2007年高考数学试题分类详解直线与圆
2007年高考数学卷(全国卷Ⅰ.理)含详解
2007年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n k n n P k C p p k n -=-=,,,…,一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=( ) A .15 B .15- C .513 D .513-(2)设a 是实数,且1i1i 2a +++是实数,则a =( ) A .12 B .1 C .32D .2(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A .垂直B .不垂直也不平行C .平行且同向D .平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( ) A .221412x y -= B .221124x y -= C .221106x y -= D .221610x y -=(5)设a b ∈R ,,集合{}10b a b a b a ⎧⎫+=⎨⎬⎩⎭,,,,,则b a -=( ) A .1B .1-C .2D .2-(6)下面给出的四个点中,到直线10x y -+=的距离为2,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( ) A .(11),B .(11)-,C .(11)--,D .(11)-,(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A .15B .25C .35D .45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) AB .2C.D .4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A .充要条件 B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件(10)21nx x ⎛⎫- ⎪⎝⎭的展开式中,常数项为15,则n =( )A .3B .4C .5D .6(11)抛物线24y x =的焦点为F ,准线为l ,经过F的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( ) A .4B.C.D .8(12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .233ππ⎛⎫ ⎪⎝⎭,B .62ππ⎛⎫ ⎪⎝⎭,C .03π⎛⎫ ⎪⎝⎭,D .66ππ⎛⎫- ⎪⎝⎭,第Ⅱ卷注意事项:AB1B1A1D1C CD1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 种.(用数字作答) (14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x = .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 . (16)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,则该三角形的斜边长为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分) 设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. (18)(本小题满分12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η.(19)(本小题满分12分)四棱锥S ABCD -中,底面ABCD为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =∠,2AB =,BC =SA SB =(Ⅰ)证明SA BC ⊥;(Ⅱ)求直线SD 与平面SAB 所成角的大小.(20)(本小题满分12分) 设函数()e e xxf x -=-.(Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围. (21)(本小题满分12分)已知椭圆22132x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<; (Ⅱ)求四边形ABCD 的面积的最小值.(22)(本小题满分12分)已知数列{}n a 中12a =,11)(2)n n a a +=+,123n =,,,…. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若数列{}n b 中12b =,13423n n n b b b ++=+,123n =,,,…,43n n b a -<≤,123n =,,,….2007年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案一、选择题: (1)D (2)B (3)A (4)A (5)C (6)C (7)D (8)D (9)B(10)D (11)C (12)A二、填空题:(13)36(14)3()xx ∈R(15)13(16)三、解答题: (17)解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =++3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 232A π⎛⎫+<⎪⎝⎭.由此有232A π⎛⎫<+< ⎪⎝⎭所以,cos sin A C +的取值范围为32⎫⎪⎪⎝⎭,. (18)解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯240=(元).(19)解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥,由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC∥, 故SA AD ⊥,由AD BC ==SA =AO =1SO =,SD =.SAB △的面积211122S AB SA ⎛=-= ⎝连结DB ,得DAB △的面积21sin13522S AB AD == 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S =, 解得h =A设SD 与平面SAB 所成角为α,则sin h SD α===所以,直线SD 与平面SBC所成的我为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x0)A ,,(0B ,(0C -,,(001)S ,,,(2,(0CB =,0SA CB =,所以SA BC ⊥.(Ⅱ)取AB 中点E ,022E ⎛⎫ ⎪ ⎪⎝⎭,,连结SE ,取SE 中点G ,连结OG ,1442G ⎛⎫⎪ ⎪⎝⎭,,. 12OG ⎫=⎪⎪⎝⎭,,1SE ⎫=⎪⎪⎝⎭,(AB =. 0SE OG =,0AB OG =,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D ,(DS =.22cos 11OG DS OG DSα==sin β=,所以,直线SD 与平面SAB 所成的角为arcsin 11. (20)解:(Ⅰ)()f x 的导数()e e xxf x -'=+.由于e e 2x -x +=≥,故()2f x '≥. (当且仅当0x =时,等号成立). (Ⅱ)令()()g x f x ax =-,则()()e e x x g x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e 20xxg x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数,所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1ln x =,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(]2-∞,. (21)证明:(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200021132222y x y x ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+2221222121)(1)()432k BD x x k x x x x k +⎡=-=++-=⎣+;因为AC 与BC 相交于点P ,且AC 的斜率为1k-,所以,2211132k AC k⎫+⎪⎝⎭==⨯+ 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD的面积4S =.综上,四边形ABCD 的面积的最小值为9625. (22)解:(Ⅰ)由题设:11)(2)n n a a +=+1)(1)(2n a =+1)(n a =11)(n n a a+=.所以,数列{n a 是首项为21的等比数列,1)n n a =,即n a的通项公式为1)1nn a ⎤=+⎦,123n =,,,…. (Ⅱ)用数学归纳法证明.(ⅰ)当1n =2<,112b a ==,所以11b a <≤,结论成立.(ⅱ)假设当n k =43k k b a -<≤, 也即430k k b a -<. 当1n k =+时,13423k k k b b b ++-=+(3(423k k b b -+-=+(3023k k b b -=>+,又1323k b <=-+所以1(323k k k b b b +-=+2(3(k b <-4431)(k a -≤41k a +=也就是说,当1n k =+时,结论成立.43n n b a -<≤,123n =,,,….2007年普通高等学校招生全国统一考试理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k kn k n n P k C p p k n -=-=,,,…,一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=( ) A .15B .15-C .513D .513-(2)设a 是实数,且1i1i 2a +++是实数,则a =( ) A .12B .1C .32D .2【解析】1i (1)1i 111i 22222a a i a a i +-++-+=+=++,∵1i1i 2a +++是实数,∴102a -=,解得a =1.选B .(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A .垂直B .不垂直也不平行C .平行且同向D .平行且反向【解析】由a ·b =0,得a 与b 垂直,选A .(4)已知双曲线的离心率为2,焦点是(40)-,,(4,0),则双曲线方程为( )A .221412x y -=B .221124x y -=C .221106x y -=D .221610x y -=【解析】由2ca=及焦点是(40)-,,(4,0),得4c =,2a =,24a =,∴22212b c a =-=,∴双曲线方程为221412x y -=.故选A .(5)设a b ∈R ,,集合{}1{0}b a b a b a+=,,,,,则b a -=( )A .1B .-1C .2D .-2【解析】由{}1{0}b a b a b a+=,,,,知0a b +=或0a =.若0a =则ba无意义,故只有0a b +=,1b =(若1ba=,这与0a b +=矛盾),∴1a =-,2b a -=.故选C .(6)下面给出的四个点中,到直线10x y -+=,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A .(11),B .(11)-,C .(11)--,D .(11)-,【解析】逐一检查,选C .(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( D )A .15B .25C .35D .45111||||5AD A B =1A 所成角的余弦值为45,选D .(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( )(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( )A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件【解析】若“()f x ,()g x 均为偶函数”则()()f x f x -=,()()g x g x -=当然有()()h x h x -=;反之则未必,故选B .(10)21()n x x-的展开式中,常数项为15,则n =( )A 1D 1 C 1B 1AD CBA (综合法)(坐标法)A 1C 1 B 1AD CB第(7)题D 1A .3B .4C .5D .6【解析】21()n x x-的展开式的通项公式为(22)()(23)1r n rr r n r r n n T C x x C x---+==,若常数项为15,令23015rnn r C -=⎧⎪⎨=⎪⎩,64n r =⎧⎨=⎩,选D . (11)抛物线24y x =的焦点为F ,准线为l ,经过F x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( C)(12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .2()33ππ,B .()62ππ,C .(0)3π,D .()66ππ-,()0x >,则第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 36 种.(用数字作答) 【解析】填36.从班委会5名成员中选出3名,共35A 种;其中甲、乙之一担任文娱委员的1224A A 种,则不同的选法共有35A -1224A A =36种.(14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x = .【解析】()f x =3()xx ∈R .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比AC1A A 0(16)题。
历年高考直线与圆真题以及解析
【详解】(1)根据题意,圆C:(x﹣a)2+(y﹣b)2=1(a>0)关于直线3x﹣2y=0对称,
【详解】(1) 直线 与直线 垂直,
,解得 .
(2)当 时,直线 化为: 不满足题意.
当 时,可得直线 与坐标轴的交点 , .
直线 在两轴上的截距相等,
,解得: .
该直线的方程为 ,即 .
11.
(1) ;(2)存在,理由见解析
【分析】
(1)根据题意得到 ,再解不等式即可得到答案.
(2)首先假设存在得以 为直径的圆过原点,设 , ,直线与圆联立得到 ,再根据韦达定理和圆的性质即可得到答案.
化简可得: 即为点Q的轨迹方程.
【点睛】本题考查直线与圆的位置关系,考查直线被圆截得的弦长公式的应用,考查直线恒过定点问题和轨迹问题,属于中档题.
10.
(1) ;(2) .
【分析】
(1)利用两条直线垂直的条件列方程,解方程求得 的值.
(2)分成 和 两种情况,结合直线 在两轴上的截距相等求得 ,由此求得所求直线方程.
②当切线斜率存在时,设切线斜率为 ,
则切线方程为 ,即
因为圆心到切线距离等于半径,
所以 ,解得 ,此时切线方程为 ,
综上所述,过点 的圆的切线方程为 和 .
(2)因为 即 , 为圆上任意一点,
所以 即原点到圆上一点的直线的斜率,
令 ,则原点到圆上一点的直线的方程为 ,即
高考数学试题分类汇编——直线与圆
高考数学试题分类汇编直线与圆一. 选择题:1.(全国一10)若直线1x ya b+=与圆221x y +=有公共点,则( D )A .221a b +≤B .221a b +≥C .22111a b+≤D .2211a b+≥12.(全国二3)原点到直线052=-+y x 的距离为( D ) A .1B .3C .2D .53.(全国二6)设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值为( D ) A .2-B .4-C .6-D .8-4.(安徽卷10)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( D )A .[3,3]B .(3,3)C .33[33-D .33(,)33-5.(安徽卷11) 若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x y a += 扫过A 中的那部分区域的面积为 ( C )A .34B .1C .74D .56.(北京卷6)若实数x y ,满足1000x y x y x ⎧-+⎪+⎨⎪⎩,,,≥≥≤则2z x y =+的最小值是( A )A .0B .12C .1D .27.(福建卷2)“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的C A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件8.(福建卷10)若实数x 、y 满足10,0,2,x y x x -+≤⎧⎪⎨⎪≤⎩则y x 的取值范围是DA.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞)9.(广东卷6)经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是( C )A 、10x y ++=B 、10x y +-=C 、10x y -+=D 、10x y --=10.(海南卷10)点P (x ,y )在直线4x + 3y = 0上,且满足-14≤x -y ≤7,则点P 到坐标原点距离的取值范围是( B )A. [0,5]B. [0,10]C. [5,10]D. [5,15]11.(湖北卷5)在平面直角坐标系xOy 中,满足不等式组,1x y x ⎧≤⎪⎨⎪⎩的点(,)x y 的集合用阴影表示为下列图中的C12.(湖南卷3.已条变量y x ,满足⎪⎩⎪⎨⎧≤-≤≥,0,2,1y x y x 则y x +的最小值是( C )A .4 B.3 C.2 D.113.(辽宁卷3)圆221x y +=与直线2y kx =+没有..公共点的充要条件是( B ) A .(22)k ∈-,B . (33)k ∈-,C .(2)(2)k ∈--+∞,,∞D .(3)(3)k ∈--+∞,,∞ 14.(辽宁卷9)已知变量x y ,满足约束条件1031010y x y x y x +-⎧⎪--⎨⎪-+⎩≤,≤,≥,则2z x y =+的最大值为( B ) A .4B .2C .1D .4-15.(山东卷11)若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该圆的标准方程是( B )A .227(3)13x y ⎛⎫-+-= ⎪⎝⎭B .22(2)(1)1x y -+-=C .22(1)(3)1x y -+-=D .223(1)12x y ⎛⎫-+-= ⎪⎝⎭16.(陕西卷5)直线30x y m -+=与圆22220x y x +--=相切,则实数m 等于( A )A 3或3-B .3-33C .33-3D .3-3317.(四川卷6)直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( A )(A)1133y x =-+ (B)113y x =-+(C)33y x =- (D)113y x =+18.(天津卷2)设变量x y ,满足约束条件012 1.x y x y x y -⎧⎪+⎨⎪+⎩≥,≤,≥则目标函数5z x y =+的最大值为( D ) A .2B .3C .4D .519.(浙江卷10)若0,0≥≥b a ,且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a ,b 为坐标点(,)P a b 所形成的平面区域的面积等于C (A )12 (B )4π (C )1 (D )2π 20.(重庆卷3)曲线C :cos 1.sin 1x y θθ=-⎧⎨=+⎩(θ为参数)的普通方程为C(A)1)1()1(22=++-y x(B)1)1()1(22=+++y x(C) 1)1()1(22=-+-y x(D)1)1()1(22=-++y x二. 填空题:1.(全国一13)若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .92.(福建卷14)若直线3x+4y +m =0与圆x 2+y 2-2x +4y +4=0没有公共点,则实数m 的取值范围是 . (,0)(10,)-∞⋃+∞3.(广东卷12)若变量x ,y 满足240,250,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩则z =3x +2y 的最大 值是________。
2007年高考.北京卷.文科数学试题及详细解答
