第六章 排队论

合集下载

第06章 排队论

第06章 排队论

-118-第六章 排队论模型排队论起源于1909年丹麦电话工程师A. K.爱尔朗的工作,他对电话通话拥挤问题进行了研究。

1917年,爱尔朗发表了他的著名的文章—“自动电话交换中的概率理论的几个问题的解决”。

排队论已广泛应用于解决军事、运输、维修、生产、服务、库存、医疗卫生、教育、水利灌溉之类的排队系统的问题,显示了强大的生命力。

排队是在日常生活中经常遇到的现象,如顾客到商店购买物品、病人到医院看病常常要排队。

此时要求服务的数量超过服务机构(服务台、服务员等)的容量。

也就是说,到达的顾客不能立即得到服务,因而出现了排队现象。

这种现象不仅在个人日常生活中出现,电话局的占线问题,车站、码头等交通枢纽的车船堵塞和疏导,故障机器的停机待修,水库的存贮调节等都是有形或无形的排队现象。

由于顾客到达和服务时间的随机性。

可以说排队现象几乎是不可避免的。

排队论(Queuing Theory)也称随机服务系统理论,就是为解决上述问题而发展的一门学科。

它研究的内容有下列三部分:(i)性态问题,即研究各种排队系统的概率规律性,主要是研究队长分布、等待时间分布和忙期分布等,包括了瞬态和稳态两种情形。

(ii)最优化问题,又分静态最优和动态最优,前者指最优设计。

后者指现有排队系统的最优运营。

(iii)排队系统的统计推断,即判断一个给定的排队系统符合于哪种模型,以便根据排队理论进行分析研究。

这里将介绍排队论的一些基本知识,分析几个常见的排队模型。

§1 基本概念1.1 排队过程的一般表示 下图是排队论的一般模型。

图1 排队模型图中虚线所包含的部分为排队系统。

各个顾客从顾客源出发,随机地来到服务机构,按一定的排队规则等待服务,直到按一定的服务规则接受完服务后离开排队系统。

凡要求服务的对象统称为顾客,为顾客服务的人或物称为服务员,由顾客和服务员组成服务系统。

对于一个服务系统来说,如果服务机构过小,以致不能满足要求服务的众多顾客的需要,那么就会产生拥挤现象而使服务质量降低。

第六章 排队论及其应用

第六章 排队论及其应用

顾客聚 顾客到达
服务机构
顾客散 顾客离去
n ,
n ,
一、生灭过程的定义 生灭过程的定义
若排队系统具有下列性质: (1) ( ) 顾客到达为泊松流,时间间隔服从参 数为n的负指数分布; (2) 顾客服务时间服从参数为 n的负指 数分布; 则排队系统的随机过程{N(t),t>=0} {N(t) t>=0}具有马 尔可夫性质, 为一个生灭过程.
二、生灭过程状态转移图
顾客到达率
λ0 μ1 λ1 S1 μ2 S2 λ2 μ3 λi-2 Si-1 μi-1 μi λi-1 Si λi μi+1 λi+1 μi+2 λk-2 μk-1 λk-1 μk
S0

Si+1

Sk-1
Sk
状态
系统服务率
t→∞时,P 时 ( )趋向于常数 系统达到稳定 i(t)趋向于常数:系统达到稳定
λi μi+1
Si+1
λi+1 μi+2

λk-2 μk-1
Sk-1
λk-1 μk
Sk
P0
P1
P2
Pi
有 ( i i ) Pi i 1Pi 1 i 1Pi 1
对于 0 对于S 对于 k 对于S
1 P1 0 P0
转入
S0 λ0 μ1 λ1 S1 μ2 S2 λ2 μ3
2、排队服务规律
先到先服务、先到后服务、优先服务、随机服务
3、服务机构

单通道 多通道
1 1 2 … c 1 2 … c 1 2 … c
三 排队模型 三、排队模型
(一)排队模型表示方法 排 模型表 法

(完整word版)《运筹学》_第六章排队论习题及_答案

(完整word版)《运筹学》_第六章排队论习题及_答案

《运筹学》第六章排队论习题转载请注明1. 思考题(1)排队论主要研究的问题是什么;(2)试述排队模型的种类及各部分的特征;(3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义;(4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分布的主要性质;(6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系与区别。

2.判断下列说法是否正确(1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间服从负指数分布;(2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分顾客合起来的顾客流仍为普阿松分布;(3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理;(6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态;(7)排队系统中,顾客等待时间的分布不受排队服务规则的影响;(8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间少于允许队长无限的系统;(9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。

3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间;(7)一个顾客在店内逗留时间超过15分钟的概率。

第六章 排队论

第六章 排队论

对于S0
1P10P0
Pt0 h t Ph t0
t0
Ph
t t0 Ph Ph t0
t0
1
e (tt0 ) (1 e 1 (1 e t0 )
t0
)
1
e
t
Q .E.D
21
6.3.3 小结
• 如果顾客的到达过程服从最简单流,则顾客单 位时间内的到达数服从泊松分布。
• 如果顾客的到达过程服从最简单流,则顾客到 达的时间间隔服从负指数分布。
iP iiP i (ii)P i
转入率的期望值为
P P i1i1 i1i1
λ0
λ1
λ2
λi-2
λi-1
λi
λi+1
λk-2
λk-1
S0
S1
S2

