性能和稳定性得到改善。

参数根轨迹的绘制是一种基于控制理论的分析方法,它可以用来分析控制系统的动态响应特性,包括稳态误差、阻尼比、过渡过程时间等。

参数根轨迹的概念适用于各种类型的控制系统,包括比例控制、积分控制、微分控制、比例积分控制、比例微分控制等。

二、参数根轨迹的Matlab绘制原理Matlab提供了许多用于控制系统分析和设计的工具箱,包括控制系统工具箱、优化工具箱等。

在控制系统工具箱中,可以使用“rlocus”指令绘制参数根轨迹。

rlocus指令的使用形式为:```rlocus(num,den,k)```num和den是控制器的分子和分母系数向量,k是控制器参数的范围,通常选择在0到一个较大的数之间。

对于一个比例控制器,可以使用以下代码绘制参数根轨迹:```num=[1];den=[1 10];k=0:0.1:10;rlocus(num,den,k)```这个代码将绘制一个比例控制器$G(s)=k$的参数根轨迹,其中控制器的分母为$s+10$。

在绘制出来的图像中,可以看到参数$k$的变化对系统极点轨迹的影响。

通常我们会选择一个合适的$k$值,使得系统极点轨迹经过我们期望的稳定位置。

控制系统的根轨迹分析实验报告

控制系统的根轨迹分析实验报告

一、实验目的1. 熟悉控制系统根轨迹的基本概念和绘制方法。

2. 掌握利用MATLAB软件绘制和分析控制系统根轨迹的方法。

3. 通过根轨迹分析,了解系统参数变化对系统性能的影响。

4. 培养实验操作能力和数据处理能力。

二、实验原理根轨迹是指当系统的某一参数(如开环增益K)从0变化到无穷大时,闭环系统的特征根在s平面上的变化轨迹。

通过分析根轨迹,可以了解系统在参数变化时的稳定性、瞬态响应和稳态误差等性能。

三、实验设备1. 计算机2. MATLAB软件3. 控制系统实验箱四、实验内容1. 绘制控制系统根轨迹(1)首先,根据实验要求,搭建控制系统的数学模型。

(2)利用MATLAB中的rlocus函数绘制系统的根轨迹。

(3)观察根轨迹的变化规律,分析系统在不同参数下的稳定性。

2. 分析系统性能(1)根据根轨迹,确定系统的稳定裕度,包括增益裕度和相位裕度。

(2)分析系统在不同参数下的瞬态响应,如上升时间、调整时间、超调量等。

(3)分析系统在不同参数下的稳态误差,如稳态误差和稳态误差系数。

3. 改变系统参数,观察根轨迹变化(1)改变系统的参数,如增益、时间常数等。

(2)重新绘制根轨迹,观察根轨迹的变化规律。

(3)分析系统参数变化对系统性能的影响。

五、实验结果与分析1. 绘制控制系统根轨迹(1)根据实验要求,搭建控制系统的数学模型,得到开环传递函数。

(2)利用MATLAB中的rlocus函数绘制系统的根轨迹。

(3)观察根轨迹的变化规律,分析系统在不同参数下的稳定性。

2. 分析系统性能(1)根据根轨迹,确定系统的稳定裕度,包括增益裕度和相位裕度。

(2)分析系统在不同参数下的瞬态响应,如上升时间、调整时间、超调量等。

(3)分析系统在不同参数下的稳态误差,如稳态误差和稳态误差系数。

3. 改变系统参数,观察根轨迹变化(1)改变系统的参数,如增益、时间常数等。

(2)重新绘制根轨迹,观察根轨迹的变化规律。