2007年普通高等学校招生全国统一考试数学(文史类)(北京卷)本试卷分第I 卷(选择题)和第II (非选择题)两部分,第I 卷1至2页,第II 卷3至9页,共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.第I 卷(选择题 共40分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.不能答在试卷上.一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知cos tan 0θθ<,那么角θ是( ) A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角 D.第一或第四象限角2.函数()3(02)xf x x =<≤的反函数的定义域为( ) A.(0)+∞, B.(19], C.(01), D.[9)+∞,3.函数()sin 2cos 2f x x x =-的最小正周期是( )A.π2 B.π C.2π D.4π 4.椭圆22221(0)x y a b a b+=>>的焦点为1F ,2F ,两条准线与x 轴的交点分别为M N ,,若12MN F F 2≤,则该椭圆离心率的取值范围是( )A.102⎛⎤ ⎥⎝⎦,B.0⎛ ⎝⎦C.112⎡⎫⎪⎢⎣⎭,D.1⎫⎪⎪⎣⎭5.某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有( )A.()2142610CA 个 B.242610A A 个C.()2142610C 个D.242610A 个6.若不等式组502x y y a x -+0⎧⎪⎨⎪⎩≥,≥,≤≤表示的平面区域是一个三角形,则a 的取值范围是( )A.5a < B.7a ≥ C.57a <≤ D.5a <或7a ≥7.平面α∥平面β的一个充分条件是( ) A.存在一条直线a a ααβ,∥,∥B.存在一条直线a a a αβ⊂,,∥C.存在两条平行直线a b a b a b αββα⊂⊂,,,,∥,∥ D.存在两条异面直线a b a a b αβα⊂,,,∥,∥8.对于函数①()2f x x =+,②2()(2)f x x =-,③()cos(2)f x x =-,判断如下两个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 能使命题甲、乙均为真的所有函数的序号是( ) A.①② B.①③ C.② D.③2007年普通高等学校招生全国统一考试数学(文史类)(北京卷) 第II 卷(共110分)注意事项:1.用钢笔或圆珠笔将答案直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 .10.若数列{}n a 的前n 项和210(123)n S n n n =-=,,,,则此数列的通项公式为 .11.已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是 .12.在ABC △中,若1tan 3A =,150C =,1BC =,则AB =.13.2002年在北京召开的国际数学家大会,会标是我国以古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos2θ的值等于14.已知函数()f x ,()g x 分别由下表给出则[(1)]f g 的值为 ;当[()]2g f x =时,x = .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共12分)记关于x 的不等式01x ax -<+的解集为P ,不等式11x -≤的解集为Q . (I )若3a =,求P ;(II )若Q P ⊆,求正数a 的取值范围.x 1 2 3 ()f x2 1 1x 1 2 3()f x3 2 116.(本小题共13分)数列{}n a 中,12a =1n n a a cn +=+(c 是常数,123n =,,,),且123a a a ,,成公比不为1的等比数列.(I )求c 的值; (II )求{}n a 的通项公式.17.(本小题共14分)如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (I )求证:平面COD ⊥平面AOB ;(II )求异面直线AO 与CD 所成角的大小.18.(本小题共12分)某条公共汽车线路沿线共有11个车站(包括起点站和终点站),在起点站开出的一辆公共汽车上有6位乘客,假设每位乘客在起点站之外的各个车站下车是等可能的.求: (I )这6位乘客在其不相同的车站下车的概率; (II )这6位乘客中恰有3人在终点站下车的概率;19.(本小题共14分)如图,矩形ABCD 的两条对角线相交于点(20)M ,,AB 边所在直线的方程为360x y --=点(11)T -,在AD 边所在直线上.(I )求AD 边所在直线的方程; (II )求矩形ABCD 外接圆的方程; (III )若动圆P 过点(20)N -,,且与矩形ABCD 的外接圆外切,求动圆P 的圆心的轨迹方程.20.(本小题共14分)已知函数y kx =与22(0)y x x =+≥的图象相交于11()A x y ,,22()B x y ,,1l ,2l 分别是22(0)y x x =+≥的图象在A B ,两点的切线,M N ,分别是1l ,2l 与x 轴的交点.(I )求k 的取值范围;(II )设t 为点M 的横坐标,当12x x <时,写出t 以1x 为自变量的函数式,并求其定义域和值域;(III )试比较OM 与ON 的大小,并说明理由(O 是坐标原点).OC ADB2007年普通高等学校招生全国统一考试 数学(文史类)(北京卷)参考答案一、选择题(本大题共8小题,每小题5分,共40分)题号1 2 3 4 5 6 7 8 答案C B BD A C D C 1.∵ cos tan 0θθ<,∴ 当cos θ<0,tan θ>0时,θ∈第三象限;当cos θ>0,tan θ<0时,θ∈第四象限,选C 。
2007年全国统一高考数学试卷(理科)(全国卷一)及解析
2007年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题4分,满分48分)1.(4分)α是第四象限角,,则sinα=()A.B.C. D.2.(4分)设a是实数,且是实数,则a=()A.B.1 C.D.23.(4分)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向4.(4分)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A. B. C. D.5.(4分)设a,b∈R,集合{1,a+b,a}={0,,b},则b﹣a=()A.1 B.﹣1 C.2 D.﹣26.(4分)下面给出的四个点中,到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)7.(4分)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.8.(4分)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A. B.2 C.D.49.(4分)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件10.(4分)的展开式中,常数项为15,则n=()A.3 B.4 C.5 D.611.(4分)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.812.(4分)函数f(x)=cos2x﹣2cos2的一个单调增区间是()A.B. C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有种.(用数字作答)14.(5分)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=.15.(5分)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.16.(5分)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为.三、解答题(共6小题,满分82分)17.(12分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)求cosA+sinC的取值范围.18.(12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.19.(14分)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC ⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.20.(14分)设函数f(x)=e x﹣e﹣x(Ⅰ)证明:f(x)的导数f′(x)≥2;(Ⅱ)若对所有x≥0都有f(x)≥ax,求a的取值范围.21.(14分)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.22.(16分)已知数列{a n}中,a1=2,,n=1,2,3,…(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n}中,b1=2,,n=1,2,3,…,证明:,n=1,2,3,…2007年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.(4分)(2007•全国卷Ⅰ)α是第四象限角,,则sinα=()A.B.C. D.【分析】根据tanα=,sin2α+cos2α=1,即可得答案.【解答】解:∵α是第四象限角,=,sin2α+cos2α=1,∴sinα=﹣.故选D.2.(4分)(2007•全国卷Ⅰ)设a是实数,且是实数,则a=()A.B.1 C.D.2【分析】复数分母实数化,化简为a+bi(a、b∈R)的形式,虚部等于0,可求得结果.【解答】解.设a是实数,=是实数,则a=1,故选B.3.(4分)(2007•全国卷Ⅰ)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向【分析】根据向量平行垂直坐标公式运算即得.【解答】解:∵向量,,得,∴⊥,故选A.4.(4分)(2007•全国卷Ⅰ)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A. B. C. D.【分析】根据焦点坐标求得c,再根据离心率求得a,最后根据b=求得b,双曲线方程可得.【解答】解.已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则c=4,a=2,b2=12,双曲线方程为,故选A.5.(4分)(2007•全国卷Ⅰ)设a,b∈R,集合{1,a+b,a}={0,,b},则b﹣a=()A.1 B.﹣1 C.2 D.﹣2【分析】根据题意,集合,注意到后面集合中有元素0,由集合相等的意义,结合集合中元素的特征,可得a+b=0,进而分析可得a、b的值,计算可得答案.【解答】解:根据题意,集合,又∵a≠0,∴a+b=0,即a=﹣b,∴,b=1;故a=﹣1,b=1,则b﹣a=2,故选C.6.(4分)(2007•全国卷Ⅰ)下面给出的四个点中,到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)【分析】要找出到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点,我们可以将答案中的四个点逐一代入验证,不难得到结论.【解答】解.给出的四个点中,(1,1),(﹣1,1),(﹣1,﹣1)三点到直线x﹣y+1=0的距离都为,但∵,仅有(﹣1,﹣1)点位于表示的平面区域内故选C7.(4分)(2007•全国卷Ⅰ)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.【分析】先通过平移将两条异面直线平移到同一个起点B,得到的锐角∠A1BC1就是异面直线所成的角,在三角形中A1BC1用余弦定理求解即可.【解答】解.如图,连接BC1,A1C1,∠A1BC1是异面直线A1B与AD1所成的角,设AB=a,AA 1=2a,∴A1B=C1B=a,A1C1=a,∠A1BC1的余弦值为,故选D.8.(4分)(2007•全国卷Ⅰ)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A. B.2 C.D.4【分析】因为a>1,函数f(x)=log a x是单调递增函数,最大值与最小值之分别为log a2a、log a a=1,所以log a2a﹣log a a=,即可得答案.【解答】解.∵a>1,∴函数f(x)=log a x在区间[a,2a]上的最大值与最小值之分别为log a2a,log a a,∴log a2a﹣log a a=,∴,a=4,故选D9.(4分)(2008•上海)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件【分析】本题主要是抽象函数奇偶性的判断,只能根据定义,而要否定奇偶性,一般用特值.【解答】解.若“f(x),g(x)均为偶函数”,则有f(﹣x)=f(x),g(﹣x)=g(x),∴h(﹣x)=f(﹣x)+g(﹣x)=f(x)+g(x)=h(x),∴“h(x)为偶函数”,而反之取f(x)=x2+x,g(x)=2﹣x,h(x)=x2+2是偶函数,而f(x),g(x)均不是偶函数”,故选B10.(4分)(2007•全国卷Ⅰ)的展开式中,常数项为15,则n=()A.3 B.4 C.5 D.6【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为0求出常数项,据n的特点求出n的值.【解答】解:的展开式中,常数项为15,则,所以n可以被3整除,当n=3时,C31=3≠15,当n=6时,C62=15,故选项为D11.(4分)(2007•全国卷Ⅰ)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK ⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.8【分析】先根据抛物线方程求出焦点坐标和准线方程,进而可得到过F且斜率为的直线方程然后与抛物线联立可求得A的坐标,再由AK⊥l,垂足为K,可求得K的坐标,根据三角形面积公式可得到答案.【解答】解:∵抛物线y2=4x的焦点F(1,0),准线为l:x=﹣1,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A(3,2),AK⊥l,垂足为K(﹣1,2),∴△AKF的面积是4故选C.12.(4分)(2007•全国卷Ⅰ)函数f(x)=cos2x﹣2cos2的一个单调增区间是()A.B. C.D.【分析】化简函数为关于cosx的二次函数,然后换元,分别求出单调区间判定选项的正误.【解答】解.函数=cos2x﹣cosx﹣1,原函数看作g(t)=t2﹣t﹣1,t=cosx,对于g(t)=t2﹣t﹣1,当时,g(t)为减函数,当时,g(t)为增函数,当时,t=cosx减函数,且,∴原函数此时是单调增,故选A二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2007•全国卷Ⅰ)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有36种.(用数字作答)【分析】由题意知本题是一个有约束条件的排列组合问题,先从除甲与乙之外的其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,写出即可.【解答】解.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,∵先从其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,∴不同的选法共有C31•A42=3×4×3=36种.14.(5分)(2007•全国卷Ⅰ)函数y=f(x)的图象与函数y=log3x(x >0)的图象关于直线y=x对称,则f(x)=3x(x∈R).【分析】由题意推出f(x)与函数y=log3x(x>0)互为反函数,求解即可.【解答】解.函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)与函数y=log3x(x>0)互为反函数,f(x)=3x(x∈R)故答案为:3x(x∈R)15.(5分)(2007•全国卷Ⅰ)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.【分析】先根据等差中项可知4S2=S1+3S3,利用等比数列的求和公式用a1和q分别表示出S1,S2和S3,代入即可求得q.【解答】解:∵等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,∴a n=a1q n﹣1,又4S2=S1+3S3,即4(a1+a1q)=a1+3(a1+a1q+a1q2),解.故答案为16.(5分)(2007•全国卷Ⅰ)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为2.【分析】由于正三棱柱的底面ABC为等边三角形,我们把一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,结合图形的对称性可得,该三角形的斜边EF上的中线DG的长等于底面三角形的高,从而得出等腰直角三角形DEF的中线长,最后得到该三角形的斜边长即可.【解答】解:一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,∠EDF=90°,已知正三棱柱的底面边长为AB=2,则该三角形的斜边EF上的中线DG=,∴斜边EF的长为2.故答案为:2.三、解答题(共6小题,满分82分)17.(12分)(2007•全国卷Ⅰ)设锐角三角形ABC的内角A,B,C 的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)求cosA+sinC的取值范围.【分析】(1)先利用正弦定理求得sinB的值,进而求得B.(2)把(1)中求得B代入cosA+sinC中利用两角和公式化简整理,进而根据A的范围和正弦函数的性质求得cosA+sinC的取值范围.【解答】解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由△ABC为锐角三角形得.(Ⅱ)===.由△ABC为锐角三角形知,0<A<,0<﹣A<,∴<A<,,所以.由此有<,所以,cosA+sinC的取值范围为(,).18.(12分)(2007•全国卷Ⅰ)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.【分析】(Ⅰ)由题意知购买该商品的3位顾客中至少有1位采用1期付款的对立事件是购买该商品的3位顾客中无人采用1期付款,根据对立事件的概率公式得到结果.(2)根据顾客采用的付款期数ξ的分布列对应于η的可能取值为200元,250元,300元.得到变量对应的事件的概率,写出变量的分布列和期望.【解答】解:(Ⅰ)由题意知购买该商品的3位顾客中至少有1位采用1期付款的对立事件是购买该商品的3位顾客中无人采用1期付款,设A表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知表示事件“购买该商品的3位顾客中无人采用1期付款”,∴.(Ⅱ)根据顾客采用的付款期数ξ的分布列对应于η的可能取值为200元,250元,300元.得到变量对应的事件的概率P(η=200)=P(ξ=1)=0.4,P(η=250)=P(ξ=2)+P(ξ=3)=0.2+0.2=0.4,P(η=300)=1﹣P(η=200)﹣P(η=250)=1﹣0.4﹣0.4=0.2.∴η的分布列为∴Eη=200×0.4+250×0.4+300×0.2=240(元).19.(14分)(2007•全国卷Ⅰ)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.【分析】解法一:(1)作SO⊥BC,垂足为O,连接AO,说明SO⊥底面ABCD.利用三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,设AD∥BC,连接SE.说明∠ESD为直线SD与平面SBC所成的角,通过,求出直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,通过证明,推出SA⊥BC.(Ⅱ).与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,利用α与β互余.通过,,推出直线SD与平面SBC所成的角为.【解答】解法一:(1)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥底面ABCD.因为SA=SB,所以AO=BO,又∠ABC=45°,故△AOB为等腰直角三角形,AO⊥BO,由三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,依题设AD∥BC,故SA⊥AD,由,,.又,作DE⊥BC,垂足为E,则DE⊥平面SBC,连接SE.∠ESD为直线SD与平面SBC所成的角.所以,直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥平面ABCD.因为SA=SB,所以AO=BO.又∠ABC=45°,△AOB为等腰直角三角形,AO⊥OB.如图,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,因为,,又,所以,,.S(0,0,1),,,,所以SA⊥BC.(Ⅱ),.与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,所以α与β互余.,,所以,直线SD与平面SBC所成的角为.20.(14分)(2007•全国卷Ⅰ)设函数f(x)=e x﹣e﹣x(Ⅰ)证明:f(x)的导数f′(x)≥2;(Ⅱ)若对所有x≥0都有f(x)≥ax,求a的取值范围.【分析】(Ⅰ)先求出f(x)的导函数,利用a+b≥2当且仅当a=b 时取等号.得到f'(x)≥2;(Ⅱ)把不等式变形令g(x)=f(x)﹣ax并求出导函数令其=0得到驻点,在x≥0上求出a的取值范围即可.【解答】解:(Ⅰ)f(x)的导数f'(x)=e x+e﹣x.由于,故f'(x)≥2.(当且仅当x=0时,等号成立).(Ⅱ)令g(x)=f(x)﹣ax,则g'(x)=f'(x)﹣a=e x+e﹣x﹣a,(ⅰ)若a≤2,当x>0时,g'(x)=e x+e﹣x﹣a>2﹣a≥0,故g(x)在(0,+∞)上为增函数,所以,x≥0时,g(x)≥g(0),即f(x)≥ax.(ⅱ)若a>2,方程g'(x)=0的正根为,此时,若x∈(0,x1),则g'(x)<0,故g(x)在该区间为减函数.所以,x∈(0,x1)时,g(x)<g(0)=0,即f(x)<ax,与题设f(x)≥ax相矛盾.综上,满足条件的a的取值范围是(﹣∞,2].21.(14分)(2007•全国卷Ⅰ)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C 两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.【分析】(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,由此可以证出.(Ⅱ)设BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),由题意知|BD|=再求出|AC|=,由此可以求出四边形ABCD的面积的最小值.【解答】证明:(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,所以,.(Ⅱ)(ⅰ)当BD的斜率k存在且k≠0时,BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),则,|BD|=;因为AC与BD相交于点P,且AC的斜率为,所以,|AC|=.四边形ABCD的面积•|BD||AC|=.当k2=1时,上式取等号.(ⅱ)当BD的斜率k=0或斜率不存在时,四边形ABCD的面积S=4.综上,四边形ABCD的面积的最小值为.22.(16分)(2007•全国卷Ⅰ)已知数列{a n}中,a1=2,,n=1,2,3,…(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n}中,b1=2,,n=1,2,3,…,证明:,n=1,2,3,…【分析】(Ⅰ)先对进行整理可得到,即数列是首项为,公比为的等比数列,再由等比数列的通项公式可得到,进而得到.(Ⅱ)用数学归纳法证明.当n=1时可得到b1=a1=2满足条件,然后假设当n=k时满足条件进而得到当n=k+1时再对进行整理得到=,进而可得证.【解答】解:(Ⅰ)由题设:==,.所以,数列是首项为,公比为的等比数列,,即a n的通项公式为,n=1,2,3,.(Ⅱ)用数学归纳法证明.(ⅰ)当n=1时,因,b 1=a1=2,所以,结论成立.(ⅱ)假设当n=k时,结论成立,即,也即.当n=k+1时,==,又,所以=.也就是说,当n=k+1时,结论成立.根据(ⅰ)和(ⅱ)知,n=1,2,3,.。
2007年高考数学试题分类汇编直线和圆的方程.