Si-1
Si
Si+1

Sk-1
Sk
μ1
μ2
μ3
μi-1
μi
μi+1
μi+2
μk-1
μk
P0
P1
P2
Pi
30

( i i)Pi P P i1i1 i1i1
Pn(t)(n! t)n et n=0
可知: P0(h >△t)= P{h >△t}=e△t
故间隔时间 h 的分布为 P{ h △t}=1e△t
F (t) 1 et
f (t ) et h t et dt 1 / 0
0
F(t)
f(t)
t
20
(2)负指数分布的特点
• 负指数分布之所以常用,是因为它有很好的特性,使数学 分析变得方便
12

第六章 排队论模型

第六章 排队论模型
10
2、排队规则
这是指服务台从队列中选取顾客进行服务的顺 序。可以分为损失制、等待制、混合制3大类。 (1)损失制。这是指如果顾客到达排队系统时, 所有服务台都已被先来的顾客占用,那么他们就自 动离开系统永不再来。 典型例子是,如电话拔号后出现忙音,顾客不 愿等待而自动挂断电话,如要再打,就需重新拔 号,这种服务规则即为损失制。
过渡状态
稳定状态
23
t
排队系统状态变化示意图
4、根据排队系统对应的理论模型求用以判断系统 运行优劣的基本数量指标的概率分布或特征数。 数量指标主要包括:
(1)平均队长(Ls):系统中的顾客数(包括被服务和正在排队的顾 客)。 平均队列长(Lq):系统中排队等待服务的顾客数。 系统中顾客数Ls =系统中排队等待服务的顾客数Lg +正被服 务的顾客数c (2)平均逗留时间(Ws):指一个顾客在系统中的停留时间(含等待 时间和被服务时间)。 平均等待时间(Wq):一个顾客在系统中排队等待的时间。 (3)平均忙期(Tb):指从顾客到达空闲服务机构起到服务机构再 次为空闲这段时间平均长度。(忙期和一个忙期中平均完成服务 顾客数都是衡量服务机构效率的指标,忙期关系到工作强度)
14
② 等待时间有限。即顾客在系统中的 等待时间不超过某一给定的长度 T,当等待 时间超过T时,顾客自动离去,不再回来。 如易损坏的电子元器件的库存问题, 超过一定存储时间被自动认为失效。 又如顾客到饭馆就餐,等了一定时间后 不愿再等而自动离去另找饭店用餐。
15
③ 逗留时间(等待时间与服务时间之和)有 限。 例如用高射炮射击敌机,当敌机飞越高射 炮射击有效区域的时间为 t 时,若在这个时间 内未被击落,也就不可能再被击落了。 不难注意到,损失制和等待制可看成是混 合制的特殊情形,如记c为系统中服务台的个 数,则当K=c 时,混合制即成为损失制;当 K=∞时,混合制即成为等待制。

6-1排队论概述

6-1排队论概述
第六章 排队论概述
本章要点:
1. 排队系统的组成; 2. 排队模型的研究方式; 3. 典型排队系统模型结构及应用。
内容框架:
分 类 输入过程 排队系统 研究方式 服务台 典 型 模 型 及 其 应用 注释:大小写 画状态转移速度图 →Λ → 状态概率方程 计算基本数量指标 应用举例 符号表示 明确系统意义 排队规则
二、排队系统的特征及其组成
1、排队系统的特征即拥挤现象的共性:
有请求服务的人或物 (统称为顾客);
有为顾客服务的人或物 (统称为服务台); 具有随机性 ; (各种排队系统中,顾客相继到达的间隔时间 以及对每一位顾客的服务时间是随机的) 随机性是排队系统的一个重要特征 。
2、排队系统的基本组成
顾客损失率——由于服务能力不足
而造成的顾客流失的概率称为顾客损 失率。 该指标过高会造成服务系统利润减 少,因此损失制和混合制排队系统均 会重视对该指标的研究。
2、统计推断问题的研究 对实际问题建立排队模型时,必须判 断该系统适合建立何种排队模型,从而 进一步用排队理论进行分析研究。
首先必须进行现实数据的收集、 处理;
等待时间(Wq)——顾客从到达系统的 时刻到开始接受服务的时刻止的时间段; 忙期和闲期分布——忙期指从有顾客到达 空闲服务台接受服务开始到服务台再度空闲为 止的这段时间,即服务台连续工作的时间。
“忙期”是一个随机变量,可以表征服务台 的工作强度;
服务台连续保持空闲的时间长度称为闲期。
在排队系统中忙期和闲期是交替出现的。 服务设备利用率——指服务设备工作时间 占总时间的比例。 该指标可以衡量服务设备的工作强度、磨损 和疲劳程度。
最简单流的4个基本性质: 平稳性:在时间段t内,恰有n个顾客到 达系统的概率P{N(t)=n}仅与t的长短有关, 而与该时间段的起始时刻无关; 无后效性:在不相交的时间区间内到达 的顾客数是相互独立的。 如:在[a,a+t]时段内到达K个顾客的概 率与时刻a之前到达多少顾客无关;