(3)分析系统参数变化对系统性能的影响。

孙炳达版 《自动控制原理》第4章 控制系统的根轨迹分析法-5

孙炳达版 《自动控制原理》第4章 控制系统的根轨迹分析法-5

R(s)
s 1
k s 2 (s 2)
Y(s)
j
j
σ
-1/τ
σ
4.5 系统性能的根轨迹分析
系统开环传递函数:
Gk ( s) Kg s( s 2)(s 3)
Þ ¿ Î ª » ·Á ã µ ã
j¦ Ø 2 -3 -2 -1 0 ¦ Ò -2
增加零点-z
Gk ( s) K g (s z) s( s 2)(s 3)
4.5 系统性能的根轨迹分析
例 系统的结构图如下,
R(s)
K
s 2 2 s 5 ( s 2 )( s 0.5 )
Y(s)
要求: 1)用根轨迹法确定使系统稳定的K的取值范围; 2)用根轨迹法确定系统的阶跃响应不出现超调 量的K的最大值。
4.5 系统性能的根轨迹分析
解 由已知条件画出根轨迹如图, 其中根轨迹与虚轴的交点 分别为0和1.254j,对应的开环 增益K分别为0.2和0.75。 分离点为d=-0.409。 所以,系统稳定K的取值范围为:0.2<K<0.75 不出现超调量的K最大值出现在分离点处d=-0.409 处。将d代入 D( s ) ( s 2)(s 0.5)
由根轨迹图可测得该对主导极点为:
s1, 2 b jn n j 1 2 n 0.35 j 0.61
由根轨迹方程的幅值条件,可求得A、B两点:
Kg OA CA DA 2.3
根据闭环极点和的关系可求得另一闭环系统极 点s3=-4.3,它将不会使系统超调量增大,故取 Kg=2.3可满足要求。
4.5 系统性能的根轨迹分析
将零点z1<-10,系统根轨迹为 系统根轨迹仍有两条始 终位于S平面右半部, 系统仍无法稳定。

自动控制原理4.2 绘制根轨迹的基本法则

自动控制原理4.2 绘制根轨迹的基本法则

§4—2 绘制根轨迹的基本法则
绘制根轨迹的基本法则(续)
根轨迹在s平面上的分支数=闭环特征方程的阶 数。即:分支数=闭环极点数=开环极点数n(n≥m) 或=开环零点数m(m>n)。
二、根轨迹的起点和终点:
根轨迹起始于开环极点,终止于开环零点。 若n>m,则有(n-m)条终止于无穷远处。 若m>n,则有(m-n)条起始于无穷远处。
同理可得 :
zk
2k 1

n

z
k
i 1

pi
m


zk
j 1
zj
jk
共轭复数的开环零极点才需计算出射角和入射角,
实数开环零极点不用计算,一般为:0°, 180°,
±90°, ±60°与±120°, ±45°与±135°等.
§4—2 绘制根轨迹的基本法则
sd sd
1 2

0.473
3.527舍
j
-5
sd2
sd1
-1
0
§4—2 绘制根轨迹的基本法则
六、根轨迹与虚轴的交点:
根轨迹与虚轴相交,表示闭环极点中有一部分 位于虚轴上,即闭环特征方程有纯虚根±jω, 系统 处于临界稳定。
1、将s j,代入1 G( j)H( j) 0
3
2

Kg

0
Kg

6,
Kc 3
2、用劳斯判据:
§4—2 绘制根轨迹的基本法则
s3 1
2
s2 3
Kg
s1 6 K g
0
3
s0 K g
当 s1 行 等 于0时 , 可 能 出现共轭虚根,令