2007年高考数学试题分类汇编直线和圆的方程重庆文(8)若直线1+=kx y 与圆122=+y x 相交于P 、Q 两点,且∠POQ =120°(其中O 为原点),则k 的值为(A )⎪⎭⎫ ⎝⎛-72,73 (B )⎪⎭⎫ ⎝⎛-214,72 (C )⎪⎭⎫ ⎝⎛-72,73 (D )⎪⎭⎫ ⎝⎛-214,72 天津文(3) “2a =”是“直线20ax y +=平行于直线1x y +=”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件(14)已知两圆2210x y +=和22(1)(3)20x y -+-=相交于A B ,两点,则直线AB 的方程是 .30x y +=四川文15、已知O 的方程是2220x y +-=,'O 的方程是228100x y x +-+=,由动点P 向O 和'O 所引的切线长相等,则运点P 的轨迹方程是__________________ 解析:O :圆心(0,0)O ,半径r ='O :圆心'(4,0)O ,半径'r =设(,)P x y ,由切线长相等得 222x y +-=22810x y x +-+,32x =. 上海理11、已知圆的方程()2211x y +-=,P 为圆上任意一点(不包括原点)。
直线OP 的倾斜角为θ弧度,OP d =,则()d fθ=的图象大致为_____2sin θ 正弦函数 上海文11.如图,A B ,是直线l 上的两点,且2=AB A B ,点,C 是这两个圆的公共点,则圆弧AC ,CB 线段AB 围成图形面积S 的取值范围是 . π022⎛⎤- ⎥⎝⎦,13.圆01222=--+x y x 关于直线032=+-y x 对称的圆的方程是( )A.21)2()3(22=-++y x B.21)2()3(22=++-y x C.2)2()3(22=-++y xD.2)2()3(22=++-y x山东理 (15)与直线20x y +-=和曲线221212540x y x y +---=都相切的半径最小的圆的标准方程是 .江西理16.设有一组圆224*:(1)(3)2()k C x k y k k k -++-=∈N .下列四个命题: A.存在一条定直线与所有的圆均相切B.存在一条定直线与所有的圆均相交C.存在一条定直线与所有的圆均不.相交 D.所有的圆均不.经过原点 其中真命题的代号是.(写出所有真命题的代号) B D ,湖南理 11.圆心为(11),且与直线4x y +=相切的圆的方程是 .22(1)(1)2x y -+-=湖北文8.由直线1y x =+上的一点向圆22(3)1x y -+=引切线,则切线长的最小值为( )A .1B. CD .3 安徽文(5)若圆04222=--+y x y x 的圆心到直线0=+-a y x 的距离为22,则a 的值为 (A)-2或2 (B)2321或 (C)2或0 (D)-2或0(9)如果点P 在平面区域⎪⎩⎪⎨⎧≥-≤-+≥+-01202022y y x y x 上,点O 在曲线的那么上||,1)2(22PQ y x =++最小值为 (A)23 (B)154- (C)122- (D)12-。
2007年全国统一高考数学试卷(理科)(全国卷Ⅱ)及答案(分析解答)
2007年全国统一高考数学试卷(理科)(全国卷Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)求值sin210°=()A.B.﹣C.D.﹣2.(5分)函数y=|sinx|的一个单调增区间是()A.B.C.D.3.(5分)设复数z满足=i,则z=()A.﹣2+i B.﹣2﹣i C.2﹣i D.2+i4.(5分)以下四个数中的最大者是()A.(ln2)2B.ln(ln2)C.ln D.ln25.(5分)在△ABC中,已知D是AB边上一点,若=2,=,则λ=()A.B.C.﹣ D.﹣6.(5分)不等式的解集是()A.(2,+∞)B.(﹣2,1)∪(2,+∞) C.(﹣2,1)D.(﹣∞,﹣2)∪(1,+∞)7.(5分)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.8.(5分)已知曲线的一条切线的斜率为,则切点的横坐标为()A.3 B.2 C.1 D.9.(5分)把函数y=e x的图象按向量=(2,3)平移,得到y=f(x)的图象,则f(x)=()A.e x﹣3+2 B.e x+3﹣2 C.e x﹣2+3 D.e x+2﹣310.(5分)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有()A.40种B.60种C.100种D.120种11.(5分)设F1,F2分别是双曲线的左、右焦点.若双曲线上存在点A,使∠F1AF2=90°,且|AF1|=3|AF2|,则双曲线离心率为()A.B.C.D.12.(5分)设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若++=,则的值为()A.3 B.4 C.6 D.9二、填空题(共4小题,每小题5分,满分20分)13.(5分)(1+2x2)(x﹣)8的展开式中常数项为.14.(5分)在某项测量中,测量结果ξ服从正态分布N(1,2),若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为.15.(5分)一个正四棱柱的各个顶点在一个直径为2cm的球面上.如果正四棱柱的底面边长为1cm,那么该棱柱的表面积为cm2.16.(5分)已知数列的通项a n=﹣5n+2,其前n项和为S n,则=.三、解答题(共6小题,满分70分)17.(10分)在△ABC中,已知内角A=,边BC=2,设内角B=x,周长为y (1)求函数y=f(x)的解析式和定义域;(2)求y的最大值.18.(12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率P(A)=0.96.(1)求从该批产品中任取1件是二等品的概率p;(2)若该批产品共100件,从中任意抽取2件,求事件B:“取出的2件产品中至少有一件二等品”的概率P(B).19.(12分)如图,在四棱锥S﹣ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点(1)求证:EF∥平面SAD(2)设SD=2CD,求二面角A﹣EF﹣D的大小.20.(12分)在直角坐标系xOy中,以O为圆心的圆与直线:x﹣y=4相切(1)求圆O的方程(2)圆O与x轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求的取值范围.21.(12分)设数列{a n}的首项a1∈(0,1),a n=,n=2,3,4…(1)求{a n}的通项公式;,其中n为正整数.(2)设,求证b n<b n+122.(12分)已知函数f(x)=x3﹣x(1)求曲线y=f(x)在点M(t,f(t))处的切线方程(2)设a>0,如果过点(a,b)可作曲线y=f(x)的三条切线,证明:﹣a<b <f(a)2007年全国统一高考数学试卷(理科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2007•全国卷Ⅱ)求值sin210°=()A.B.﹣C.D.﹣【分析】通过诱导公式得sin 210°=﹣sin(210°﹣180°)=﹣sin30°得出答案.【解答】解:∵sin 210°=﹣sin(210°﹣180°)=﹣sin30°=﹣故答案为D2.(5分)(2007•全国卷Ⅱ)函数y=|sinx|的一个单调增区间是()A.B.C.D.【分析】画出y=|sinx|的图象即可得到答案.【解答】解:根据y=|sinx|的图象,如图,函数y=|sinx|的一个单调增区间是,故选C.3.(5分)(2007•全国卷Ⅱ)设复数z满足=i,则z=()A.﹣2+i B.﹣2﹣i C.2﹣i D.2+i【分析】将复数z设a+bi,(a,b∈R),代入复数方程,利用复数相等的条件解出复数z.【解答】解:设复数z=a+bi,(a,b∈R)满足=i,∴1+2i=ai﹣b,,∴z=2﹣i,故选C.4.(5分)(2007•全国卷Ⅱ)以下四个数中的最大者是()A.(ln2)2B.ln(ln2)C.ln D.ln2【分析】根据lnx是以e>1为底的单调递增的对数函数,且e>2,可知0<ln2<1,ln(ln2)<0,故可得答案.【解答】解:∵0<ln2<1,∴ln(ln2)<0,(ln2)2<ln2,而ln=ln2<ln2,∴最大的数是ln2,故选D.5.(5分)(2007•全国卷Ⅱ)在△ABC中,已知D是AB边上一点,若=2,=,则λ=()A.B.C.﹣ D.﹣【分析】本题要求字母系数,办法是把表示出来,表示时所用的基底要和题目中所给的一致,即用和表示,画图观察,从要求向量的起点出发,沿着三角形的边走到终点,把求出的结果和给的条件比较,写出λ.【解答】解:在△ABC中,已知D是AB边上一点∵=2,=,∴=,∴λ=,故选A.6.(5分)(2007•全国卷Ⅱ)不等式的解集是()A.(2,+∞)B.(﹣2,1)∪(2,+∞) C.(﹣2,1)D.(﹣∞,﹣2)∪(1,+∞)【分析】首先不等式的分母可化为(x+2)(x﹣2),不等式的分子和分母共由3个一次因式构成.要使得原不等式大于0,可等同于3个因式的乘积大于0,再可根据串线法直接求解.【解答】解:依题意,原不等式可化为等同于(x+2)(x﹣1)(x﹣2)>0,可根据串线法直接解得﹣2<x<1或x>2,故答案应选B.7.(5分)(2007•全国卷Ⅱ)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.【分析】根据正三棱柱及线面角的定义知,取A1C1的中点D1,∠B1AD1是所求的角,再由已知求出正弦值.【解答】解:取A1C1的中点D1,连接B1D1,AD1,在正三棱柱ABC﹣A1B1C1中,B1D1⊥面ACC1A1,则∠B1AD1是AB1与侧面ACC1A1所成的角,∵正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,∴,故选A.8.(5分)(2007•全国卷Ⅱ)已知曲线的一条切线的斜率为,则切点的横坐标为()A.3 B.2 C.1 D.【分析】根据斜率,对已知函数求导,解出横坐标,要注意自变量的取值区间.【解答】解:设切点的横坐标为(x0,y0)∵曲线的一条切线的斜率为,∴y′=﹣=,解得x0=3或x0=﹣2(舍去,不符合题意),即切点的横坐标为3故选A.9.(5分)(2007•全国卷Ⅱ)把函数y=e x的图象按向量=(2,3)平移,得到y=f(x)的图象,则f(x)=()A.e x﹣3+2 B.e x+3﹣2 C.e x﹣2+3 D.e x+2﹣3【分析】平移向量=(h,k)就是将函数的图象向右平移h个单位,再向上平移k个单位.【解答】解:把函数y=e x的图象按向量=(2,3)平移,即向右平移2个单位,再向上平移3个单位,平移后得到y=f(x)的图象,∴f(x)=e x﹣2+3,故选C.10.(5分)(2009•湖北)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有()A.40种B.60种C.100种D.120种【分析】分2步进行,首先从5人中抽出两人在星期五参加活动,再从剩下的3人中,抽取两人安排在星期六、星期日参加活动,分别计算其情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,首先从5人中抽出两人在星期五参加活动,有C52种情况,再从剩下的3人中,抽取两人安排在星期六、星期日参加活动,有A32种情况,则由分步计数原理,可得不同的选派方法共有C52A32=60种,故选B.11.(5分)(2007•全国卷Ⅱ)设F1,F2分别是双曲线的左、右焦点.若双曲线上存在点A,使∠F1AF2=90°,且|AF1|=3|AF2|,则双曲线离心率为()A.B.C.D.【分析】由题设条件设|AF2|=1,|AF1|=3,双曲线中2a=|AF1|﹣|AF2|=2,,由此可以求出双曲线的离心率.【解答】解:设F1,F2分别是双曲线的左、右焦点.若双曲线上存在点A,使∠F1AF2=90°,且|AF1|=3|AF2|,设|AF2|=t,|AF1|=3t,(t>0)双曲线中2a=|AF1|﹣|AF2|=2t,t,∴离心率,故选B.12.(5分)(2007•全国卷Ⅱ)设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若++=,则的值为()A.3 B.4 C.6 D.9【分析】先设A(x1,y1),B(x2,y2),C(x3,y3),根据抛物线方程求得焦点坐标和准线方程,再依据=0,判断点F是△ABC重心,进而可求x1+x2+x3的值.最后根据抛物线的定义求得答案.【解答】解:设A(x1,y1),B(x2,y2),C(x3,y3)抛物线焦点坐标F(1,0),准线方程:x=﹣1∵=,∴点F是△ABC重心则x1+x2+x3=3y1+y2+y3=0而|FA|=x1﹣(﹣1)=x1+1|FB|=x2﹣(﹣1)=x2+1|FC|=x3﹣(﹣1)=x3+1∴|FA|+|FB|+|FC|=x1+1+x2+1+x3+1=(x1+x2+x3)+3=3+3=6故选C二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2007•全国卷Ⅱ)(1+2x2)(x﹣)8的展开式中常数项为﹣42.【分析】将问题转化成的常数项及含x﹣2的项,利用二项展开式的通项公式求出第r+1项,令x的指数为0,﹣2求出常数项及含x﹣2的项,进而相加可得答案.【解答】解:先求的展开式中常数项以及含x﹣2的项;由8﹣2r=0得r=4,由8﹣2r=﹣2得r=5;即的展开式中常数项为C84,含x﹣2的项为C85(﹣1)5x﹣2∴的展开式中常数项为C84﹣2C85=﹣42故答案为﹣4214.(5分)(2007•全国卷Ⅱ)在某项测量中,测量结果ξ服从正态分布N(1,2),若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为0.8.【分析】根据ξ服从正态分布N(1,),得到正态分布图象的对称轴为x=1,根据在(0,1)内取值的概率为0.4,根据根据随机变量ξ在(1,2)内取值的概率与ξ在(0,1)内取值的概率相同,得到随机变量ξ在(0,2)内取值的概率.【解答】解:∵测量结果ξ服从正态分布N(1,),∴正态分布图象的对称轴为x=1,在(0,1)内取值的概率为0.4,∴随机变量ξ在(1,2)内取值的概率与ξ在(0,1)内取值的概率相同,也为0.4,∴随机变量ξ在(0,2)内取值的概率为0.8.故答案为:0.815.(5分)(2007•全国卷Ⅱ)一个正四棱柱的各个顶点在一个直径为2cm的球面上.如果正四棱柱的底面边长为1cm,那么该棱柱的表面积为2+4cm2.【分析】本题考查的知识点是棱柱的体积与表面积计算,由一个正四棱柱的各个顶点在一个直径为2cm的球面上.如果正四棱柱的底面边长为1cm,我们根据球的直径等于棱柱的对角线长,我们可以求出棱柱的各棱的长度,进而得到其表面积.【解答】解:由一个正四棱柱的各个顶点在一个直径为2cm的球面上.正四棱柱的对角线的长为球的直径,现正四棱柱底面边长为1cm,设正四棱柱的高为h,∴2R=2=,解得h=,那么该棱柱的表面积为2+4cm2.故答案为:2+416.(5分)(2007•全国卷Ⅱ)已知数列的通项a n=﹣5n+2,其前n项和为S n,则=.【分析】由通项公式知该数列是等差数列,先求出首项和公差,然后求出其前n 项和,由此能得到的值.【解答】解:∵数列的通项a n=﹣5n+2,∴a1=﹣3,a2=﹣8,d=﹣5.∴其前n项和为S n,则=﹣.故答案为:﹣.三、解答题(共6小题,满分70分)17.(10分)(2007•全国卷Ⅱ)在△ABC中,已知内角A=,边BC=2,设内角B=x,周长为y(1)求函数y=f(x)的解析式和定义域;(2)求y的最大值.【分析】(1)由内角A=,边BC=2,设内角B=x,周长为y,我们结合三角形的性质,△ABC的内角和A+B+C=π,△ABC的周长y=AB+BC+AC,我们可以结合正弦定理求出函数的解析式,及自变量的取值范围.(2)要求三角函数的最值,我们要利用辅助角公式,将函数的解析式,化为正弦型函数的形式,再根据正弦型函数的最值的求法进行求解.【解答】解:(1)△ABC的内角和A+B+C=π,由得.应用正弦定理,知,.因为y=AB+BC+AC,所以,(2)∵=,所以,当,即时,y取得最大值.18.(12分)(2007•全国卷Ⅱ)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率P(A)=0.96.(1)求从该批产品中任取1件是二等品的概率p;(2)若该批产品共100件,从中任意抽取2件,求事件B:“取出的2件产品中至少有一件二等品”的概率P(B).【分析】(1)有放回地抽取产品二次,每次随机抽取1件,取出的2件产品中至多有1件是二等品包括无二等品和恰有一件是二等品两种情况,设出概率,列出等式,解出结果.(2)由上面可以知道其中二等品有100×0.2=20件取出的2件产品中至少有一件二等品的对立事件是没有二等品,用组合数列出结果.【解答】解:(1)记A0表示事件“取出的2件产品中无二等品”,A1表示事件“取出的2件产品中恰有1件二等品”.则A0,A1互斥,且A=A0+A1,故P(A)=P(A0+A1)=P(A0)+P(A1)=(1﹣p)2+C21p(1﹣p)=1﹣p2于是0.96=1﹣p2.解得p1=0.2,p2=﹣0.2(舍去).(2)记B0表示事件“取出的2件产品中无二等品”,则.若该批产品共100件,由(1)知其中二等品有100×0.2=20件,故.19.(12分)(2007•全国卷Ⅱ)如图,在四棱锥S﹣ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点(1)求证:EF∥平面SAD(2)设SD=2CD,求二面角A﹣EF﹣D的大小.【分析】法一:(1)作FG∥DC交SD于点G,则G为SD的中点.要证EF∥平面SAD,只需证明EF平行平面SAD内的直线AG即可.(2)取AG中点H,连接DH,说明∠DMH为二面角A﹣EF﹣D的平面角,解三角形求二面角A﹣EF﹣D的大小.法二:建立空间直角坐标系,平面SAD即可证明(1);(2)求出向量和,利用,即可解答本题.【解答】解:法一:(1)作FG∥DC交SD于点G,则G为SD的中点.连接,又,故为平行四边形.EF∥AG,又AG⊂平面SAD,EF⊄平面SAD.所以EF∥平面SAD.(2)不妨设DC=2,则SD=4,DG=2,△ADG为等腰直角三角形.取AG中点H,连接DH,则DH⊥AG.又AB⊥平面SAD,所以AB⊥DH,而AB∩AG=A,所以DH⊥面AEF.取EF中点M,连接MH,则HM⊥EF.连接DM,则DM⊥EF.故∠DMH为二面角A﹣EF﹣D的平面角.所以二面角A﹣EF﹣D的大小为.法二:(1)如图,建立空间直角坐标系D﹣xyz.设A(a,0,0),S(0,0,b),则B(a,a,0),C(0,a,0),,.取SD的中点,则.平面SAD,EF⊄平面SAD,所以EF∥平面SAD.(2)不妨设A(1,0,0),则B(1,1,0),C(0,1,0),S(0,0,2),,.EF中点,,,又,,所以向量和的夹角等于二面角A﹣EF﹣D的平面角..所以二面角A﹣EF﹣D的大小为.20.(12分)(2007•全国卷Ⅱ)在直角坐标系xOy中,以O为圆心的圆与直线:x﹣y=4相切(1)求圆O的方程(2)圆O与x轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求的取值范围.【分析】首先分析到题目(1)中圆是圆心在原点的标准方程,由切线可直接求得半径,即得到圆的方程.