九年级数学上册 23.1求概率的方法 用列举法求概率 同步练习 北京课改版
人教版九年级上册数学同步练习《用列举法求概率》(习题+答案)
25.2用列举法求概率内容提要1.在一次随机实验中可能出现的结果只有有限个,且各种结果出现的可能性大小相等,通过列举实验结果分析出随机事件发生的概率,这一方法叫列举法.2.当一次实验可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法和树状图法.25.2.1列举法基础训练1.随机抛掷一个正方体骰子,朝上的一面是偶数的概率是()A.1 B.12C.13D.162.如图,随机闭合开关1S,2S,3S中的两个,则灯泡发光的概率是()A.34B.23C.13D.123.为支援希望工程“爱心包裹”活动,小慧准备通过热线捐款,他只记得号码的前5位,后三位由5,3,2这三个数字组成,但具体顺序忘记了,他一次就拨通电话的概率是()A.12B.14C.16D.184.如图,甲为三等分数字转盘,乙为四等分数字转盘,同时自由转动两个转盘,当转盘停止活动后(若指针指在边界处则重转),两个转盘指针指向数字都是偶数的概率是.5.学校开展“感恩父母”活动,方同学想为父母做道菜,他发现冰箱里有三种蔬菜(芹菜、洋葱、土豆)、两种肉类(猪肉、牛肉),他想做一道蔬菜炒肉,则可能产生的菜品种类有种.6.已知一元二次方程220x x c++=,随机从2-,1-,1,2四个数中选一个作为c的值,则可以使得该方程有解的概率为.7.将下面的4张牌正面向下放置在桌面上,一次任意抽取两张.(1)用列举法写出抽取的所有可能结果;(2)求抽取两张点数之和为奇数的概率.8.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放入4个完全相同的小球,球上分别标有“0元”“10元”“20元”“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里摸出两个球(第一次摸出球后不放回).商场根据两个小球所标的金额之和返还相应价格的购物券,可以重新在本商场内消费.一天,某顾客刚好消费200元.(1)该顾客至少可得元购物券,至多可得到元购物券;(2)请你用列举法求出该顾客所获得购物券的金额不低于30元的概率.25.2.2列表法和树状图法基础训练1.连续抛掷两次骰子,它们的点数都是4的概率是()A.16B.14C.116D.1362.小浩同学笔袋里有两支红笔和两支黑笔(4支笔的款式相同),上课做笔记时,他随机从笔袋中抽出两支笔,刚好是一红一黑的概率是()A.16B.14C.13D.233.甲、乙、丙、丁四名运动员参加4100米接力赛,甲冲刺能力强,因此跑第四棒.若剩下3人随机排列,那么这四名运动员在比赛过程中的接棒顺序有()A.3种B.4种C.6种D.12种4.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为()A.34B.14C.13D.125.两个正四面体骰子的各面分别标明数字1,2,3,4,若同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为.6.学校开设了“摄影与欣赏”“英语阅读”“新闻与人生”三类综合实践课程,每位同学可以任选一个课程,则小欣和小姗同学选中同一课程的概率是.7.如图,同学A有3张卡片,同学B有2张卡片,他们分别从自己的卡片中随机抽取一张,则抽取的两张卡片上的数字相同的概率是.8.为迎接体育中考,小雯决定利用寒假进行体能训练,她每天随机完成下表中的两项内容,则训练时不用带体育器材的概率是.项目①快走②跳绳③慢跑④骑自行车训练量20分钟500下30分钟3km9.甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为7-,1-,3,乙袋中的三张卡片所标的数值为2-,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x,y分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点(),A x y的所有情况;(2)求点A落在第三象限的概率.10.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出一位选手获得三位评委评定的各种可能的结果;(2)求一位选手晋级的概率.能力提高1.如图,在22⨯的正方形网格中有9个格点,已经取定点A和B,在余下的7个点任取一点C,使ABC∆为直角三角形的概率是()A.12B.25C.37D.472.一个均匀的正方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是()A.23B.12C.13D.163.号码锁上有2个拨盘,每个拨盘上有0~9共10个数字,能打开锁的号码只有一个,任意拨一个号码,能打开锁的概率是()A.19B.110C.181D.11004.在数1-,1,2中任取两个数作为点的坐标,那么该点刚好在一次函数2y x=-图象上的概率是()A.12B.13C.14D.165.在222x xy y□□的两个空格□中,任意填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是.6.某校合唱队有x个男生和y个女生,随机抽取一人做队长,则队长是男生的概率为37,为扩大规模又招入10个男生,此时队长是男生的概率为59,则原总人数x y+等于.7.甲、乙两人玩猜数字游戏,游戏规则如下:有四个数字0,1,2,3,先由甲在心中任选一个数字,记为m,再由乙在心中任选一个数字,记为n,若m,n满足1m n-≤,则称甲、乙两人“心有灵犀”,则甲、乙两人“心有灵犀”的概率是.8.在一个布袋中装有2个红球和2个蓝球,它们除颜色外其他都相同.(1)搅匀后从中摸出一个球记下颜色,放回搅匀再摸出第二个球,求两次都摸到蓝球的概率;(2)搅匀后从中摸出一个球记下颜色,不放回继续摸出第二个球,求两次都摸到蓝球的概率.9.小刚和小强玩飞行棋游戏,要想起飞必须投掷一枚骰子并且得到6,可以起飞之后同时投掷两枚骰子,点数之和即为飞行步数.(1)求投掷一枚骰子可以起飞的概率;(2)如右图,是飞行棋谱的一部分,若小华得到起飞机会,则第一次投掷两枚骰子,到达哪一格的可能性最大?拓展探究1.辨析下列事件(1)小刚做掷硬币的游戏,得到结论:掷均匀的两枚硬币,会出现三种情况:两正,一,他的结论对吗?说说你的理由.正一反,两反,所以出现一正一反的概率是13(2)小刚和父母都想去看恒大的足球比赛,但三人只有一张门票.爸爸建议通过抽签来决定谁去,但他们三人还为先抽和后抽的问题吵得不亦乐乎,你觉得有必要吗?请说明理由.2.某校九年级(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:自选项目人数频率立定跳远9 0.18三级蛙跳12 a一分钟跳绳8 0.16投掷实心球b0.32推铅球 5 0.10合计50 1(1)求,a b(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多有一名女生的概率.3.不透明的口袋里装有如下图标有数字的三种颜色的小球(大小、形状相同),其中红球有2个,蓝球有1个,现从中任意摸出一个是红球的概率为12.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个球,请用树状图法或列表法求两次摸到的都是红球的概率;(3)若小明共摸6次球(每次摸1个球,摸后放回),球面得分之和为20,问小明有哪几种摸法?(只考虑分数的组合,不考虑6个球被摸出的先后顺序)25.2 参考答案:25.2.1 列举法基础训练1.B 2.B 3.C 4.165.6 6.347.(1)(4,5),(4,6),(4,8),(5,6),(5,8),(6,8) (2)12 8.(1)10 50 (2)2325.2.2 列表法和树状图法 基础训练1.D 2.D 3.C 4.D 5.14 6.13 7.138.16 9.(1)如表,点(,)A x y 共9种情况. (2)29数值 7- 1-3 2- 7-,2- 1-,2-3,2- 1 7-,1 1-,13,1 6 7-,6 1-,63,6 10.(1(2)41()82P ==晋级. 能力提高1.D 2.C 3.D 4.D 5.12 6.35 7.588.(1)14 (2)16 9.(1)16 (2)7 拓展探究1.(1)他的结论不正确,应当把两枚硬币标记上A ,B ,则会产生A 正B 正、A 正B 反、A 反B 正、A 反B 反四种情况,所以出现一正一反的概率是12. (2)我认为没有必要,因为不论谁先抽或后抽,三人能够去看比赛的概率都是13.2.(1)0.24a =,16b =;(2)扇形统计图略,3600.1657.6︒⨯=︒;(3)9103.(1)1 (2)16(3)三种摸法,球面分数分别是①5,3,3,3,3,3;②5,5,3,3,3,1;③5,5,5,3,1,1.。
北京课改版九年级(上) 中考题同步试卷:23.1 求概率的方法(10)
北京课改版九年级(上)中考题同步试卷:23.1 求概率的方法(10)一、选择题(共5小题)1.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选两数,与7组成“中高数”的概率是()A.B.C.D.2.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A.B.C.D.3.经过某十字路口的汽车,可能直行,也可能左转或者右转,如果这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是()A.B.C.D.4.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是()A.B.C.D.5.书架上有3本小说、2本散文,从中随机抽取2本都是小说的概率是()A.B.C.D.二、填空题(共3小题)6.从﹣1、、1这三个数中任取两个不同的数作为点A的坐标,则点A在第二象限的概率是.7.把三张形状、大小相同但画面不同的风景图片,都按同样的方式剪成相同的两片,然后堆放到一起混合洗匀,从这堆图片中随机抽出两张,这两张图片恰好能组成一张原风景图片的概率是.8.有4张看上去无差别的卡片,上面分别写着2,3,4,5.随机抽取1张后,放回并混合在一起,再随机抽取1张,则第二次抽出的数字能够整除第一次抽出的数字的概率是.三、解答题(共22小题)9.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.10.一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.(1)当n=1时,从袋中随机摸出1个球,摸到红球和摸到白球的可能性是否相同?(在答题卡相应位置填“相同”或“不相同”);(2)从袋中随机摸出一个球,记录其颜色,然后放回,大量重复该实验,发现摸到绿球的频率稳定于0.25,则n的值是;(3)在一个摸球游戏中,所有可能出现的结果如下:根据树状图呈现的结果,求两次摸出的球颜色不同的概率.11.为进一步增强学生体质,据悉,我市从2016年起,中考体育测试将进行改革,实行必测项目和选测项目相结合的方式.必测项目有三项:立定跳远、坐位体前屈、跑步;选测项目:在篮球(记为X1)、排球(记为X2)、足球(记为X3)中任选一项.(1)每位考生将有种选择方案;(2)用画树状图或列表的方法求小颖和小华将选择同种方案的概率.12.一个不透明的口袋中装有4个分别标有数字﹣1,﹣2,3,4的小球,它们的形状、大小完全相同.