工学第十章排队论

合集下载

排队论

排队论

11.排队论11.1基本概念排队现象是指到达服务机构的顾客数量超过服务机构提供服务的容量,也就是说顾客不能够立即得到服务而产生的等待现象。

顾客可以是人,也可以是物,比如说,在银行营业部办理存取款的储户,在汽车修理厂等待修理的车辆,在流水线上等待下一到工序加工的半成品,机场厂上空等待降落的飞机,以及等待服务器处理的网页等,都被认为是顾客。

服务机构可以是个人,像理发员和美容师,也可以是若干人,像医院的手术小组。

服务机构也还可以是包装糖果的机器,机场的跑道,十字路口的红绿灯,以及提供网页查询的服务器等等。

11因为顾客到达,服务时间具有不确定性,排队系统又称随机服务系统,它的基本结构如图1.所示:商业服务理发店,银行柜台,机场办理登机手续的柜台,快餐店的点餐柜台运输行业城市道路的红绿灯,等待降落或起飞的飞机,出租车制造业待修理的机器,待加工的材料,生产流水线社会服务法庭,医疗机构为了描述一个排队系统,我们需要说明输入(到达)和输出(服务)过程,及其他基本特征。

表2.11列举了一些排队系统的到达和服务过程。

表11.2: 排队系统举例)1(到达过程通常,我们假设顾客的相继到达间隔时间是相互独立并且都具有相同概率分布。

在许多实际(Poisson流,或指数分布。

顾客源可能是有限的,也可情况中,顾客的相继到达间隔是服从泊松)能是无限的。

顾客到来方式可能是一个接一个的,也可能是批量的。

比如,到达机场海关的旅行团就是成批顾客。

一般来说,我们假设到达过程不受排队系统中顾客数量的影响。

以银行为例,无论银行内有3位顾客还是300位顾客,顾客来到银行的到达过程是不会受到影响的。

但是在两种情况下到达过程与排队系统中的顾客数量相关。

第一种情况发生在顾客源是有限的系统,比如某工厂共有五台机床,若在维修部中已有两台机床,接下来到达维修部的最大量是三台。

另一种情况是当顾客到达排队系统时,如果服务机构的设施都被占用,顾客可能耐心等待,也可能选择离开。

第10章 排队论

第10章 排队论

混合制排队系统: • 等待时间有限。即顾客在系统中 等待时间不超过某一给定的长度T, 当等待时间超过T时,顾客将自动 离开,不再回来。如易损失的电 子元件的库存问题,超过一定存 储时间的元器件被自动认为失效。
混合制排队系统: • 逗留时间(等待时间与服务时间 之和)有限。例:用高射炮射击 飞机,当敌机飞越射击有效区域 的时间为t时,若这个时间内未被 击落,也就不可能再被击落了。
第十章 排队论
10.1 引

排队论是研究排队系统(又称随 机服务系统)的数学理论和方法,是 运筹学的一个重要分支。 1、有形排队现象:进餐馆就餐,到 图书馆借书,车站等车,去医院看病, 售票处售票,到工具房领物品等现象。
2、无形排队现象:如几个旅客同时打电
话订车票;如果有一人正在通话,其他 人只得在各自的电话机前等待,他们分 散在不同的地方,形成一个无形的队列 在等待通电话。
均数。如果列车因站中2股道均被占 用而停在站外或前方站时,每列车 每小时费用为a元,求每天由于列车 在站外等待而造成的损失。
解:本例可看成一个M/M/1/排队问 题,其中 =2, =3,= /=2/3<1 系统中列车的平均数
L= / (1-)=(2/3)/(1-2/3)=2(列)
7、排队研究的基本问题
系统优化问题:又称为系统控制问 题或系统运营问题,其基本目的是 使系统处于最优的或最合理的状态。 包括:最优设计问题和最优运营问 题。
10.2 排队系统的数量指标及记号 1、数量指标
系统状态:也称为队长,指排队系 统中的顾客数(排队等待的顾客数 与正在接受服务的顾客数之和)。
排队的不一定是人,也可以是物。如生 产线上的原材料,半成品等待加工;因 故障而停止运行的机器设备在等待修理; 码头上的船只等待装货或卸货;要下降 的飞机因跑道不空而在空中盘旋等。