第六章 排队论模型

第六章 排队论模型

上述事例中的各种问题虽互不相同,但却都 有要求得到某种服务的人或物和提供服务的人或 机构。排队论里把要求服务的对象统称为“顾 客”,而把提供服务的人或机构称为“服务台”或 “服务员”。不同的顾客与服务组成了各式各样 的服务系统。顾客为了得到某种服务而到达系统、 若不能立即获得服务而又允许排队等待,则加入 等待队伍,待获得服务后离开系统。
12
③随机服务 (RAND) 。即当服务台空闲 时,不按照排队序列而随意指定某个顾客去 接受服务,如电话交换台接通呼叫电话就是 一例。 ④优先权服务 (PR)。如老人、儿童先进 车站;危重病员先就诊;遇到重要数据需要 处理计算机立即中断其他数据的处理等,均 属于此种服务规则。
13
(3)混合制.这是等待制与损失制相结合的一种 服务规则,一般是指允许排队,但又不允许队列无 限长下去。具体说来,大致有三种:
16
3、服务台
服务台可以从以下3方面来描述: (1) 服务台数量及构成形式。从数量上说,服务台有 单服务台和多服务台之分。从构成形式上看,服务台 有:①单队——单服务台式; ②单队——多服务台并联式; ③多队——多服务台并联式; ④单队——多服务台串联式; ⑤单队——多服务台并串联混合式,以及多队列多 服务台并串联混合式等等。 如之前的分类模型图所示。
2
排队论历史:
起源于1909年在丹麦哥本哈根电子公司工作的电话工程 师A. K. Erlang(A.K.爱尔朗)对电话通话拥挤问题的研究工作, 其开创性论文---概率论和电话通讯理论则标志此理论的诞生。 表明了排队论的发展最早是与电话,通信中的问题相联系的, 并到现在也还是排队论的传统的应用领域。近年来在计算机通 讯网络系统、交通运输、医疗卫生系统、各类生产服务、库存 管理等等各领域中均得到广泛的应用。 排队论具体事例:

6排队论

6排队论

• “忙期”是一个随机变量,可以表征服务台 的工作强度; • 服务台连续保持空闲的时间长度称为闲期。 • 在排队系统中忙期和闲期是交替出现的。 • 服务设备利用率——指服务设备工作时间 占总时间的比例。 • 该指标可以衡量服务设备的工作强度、 磨损和疲劳程度。
• 顾客损失率——由于服务能力不足而造成 的顾客流失的概率称为顾客损失率。 • 该指标过高会造成服务系统利润减少, 因此损失制和混合制排队系统均会重视对 该指标的研究。
• 最简单流的4个基本性质: • 平稳性:在时间段t内,恰有n个顾客到达 系统的概率P{N(t)=n}仅与t的长短有关,而 与该时间段的起始时刻无关; • 无后效性:在不相交的时间区间内到达的 顾客数是相互独立的。 • 如:在[a,a+t]时段内到达K个顾客的概率 与时刻a之前到达多少顾客无关;
普通性:在充分小的间隔时间内至少到达两个 顾客的概率ψ(Δt)=o(t),t→0,即
• • • • •
C 表示服务台的个数; D 表示系统容量; E 表示顾客源包含的全部个体数量; F 表示服务规则 ; 举例:M/M/1/∞/∞/FCFS 表示泊松输入、 服务时间服从负指数分布、1个服务台、系 统容量无限制(即等待制)、顾客源无限、 先到先服务的排队系统 ;
• GI/EK/1/N/∞/FCFS • 表示一般独立输入(顾客到达的间隔时间 服从一般独立分布)、服务时间服从K阶爱 尔朗分布、1个服务台、系统容量为N、顾 客源无限、先到先服务的排队系统。
• 3、 爱尔朗分布 • 当顾客在系统内所接受的服务可以分为K 个阶段,每个阶段的服务时间T1,T2,…, Tk为服从同一分布(参数为kμ的负指数分 布)的k个相互独立的随机变量,顾客在完 成全部服务内容并离开系统后,另一个顾 客才能进入服务系统,则顾客在系统内接 受服务时间之和T=T1+T2+…+Tk服从k阶爱 尔朗分布Ek,其分布密度函数为:

上海交通大学管理科学-运筹学课件第六章排队论

上海交通大学管理科学-运筹学课件第六章排队论

第6章 排队论在日常生活和工作中,人们常常会为了得到某种服务而排队等候。

比如顾客到商店购买东西,病人到医院看病,汽车进加油站加油,轮船进港停靠码头等,都会因为拥挤而发生排队等候的现象。

这时,商店的售货员和顾客,医院的医生和病人,加油站的加油泵和待加油的汽车,码头的泊位和停泊的轮船等,形成了各自的排队服务系统,简称排队系统。

在一个排队系统中,通常包括一个或多个“服务设施”,服务设施可以指人,如售货员,医院大夫等。

也可以是物,如加油泵、码头泊位等。

同时还包括许多进入排队系统要求得到服务的“顾客”。

这里的顾客是指请求服务的人或物。

如到医院看病的病人,或等待加油的汽车等。

作为顾客总希望一到系统马上就能得到服务,但客观情况并非如此。

由于顾客的到达和服务机构对每个顾客的服务时间具有随机性,因此出现排队现象几乎是不可避免的。

当然,为了方便顾客减少排队时间,排队系统可以多开设服务设施。

但那将增加系统的投资和运营成本,还可能发生空闲浪费。

排队论(Queueing Theory )是为解决上述问题而发展起来的一门学科。

排队论起源于上世纪初,当时的美国贝尔(Bell )电话公司发明了自动电话后,满足了日益增长的电话通讯的需要。

但另一方面,也带来了新的问题,即如何合理配置电话线路的数量,以尽可能减少用户的呼叫次数。

如今,通讯系统仍然是排队论应用的主要领域。

同时在运输、港口泊位设计、机器维修、库存控制等领域也获得了广泛的应用。

6. 1 排队系统的基本概念6. 1. 1排队系统的一般表示一个排队系统可以抽象描述为:为了获得服务的顾客到达服务设施前排队,等候接受服务。

服务完毕后就自行离开。

其中把要求得到服务的对象称为顾客,而把服务者统称为服务设施或服务台。

在排队论中,把顾客的到达和离开称为排队系统的输入和输出。

而潜在的顾客总体又称为顾客源或输入源。

因此任何一个排队系统是一种输入-输出系统,其基本结构如图6-1所示。

排队系统图6-16. 1. 2排队系统的特征由排队系统的基本结构可知,任何一个排队系统的特征可以从以下三个方面加以描述。

6排队论

6排队论

则顾客自动离去。
现实中的例子:程控电话交换系统、知识竞赛抢答 (2)等待制:指顾客到达时若所有服务设施均被占用, 则留下来等待,直至被服务完离去。 等待的服务规则又可分为:
先到先服务(FCFS) 后到先服务(LCFS)
随机服务(RAND)
带有优先权的服务(PS)
(3)混合制
是损失制和等待制的混合。 允许排队但不允许队列无限长; 或允许等待但不允许等待时间无限长。
这就是排队论所要研究解决的问题。
6.1 排队的基本概念
一、排队系统的组成
上述各种排队现象虽互不相同,但却都有
要求得到某种服务的人或物和提供服务的 人或机构。
排队论里把要求服务的对象统称为“顾
客”。
提供服务的人或机构称为“服务台”或
“服务员”。
排队系统一般有三个基本组成部分:
输入过程、排队规则、服务机构。
故可接受泊松分布假设。
问题1:的含义?
由概率论知识可知,泊松分布的参数λt 即其均值。因 此,λ的含义是单位时间到达系统的平均顾客数,即到 达率。
问题2:当顾客按泊松流到达时,其到达的间隔 时间T 是服从什么分布呢?
1 e FT ( t ) P (T t ) 0
t
t0 t0
1 Ws
平均等待时间等于平均逗留时间减去平均服务时间,即
Wq Ws 1



(3)上述4个指标之间的关系——里特(Little)公式
Ls Ws Lq Wq
Ls Lq
Ws Wq 1

一般的系统中需将到达率 修改为有效到达率e ,即实际进入系统率。 在标准M/M/1模型中系统容量无限制,因此e .

第六章排队论 ppt课件

第六章排队论 ppt课件
3) 普遍性:在 t 时间内到达一个顾客的概率为 t +o(t ),
到达两个或两个以上顾客的概率为 o(t );即两个顾客不可 能同时到达 • 泊松过程具有可迭加性 – 即独立的泊松分布变量的和仍为泊松分布
21
6.3.2.2 负指数分布
(1)推导
• 泊松过程的到达间隔时间为负指数分布 – 令 h 代表间隔时间,则概率 P{h > t}代表时间区间 △t 内没有顾客来的概率;由泊松分布
第六章 随机服务系统理论
排队论
Queuing Theory
确定型只是随机现象的特例
1
6.1 随机服务系统基础
• 系统的输入与输出是随机变量 • A.k.Erlang 于1909~1920年发表了一系列根据话务量计
算电话机键配置的方法,为随机服务理论奠定了基础 • 又称为排队论(Queuing Theory)或拥塞理论(Congestion
PB3 (1 / 8)PA0 (1 / 8)
(16 1 / 8)3 3!
e 161 / 8
e 81 / 8
0.0664
(2) 3 个顾客全是购买 B 类商品的概率为
Pn ( t ) 0
n2
26
例-2
某铁路与公路相交的平面交叉口,当火车通过 交叉口时,横木护栏挡住汽车通行。每次火车 通过时,平均封锁公路3min,公路上平均每分 钟有4辆汽车到达交叉口。求火车通过交叉口 时,汽车排队长度超过100m的概率(即排队 汽车超过12辆的概率)。
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
4
6.1.1 基本要素
排队系统的三个基本组成部分. •输入过程 (顾客按照怎样的规律到达); •排队规则 (顾客按照一定规则排队等待服务); •服务机构 (服务机构的设置,服务台的数量,服务的 方式,服务时间分布等)

第六章 排队论

第六章 排队论

23
例-1 一售货员出售两种商品A和B,每日工作 8 小时。购买 每种商品的顾客到达过程为泊松分布,到达率分别为 A=8人/日, B=16人/日,试求:(1) 1小时内来到顾客 总数为 3 人的概率;(2) 三个顾客全是购买B类商品的 概率。 解:(1)总到达率为 A+ B=24人/日,1 小时=1/8 日,故
e
8 1 / 8
例-2
某铁路与公路相交的平面交叉口,当火车通过 交叉口时,横木护栏挡住汽车通行。每次火车 通过时,平均封锁公路3min,公路上平均每分 钟有4辆汽车到达交叉口。求火车通过交叉口 时,汽车排队长度超过100m的概率(即排队 汽车超过12辆的概率)。
25
Homework
P186
( t t0 )