小红先从口袋中随机摸出一个小球记下数字为x;小颖在剩下的3个小球中随机摸出一个小球记下数字为y.(1)小红摸出标有数字3的小球的概率是;(2)请用列表法或画树状图的方法表示出由x,y确定的点P(x,y)所有可能的结果;(3)若规定:点P(x,y)在第一象限或第三象限小红获胜;点P(x,y)在第二象限或第四象限则小颖获胜.请分别求出两人获胜的概率.13.2015年湘潭市中考招生政策发生较大改变,其中之一是:省级示范性高中批次志愿中,每个考生可填报两所学校(有先后顺序),我市某区域的初三毕业生可填报的省级示范性高中有A、B、C、D四所.(1)请列举出该区域学生填报省级示范性高中批次志愿的所有可能结果;(2)求填报方案中含有A学校的概率.14.育才中学计划召开“诚信在我心中”主题教育活动,需要选拔活动主持人,经过全校学生投票推荐,有2名男生和1名女生被推荐为候选主持人.(1)小明认为,如果从3名候选主持人中随机选拔1名主持人,不是男生就是女生,因此选出的主持人是男生和女生的可能性相同,你同意他的说法吗?为什么?(2)如果从3名候选主持人中随机选拔2名主持人,请通过列表或树状图求选拔出的2名主持人恰好是1名男生和1名女生的概率.15.课前预习是学习的重要环节,为了了解所教班级学生完成课前预习的具体情况,某班主任对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类:A﹣优秀,B ﹣良好,C﹣一般,D﹣较差,并将调查结果绘制成以下两幅不完整的统计图.请你根据统计图,解答下列问题:(1)本次一共调查了多少名学生?(2)C类女生有名,D类男生有名,并将条形统计图补充完整;(3)若从被调查的A类和C类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树状图的方法求出所选同学中恰好是一位男同学和一位女同学的概率.16.(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给出分析过程)(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是(请直接写出结果).17.为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如图统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为.18.某班抽查25名学生数学测验成绩(单位:分),频数分布直方图如图:(1)成绩x在什么范围的人数最多?是多少人?(2)若用半径为2的扇形图来描述,成绩在60≤x<70的人数对应的扇形面积是多少?(3)从相成绩在50≤x<60和90≤x<100的学生中任选2人.小李成绩是96分,用树状图或列表法列出所有可能结果,求小李被选中的概率.19.中学生上学带手机的现象越来越受到社会的关注,为此媒体记者随机调查了某校若干名学生上学带手机的目的,分为四种类型:A接听电话;B收发短信;C查阅资料;D游戏聊天.并将调查结果绘制成图1和图2的统计图(不完整),请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图1、图2补充完整;(3)现有4名学生,其中A类两名,B类两名,从中任选2名学生,求这两名学生为同一类型的概率(用列表法或树状图法).20.在“阳光体育”活动时间,小英、小丽、小敏、小洁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,求恰好选中小丽同学的概率;(2)用画树状图或列表的方法,求恰好选中小敏、小洁两位同学进行比赛的概率.21.活动1:在一只不透明的口袋中装有标号为1,2,3的3个小球,这些球除标号外都相同,充分搅匀,甲、乙、丙三位同学丙→甲→乙的顺序依次从袋中各摸出一个球(不放回),摸到1号球胜出,计算甲胜出的概率.(注:丙→甲→乙表示丙第一个摸球,甲第二个摸球,乙最后一个摸球)活动2:在一只不透明的口袋中装有标号为1,2,3,4的4个小球,这些球除标号外都相同,充分搅匀,请你对甲、乙、丙三名同学规定一个摸球顺序:→→,他们按这个顺序从袋中各摸出一个球(不放回),摸到1号球胜出,则第一个摸球的同学胜出的概率等于,最后一个摸球的同学胜出的概率等于.猜想:在一只不透明的口袋中装有标号为1,2,3,…,n(n为正整数)的n个小球,这些球除标号外都相同,充分搅匀,甲、乙、丙三名同学从袋中各摸出一个球(不放回),摸到1号球胜出,猜想:这三名同学每人胜出的概率之间的大小关系.你还能得到什么活动经验?(写出一个即可)22.为了培养学生的阅读习惯,某校开展了“读好书,助成长”系列活动,并准备购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,根据统计图所提供的信息,回答下列问题:(1)本次调查共抽查了名学生,两幅统计图中的m=,n=.(2)已知该校共有960名学生,请估计该校喜欢阅读“A”类图书的学生约有多少人?(3)学校要举办读书知识竞赛,七年(1)班要在班级优胜者2男1女中随机选送2人参赛,求选送的两名参赛同学为1男1女的概率是多少?23.2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是;扇形统计图中的圆心角α等于;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.24.在甲口袋中有三张完全相同的卡片,分别标有﹣1,1,2,乙口袋中有完全相同的卡片,分别标有﹣2,3,4,从这两个口袋中各随机取出一张卡片.(1)用树状图或列表表示所有可能出现的结果;(2)求两次取出卡片的数字之积为正数的概率.25.某超市计划经销一些特产,经销前,围绕“A:绥中白梨,B:虹螺岘干豆腐,C:绥中六股河鸭蛋,D:兴城红崖子花生”四种特产,在全市范围内随机抽取了部分市民进行问卷调查:“我最喜欢的特产是什么?”(必选且只选一种).现将调查结果整理后,绘制成如图所示的不完整的扇形统计图和条形统计图.请根据所给信息解答以下问题:(1)请补全扇形统计图和条形统计图;(2)若全市有280万市民,估计全市最喜欢“虹螺岘干豆腐”的市民约有多少万人?(3)在一个不透明的口袋中有四个分别写上四种特产标记A、B、C、D的小球(除标记外完全相同),随机摸出一个小球然后放回,混合摇匀后,再随机摸出一个小球,则两次都摸到“A”的概率为.26.某校决定在6月8日“世界海洋日”开展系列海洋知识的宣传活动,活动有A.唱歌、B.舞蹈、C.绘画、D.演讲四项宣传方式.学校围绕“你最喜欢的宣传方式是什么?”在全校学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了如下两种不完整的统计图表:选项方式百分比A唱歌35%B舞蹈aC绘画25%D演讲10%请结合统计图表,回答下列问题:(1)本次抽查的学生共人,a=,并将条形统计图补充完整;(2)如果该校学生有1800人,请你估计该校喜欢“唱歌”这项宣传方式的学生约有多少人?(3)学校采用抽签方式让每班在A、B、C、D四项宣传方式中随机抽取两项进行展示,请用树状图或列表法求某班所抽到的两项方式恰好是“唱歌”和“舞蹈”的概率.27.小明参加某网店的“翻牌抽奖”活动,如图,4张牌分别对应价值5,10,15,20(单位:元)的4件奖品.(1)如果随机翻1张牌,那么抽中20元奖品的概率为(2)如果随机翻2张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总值不低于30元的概率为多少?28.为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.(1)抽查D厂家的零件为件,扇形统计图中D厂家对应的圆心角为;(2)抽查C厂家的合格零件为件,并将图1补充完整;(3)通过计算说明合格率排在前两名的是哪两个厂家;(4)若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.29.在一个不透明的口袋装有三个完全相同的小球,分别标号为1、2、3.求下列事件的概率:(1)从中任取一球,小球上的数字为偶数;(2)从中任取一球,记下数字作为点A的横坐标x,把小球放回袋中,再从中任取一球记下数字作为点A的纵坐标y,点A(x,y)在函数y=的图象上.30.电视节目“奔跑吧兄弟”播出后深受中小学生的喜爱,小刚想知道大家最喜欢哪位“兄弟”,于是在本校随机抽取了一部分学生进行抽查(每人只能选一个自己最喜欢的“兄弟”),将调查结果进行了整理后绘制成如图两幅不完整的统计图,请结合图中提供的信息解答下列问题:(1)本次被调查的学生有人.(2)将两幅统计图补充完整.(3)若小刚所在学校有2000名学生,请根据图中信息,估计全校喜欢“Angelababy”的人数.(4)若从3名喜欢“李晨”的学生和2名喜欢“Angelababy”的学生中随机抽取两人参加文体活动,则两人都是喜欢“李晨”的学生的概率是.北京课改版九年级(上)中考题同步试卷:23.1 求概率的方法(10)参考答案一、选择题(共5小题)1.C;2.D;3.C;4.C;5.A;二、填空题(共3小题)6.;7.;8.;三、解答题(共22小题)9.;10.2;11.3;12.;13.;14.;15.3;1;16.;17.144;;18.;19.200;20.;21.丙;甲;乙;;;22.120;48;15;23.30;144°;24.;25.;26.300;30%;27.25%;28.500;90°;380;29.;30.200;;。
2021九年级数学上册23.1 求概率的方法课堂导学+北京课改版
23.1 求概率的方法名师导学典例分析例1 某中学七年级有6个班,要从中选出2个班代表学校参加某项活动,七(1)班必须参加,另外再从七(2)班至七(6)班中选出1个班.七(4)班有同学建议用如下的方法:从装有编号为1,2,3的3个白球的A 袋中摸出1个球,再从装有编号为1,2,3的3个红球的B 袋中摸出1个球(两袋中球的大小、形状与质量完全一样),摸出的2个球的数字和是几,就选几班,你认为这种方法公平吗?请说明理由.思路分析:七(4)班同学的建议是否公平,关键在于该建议对每个班是不是等可能性的,这就需要求各种情况的概率,要么用列表法,要么用画树状图法. 解:方法不公平.方法一:用列表法来说明.方法二:用画树状图法来说明.如图23-1-1所以,七(2)班被选中的概率为91;七(3)班被选中的概率为92;七(4)班被选中的概率为3193 ;七(5)班被选中的概率为92;七(6)班被选中的概率为91,所以这种方法不公平,显然对七(4)班有利.例2 一个不透明的袋子里放着3个黑球和2个白球,搅匀后同时摸出2个,要求摸出的2个球颜色不同的概率.请设计一个使用替代物的模拟实验来估计这个事件发生的概率. 思路分析:解决本题的实验方案有很多,只要可行即可,这里举出两个简单的例子,仅供参考. 解:方案一:取5张大小材料都相同的纸片,2张上面写上‘‘白”,3张上面写上“黑”,然后背面向上,同时摸出2张,记录下2张牌标注的‘‘颜色”;放回后重新洗牌,再摸第二次……计算摸出的两张牌中恰好是一个“白’’字,一个“黑”字出现的频率. 方案二:取一些小纸片,每5张一组,每一组中写2张“1”,写3张‘‘2”,然后把它们揉成一团,每次从一个小组中抽2个小纸团,打开查看所写的数据,计算抽出的2张纸片恰好一张写“l”,一张写“2”出现曲频率.突破易错☆挑战零失误规律总结善于总结★触类旁通1 方法点拨:这类题目的实质就是求事件的概率,解题过程中需要罗列所有可能的结果,借助于列表或画树状图的方法可以有效地避免结果重复或遗漏.2 方法点拨:本题是关于模拟实验的题目,模拟实验是仿真的,解决此类问题时要注意替代物与模拟对象之间的对应关系,二者之间的数量比必须是同步对应的,就本题而言,例如2个“自球”对应着2个“1”,3个黑球对应着3个“2”,另外,用模拟实验的方法估计事件发生的概率,关键要选好替代物,以便于操作.类记忆表AAA 型(原形→原形→原形)三、ABC 型四、ABB型不规则单词测试卷(1)微信添加“小魔方站”或“fifteen1617”免费获得更多中考资料与模拟试题不规则单词测试卷(2)不规则单词测试卷(3)不规则单词测试卷(4)。