排队论

排队论

排队长度:等待服务的顾 客数量
平均等待时间:顾客在系统 中等待服务的平均时间
平均排队长度:系统中平均 排队的顾客数量
服务台数量:系统中的服 务台数量
利用率:服务台被利用的 程度
排队系统的稳定性:系统是 否处于稳定状态,即平均等 待时间和平均排队长度是否
收敛
排队系统的分析方法
01
排队论的基本概 念:顾客到达、 服务时间、等待
服务台:提供服务的地方
队列:等待服务的顾客队列
顾客到达时间:顾客到达服 务台的时间 服务台容量:服务台可以同 时服务的顾客数量 排队系统状态:当前系统中 顾客和服务员的状态
排队系统的参数
顾客到达率:单位时间内到 达系统的顾客数量
服务速率:单位时间内服务 台能够服务的顾客数量
排队规则:先进先出(FIFO) 或后进先出(LIFO)
谢谢
排队论
演讲人
排队论的基本概念 排队论的基本原理Biblioteka 目录CONTENTS
排队论的应用实例
排队论的基本概念
排队系统的定义
1
排队系统:由顾 客和服务台组成 的系统,顾客需 要等待服务台的
服务。
2
服务台:提供某 种服务的设施, 如收银台、售票
窗口等。
3
顾客:需要接受 服务台的服务的 人,如顾客、乘
客等。
4
时间均服从指数分布
M/G/1模型:单服务台、单 队列、顾客到达服从泊松分 布、服务时间服从指数分布
M/G/c模型:单服务台、多 队列、顾客到达服从泊松分 布、服务时间服从指数分布
M/G/∞模型:单服务台、 无限队列、顾客到达服从泊 松分布、服务时间服从指数
分布
G/M/1模型:多服务台、单 队列、顾客到达服从泊松分 布、服务时间服从指数分布

排队论

排队论

G:一般分布。表示到达间隔时间或服务时间服从一般分布。G是General的第 一个字母。
EkE:rlkan-爱g 尔朗的分第布一。个表字示母到。达间隔时间或服务时间服从k-爱尔朗分布。E是 D: 定长分布 (常数时间)
H:超几何分布。
L:H项式分布。
Z代表的服务规程典型的有:
FCFS:先来先服务;LCFS:后来先服务;RSS:随机选择服务;
PR:优先权服务。 Ba:集体(批量)服务。 GD:一般规约服务,即通用规约服务。
排队论课件 23
3 基本排队关系
在对排队进行分析时,为了便于分析,经常做一些简化假设。对一个排队系 统,若满足以下三个条件:
(1)排队系统能够进入统计平衡状态;
(2)服务员的忙期与闲期交替出现,即系统不是总处于忙的状态;
泊松分布(Poisson): P{X = k} = λk e-λ/ k! k=0,1,2,…, μx = σx = λ 泊松分布是最重要的离散型概率分布之一,也是表述随机
现象的一种重要形式。在实际系统模型中,一般都要假定任务 (或顾客)的到来是泊松分布的。实践也证明:这种假设有效。
如果顾客到达的人数是符合泊松分布,即在时间T内到达 有k个顾客到达的概率为:


排队论课件
11
基本的排队模型
基本组成 概念与记号 指数分布和生灭过程

排队论课件 12
典型排队系统模型
顾客到达: 在队列中排队 服务台服务 顾客离开
输入源
。。。
输入源的 特性?
到达规律 队列大小?
到达方式?
服务规律?
服务协议?
在本单元中,我们主要介绍排队系统的组成和特征,排队系统 的到达和服务,经典排队模型等内容。顾客到达规律和服务规 律都是通过概率来描述的,所以概率论是排队论的基础。

排队论课件

排队论课件

③服务方式(输出)指同一时刻有多少服务台可接纳顾客, 每一顾客服务了多少时间。每次服务可以接待单个顾客, 也可以成批接待,例如公共汽车一次就装载大批乘客。 服务时间的分布主要有如下几种: • 负指数分布:即各顾客的服务时间相互独立,服从相 同的负指数分布(看病); • 爱尔朗分布:即各顾客的服务时间相互独立,具有相 同的爱尔朗分布。
• 定长分布:每一顾客的服务时间都相等(发放物品);
为叙述方便,引用下列符号,令
• M代表泊松分布输入或负指数分布服务;
• D代表定长分布输入或定长分布服务; • Ek代表爱尔朗分布的输入或服务。 于是泊松输入、负指数分布服务,N个服务台的排队系 统可以写成M/M/N; • 泊松输入、定长服务、单个服务台的系统可以写成M/D/1。 • 同样可以理解M/ Ek /N,D/M/N…等符号的含义。 • 如果不附其它说明,则这种符号一般都指先到先服务, 单个服务通道的等待制系统。
多通道服务方式
(1)系统中没有车辆的概率 为: 1 P (0) N 1 k N N !(1 / N ) k 0 k! ( 2)系统中有 k个车辆的概率: k .P (0), k! P(k) k P (0), kN N! N k N k N
1

5 5 10s / 辆
两种系统比较
4个M/M/1
平均车辆数 平均排队长 平均耗时 平均等候时间 20 16.68 30 25
M/M/4
6.6 3.3 10 5
设顾客平均到达率为,则到达的平均时距为1/ 。排队从单通道通过接受 服务的平均服务率为,则平均服务时间为1/ 。比率 / 叫做服务强度 或交通强度,可以确定系统的状态。所谓状态,指的是排队系统的顾客数。 1)在系统中没有顾客的概率为P(0) 1 2)在系统中有n个顾客的概率为P (n) n (1 ) 3)系统中的平均车辆数n 4)系统中的平均方差 2 5)平均排队长度q n 6)非零平均排队长度q w 1 1 n

