二次函数方程与不等式N

合集下载

不等式的解法及二次函数二次不等式二次方程

不等式的解法及二次函数二次不等式二次方程

不等式的解法及二次函数二次不等式二次方程一.不等式的解 知识小结1、 一元二次不等式:只含有一个未知数。

并且未知数的最高次数是二次的不等式叫一元二次不等式。

要求学生举5个例子。

2、 闭区间:集合}{b x a x ≤≤叫做闭区间,记为[a,b ]。

注意:隐含条件a <b 。

3、 开区间:集合}{b x a x <<叫做开区间,记为(a,b )。

注意:隐含条件a <b 。

4、 半开半闭区间:集合}{b x a x <≤或}{b x a x ≤<叫做半开半闭区间,记为[a,b ]或(a,b )。

注意:隐含条件a <b 。

5、 区间的端点:在上述所有区间中,a,b 叫做端点。

6、 实数集R 及b x b x a x a x ≤<>≥,,,用区间表示:),(),,[),,(+∞+∞+∞-∞a a , ),(],,(b b -∞-∞,∞+读作正无穷大,∞-读作负无穷大。

它们是一个理想的数,不是一个具体的数,∞+比你想的大还要大,∞-比你想的小还要小。

7、)0(02>>++a c bx ax 、或)0(02><++a c bx ax 的解法:例1 例1(一元二次不等式与一元二次方程的关系)求不等式2x 2-3x-2>0的解集。

解: 因为不等式2x 2-3x-2>0相应的一元二次方程的根的判别式Δ>O ,方程2x 2-3x-2=0的两个根是2,2121=-=x x 所以不等式的解集为),2()21,(+∞--∞ 。

小结:解不等式步骤:10检验二次项系数是否为正;20判断一元二次方程的判别式是否>0,<0,=0;30解出一元二次方程的根;40写出一元二次不等式的解集(用集合或区间表示)。

8、)0(02<>++a c bx ax 、或)0(02<<++a c bx ax 的解法:前面,我们只考虑一元二次不等式的二次项系数a>0的情况,当a<O 时,可在不等式的两边同乘以一l ,使二次项系数为正,就可同样求解. 例2 求不等式-3x 2+x+1>0的解集. 解 将原不等式化为3x 2-x-1<0, 因为方程3x 2-x-1=0的两根是6131,613121+=-=x x , 所以原不等式的解集为⎪⎪⎭⎫ ⎝⎛+-6131,6131例3 写出一个一元二次不等式,使它的解集(-1,3)。

二次函数与方程、不等式

二次函数与方程、不等式
②当a<0时, 抛物线的顶点为(2,4),且过点(4,1), ∴抛物线的解析式为y=-34x2+3x+1.
综上所述,抛物线的解析式为y=
3 4
x2-3x+4或y=-
3 4
x2
+3x+1.
第13课时┃ 二次函数与方程、不等式
热考3 用二次函数的性质解决实际问题 例 3 某工厂设计了一款产品,成本为每件 20 元.投放市场 进行试销,经调查发现,该种产品每天的销售量 y(件)与销售单 价 x(元/件)之间满足 y=-2x+80(20≤x≤40),设销售这种产品 每天的利润为 W(元). (1)求销售这种产品每天的利润 W(元)与销售单价 x(元/件)之间 的函数解析式; (2)当销售单价定为多少时,每天的利润最大?最大利润是多少 元?
ax2+bx c(a≠0)的图象在x轴__下______
+c<0 方的点的横坐标所组成的集合
备注
不等式中如果带有等号,其解 集也相应带有等号
第13课时┃ 二次函数与方程、不等式
考点●4 二次函数的应用 解决二次函数的应用问题的关键在于建立二次函数模 型.在具体解题时,应认真审题,理解题意,再利用二次函 数的性质解决问题.应用最多的是根据二次函数的最值确定 最大利润.
抛物线与x轴的
交点个数
Δ=b2-4ac的符号
方程有实数根的个数
两个交点
Δ>0
两个不相等的实根
一个交点
Δ=0
两个相等的实根
没有交点
Δ<0
没有实根
(2)已知函数y=ax2+bx+c(a≠0)的函数值为k,求自变量x
的值,就是解方程ax2+bx+c=k;反过来,解方程ax2+bx+c
=k,就是令二次函数y=ax2+bx+c-k的函数值为0,求自变