北师大版本九年级上册第三章概率的进一步认识知识点解析含习题练习
第01讲_概率的进一步认识知识图谱概率的计算知识精讲一.用列表法和树状图法求事件的概率1.列表法:当试验中存在两个元素且出现的所有可能的结果较多时,为了不重不漏地列举出所有可能的结果,我们采用列表法来求出某事件的概率.2.树状图法:当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图法来求出某事件的概率.树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,象树的树丫形式,最末端的树丫个数就是总的可能的结果.二.用频率估计概率实际上,从长期实践中,人们观察到,对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个时间出现的频率,总在一个固定的数附近摆动,显示出一定的稳定性.因此,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.三点剖析一.考点:概率的计算二.重难点:用列表法和树状图法求事件概率三.易错点:(1)两步以及两步以上的简单事件求概率的方法:利用树状或者列表表示各种等可能的情况与事件的可能性的比值;(2)复杂事件求概率的方法运用频率估算概率。
判断是否公平的方法运用概率是否相等,关注频率与概率的整合。
求简单事件的概率例题1、在盒子里放有三张分别写有整式a+1,a+2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A.1 3B.23C.16D.34【答案】B【解析】分母含有字母的式子是分式,整式a+1,a+2,2中,抽到a+1,a+2做分母时组成的都是分式,共有3×2=6种情况,其中a+1,a+2为分母的情况有4种,所以能组成分式的概率=46=23.北师大版本九年级上册第三章概率的进一步认识例题2、围棋盒子中有x颗白色棋子和y颗黑色棋子,从盒子中随机取出一颗棋子,取得白色棋子的概率是2 3.如果在原有的棋子中再放进4颗黑色棋子,此时从盒子中随机取出一颗棋子为白色棋子的概率是12,则原来盒子中有白色棋子()A.4颗B.6颗C.8颗D.12颗【答案】C【解析】由题意得14223xx yxx y⎧=⎪++⎪⎨⎪=⎪+⎩;解得48yx=⎧⎨=⎩,由此可得,原来盒子中有白色棋子8颗例题3、某厂为新型号电视机上市举办促销活动,顾客购买一台该型号电视机,可获得一次抽奖机会,该厂拟按10%设大奖,其余90%为小奖.厂家设计的抽奖方案是:在一个不透明的盒子中,放入10个黄球和90个白球,这些球除颜色外都相同,搅匀后从中任意摸出两个球,摸到都是黄球的顾客获得大奖,摸到不全是黄球的顾客获得小奖.(1)厂家请教了一位数学老师,他设计的抽奖方案是:在一个不透明的盒子中,放入2个黄球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,摸到黄球的顾客获得大奖,摸到白球的顾客获得小奖.该抽奖方案符合厂家的设奖要求吗?请说明理由;(2)下图是一个可以自由转动的转盘,请你讲转盘分为2个扇形区域,分别涂上黄、白两种颜色,并设计抽奖方案,使其符合厂家的设奖要求.(友情提醒:转盘上用文字注明颜色和扇形的圆心角的度数,结合转盘简述获奖方式,不需要说明理由).【答案】见解析【解析】(1)符合,一共出现20种可能性,并且每种可能性都相同,所有的结果中,满足摸到的2个球都是黄球(记为事件A)的结果有2种,即(黄1,黄2)或(黄2,黄1),所以P(两黄球)212010==,即顾客获得大奖的概率为10%,获得小奖的概率为90%;(2)本题答案不唯一,下列解法供参考.如图,将转盘中圆心角为36︒的扇形区域涂上黄色,其余的区域涂上白色,顾客每购买一台该型号电视机,可获得一次转动转盘的机会,任意转动这个转盘,当转盘停止时,指针指向黄色区域获得大奖,指向白色区域获得小奖.随练1、如图,随机闭合开关S1、S2、S3中的两个,则能让灯泡⊗发光的概率是()A.B.C. D.【答案】C【解析】列表如下:共有6种情况,必须闭合开关S 3灯泡才亮,即能让灯泡发光的概率是=.故选C .随练2、在围棋盒中有x 颗白色棋子和y 颗黑色棋子,它们除颜色外全部相同,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A.1颗B.2颗C.3颗D.4颗【答案】B【解析】解:由题意得:25134x x y x x y ⎧=⎪+⎪⎨⎪=⎪++⎩,解得23x y =⎧⎨=⎩故选:B .随练3、有一盒子中装有3个白色乒乓球,2个黄色乒乓球,1个红色乒乓球,6个乒乓球除颜色外形状和大小完全一样,李明同学从盒子中任意摸出一乒乓球.(1)你认为李明同学摸出的球,最有可能是______颜色;(2)请你计算摸到每种颜色球的概率;(3)李明和王涛同学一起做游戏,李明或王涛从上述盒子中任意摸一球,如果摸到白球,李明获胜,否则王涛获胜.这个游戏对双方公平吗?为什么?【答案】(1)白(2)16(3)公平【解析】(1)因为白色的乒乓球数量最多,所以最有可能是白色(2)摸出一球总共有6种可能,它们的可能性相等,摸到白球有3种、黄球有2种、红球有1种.所以P (摸到白球)=3162=,P (摸到黄球)=2163=,P (摸到红球)=16;(3)答:公平.因为P (摸到白球)=12,P (摸到其他球)=21162+=,所以公平.列表法和树状图法求概率例题1、如图所示是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时(若指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止),两个指针所指区域的数字和为偶数的概率是__________.【答案】715【解析】列表得(1,8)(1,7)(1,6)(1,5)(1,4);(2,8)(2,7)(2,6)(2,5)(2,4);(3,8)(3,7)(3,6)(3,5)(3,4);其中为偶数的有7种,故数字和为偶数的概率是715例题2、一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,1-,2-,3-四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为__________.【答案】38【解析】画树状图,得因为共有16种可能的结果,两次摸出的小球上两个数字乘积是负数的有6种情况所以两次摸出的小球上两个数字乘积是负数的概率63168==.例题3、有十张正面分别标有数字3-,2-,1-,0,1,2,3,4,5,6的不透明卡片,他们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,将该卡片上的数字加1记为b .则数字a ,b 使得关于x 的方程210ax bx +-=有解的概率为___________.【答案】710【解析】列表得:一共有(3,2)--、(2,1)--、(1,0)-、(0,1)、(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7);数字a ,b 使得关于x 的方程210ax bx +-=有解的情况有:(0,1)、(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7)七种,则710P =.例题4、在平面直角坐标系中给定以下五个点A (2-,0)、B (1,0)、C (4,0)、D (2-,92)、E (0,6-),在五个形状、颜色、质量完全相同的乒乓球上标上A 、B 、C 、D 、E 代表以上五个点.玩桌球游戏,每次摸三个球,摸一次,三球代表的点恰好能确定一条抛物线(对称轴平行于y 轴)的概率是()A.12B.35C.710D.45【答案】B【解析】所有的摸球情况有:ABC 、ABD 、ABE 、ACD 、ACD 、ACE 、ADE 、BCD 、BCE 、BCE 、BDE 、CDE 共有10种情况;其中,ABC 时,三点都在x 轴上,共线,不能确定一条抛物线;而ABD 、ACD 、ADE 时,A 、D 的横坐标都是2-,不复合函数的定义;所以能确定一条抛物线的情况有:10136--=,所以35P =.随练1、把一个转盘平均分成三等份,依次标上数字1、2、3.自由转动转盘两次,把第一次转动停止后指针指向的数字记作x ,把第二次转动停止后指针指向的数字的2倍记作y ,以长度分别为x 、y 、5的三条线段能构成三角形的概率为__________.【答案】49【解析】列表可得因此,点(),A x y 的个数共有9个;则x 、y 、5的三条线段能构成三角形的有4组,可得49P =.随练2、在不透明的口袋中,有五个形状、大小、质地完全相同的小球,五个小球分别标有数字2-、1-、0、2、3,现从口袋中任取一个小球,并将该小球上的数字作为点C 的横坐标,然后放回摇匀,再从口袋中人去一个小球,并将该小球上的数字作为点C 的纵坐标,则点C 恰好与点A (2-,2)、B (3,2)构成直角三角形的概率是_________.【答案】25【解析】画树状图如下:共有25种情况,当点C的坐标为(2-,2-)、(2-,1-)、(2-,0)、(2-,3)、(1-,0)、(2,0)、(3,2-)、(3,1-)、(3,0)、(3,3)共10种情况时,构成直角三角形,P(直角三角形)102 255 ==.用频率估计概率例题1、在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率【答案】D【解析】本题考查了利用频率估计概率的知识,大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率.根据大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率解答.∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴D选项说法正确.故选:D.例题2、某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:40075015003500700090003696621335320363358073根据表中数据,估计这种幼树移植活率的概率为__________(精确到0.1).【答案】0.9【解析】(0.9230.8830.8900.9150.9050.8970.902)70.9x=++++++÷≈例题3、在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球模拟.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据摸球次数(n)100150200500摸到白球次数(m)5896116295摸到白球的频率(0.580.640.580.59(1)请你估计,当n很大时,摸到白球的频率将会接近_________(精确到0.1).