绘制根轨迹的基本原则

绘制根轨迹的基本原则

绘制根轨迹的基本原则绘制根轨迹是控制工程中常用的一种方法,它可以帮助我们分析系统的稳定性,相当于一个工程师的眼睛。

根轨迹是由根的轨迹组成的,而系统的根是指其特征方程的根。

特征方程是由系统的传递函数确定的,因此我们可以通过绘制特征方程的根轨迹来分析系统的动态性态。

绘制根轨迹的基本原则有以下几点。

1. 系统根轨迹的数量等于系统特征方程的根的数量。

这是因为每个根对应着系统中一个极点。

2. 根轨迹的起点和终点都在实轴上。

这是因为特征方程的根只有实数或成对的共轭复数根。

3. 根轨迹要从左侧的极点开始。

如果存在多个极点,则从最左侧的极点开始。

如果没有极点,则从传递函数的实轴交点开始。

4. 根轨迹要向右边的极点或者方向稳定,如果两个虚根前后交叉,则会出现不稳定性。

在解决此问题是,需要重新绘制,或者调整参数,使出现前后交叉的根跑到不相交的区域。

5. 当相邻两根的虚部相等时,其插值点在实轴上。

这个时候,由于两个根的插值点处于实轴上,因此根轨迹向这个点的方向发生了变化。

6. 根轨迹需要跨越系统的实轴部分。

无论极点的数量、位置以及根轨迹的线路,都必须穿过右半平面。

7. 根轨迹的末端,必须落到无限远点。

<1>{1}</1>因此,通过这几个基本原则,我们可以绘制出系统的根轨迹。

然而,在实际的工程中,我们会遇到许多不同的情况,例如系统传递函数变化、加入控制器等。

这时候,我们需要灵活应对,对基本原则进行微调,以便更好地分析系统的动态特性。

总结来说,根轨迹能够帮助工程师更好地了解控制系统的动态特性,这有助于他们进行有效的控制和优化。

在绘制根轨迹的过程中,需要严格遵循基本原则,同时对特殊情况进行灵活调整。

自动控制原理4 第四节控制系统根轨迹绘制

自动控制原理4 第四节控制系统根轨迹绘制

显然,s1 0.48,不在根轨迹上。分离点为:s2 3.52 。
19
4.4 控制系统根轨迹的绘制
20
4.4 控制系统根轨迹的绘制
比较正负反馈的根轨迹方程:
m
(s zi )
若开环传递函数为:
Gk (s) Kg
i 1 n
(s pj)
j 1
则正负反馈的根轨迹方程分别为:
m
(s zi )
5
4
141.9
3
2
j2.5
Imag Axis
1
0.9
0
-1
-2
j2.5
-3
-4
-5
-4
-3
-2
-1
0
1
2
Real Axis
8
4.4 控制系统根轨迹的绘制
[例4-7]设开环系统传递函数为:Gk
(s)
(s
kg (s 1) 0.1)(s 0.5)
试绘制根轨迹。
[解]:⑴开环零点 z1 1,开环极点 p1 0.1, p2 0.5, 根轨迹有两支。起点在极点处,终点一支在开环零点处。 一支在无穷远处。
1
j4
1 (1 2 3)
( tg 1 4 tg 14 90) 141 .9
3
根据对称性,可知-3-j4处的出射
角 2 为: 2 141 .9 ⑤与虚轴的交点:闭环特征方程为:
s4 8s3 37s2 50s kg 0 劳斯阵为:
2
3 2
3
1
0 j4
s4
1
s3
8
⑥会合点与分离点(重根点):分离角为 d
2
由N(s)D(s) N (s)D(s) 0 得:4s3 24s2 74s 50 0

自动控制理论第五章

自动控制理论第五章

kg K 2K s (0.5s 1) s ( s 2) s ( s 2)
k g 2K
开环有两个极点: p1= 0, p2=-2 开环没有零点。 闭环特征方程为: D(s) = s2 +2s + kg = 0 s 解得闭环特征根(亦即闭环极点) s1 1 1 k g ;2 1 1 k g 可见,当kg 变化,两个闭环极点也随之连续变化。 当kg 从0→∞变化时,直接描点作出两个闭环极点的变化轨迹
(1)当 kg = 0时,s1 = 0、s2 = -2,此时闭环极点 就是开环极点。 (2)当0<kg<1时,s1、s2均为负实数,且位于负 实轴的(-2,0) 一段上。 (3)当kg = 1时,s1 = s2 = -1,两个负实数闭环极 点重合在一起。 (4)当1<kg<∞时,s1,2 =-1± j k g 1 ,两个闭 环极点变为一对共轭复数极点。s1、s2的实部不随kg 变化,其位于过(-1,0)点且平行于虚袖的直线 上。 (5)当kg=∞时, s1 = -1+ j∞、s2 = -1-j∞, 此时s1、s2将趋于无限远处。
例:求上例中根轨迹上
s2 (0.5, j1)
点对应的kg 。
k 解 :g s2 p1 s2 p2 0.5 j 0 0.5 j 1 1.118 1.118 1.25 s2 p1 、 s2 p2 也可以用直尺测量向量的长度。
5.2 绘制根轨迹的基本规则
不符合相角条件, s1不在根轨迹上。
满足相角条件, s2在根轨迹上。
2. 用幅植条件确定kg的值 幅值条件:
n
kg
s p
j 1 m i 1
j
s zi