P h t t 0 P h t 0 P h t 0
t0

1 e
(1 e
t0
)
1e
t
Q.E.D
1 (1 e
)
21
6.3.3 小结
• 如果顾客的到达过程服从最简单流,则顾客单 位时间内的到达数服从泊松分布。 • 如果顾客的到达过程服从最简单流,则顾客到 达的时间间隔服从负指数分布。 • 从本质上看,泊松分布与负指数分布是同一个 过程的不同表现形式。 • 可适用于服务时间分布
– 间隔时间服从爱尔朗分布(Erlang distribution ) – 二项分布(binomial distribution ) – 单位时间 t (或时间区间△t)内到达的顾客数服从泊松分 布(法国数学家Poisson, 1836)—最简单流(泊松流) (Poisson Distribution) – 负指数分布(Negative Exponential Distribution)

第六部分 排队论

第六部分 排队论

第七部分 排队论第十九章 排队论排队论又称随机服务系统理论,它是通过对各种服务系统在排队等待现象中概率特性的研究,来解决服务系统最优设计与最优控制一门学科。

目前,排队论已在计算机系统、计算机通信网络系统、电子对抗系统、交通运输系统、医疗卫生系统、库存管理系统、军事作战系统等方面有着重要的应用,并已成为工程技术人员、管理人员在系统分析与设计中的重要数学工具之一。

§1 排队系统的基本概念在人们的日常生活中,一个服务系统在工作过程中由于拥挤而产生的排队等待现象是经常发生的.例如,顾客在理发店内等待理发(见图)、用户在电话机前等候通话、发生故障的机器等候工人修理、进入机场上空的飞机等候降落等等。

如果我们把服务系统的含义再拓广一下,则进入雷达接收机的信号等待处理、通信系统的报文在缓冲器上等候传送、多微机系统的处理机等候访问公共内存、计算机网的用户等候使用某资源、进入水库的流水等待开闸泄放等等都可看作服务系统在运行过程中所产生的排队等候现象。

我们就将这种具有排队等候现象的服务系统通称为排队系统。

任何一个服务系统总是由两个相辅相成的要素:顾客和服务员(或服务台)所构成。

凡是要求接受服务的人与物统称为顾客;凡是给予顾客服务的人与物统称为服务员(或服务台)。

对于一个排队系统来说,如果顾客的到达时刻和对顾客的服务时间是固定的话,人们总可以适当安排或调整服务员个数、服务速率,从而使顾客到达后少排队甚至不排队而迅速进入服务,亦即容易达到供求之间的平衡关系,如通常情况下的火车调度就属于以上情况。

然而由于客观环境的复杂多变以及种种随机因素的影响,使得在绝大数情况下,顾客到达服务系统的时刻以及对顾客的服务时间都是随机的,这就给服务系统造成了一系列供求之间的矛盾。

例如,有时顾客到得多而服务跟不上(供不应求),而另一些时候则由于顾客少(或无顾客)而使服务员处于空闲状态(供过于求)。

因此,排队论的主要任务就是:通过对排队系统概率规律性的探讨来寻求某些能达到供求平衡的手段与策略,这也就是排队系统的所谓最优设计与最优控制问题。

《运筹学》 第六章排队论习题及 答案

《运筹学》 第六章排队论习题及 答案

《运筹学》第六章排队论习题1. 思考题(1)排队论主要研究的问题是什么;(2)试述排队模型的种类及各部分的特征;(3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义;(4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分布的主要性质;(6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系与区别。

2.判断下列说法是否正确(1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间服从负指数分布;(2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分顾客合起来的顾客流仍为普阿松分布;(3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理;(6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态;(7)排队系统中,顾客等待时间的分布不受排队服务规则的影响;(8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间少于允许队长无限的系统;(9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。

3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间;(7)一个顾客在店内逗留时间超过15分钟的概率。

排队论

排队论
排队是日常生活中经常遇到的现象,如到商店买东西,到医院看病,均是顾客希望得到 某种服务,而当某时刻要求服务的顾客数量超过服务机构的容量时,便出现排队现象。这时, 排队等待的顾客与服务机构便构成一个排队系统,如图 6.1 所示,现实世界中存在着形形色 色的排队系统,如表 6.1 所示。



离去

队列
>
t0 ))
=
P(T > t0 + t) P(T > t0 )
=
e−λ (t0+t ) e −λt0
= e−λt
=
P(T
> t)
(6-5)
假若 T 表示某种电子元件的寿命,则当元件已使用了 t0 时间后估计它还能再使用 t 时间
的概率,与它全新时估计用 t 时间的概率一样,即它对已使用了的 t0 时间无记忆。说明这种
到达间隔服从负指数分
布(同参数)。
由概率论知识可知,负指数分布的表达式(密度函数)为
fT
(t)
=
⎧λe−λt ⎨ ⎩0,
,
t≥0 t<0
(6-3)
3
参数 λ 即其均值的倒数。因此, 1 的含义是平均间隔时间,这与 λ 为单位时间到达系 λ
统的平均顾客数的含义一致。负指数分布有一个有趣的性质:无记忆性,即
1)
=1−
F(1)
=
−(10−4) 1
e
4
=
e−1.5
=
0.223
4
4
4
6
6.2.2 系统容量有限的 M/M/1 模型(M/M/1/N/∞)
1.与(M/M/1/∞/∞)的区别
(1)系统状态只有 N+1 种( n = 0,1, ,N );