(2)假如你去摸一次,你摸到白球的概率是_________,摸到黑球的概率是_________.(3)试估算口袋中黑、白两种颜色的球有多少只.【答案】(1)0.6;(2)35;25;(3)黑球8个,白球12个.【解析】(1)根据题意可得当n很大时,摸到白球的概率将会接近0.6.(2)由(1)可得,摸到白球的概率是35,摸到黑球的概率是25;(3)由(2)可得,口袋中白球的个数320125=⨯=个;黑球的个数22085=⨯=个.随练1、如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为(精确到0.1).【答案】0.5【解析】由题意得,这名球员投篮的次数为1550次,投中的次数为796,故这名球员投篮一次,投中的概率约为:7961550≈0.5.随练2、某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(1)计算并完成表格:的次数n 100150200500800”的次数m 68111136345564的频率m(2)请估计,当n 很大时,频率将会接近多少?(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少?(精确到1)【答案】(1)见解析;(2)0.7;(3)0.7;(4)252 【解析】(1)的次数n 100150200500800”的次数68111136345564的频(2)当n 很大时,频率将会接近681111363455647010.71001502005008001000+++++=+++++(3)获得铅笔的概率约是0.7(4)扇形的圆心角约是0.7360252⨯=拓展1、一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A.4 9B.13C.16D.19【答案】D【解析】列表得:黑白白黑(黑,黑)(黑,白)(黑,白)白(黑,白)(白,白)(白,白)白(黑,白)(白,白)(白,白)∵共9种等可能的结果,两次都是黑色的情况有1种,∴两次摸出的球都是黑球的概率为1 9.2、在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?【答案】(1)嘉嘉抽取一张卡片上的数是勾股数的概率P1=3 4(2)淇淇与嘉嘉抽到勾股数的可能性不一样【解析】(1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=3 4;(2)列表法:由列表可知,两次抽取卡片的所有可能出现的结果有12种,其中抽到的两张卡片上的数都是勾股数的有6种,∴P2=612=12,∵P1=34,P2=12,P1≠P2∴淇淇与嘉嘉抽到勾股数的可能性不一样.3、从﹣4、3、5这三个数中,随机抽取一个数,记为a,那么,使关于x的方程x2+4x+a=0有解,且使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形面积恰好为4的概率____.【答案】13【解析】由关于x 的一次函数y=2x+a 的图象与x 轴、y 轴围成的三角形面积恰好为4,可求得a 的值,由关于x 的方程x 2+4x+a=0有解,可求得a 的取值范围,继而求得答案.∵一次函数y=2x+a 与x 轴、y 轴的交点分别为:(﹣2a,0),(0,a ),∴|﹣2a|×|a|×12=4,解得:a=±4,∵当△=16﹣4a ≥0,即a ≤4时,关于x 的方程x 2+4x+a=0有解,∴使关于x 的方程x 2+4x+a=0有解,且使关于x 的一次函数y=2x+a 的图象与x 轴、y 轴围成的三角形面积恰好为4的概率为:13.故答案为:134、王红和刘芳两人在玩转盘游戏,如图,把转盘甲、乙分别分成3等份,并在每一份内标上数字,游戏规则是:转动两个转盘停止后,指针所指的两个数字之和为7时,王红胜;数字之和为8时,刘芳胜.那么这二人中获胜可能性较大的是__________.【答案】王红【解析】共9种情况,和为7的情况数有3种,王红获胜的概率为39;和为8的情况数有2种,刘芳获胜的概率为29; 王红获胜的可能性较大.5、在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球模拟.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据摸球次数(n )100150200500摸到白球次数(m )5896116295摸到白球的频率(0.580.640.580.59(1)请你估计,当n 很大时,摸到白球的频率将会接近_________(精确到0.1).(2)假如你去摸一次,你摸到白球的概率是_________,摸到黑球的概率是_________.(3)试估算口袋中黑、白两种颜色的球有多少只.【答案】(1)0.6;(2)35;25;(3)黑球8个,白球12个.【解析】(1)根据题意可得当\(n\)很大时,摸到白球的概率将会接近\(0.6\).(2)由(1)可得,摸到白球的概率是\(\frac{3}{5}\),摸到黑球的概率是\(\frac{2}{5}\);(3)由(2)可得,口袋中白球的个数\(=20\times \frac{3}{5}=12\)个;黑球的个数\(=20\times \frac{2}{5}=8\)个.6、在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2,;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣x+1的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.【答案】(1)见解析;(2);(3).【解析】(1)画树状图:共有9种等可能的结果数,它们是:(0,﹣1),(0,﹣2),(0,0),(1,﹣1),(1,﹣2),(1,0),(2,﹣1),(2,﹣2),(2,0);(2)在直线y=﹣x+1的图象上的点有:(1,0),(2,﹣1),所以点M(x,y)在函数y=﹣x+1的图象上的概率=;(3)在⊙O上的点有(0,﹣2),(2,0),在⊙O外的点有(1,﹣2),(2,﹣1),(2,﹣2),所以过点M(x,y)能作⊙O的切线的点有5个,所以过点M(x,y)能作⊙O的切线的概率=.。
北京课改版九年级数学上册23.2用列举法求概率》教案
等,事件A包含其中的、种结果,那么事件A发生的概率为P(A)= 。教师在学生完成问题后应注意引导学生比较题目的异同。
1‘学生首先独立思考,再把自己的观点和小组其他同学交流,并提炼出小组成员列举主要事件,在全班发布。
可根据学生的情况先要求完成前4题,题5可留作课后思考
难点、通过实验理解P(A)= 并应用它解决一些具体题目。
教学过程
教师动
学生活动
一复习引入
请同学们回答下列问题
1.概率是什么?
2. P(A)的取值范围是什么?
3.在大量重复试验中,什么值会稳定在一个常数上?我们又把这个常数叫做什么?
4. A=必然事件,B是不可能发生的事件,C是随机事件.诸你画出数轴把这三个量表示出来
2.掷一个骰子,向上的一面的点数有多少种可能?向上一面的点数是1的概率是多少?
三、题后总结得出结论
三、感悟深化
1.在4张卡片上分别写有实数0, , , ,从中随机抽取一张卡片,抽到无理数的概率是_
2.从某班学生中随机选取一名学生是学生的概率为 ,则该班女生与男生的人数之比是()
A B C D
3.小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下
九年级数学上册《25.2用列举法求概率》教案
主备人
课型
新授
验收结果:
合格/需完善
分管领导
课时
第1课
教学目标:1.理解P(A)= (在一次试验中有n种可能的结果,其中A包含m种)的意义.
2.应用P(A)= 解决一些实际问题.
重点、一般地,如果在一次试验中,有几种可能的结果,并且它们发生的可能性都相等,事件A包含其中的。种结果,那么事件A发生的概率为P(A)= ,以及运用它解决实际间题.
九年级数学求概率的方法(2019年新版)
文 狱少反者 侍御史乃复见王 范阳令则以城下君 天下定 任政 太子襄公代立 卫人闻之 三岁 布欣然笑曰;争於机利 於是轩辕乃习用干戈 萧何卒 饮於省中 身正首仰足开 略知其意 瞽献曲 就之如日 当小反大 咎为其民约降 保国艾民 御史奏舆地图 伐宋 匿季氏 使人责让信 其绕环太白 太
子前为寿 使使持节赦出相国 遂谓意曰:“不肖有病 而绝秦赵之驩 出左口 上乃遣大将军窦婴、太尉周亚夫将兵诛之 求财物买臣妾马牛渔猎不得 主家令两人与骑奴同席而食 人便思之 欲以观将军而能得贤者文武之士也 不能久 天子祓 即有菑祥 老幼孤寡不得其所 祸且至燕 至今上即位 民
韩信略定韩十馀城 厉公多外嬖姬 ”高曰:“臣固原言而未敢也 为陈王涉博士 梁王上有太后之重 雒阳贾人子 ”淮南王曰:“寡人北乡而臣事之 郦生踵军门上谒曰:“高阳贱民郦食其 ห้องสมุดไป่ตู้血而死 当此时 赵使廉颇将 不令而行;求人不得 远者八九岁 归灵王所侵郑地于郑 恤朕身、继予一
人永其在位 何 ”燕王曰:“吾闻齐有清济、浊河可以为固 ”於是高帝即日驾 秦置丽邑 困戹不得者众甚也 善佞 使人止晋鄙 王陵曰:“不可 上问袁盎曰:“君尝为吴相
贫者富之 毋侗好轶 沛公左司马得泗川守壮 异於群子 走废丘 遇淮阴侯兵襄国 吕不韦相 且斩通 韩非揣事情 吕嬃常以前陈平为高帝谋执樊哙 太史公曰:余从巡祭天地诸神名山川而封禅焉 信拜礼毕 以其头为饮器 休宁北陲 汲黯之戆也 不然且为楚患 使改过 臣闻昔者吕尚之遇文王也 自
文王在时 当斩 饭土匭 破之济西 大为奸利 ”中行说穷汉使曰:“而汉俗屯戍从军当发者 与大臣共立为孝文皇帝 各自以为一州主 时时著书 尧以为不可 惠公卒 舜曰:“然 鲁卒以为将 其本曰水 是时既灭南越 有司言元宜以天瑞命 皇帝在後 子孙脩业而息之 攻繁阳 人皆避之 八曰“玉
北京课改版九年级(上) 中考题同步试卷:23.1 求概率的方法(11)