对于(2)根据圆内的动点P使|PA|、|PO|、|PB|成等比数列,列出方程,再根据点P在圆内求出取值范围.【解答】解:(1)依题设,圆O的半径r等于原点O到直线的距离,即.得圆O的方程为x2+y2=4.(2)不妨设A(x1,0),B(x2,0),x1<x2.由x2=4即得A(﹣2,0),B(2,0).设P(x,y),由|PA|,|PO|,|PB|成等比数列,得,两边平方,可得(x2+y2+4)2﹣16x2=(x2+y2)2,化简整理可得,x2﹣y2=2.=x2﹣4+y2=2(y2﹣1).由于点P在圆O内,故由此得y2<1.所以的取值范围为[﹣2,0).21.(12分)(2007•全国卷Ⅱ)设数列{a n}的首项a1∈(0,1),a n=,n=2,3,4…(1)求{a n}的通项公式;(2)设,求证b n<b n+1,其中n为正整数.【分析】(1)由题条件知,所以{1﹣a n}是首项为1﹣a1,公比为的等比数列,由此可知(2)方法一:由题设条件知,故b n>0.那么,b n+12﹣bn2=an+12(3﹣2a n+1)﹣a n2(3﹣2a n)=由此可知b n<b n+1,n为正整数.方法二:由题设条件知,所以.由此可知b n<b n+1,n为正整数.【解答】解:(1)由,整理得.又1﹣a1≠0,所以{1﹣a n}是首项为1﹣a1,公比为的等比数列,得(2)方法一:由(1)可知,故b n>0.那么,b n+12﹣bn2=a n+12(3﹣2a n+1)﹣a n2(3﹣2a n)==又由(1)知a n>0且a n≠1,故b n+12﹣bn2>0,因此b n<b n+1,n为正整数.方法二:由(1)可知,因为,所以.由a n≠1可得,即两边开平方得.即b n<b n+1,n为正整数.22.(12分)(2007•全国卷Ⅱ)已知函数f(x)=x3﹣x(1)求曲线y=f(x)在点M(t,f(t))处的切线方程(2)设a>0,如果过点(a,b)可作曲线y=f(x)的三条切线,证明:﹣a<b <f(a)【分析】(1)求出f′(x),根据切点为M(t,f(t)),得到切线的斜率为f'(t),所以根据斜率和M点坐标写出切线方程即可;(2)设切线过点(a,b),则存在t使b=(3t2﹣1)a﹣2t3,于是过点(a,b)可作曲线y=f(x)的三条切线即为方程2t3﹣3at2+a+b=0有三个相异的实数根.记g(t)=2t3﹣3at2+a+b,求出其导函数=0时t的值,利用t的值分区间讨论导函数的正负得到g(t)的单调区间,利用g(t)的增减性得到g(t)的极值,根据极值分区间考虑方程g(t)=0有三个相异的实数根,得到极大值大于0,极小值小于0列出不等式,求出解集即可得证.【解答】解:(1)求函数f(x)的导函数;f'(x)=3x2﹣1.曲线y=f(x)在点M(t,f(t))处的切线方程为:y﹣f(t)=f'(t)(x﹣t),即y=(3t2﹣1)x﹣2t3;(2)如果有一条切线过点(a,b),则存在t,使b=(3t2﹣1)a﹣2t3.于是,若过点(a,b)可作曲线y=f(x)的三条切线,则方程2t3﹣3at2+a+b=0有三个相异的实数根.记g(t)=2t3﹣3at2+a+b,则g'(t)=6t2﹣6at=6t(t﹣a).当t变化时,g(t),g'(t)变化情况如下表:)由g(t)的单调性,当极大值a+b<0或极小值b﹣f(a)>0时,方程g(t)=0最多有一个实数根;当a+b=0时,解方程g(t)=0得,即方程g(t)=0只有两个相异的实数根;当b﹣f(a)=0时,解方程g(t)=0得,即方程g(t)=0只有两个相异的实数根.综上,如果过(a,b)可作曲线y=f(x)三条切线,即g(t)=0有三个相异的实数根,则即﹣a<b<f(a).。
2007年上海市高考数学试卷(理科)及解析
2007年上海市高考数学试卷(理科)一、填空题(共11小题,每小题4分,满分44分)1.(4分)函数的定义域为.2.(4分)已知l1:2x+my+1=0与l2:y=3x﹣1,若两直线平行,则m的值为.3.(4分)函数的反函数f﹣1(x)=4.(4分)方程9x﹣6•3x﹣7=0的解是.5.(4分)已知x,y∈R+,且x+4y=1,则x•y的最大值为.6.(4分)函数的最小正周期是T=7.(4分)有数字1、2、3、4、5,若从中任取三个数字,剩下两个数字为奇数的概率为8.(4分)已知双曲线,则以双曲线中心为焦点,以双曲线左焦点为顶点的抛物线方程为9.(4分)对于非零实数a,b,以下四个命题都成立:①;②(a+b)2=a2+2ab+b2;③若|a|=|b|,则a=±b;④若a2=ab,则a=b.那么,对于非零复数a,b,仍然成立的命题的所有序号是.10.(4分)平面内两直线有三种位置关系:相交,平行与重合.已知两个相交平面α,β与两直线l1,l2,又知l1,l2在α内的射影为s1,s2,在β内的射影为t1,t2.试写出s1,s2与t1,t2满足的条件,使之一定能成为l1,l2是异面直线的充分条件.11.(4分)已知圆的方程x2+(y﹣1)2=1,P为圆上任意一点(不包括原点).直线OP的倾斜角为θ弧度,|OP|=d,则d=f(θ)的图象大致为.二、选择题(共4小题,每小题4分,满分16分)12.(4分)已知a,b∈R,且2+ai,b+i(i是虚数单位)是实系数一元二次方程x2+px+q=0的两个根,那么p,q的值分别是()A.p=﹣4,q=5 B.p=﹣4,q=3 C.p=4,q=5 D.p=4,q=313.(4分)设a,b是非零实数,若a<b,则下列不等式成立的是()A.a2<b2B.ab2<a2b C.D.14.(4分)在直角坐标系xOy中,分别是与x轴,y轴平行的单位向量,若直角三角形ABC中,,,则k的可能值有()A.1个 B.2个 C.3个 D.4个15.(4分)已知f(x)是定义域为正整数集的函数,对于定义域内任意的k,若f(k)≥k2成立,则f(k+1)≥(k+1)2成立,下列命题成立的是()A.若f(3)≥9成立,则对于任意k≥1,均有f(k)≥k2成立;B.若f(4)≥16成立,则对于任意的k≥4,均有f(k)<k2成立;C.若f(7)≥49成立,则对于任意的k<7,均有f(k)<k2成立;D.若f(4)=25成立,则对于任意的k≥4,均有f(k)≥k2成立三、解答题(共6小题,满分90分)16.(15分)体积为1的直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=BC=1,求直线AB1与平面BCC1B1所成角.17.(15分)在三角形ABC中,,求三角形ABC的面积S.18.(15分)近年来,太阳能技术运用的步伐日益加快,已知2002年全球太阳能年生产量为670兆瓦,年增长率为34%.在此后的四年里,增长率以每年2%的速度增长(例如2003年的年生产量增长率为36%)(1)求2006年的太阳能年生产量(精确到0.1兆瓦)(2)已知2006年太阳能年安装量为1420兆瓦,在此后的4年里年生产量保持42%的增长率,若2010年的年安装量不少于年生产量的95%,求4年内年安装量的增长率的最小值(精确到0.1%)19.(15分)已知函数f(x)=x2+(x≠0,常数a∈R).(1)讨论函数f(x)的奇偶性,并说明理由;(2)若函数f(x)在[2,+∞)上为增函数,求实数a的取值范围.20.(15分)若有穷数列a1,a2…a n(n是正整数),满足a1=a n,a2=a n﹣1…a n=a1即a i=a n﹣i+1(i是正整数,且1≤i≤n),就称该数列为“对称数列”.(1)已知数列{b n}是项数为7的对称数列,且b1,b2,b3,b4成等差数列,b1=2,b4=11,试写出{b n}的每一项(2)已知{c n}是项数为2k﹣1(k≥1)的对称数列,且c k,c k+1…c2k﹣1构成首项为50,公差为﹣4的等差数列,数列{c n}的前2k﹣1项和为S2k﹣1,则当k为何值时,S2k﹣1取到最大值?最大值为多少?(3)对于给定的正整数m>1,试写出所有项数不超过2m的对称数列,使得1,2,22…2m﹣1成为数列中的连续项;当m>1500时,试求其中一个数列的前2008项和S2008.21.(15分)已知半椭圆与半椭圆组成的曲线称为“果圆”,其中a2=b2+c2,a>0,b>c>0.如图,设点F0,F1,F2是相应椭圆的焦点,A1,A2和B1,B2是“果圆”与x,y轴的交点,(1)若三角形F0F1F2是边长为1的等边三角形,求“果圆”的方程;(2)若|A1A|>|B1B|,求的取值范围;(3)一条直线与果圆交于两点,两点的连线段称为果圆的弦.是否存在实数k,使得斜率为k的直线交果圆于两点,得到的弦的中点的轨迹方程落在某个椭圆上?若存在,求出所有k的值;若不存在,说明理由.2007年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(共11小题,每小题4分,满分44分)1.(4分)(2007•上海)函数的定义域为{x|x<4且x≠3} .【分析】欲求此函数的定义域一定要满足:4﹣x>0,x﹣3≠0,进而求出x的取值范围,得到答案.【解答】解:由,解得:x<4且x≠3故答案为:{x|x<4且x≠3}2.(4分)(2007•上海)已知l1:2x+my+1=0与l2:y=3x﹣1,若两直线平行,则m的值为.【分析】两直线平行,则方程中一次项系数之比相等,但不等于常数项之比,接解出m的值.【解答】解:∵两直线平行,∴,故答案为﹣.3.(4分)(2007•上海)函数的反函数f﹣1(x)=【分析】本题考查反函数相关概念、求反函数的方法等相关知识.将函数的解析式看做方程,解出x,然后利用与函数的值域确定反函数的定义域即可.【解答】解:由解得:即:∴函数的反函数答案:4.(4分)(2007•上海)方程9x﹣6•3x﹣7=0的解是x=log37.【分析】把3x看做一个整体,得到关于它的一元二次方程求出解,利用对数定义得到x的解.【解答】解:把3x看做一个整体,(3x)2﹣6•3x﹣7=0;可得3x=7或3x=﹣1(舍去),∴x=log37.故答案为x=log375.(4分)(2007•上海)已知x,y∈R+,且x+4y=1,则x•y的最大值为.【分析】变形为x与4y的乘积,利用基本不等式求最大值【解答】解:,当且仅当x=4y=时取等号.故应填.6.(4分)(2007•上海)函数的最小正周期是T=π【分析】利用三角函数的和角公式,将原函数式化成y=Asin(ωx+φ)+B的形式,再结合三角函数的周期公式求出周期即可.【解答】解:==∴T=π.故填:π.7.(4分)(2007•上海)有数字1、2、3、4、5,若从中任取三个数字,剩下两个数字为奇数的概率为0.3【分析】从五个数字中任取三个数字有C53种取法,剩下的两个数字为奇数有C22C31种取法,两个求比值,得到要求的概率.【解答】解:由题意知,故答案为:0.38.(4分)(2007•上海)已知双曲线,则以双曲线中心为焦点,以双曲线左焦点为顶点的抛物线方程为y2=12(x+3)【分析】先根据双曲线方程求得双曲线的中心和焦点,进而求得抛物线中的p,得到抛物线方程.【解答】解:双曲线的中心坐标为(0,0),该双曲线的左焦点为F(﹣3,0)则抛物线的顶点为(﹣3,0),焦点为(0,0),所以p=6,故答案为y2=12(x+3).9.(4分)(2007•上海)对于非零实数a,b,以下四个命题都成立:①;②(a+b)2=a2+2ab+b2;③若|a|=|b|,则a=±b;④若a2=ab,则a=b.那么,对于非零复数a,b,仍然成立的命题的所有序号是②④.【分析】要熟悉复数的概念和性质及其基本运算.【解答】解:对于①:解方程得a=i,所以非零复数a=i使得,①不成立;②:显然成立;③:在复数集C中,|1|=|i|,则|a|=|b|,所以当a=i,b=1时,i=1不成立,所以③不成立;④:显然成立.则对于任意非零复数a,b,上述命题仍然成立的所有序号是②④所以应填上②④.10.(4分)(2007•上海)平面内两直线有三种位置关系:相交,平行与重合.已知两个相交平面α,β与两直线l1,l2,又知l1,l2在α内的射影为s1,s2,在β内的射影为t1,t2.试写出s1,s2与t1,t2满足的条件,使之一定能成为l1,l2是异面直线的充分条件s1∥s2,并且t1与t2相交(t1∥t2,并且s1与s2相交).【分析】当两直线在一个平面内的射影是两条平行线,在另一个相交面内的射影是两条相交直线时,这两条直线一定是异面直线.【解答】解:两个相交平面α,β,当两直线在平面α内的射影是两条平行线,在平面β内的射影是两条相交直线时,这两直线是异面直线.当两直线在平面α内的射影是两条相交直线,在平面β内的射影是两条平行线时,这两直线也是异面直线.故“能成为l1,l2是异面直线的充分条件”的是“s1∥s2,并且t1与t2相交”或“t1∥t2,并且s1与s2相交”.故答案为:s1∥s2,并且t1与t2相交,或t1∥t2,并且s1与s2相交.11.(4分)(2007•上海)已知圆的方程x2+(y﹣1)2=1,P为圆上任意一点(不包括原点).直线OP的倾斜角为θ弧度,|OP|=d,则d=f(θ)的图象大致为.【分析】由图形可以看出,可以在OP与直径围成的三角形中通过解三角形求出d与θ的函数关系,再根据函数表达式作出图象即可.【解答】解:在直角三角形中,因直径的长度为2,其所邻的角为故故函数图象为故应填:二、选择题(共4小题,每小题4分,满分16分)12.(4分)(2007•上海)已知a,b∈R,且2+ai,b+i(i是虚数单位)是实系数一元二次方程x2+px+q=0的两个根,那么p,q的值分别是()A.p=﹣4,q=5 B.p=﹣4,q=3 C.p=4,q=5 D.p=4,q=3【分析】把根代入方程,利用复数相等列出方程组,可解出结果.【解答】解:分别将2+ai,b+i代入方程得:(2+ai)2+p(2+ai)+q=0①(b+i)2+p(b+i)+q=0②对①②整理得:;解得:p=﹣4,q=5.本题也可以用“韦达定理”求解:2+ai+b+i=﹣p③,(2+ai)(b+i)=q④对③④整理得:⇒故选A.13.(4分)(2007•上海)设a,b是非零实数,若a<b,则下列不等式成立的是()A.a2<b2B.ab2<a2b C.D.【分析】由不等式的相关性质,对四个选项逐一判断,由于a,b为非零实数,故可利用特例进行讨论得出正确选项【解答】解:A选项不正确,因为a=﹣2,b=1时,不等式就不成立;B选项不正确,因为a=1,b=2时,不等式就不成立;C选项正确,因为⇔a<b,故当a<b时一定有;D选项不正确,因为a=1,b=2时,不等式就不成立;选项正确,因为y=2x是一个增函数,故当a>b时一定有2a>2b,故选C.14.(4分)(2007•上海)在直角坐标系xOy中,分别是与x轴,y轴平行的单位向量,若直角三角形ABC中,,,则k的可能值有()A.1个 B.2个 C.3个 D.4个【分析】根据给的两个向量写出第三条边所对应的向量,分别检验三个角是直角时根据判断向量垂直的充要条件,若数量积为零,能做出对应的值则是,否则不是.【解答】解:∵(1)若A为直角,则;(2)若B为直角,则;(3)若C为直角,则.∴k的可能值个数是2,故选B15.(4分)(2007•上海)已知f(x)是定义域为正整数集的函数,对于定义域内任意的k,若f(k)≥k2成立,则f(k+1)≥(k+1)2成立,下列命题成立的是()A.若f(3)≥9成立,则对于任意k≥1,均有f(k)≥k2成立;B.若f(4)≥16成立,则对于任意的k≥4,均有f(k)<k2成立;C.若f(7)≥49成立,则对于任意的k<7,均有f(k)<k2成立;D.若f(4)=25成立,则对于任意的k≥4,均有f(k)≥k2成立【分析】由题意对于定义域内任意的k,若f(k)≥k2成立,则f(k+1)≥(k+1)2成立的含义是对前一个数成立,则能推出后一个数成立,反之不成立.【解答】解:对A,当k=1或2时,不一定有f(k)≥k2成立;对B,应有f(k)≥k2成立;对C,只能得出:对于任意的k≥7,均有f(k)≥k2成立,不能得出:任意的k <7,均有f(k)<k2成立;对D,∵f(4)=25≥16,∴对于任意的k≥4,均有f(k)≥k2成立.故选D三、解答题(共6小题,满分90分)16.(15分)(2007•上海)体积为1的直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=BC=1,求直线AB1与平面BCC1B1所成角.【分析】根据体积先求出AA1=CC1的长,连接BC1,易证∠A1BC1是直线A1B与平面BB1C1C所成的角,在直角三角形A1BC1中求出此角即可.【解答】解:由题意,可得体积,∴AA1=CC1=2.连接BC1.∵A1C1⊥B1C1,A1C1⊥CC1,∴A1C1⊥平面BB1C1C,∴∠A1BC1是直线A1B与平面BB1C1C所成的角.,∴,则∠A1BC1=;即直线A1B与平面BB1C1C所成角的大小为.17.(15分)(2007•上海)在三角形ABC中,,求三角形ABC的面积S.【分析】先根据cosB求出sinB的值,再由两角和与差的正弦公式求出sinA的值,由余弦定理求出c的值,最后根据三角形的面积公式求得最后答案.【解答】解:由题意,得为锐角,,,由正弦定理得,∴.18.(15分)(2007•上海)近年来,太阳能技术运用的步伐日益加快,已知2002年全球太阳能年生产量为670兆瓦,年增长率为34%.在此后的四年里,增长率以每年2%的速度增长(例如2003年的年生产量增长率为36%)(1)求2006年的太阳能年生产量(精确到0.1兆瓦)(2)已知2006年太阳能年安装量为1420兆瓦,在此后的4年里年生产量保持42%的增长率,若2010年的年安装量不少于年生产量的95%,求4年内年安装量的增长率的最小值(精确到0.1%)【分析】(1)根据年增长率可直接算出.(2)设平均增长率为x,根据题意可得安装量和生产量的比值,进而解不等式即可.【解答】解:(1)由已知得2003,2004,2005,2006年太阳电池的年生产量的增长率依次为36%,38%,40%,42%.则2006年全球太阳电池的年生产量为670×1.36×1.38×1.40×1.42≈2499.8(兆瓦).(2)设太阳电池的年安装量的平均增长率为x,则.解得x≥0.615.因此,这四年中太阳电池的年安装量的平均增长率至少应达到61.5%.19.(15分)(2007•上海)已知函数f(x)=x2+(x≠0,常数a∈R).(1)讨论函数f(x)的奇偶性,并说明理由;(2)若函数f(x)在[2,+∞)上为增函数,求实数a的取值范围.【分析】(1)x2为偶函数,欲判函数f(x)=x2+的奇偶性,只需判定的奇偶性,讨论a判定就可.(2)处理函数的单调性问题通常采用定义法好用.【解答】解:(1)当a=0时,f(x)=x2对任意x∈(﹣∞,0)∪(0,+∞),有f(﹣x)=(﹣x)2=x2=f(x),∴f(x)为偶函数.当a≠0时,f(x)=x2+(x≠0,常数a∈R),取x=±1,得f(﹣1)+f(1)=2≠0,f(﹣1)﹣f(1)=﹣2a≠0,∴f(﹣1)≠﹣f(1),f(﹣1)≠f(1).∴函数f(x)既不是奇函数也不是偶函数.(2)设2≤x1<x2,f(x1)﹣f(x2)==[x1x2(x1+x2)﹣a],要使函数f(x)在x∈[2,+∞)上为增函数,必须f(x1)﹣f(x2)<0恒成立.∵x1﹣x2<0,x1x2>4,即a<x1x2(x1+x2)恒成立.又∵x1+x2>4,∴x1x2(x1+x2)>16,∴a的取值范围是(﹣∞,16].20.(15分)(2007•上海)若有穷数列a1,a2…a n(n是正整数),满足a1=a n,a2=a n …a n=a1即a i=a n﹣i+1(i是正整数,且1≤i≤n),就称该数列为“对称数列”.﹣1(1)已知数列{b n}是项数为7的对称数列,且b1,b2,b3,b4成等差数列,b1=2,b4=11,试写出{b n}的每一项(2)已知{c n}是项数为2k﹣1(k≥1)的对称数列,且c k,c k+1…c2k﹣1构成首项为50,公差为﹣4的等差数列,数列{c n}的前2k﹣1项和为S2k﹣1,则当k为何值时,S2k﹣1取到最大值?