二次函数二次不等式二次方程知识点

二次函数二次不等式二次方程知识点

二次函数、二次方程及二次不等式的关系 高考要求三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具高考试题中近一半的试题与这三个“二次”问题有关本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法 重难点归纳1 二次函数的基本性质 (1)二次函数的三种表示法y =ax 2+bx +c ;y =a (x -x 1)(x -x 2);y =a (x -x 0)2+n(2)当a >0,f (x )在区间[p ,q ]上的最大值M ,最小值m ,令x 0=21 (p +q )若-ab 2<p ,则f (p )=m ,f (q )=M ;若p ≤-a b 2<x 0,则f (-ab 2)=m ,f (q )=M ; k+s-5#u若x 0≤-ab 2<q ,则f (p )=M ,f (-ab 2)=m ;若-ab 2≥q ,则f (p )=M ,f (q )=m2 二次方程f (x )=ax 2+bx +c =0的实根分布及条件(1)方程f (x )=0的两根中一根比r 大,另一根比r 小⇔a ·f (r )<0;(2)二次方程f (x )=0的两根都大于r ⇔⎪⎪⎩⎪⎪⎨⎧>⋅>->-=∆0)(,2,042r f a r a b ac b(3)二次方程f (x )=0在区间(p ,q )内有两根⎪⎪⎪⎩⎪⎪⎪⎨⎧>⋅>⋅<-<>-=∆⇔;0)(,0)(,2,042p f a q f a q ab p ac bk+s-5#u(4)二次方程f (x )=0在区间(p ,q )内只有一根⇔f (p )·f (q )<0,或f (p )=0(检验)或f (q )=0(检验)检验另一根若在(p ,q )内成立(5)方程f (x )=0两根的一根大于p ,另一根小于q (p <q )⇔⎩⎨⎧>⋅<⋅0)(0)(q f a p f a 3 二次不等式转化策略k+s-5#u(1)二次不等式f (x )=ax 2+bx +c ≤0的解集是 (-∞,α])∪[β,+∞)⇔a <0且f (α)=f (β)=0;(2)当a >0时,f (α)<f (β)⇔ |α+ab 2|<|β+ab 2|,当a <0时,f (α)<f (β)⇔|α+ab 2|>|β+ab 2|;(3)当a >0时,二次不等式f (x )>0在[p ,q ]恒成立⎪⎩⎪⎨⎧><-⇔,0)(,2p f p a b 或⎪⎩⎪⎨⎧≥≥-⎪⎪⎩⎪⎪⎨⎧>-<-≤;0)(;2,0)2(,2q f p aba b f q ab p 或 k+s-5#u (4)f (x )>0恒成立⎩⎨⎧<==⎩⎨⎧<∆<⇔<⎩⎨⎧>==⎩⎨⎧<∆>⇔.00,0,00)(;0,0,0,0c b a a x f c b a a 或恒成立或典型题例示范讲解例1已知二次函数f (x )=ax 2+bx +c 和一次函数g (x )=-bx ,其中a 、b 、c 满足a >b >c ,a +b +c =0,(a ,b ,c ∈R )(1)求证两函数的图象交于不同的两点A 、B ;(2)求线段AB 在x 轴上的射影A 1B 1的长的取值范围k+s-5#u 命题意图 本题主要考查考生对函数中函数与方程思想的运用能力知识依托 解答本题的闪光点是熟练应用方程的知识来解决问题及数与形的完美结合错解分析 由于此题表面上重在“形”,因而本题难点就是一些考生可能走入误区,老是想在“形”上找解问题的突破口,而忽略了“数”技巧与方法 利用方程思想巧妙转化(1)证明由⎩⎨⎧-=++=bxy c bx ax y 2消去y 得ax 2+2bx +c =0Δ=4b 2-4ac =4(-a -c )2-4ac =4(a 2+ac +c 2)=4[(a +43)22+c c 2]∵a +b +c =0,a >b >c ,∴a >0,c <0∴43c 2>0,∴Δ>0,即两函数的图象交于不同的两点(2)解设方程ax 2+bx +c =0的两根为x 1和x 2,则x 1+x 2=-ab 2,x 1x 2=ack+s-5#u|A 1B 1|2=(x 1-x 2)2=(x 1+x 2)2-4x 1x 22222224444()4()b c b aca c aca aaa----=--==22134[()1]4[()]24c c c a a a =++=++∵a >b >c ,a +b +c =0,a >0,c <0 ∴a >-a -c >c ,解得ac ∈(-2,-21)∵]1)[(4)(2++=ac ac ac f 的对称轴方程是21-=ac k+s-5#uac ∈(-2,-21)时,为减函数∴|A 1B 1|2∈(3,12),故|A 1B 1|∈(32,3)例2已知关于x 的二次方程x 2+2mx +2m +1=0(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围(2)若方程两根均在区间(0,1)内,求m 的范围 命题意图 本题重点考查方程的根的分布问题k+s-5#u 知识依托 解答本题的闪光点是熟知方程的根对于二次函数性质所具有的意义错解分析用二次函数的性质对方程的根进行限制时,条件不严谨是解答本题的难点技巧与方法 设出二次方程对应的函数,可画出相应的示意图,然后用函数性质加以限制解 (1)条件说明抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧->-<∈-<⇒⎪⎪⎩⎪⎪⎨⎧>+=<+=>=-<+=65,21,21056)2(,024)1(,02)1(,012)0(m m R m m m fm f f m f∴2165-<<-m(2)据抛物线与x 轴交点落在区间(0,1)内,列不等式组⎪⎪⎩⎪⎪⎨⎧<-<≥∆>>10,0,0)1(,0)0(m f f⎪⎪⎪⎩⎪⎪⎪⎨⎧<<--≤+≥->->⇒.01,2121,21,21m m m m m 或(这里0<-m <1是因为对称轴x =-m 应在区间(0,1)内通过) 例3已知对于x 的所有实数值,二次函数f (x )=x 2-4ax +2a +12(a ∈R )的值都是非负的,求关于x 的方程2+a x =|a -1|+2的根的取值范围解由条件知Δ≤0,即(-4a )2-4(2a +12)≤0,∴-23≤a ≤2(1)当-23≤a <1时,原方程化为x =-a 2+a +6,∵-a 2+a +6=-(a -21)2+425∴a =-23时,x mi n =49,a =21时,x max =425∴49≤x ≤425(2)当1≤a ≤2时,x =a 2+3a +2=(a +23)2-41∴当a =1时,x mi n =6,当a =2时,x max =12,∴6≤x ≤12 综上所述,49≤x ≤12学生巩固练习1 若不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则a 的取值范围是( )A(-∞,2]B [-2,2] C(-2,2] D(-∞,-2)2 设二次函数f (x )=x 2-x +a (a >0),若f (m )<0,则f (m -1)的值为( )A 正数B 负数C 非负数D 正数、负数和零都有可能3 已知二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,若在区间[-1,1]内至少存在一个实数c ,使f (c )>0,则实数p 的取值范围是_________4 二次函数f (x )的二次项系数为正,且对任意实数x 恒有f (2+x )=f (2-x ),若f (1-2x 2)<f (1+2x -x 2),则x 的取值范围是_________5 已知实数t 满足关系式33loglog ayat aa= (a >0且a ≠1)(1)令t=a x ,求y =f (x )的表达式;(2)若x ∈(0,2]时,y 有最小值8,求a 和x 的值6 如果二次函数y =mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点的右侧,试求m 的取值范围7 二次函数f (x )=px 2+qx +r 中实数p 、q 、r 满足mr m q m p ++++12=0,其中m >0,求证(1)pf (1+m m )<0;(2)方程f (x )=0在(0,1)内恒有解8 一个小服装厂生产某种风衣,月销售量x (件)与售价P (元/件)之间的关系为P =160-2x ,生产x 件的成本R =500+30x 元(1)该厂的月产量多大时,月获得的利润不少于1300元? (2)当月产量为多少时,可获得最大利润?最大利润是多少元? 参考答案1 解析 当a -2=0即a =2时,不等式为-4<0,恒成立∴a =2,当a -2≠0时,则a 满足⎩⎨⎧<∆<-002a ,解得-2<a <2,所以a 的范围是-2<a≤2答案 C2解析∵f (x )=x 2-x +a 的对称轴为x =21,且f (1)>0,则f (0)>0,而f (m )<0,∴m ∈(0,1), ∴m -1<0,∴f (m -1)>0答案A3 解析 只需f (1)=-2p 2-3p +9>0或f (-1)=-2p 2+p +1>0即-3<p <23或-21<p <1∴p ∈(-3, 23)答案 (-3,23)4 解析 由f (2+x )=f (2-x )知x =2为对称轴,由于距对称轴较近的点的纵坐标较小,∴|1-2x 2-2|<|1+2x -x 2-2|,∴-2<x <0 答案-2<x <0 5 解 (1)由log a33logayat t=得log a t -3=log t y -3log t a由t =a x 知x =log a t ,代入上式得x -3=xxy a 3log -,∴log a y =x 2-3x +3,即y =a 332+-x x (x ≠0)(2)令u =x 2-3x +3=(x -23)2+43 (x ≠0),则y =a u①若0<a <1,要使y =a u 有最小值8,则u =(x -23)2+43在(0,2]上应有最大值,但u 在(0,2]上不存在最大值②若a >1,要使y =a u 有最小值8,则u =(x -23)2+43,x ∈(0,2]应有最小值∴当x =23时,u mi n =43,y mi n =43a由43a =8得a =16∴所求a =16,x =236 解 ∵f (0)=1>0(1)当m <0时,二次函数图象与x 轴有两个交点且分别在y 轴两侧,符合题意(2)当m >0时,则⎪⎩⎪⎨⎧>-≥∆030mm解得0<m ≤1综上所述,m 的取值范围是{m |m ≤1且m ≠0} 7 证明 (1)])1()1([)1(2r m m q m m p p m m pf ++++=+])2()1()1()2([]2)1([]1)1([22222+++-+=+-+=++++=m m m m m m p m pm pm pm mr m qm pm pm)2()1(122++-=m m pm,由于f (x )是二次函数,故p ≠0,又m >0,所以,pf (1+m m )<0(2)由题意,得f (0)=r ,f (1)=p +q +r ①当p <0时,由(1)知f (1+m m )<0若r >0,则f (0)>0,又f (1+m m )<0,所以f (x )=0在(0,1+m m )内有解;若r ≤0,则f (1)=p +q +r =p +(m +1)=(-mr m p -+2)+r =mr m p -+2>0,又f (1+m m )<0,所以f (x )=0在(1+m m ,1)内有解②当p <0时同理可证8 解 (1)设该厂的月获利为y ,依题意得 y =(160-2x )x -(500+30x )=-2x 2+130x -500 由y ≥1300知-2x 2+130x -500≥1300∴x 2-65x +900≤0,∴(x -20)(x -45)≤0,解得20≤x ≤45∴当月产量在20~45件之间时,月获利不少于1300元65)2+16125 (2)由(1)知y=-2x2+130x-500=-2(x-2∵x为正整数,∴x=32或33时,y取得最大值为1612元,∴当月产量为32件或33件时,可获得最大利润1612元。

二次函数与方程不等式的关系ppt课件

二次函数与方程不等式的关系ppt课件
△=0 x1=x2=1
x2-2x+2=0
△<0 无实数根
y=x2-2x+1 y=x2-2x+2
1个
(1,0) 0个
与x轴交点 个数 交点坐标
2个
(0,0) (-2,0)

归 纳 总 结
1、函数y=ax2+bx+c(a≠0)的图象与x轴的交点个数 与方程ax2+bx+c=0(a≠0)解的个数一致。 △>0 △=0 △<0 有两个交点 有一个交点 没有交点
-1 0
3
x
归 纳 总 结
不等式ax2+bx+c>0 的解集就是函数 y=ax2+bx+c的图象在x轴上方的部分 所对应的x的取值范围; 不等式ax2+bx+c<0 的解集就是函数 y=ax2+bx+c的图象在x轴下方的部分 所对应的x的取值范围;
拓 展 延 伸
如图: 二次函数y1=ax2+bx+c 与一次函数y2=kx+b的图象相 交于点A (-1,3) 和 B (5,2),
不等式ax2+bx+c<0 的解集就是函数y=ax2+bx+c的图 象在x轴下方的部分所对应的x的取值范围; 4. 数学方法:类比、转化;数学思想:数形结 合的思想.


活页练习18.19.20.21.
谢谢合作
2、你能做出它的大致图象吗?
Байду номын сангаас
问 题 探 究 一
议一议
y
你能说出方程x2-2x-3=0 的根吗? 你能猜出函数y=x2-2x-3 的图像与x轴的交点个数 及交点的坐标吗?你是怎 样思考的?