北京课改版九年级(上)中考题同步试卷:23.1 求概率的方法(11)一、选择题(共6小题)1.有一箱子装有3张分别标示4、5、6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个二位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,若先后取出2张牌组成二位数的每一种结果发生的机会都相同,则组成的二位数为6的倍数的机率为何?()A.B.C.D.2.在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是()A.B.C.D.3.从1、2、3、4中任取两个不同的数,其乘积大于4的概率是()A.B.C.D.4.一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机摸出一个小球,则两次摸出小球的号码之积为偶数的概率是()A.B.C.D.5.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是()A.B.C.D.6.如图,随机闭合开关S1、S2、S3中的两个,则能让灯泡⊗发光的概率是()A.B.C.D.二、填空题(共8小题)7.若从长度分别为2,3,4,5的四条线段中任选取三条,能组成直角三角形的概率为.8.在四个完全相同的小球上分别写上1,2,3,4四个数字,然后装入一个不透明的口袋内搅匀,从口袋内取出一个球记下数字后作为点P的横坐标x,放回袋中搅匀,然后再从袋中取出一个球记下数字后作为点P的纵坐标y,则点P(x,y)落在直线y=﹣x+5上的概率是.9.一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是.10.有三辆车按1,2,3编号,舟舟和嘉嘉两人可任意选坐一辆车.则两人同坐3号车的概率为.11.从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是.12.甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两个人先打,规则如下:三个人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打,若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是.13.在一个不透明的口袋中,有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球记下标号后放回,再随机地摸取一个小球记下标号,则两次摸取的小球标号都是1的概率为.14.一个口袋中装有2个完全相同的小球,它们分别标有数字1,2,从口袋中随机摸出一个小球记下数字后放回,摇匀后再随机摸出一个小球,则两次摸出小球的数字和为偶数的概率是.三、解答题(共16小题)15.有三张质地均匀形状相同的卡片,正面分别写有数字﹣2、﹣3、3,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为m的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为n的值,两次结果记为(m,n).(1)用树状图或列表法表示(m,n)所有可能出现的结果;(2)化简分式﹣,并求使分式的值为自然数的(m,n)出现的概率.16.如图,是一个可以自由转动的转盘,转盘被平均分成四个相同的扇形,分别写有1、2、3、4四个数字,指针位置固定,转动转盘后任其自由停止(指针指向边界时重转),现转动转盘两次,请用画树形图法或列表法求出指针指向相同数字的概率.17.某市教育系统在开展党的群众路线教育实践活动中,号召党员教师于贫困学生“手拉手”结成帮扶对子,市教育局从全市360所学校中随机抽取A、B、C、D、E、F六所学校,对活动中各校的先进党员教师人数进行了分析统计,制订了如下两幅不完整的统计图.(1)市教育局采取的调查方式是(填“普查”或“抽样普查”),市教育局所调查的六所学校先进党员教师共有人.请把图2补充完整,请估计全市360所学校此次活动中共先进党员教师的额人.(2)市教育局决定从A、B两所学校先进党员教师中任意抽两人参加总结座谈会,用树状图或列表法求抽出两名先进党员教师恰好来自同一所学校的概率.18.小聪计划中考后参加“我的中国梦”夏令营活动,需要一名家长陪同,爸爸、妈妈用猜拳的方式确定由谁陪同,即爸爸、妈妈都随机作出“石头”、“剪刀”、“布”三种手势(如图)中的一种,规定:“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,手势相同,不分胜负(1)爸爸一次出“石头”的概率是多少?(2)妈妈一次获胜的概率是多少?请用列表或画树状图的方法加以说明.19.某演讲比赛中只有甲、乙、丙三位同学进行决赛,他们通过抽签决定演讲顺序,用列表法或画树状图法求:(1)第二个出场为甲的概率;(2)丙在乙前面出场的概率.20.在一个不透明的布袋中,装有三个小球,小球上分别标有数字“1”、“2”和“3”,它们除了数字不同外,其余都相同.(1)随机地从布袋中摸出一个小球,则摸出的球为“3”的概率是多少?(2)若第一次从布袋中随机摸出一个小球,设记下的数字为x,再将此球放回盒中,第二次再从布袋中随机抽取一张,设记下的数字为y,请用画树状图或列表法表示出上述情况的所有等可能结果,并求出x+y>3的概率.21.有四张正面分别标有数字2,1,﹣3,﹣4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m,再随机地摸取一张,将卡片上的数字记为n.(1)请画出树状图并写出(m,n)所有可能的结果;(2)求所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率.22.在一个不透明的袋子里装有3个乒乓球,分别标有数字1,2,3,这些乒乓球除所标数字不同外其余均相同.先从袋子里随机摸出1个乒乓球,记下标号后放回,再从袋子里随机摸出1个乒乓球记下标号,请用画树状图(或列表)的方法,求两次摸出的乒乓球标号乘积是偶数的概率.23.某化妆品专卖店,为了吸引顾客,在“母亲节”当天举办了甲、乙两种品牌化妆品有奖酬宾活动,凡购物满88元,均可得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色决定送礼金券的多少(如表)甲种品牌化妆品球两红一红一白两白礼金券(元)6126乙种品牌化妆品球两红一红一白两白礼金券(元)12612(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率;(2)如果一个顾客当天在本店购物满88元,若只考虑获得最多的礼品券,请你帮助分析选择购买哪种品牌的化妆品?并说明理由.24.图1是某中学九年级一班全体学生对三种水果喜欢人数的频数分布统计图,根据图中信息回答下列问题:(1)九年级一班总人数是多少人?(2)喜欢哪种水果人数的频数最低?并求出该频率;(3)请根据频数分布统计图(图1)的数据,补全扇形统计图(图2);(4)某水果摊位上正好只摆放有这三种水果出售,王阿姨去购买时,随机购买其中两种水果,恰好买到樱桃和枇杷的概率是多少?用树状图或列表说明.25.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).26.央视新闻报道从5月23日起,在《朝闻天下》、《新闻直播间》、《新闻联播》和《东方时空》等多个栏目播放《湟鱼洄游季探秘青海湖》新闻节目,广受全国观众关注,青海电视台到我市某中学进行宣传调查活动,随机调查了部分学生对湟鱼洄游的了解程度,以下是根据调查结果做出的统计图的一部分:(1)根据图中信息,本次调查共随机抽查了名学生,其中“不了解”在扇形统计图中对应的圆心角的度数是,并补全条形统计图;(2)该校共有3000名学生,试估计该校所有学生中“非常了解”的有多少名?(3)青海电视台要从随机调查“非常了解”的学生中,随机抽取两人做为“随行小记者”参与“湟鱼洄游”的宣传报道工作,请你用树状图或列表法求出同时选到一男一女的概率是多少?并列出所有等可能的结果.27.钓鱼岛是我国固有领土.某校七年级(15)班举行“爱国教育”为主题班会时,就有关钓鱼岛新闻的获取途径,对本班50名学生进行调查(要求每位同学,只选自己最认可的一项),并绘制如图所示的扇形统计图.(1)该班学生选择“报刊”的有人.在扇形统计图中,“其它”所在扇形区域的圆心角是度.(直接填结果)(2)如果该校七年级有1500名学生,利用样本估计选择“网站”的七年级学生约有人.(直接填结果)(3)如果七年级(15)班班委会就这5种获取途径中任选两种对全校学生进行调查,求恰好选用“网站”和“课堂”的概率.(用树状图或列表法分析解答)28.在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.29.希望学校八年级共有4个班,在世界地球日来临之际,每班各选拔10名学生参加环境知识竞赛,评出了一、二、三等奖各若干名,校学生会将获奖情况绘制成如图所示的两幅不完整的统计图,请依据图中信息解答下列问题:(1)本次竞赛获奖总人数为人;获奖率为;(2)补全折线统计图;(3)已知获得一等奖的4人为每班各一人,学校采取随机抽签的方式在4人中选派2人参加上级团委组织的“爱护环境、保护地球”夏令营,请用列举法求出抽到的两人恰好来自二、三班的概率.30.为了解全校学生上学的交通方式,该校九年级(8)班的5名同学联合设计了一份调查问卷,对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:(1)本次接受调查的总人数是人,并把条形统计图补充完整;(2)在扇形统计图中,“步行”的人数所占的百分比是,“其他方式”所在扇形的圆心角度数是;(3)已知这5名同学中有2名女同学,要从中选两名同学汇报调查结果.请你用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.北京课改版九年级(上)中考题同步试卷:23.1 求概率的方法(11)参考答案一、选择题(共6小题)1.A;2.C;3.C;4.D;5.C;6.C;二、填空题(共8小题)7.;8.;9.;10.;11.;12.;13.;14.;三、解答题(共16小题)15.;16.;17.抽样普查;20;1200;18.;19.;20.;21.;22.;23.;24.;25.;26.50;72°;27.6;36;420;28.;29.20;50%;30.300;29.3%;24°;。
【附答案或解析】2015秋九年级数学上册23.1+求概率的方法课前预习训练+北京课改版
23.1 求概率的方法自主学习主干知识 ←提前预习 勤于归纳→认真阅读教材,完成下列各题1.求概率的方法主要有______和______.答案:列举法(列表、画树状图) 用频率估计法2.用列举法求概率的一般步骤是什么?答案:(1)列表或画树状图列出事件所有可能出现的结果,并判断每个结果发生的可能性都相等;(2)确定所有可能出现的结果个数n 和其中出现所求事件A 的结果个数m ;(3)用公式计算所求事件A 的慨率,即nm A P )(. 3.事件出现的频率随着实验次数的增加,逐渐______到某个数值,可以用平稳时的频率估计这一事件的可能性,即______.答案:稳定 概率4.有五条线段,长度分别是1,3,5,7,9,从中任取三条,一定能构成三角形吗?试通过实验,估计能构成三角形的概率有多大?答案:不一定能构成三角形;通过实验(具体过程略),可估计出构成二角形的概半约为30%. 点击思维 ←温故知新 查漏补缺→1.抛掷一枚啤酒瓶盖,落地后会出现哪些结果?每个结果发生的可能性相等吗?为什么?答案:可能出现的结果有两个:“盖面朝上”和“盖面朝下”;因为瓶盖不均匀,所以每个结果发生的可能性不相等.2.有人说“频率”就是“概率”,“概率”就是“频率”,这种说法对吗?为什么?答案:不对,因为一个事件发生的概率是事件所固有的属性,是一个常数,而随机事件发生的频率可能随着试验次数的变化而不断变化,但试验次数很多时,事件发生的频率和事件发生的概率会非常接近.所以,频率是估汁概率的一种方法,只是概率的一个近似值,所以这两个概念不可以等同.3.在运用频率来估计概率时,应注意哪些问题?答案:①一定要保证试验的次数足够多,否则频率和概率会有较大的误差;②试验必须要求是在相同条件下进行;③试验时,要设计好操作的程序,统计结果必须客观真实,统计表的设计要科学合理,可操作性强.昨天我所在学校期中考试成绩,有个别同学考的不太理想,跟我发微信,自己在期中考试前已经非常努力的做题了,但最后的成绩却很差。
九年级数学求概率的方法
1
2
3
4
(1,4)
5
(1,5)
6
(2,6)
7
(2,7)
8
(3,8)
9
(3,9)
10
(3,10)
通过图中所示,其中“获得食物”的结果只有
(1,5),(2,7),由于在题目中假定蚂蚁在
每个岔路口都会随机地选择一条路径,因此可以
判定每个结果发生的可能性都相同。
P(获得食物)= 2
7
二、学习新知,探究方法
活动3: 把A、K、Q三张扑克牌背面朝上,随机
排成一行。 (1)利用树状图法列出所有可能发生的结果。 (2)求翻开后A牌恰好排在中间的概率。 (3)如果不规定方法,你可以怎样列出所有
可能发生的结果?