排队论习题及答案

排队论习题及答案

《运筹学》第六章排队论习题1. 思考题(1)排队论主要研究的问题是什么;(2)试述排队模型的种类及各部分的特征;(3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义;(4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分布的主要性质;(6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系与区别。

2.判断下列说法是否正确(1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间服从负指数分布;(2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分顾客合起来的顾客流仍为普阿松分布;(3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理;(6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态;(7)排队系统中,顾客等待时间的分布不受排队服务规则的影响;(8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间少于允许队长无限的系统;(9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。

3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间;(7)一个顾客在店内逗留时间超过15分钟的概率。

第六章 排队论模型

第六章 排队论模型

4
排队模型及类型
根据顾客到达和服务台数,排队过程可用下列模型表示:
模型1 单服务台排队模型
模型2
单队列多服务台并联的排队模型
5
模型3
多队列多服务台的并联排队模型
模型4
单队多个服务台的串联排队模型
6
模型5
多队列多服务台混联网络模型
纵观上述排队模型,实际上都可由下面模型加以统一描述:
称该统一模型为随机聚散服务系统。由于顾客到来的时刻和服务台提 供服务的时间长短都是随机的,因此任一排队系统都是一个随机聚散 7 服务系统。 “聚”表示顾客的到达,“散”表示顾客的离去。
1修理店空闲的概率2店内恰有3个顾客的概率3店内至少有1个顾客的概率4在店内的平均顾客数5每位顾客在店内的平均逗留时间6等待服务的平均顾客数7每位顾客平均等待服务时间8顾客在店内等待时间超过10min的概率581001594在店内的平均顾客数5每位顾客在店内的平均逗留时间067607每位顾客平均等待服务的时间02678顾客在店内逗留时间超过10min的概率由于逗留时间服从参数的负指数分布即分布函数为1003679注
20
例如:某排队问题为M/M/S/∞/∞/FCFS, 则表示顾客到达间隔时间为负指数分布(泊松流); 服务时间为负指数分布;有s(s>1)个服务台;系统 等待空间容量无限(等待制);顾客源无限,采用先 到先服务规则。 某些情况下,排队问题仅用上述表达形式中的 前3个、4个、5个符号。如不特别说明则均理解为系 统等待空间容量无限;顾客源无限,先到先服务, 单个服务的等待制系统。
11
(2) 等待制。指当顾客来到系统时,所有服务台 都不空,顾客加入排队行列等待服务。 例如,排队等待售票,故障设备等待维修等。 等待制中,服务台在选择顾客进行服务时,常有 如下四种规则:

排队论及应用举例-

排队论及应用举例-
上述形式的选择,一方面依赖于被服务顾客数;另一方面,依赖于服务顺序的特殊要求。
单阶段
单通道
多阶段
单阶段 队列结构 多通道 多阶段 单阶段 从多通道到单通道 混合式 交 错 通 道 多阶段
图6-6 5-6 队列结构
顾客离开
顾客接受服务后,离 开的情况可能有两种
“经常发生事件(recurring-common-cold case)”:顾客回到顾 客源,马上成为一名新的顾客要求服务。如:机器例行修理后重新 使用,可能再次出现故障而需要修理。
“只发生一次事件(appendectomy-only once case)”:顾客 重新要求服务的可能性极小,即不可能重新要求服务。如:机器 进行彻底检查和修理后,在一段时间内不会重新维修。
顾客源有限时,对回头客服务的任何改变都会改变顾客到达率,引起排队问题的特征的改变。
三、排队模型
问题一:顾客等待。 银行希望知道有多少顾客在等待其服务到车(drive-in)出纳员的服务?出纳员的效率 是多少?如果要求在95%的时间内,任一时刻系统中不超过三辆车,则其服务率应达到什 么水平? 问题二:设备选择。 公司有三中不同的设备可以提供同一种服务,设备功率越大,成本也越高,但服务速度 越快。因此作决策时,成本与收入是紧密相联的。 问题三:服务人数决策。 经销公司的一个销售部门必须决定一个柜台雇佣多少职员。职员越多,成本也越高,但 服务等待时间的减少能带来部分成本的节约。 问题四:有限总体。 前述都是无限总体,而对于有限顾客总体,如:车间有若干台设备,一名维修工负责4 台设备的运转,在充分考虑设备闲置成本和维修工的服务成本的基础上,决定应该雇佣多 少名维修工?
(3) 下一个顾客将在小于t 分钟内到达的概率 (3)=(1)-(2) 0 0.39 0.63 0.78 0.86

《运筹学》 第六章排队论习题及 答案

《运筹学》 第六章排队论习题及 答案

《运筹学》第六章排队论习题1. 思考题(1)排队论主要研究的问题是什么;(2)试述排队模型的种类及各部分的特征;(3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义;(4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分布的主要性质;(6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系与区别。

2.判断下列说法是否正确(1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间服从负指数分布;(2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分顾客合起来的顾客流仍为普阿松分布;(3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理;(6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态;(7)排队系统中,顾客等待时间的分布不受排队服务规则的影响;(8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间少于允许队长无限的系统;(9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。

3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间;(7)一个顾客在店内逗留时间超过15分钟的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章排队论模型排队论起源于1909年丹麦电话工程师A. K.爱尔朗的工作,他对电话通话拥挤问题进行了研究。