最大值为多少?(3)对于给定的正整数m>1,试写出所有项数不超过2m的对称数列,使得1,2,22…2m﹣1成为数列中的连续项;当m>1500时,试求其中一个数列的前2008项和S2008.【分析】(1)设{b n}的公差为d,由b1,b2,b3,b4成等差数列求解d从而求得数列{b n},=﹣4(k﹣13)2+4×132﹣50,用二次函数求解,(2)先得到S2k﹣1(3)按照1,2,22…2m﹣1是数列中的连续项按照定义,用组合的方式写出来所有可能的数列,再按其数列的规律求前n项和取符合条件的一组即可.【解答】解:(1)设{b n}的公差为d,则b4=b1+3d=2+3d=11,解得d=3,∴数列{b n}为2,5,8,11,8,5,2.=c1+c2+…+c k﹣1+c k+c k+1+…+c2k﹣1=2(c k+c k+1+…+c2k﹣1)﹣c k,(2)S2k﹣1S2k﹣1=﹣4(k﹣13)2+4×132﹣50,取得最大值.S2k﹣1的最大值为626.∴当k=13时,S2k﹣1(3)所有可能的“对称数列”是:①1,2,22,2m﹣2,2m﹣1,2m﹣2,22,2,1;②1,2,22,2m﹣2,2m﹣1,2m﹣1,2m﹣2,22,2,1;③2m﹣1,2m﹣2,22,2,1,2,22,2m﹣2,2m﹣1;④2m﹣1,2m﹣2,22,2,1,1,2,22,2m﹣2,2m﹣1.对于①,当m≥2008时,S2008=1+2+22+…+22007=22008﹣1.当1500<m≤2007时,S2008=1+2+…+2m﹣2+2m﹣1+2m﹣2+…+22m﹣2009=2m﹣1+2m﹣1﹣22m ﹣2009=2m+2m﹣1﹣22m﹣2009﹣1.对于②,当m≥2008时,S2008=22008﹣1.当1500<m≤2007时,S2008=2m+1﹣22m﹣2008﹣1.对于③,当m≥2008时,S2008=2m﹣2m﹣2008.当1500<m≤2007时,S2008=2m+22009﹣m﹣3.对于④,当m≥2008时,S2008=2m﹣2m﹣2008.当1500<m≤2007时,S2008=2m+22008﹣m﹣2.21.(15分)(2007•上海)已知半椭圆与半椭圆组成的曲线称为“果圆”,其中a2=b2+c2,a>0,b>c>0.如图,设点F0,F1,F2是相应椭圆的焦点,A1,A2和B1,B2是“果圆”与x,y轴的交点,(1)若三角形F0F1F2是边长为1的等边三角形,求“果圆”的方程;(2)若|A1A|>|B1B|,求的取值范围;(3)一条直线与果圆交于两点,两点的连线段称为果圆的弦.是否存在实数k,使得斜率为k的直线交果圆于两点,得到的弦的中点的轨迹方程落在某个椭圆上?若存在,求出所有k的值;若不存在,说明理由.【分析】(1)因为,所以,由此可知“果圆”方程为,.(2)由题意,得,所以a2﹣b2>(2b﹣a)2,得.再由可知的取值范围.(3)设“果圆”C的方程为,.记平行弦的斜率为k.当k=0时,“果圆”平行弦的中点轨迹总是落在某个椭圆上.当k>0时,以k为斜率过B1的直线l与半椭圆的交点是.由此,在直线l右侧,以k为斜率的平行弦的中点轨迹在直线上,即不在某一椭圆上.当k<0时,可类似讨论得到平行弦中点轨迹不都在某一椭圆上.【解答】解:(1)∵,∴,于是,所求“果圆”方程为,(2)由题意,得a+c>2b,即.∵(2b)2>b2+c2=a2,∴a2﹣b2>(2b﹣a)2,得.又b2>c2=a2﹣b2,∴.∴.(3)设“果圆”C的方程为,.记平行弦的斜率为k.当k=0时,直线y=t(﹣b≤t≤b)与半椭圆的交点是P,与半椭圆的交点是Q.∴P,Q的中点M(x,y)满足得.∵a<2b,∴.综上所述,当k=0时,“果圆”平行弦的中点轨迹总是落在某个椭圆上.当k>0时,以k为斜率过B1的直线l与半椭圆的交点是.由此,在直线l右侧,以k为斜率的平行弦的中点为,轨迹在直线上,即不在某一椭圆上.当k<0时,可类似讨论得到平行弦中点轨迹不都在某一椭圆上.。
2007年高考数学卷(四川.理)含详解
2007年普通高等学校招生全国统一考试(四川卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3到10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n k kn n P P C k P --=)1()(一.选择题: (1)复数211i ii +-+的值是 (A )0 (B)1 (C)-1 (D)1(2)函数f (x )=1+log 2x 与g(x )=2-x +1在同一直角坐标系下的图象大致是(3)2211lim 21x x x x →-=-- (A )0 (B)1 (C)21 (D)32 (4)如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 (A )BD ∥平面CB 1D 1 (B )AC 1⊥BD(C )AC 1⊥平面CB 1D 1 (D )异面直线AD 与CB 1角为60° (5)如果双曲线12422=-y x 上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是 (A )364 (B )362 (C )62 (D )32(6)设球O 的半径是1,A 、B 、C 是球面上三点,已知A 到B 、C 两点的球面距离都是2π,且三面角B -OA -C 的大小为3π,则从A 点沿球面经B 、C 两点再回到A 点的最短距离是 (A )67π (B )45π (C )34π (D )23π(7)设A {a ,1},B {2,b },C {4,5},为坐标平面上三点,O 为坐标原点,若方向在与→→→OC OB OA 上的投影相同,则a 与b 满足的关系式为(A)354=-b a (B)345=-b a (C)1454=+b a (D)1445=+b a(8)已知抛物线32+-=x y 上存在关于直线0=+y x 对称的相异两点A 、B ,则|AB |等于(A )3 (B )4 (C )23 (D )24(9)某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的32倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为(A )36万元 (B )31.2万元 (C )30.4万元 (D )24万元 (10)用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有(A )288个 (B )240个 (C )144个 (D )126个 (11)如图,l 1、l 2、l 3是同一平面内的三条平行直线,l 1与l 2间的距离是1, l 2与l 3间的距离是2,正三角形ABC 的三顶点分别在l 1、l 2、l 3上, 则△ABC 的边长是(A )32(B )364 (C )4173 (D )3212 (12)已知一组抛物线1212++=bx ax y ,其中a 为2,4,6,8中任取的一个数,b 为1,3,5,7中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线x =1交点处的切线相互平行的概率是(A )121 (B )607 (C )256 (D )255二、填空题:本大题共4小题,每小题4分,共16分,把答案填在横线上.(13)若函数f (x )=e -(m -u )2 (c 是自然对数的底数)的最大值是m ,且f (x )是偶函数,则m +u = .(14)如图,在正三棱柱ABC -A 1B 1C 1中,侧棱长为2,底面三角形的边长为1, 则BC 1与侧面ACC 1A 1所成的角是 .(15)已知⊙O 的方程是x 2+y 2-2=0, ⊙O ’的方程是x 2+y 2-8x +10=0,由动点P 向⊙O 和 ⊙O ’所引的切线长相等,则动点P 的轨迹方程是 . (16)下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π. ②终边在y 轴上的角的集合是{a |a =Z k k ∈π,2|. ③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点. ④把函数.2sin 36)32sin(3的图象得到的图象向右平移x y x y =ππ+= ⑤函数.0)2sin(〕上是减函数,在〔ππ-=x y 其中真命题的序号是 (写出所言 )三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知0,1413)cos(,71cos 且=β-α=α<β<α<2π,(Ⅰ)求α2tan 的值.(Ⅱ)求β.(18)(本小题满分12分)厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验.求至少有1件是合格品的概率; (Ⅱ)若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出不合格产品数ξ的分布列及期望ξE ,并求该商家拒收这批产品的概率.(19)(本小题满分12分)如图,PCBM 是直角梯形,∠PCB =90°,PM ∥BC ,PM =1,BC =2,又AC =1,∠ACB =120°,AB ⊥PC ,直线AM 与直线PC 所成的角为60°. (Ⅰ)求证:平面PAC ⊥平面ABC ; (Ⅱ)求二面角B AC M --的大小; (Ⅲ)求三棱锥MAC P -的体积.(20)(本小题满分12分)设1F 、2F 分别是椭圆1422=+y x 的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求1PF ·2PF 的最大值和最小值;(Ⅱ)设过定点)2,0(M 的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.已知函数42)(+=x x f ,设曲线)(x f y =在点()处的切线与x 轴线发点()()其中xn 为实数(21)(本小题满分12分)(22)(本小题满分14分)设函数),1,(11)(N x n N n n x f n∈∈⎪⎭⎫⎝⎛+= 且.(Ⅰ)当x =6时,求nn ⎪⎭⎫⎝⎛+11的展开式中二项式系数最大的项;(Ⅱ)对任意的实数x ,证明2)2()2(f x f +>);)()()((的导函数是x f x f x f ''(Ⅲ)是否存在N a ∈,使得an <∑-⎪⎭⎫ ⎝⎛+nk k 111<n a )1(+恒成立?若存在,试证明你的结论并求出a 的值;若不存在,请说明理由.2007年普通高等学校招生全国统一考试(四川卷)理科数学参考答案一.选择题:本题考察基础知识和基本运算,每小题5分,满分60分(1) A (2) C (3) D (4) D (5) A (6) C (7) A (8) C (9) B (10) B (11) D (12) B 二.填空题:本题考察基础知识和基本运算,每小题4分,满分16分 (13)1 (14)6π(15)32x = (16)① ④三.解答题:(17)本题考察三角恒等变形的主要基本公式、三角函数值的符号,已知三角函数值求角以及计算能力。
2007年高考.广东卷.文科数学试题及详细解答
绝密★启用前试卷类型:A2007年普通高等学校招生全国统一考试(广东卷)数学(文科)本试卷共4页,21小题。
满分150分。
考试用时120分钟。
注意事项: 1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上,将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再填涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答。
答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题号(或题组号),对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式V =31Sh ,其中S 是锥体的底面积,h 是锥体的高.如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ). 用最小二乘法求线性回归方程系数公式x b y n xn x yx n y x b ni i ni i i-=-∑-∑===,2121一、选择题:本大题共l0小题,每小题5分,满分50分.在每小题给出的四个选项中.只有一项是符合题目要求的. 1.已知集合{|10}M x x =+>,1{|0}1N x x=>-,则M N =A .{x|-1≤x <1}B .{x |x>1}C .{x|-1<x <1}D .{x |x ≥-1} 【解析】(1,),(,1)M N =-+∞=-∞,故M N (1,1)=-,选(C).2.若复数(1+bi)(2+i)是纯虚数(i 是虚数单位,b 是实数),则b=A .-2B .12-C. 12D .2 【解析】(1)(2)(2)(21)bi i b b i ++=-++,依题意202b b -=⇒=, 选(D).3.若函数f(x)=x 3(x ∈R),则函数y=f(-x)在其定义域上是 A .单调递减的偶函数 B.单调递减的奇函数 C .单凋递增的偶函数 D .单涮递增的奇函数【解析】函数3()y f x x =-=-单调递减且为奇函数,选(B).4.若向量,a b 满足||||1a b ==,a 与b 的夹角为60︒,则a a a b ⋅+⋅= A .12 B .32C.12+ D .2【解析】23||||||cos602a a ab a a b ⋅+⋅=+⋅︒=,选(B).5.客车从甲地以60km /h 的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km /h 的速度匀速行驶l 小时到达丙地。
2007年高考数学卷(四川.文)含详解
2007年普通高等学校招生全国统一考试(四川卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3到10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n k kn n P P C k P --=)1()(一、选择题(1)设集合M ={4,5,6,8},集合N ={3,5,7,8}那么M ∪N = (A){3,4,5,6,7,8} (B){5,8} (C){3,5,7,8}(D){4,5,6,8}(2)函数f (x )=1+log 2x 与g (x )=2-x+1在同一直角坐标系下的图象大致是(3)某商场买来一车苹果,从中随机抽取了10个苹果,其重量(单位:克)分别为:150,152,153,149,148,146,151,150,152,147,由此估计这车苹果单个重量的期望值是 (A)150.2克 (B)149.8克 (C)149.4克 (D)147.8克 (4)如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 (A )BD ∥平面CB 1D 1 (B)AC 1⊥BD(C)AC 1⊥平面CB 1D 1 (D)异面直线AD 与CB 所成的角为60°(5)如果双曲线2422y x -=1上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是(A)364 (B)362 (C)62 (D)32 (6)设球O 的半径是1,A 、B 、C 是球面上三点,已知A 到B 、C 两点的球面距离都是2π,且二面角B-OA-C 的大小是3π,则从A 点沿球面经B 、C 两点再回到A 点的最短距离是(A)67π (B)45π (C)34π (D)23π(7)等差数列{a n }中,a 1=1,a 3+a 5=14,其降n 项和S n =100,则n = (A)9 (B)10 (C)11 (D)12(8)设A (a,1),B(2,b),C(4,5)为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a 与b 满足的关系式为A.4a-5b=3B.5a-4b=3C.4a+5b=14D.5a+4b=12 (9)用数字1,2,3,4,5可以组成没有重复数字,并且比20 000大的五位偶数共有 A.48个 B.36个 C.24个 D.18个(10)已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于A.3B.4C.32D.42(11)某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的32倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确提财投资后,在两个项目上共可获得的最大利润为A.36万元B.31.2万元C.30.4万元D.24万元(12)如图,l 1、l 2、l 3是同一平面内的三条平行直线,l 1与l 2与l 3同的距离是2, 正三角形ABC 的三顶点分别在l 1、l 2、l 3上,则△ABC 的边长是 A.23 B.364 C. 473- D.3212- 二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题横线上.(13).1nx x ⎛⎫- ⎪⎝⎭的展开式中的第5项为常数项,那么正整数n 的值是 .三、解答题:本大题共6小题。
2007年江西省高考试题(数学理)全解全析
2007年普通高等学校招生全国统一考试(江西卷)数 学(理 科)全解全析参考公式:如果事件A.B 互斥,那么 球的表面积公式P (A +B)=P (A)+P (B) S =4πR 2如果事件A.B 相互独立,那么 其中R 表示球的半径P (A·B)=P (A)·P (B) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 V =34πR 3n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径P n (k )=C k n P k(1一P )kn -一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.化简2)1(42i i++的结果是( ) A.2+i B.-2+i C.2-i D.-2-i【标准答案】 C 【试题分析】22424122(1)2i i i i i i++==+=-+,故选C 。
【高考考点】复数的运算。
【易错提醒】2i =-1是学生容易出错的地方,易忘记负号。
【备考提示】复数是高考经常出现的试题之一,一般出现在选择题或填空题,难度不会太大。
2.1lim 231--→x x x x ( ) A.等于0 B.等于l C.等于3 D.不存在【标准答案】 B【试题分析】32211limlim 11x x x x x x →→-==-,故选B 。
【高考考点】极限。
【易错提醒】未将分子分解因式,直接将x =1代入分母,不存在,错选(D )。
【备考提示】极限也是高考中经常出现的试题之一,有时也会在解答题中出现。
3.若tan(4π一α)=3,则cot α等于 A.-2 B.-21 C.21D.2【标准答案】 A【试题分析】tan(4π一α)=31tan 13tan cot 21tan 2αααα-⇒=⇒=-⇒=-+,故选A 。
【高考考点】三角函数,两角差的正切公式。
【易错提醒】两角差的正切公式与两角和的正切公式混淆。
【题库大全】2005-2012年高考数学(理)试题分项 专题09 直线与圆
求坐标原点到 距离的比值.