根轨迹的绘制法则

根轨迹的绘制法则

第4章 根 轨 迹 法根轨迹的基本概念所谓根轨迹是指控制系统开环传递函数的某一参数从零变化到无穷时,闭环特征根在s 平面上移动的轨迹。

一般取开环增益为可变参数,但也可以用系统中的其他参数,如某个环节的时间常数等。

根轨迹的绘制法则gnj jmi iK ps z s s D s N 1)()()()(11-=++=∏∏== 在绘制根轨迹时,通常首先求出g K =0和g K =∞时的特征根,再根据绘制法则画出0<g K <∞时的根轨迹草图;一. 根轨迹的起点(K g =0)上式说明,当g K = 0时,系统的开环极点就是闭环极点。

绘制根轨迹时,我们通常是从g K = 0时的闭环极点画起,即开环极点是闭环根轨迹曲线的起点。

起点数n 就是根轨迹曲线的条数。

二. 根轨迹的终点(K g =∞)当g K =∞时,闭环特征方程式为∏==+=mi i z s s N 1)()(这就是说,系统的开环零点就是g K =∞时的闭环极点,即根轨迹曲线的终点。

其个数为m ,另外的n -m 个根轨迹终点在无穷远。

三. 根轨迹的分支数和对称性根轨迹在s 平面上的分支数(条数)等于开环特征方程的阶数n ,即与开环极点个数相同。

此外,在一般控制系统的特征方程中,各项系数都是实数。

因此,特征根或是实数,或是共扼复数,则根轨迹一定是对称于实轴。

四. 实轴上的根轨迹当开环传递函数有实数极点、零点时,这意味着实轴上有根轨迹的起点和终点。

这时,必须确定实轴上哪一区间有根轨迹,哪一区间没有根轨迹。

五. 根轨迹的分离点和会和点在有根轨迹的实轴上,存在着两个开环极点时,必然有一个分离点a 。

同样,在有根轨迹的实轴上,存在两个开环零点(包括无穷远零点)时,必然有一个会合点b 。

当g K 为g K a (a 点的g K 值)或g K b (b 点的g K 值)时,特征方程都将出现重根。

这是两者的共性。

此外,分离点a 的g K 值,是其实轴根轨迹上的最大g K 值;会合点b 的g K 值,是其实轴根轨迹上的最小g K 值。

绘制零度根轨迹的8条法则

绘制零度根轨迹的8条法则

绘制零度根轨迹的8条法则绘制零度根轨迹的8条法则是控制系统理论中的重要概念,用于预测系统的根轨迹。

根轨迹是描述系统极点在复平面上运动的轨迹,对于开环稳定的连续时间系统,绘制根轨迹可以帮助设计者了解系统的稳定性、动态性能和调节器的参数调整等信息。

下面将详细介绍绘制零度根轨迹的八条法则。

1.根轨迹的起始点:零度根轨迹的起始点是系统零极点的交点,也就是系统传递函数的分子多项式与分母多项式的公共根。

起始点数目等于系统的零极点差异的绝对值。

如果起始点是虚数根,则起始点垂直于虚轴;如果起始点是实数根,则起始点沿着实轴移动。

2.根轨迹的末端点:根轨迹的末端点是极点的交点,也就是系统传递函数的分母多项式的根。

末端点数目等于系统的极点数目。

3.根轨迹的关于虚轴和实轴的对称性:零度根轨迹关于虚轴和实轴是对称的。

如果零度根轨迹中有一个点在复平面上,则它的共轭点也在轨迹上。

4.根轨迹的角度特征:根轨迹趋近虚轴的角度特征取决于系统的零和极点之间的差异。

如果零点在极点的左侧,则根轨迹的角度在趋近虚轴时是奇数个180度。

如果零点在极点的右侧,则根轨迹的角度在趋近虚轴时是偶数个180度。

5.根轨迹的交点:当根轨迹与实轴或虚轴相交时,可以通过零点数目和交点的位置来确定系统的稳定性。

如果实轴上的交点数目为奇数,则系统不稳定。

如果虚轴上的交点数目为奇数,则系统是无法稳定的。

6.根轨迹的穿越特征:根轨迹可以穿越实轴或虚轴。