二次函数与方程不等式的关系

二次函数与方程不等式的关系

二次函数与方程不等式的关系一、知识点梳理1、二次函数表达式的几种常见方法(1)三点式(或一般式):)0,,(2≠++=a c b a c bx ax y 为常数且,表达式的右边是二次三项式的一般形式,当已知抛物线上不共线的三点坐标时,通常把三点坐标代入表达式,然后列出关于c b a ,,的三元一次方程组求解.(2)顶点式:k h x a y +-=2)()0,,(≠a k h a 为常数且由抛物线的表达式右边可知,抛物线的顶点坐标为),(k h ,当已知抛物线的顶点和抛物线上另一点时,通常设函数表达式为顶点式,然后代入另一个点的坐标,解关于a 的一次方程来求。

当已知两点的坐标和对称轴时,亦可将其代入k h x a y +-=2)(中求解.2、二次函数 c bx ax y ++=2与一元二次方程02=++c bx ax 的关系抛物线:c bx ax y ++=2与x 轴交点的横坐标,恰为一元二次方程02=++c bx ax 的实根. 因为x 轴上的点的纵坐标都为0,所以求抛物线c bx ax y ++=2与x 轴交点的横坐标,可利用函数表达式c bx ax y ++=2来求,只需令0=y ,得一元二次方程02=++c bx ax ,方程的解即为交点的横坐标.抛物线c bx ax y ++=2与x 轴的交点有三种情况:(1)当042>ac b -时,方程02=++c bx ax 有两个不相等的实数根21,x x ,拋物线c bx ax y ++=2与x 轴有两个交点)0,(),0,(21x x ;(2)当042=-ac b 时,方程02=++c bx ax 有两个相等的实数根2a -21b x x ==, 抛物线c bx ax y ++=2与x 轴有一个交点,恰好就是抛物线的顶点)0,2(ab -; (3)当042<ac b -时,方程02=++c bx ax 没有实数根,抛物线与x 轴没有交点.3、二次函数的图像与一次函数图像的交点一次函数()0≠+=k n kx y 的图像L 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组⎩⎨⎧++=+=cbx ax y ,n kx y 2的解的个数来确定: (1)方程组有两组不同的解-----L 与G 有两个交点;(2)方程组只有一组解-----L 与G 只有一个交点;(3)方程组无解-----L 与G 没有交点。

九年级上册 专题03 二次函数与方程、不等式(知识点串讲)(教师版含解析)

九年级上册 专题03 二次函数与方程、不等式(知识点串讲)(教师版含解析)