1917年,爱尔朗发表了他的著名的文章—“自动电话交换中的概率理论的几个问题的解决”。

排队论已广泛应用于解决军事、运输、维修、生产、服务、库存、医疗卫生、教育、水利灌溉之类的排队系统的问题,显示了强大的生命力。

排队是在日常生活中经常遇到的现象,如顾客到商店购买物品、病人到医院看病常常要排队。

此时要求服务的数量超过服务机构(服务台、服务员等)的容量。

也就是说,到达的顾客不能立即得到服务,因而出现了排队现象。

这种现象不仅在个人日常生活中出现,电话局的占线问题,车站、码头等交通枢纽的车船堵塞和疏导,故障机器的停机待修,水库的存贮调节等都是有形或无形的排队现象。

由于顾客到达和服务时间的随机性。

可以说排队现象几乎是不可避免的。

排队论(Queuing Theory)也称随机服务系统理论,就是为解决上述问题而发展的一门学科。

它研究的内容有下列三部分:(i)性态问题,即研究各种排队系统的概率规律性,主要是研究队长分布、等待时间分布和忙期分布等,包括了瞬态和稳态两种情形。

(ii)最优化问题,又分静态最优和动态最优,前者指最优设计。

后者指现有排队系统的最优运营。

(iii)排队系统的统计推断,即判断一个给定的排队系统符合于那种模型,以便根据排队理论进行分析研究。

这里将介绍排队论的一些基本知识,分析几个常见的排队模型。

§1 基本概念1.1 排队过程的一般表示下图是排队论的一般模型。

一定的排队规则等待服务,直到按一定的服务规则接受完服务后离开排队系统。

凡要求服务的对象统称为顾客,为顾客服务的人或物称为服务员,由顾客和服务员组成服务系统。

对于一个服务系统来说,如果服务机构过小,以致不能满足要求服务的众多顾客的需要,那么就会产生拥挤现象而使服务质量降低。

因此,顾客总希望服务机构越大越好,但是,如果服务机构过大,人力和物力方面的开支也就相应增加,从而会造成浪费,因此研究排队模型的目的就是要在顾客需要和服务机构的规模之间进行权衡决策,使其达到合理的平衡。

1.2 排队系统的组成和特征一般的排队过程都由输入过程、排队规则、服务过程三部分组成,现分述如下:1.2.1 输入过程输入过程是指顾客到来时间的规律性,可能有下列不同情况:(i)顾客的组成可能是有限的,也可能是无限的。

(ii)顾客到达的方式可能是一个—个的,也可能是成批的。

(iii )顾客到达可以是相互独立的,即以前的到达情况对以后的到达没有影响;否则是相关的。

(iv )输入过程可以是平稳的,即相继到达的间隔时间分布及其数学期望、方差等数字特征都与时间无关,否则是非平稳的。

1.2.2 排队规则排队规则指到达排队系统的顾客按怎样的规则排队等待,可分为损失制,等待制和混合制三种。

(i )损失制(消失制)。

当顾客到达时,所有的服务台均被占用,顾客随即离去。

(ii )等待制。

当顾客到达时,所有的服务台均被占用,顾客就排队等待,直到接受完服务才离去。

例如出故障的机器排队等待维修就是这种情况。

(iii )混合制。

介于损失制和等待制之间的是混合制,即既有等待又有损失。

有队列长度有限和排队等待时间有限两种情况,在限度以内就排队等待,超过一定限度就离去。

排队方式还分为单列、多列和循环队列。

1.2.3 服务过程(i )服务机构。

主要有以下几种类型:单服务台;多服务台并联(每个服务台同时为不同顾客服务);多服务台串联(多服务台依次为同一顾客服务);混合型。

(ii )服务规则。

按为顾客服务的次序采用以下几种规则:①先到先服务,这是通常的情形。

②后到先服务,如情报系统中,最后到的情报信息往往最有价值,因而常被优先处理。

③随机服务,服务台从等待的顾客中随机地取其一进行服务,而不管到达的先后。

④优先服务,如医疗系统对病情严重的病人给予优先治疗。

1.3 排队模型的符号表示排队模型用六个符号表示,在符号之间用斜线隔开,即C B A Z Y X /////。

第一个符号X 表示顾客到达流或顾客到达间隔时间的分布;第二个符号Y 表示服务时间的分布;第三个符号Z 表示服务台数目;第四个符号A 是系统容量限制;第五个符号B 是顾客源数目;第六个符号C 是服务规则,如先到先服务FCFS ,后到先服务LCFS 等。

并约定,如略去后三项,即指FCFS /////∞∞Z Y X 的情形。

我们只讨论先到先服务FCFS 的情形,所以略去第六项。

表示顾客到达间隔时间和服务时间的分布的约定符号为:M —指数分布(M 是Markov 的字头,因为指数分布具有无记忆性,即Markov 性);D —确定型(Deterministic ); k E —k 阶爱尔朗(Erlang)分布;G —一般(general )服务时间的分布;GI —一般相互独立(General Independent )的时间间隔的分布。

例如,1//M M 表示相继到达间隔时间为指数分布、服务时间为指数分布、单服务台、等待制系统。

c M D //表示确定的到达时间、服务时间为指数分布、c 个平行服务台(但顾客是一队)的模型。

1.4 排队系统的运行指标为了研究排队系统运行的效率,估计其服务质量,确定系统的最优参数,评价系统的结构是否合理并研究其改进的措施,必须确定用以判断系统运行优劣的基本数量指标,这些数量指标通常是:(i)平均队长:指系统内顾客数(包括正被服务的顾客与排队等待服务的顾客)的数学期望,记作s L 。