(2012年高考辽宁卷理科20)(本小题满分12分)
如图,椭圆 ,动圆 .点 分别为 的左、右顶点, 与 相交于 四点
(1)求直线 与直线 交点 的轨迹方程;
(2)设动圆 与 相交于 四点,其中 , .若矩形 与矩形 的面积相等,证明: 为定值
2011年高考数学选择试题分类汇编——直线与圆
一、选择题:
1.(2011年高考江西卷理科9)若曲线 : 与曲线 : 有四个不同的交点,则实数m的取值范围是
A.( , ) B.( ,0)∪(0, )
c.[ , ] D.( , )∪( ,+ )
解析:选B,由题意,AC为直径,设圆心为F,则 ,圆的标准方程为 ,故 ,由此,易得: ,又 ,所以直线BD的方程为 ,F到BD的距离为 ,由此得, 所以四边形ABCD的面积为
解析:方法一、圆心为(0,0),半径为2
圆心到直线 的
距离为d=
故
得|AB|=2
答案:2
(2010广东理数)12.已知圆心在x轴上,半径为 的圆O位于y轴左侧,且与直线x+y=0相切,则圆O的方程是
12. .设圆心为 ,则 ,解得 .
(2010山东理数)
(2010湖南理数)
2.(2010江苏卷)9、在平面直角坐标系xOy中,已知圆 上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是______▲____
的弧长为[ B]
A B C D
2008年高考数学试题分类汇编——直线与圆
一.选择题:
1,(2008上海卷15)如图,在平面直角坐标系中, 是一个与x轴的正半轴、y轴的正半轴分别相切于点C、D的定圆所围成的区域(含边界),A、B、C、D是该圆的四等分点.若点 、点 满足 且 ,则称P优于 .如果 中的点 满足:不存在 中的其它点优于Q,那么所有这样的点Q组成的集合是劣弧(D)
2007年高考数学试题分类详解直线与圆
2007年高考数学试题分类详解直线与圆一、选择题1、.与直线20x y +-=和曲线221212540x y x y +--+=都相切的半径最小的圆的标准方程是 . 【答案】:. 22(2)(2)2x y -+-=【分析】:曲线化为22(6)(6)18x y -+-=,其圆心到直线20x y +-=的距离为6625 2.2d +-==所求的最小圆的圆心在直线y x =上,其到直线的距离为2,圆心坐标为(2,2).标准方程为22(2)(2)2x y -+-=。
2、(安徽文5)若圆04222=--+y x y x 的圆心到直线0=+-a y x 的距离为22,则a 的值为 (A)-2或2(B)2321或 (C)2或0 (D)-2或0解析:若圆04222=--+y x y x 的圆心(1,2)到直线0=+-a y x 的距离为22,∴ 222=,∴ a =2或0,选C 。
3、(上海文13)圆01222=--+x y x 关于直线032=+-y x 对称的圆的方程是( ) A.21)2()3(22=-++y x B.21)2()3(22=++-y x C.2)2()3(22=-++y xD.2)2()3(22=++-y x【答案】C【解析】圆2222210(1)2x y x x y +--=⇒-+=,圆心(1,0),半径2,关于直线032=+-y x 对称的圆半径不变,排除A 、B ,两圆圆心连线段的中点在直线032=+-y x 上,C 中圆2)2()3(22=-++y x 的圆心为(-3,2),验证适合,故选C 。
4、(湖北理10)已知直线1x ya b+=(a b ,是非零常数)与圆22100x y +=有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有( ) A .60条 B .66条 C .72条 D .78条 答案:选A解析:可知直线的横、纵截距都不为零,即与坐标轴不垂直,不过坐标原点,而圆22100x y +=上的整数点共有12个,分别为()()()6,8,6,8,8,6±-±±,()()()8,6,10,0,0,10-±±±,前8个点中,过任意一点的圆的切线满足,有8条;12个点中过任意两点,构成21266C =条直线,其中有4条直线垂直x 轴,有4条直线垂直y 轴,还有6条过原点(圆上点的对称性),故满足题设的直线有52条。
2007年高考“直线与圆”题--(文科)高考数学试题全解
2007年高考“直线与圆”题1.(全国Ⅰ)2.(全国II) 在直角坐标系xOy 中,以O为圆心的圆与直线4x =相切. (1)求圆O 的方程;(2)圆O 与x 轴相交于A B ,两点,圆内的动点P 使PA PO PB ,,成等比数列,求PA PB的取值范围.解:(1)依题设,圆O 的半径r 等于原点O到直线4x =的距离,即2r ==.得圆O 的方程为224x y +=. (2)不妨设1212(0)(0)A x B x x x <,,,,.由24x =即得(20)(20)A B -,,,. 设()P x y ,,由PA PO PB ,,成等比数列,得22x y =+,即 222x y -=.(2)(2)PA PB x y x y =-----,,22242(1).x y y =-+=-由于点P 在圆O 内,故222242.x y x y ⎧+<⎪⎨-=⎪⎩, 由此得21y <. 所以PA PB的取值范围为[20)-,.3.(北京卷)如图,矩形ABCD 的两条对角线相交于点(20)M ,,AB 边所在直线的方程为360x y --=, 点(11)T -, 在AD 边所在直线上.(I )求AD 边所在直线的方程; (II )求矩形ABCD 外接圆的方程;(III )若动圆P 过点(20)N -,,且与矩形ABCD 的外接圆外切, 求动圆P 的圆心的轨迹方程.解:(I )因为AB 边所在直线的方程为360x y --=,且AD 与AB 垂直,所以直线AD 的斜率为3-.又因为点(11)T -,在直线AD 上, 所以AD 边所在直线的方程为13(1)y x -=-+.320x y ++=.(II )由36032=0x y x y --=⎧⎨++⎩,解得点A 的坐标为(02)-,,因为矩形ABCD 两条对角线的交点为(20)M ,. 所以M 为矩形ABCD 外接圆的圆心.又AM ==从而矩形ABCD 外接圆的方程为22(2)8x y -+=.(III )因为动圆P 过点N ,所以PN 是该圆的半径,又因为动圆P 与圆M 外切,所以PM PN =+即PM PN -=故点P 的轨迹是以M N ,为焦点,实轴长为因为实半轴长a =2c =.所以虚半轴长b =从而动圆P的圆心的轨迹方程为221(22x y x -=≤.4.(天津卷) “2a =”是“直线20ax y +=平行于直线1x y +=”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解;当2a =则直线220x y +=平行于直线1x y +=,则是充分条件; 直线20ax y +=平行于直线1x y +=时有: 2a =,则是必要条件,故是充分必要条件. 故选C. 【分析】2a =⇒直线220x y +=平行于直线1x y +=.直线20ax y +=平行于直线1x y +=1120 2.a a ⇒⨯-⨯=∴= 故选C.A已知两圆2210x y +=和22(1)(3)20x y -+-=相交于A B ,两点, 则直线AB 的方程是 .解;2222(1)(3)202610x y x x y y -+-=⇒-+-=--------①2210x y +=-------② 由①-②得到:26030x y x y +=+=即.5.(上海卷) 直线014=-+y x 的倾斜角=θ . 解:tan 4,(,)2πθθπθ=-∴∈⇒=4arctan π-.如图,A B ,是直线l 上的两点,且2=AB .两个半径 相等的动圆分别与l 相切于A B ,点,C 共点,则圆弧AC ,CB 与线段AB 围成图形面积S 的 取值范围是 .解: 如图,当12O O 与外切于点C 时,S 最大,此时,两圆半径为1,S 等于矩形ABO 2O 1的面积 减去两扇形面积,2max 1212(1)242S ππ∴=⨯-⨯⨯⨯=-,随着圆半径的变化,C 可以向直线l 靠近,当C 到直线l 的距离0,0,(0,22d S S π→→∴∈-时。
2007年广东省高考数学试卷(理科)及解析
2007年广东省高考数学试卷(理科)一、选择题(共8小题,每小题5分,满分40分)1.(5分)已知函数f(x)=定义域为M,g(x)=ln(1+x)定义域N,则M∩N等于()A.{x|x>﹣1}B.{x|x<1}C.{x|﹣1<x<1}D.∅2.(5分)若复数(1+bi)(2+i)是纯虚数(i是虚数单位,b是实数),则b=()A.2 B.C.D.﹣23.(5分)若函数,则f(x)是()A.最小正周期为的奇函数B.最小正周期为y=x的奇函数C.最小正周期为2π的偶函数D.最小正周期为π的偶函数4.(5分)客车从甲地以60km/h的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h的速度匀速行驶1小时到达丙地.下列描述客车从甲地出发,经过乙地,最后到达丙地所经过的路程s与时间C之间关系的图象中,正确的是()A.B.C.D.5.(5分)已知数列{a n}的前n项和S n=n2﹣9n,第k项满足5<a k<8,则k等于()A.9 B.8 C.7 D.66.(5分)图1是某县参加2007年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1,A2,…,A10(如A2表示身高(单位:cm)在[150,155)内的学生人数)图2是统计图1中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是()A.i<6 B.i<7 C.i<8 D.i<97.(5分)如图是某汽车维修公司的维修点环形分布图.公司在年初分配给A,B,C,D四个维修点某种配件各50件.在使用前发现需将A,B,C,D四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行,那么要完成上述调整,最少的调动件次(n件配件从一个维修点调整到相邻维修点的调动件次为n)为()A.15 B.16 C.17 D.188.(5分)设S是至少含有两个元素的集合,在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素与之对应)有a*(b*a)=b,则对任意的a,b∈S,下列等式中不恒成立的是()A.(a*b)*a=a B.[a*(b*a)]*(a*b)=a C.b*(b*b)=b D.(a*b)*[b*(a*b)]=b二、填空题(共7小题,每小题5分,13-15题为选做题,选做其中2道题,满分30分)9.(5分)甲、乙两个袋中装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球,2个白球,乙袋装有1个红球,5个白球.现分别从甲、乙两袋中各随机取出一个球,则取出的两球是红球的概率为.(答案用分数表示)10.(5分)若向量a,b满足||=||=1,的夹角为60°,则=.11.(5分)在平面直角坐标系xOy中,有一定点A(2,1),若线段OA的垂直平分线过抛物线y2=2px(p>0)的焦点,则该抛物线的准线方程是.12.(5分)如果一个凸多面体是n棱锥,那么这个凸多面体的所有顶点所确定的直线共有条,这些直线中共有f(n)对异面直线,则f(4)=;f(n)=.(答案用数字或n的解析式表示)13.(5分)在平面直角坐标系xOy中,直线l的参数方程为(参数t∈R),圆C的参数方程为,(参数θ∈[0,2π]),则圆C的圆心坐标为,圆心到直线l的距离为.14.(5分)设函数f(x)=|2x﹣1|+x+3,则f(﹣2)=;若f(x)≤5,则x 的取值范围是.15.已知:如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,垂足为A,以腰BC 为直径的半圆O切AD于点E,连接BE,若BC=6,∠EBC=30°,则梯形ABCD的面积为.三、解答题(共6小题,满分80分)16.(12分)已知△ABC顶点的直角坐标分别为A(3,4),B(0,0),C(c,0 )(1)若c=5,求sin∠A的值;(2)若∠A是钝角,求c的取值范围.17.(12分).x3456y2 . 5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x 的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)18.(14分)在平面直角坐标系xOy中,已知圆心在第二象限,半径为2的圆C与直线y=x相切于坐标原点O .椭圆=1与圆C的一个交点到椭圆两焦点的距离之和为10.(1)求圆C的方程;(2)试探求C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长.若存在,请求出点Q的坐标;若不存在,请说明理由.19.(14分)如图所示,等腰△ABC 的底边,高CD=3,点E是线段BD上异于点B,D的动点,点F在BC边上,且EF⊥AB,现沿EF将△BEF折起到△PEF的位置,使PE⊥AC,记BE=x,V(x)表示四棱锥P﹣ACFE的体积.(1)求V(x)的表达式;(2)当x为何值时,V(x)取得最大值?(3)当V(x)取得最大值时,求异面直线AC与PF所成角的余弦值.20.(14分)已知a是实数,函数f(x)=2ax2+2x﹣3﹣a,如果函数y=f(x)在区间[﹣1,1]上有零点,求a的取值范围.21.(14分)已知函数f(x)=x2+x﹣1,α,β是方程f(x)=0的两个根(α>β),f′(x)是f(x)的导数,设a1=1,(n=1,2,…).(1)求α,β的值;(2)证明:对任意的正整数n,都有a n>α;(3)记(n=1,2,…),求数列{b n}的前n项和S n.2007年广东省高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2007•广东)已知函数f(x)=定义域为M,g(x)=ln(1+x)定义域N,则M∩N等于()A.{x|x>﹣1}B.{x|x<1}C.{x|﹣1<x<1}D.∅【分析】根据题目中使函数有意义的x的值求得函数的定义域M和N,再求它们的交集即可.【解答】解:∵函数的定义域是指使函数式有意义的自变量x的取值范围,∴由1﹣x>0求得函数的定义域M={x|x<1},和由1+x>0 得,N=[x|x>﹣1},∴它们的交集M∩N={x|﹣1<x<1}.故选C.2.(5分)(2007•广东)若复数(1+bi)(2+i)是纯虚数(i是虚数单位,b是实数),则b=()A.2 B.C.D.﹣2【分析】本题主要考查复数的乘法运算以及纯虚数的概念等基础知识,属容易档次.【解答】解:(1+bi)(2+i)=(2﹣b)+(1+2b)i,则,∴b=2选A.3.(5分)(2007•广东)若函数,则f(x)是()A.最小正周期为的奇函数B.最小正周期为y=x的奇函数C.最小正周期为2π的偶函数D.最小正周期为π的偶函数【分析】本题主要考查三角函数的最小正周期和奇偶性,也涉及到对简单三角变换能力的考查.见到三角函数平方形式,要用二倍角公式降幂,变为可以研究三角函数性质的形式y=Asin(ωx+φ)的形式.【解答】解:∵f(x)=,∴y=f(x)最小周期为π的偶函数,故选D4.(5分)(2007•广东)客车从甲地以60km/h的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h的速度匀速行驶1小时到达丙地.下列描述客车从甲地出发,经过乙地,最后到达丙地所经过的路程s与时间C之间关系的图象中,正确的是()A.B.C.D.【分析】本题的常规方法建立实际问题中的分段函数模型,然后研究分段函数的图象.其实,客观题往往有打破常规的捷径,如此题抓住三个点,即(1,60),(1.5,60),(2.5,140),则很容易地得到答案B,体现了描点法的精细思考.【解答】解:由题意得;,抓住三个点,即(1,60),(1.5,60),(2.5,140),对照选项选B.故选:B.5.(5分)(2007•广东)已知数列{a n}的前n项和S n=n2﹣9n,第k项满足5<a k <8,则k等于()A.9 B.8 C.7 D.6【分析】先利用公式a n=求出a n,再由第k项满足5<a k<8,求出k.【解答】解:a n==∵n=1时适合a n=2n﹣10,∴a n=2n﹣10.∵5<a k<8,∴5<2k﹣10<8,,∴k=8,∴<k<9,又∵k∈N+故选B.6.(5分)(2007•广东)图1是某县参加2007年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1,A2,…,A10(如A2表示身高(单位:cm)在[150,155)内的学生人数)图2是统计图1中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是()A.i<6 B.i<7 C.i<8 D.i<9【分析】由题目要求可知:该程序的作用是统计身高在160~180cm(含160cm,不含180cm))的学生人数,由图1可知应该从第四组数据累加到第七组数据,故i值应小于8.