专题03 二次函数与方程、不等式知识网络重难突破知识点一二次函数与一元二次方程二次函数y=ax2+bx+c(a,b,c是常数,a≠0)1.抛物线与x轴的交点的横坐标是一元二次方程ax2+bx+c=0的解.2.若已知二次函数y=ax2+bx+c的函数值为s,求自变量x的值,就是解一元二次方程ax2+bx+c=s.【典例1】(2019•镇海区一模)若二次函数y=ax2﹣2ax+c(a≠0)的图象经过点(﹣1,0),则方程ax2﹣2ax+c =0的解为()A.x1=﹣3,x2=﹣1 B.x1=﹣1,x2=3C.x1=1,x2=3 D.x1=﹣3,x2=1【点拨】先确定抛物线的对称轴为直线x=1,再根据抛物线的对称性得到抛物线与x轴的另一个交点坐标为(3,0),从而根据抛物线与x轴的交点问题得到方程ax2﹣2ax+c=0的解.【解析】解:抛物线的对称轴为直线x=﹣=1,而抛物线与x轴的一个交点坐标为(﹣1,0),所以抛物线与x轴的另一个交点坐标为(3,0),所以方程ax2﹣2ax+c=0的解为x1=﹣1,x2=3.故选:B.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.【变式训练】1.(2018秋•江汉区期中)如表中列出了二次函数y=ax2+bx+c(a≠0)的一些对应值,则一元二次方程ax2+bx+c=0(a≠0)的一个近似解x1的范围是()x…﹣3 ﹣2 ﹣1 0 1 …y…﹣11 ﹣5 ﹣1 1 1 …A.﹣3<x1<﹣2 B.﹣2<x1<﹣1 C.﹣1<x1<0 D.0<x1<1【点拨】根据函数的增减性:函数在[﹣1,0]上y随x的增大而增大,可得答案.【解析】解:当x=﹣1时,y=﹣1,x=1时,y=1,函数在[﹣1,0]上y随x的增大而增大,得一元二次方程ax2+bx+c=0(a≠0)的一个近似解在﹣1<x1<0,故选:C.【点睛】本题考查了图象求一元二次方程的近似根,两个函数值的积小于零时,方程的解在这两个函数值对应的自变量的中间.2.(2019•德城区一模)关于x的方程(x﹣3)(x﹣5)=m(m>0)有两个实数根α,β(α<β),则下列选项正确的是()A.3<α<β<5 B.3<α<5<βC.α<2<β<5 D.α<3且β>5【点拨】根据平移可知:将抛物线y=(x﹣3)(x﹣5)往下平移m个单位可得出抛物线y=(x﹣3)(x﹣5)﹣m,依此画出函数图象,观察图形即可得出结论.【解析】解:将抛物线y=(x﹣3)(x﹣5)往下平移m个单位可得出抛物线y=(x﹣3)(x﹣5)﹣m,画出函数图象,如图所示.∵抛物线y=(x﹣3)(x﹣5)与x轴的交点坐标为(3,0)、(5,0),抛物线y=(x﹣3)(x﹣5)﹣m与x轴的交点坐标为(α,0)、(β,0),∴α<3<5<β.故选:D.【点睛】本题考查了抛物线与x轴的交点、二次函数的图象以及平移的性质,依照题意画出函数图象,利用数形结合解决问题是解题的关键.3.(2019秋•镇海区校级期中)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为﹣3,1.【点拨】根据抛物线与直线的交点坐标的横坐标即可求解.【解析】解:因为抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,4),B(1,1),所以关于x的方程ax2=bx+c的解为x1=﹣3,x2=1,即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣3,x2=1.故答案为﹣3、1.【点睛】本题考查了抛物线与直线交点坐标,解决本题的关键是两交点的横坐标就是方程的解.知识点二二次函数与x轴交点情况对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0)△=b2﹣4ac决定抛物线与x轴的交点个数:①△=b2﹣4ac>0时,抛物线与x轴有2个交点;②△=b2﹣4ac=0时,抛物线与x轴有1个交点;③△=b2﹣4ac<0时,抛物线与x轴没有交点.【典例2】下列二次函数的图象与x轴没有交点的是()A.y=﹣3x2﹣4x B.y=x2﹣3x﹣4 C.y=x2﹣6x+9 D.y=2x2+4x+5【点拨】分别计算四个选项中的判别式的值,然后根据判别式的意义确定抛物线与x轴的交点个数,从而可对各选项进行判断.【解析】解:A、△=(﹣4)2﹣4×(﹣3)×0>0,此抛物线与x轴有两个交点,所以A选项错误;B、△=(﹣3)2﹣4×(﹣4)>0,此抛物线与x轴有两个交点,所以B选项错误;C、△=(﹣6)2﹣4×9=0,此抛物线与x轴有1个交点,所以C选项错误;D、△=42﹣4×2×5<0,此抛物线与x轴没有交点,所以D选项正确.故选:D.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.△=b2﹣4ac决定抛物线与x轴的交点个数(△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点).【变式训练】1.(2019秋•新昌县校级月考)二次函数y=2x2﹣5x+3的图象与x轴的交点有()A.1个B.2个C.3个D.4个【点拨】△=b2﹣4ac=25﹣4×2×3=1>0,即可求解.【解析】解:△=b2﹣4ac=25﹣4×2×3=1>0,故二次函数y=2x2﹣5x+3的图象与x轴有两个交点,故选:B.【点睛】本题考查的是抛物线与x轴的交点,主要考查根的判别式,要求学生非常熟悉函数与坐标轴的交点代表的意义.2.(2018秋•西湖区期末)一元二次方程x2+bx+c=0有一个根为x=﹣3,则二次函数y=2x2﹣bx﹣c的图象必过点()A.(﹣3,0) B.(3,0) C.(﹣3,27) D.(3,27)【点拨】先把x=﹣3代入方程x2+bx+c=0得3b﹣c=9,利用整体代入的方法计算出自变量为﹣3对应的函数值为27,从而可判断抛物线经过点(﹣3,27).【解析】解:把x=﹣3代入方程x2+bx+c=0得9﹣3b+c=0,则3b﹣c=9,当x=﹣3时,y=2x2﹣bx﹣c=18+3b﹣c=18+9=27,所以二次函数y=2x2﹣bx﹣c的图象必过点(﹣3,27).故选:C.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化解关于x的一元二次方程即可求得交点横坐标.也考查了二次函数的图象上点的坐标特征.3.(2018秋•瑞安市期末)已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,对称轴是直线x=﹣1,若点A的坐标为(1,0),则点B的坐标是()A.(﹣2,0) B.(0,﹣2) C.(0,﹣3) D.(﹣3,0)【点拨】利用点B与点A关于直线x=﹣1对称确定B点坐标.【解析】解:∵二次函数y=ax2+bx+c的图象与x轴交于A,B两点,∴点A与点B关于直线x=﹣1对称,而对称轴是直线x=﹣1,点A的坐标为(1,0),∴点B的坐标是(﹣3,0).故选:D.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.知识点三二次函数与不等式(组)1.涉及一元二次不等式的,可以利用二次函数图像图象求解2.两个函数的值的大小比较,上方图象的函数值大于下方图象的函数值.【典例4】(2019秋•新昌县校级月考)已知函数y1=x2与函数y2=x+3的图象大致如图所示,若y1<y2,则自变量x的取值范围是()A.<x<2 B.x>2或x<C.x<﹣2或x>D.﹣2<x<【点拨】联立y1=x2、y2=x+3并解得:x=﹣2或,y1<y2,此时直线在抛物线上方,即可求解.【解析】解:联立y1=x2、y2=x+3并解得:x=﹣2或,∵y1<y2,即直线在抛物线上方时,确定x的取值范围,此时,﹣2<x,故选:D.【点睛】本题考查的是二次函数与不等式(组),要求学生通过函数图象交点,比较函数值的大小,从而确定不等式的解值,而不是采取直接解不等式的方法求解.【变式训练】1.(2018秋•苍南县期中)如图,二次函数y=ax2+bx+c的图象与y轴交于A(0,2),且经过B(4,2),则不等式ax2+bx+c>2的解集为0<x<4.【点拨】直接利用二次函数图象利用A,B点坐标得出不等式ax2+bx+c>2的解集.【解析】解:如图所示:∵二次函数y=ax2+bx+c的图象与y轴交于A(0,2),且经过B(4,2),∴不等式ax2+bx+c>2的解集为:0<x<4.故答案为:0<x<4.【点睛】此题主要考查了二次函数与不等式,正确利用数形结合分析是解题关键.2.(2018秋•下城区期末)已知函数y1=﹣(m+1)x2+nx+2与y2=mx+2的图象都经过A(4,﹣4).若y2≤y1,则x的取值范围为x≤0或x≥4.【点拨】先A点坐标代入y2=mx+2得4m+2=﹣4,再求出m,则可判断二次函数图象的开口向上,易得函数y1=﹣(m+1)x2+nx+2与y2=mx+2的图象都经过点(0,2),然后根据函数图象,写出直线不在抛物线上方所对应的自变量的范围即可.【解析】解:把A(4,﹣4)代入y2=mx+2得4m+2=﹣4,解得m=﹣,∵﹣(m+1)>0,∴二次函数图象的开口向上,∵函数y1=﹣(m+1)x2+nx+2与y2=mx+2的图象都经过点(0,2),∴y2≤y1,则x的取值范围为x≤0或x≥4.故答案为x≤0或x≥4.【点睛】本题考查了二次函数与不等式(组):对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.3.(2019秋•秀洲区期中)如图,直线y=x+m和抛物线y=x2+bx+3都经过点A、点B,且A(1,0),(1)求m的值及点B的坐标;(2)求不等式x2+bx+3≥x+m的解集.(直接写出答案)【点拨】(1)将点A的坐标代入一次函数表达式得:0=1+m,解得:m=﹣1,同理解得:b=﹣4,联立方程组即可求解;(2)从图象可以看出:不等式x2+bx+3≥x+m的解集为:x≤1或x≥4.【解析】解:(1)将点A的坐标代入一次函数表达式得:0=1+m,解得:m=﹣1,故直线的表达式为:y=x﹣1…①;将点A的坐标代入抛物线表达式得:0=1+b+3,解得:b=﹣4,故抛物线的表达式为:y=x2﹣4x+3…②,联立①②并解得:x=1或4,故点B(4,3);(2)从图象可以看出:不等式x2+bx+3≥x+m的解集为:x≤1或x≥4.【点睛】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.巩固训练1.(2019春•西湖区校级月考)函数y=ax2+bx+c如图所示,若方程ax2+bx+c=k有两个不相等的实数根,则()A.k>0 B.k>﹣3 C.k<﹣3 D.k=0【点拨】结合函数图象,利用当k>﹣3时,直线y=k与抛物线y=ax2+bx+c=0有两个交点,从而可对各选项进行判断.【解析】解:抛物线y=ax2+bx+c的顶点的纵坐标为﹣3,直线y=﹣3与抛物线y=ax2+bx+c=0只有一个交点,当k>﹣3时,直线y=k与抛物线y=ax2+bx+c=0有两个交点,所以当k>﹣3时,方程ax2+bx+c=k有两个不相等的实数根.故选:B.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.2.(2019春•安吉县期中)如图,抛物线y=﹣x2+mx的对称轴为直线x=2,若关于x的一元二次方程﹣x2+mx ﹣t=0(t为实数)在1<x<3的范围内有解,则t的取值范围是()A.﹣5<t≤4 B.3<t≤4 C.﹣5<t<3 D.t>﹣5【点拨】先利用抛物线的对称轴方程求出m得到抛物线解析式为y=﹣x2+4x,配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=﹣x2+4x与直线y=t在1<x<3的范围内有公共点可确定t的范围.【解析】解:∵抛物线y=﹣x2+mx的对称轴为直线x=2,∴﹣=2,解得m=4,∴抛物线解析式为y=﹣x2+4x,抛物线的顶点坐标为(2,4),当x=1时,y=﹣x2+4x=3;当x=3时,y=﹣x2+4x=3,∵关于x的一元二次方程x2+mx﹣t=0(t为实数)在1<x<3的范围内有解,∴抛物线y=﹣x2+4x与直线y=t在1<x<3的范围内有公共点,∴3<t≤4.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.3.(2019•慈溪市模拟)已知抛物线y=x2+mx+n与x轴只有一个公共点,且过点A(a,b),B(a﹣4,b),则b 的值为()A.4 B.2 C.6 D.9【点拨】根据抛物线y=x2+mx+n与x轴只有一个公共点,可知△=0,从而可以得到m与n的关系,再根据抛物线y=x2+mx+n过点A(a,b),B(a﹣4,b),可以得到a和m的关系,从而可以求得b的值.【解析】解:∵抛物线y=x2+mx+n与x轴只有一个公共点,∴△=m2﹣4×1×n=m2﹣4n=0,∴n=m2,∵抛物线y=x2+mx+n过点A(a,b),B(a﹣4,b),∴b=a2+ma+n,b=(a﹣4)2+m(a﹣4)+n,∴a2+ma+n=(a﹣4)2+m(a﹣4)+n,化简,得a=,∴b=a2+ma+n=()2+m×+m2=4,故选:A.【点睛】本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征,解答本题的关键是明确题意,求出b的值.4.(2019•杭州)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y =(ax+1)(bx+1)的图象与x轴有N个交点,则()A.M=N﹣1或M=N+1 B.M=N﹣1或M=N+2C.M=N或M=N+1 D.M=N或M=N﹣1【点拨】先把两个函数化成一般形式,若为二次函数,再计算根的判别式,从而确定图象与x轴的交点个数,若一次函数,则与x轴只有一个交点,据此解答.【解析】解:∵y=(x+a)(x+b),a≠b,∴函数y=(x+a)(x+b)的图象与x轴有2个交点,∵函数y=(ax+1)(bx+1)=abx2+(a+b)x+1,∴当ab≠0时,△=(a+b)2﹣4ab=(a﹣b)2>0,函数y=(ax+1)(bx+1)的图象与x轴有2个交点,即N=2,此时M=N;当ab=0时,不妨令a=0,∵a≠b,∴b≠0,函数y=(ax+1)(bx+1)=bx+1为一次函数,与x轴有一个交点,即N=1,此时M=N+1;综上可知,M=N或M=N+1.故选:C.【点睛】本题主要考查一次函数与二次函数与x轴的交点问题,关键是根据根的判别式的取值确定抛物线与x轴的交点个数,二次项系数为字母的代数式时,要根据系数是否为0,确定它是什么函数,进而确定与x轴的交点个数.5.(2019春•西湖区校级月考)函数y=x2+bx+c与y=x的图象如图所示,则不等式x2+(b﹣1)x+c<0的解集为1<x<3.【点拨】根据当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.【解析】解:∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.∴不等式x2+(b﹣1)x+c<0的解集为1<x<3,故答案为1<x<3.【点睛】主要考查二次函数与不等式(组),此题难度适中,注意掌握数形结合思想的应用.6.(2019•拱墅区校级模拟)已知如图二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(﹣2,4),B(8,2)(如图所示)则能使y1<y2成立的x的取值范围是﹣2<x<8.【点拨】根据函数图象,写出抛物线在直线下方部分的x的取值范围即可.【解析】解:由图可知,﹣2<x<8时,y1<y2.故答案为:﹣2<x<8.【点睛】本题考查了二次函数与不等式组,数形结合是数学中的重要思想之一,解决函数问题更是如此,同学们要引起重视.7.(2019•柯城区校级一模)如图,已知直线y1=﹣x+2与x轴交于点A,与y轴交于点B.过A,B两点的抛物线y2=ax2+bx+c交x轴于点C(﹣1,0).(1)求A,B的坐标;(2)求抛物线的解析式;(3)求出当y1>y2时,自变量x的取值范围.【点拨】(1)利用一次函数的解析式确定A、B的坐标;(2)利用待定系数法求抛物线解析式;(3)写出抛物线在直线下方所对应的自变量的范围.【解析】解:(1)当x=0时,y=﹣x+2=2,则B(0,2);当y=0时,﹣x+2=0,解得x=4,则A(4,0);(2)设抛物线解析式为y=a(x+1)(x﹣4),把B(0,2)代入得a(0+1)(0﹣4)=2,解得:a=﹣,所以抛物线解析式为y=﹣(x+1)(x﹣4),即y=﹣x2+x+2;(3)当y1>y2时,x的取值范围为x<0或x>4.【点睛】本题考查了二次函数与不等式(组):对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.也考查了抛物线与x轴的交点问题和二次函数的性质.8.(2019春•西湖区校级月考)若二次函数y=kx2+(3k+2)x+2k+2.(1)若抛物线的对称轴是直线x=﹣1,求k的值;(2)求证:抛物线与x轴有交点.(3)经研究发现,无论k为何值,抛物线经过某些特定的点,请求出这些定点.(4)若y1=2x+2,在﹣2<x<﹣1范围内请比较y1,y的大小.【点拨】(1)抛物线的对称轴是直线x=﹣1=﹣,即可求解;(2)△=b2﹣4ac=(3k+2)2﹣4k(2k+2)=(k+2)2≥0,即可求解;(3)y=kx2+(3k+2)x+2k+2=k(x2+3x+2)+2x+2,当x2+3x+2=0时,函数过定点,则x=﹣1或﹣2,即可求解;(4)如图所示,抛物线过定点:(﹣1,0)、(﹣2,﹣2),由图象可见:当k>0时,y1>y;当k<0时,y1<y.【解析】解:(1)抛物线的对称轴是直线x=﹣1=﹣,解得:k=﹣2;(2)△=b2﹣4ac=(3k+2)2﹣4k(2k+2)=(k+2)2≥0,故:抛物线与x轴有交点;(3)y=kx2+(3k+2)x+2k+2=k(x2+3x+2)+2x+2,当x2+3x+2=0时,函数过定点,则x=﹣1或﹣2,则定点为:(﹣1,0)、(﹣2,﹣2);(4)如图所示,抛物线过定点:(﹣1,0)、(﹣2,﹣2),由图象可见:当k>0时,y1>y;当k<0时,y1<y.【点睛】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.。