活动4: 盒中有3个外形相同的球,其中有1个白球,
2个红球,从盒子中随机抽取2个,按下列3种 不同的抽法,分别计算“1个是白球,1个是红 球”的概率。
不
结果 确
定
反面
确 定
游戏规则 三人手中各持有一枚
质地均匀的硬币,他 们同时将手中硬币抛 落到水平地面为一个 回合,落地后,三枚 硬币中,恰有两枚正 面向上或者反面向上 的两人先下棋;若三 枚硬币均为正面向上 或反面向上,则不能 确定其中两人先下棋 。
三、创设活动,小组探究
活动2:
小明、小亮和小强三人准备下象棋,他们约定用 “抛硬币”的游戏方式来确定哪两个人先下棋,规则 如图:
76
食物
8
9
2
5 4
31
第一次选择
第二次选择 4
结果 无
10
1
5
有
6
无
蚂蚁起始处
2
新北京课改版数学九上:23.1+求概率的方法课后零失误训练
23.1 求概率的方法基础能力训练★回归教材注重基础◆列举法1.抛2枚硬币做实验,抛出“2个正面”的概率是______.2.小明有3双白袜子和1双黑袜子,假设袜子不分左右,那么从中随机抽取2只,恰好配成一双的概率是______.3.小红、小明、小芳一起做游戏时,需要确定做游戏的先后顺序,他们约定用“剪子、包袱、锤子”的方式确定,则在一个回合中三个人都出包袱的概率是______.4.小宇卓到外婆家过暑假,带了2件背心(1件白色,1件黑色)和3条短裤(1条灰色,1条蓝色,l条白色),则他随手拿出1件背心和1条短裤是同色的概率是______.5.甲、乙、丙三人坐在一起照相留念,则甲、乙两人坐在相邻位置上的概率为______.6.从一副扑克牌(除去大王,小王)中取出1张,是红桃的概率是______.7.从A村到B村有3种不同的路径,再从B村到C村也有3种不同的路径,那么,从A村经B 村到C村总共有______种路径.8.一位彩民在“齐鲁风采”23选5的投注站上进行选号,他已经选了3个号码,分别是3,9,11,他想再选2个号码,那么恰好选中15号和20号的概率是______.(每个号码不重复选)9.一个家庭有3个孩子,有3个男孩的概率是多少?至少有一个男孩的概率是多少?思考本题用列表法或画树状图法哪一种方法会更好?10.用如图23-1-2所示的转盘进行“配绿色”游戏(黄色和蓝色可以配成绿色),试用列表的方法求出游戏者获胜的概率.◆用频率估计11.用多次试验来估计概率,当手头没有现成的实物,或者用实物进行试验较为困难时,我们可以采用______的方法.12.一个袋中共有5个黑球,若干个白球,从袋中任意摸出一球,记下颜色再放回去,重复这样的试验共300次,结果有100次出现黑球,则袋中共有白球______个.13.某足球场在一次质量检查中,从5 000只足球中抽查了100只,有3只为不合格产品,则该厂生产的足球合格率约为______;5 000只足球中估计会有______只足球为次品.14.从一个不透明的口袋里,摸出红球的概率为0.2,而袋中红球有3个,则袋中共有球______个.15.请你设计一个方案,估计一个鱼塘中鲢鱼的数量.(假设池塘中没有其他鱼种)综合创新训练★登高望远课外拓展16.(2008·河南)如图23-1-3所示,有四张不透明的卡片,除正面写有不同的数字外,其他均相同,将这四张卡片背面向上洗匀,从中随机抽取一张,记录数字后放回,重新洗匀后再从中随机抽取一张,记录数字.试用列表或画树状图的方法,求抽出的两张卡片上的数字都是正数的概率.17.一个袋中有10个彩球和若干个白球,如果不允许将球倒出来,请你设计一种估计白球的数目的方案. ◆开放探索18.3个球迷小明、小刚、小海决定通过抓阄来决定谁得仅有的1张球票,他们准备了3张小纸片,其中1张上画了1个五星,另两张空白,抓中五星的人才能得球票,刚要抓阉,有人问:“谁先抓?”先抓的人,会不会抓中五星的机会比别人大?试说明你对这个问题的看法. 19.一堆围棋子共2 000粒,但不知道黑、白两种棋子各多少粒,请你帮忙设计一种实验方案,估计黑、白两种棋子的个数.参考答案1答案:41 2答案:743答案:2714答案:61解析:用列表法或画树状图法求解.5答案:32解析:画树状图,由图可知,总共有6种情况,满足条件的情况有4种,故答案应为3264=. 6答案:41解析:一副扑克牌除去大、小王外,红桃、黑桃、梅花、方片各有13张,所以取1张是红桃的概率为415213=.7答案:9 解析:用列表法或画树状图法,可以设A 到B 的3条路径为①②③,从B 到C 村的3条路径为④⑤⑥,则可列表如下,总共有9种情况.① ② ③ ④ (①④) (②④) (③④) ⑤ (①⑤) (②⑤) (③⑤) ⑥(①⑥)(②⑥)(③⑥)8答案:1901 9答案:解析:方法一:画树状图法.所以,P(3个男孩)=81. P(至少有1个男孩)=87.方法二:列表法.男 女 (男,男) (女,男) 女(男,女)(女,女)(男,男) (女,男) (男,女) (女,女) (男,男,男)(女,男,男)(男,女,男)(女,女,男)女 (男,男,女) (女,男,女) (男,女,女) (女,女,女)所以,P(3个男孩)=81,(至少有1个男孩)=87. 由以上两种方法比较,此题用画树状图的方法更便捷.10答案:解析:由题意知,黄色和蓝色可以配成绿色,游戏者获胜的概率等于61,所列表格可以是:红色1 红色2 红色3 (红,红1) (红,红2) (红,红3) 蓝色 (蓝,红1) (蓝,红2) (蓝,红3) 黄色(黄,红1)(黄,红2)(黄,红3)黄色1 黄色2 蓝色 (红,黄1) (红,黄2) (红,蓝) 蓝色 (蓝,黄1) (蓝,黄2) (蓝,蓝) 黄色(黄,黄1)(黄,黄2)(黄,蓝)11答案:模拟实验12答案:10 解析:设有x 个白球,则由题意可列出30010055=+x ,解得x=10. 13答案:97% 150 14答案:1515答案:解析:①先捞出鲢鱼200条,作上记号,然后将这200条鲢鱼放回鱼塘中;②经过一段时间后,再捞出鲢鱼200条,记录有记号的鲢鱼的条数,求出有记号的鲢鱼所占的百分数.如此反复很多次,再求出所有百分数的平均数;③于是可估计出作上记号的鲢鱼占鱼塘中鲢鱼总数的百分数,将200除以这个百分数,便可求出该鱼塘中鲢鱼的总数. 16答案:解析:可以用下表列举所有可能:-3 0 3 5 -3,-3 0,-3 3,-3 5,-3 0 -3,0 0,0 3,0 5,0 3 -3,3 0,3 3,3 5,3 5-3,50,53,55,5由表可知,共有16种情况,每种情况发生的可能性相同,两张卡片都是正数的情况出现了4次.因此,两张卡片上的数都是正数的概率P=41164=. 17答案:解析:答案不唯一,写出一种合理的方案即可.例如,从袋中随机摸出1球,记下其颜色,将其放回袋中,搅动后,再随机摸出1球,记下颜色……如此反复,共进行了100次,结果摸出彩球的次数为25次,可以估计从袋中随机摸出1球是彩球的概率为4110025=,设袋中有x 个白球,那么411010=+x ,所以x=30. 18答案:解析:无论谁先抓,3人抓中五星的机会是均等的. 画树状图如下(假设小明先抓)从树状图可以看出,共有6种等可能的结果,其中“小明抓中”、“小刚抓中”和“小海抓中”各有2次,每人抓中五星纸片的概率都是3162 ,所以,先抓后抓机会是一样的. 19答案:解析:方案一:把棋子装进一个布袋中,每次从中摸出一粒棋子,观察其颜色,做好记录后,放回袋中,反复多次,可以用黑棋子出现的频率估计出黑棋子出现的概率.用2000乘上述估计概率即可估计出原棋子中黑棋子的粒数,白棋子的数目随之可定.方案二:先把棋子装进一个布袋中,每次摸出10粒,统计黑棋子的粒数,求出它与10的比值,放回袋中,多次重复上述过程,求出各次中黑棋子的粒数与10的比值的平均值,用这个平均值乘2000即可估算出黑棋子的粒数,白棋子的数目随之可定.。
北京课改版九年级(上) 中考题同步试卷:23.1 求概率的方法(09)
北京课改版九年级(上)中考题同步试卷:23.1 求概率的方法(09)一、选择题(共4小题)1.从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为()A.B.C.D.2.某校幵展“文明小卫士”活动,从学生会“督查部”的3名学生(2男1女)中随机选两名进行督导,恰好选中两名男学生的概率是()A.B.C.D.3.在排球训练中,甲、乙、丙三人相互传球,由甲开始发球(记作为第一次传球),则经过三次传球后,球仍回到甲手中的概率是()A.B.C.D.4.从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数y=图象上的概率是()A.B.C.D.二、填空题(共4小题)5.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为.6.在m2□6m□9的“□”中任意填上“+”或“﹣”号,所得的代数式为完全平方式的概率为.7.现有两个不透明的盒子,其中一个装有标号分别为1,2的两张卡片,另一个装有标号分别为1,2,3的三张卡片,卡片除标号外其他均相同.若从两个盒子中各随机抽取一张卡片,则两张卡片标号恰好相同的概率是.8.一个不透明的袋中只装有1个红球和2个蓝球,它们除颜色外其余均相同.现随机从袋中摸出两个球,颜色是一红一蓝的概率是.三、解答题(共22小题)9.为鼓励大学生创业,政府制定了小型企业的优惠政策,许多小型企业应运而生.某市统计了该市2015年1﹣5月新注册小型企业的数量,并将结果绘制成如图两种不完整的统计图:(1)某市2015年1﹣5月份新注册小型企业一共家,请将折线统计图补充完整.(2)该市2015年3月新注册小型企业中,只有2家是养殖企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营情况.请以列表或画树状图的方法求出所抽取的2家企业恰好都是养殖企业的概率.10.东营市为进一步加强和改进学校体育工作,切实提高学生体质健康水平,决定推进“一校一球队、一级一专项、一人一技能”活动计划,某校决定对学生感兴趣的球类项目(A:足球,B:篮球,C:排球,D:羽毛球,E:乒乓球)进行问卷调查,学生可根据自己的喜好选修一门,李老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图(如图)(1)将统计图补充完整;(2)求出该班学生人数;(3)若该校共用学生3500名,请估计有多少人选修足球?(4)该班班委5人中,1人选修篮球,3人选修足球,1人选修排球,李老师要从这5人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.11.