(ii)平均排队长:指系统内等待服务的顾客数的数学期望,记作q L 。

(iii)平均逗留时间:顾客在系统内逗留时间(包括排队等待的时间和接受服务的时间)的数学期望,记作s W 。

(iv )平均等待时间:指一个顾客在排队系统中排队等待时间的数学期望,记作q W 。

(v )平均忙期:指服务机构连续繁忙时间(顾客到达空闲服务机构起,到服务机构再次空闲止的时间)长度的数学期望,记为b T 。

还有由于顾客被拒绝而使企业受到损失的损失率以及以后经常遇到的服务强度等,这些都是很重要的指标。

计算这些指标的基础是表达系统状态的概率。

所谓系统的状态即指系统中顾客数,如果系统中有n 个顾客就说系统的状态是n ,它的可能值是(i )队长没有限制时, ,2,1,0=n ,(ii )队长有限制,最大数为N 时,N n ,,1,0 =,(iii )损失制,服务台个数是c 时,c n ,,1,0 =。

状态n 又表示正在工作(繁忙)的服务台数。

这些状态的概率一般是随时刻t 而变化,所以在时刻t 、系统状态为n 的概率用)(t P n 表示。

稳态时系统状态为n 的概率用n P 表示。

§2 输入过程与服务时间的分布排队系统中的事件流包括顾客到达流和服务时间流。

由于顾客到达的间隔时间和服务时间不可能是负值,因此,它的分布是非负随机变量的分布。

最常用的分布有泊松分布、确定型分布,指数分布和爱尔朗分布。

2.1 泊松流与指数分布设)(t N 表示在时间区间),0[t 内到达的顾客数(0>t ),令),(21t t P n 表示在时间区间))(,[1221t t t t >内有)0(≥n 个顾客到达的概率,即)0,(})()({),(121221≥>=-=n t t n t N t N P t t P n当),(21t t P n 合于下列三个条件时,我们说顾客的到达形成泊松流。

这三个条件是:1o在不相重叠的时间区间内顾客到达数是相互独立的,我们称这性质为无后效性。

2o 对充分小的t ∆,在时间区间),[t t t ∆+内有一个顾客到达的概率与t 无关,而约与区间长t ∆成正比,即)(),(1t o t t t t P ∆+∆=∆+λ(1) 其中)(t o ∆,当0→∆t 时,是关于t ∆的高阶无穷小。

0>λ是常数,它表示单位时间有一个顾客到达的概率,称为概率强度。

3o 对于充分小的t ∆,在时间区间),[t t t ∆+内有两个或两个以上顾客到达的概率极小,以致可以忽略,即∑∞=∆=∆+2)(),(n nt o t t t P (2)在上述条件下,我们研究顾客到达数n 的概率分布。

由条件2o ,我们总可以取时间由0算起,并简记)(),0(t P t P n n =。

由条件1o 和2o ,有)()()(000t P t P t t P ∆=∆+∑=-=∆=∆+n k k k n n n t P t P t t P 0,2,1),()()( 由条件2o 和3o 得)(1)(0t o t t P ∆+∆-=∆λ因而有 tt o t P t t P t t P ∆∆+-=∆-∆+)()()()(000λ, tt o t P t P t t P t t P n n n n ∆∆++-=∆-∆+-)()()()()(1λλ. 在以上两式中,取t ∆趋于零的极限,当假设所涉及的函数可导时,得到以下微分方程组:)()(00t P dtt dP λ-=, ,2,1),()()(1=+-=-n t P t P dtt dP n n n λλ. 取初值1)0(0=P ,),2,1(0)0( ==n P n ,容易解出t et P λ-=)(0;再令t n n e t U t P λ-=)()(,可以得到)(0t U 及其它)(t U n 所满足的微分方程组,即 ,,2,1),()(1 ==-n t U dtt dU n n λ 1)(0=t U ,0)(=t U n .由此容易解得 ,2,1,!)()(==-n e n t t P t nn λλ. 正如在概率论中所学过的,我们说随机变量)}()()({s N t s N t N -+=服从泊松分布。

它的数学期望和方差分别是t t N E λ=)]([;t t N λ=)](Var[。

当输入过程是泊松流时,那么顾客相继到达的时间间隔T 必服从指数分布。

这是由于),0{[}{t P t T P =>内呼叫次数为零t e t P λ-==)(}0那么,以)(t F 表示T 的分布函数,则有⎩⎨⎧<≥-==≤-0,00,1)(}{t t e t F t T P t λ 而分布密度函数为0,)(>=-t e t f t λλ.对于泊松流,λ表示单位时间平均到达的顾客数,所以λ1就表示相继顾客到达平均间隔时间,而这正和ET 的意义相符。

对一顾客的服务时间也就是在忙期相继离开系统的两顾客的间隔时间,有时也服从指数分布。

这时设它的分布函数和密度函数分别是t e t G μ--=1)(,t e t g μμ-=)(我们得到 μ=>∆∆+≤<=∆>∆+≤→∆→∆}{}{lim }|{lim 00t T tP t t T t P t t T t t T P t t 这表明,在任何小的时间间隔),[t t t ∆+内一个顾客被服务完了(离去)的概率是)(t o t ∆+∆μ。

相关文档
最新文档