如果根轨迹穿越实轴,则必须有一个零点或极点位于实轴上。

如果根轨迹穿越虚轴,则必须有一个零点或极点位于虚轴上。

7.根轨迹的极点规律:根轨迹的极点位置取决于系统的极点位置。

当系统的极点靠近时,根轨迹的极点会趋向于其中一个极点。

当系统的极点远离时,根轨迹的极点会趋向于无穷远。

8.根轨迹的环绕特征:当根轨迹环绕其中一极点的次数等于该极点的倍数时,被环绕的极点是系统的稳定极点。

根轨迹环绕的次数与稳定电路发生变号的次数相同。

控制系统的根轨迹法分析

控制系统的根轨迹法分析

可得
s2 20s 50 0
解得
s1,2 10 5 2
因此,分离点为-2.93,会合点为-17.07。
分离角和会合角分别 为 , 90 根轨迹为圆,如下图所示。
(2)当 2 时,阻尼角
2Hale Waihona Puke 45,表示 45角的直线为OB,其方程为

代入特征方程整理后得
(5 k) 10k j(2 2 5 k ) 0
解:(1)起点:有三个开环极点,所以起点为
p1 0, p2 2 j2 3, p3 2 j2 3
(2)终点:因没有有限零点,所以三条根轨迹都将趋于无穷远。
(3)实轴上的根轨迹:根轨迹存在的区间为(-∞,0]。
(4
(5
①渐近线的倾角:根据渐近线计算公式得
φα
180 (1 2μ) 2
60 ,60 ,180
例:单位反馈控制系统的开环传递函数为
K
G (s)
K
s(s 4)(s 6)
若要求闭环系统单位阶跃响应的最大超调量
σ%≤18%,试确定系统的开环增益。
解:绘出 K由零变化到∞时系统的根轨迹如图所示。当K=17时,根轨迹在实轴
上有分离点。当K≥240时,闭环极点是不稳定的。根据σ%≤18 %的要求,求得阻尼 角应为β≤60°,在根轨迹图上作β=60 °的射线,并以此直线和根轨迹的交点A , B作为满足性能指标要求的闭环系统主导极点,即闭环系统主导极点为
闭环系统的极点为
s 2 1
1, 2
n
n
图中阻尼角β与阻尼比ζ的关 系为
cos1
根据根轨迹我们可以确定系统工作在根轨迹上任一点时所对应的ζ,ωn 值,再根据暂态指标的计算公式
% 12 100%

自动控制原理根轨迹绘制的基本准则

自动控制原理根轨迹绘制的基本准则
G (s) = K (τ s + 1) s (Ts + 1) (τ > T > 0)
试确定根轨迹的分支数及起点、终点。 解:将开环传递函数改写成
) K (τ s + 1) τ G (s) = = 1 s (Ts + 1) s(s + ) T
Thursday, August 26, 2010
k (s +
1
其中
k=
τK T
6
开环传递函数分母多项式最高阶次n=2,所以根轨迹分支数为2。 开环极点有两个: P1 = 0 开环零点有一个:
1 P2 = T 1
Z1 =
1 。其中一条根轨迹终 根轨迹起始于开环极点,即起始于0和 T 1 ,另一条终止于无穷远处。 止于开环零点,即
τ
τ
j
×
Thursday, August 26, 2010
Thursday, August 26, 2010
8
③试探点左边的极点p2对试探点构成的向量的 相角为0°;
z1
p2
说明:左侧实数极点的存在不影响相角条件。
④试探点右边的极点p1对试探点构成的向量 的相角为180°;
× s s
2
× × p
p3
1
× p
4
1
s
3
z2
所以s1点满足根轨迹相角条件,于是[p2 , p1]为实轴上的根轨迹。 再看s2点:不满足根轨迹相角条件,所以不是根轨迹上的点。 同样s3点也不是根轨迹上的点。
(2k + 1)π θd = l
(k = 0,1,L , l 1)
Thursday, August 26, 2010
15