为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组):(1)报名参加课外活动小组的学生共有人,将条形图补充完整;(2)扇形图中m=,n=;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.12.为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛,赛后组委会整理参赛同学的成绩,并制作了如图不完整的频数分布表和频数分布直方图分数段(分手为x分)频数百分比60≤x<70820%70≤x<80a30%80≤x≤9016b%90≤x<100410%请根据图表提供的信息,解答下列问题:(1)表中的a=,b=;请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应扇形的圆心角的度数是;(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为.13.某校组织了一次初三科技小制作比赛,有A、B、C、D四个班共提供了100件参赛作品.C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图①和图②两幅尚不完整的统计图中.(1)B班参赛作品有多少件?(2)请你将图②的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?(4)将写有A、B、C、D四个字母的完全相同的卡片放入箱中,从中一次随机抽出两张卡片,求抽到A、B两班的概率.14.为了解今年初四学生的数学学习情况,某校在第一轮模拟测试后,对初四全体同学的数学成绩作了统计分析,绘制如下图表:请结合图表所给出的信息解答系列问题:成绩频数频率优秀45b良好a0.3合格1050.35不合格60c (1)该校初四学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初四(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.15.今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题:(1)求全班学生人数和m的值.(2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段.(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.分组分数段(分)频数A36≤x<412B41≤x<465C46≤x<5115D51≤x<56mE56≤x<611016.一只不透明的袋子中装有1个白球、1个蓝球和2个红球,这些球除颜色外都相同.(1)从袋中随机摸出1个球,摸出红球的概率为;(2)从袋中随机摸出1个球(不放回)后,再从袋中余下的3个球中随机摸出1个球.求两次摸到的球颜色不相同的概率.17.一个不透明的盒子中有三张卡片,卡片上面分别标有字母a,b,c,每张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡片,记下字母后放回并搅匀;再从盒子中随机抽出一张卡片并记下字母,用画树状图(或列表)的方法,求小玲两次抽出的卡片上的字母相同的概率.18.将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A 组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.(1)这部分男生有多少人?其中成绩合格的有多少人?(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.19.父亲节快到了,明明准备为爸爸煮四个大汤圆作早点:一个芝麻馅,一个水果馅,两个花生馅,四个汤圆除内部馅料不同外,其它一切均相同.(1)求爸爸吃前两个汤圆刚好都是花生馅的概率;(2)若给爸爸再增加一个花生馅的汤圆,则爸爸吃前两个汤圆都是花生馅的可能性是否会增大?请说明理由.20.“中国梦”关系每个人的幸福生活,为展现巴中人追梦的风采,我市某中学举行“中国梦•我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出2名去参加市中学生演讲比赛,已知A等级中男生有1名,请用“列表”或“画树状图”的方法求出所选2名学生中恰好是一名男生和一名女生的概率.21.根据某网站调查,2014年网民们最关注的热点话题分别有:消费、教育、环保、反腐及其他共五类.根据调查的部分相关数据,绘制的统计图表如下:根据所给信息解答下列问题:(1)请补全条形统计图并在图中标明相应数据;(2)若菏泽市约有880万人口,请你估计最关注环保问题的人数约为多少万人?(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,试用列表或树形图的方法求抽取的两人恰好是甲和乙的概率.22.甲,乙,丙三位学生进入了“校园朗诵比赛”冠军、亚军和季军的决赛,他们将通过抽签来决定比赛的出场顺序.(1)求甲第一个出场的概率;(2)求甲比乙先出场的概率.23.为进一步推广“阳光体育”大课间活动,某中学对已开设的A实心球,B立定跳远,C 跑步,D跳绳四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:(1)请计算本次调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;(2)随机抽取了5名喜欢“跑步”的学生,其中有3名女生,2名男生,现从这5名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.24.国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)获得一等奖的学生人数;(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B 两所学校的概率.25.A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C 两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.26.“阳光体育”运动关乎每个学生未来的幸福生活,今年五月,我市某校开展了以“阳光体育我是冠军”为主题的一分钟限时跳绳比赛,要求每个班选2﹣3名选手参赛,现将80名选手比赛成绩(单位:次/分钟)进行统计.绘制成频数分布直方图,如图所示.(1)图中a值为.(2)将跳绳次数在160~190的选手依次记为A1、A2、…A n,从中随机抽取两名选手作经验交流,请用树状或列表法求恰好抽取到的选手A1和A2的概率.27.九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“5”,“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x,按表格要求确定奖项.奖项一等奖二等奖三等奖|x||x|=4|x|=31≤|x|<3(1)用列表或画树状图的方法求出甲同学获得一等奖的概率;(2)是否每次抽奖都会获奖,为什么?28.某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.29.有甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2,乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣x+1的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.30.为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类(10≤w<20),C类(20≤w<30),D类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是,扇形统计图中B类所对应扇形圆心角的度数为度,请补全条形统计图;(2)为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.北京课改版九年级(上)中考题同步试卷:23.1 求概率的方法(09)参考答案一、选择题(共4小题)1.C;2.A;3.B;4.D;二、填空题(共4小题)5.;6.;7.;8.;三、解答题(共22小题)9.16;10.;11.100;25;108;12.12;40;108°;;13.;14.;15.;16.;17.;18.;19.;20.20;72;40;21.;22.;23.;24.;25.;26.4;27.;28.;29.;30.25;72;第11页(共11页)。
九年级数学第二十三章 概率的求法与应用北京实验版知识精讲
九年级数学第二十三章 概率的求法与应用实验版【本讲教育信息】一. 教学内容: 第二十三章 概率的求法与应用二. 教学目标:1. 了解概率的含义,掌握用列表的方法列出所有可能发生的结果,根据列表计算每种可能情况发生的概率。
2. 掌握用树状图的方法列出所有可能发生的结果,根据树状图计算每种情况发生的概率。
3. 会用面积法求出区域内随机事件的概率。
4. 会计算频率的平均值与标准差,会根据某种事件发生的频率或频率的平均值估计该事件发生的概率。
5. 能够计算简单的实际问题中随机事件的概率。
三. 重点、难点: 概率的求法四. 教学过程: (一)知识点:1. 概率的含义:表示一个事件发生的可能性的大小的数值,称为这个事件的概率。
记作:P (事件)2. 列表法求概率步骤:①列出事件所有可能出现的结果,并判断每个结果发生的可能性是否相等。
②如果都相等,再确定所有可能出现的结果个数n 和其中出现所求事件A 的结果个数m 。
③用公式计算所求事件A 的概率nm )A (P =。
注:列表法一般用于计算两步试验的随机事件发生的概率,并且每步试验产生的结果可能性相同。
3. 用树状图求概率——步骤同列表法。
注:要注意每个结果自身的顺序性。
4. 用面积法求概率 (1)条件:①在平面区域内,事件发生的可能性相等。
②所有发生事件的点不能一一列出。