二次函数的方程与不等式的解法与应用

二次函数的方程与不等式的解法与应用

二次函数的方程与不等式的解法与应用一、二次函数的方程的解法二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b、c为实数且a ≠ 0。

对于二次函数的方程,我们可以采取以下几种解法:1. 因式分解法当二次函数的方程可以通过因式分解的方式得到解时,我们可以尝试利用因式分解来求解。

具体步骤如下:(1)将二次函数方程转化为标准形式:f(x) = ax^2 + bx + c = 0;(2)对二次函数进行因式分解,将方程写成(px + q)(rx + s)= 0;(3)令px + q = 0和rx + s = 0,解得x的值。

2. 完全平方公式法对于形如f(x) = ax^2 + bx + c = 0的二次函数方程,当其可以通过完全平方公式的方式求解时,我们可以利用下面的公式进行计算:x = (-b ± √(b^2 - 4ac)) / 2a其中,±表示两个解。

通过代入给定的a、b、c的值,我们可以得到方程的解。

3. 直接运用求根公式法对于任意二次函数方程f(x) = ax^2 + bx + c = 0,我们可以直接应用求根公式来求解。

求根公式为:x = (-b ± √(b^2 - 4ac)) / 2a通过代入给定的a、b、c的值,我们可以得到方程的解。

二、二次函数的不等式的解法与方程不同,二次函数的不等式的解法需要考虑到其图像在坐标轴上的位置。

对于二次函数f(x) = ax^2 + bx + c,我们可以采用下列方法解二次函数的不等式:1. 利用图像法首先,我们需要画出二次函数的图像。

通过观察图像,我们可以判断二次函数在哪些区间满足不等式。

比如,当a > 0时,图像开口向上,二次函数在顶点上方满足大于零的不等式;当a < 0时,图像开口向下,二次函数在顶点下方满足小于零的不等式。

2. 利用解方程法我们可以先将二次函数的不等式转化为方程,然后求出方程的解,最后确定不等式的解的区间。

二次函数方程与不等式

二次函数方程与不等式

二次函数方程与不等式二次函数是高中数学中一个重要的内容,它是一种函数类型,其定义域是实数集,表达式为y = ax^2+ bx + c,其中a、b、c是实数且a ≠ 0。

二次函数的图像是一个开口向上或向下的抛物线,它在数学建模、物理学、经济学等领域都有广泛的应用。

本文将介绍二次函数方程与不等式的相关概念和求解方法。

一、二次函数方程二次函数方程是指二次函数与某个数值相等的方程,通常可以表示为y = ax^2+ bx + c = 0。

解二次函数方程需要先确定方程的解的个数,然后进行求解。

1. 判别式的求解对于一般的二次函数方程ax^2+ bx + c = 0,可以用判别式Δ = b^2 -4ac来判断方程的解的情况。

根据Δ的取值,可以将解的情况分为三类:- 当Δ > 0时,方程有两个不相等的实根;- 当Δ = 0时,方程有两个相等的实根;- 当Δ < 0时,方程没有实根,但有两个共轭虚根。

根据判别式的值,可以确定二次函数方程的解的情况,并进一步进行求解。

2. 求解二次函数方程的方法(1)因式分解法对于一些特殊的二次函数方程,可以通过因式分解的方法求解。

例如,对于方程x^2 - 5x + 6 = 0,可以将其因式分解为(x - 2)(x - 3) = 0,从而得到方程的解x = 2或x = 3。

(2)配方法对于一般的二次函数方程ax^2+ bx + c = 0,可以使用配方法进行求解。

配方法的基本思想是通过添加和减去适当的常数,将二次函数化为完全平方的形式,然后求解得到方程的解。

具体的求解步骤可以参考相关的数学教材或参考资料。

(3)求解公式二次函数方程还可以使用求根公式来求解。

根据求根公式x = (-b ±√Δ) / 2a,可以直接计算出方程的解。

需要注意的是,求根公式只适用于有实根的情况,对于无实根的情况需要采用其他方法进行求解。

二、二次函数不等式二次函数不等式是指二次函数与某个数值的大小关系的不等式,通常可以表示为y > ax^2+ bx + c或y < ax^2+ bx + c。

二次函数与二次方程二次不等式的关系

二次函数与二次方程二次不等式的关系

二次函数与二次方程、二次不等式的关系一、知识要点知识点1、二次函数与一元二次方程、二次不等式有着十分紧密的联系;当二次函数y=ax2+bx+c(a丰0)的函数值y=0时,就是一元二次方程,当沪0时,就是二次不等式。