开环传递函数为g(s)h(s)=,的系统的根轨迹

开环传递函数为g(s)h(s)=,的系统的根轨迹

根轨迹是控制系统理论中的一个重要概念,它描述了系统的闭环极点随比例控制增益变化而移动的轨迹。

根轨迹分析可以帮助工程师们理解和设计控制系统,从而实现所需的控制效果。

在一个开环传递函数为g(s)h(s)=K的系统中,根轨迹的形状和特性可以通过分析开环传递函数的极点和零点来确定。

下面将对根轨迹的相关内容进行详细介绍。

一、开环传递函数的极点和零点在分析根轨迹之前,首先需要了解开环传递函数的极点和零点。

开环传递函数g(s)h(s)=K可以表示为:g(s)h(s)=K = (s-z1)(s-z2)...(s-zm)/(s-p1)(s-p2)...(s-pn)其中,zi表示开环传递函数的零点,pi表示开环传递函数的极点,m 和n分别表示零点和极点的个数。

二、根轨迹的基本特性1. 根轨迹的数量和对称性对于一个开环传递函数g(s)h(s)=K,根轨迹的数量等于系统的极点个数与零点个数之差,即:N = n - m其中,N表示根轨迹的数量。

如果N大于0,则说明存在一条由零点指向极点的根轨迹;如果N小于0,则说明存在一条由极点指向零点的根轨迹。

如果N等于0,则说明根轨迹位于无穷远点。

另外,根轨迹具有对称性,即极点和零点关于实轴的对称性。

如果存在共轭复根,则根轨迹还具有对称于实轴和虚轴的对称性。

2. 根轨迹的趋势和稳定性根轨迹的趋势和稳定性与开环传递函数的极点和零点位置有关。

一般来说,当增加比例控制增益K时,根轨迹会沿着一定的路径移动,最终趋向于无穷远点或者相交于实轴上的某一点。

这个过程中,系统的稳定性也会发生变化。

三、根轨迹的绘制方法根轨迹的绘制方法一般分为实部法和虚部法两种。

实部法是通过改变K的值,计算极点和零点对应的根轨迹的实部和虚部,然后绘制根轨迹图。

虚部法是通过改变K的值,计算极点和零点对应的根轨迹的角度和距离,然后绘制根轨迹图。

四、根轨迹的应用根轨迹分析是设计控制系统的重要工具之一。

通过根轨迹分析,工程师们可以了解系统的稳定性、动态响应和控制性能,从而优化控制系统的设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-1 Real Axis
0
1
2
7
[例4-7]设开环系统传递函数为:Gk ( s) 试绘制根轨迹。
k g ( s 1) ( s 0.1)(s 0.5)
[解]:⑴开环零点 z1 1 ,开环极点 p1 0.1, p2 0.5, 根轨迹有两支。起点在极点处,终点一支在开环零点处。 一支在无穷远处。
k g ( s 2)
p z 重心:
i
i
4 1
03 2 2 1 3
⑶实轴上根轨迹区间 (,3],[2,0]
⑷实轴上无分离点和会合点。
Thursday, October 11, 2018
9
⑸出射角: 1 j1点:1c 180 pi z j
5
30.75 s Thursday,kOctober g
11, 2018
⑥会合点与分离点(重根点):分离角为 d 2 3 2 4s 24s 74s 50 0 由 N ' (s) D(s) N (s) D' (s) 0 得:
由上式可求出分离点。但高阶方程求解困难,可采用 下述近似方法:
kg (s 4 8s3 37s 2 50s)
我们知道,分离点在负实轴[-2,0]区间上,所以当s在实 数范围内变化时, k g 最大时为分离点。
s
-0.2 8.58 -0.4 14.57 -0.6 18.28 -0.8 20.01 -1.0 20.0 -1.2 18.47 -1.4 15.59 -1.6 11.49 -1.8 6.28 -2.0
n 利用前几步得到的信息绘制根轨迹。
注意:
后两步可能不存在; 在判断大致形状时,需知道根轨迹的支数、连续性和对称性。
分离角 d