【解答】解:现要统计的是身高在160﹣180cm之间的学生的人数,即是要计算A4、A5、A6、A7的和,当i<8时就会返回进行叠加运算,当i≥8将数据直接输出,不再进行任何的返回叠加运算,故i<8.故答案为:i<8.7.(5分)(2007•广东)如图是某汽车维修公司的维修点环形分布图.公司在年初分配给A,B,C,D四个维修点某种配件各50件.在使用前发现需将A,B,C,D四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行,那么要完成上述调整,最少的调动件次(n件配件从一个维修点调整到相邻维修点的调动件次为n)为()A.15 B.16 C.17 D.18【分析】本题主要考查解决实际问题的能力,研究生活中的最优化模型,体现了对创新思维能力的考查.根据已知,现在要将A,B两个维修点的零件调往C、D 两个维修点,由于A、D两个维修点相邻,且D维修点的零件缺口最大,故要首先考虑从A点调零件到D点.【解答】解:D处的零件要从A、C或B处移来调整,且次数最少.方案一:从A处调10个零件到D处,从B处调5个零件到C处,从C外调1个零件到D处,共调动16件次;方案二:从B处调1个零件到A处,从A处调11个零件到D处,从B外调4个零件到C处,共调动16件次.故选B.8.(5分)(2007•广东)设S是至少含有两个元素的集合,在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素与之对应)有a*(b*a)=b,则对任意的a,b∈S,下列等式中不恒成立的是()A.(a*b)*a=a B.[a*(b*a)]*(a*b)=a C.b*(b*b)=b D.(a*b)*[b*(a*b)]=b【分析】本题主要考查应用新定义解决数学问题的能力,体现了对创新思维能力的考查力度.根据已知中a*(b*a)=b,对四个答案的结论逐一进行论证,不难得到正确的结论.【解答】解:根据条件“对任意的a,b∈S,有a*(b*a)=b”,则:选项B中,[a*(b*a)]*(a*b)]=b*(a*b)=a,一定成立.选项C中,b*(b*b)=b,一定成立.选项D中,(a*b)*[b*(a*b)]=b,一定成立.故选A.二、填空题(共7小题,每小题5分,13-15题为选做题,选做其中2道题,满分30分)9.(5分)(2007•广东)甲、乙两个袋中装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球,2个白球,乙袋装有1个红球,5个白球.现分别从甲、乙两袋中各随机取出一个球,则取出的两球是红球的概率为.(答案用分数表示)【分析】本题是一个古典概型,从甲、乙两袋中各随机取出一个球取出的两球是红球表示从甲袋中取得一个红球且从乙袋中取得一个红球,试验发生的总事件数是C61C61,满足条件的事件数是C41C51+C21C11,由古典概型公式得到结果.【解答】解:由题意知本题是一个古典概型,记“从甲、乙两袋中各随机取出一个球取出的两球是红球”,为事件A试验发生的总事件数是C61C61=36,满足条件的事件数是C41C11=4,由古典概型公式得到P(A)==,故答案为:.10.(5分)(2007•广东)若向量a,b满足||=||=1,的夹角为60°,则=.【分析】利用向量的数量积公式求出两个向量的数量积,利用向量的模的平方等于向量的平方,将求出的值代入代数式即得.【解答】解:∵,∴=1+=.故答案为11.(5分)(2007•广东)在平面直角坐标系xOy中,有一定点A(2,1),若线段OA的垂直平分线过抛物线y2=2px(p>0)的焦点,则该抛物线的准线方程是x=﹣.【分析】先求出线段OA的垂直平分线方程,然后表示出抛物线的焦点坐标并代入到所求方程中,进而可求得p的值,即可得到准线方程.【解答】解:依题意我们容易求得直线的方程为4x+2y﹣5=0,把焦点坐标(,0)代入可求得焦参数p=,从而得到准线方程x=﹣.故答案为:x=﹣.12.(5分)(2007•广东)如果一个凸多面体是n棱锥,那么这个凸多面体的所有顶点所确定的直线共有条,这些直线中共有f(n)对异面直线,则f(4)=12;f(n)=.(答案用数字或n的解析式表示)【分析】本题主要考查合情推理,以及经历试值、猜想、验证的推理能力.凸多面体是n棱锥,共有n+1个顶点,过顶点与底边上每个顶点都可确定一条侧棱所在的直线,过底面上任一点与底面上其它点均可确定一条直线(边或对角线),综合起来不难得到第一空的答案,因为底面上所有的直线均共面,故每条侧棱与不过该顶点的其它直线都是异面直线.【解答】解:凸多面体是n棱锥,共有n+1个顶点,所以可以分为两类:侧棱共有n条,底面上的直线(包括底面的边和对角线)条两类合起来共有条.在这些直线中,每条侧棱与底面上不过此侧棱的端点直线异面,底面上共有直线(包括底面的边和对角线)条,其中不过某个顶点的有=条所以,f(n)=,f(4)=12.故答案为:,12,.13.(5分)(2007•广东)在平面直角坐标系xOy中,直线l的参数方程为(参数t∈R),圆C的参数方程为,(参数θ∈[0,2π]),则圆C的圆心坐标为(0,2),圆心到直线l的距离为.【分析】先利用两式相加消去t将直线的参数方程化成普通方程,然后利用sin2θ+cos2θ=1将圆的参数方程化成圆的普通方程,求出圆心和半径,最后利用点到直线的距离公式求出圆心到直线的距离即可.【解答】解:直线l的参数方程为(参数t∈R),∴直线的普通方程为x+y﹣6=0圆C的参数方程为(参数θ∈[0,2π]),∴圆C的普通方程为x2+(y﹣2)2=4∴圆C的圆心为(0,2),d=故答案为:(0,2),14.(5分)(2007•广东)设函数f(x)=|2x﹣1|+x+3,则f(﹣2)=6;若f (x)≤5,则x的取值范围是[﹣1,1] .【分析】直接代入﹣2求出函数值f(﹣2),f(x)≤5,去掉绝对值符号,对x 分类讨论,即x≥,和x分别解不等式组即可.【解答】解:f(﹣2)=|2•(﹣2)﹣1|+(﹣2)+3=6,将f(x)=|2x﹣1|+x+3≤5变形为或,解得或,即﹣1≤x≤1.所以,x的取值范围是[﹣1,1].故答案为:6;[﹣1,1].15.(2007•广东)已知:如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,垂足为A,以腰BC为直径的半圆O切AD于点E,连接BE,若BC=6,∠EBC=30°,则梯形ABCD的面积为9 .【分析】连接EC,EO.根据梯形的面积等于梯形的中位线长乘以高,显然中位线即是半圆的半径,即为3.故只需求得该梯形的高.根据梯形的中位线,只需求得DE的长,首先根据30度的直角三角形BCE求得CE的长,再根据弦切角定理求得∠CED=30°,进一步根据锐角三角函数求得DE的长,再根据梯形的面积公式进行计算.【解答】解:如图连接EC,∵BC为半圆O的直径,∴BE⊥EC(1分)∵∠EBC=30°,∴EC=BC=×6=3连接OE,∴OE=OB=3,∠BEO=30°∵AD与⊙O相切于点E,∴OE⊥AD∴∠OEC=60°,∴∠DEC=30°∴DC=EC=∴DE=(3分)∵OE∥DC∥AB,OC=OB,∴OE是梯形的中位线∴AE=DE=(5分)∴AD=2DE=3∵AD⊥AB,∴DA为梯形ABCD的高∴S=OE•AD=3×3 .(7分)梯形ABCD故答案为:9.三、解答题(共6小题,满分80分)16.(12分)(2007•广东)已知△ABC顶点的直角坐标分别为A(3,4),B(0,0),C(c,0 )(1)若c=5,求sin∠A的值;(2)若∠A是钝角,求c的取值范围.【分析】(1)通过向量的数量积求出角A的余弦,利用平方关系求出A角的正弦.(2)据向量数量积的公式知向量的夹角为钝角等价于数量积小于0,列出不等式解.【解答】解:(1)根据题意,,,若c=5,则,∴,∴sin∠A=;(2)若∠A为钝角,则解得,∴c的取值范围是;17.(12分)(2007•广东).x3456y2344. 5. 5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x 的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)【分析】(1)依据描点一一描点画图即可;(2)先算出x和y的平均值,有关结果代入公式即可求a和b的值,从而求出线性回归方程;(3)将x=100时代入线性方程得到y的值,就能预测生产100吨甲产品的生产能耗情况.【解答】解:(1)根据题意,作图可得,(2)由系数公式可知,,,,所以线性回归方程为y=0.7x+0.35;(3)x=100时,y=0.7x+0.35=70.35,所以预测生产100吨甲产品的生产能耗比技术改造前降低19.65吨标准煤.18.(14分)(2007•广东)在平面直角坐标系xOy中,已知圆心在第二象限,半径为2的圆C与直线y=x相切于坐标原点O.椭圆=1与圆C的一个交点到椭圆两焦点的距离之和为10.(1)求圆C的方程;(2)试探求C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长.若存在,请求出点Q的坐标;若不存在,请说明理由.【分析】(1)设出圆的标准方程,由相切和过原点的条件,建立方程求解.(2)要探求是否存在异于原点的点Q,使得该点到右焦点F的距离等于|OF|的长度4,我们可以转化为探求以右焦点F为圆心,半径为2的圆(x─4)2+y2=8与(1)所求的圆的交点数.【解答】解:(1)设圆心坐标为(m,n)(m<0,n>0),则该圆的方程为(x﹣m)2+(y﹣n)2=8已知该圆与直线y=x相切,那么圆心到该直线的距离等于圆的半径,则=2即|m﹣n|=4①又圆与直线切于原点,将点(0,0)代入得m2+n2=8②联立方程①和②组成方程组解得故圆的方程为(x+2)2+(y﹣2)2=8;(2)|a|=5,∴a2=25,则椭圆的方程为=1其焦距c==4,右焦点为(4,0),那么|OF|=4.通过联立两圆的方程,解得x=,y=.即存在异于原点的点Q(,),使得该点到右焦点F的距离等于|OF|的长.19.(14分)(2007•广东)如图所示,等腰△ABC的底边,高CD=3,点E是线段BD上异于点B,D的动点,点F在BC边上,且EF⊥AB,现沿EF将△BEF折起到△PEF的位置,使PE⊥AC,记BE=x,V(x)表示四棱锥P﹣ACFE的体积.(1)求V(x)的表达式;(2)当x为何值时,V(x)取得最大值?(3)当V(x)取得最大值时,求异面直线AC与PF所成角的余弦值.【分析】(1)先求底面面积,再求出高,即可求V(x)的表达式;(2)利用导数,来求V(x)的最大值,(3)过F作MF∥AC交AD于M,得到异面直线所成的角,然后求异面直线AC 与PF所成角的余弦值.【解答】解:(1)由折起的过程可知,PE⊥平面ABC,V(x)=()(2),所以x∈(0,6)时,v'(x)>0,V(x)单调递增;时v'(x)<0,V(x)单调递减;因此x=6时,V(x)取得最大值;(3)过F作MF∥AC交AD与M,则,PM=,,在△PFM中,,∴异面直线AC与PF所成角的余弦值为.20.(14分)(2007•广东)已知a是实数,函数f(x)=2ax2+2x﹣3﹣a,如果函数y=f(x)在区间[﹣1,1]上有零点,求a的取值范围.【分析】y=f(x)在区间[﹣1,1]上有零点转化为(2x2﹣1)a=3﹣2x在[﹣1,1]上有解,把a用x表示出来,转化为求函数在[﹣1,1]上的值域,再用分离常数法求函数在[﹣1,1]的值域即可.【解答】解:a=0时,不符合题意,所以a≠0,又∴f(x)=2ax2+2x﹣3﹣a=0在[﹣1,1]上有解,⇔(2x2﹣1)a=3﹣2x在[﹣1,1]上有解在[﹣1,1]上有解,问题转化为求函数[﹣1,1]上的值域;设t=3﹣2x,x∈[﹣1,1],则2x=3﹣t,t∈[1,5],,设,时,g'(t)<0,此函数g(t)单调递减,时,g'(t)>0,此函数g(t)单调递增,∴y的取值范围是,∴f(x)=2ax2+2x﹣3﹣a=0在[﹣1,1]上有解⇔∈⇔a≥1或.故a≥1或a≤﹣.21.(14分)(2007•广东)已知函数f(x)=x2+x﹣1,α,β是方程f(x)=0的两个根(α>β),f′(x)是f(x)的导数,设a1=1,(n=1,2,…).(1)求α,β的值;(2)证明:对任意的正整数n,都有a n>α;(3)记(n=1,2,…),求数列{b n}的前n项和S n.【分析】(1)由f(x)=x2+x﹣1,α,β是方程f(x)=0的两个根(α>β)可求得;(2)由f'(x)=2x+1,=,由基本不等式可知,依此有(3),,数列{b n}是等比数列,由其前n项和公式求解.【解答】解:(1)∵f(x)=x2+x﹣1,α,β是方程f(x)=0的两个根(α>β),∴;(2)f'(x)=2x+1,=,∵a1=1,∴有基本不等式可知(当且仅当时取等号),∴,同样,(n=1,2),(3)而α+β=﹣1,即α+1=﹣β,,同理,又。
高考数学分项汇编 专题08 直线与圆(含解析)
专题8 直线与圆一.选择题1. 【2007年普通高等学校招生全国统一考试湖北卷8】由直线y=x +1上的一点向圆(x -3)2+y 2=1引切线,则切线长的最小值为( ) A.1B.22C.7D.32.【2010年普通高等学校招生全国统一考试湖北卷9】若直线y x b =+与曲线234y x x =--有公共点,则b 的取值范围是( ) A.[122-,122+] B.[12-,3] C.[-1,122+]D.[122-,3]3.【2012年普通高等学校招生全国统一考试湖北卷5】过点(1,1)P 的直线,将圆形区域22{(,)|4}x y x y +≤分为两部分,使得这两部分的面积之差最大,则该直线的方程为( ) A .20x y +-= B .10y -= C .0x y -=D .340x y +-=二.填空题1.【2006年普通高等学校招生全国统一考试湖北卷13】若直线y =kx +2与圆(x -2)2+(y -3)2=1有两个不同的交点,则k 的取值范围是 . 【答案】)34,0( 【解析】试题分析:由直线y =kx +2与圆(x -2)2+(y -3)2=1有两个不同的交点可得直线与圆的位置关系是相交,故圆心到直线的距离小于圆的半径,即2|232|1k k -++<1,解得k ∈(0,34). 2. 【2008年普通高等学校招生全国统一考试湖北卷15】圆34cos ,()24sin x C y θθθ=+⎧⎨=-+⎩为参数的圆心坐标为 ,和圆C 关于直线0x y -=对称的圆C ′的普通方程是 . 【答案】15.(3,-2),(x +2)2+(y -3)2=16(或x 2+y 2+4x -6y -3=0) 【解析】试题分析:将圆的参数方程转化为标准方程为:22(3)(2)4x y -++=,可知圆C 的圆为(3,-2);要求关于直线对称的圆,关键在求圆心的坐标,显然(3,-2)关于直线0x y -=对称的点的坐标是(-2,3),所以要求的圆的方程是(x +2)2+(y -3)2=16(或x 2+y 2+4x -6y -3=0).3. 【2009年普通高等学校招生全国统一考试湖北卷14】过原点O 作圆x 2+y 2--6x -8y +20=0的两条切线,设切点分别为P 、Q ,则线段PQ 的长为 . 【答案】4 【解析】试题分析:可得圆方程是22(3)(4)5x y -+-=又由圆的切线性质及在三角形中运用正弦定理得4PQ =.4. 【2011年普通高等学校招生全国统一考试湖北卷14】过点)2,1(--的直线l 被圆012222=+--+y x y x 截得的弦长为2,则直线l 的斜率为 .5. 【2013年普通高等学校招生全国统一考试湖北卷14】已知圆O :225x y +=,直线l :cos sin 1x y θθ+=(π02θ<<).设圆O 上到直线l 的距离等于1的点的个数为k ,则k = . 【答案】1 【解析】试题分析:由题意圆心到该直线的距离为1,而圆半径为5>2,故圆上有4个点到该直线的距离为1.6. 【2014年普通高等学校招生全国统一考试湖北卷17】已知圆1:22=+y x O 和点)0,2(-A ,若定点)2)(0,(-≠b b B 和常数λ满足:对圆O 上那个任意一点M ,都有||||MA MB λ=,则:(1)=b ; (2)=λ .【答案】(1)21-;(2)21【解析】7. 【2015高考湖北,文16】如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点A ,B (B 在A 的上方),且2AB =. (Ⅰ)圆C 的标准..方程为_________; (Ⅱ)圆C 在点B 处的切线在x 轴上的截距为_________. 【答案】(Ⅰ)22(1)(2)2x y -+-=;(Ⅱ)12--.【解析】设点C 的坐标为00(,)x y ,则由圆C 与x 轴相切于点(1,0)T 知,点C 的横坐标为1,即01x =,半径0r y =.又因为2AB =,所以222011y +=,即02y r =,所以圆C 的标准方程为22(1)(2)2x y -+=,令0x =得:21)B .设圆C 在点B 处的切线方程为(21)kx y -=,则圆心C 到其距离为:xO yTCAB第16题图222121k d k -++==+,解之得1k =.即圆C 在点B 处的切线方程为x (21)y =++,于是令0y =可得x 21=--,即圆C 在点B 处的切线在x 轴上的截距为12--,故应填22(1)(2)2x y -+-=和12--.【考点定位】本题考查圆的标准方程和圆的切线问题, 属中高档题。