知识点2、二次函数的图象与 x轴交点的横坐标就是一元二次方程的根,图像的交点个数与一元二次方程的根的个数是完全相同的,这是数和形有机结合的重要体现。

研究二次函2 . . 2数y=ax + bx + c图象与x轴交点问题从而就转化为研究一元二次方程ax + bx + c=0的根的变式训练:1、函数y=ax2— bx + c的图象过(一1, 0),贝U b c c a a b的值是___________________ 2、已知二次函数 y=x2 + mx + m— 2 •求证:无论 m取何实数,抛物线总与 x轴有两个交点.3 .已知二次函数 y=x2— 2kx + k2 + k— 2 •(1)当实数k为何值时,图象经过原点?(2)当实数k在何范围取值时,函数图象的顶点在第四象限内?5 .已知抛物线 y=mx2 +( 3 — 2m) x + m — 2 ( m^O)与x轴有两个不同的交点.(1 )求m的取值范围;(2)判断点P (1,1)是否在抛物线上;(3)当m=1时,求抛物线的顶点 Q及P点关于抛物线的对称轴对称的点P'的坐标,并过P'、Q、P三点,画岀抛物线草图.2例2、(本题满分12分)二次函数y ax bx 6(a 0)的图像交y轴于C点,交x轴于A,B△ =b2— 4ac △ > 0 △ =0△ < 0二次函数y=ax2+bx+c(a > 0)的图像一元二次方程ax2+bx+c=0(a > 0)的根无实数根一元二次不等式ax2+bx+c> 0(a > 0)的解集x < x1或x > x2(% < x2)x为全体实数一元二次不等ax2+bx+c< 0(a > 0)的解集x1<x < x2(x1< x2)无解无解问题,这样图像问题就可以转化成方程问题,应用根的判别式、韦达定理、求根公式等解题。

二次函数与方程不等式教学设计

二次函数与方程不等式教学设计

二次函数与方程不等式教学设计教学设计:二次函数与方程、不等式一、教学目标:1.知识与技能:学生能够掌握二次函数的定义、性质及图像,并能够解二次方程和不等式。

2.过程与方法:培养学生分析问题、解决问题的能力,培养学生观察问题、发现问题的能力。

3.情感与态度:培养学生对数学的兴趣,激发学生学习数学的欲望,培养学生积极思维、主动学习的态度。

二、教学重难点:1.重点:二次函数的定义、性质及图像、解二次方程和不等式。

2.难点:二次函数的性质如何应用于解题。

三、教学过程:1.导入活动(15分钟):通过展示一些实际生活中的问题,引导学生思考与二次函数相关的问题,如汽车行驶的距离与时间、抛物线的形状等。

2.探究活动(45分钟):向学生介绍二次函数的定义,并通过实例让学生体会二次函数的性质。

(1)定义:二次函数是形如y=ax²+bx+c(a≠0)的函数,其中a、b、c为常数。

(2)性质:a>0时,开口向上;a<0时,开口向下;对称轴为x=-b/2a;顶点坐标为(-b/2a,f(-b/2a))。

通过画出不同参数a的二次函数图像,体会a对图像形状的影响,以及顶点坐标的关联。

3.讲解与示范(40分钟):(1)解二次方程:将二次方程转化为标准形式,其中a,b,c为已知数,然后应用求根公式或配方法等来解方程。

(2)解二次不等式:将二次不等式转化为标准形式,然后应用图像法或因式法求解。

4.练习与巩固(30分钟):让学生自主完成一些练习题:(1)解二次方程:a)x²-4x+3=0;b)4x²-9=0;(2)解二次不等式:a)x²-5x+6>0;b)x²+4x-5<0。

通过解题巩固所学知识。

5.拓展与应用(20分钟):利用二次函数的性质解决一些实际问题,如汽车行驶路径最远点的确定、物体抛出的最高点的求解等。

6.总结与归纳(10分钟):让学生总结二次函数的定义、性质及解二次方程和不等式的方法,梳理知识点,为下一步的巩固复习做准备。

二次函数与一元二次方程、不等式一元二次函数、方程和不等式课件PPT

二次函数与一元二次方程、不等式一元二次函数、方程和不等式课件PPT
二次函数与一元二次方程、不等式
0,图象在
x
轴的上方;一元二次
3 二次函数与一元二次方程、不等式
3 3
不等式 ax +bx+c>0 二 二次次函函数数与与一一元元二二次次方方2 程程、、不不等等式式 的解集即二次函数图象在 x 轴上方部分的
3 二次函数与一元二次方程、不等式
3 二次函数与一元二次方程、不等式
栏目 导引
第二章 一元二次函数、方程和不等式
3.二次函数与一元二次方程、不等式的解的对应关系
Δ>0
Δ=0
Δ<0
y=ax2+bx+ c(a>0)的图象
ax2+bx+c= 0(a>0)的根
有两个不相等 有两个相等的实
的实数根 x1, x2(x1<x2)
数根 x1=x2=-2ba 没有实数根
栏目 导引
第二章 一元二次函数、方程和不等式
栏目 导引
第二章 一元二次函数、方程和不等式
4.求解一元二次不等式的过程
栏目 导引
第二章 一元二次函数、方程和不等式
判断正误(正确的打“√”,错误的打“×”) (1)mx2-5x<0 是一元二次不等式.( × ) (2)不等式 x2-2x+3>0 的解集为 R.( √ ) (3)若一元二次方程 ax2+bx+c=0 的两根为 x1,x2(x1<x2),则 一元二次不等式 ax2+bx+c<0 的解集为{x|x1<x<x2}.( × )
栏目 导引
第二章 一元二次函数、方程和不等式
不等式 3x2-2x+1>0 的解集为( )
A.x-1<x<13 C.∅
B.x13<x<1 D.R

初中数学知识点二次函数的方程与不等式

初中数学知识点二次函数的方程与不等式

初中数学知识点二次函数的方程与不等式初中数学知识点:二次函数的方程与不等式二次函数在初中数学中是一个重要的知识点,它在数学中的应用非常广泛。

本文将介绍二次函数的方程与不等式,让我们一起来深入了解这个知识点。

一、二次函数的方程二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b、c为常数,且a≠0。

为了求解二次函数的方程,我们需要先将其转化为标准形式。

标准形式为f(x) = a(x - h)^2 + k,其中(h, k)为顶点坐标。

求解二次函数的方程的一般步骤如下:1. 将二次函数转化为标准形式;2. 判断顶点坐标(h, k)并记录;3. 根据顶点坐标和对称性质,解出方程的根;4. 根据所求得的根,画出函数的图像。

举个例子,假设我们有二次函数f(x) = x^2 + 2x + 1,我们按照上述步骤来求解方程:1. 将函数转化为标准形式:f(x) = (x + 1)^2 + 0;2. 根据标准形式,顶点坐标为(-1, 0);3. 根据顶点坐标和对称性质,方程的根为x = -1;4. 根据所求得的根,我们可以在坐标系中以(-1, 0)为顶点画出函数的图像。

二、二次函数的不等式求解二次函数的不等式时,我们需要先将其转化为标准形式,然后利用图像的特征来解决问题。

解决二次函数的不等式的一般步骤如下:1. 将二次函数转化为标准形式;2. 判断顶点坐标(h, k)并记录;3. 根据顶点坐标和对称性质,确定函数的凹凸性;4. 根据图像的凹凸性和所给条件,判断不等式的解集。

继续上面的例子,假设我们有二次函数f(x) = x^2 + 2x + 1,并求解不等式f(x) > 0:1. 将函数转化为标准形式:f(x) = (x + 1)^2 + 0;2. 根据标准形式,顶点坐标为(-1, 0);3. 根据顶点坐标和对称性质,函数是开口向上的,也就是凹函数;4. 根据图像的凹性和不等式f(x) > 0,我们可以判断当x < -1或x > -1时,不等式成立。

二次函数与一元二次方程、不等式课件年高一上学期数学人教A版(2019)必修第一册

二次函数与一元二次方程、不等式课件年高一上学期数学人教A版(2019)必修第一册

(2)计算判别式△的值如果△≥0,求方程ax²+bx+c=0的根;如果△≤0,说明方程
ax²+bx+c=0 无实数根。
(3)画出二次函数y=ax²+bx+c 的图象等式x²-5x+6>0的解集
分析:
因为方程x²-5x+6=0的根是函数y=x²-5x+6的零点,
位于x轴上方,此时 y>0,即 x²-12x + 20>0;当2<x<10 时
,函数图象位于轴下方,此时 y<0,即x²-12x + 20<0。所以
,一元二次不等式x²-12x + 20<0的解集是
{x|2<x<10}
因为{x|2<x<10}含于{x|0<x<12},因此当围成的矩形的一
条边长x满足2<x<10 时,围成的形区域的面积大于20m².
花卉。若栅栏的长度是 24 m,围成的形区域的面积
在初中,我们从一次函数的角度
要大于20 m²,则这个矩形的边长为多少米?
看一元一次方程、一元一次不等式,
发现了三者之间的内在联系,利用这
种联系可以更好地解决相关问题,对
设这个矩形的一条边长为xm,则另一条边长为
(12一x)m,由题意,得
于二次函数、一元二次方程和一元二
所以先求出x²-5x+6=0 的根,再根据函数图象得到x²5x+6>0的解集。
解:
对于方程x²-5x+6=0,因为 △>0,所以它有两个
实数根。解得x1=2,x2=3。
画出二次函数 y=x²-5x+6 的图象(如图),结合图