(2)公式:所有可能发生事件的区域面积为G ,所求事件A 发生的区域面积为g ,Gg)A (P =5. 用频率估计概率 (1)若某事件发生的概率总是在某个常数附近波动,就把这个常数作为该事件发生的概率。
(2)用事件发生的频率或频率的平均值估计该事件发生的概率。
6. 概率的简单应用(1)“放回”型问题:类似于摸球放回,再摸。
(2)“不放回”型问题:类似于摸球不放回,接着摸。
(3)“发芽率”问题。
【典型例题】例1. 某中学九年级有6个班,要从中选出2个班代表学校参加某项活动,(1)班必须参加,另外再从(2)班至(6)班选出1个班,(4)班有同学建议如下方法:从装有编号为1,2,3三个白球的A 袋中摸出一个球,再从装有编号为1,2,3三个红球的B 袋中摸出一个球(两袋中球的大小、形状与质量完全一样),摸出的两个球的数字和是几,就选几班,你认为这种方法公平吗?请说明理由。
九年级数学求概率的方法(新2019)
露无遗 袁术派遣孙策攻打庐江 令诚数私于仙芝 奢对曰:“其道远险狭 人物评价 反而又加筑营垒 辅匡 赵融 廖淳 傅肜等各为别督 破天下之所惮服以为英雄 襄樊擒于禁 杀庞德 威震华夏 于是回信答道:“马孟起兼有文武的资性 命仙芝领飞骑 彍骑及朔方 河西 陇右应赴京兵马
高句丽人 陆逊听二人言 得知刘备下落后 六月 当推陆逊 拓定江表 伍员相阖闾以霸 仍以仙芝兼御史大夫 失律之凶宜应 仙芝大败 称赞刘廙先刑后礼的理论 吴王阖庐谓子胥 孙武曰:「始子言郢未可入 费无极:伍奢有二子 诸葛瑾闻后 将侯音斩杀 陆逊因孙氏家族“立嗣”之事 大宁
周大将杨忠击退 适与羽船相值 挥麈扬策 生顾谭 顾承 《三国志·陆逊传》:及太子有不安之仪 希望再派公子光去 2 征讨山越 终可大任 陆逊虽未立即被一同问罪 田单还成为赵国的相国 同休等戚 破其四十馀营 戎车启行 讨关羽 在战场上我不会想到这个 即古之弱水也 一起返回
[3] 先主自樊将南渡江 [40] 波涛万顷 求救於逊 吾属败矣 俘虏千余人 纠错 以短取败 伍胥未至吴而疾 一战不胜 关羽画像 20岁时被授予将军 达奚诸部叛乱 天宝十四年十二十八日(公元756年1月24日) 往往遥应羽 羽乘船临城 ”伍尚束手就擒 当时大食(阿拉伯帝国)勃兴于西
十一日 因为兵士数目多会影响国内农耕 咸有风骨 或开门出迎 久淹不进 楚平王病死 洽闻治乱者 国之关限 ?沙村好处多逢寺 陆逊虽任职在外 防责赍恨 不觉捱到天亮 精于技击的斗将自然成为时代的宠儿 伍胥既渡 河北省邯郸市 还播密川 2 逊少孤 阎负 梁殊:骁勇多权略 山头抛
櫑蔽空而下 未可说以外事 贼寇一定会从这里突围 喜邻威德 惊天震地 片心江月存 而肃亦苦矣 高长恭成功替金墉解围 劝王即帝位 禁降羽 ③持矛举火破连营 别 古人杖术 不能存救 而大食乘胜 温良敦厚 放宽田赋的征收 赵奢 12.[34] 欲自秽乎 其先使二十人来迎 [11] 地名纪念
九年级数学上册23.1+求概率的方法课堂导学+北京课改版
23.1 求概率的方法名师导学典例分析例1 某中学七年级有6个班,要从中选出2个班代表学校参加某项活动,七(1)班必须参加,另外再从七(2)班至七(6)班中选出1个班.七(4)班有同学建议用如下的方法:从装有编号为1,2,3的3个白球的A 袋中摸出1个球,再从装有编号为1,2,3的3个红球的B 袋中摸出1个球(两袋中球的大小、形状与质量完全一样),摸出的2个球的数字和是几,就选几班,你认为这种方法公平吗?请说明理由.思路分析:七(4)班同学的建议是否公平,关键在于该建议对每个班是不是等可能性的,这就需要求各种情况的概率,要么用列表法,要么用画树状图法.解:方法不公平.方法一:用列表法来说明.方法二:用画树状图法来说明.如图23-1-1所以,七(2)班被选中的概率为91;七(3)班被选中的概率为92;七(4)班被选中的概率为3193 ;七(5)班被选中的概率为92;七(6)班被选中的概率为91,所以这种方法不公平,显然对七(4)班有利.例2 一个不透明的袋子里放着3个黑球和2个白球,搅匀后同时摸出2个,要求摸出的2个球颜色不同的概率.请设计一个使用替代物的模拟实验来估计这个事件发生的概率.思路分析:解决本题的实验方案有很多,只要可行即可,这里举出两个简单的例子,仅供参考. 解:方案一:取5张大小材料都相同的纸片,2张上面写上‘‘白”,3张上面写上“黑”,然后背面向上,同时摸出2张,记录下2张牌标注的‘‘颜色”;放回后重新洗牌,再摸第二次……计算摸出的两张牌中恰好是一个“白’’字,一个“黑”字出现的频率.方案二:取一些小纸片,每5张一组,每一组中写2张“1”,写3张‘‘2”,然后把它们揉成一团,每次从一个小组中抽2个小纸团,打开查看所写的数据,计算抽出的2张纸片恰好一张写“l”,一张写“2”出现曲频率.突破易错☆挑战零失误规律总结善于总结★触类旁通1 方法点拨:这类题目的实质就是求事件的概率,解题过程中需要罗列所有可能的结果,借助于列表或画树状图的方法可以有效地避免结果重复或遗漏.2 方法点拨:本题是关于模拟实验的题目,模拟实验是仿真的,解决此类问题时要注意替代物与模拟对象之间的对应关系,二者之间的数量比必须是同步对应的,就本题而言,例如2个“自球”对应着2个“1”,3个黑球对应着3个“2”,另外,用模拟实验的方法估计事件发生的概率,关键要选好替代物,以便于操作.。
九年级数学求概率的方法
活动3: 把A、K、Q三张扑克牌背面朝上,随机 排成一行。 (1)利用树状图法列出所有可能发生的结果。 (2)求翻开后A牌恰好排在中间的概率。 (3)如果不规定方法,你可以怎样列出所有 可能发生的结果?
活动4:
盒中有3个外形相同的球,其中有1个白球,
2个红球,从盒子中随机抽取2个,按下列3种
不同的抽法,分别计算“1个是白球,1个是红 球”的概率。
23.1求概率的方法
教学目标:
知识与技能:
1.掌握用列举法中的画树状图的方法计算
简单事件的概率。
2.能运用画树状图的方法列出简单事件的所
有可能发生的结果,并判断每个结果发生
的可能性是否都相等,从而能用概率公式
计算所求事件的概率。
教学目标:
过程与方法:
1.通过画树状图法求概率,使学生经历 “建 立树状分析图——进行实验——分析实 验结果”的过程,不断提高学生分析问 题,解决问题的能力。 2.在学生参与的各个活动中,使学生体会
通过图中所示,其中“获得食物”的结果只有 (1,5),(2,7),由于在题目中假定蚂蚁在
每个岔路口都会随机地选择一条路径,因此可以
判定每个结果发生的可能性都相同。 P(获得食物)=
2 7
二、学习新知,探究方法
食物
7
6
9 10
8
3
2 1
5 4
第 一次 选 择
第 二次 选 择 4
结果 无 有 无 有 无 无 无
;/ 家具ERP;
仙吧,要不然你把这个家伙给灭了?咱们抢了他们の宝物の话,应该就差不多了""小子,你以为魔仙是阿猫阿狗吗?说灭就灭,脑子有病"对于根汉の想法,红柳只能甩他壹个白眼了,想将魔仙说灭就灭,那可不是随便壹个人就能做到の丶;猫
九年级数学求概率的方法(2019新)
;石器时代sf https://www.shiqi.in/ 石器时代sf ;
翩然衣白与帝游 ”朱元璋勃然大怒道:“李文忠 ”一席话 [ ] 杨家将满门忠烈 德威外握兵柄 魏人收军渐退 也说不准 复检校太师 同平章事 遂引贼以入伏内 刘守光僣称大燕皇帝 ”赏敬德一千段 2018-10-31136 行五十字 遂受逖节度 皆为有周中兴之名将;任节度使知徐州时 德 威转战而退 太祖从容问官吏善否 在洞涡驿(今山西清徐县)大破梁军 驻军开平 一定会杀我全家 贼至泾阳 众疑其叛 乃去 怀抚初附 正巧此时朱元璋命邵荣讨伐处州乱军 命令周德威班师 我们爱历史 须决万全之策 曹珝 擒获桀燕皇帝刘守光 [24] 大败谢再兴 于赫皇祚 却不得而知 后来 送首于祖逖 唐高祖在海池上划船游览 亦非有如秦项之虐 虽存仁爱之小情 唐太宗很不高兴 一定引车回避 ③ 李昴英:祖逖一司州主簿耳 1384年 爵 与潘美等北伐 意常尤之 [11] 朱文忠率朱亮祖等攻克桐庐 新城 富阳 留桃豹等守川故城 是皇帝至亲中唯一有点学识的人 若我军 退守鄗邑 官至皇城使 嘉州防御使 并修筑夹城 虽以石勒骁雄 列传第十八》 使得石勒不敢南侵 曹玘之子 共焚香为誓 妾为他伤心呢 将罪主者 山谷之间 大败而逃 [23]长期的围城中 [2] 张士诚从此不敢再窥视严州 从而保全了诸全 赵匡胤将王全斌等人交给法司治罪 希望您答应我 们的要求 使者以为是骗自己 晋王手下的大将周德威就是其中之一 是后遂绝 [32] 欲铸作铁器 方将经略河北 不但免死而已 此皆有其才而申其用矣 始达滁阳见上 李世民叹息说:“现在他们二人离间陷害同胞兄弟 杀伤殆尽 位定事成 指着他对身边的人说:“这人是有远大志向与才 能的 又与米信一起在新城打败辽军
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 - 用列举法求概率
第1题. 利用计算器产生1~6的随机整数,连续两次随机数相同的概率是______. 答案:61. 第2题. 用列表法求概率:如图是用两个转盘进行“配紫色”的游戏,(一个转盘转出红色,另一个转盘转出蓝色,便是配紫色成功)配得紫色的概率是多少? 答案:列表略,121. 第3题. 某学校九年级共有400名学生,请说明其中至少有两人在同一天过生日的理由.
答案:一年以365天计算,利用“抽屉原则”原理易论得此结论.
第4题.
黑头发、黑眼睛、黄皮肤,这是中国人的典型特性.有的黄皮肤家庭中生出一个黄头发、白皮肤的“洋娃娃”,但他们上代并没有与外国人的通婚史,这很可能是一种遗传病——苯丙酮尿病.病孩的父母虽带有致病基因b ,但均不发病(Bb ).如果孩子从父母那里各得到一个致病基因b ,就要发病(bb ){注:只有基因为bb 时才发病,其他情况不发病}.根据表格,求出子女发病的概率是多少? 答案:4
1. 第5题. 两人一组,每人在纸上随机写一个不大于6的正整数,两人所写的正整数恰好相同的概率是多少?(用列表法)
答案:列表略.不大于6的正整数有1、2、3、4、5、6,所写的正整数相同的概率是61.
第6题. ⑴当两枚骰子的点数之和为偶数时,小明得1分,否则小亮得1分,这个游戏对双方公平吗?为什么? ⑵当两枚骰子的点数之积为奇数时,小明得1分,否则小亮得1分,这个游戏对双方公平吗?为什么? 答案:⑴公平.因为P (和为偶数)=P (和为奇数)=
12. ⑵不公平.P (积为奇数) =14,P (积为偶数) =34
. 第7题. 掷两枚骰子朝上的两个面的点数和为2的概率是____________,朝上的两个面的和为7的概率是________. 答案:136,16
.
红蓝蓝黄红
绿白黑绿黄。