高考数学分项汇编 专题08 直线与圆(含解析)理
【备战2016】(湖北版)高考数学分项汇编 专题08 直线与圆(含解析)理一.选择题1.【2007年普通高等学校招生全国统一考试湖北卷10】已知直线1x y a b+=(a b ,是非零常数)与圆22100x y +=有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有( )A .60条B .66条C .72条D .78条2.【2008年普通高等学校招生全国统一考试湖北卷9】过点A (11,2)作圆22241640x y x y ++--=的弦,其中弦长为整数的共有( )A.16条B.17条C.32条D.34条【答案】C【解析】试题分析:圆的标准方程是:222(1)(2)13x y ++-=,圆心(1,2)-,半径13r =,过点(11,2)A 的最短的弦长为10,最长的弦长为26,(分别只有一条)还有长度为11,12,25L 的各2条,所以共有弦长为整数的221532+⨯=条.3.【2010年普通高等学校招生全国统一考试湖北卷9】若直线y=x+b 与曲线234y x x =-则b 的取值范围是( ) A. 1,122⎡-+⎣ B. 122,122⎡-+⎣ C. 122,3⎡⎤-⎣⎦ D. 12,3⎡⎤⎣⎦【答案】C【解析】试题分析:曲线方程可化简为22(2)(3)4(13)x y y -+-=≤≤,即表示圆心为(2,3)半径为2的半圆,依据数形结合,当直线y x b =+与此半圆相切时须满足圆心(2,3)到直线y=x+b 距离等于2,解得 122122b b =+=-或,因为是下半圆故可得122b =+(舍),当直线过(0,3)时,解得b=3,故 1223,b -≤≤所以C 正确.二.填空题1.【2006年普通高等学校招生全国统一考试湖北卷】已知直线5120x y a -+=与圆2220x x y -+=相切,则a的值为 .【答案】-18或8【解析】试题分析:圆的方程可化为22(1)1x y -+=,所以圆心坐标为(1,0),半径为1,由已知可得 |5|1|5|1313a a +=⇒+=,所以a 的值为-18或8. 2.【2009年普通高等学校招生全国统一考试湖北卷13】如图,卫星和地面之间的电视信号沿直线传播,电视信号能够传送到达的地面区域,称为这个卫星的覆盖区域.为了转播2008年北京奥运会,我国发射了“中星九号”广播电视直播卫星,它离地球表面的距离约为36000km.已知地球半径约为6400km,则“中星九号”覆盖区域内的任意两点的球面距离的最大值约为 km.(结果中保留反余弦的符号).【答案】12800arccos853 【解析】试题分析:如图所示,可得AO=42400,则在Rt △ABO 中可得cos ∠AOB=853 所以8212800arccos 53l R AOB R =∂⋅=∠⋅=3.【2011年普通高等学校招生全国统一考试湖北卷14】如图,直角坐标系xOy 所在的平面为α,直角坐标系x Oy ''(其中y '轴与y 轴重合)所在的平面β,45xOx '∠=o(Ⅰ)已知平面β内有一点()222P ',,则点P '在平面α内的射影P 的坐标为()2,2(Ⅱ)已知平面β内的曲线C /的方程是()222220x y ''-+-=,则曲线C /在平面α内的射影C 的方程是 .【答案】()2211x y -+= 4.【2014年普通高等学校招生全国统一考试湖北卷12】直线1:l y x a =+和2:l y x b =+将单位圆22:1C x y +=分成长度相等的四段弧,则22a b += .【答案】2【解析】试题分析:依题意,设1l 与单位圆相交于B A ,两点,则∠90=AOB °.如图,当1,1-==b a 时满足题意,所以222=+b a .O BCA考点:直线与圆相交,相等弧的概念,容易题.5. 【2015高考湖北,理14】如图,圆C与x轴相切于点(1,0)T,与y轴正半轴交于两点,A B(B在A的上方),且2AB=.(Ⅰ)圆C的标准..方程为;(Ⅱ)过点A任作一条直线与圆22:1O x y+=相交于,M N两点,下列三个结论:①NA MANB MB=;②2NB MANA MB-=;③22NB MANA MB+=.其中正确结论的序号是 . (写出所有正确结论的序号)。
直线与圆
(A)-2或2(B) (C)2或0(D)-2或0
解析:若圆 的圆心(1,2)到直线 的距离为 ,∴ ,∴a=2或0,选C。
3、(上海文13)圆 关于直线 对称的圆的方程是( )
A. B.
C. D.
【答案】C
【解析】圆 ,圆心(1,0),半径 ,关于直线 对称的圆半径不变,排除A、B,两圆圆心连线段的中点在直线 上,C中圆 的圆心为(-3,2),验证适合,故选C。
15.(浙江卷)在平面直角坐标系中,不等式组 表示的平面区域的面积是
(A) (B)4 (C) (D)2
【考点分析】本题考查简单的线性规划的可行域、三角形的面积。
解析:由题知可行域为 ,
,故选择B。
16.(重庆卷)过坐标原点且与x2+y2+4x+2y+ =0相切的直线的方程为
(A)y=-3x或y= x(B)y=-3x或y=- x(C)y=-3x或y=- x(B)y=3x或y= x
解:两条直线 若 , ,则 2.
29.(上海卷)已知实数 满足 ,则 的最大值是_________.
解析:实数 满足 ,在坐标系中画出可行域,得三个交点为A(3,0)、B(5,0)、C(1,2),则 的最大值是0.
30.(四川卷)设 满足约束条件: ,则 的最小值为;
解析:设 满足约束条件: ,在直角坐标系中画出可行域△ABC,其中A(1, ),B(1,8),C(4,2),所以 的最小值 为-6。
解析:过坐标原点的直线为 ,与圆 相切,则圆心(2,-1)到直线方程的距离等于半径 ,则 ,解得 ,∴切线方程为 ,选A.
17.(重庆卷)以点(2,-1)为圆心且与直线 相切的圆的方程为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年高考数学试题分类详解直线与圆一、选择题1、.与直线20x y +-=和曲线221212540x y x y +--+=都相切的半径最小的圆的标准方程是 .【答案】:. 22(2)(2)2x y -+-=【分析】:曲线化为22(6)(6)18x y -+-=,其圆心到直线20x y +-=的距离为d ==所求的最小圆的圆心在直线y x =上,其到直线的距离为,圆心坐标为(2,2).标准方程为22(2)(2)2x y -+-=。
2、(安徽文5)若圆04222=--+y x y x 的圆心到直线0=+-a y x 的距离为22,则a 的值为 (A)-2或2(B)2321或 (C)2或0 (D)-2或0解析:若圆04222=--+y x y x 的圆心(1,2)到直线0=+-a y x 的距离为22,∴2=,∴ a =2或0,选C 。
3、(上海文13)圆01222=--+x y x 关于直线032=+-y x 对称的圆的方程是( )A.21)2()3(22=-++y x B.21)2()3(22=++-y x C.2)2()3(22=-++y xD.2)2()3(22=++-y x【答案】C【解析】圆2222210(1)2x y x x y +--=⇒-+=,圆心(1,0032=+-y x 对称的圆半径不变,排除A 、B ,两圆圆心连线段的中点在直线032=+-y x 上,C 中圆2)2()3(22=-++y x 的圆心为(-3,2),验证适合,故选C 。
4、(湖北理10)已知直线1x ya b+=(a b ,是非零常数)与圆22100x y +=有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有( ) A .60条 B .66条 C .72条 D .78条 答案:选A解析:可知直线的横、纵截距都不为零,即与坐标轴不垂直,不过坐标原点,而圆22100x y +=上的整数点共有12个,分别为()()()6,8,6,8,8,6±-±±,()()()8,6,10,0,0,10-±±±,前8个点中,过任意一点的圆的切线满足,有8条;12个点中过任意两点,构成21266C =条直线,其中有4条直线垂直x 轴,有4条直线垂直y 轴,还有6条过原点(圆上点的对称性),故满足题设的直线有52条。
综上可知满足题设的直线共有52860+=条,选A5、(湖北文8)由直线y=x +1上的一点向圆(x -3)2+y 2=1引切线,则切线长的最小值为 A.1B.22C.7D.3答案:选C解析:切线长的最小值是当直线y=x +1上的点与圆心距离最小时取得,圆心(3,0)到直线的距离为d=222|103|=+-,圆的半径为1,故切线长的最小值为71822=-=-r d ,选C6、(浙江理3)直线210x y -+=关于直线1x =对称的直线方程是( ) A.210x y +-= B.210x y +-= C.230x y +-=D.230x y +-=【答案】:D【分析】:解法一(利用相关点法)设所求直线上任一点(x,y),则它关于1x =对称点为(2-x,y)在直线210x y -+=上,0122=+--∴y x 化简得230x y +-=故选答案D.解法二:根据直线210x y -+=关于直线1x =对称的直线斜率是互为相反数得答案A 或D,再根据两直线交点在直线1x =选答案D.7、(浙江理4文5)要在边长为16米的正方形草坪上安装喷水龙头,使整个草坪为6米的圆面,则需安装这种喷水龙头的个数最少是( )A.3 B.4 C.5 D.6X【答案】B【分析】:因为龙头的喷洒面积为36π113≈,正方形面积为256,故至少三个龙头。
由于216R <,故三个龙头肯定不能 保证整个草坪能喷洒到水。
当用四个龙头时,可将正方形均分四个小正方形, 同时将四个龙头分别放在它们的中心,由于212R =>,故可以保证整个草坪能喷洒到水。
8、(浙江理4)直线x -2y +1=0关于直线x =1对称的直线方程是(A)x +2y -1=0 (B)2 x +y -1=0 (C )2 x +y -3=0 (D) x +2y -3=0 【答案】:D 【分析】:解法一(利用相关点法)设所求直线上任一点(x,y),则它关于1x =对称点为(2-x,y)在直线210x y -+=上,0122=+--∴y x 化简得230x y +-=故选答案D.解法二根据直线210x y -+=关于直线1x =对称的直线斜率是互为相反数得答案A 或D,再根据两直线交点在直线1x =选答案D. 9、(重庆文3)垂直于同一平面的两条直线(A )平行 (B )垂直 (C )相交 (D )异面【答案】:A【分析】:垂直于同一平面的两条直线平行.10、(重庆文8)若直线1+=kx y 与圆122=+y x 相交于P 、且∠POQ =120°(其中O 为原点),则k 的值为(A )(B(C )(D 【答案】:A【分析】:如图,直线过定点(0,1),30,1120,260,3.O P Q k ∠=⇒∠=∠=∴11、(四川理11文12)如图,1l 、2l 、3l 是同一平面内的三条平行直线,1l 与2l 间的距离是1,2l 与3l 间的距离是2,正三角形ABC 的三顶点分别在1l 、2l 、3l 上,则⊿ABC的边长是( )(A ) (B )364(C)4 (D)3解析:选D .过点C作2l 的垂线4l ,以2l 、4l 为x 轴、y 轴建立平面直角坐标系.设(,1A a 、(,0)B b 、(0,2)C -,由A B B CA ==知2222()149a b b a -+=+=+=边长,检验A :222()14912a b b a -+=+=+=,无解;检验B:22232()1493a b b a -+=+=+=,无解;检验D :22228()1493a b b a -+=+=+=,正确二、填空题1、(广东理13)(坐标系与参数方程选做题)在平面直角坐标系xOy 中,直线l 的参数方程为33x t y t =+⎧⎨=-⎩(参数t ∈R ),圆C 的参数方程为cos 2sin 2x y θθ=⎧⎨=+⎩(参数[0,2]θπ∈),则圆C的圆心坐标为_______,圆心到直线l 的距离为______. 答案:(0,2);.解析:直线的方程为x+y-6=0,=2、(广东理15)[几何证明选讲选做题]如图所示,圆O的直径为6,C为圆周上一点。
BC=3,过C作圆的切线l,过A作l的垂线AD,垂足为D,则∠DAC=______;线段AE 的长为_______。
答案:6π;3。
解析:根据弦切角等于夹弧所对的圆周角及直角三角形两锐角互余,很容易得到答案; AE=EC=BC=3;3、(天津文理14)已知两圆2210x y +=和22(1)(3)20x y -+-=相交于,A B 两点,则直线AB 的方程是__________. 【答案】30x y +=【分析】两圆方程作差得30x y +=4、(山东理15)与直线20x y +-=和曲线221212540x y x y +--+=都相切的半径最小的圆的标准方程是_________.【答案】:. 22(2)(2)2x y -+-=【分析】:曲线化为22(6)(6)18x y -+-=,其圆心到A直线20x y +-=的距离为d ==所求的最小圆的圆心在直线y x =上,其(2,2).标准方程为22(2)(2)2x y -+-=。
5、(上海理2)已知1:210l x my ++=与2:31l y x =-,若两直线平行,则m 的值为_____【答案】32-【解析】 2123113m m =≠⇒=--- 6、(上海理11)已知圆的方程()2211x y +-=,P 为圆上任意一点(不包括原点)。
直线OP 的倾斜角为θ弧度,OP d =,则()d fθ=的图象大致为_____【答案】【解析】 2cos()2sin ,(0,)2OP πθθθπ=-=∈7、(上海文3)直线014=-+y x 的倾斜角=θ . 【答案】4arctan π- 【解析】tan 4,(,)2πθθπθ=-∴∈⇒=4arctan π-.。
8、(上海文11)如图,A B ,是直线l 上的两点,且2=AB .两个半径相等的动圆分别与l 相切于A B ,点,C 是这两个圆的公共点,则圆弧AC ,CB 线段AB 围成图形面积S 的取值范围是 . 【答案】π022⎛⎤-⎥⎝⎦, 【解析】如图,当12O O 与外切于点C 时,S 最大,此时,两圆半径为1,S 等于矩形ABO 2O 1的面积减去两扇形面积,2max1212(1)242S ππ∴=⨯-⨯⨯⨯=-,随着圆半径的变化,C 可以向直线l 靠近,当C 到直线l 的距离0,0,(0,22d S S π→→∴∈-时。
9、(湖南文理11)圆心为(11),且与直线4x y +=相切的圆的方程是 . 【答案】22(1)(1)2x y -+-= 【解析】半径R=22|411|=-+,所以圆的方程为22(1)(1)2x y -+-=10、(江西理16)设有一组圆224*:(1)(3)2()k C x k y k k k -++-=∈N .下列四个命题: A.存在一条定直线与所有的圆均相切B.存在一条定直线与所有的圆均相交 C.存在一条定直线与所有的圆均不.相交 D.所有的圆均不.经过原点 其中真命题的代号是.(写出所有真命题的代号)解析:圆心为(k-1,3k )半径为22k ,圆心在直线y=3(x+1)上,所以直线y=3(x+1)必与所有的圆相交,B 正确;由C 1、C 2、C 3的图像可知A 、C 不正确;若存在圆过原点(0,0),则有424222121029)1(k k k k k k =+-⇒=++-(*)N k ∈因为左边为奇数,右边为偶数,故不存在k 使上式成立,即所有圆不过原点。
填B 、D11、(四川文理15)已知O 的方程是2220x y +-=,'O 的方程是228100x y x +-+=,由动点P 向O 和'O 所引的切线长相等,则动点P 的轨迹方程是__________________ 解析:O :圆心(0,0)O ,半径r ='O :圆心'(4,0)O ,半径'r 设(,)P x y ,由切线长相等得222x y +-=22810x y x +-+,32x =.。