二次函数专题(二次函数与方程、不等式的关系)

二次函数专题(二次函数与方程、不等式的关系)

二次函数专题二次函数、一元二次方程及一元二次不等式的关系问题1:你能快速地求出一元二次方程2230x x --=的根吗?问题2:请你画出函数223y x x =--图象,研究图象上是否有一些特殊的点和一元二次方程2230x x --=的根之间有某种联系,你有什么发现吗?问题3:研究一元二次方程2230x x -+=的根的个数及其判别式与二次函数223y x x =-+的图像和x轴的交点个数,你能得到什么结论?问题4:你能结合问题2、3,得到一般化的结论吗?归纳:(1)对于二次函数c bx ax y ++=2)0(≠a 来说,当0=y 时,就得一元二次方程02=++c bx ax )0(≠a ,因此我们可以利用一元二次方程求二次函数图像与x 轴的交点坐标.进一步我们还可以探讨一元二次方程ac b 42-=∆的取值与二次函数图像与x 轴的交点坐标的情况之间的关系:①当042>-=∆ac b 时,一元二次方程02=++c bx ax 有两个不相等的实数根,抛物线c bx ax y ++=2与x 轴有两个交点;②当042=-=∆ac b 时,一元二次方程02=++c bx ax 有两个相等的实数根,抛物线c bx ax y ++=2与x 轴有唯一交点(这个唯一交点就是抛物线的顶点);③当042<-=∆ac b 时,一元二次方程02=++c bx ax 没有实数根,抛物线c bx ax y ++=2与x轴没有交点(抛物线全部在x 轴上方或全部在x 轴下方).(2)当一元二次方程02=++c bx ax 有两个不相等的实数根1x 、2x 时,抛物线c bx ax y ++=2与x 轴交于两点A(1x ,0)、B(2x ,0),此时有a b x x -=+21,1x ·a c x =2.此时抛物线与x 轴两交点的距离为: AB=21x x -=221)(x x -212214)(x x x x -+=224a ac b -=a ∆= 例1 如图,是二次函数y =ax 2+bx+c 图象的一部分,其对称轴为直线x =1,若其与x 轴一交点为A (3,0),则由图象可知,不等式ax 2+bx +c <0的解集是 .例2 二次函数y=c bx ax ++2 (a ≠0,a ,b ,c 为常数)图象如图所示,根据图象解答问题(1)写出方程02=++c bx ax 的两个根(2)写出不等式c bx ax ++2>0的解集 (3)若方程c bx ax ++2=k 有两个不相等的实数根,求k 的取值范围.例3 若关于x 的一元二次方程0522=++ax x 的两根在1与2之间(不含1和2),则a 的取值范围是 .例4 已知函数y 1=x 2与函数y 2=-12 x +3的图象大致如图,若y 1<y 2,则自变量x 的取值范围是( )A .-12 <x <2B .x >2或x <-32C .-2<x <32D .x <-2或x >32例5 已知:y 关于x 的函数y =(k -1)x2-2kx +k +2的图象与x 轴有交点.(1)求k 的取值范围;(2)若x 1,x 2是函数图象与x 轴两个交点的横坐标,且满足k (x 1+x 2)=2x 1x 2. ①求k 的值;②当k ≤x ≤k +2时,请结合函数图象确定y 的最大值和最小值.例6 直线y=2x+3与抛物线y=x 2交于A 、B 两点,求AB 的长。

二次函数与不等式

二次函数与不等式

二次函数与不等式
二次函数与不等式是高等数学中的重要概念,它们在科学、工程和经济领域等都有广泛的应用。

本文将介绍二次函数与不等式的基本概念,以及它们在实际应用中的重要性。

首先,我们来介绍二次函数。

二次函数是指形如 y = ax2
+ bx + c 的多项式函数,其中a、b和c是实数,a不等于
0,x是一个未知变量。

二次函数的极大值或极小值可以
通过求解函数的导数来确定,二次函数的极值点可以求出它的最大值和最小值。

其次,我们来介绍不等式。

不等式是指形如 f(x) < g(x) 或
f(x) > g(x) 的一种数学关系,其中 f(x) 和 g(x) 是两个函数,x
是一个未知变量。

不等式可以帮助我们找出符合条件的 x 的取值范围,从而解决实际问题。

最后,我们来看二次函数与不等式在实际应用中的重要性。

二次函数可以用来拟合各种实际问题,如测量数据和社会统计数据等,从而分析实际问题的特征和趋势。

不等式可以用来确定一个变量的取值范围,从而解决实际问题,如求解线性规划问题、控制系统设计等。

综上所述,二次函数与不等式都是高等数学中重要的概念,它们在实际应用中有着重要的作用。

二次函数可以用来拟合实际问题,不等式可以用来解决实际问题。

7、二次函数与方程及不等式的联系

7、二次函数与方程及不等式的联系

二次函数与一次函数的交点问题
1
若抛物线y= 2 x2与直线y=x+m只有一个公共点,则m的值为 。
已知直线y=-2x+3与抛物线y=x2相交于A、B两点,O为坐标原点,那Βιβλιοθήκη 么∆OAB的面积等于。
B
A
C
OD
O
二次函数与不等式的关系
若函数y=x2-2px-q(p,q是实数)与x轴没有交点求证:p+q< 1
4
二次函数y=ax2+bx+c(a≠0,a,b,c为常数)图像如图所示,根据图 像解答问题 (1)写出ax2+bx+c=0的两个根 (2)写出不等式ax2+bx+c>0的解集 (3)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围。
y 2 x=1
o
3
x
已知二次函数y1=x2-2x-3
(1)结合y1的图像,确定当x取什么值时,y1>0,y1=0,y1<0.
(2)根据(1)的结论,确定函数y2= 关于x的解析式;
1( 2
y1

y1 )
(3)若一次函数y=kx+b(k≠0)的图像与函数y2的图像交于三个 不同的点,试确定实数k与b应满足的条件。
B A
二次函数与方程的关系
已知二次函数y=(a-1)x2+2ax+3a-2的图像最低点在x轴上,那么a= .
此时函数的解析式为 。
已知二次函数y=x2-(2m+4)x+m2-4(x为自变量)的图像与Y轴的交点在原点 下方,与 x轴交于A、B两点,点A在点B的左边,且A、B两点到原点的距 离AO,OB满足3(OB-OA)=2AO*BO,直线Y=kx+k与这个二次函数图像的一个交 点为P,且锐角∠POB的正切值为4. (1)求M的取值范围。 (2)求这个二次函数的解析式; (3)确定直线y=kx+k的解析式。

二次函数的方程与不等式的应用

二次函数的方程与不等式的应用

二次函数的方程与不等式的应用在数学中,二次函数是一个常见且重要的函数类型。

它的方程和不等式在各个领域都有广泛的应用。

本文将探讨二次函数方程和不等式的一些常见应用。

一、最值问题二次函数的图像是一个抛物线,它通常有一个最值点,即极值点。

通过求解二次函数的方程,可以找到这个最值点的横坐标。

具体步骤如下:1. 设二次函数的方程为f(x)=ax^2+bx+c,其中a≠0;2. 求解方程f'(x)=0,得到x的值;3. 将这个x代入原方程中,计算出对应的y的值。