Thursday, October 11, 2018
3
一、 单回路负反馈系统的根轨迹 前面所讨论的根轨迹(180度根轨迹)是基于单回路负反 馈系统的。 kg Gk ( s) [例]开环传递函数为: ,画根 2 s( s 2)[(s 3) 16] 轨迹。 3 j 4。有四条根轨迹。 [解] :①标出四个开环极点:0,-2, ②实轴上根轨迹区间是:[-2,0];
( tg 1 tg 1 4 90 ) 141.9
1
2
j4
根据对称性,可知-3-j4处的出射 角 2 为: 2 141.9 ⑤与虚轴的交点:闭环特征方程为: s 4 8s3 37s 2 50s kg 0 劳斯阵为:
(从其他零点到该极点的 矢量幅角 ) 入射角 (从各个极点到该零点的 矢量幅角 ) (从其他零点到该零点的 矢量幅角 )
Thursday, October 11, 2018
2
计算根轨迹和虚轴的交点; 由N'(s)D(s)- N(s)D' (s) 0求解 计算会合点和分离点:
(,1],[0.5,1] ⑵实轴上根轨迹区间:
⑶分离点和会合点: 例4-4中已求得,分别为分离点=
-0.33,会合点=-1.67,分离角 d
⑷绘制根轨迹。
Thursday, October 11, 2018
2
1
0 .5
A 0.1
8

[例4-8]设系统开环传递函数为:Gk ( s) 2 s ( s 3 )( s 2s 2) 试绘制系统的根轨迹。 [解]:开环零,极点分别为: z1 2 , p1 0, p2 3, ⑴根轨迹有四支。 p3, 4 1 j (2k 1) 5 , , ⑵渐近线倾角 4 1 3 3
0 i 1 j 1
n 1
m
1800 (tg 1 0.5 900 1350) (450) 26.60
对 1 j1点, 2c 26.60 ⑹与虚轴的交点:
s 4 5s3 8s 2 (6 kg )s 2kg 0 闭环系统的特征方程为: 劳斯阵列: 1 8 2k g 劳斯阵有一行全为0,表示 4 s 有共轭虚根。令: 5 6 kg 0 3 50k g s 34 k g 6 kg 0, k g 7 2k g 0 2 s 34 k g 5
第四节 控制系统根轨迹的绘 制
Thursday, October 11, 2018
1
前面学习了根轨迹的基本概念和绘制基本准则(性质), 这里将手工绘制控制系统根轨迹的步骤罗列如下: 标注开环极点“ ”和零点○ “ ”; 确定实轴上的根迹区间; 画出n-m条渐进线。其与实轴的交点(称为重心)和倾角分 别为: p j zi (2k 1) ; , k 0,1,2,3... nm nm 计算极点处的出射角和零点处入射角: 出射角 (从其他极点到该极点的 矢量幅角 )
k gd
可见分离点在-0.8~-1.0之间,近似取-0.9。
Thursday, October 11, 2018 6
⑦绘制根轨迹,如下图所示。
5 4 3 2
141.9 j 2.5
1
Imag Axis 0 -1 -2
0.9
j 2.5
-3
-4 -5 -4
-3
-2
Thursday, October 11, 2018
s4 s3 s2 s1
0
4 3
3
ห้องสมุดไป่ตู้
2
0
1

3
j4
1 8 30.75 1537 .5 8k g
37 k g 50 0 kg 0 0 0 0 0
当劳斯阵某一行全为零时,有共 轭虚根。这时,k g 192.2 。 辅助方程为:30.75s 2 192.2 0 , 解得共轭虚根为:s1, 2 j 2.5 即为根轨迹与虚轴的交点。
(2k 1) 3 , ,与实轴的交点为: ③渐进线倾角: nm 4 4
p z
j
i
nm
026 2 4
4
Thursday, October 11, 2018
④-3+4j处的出射角 1 : 1 ( 1 2 3 )
相关文档
最新文档