例如,考虑二次函数f(x)=2x^2-3x+1。

首先,求解f'(x)=0,得到x=3/4。

然后,将x=3/4代入原方程,计算得到f(3/4)=5/8。

因此,二次函数f(x)的最小值为5/8。

二、零点问题在解决实际问题中,常常需要找到一个函数的零点,即使得函数等于零的横坐标。

对于二次函数,求解零点的方法是通过解方程f(x)=0来实现。

以下是具体步骤:1. 设二次函数的方程为f(x)=ax^2+bx+c,其中a≠0;2. 求解方程f(x)=0,得到x的值。

例如,考虑二次函数f(x)=x^2-2x-3。

求解方程f(x)=0,可以分解成(x-3)(x+1)=0,得到x=3或x=-1。

因此,二次函数f(x)的零点为x=3和x=-1。

三、不等式问题除了求解方程,二次函数的方程和不等式还可以用来解决不等式问题。

通过找到二次函数的图像与x轴的交点,可以确定二次函数的零点,进而求解不等式。

具体步骤如下:1. 设二次函数的方程为f(x)=ax^2+bx+c,其中a≠0;2. 将f(x)进行因式分解,得到f(x)=a(x-x_1)(x-x_2),其中x_1和x_2为函数的零点;3. 根据二次函数的图像特性,确定f(x)在x_1和x_2之间的正负变化情况;4. 根据不等式的符号,解决不等式问题。

例如,考虑二次函数f(x)=x^2-2x-3。

首先,找到函数的零点,即x=3和x=-1。

二次函数与方程、不等式

二次函数与方程、不等式

二、二次函数的图象
有关知识: 图象形状; 对称轴; 顶点坐标; 与 x 轴交点坐标; 截 x 轴线段长.
三、二次函数的性质
b 1.当 a>0 时, 抛物线开口向上, 函数在(-∞, - ]上单调递 2a 减, 在[- b , +∞)上单调递增, 当 x= - b 时, f(x) 取得最小值, 2a 2a 为 4ac-b2 . 4a b 2.当 a<0 时, 抛物线开口向下, 函数在(-∞, - ]上单调递 2a 增, 在[- b , +∞)上单调递减, 当 x= - b 时, f(x) 取得最大值, 2a 2a 为 4ac-b2 . 4a
f(x)=ax2+bx+c<0(a>0) 在 [m, n] 上恒成立. f(m)<0 f(n)<0.
b <n m< - 2 a 2-4ac≥0 △ = b 7.方程 f(x)=0 的两实根都在区间(m, n)内 f(m)>0 f(n)>0. 8.方程 f(x)=0 的两实根中, 有且只有一个在区间(m, n)内. f(n)=0 f(m)=0 f(m)f(n)<0, 或 b < m+ n , 或 m+ n b < n. m< - 2 < a 2 2a 2 思考 方程的两根有且只有一个在区间[m, n]上时等价于? 9.方程 f(x)=0 的两根分别在区间(m, n)和(p, q)(n<p)内. f(m)>0 注 涉及方程 f(x)=ax2+bx+c=0(a≠0)的实根分 f(n)<0 布问题, 一般情况下要从四个方面考虑: f(p)<0 ① f(x) 图象的开口方向; f(q)>0. ②方程 f(x)=0的判别式; ③ f(x) 图象的对称轴与区间的关系; ④区间端点处函数值的符号. f(k)>0.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 4
二次函数、与方程、不等式NO.01
班级 姓名 学号
考点:1、三大基本知识:二次函数的三种解读式,顶点坐标,对称轴 2、解一元二次方程3、一元二次不等式
① 会从实际情境中抽象出一元二次不等式模型
② 通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联
系③ 会解一元二次不等式,。

教案过程: (二)主要方法:
1.讨论二次函数()02
≠++=a c bx ax y 在指定区间[]q p ,上的最值问题:
①注意对称轴a
b
x 2-
=与区间[]q p ,的相对位置; ②函数()02
≠++=a c bx ax y 在区间[]q p ,上的单调性.
2、 二次函数与一元一次方程、一元二次不等式之间的内在联系及相应转化
①)0()(2
≠++=a c bx ax x f 的图像与x 轴交点的横坐标是方程f(x)=0的实根; ②当_______时,f(x)>0恒成立,当_______时,f(x)≤0恒成立。

结论成立的条件是x R ∈。

(三)一元二次函数
1.对抛物线1822
+-=x x y 则对称轴与最值分别是( ) A. 直线x = 2 , 有最大值7- B. 直线x = 2, 有最小值7- C. 直线2-=x , 有最大值 25D. 直线2-=x , 有最小值25 2、二次函数222
+--=x x y 的顶点坐标、对称轴分别 ( )
A ( 1, 3 ) ,1=x
B ( 1-, 3 ) , 1=x
C ( 1-, 3 ) , 1-=x D.( 1 , 3 ) , 1-=x 3、二次函数2
21y x x =-+与x 轴的交点个数是( ) A .0 B .1 C .2 D .3
4、.当_____=x 时,二次函数1322
++=x x y 有最 值是。

5、.已知二次函数2
2y x x m =-++的部分图象如图所示,
(第9题)
2 / 4
.则关于x 的一元二次方程2
20x x m -++=的解为.
6、已知一抛物线与x 轴的交点是)0,2(-A 、B (1,0),且经过点C (2,8)。

(1)求该抛物线的解读式;(2)求该抛物线的顶点坐标。

四、一元二次方程的解
4x 2-11x-3=0 x 2-2x-2=0 -x 2-2x-3=04x 2-4x+1=0
五、一元二次不等式的解
0>∆ 0=∆ 0<∆
c bx ax y ++=2
的图象
02
=++c bx ax
根的情况
两个不相等的实数根
两个相等的实数根
没有实数根
20ax bx c ++>的解集 20ax bx c ++≥的解集 20ax bx c ++<的解集 20ax bx c ++≤的解集
1:求不等式2
4410x x -+>的解集
2:求不等式2230x x -+->的解集。

3、2
350x x +<的解集。

4、若2
90x -≤,则( )A 、03x ≤≤ B 、30x -≤≤ C 、33x -≤≤ D 、3x ≤-或3x ≥ 5、不等式(1)(2)0x x +-≤的解集为( )
A 、[2,1]-
B 、[1,2]-
C 、(,1][2,)-∞-+∞
D 、(,2][1,)-∞--+∞
6、若关于x 的一元二次方程2
(1)0x m x m -+-=有两个不相等的实数根,求m 的取值范围。

3 / 4
例1、若对任意实数x ,不等式2
2(1)30x k x k ++++>恒成立,则k 的取值范围是
例2、.若不等式2
10x ax ++≥对一切102x ⎛⎤∈ ⎥⎝⎦
,成立,则a 的最小值为( )
A.0
B.2-
C.52
-
D.3-
例3、 设=)x (f ,2ax 2x 2
+- 当x ∈),1[∞- 时, a )x (f ≥恒成立, 求实数a 的取值范围.
练习:不等式04)2(2)2(2
<--+-x a x a 对一切R x ∈恒成立,则a 的取值范围是________
课后练习:
1、下面四个不等式中解集为R 的是( )
A 、210x x -++≥ B
、2
0x -+> C 、26100x x ++> D 、2
2340x x -+<
4 / 4
2、若x R ∈,则下列结论正确的是( )
A 、24x ≥的解集是{|2}x x >±;
B 、2
160x -<的解集是{|4}x x <;
C 、2
(1)2x -<
的解集是{|11x x -<<+
D 、设1x ,2x 为20ax bx c ++=的两个实根,且12x x <,则2
0ax bx c ++<的解集是
12{|}x x x x <<
3、已知不等式2
0(0)ax bx c a ++<≠的解集是∅,则( )
A 、0, 0a <>
B 、0,
0a <≤ C 、 D 、0, 0a >>
4. 不等式02bx ax 2
>++的解集是)3
1
,21(-
, 则b a -等于 ( ) A. -4 B. 14 C. -10 D. 10
(五)巩固练习 B 组
5.、已知函数54)(2
+-=mx x x f 在区间),2[+∞-上是增函数,则)1(f 的范围是( )
(A )25)1(≥f (B)25)1(=f (C)25)1(≤f (D)25)1(>f
6、若c b a ,,成等比数列,则函数c bx ax y ++=2
的图像与x 轴的公共点个数为_________
7、 若关于x 的不等式m x 4x 2
≥-对任意x ∈]1
,0(恒成立, 则 ( ) A.4m -≥ B. 3m -≥ C. 0m 3<≤- D.3m -≤
8、 已知函数y =) 3x 1 ( ax 4x 2
≤≤-是单调递增函数, 则实数a 的取值范围是 ( ) A. ]21 ,(-∞ B. ]1 ,(-∞ C. ]23 ,21[ D. ) ,2
3 [∞+
9、 设函数=)x (f ) 0a ( c bx ax 2
≠++, 对任意实数t 都有) t 2 (f ) t 2 (f -=+成立. 问:在函数值
)1(f -、)1(f 、)2(f 、)5(f 中, 最小的一个不可能是 ( ) A. )1(f - B. )1(f C. )2(f D. )5(f。

相关文档
最新文档