排队论模型专业知识课件

排队论模型专业知识课件
排队等待旳顾客数,其期望记为
(队长)=等待服务旳顾客数+正被服务旳顾客数,所以
越大,
;排队长度则仅指在队列中
. 系统中旳顾客数
阐明服务效率越低。
(2)等待时间:是指从顾客到达时间算起到他开始接受
顾客到达时刻算起到他接受服务完毕为止所需要旳时间,
逗留时间=等待时间+服务时间 (3)忙期:是指服务台连续繁忙旳时间,即顾客从到达空闲服务台算起到服务台再次变为空闲时止旳这段时间。这是服务台最关心数量指标,它直接关系到服务员工作强度,与忙期相相应旳是闲期,这是指服务台连续保持空闲旳时间长度;显然,在排队系统中忙期与闲期,是交替出现旳。
从而在生灭过程中取
(9.5)
记 ,称为服务强度 当 时,模型不稳( 时达不到统计) 当 <1时,模型稳定,有稳定解 (3)X(t)旳分布律 由(9.12),(1.15)式得此模型旳微分差分方程组 (9.6) 当 时,稳态解满足
1.生灭过程旳定义 设有一种系统,具有有限个状态,其状态集s={0,1,2…k}或有可数个状态,状态集s={0,1,2…},令X(t)为系统在时刻t所处旳状态,若在某一时刻t系统旳状态数为n,假如对△t>0有。 (1)到达(生):在(t,t+△t)内系统出现一种新旳到达旳概率为
服务时止旳这段时间,其期望值记
;逗留时间则指从
即是顾客在系统中所花费旳总时间,其期望值记

排队系统除了上述三个主要数量指标外,另外服务台旳利用率(即服务员忙碌旳时间在总时间中所占百分比)在排队论旳研究中也是很主要旳指标。
(二)排队模型旳符号表达与几种主要排队模型 1.排队模型旳符号一般表达法 一般表达法 A/B/C/D/E/F A:顾客来到时间间隔旳分布类型 B:服务时间旳分布类型 C:服务员个数 D:系统容量 E:顾客源个数 F:服务规则 先来先服务旳等待排队模型主要由三参数法即A/B/C例“M/M/1/k/

排队论(脱产)PPT课件

排队论(脱产)PPT课件

等待制与损失制
等待制
顾客等待时间有限,超过一定时 间仍无法接受服务则离开;或者 顾客可以无限等待,直到获得服 务。
损失制
顾客到达时若无法立即接受服务 ,则离开系统。
稳态与瞬态
稳态
排队系统在长时间后达到平衡状态,顾客到达和服务的时间间隔均服从某一概 率分布。
瞬态
排队系统未达到平衡状态,顾客到达和服务的时间间隔不服从概率分布。
WENKU DESIGN
WENKU DESIGN
2023-2026
ONE
KEEP VIEW
排队论(脱产)ppt课件
WENKU DESIGN
WENKU DESIGN
WENKU
REPORTING
https://
CATALOGUE
目 录
• 引言 • 排队论的基本概念 • 常见的排队模型 • 排队论中的性能指标 • 排队论的应用实例 • 总结与展望
PART 04
排队论中的性能指标
队长与等待队长
队长
指在任意时刻队列中的顾客数。它通常用来衡量系统的负载状况。队长是描述系 统状态的重要参数,其分布情况决定了系统的性质。
等待队长
指在队列中等候的顾客数。等待队长是衡量系统性能的重要指标,特别是在处理 能力有限的情况下。等待队长的大小直接影响到顾客的等待时间和系统的效率。
交通系统
地铁调度
地铁调度中心需要确保列车按时到达车 站并保持适当的间隔。排队论可用于分 析列车的到达时间和等待时间,优化列 车的调度和运行计划,提高地铁系统的 运输效率和安全性。
VS
机场安检
机场安检是保证乘客安全的重要环节,但 安检队伍过长或等待时间过长会影响乘客 的满意度和机场的运行效率。排队论可用 于分析安检队伍的长度和等待时间,优化 安检流程和资源配置,提高机场的运行效 率和乘客满意度。

运筹08(第10章排队论)精品PPT课件

运筹08(第10章排队论)精品PPT课件

2020/11/30
7
排队系统类型3:
服务完成后离开
服务台1
顾客到达
服务完成后离开
服务台2
服务完成后离开
服务台s
S个服务台, S个队列的排队系统
2020/11/30
8
排队系统类型4:
顾客到达
服务台1
离开
服务台s
多服务台串联排队系统
2020/11/30
9
排队系统的描述 实际中的排队系统各不相同,但概括 起来都由三个基本部分组成: 1、输入过程; 2、排队及排队规则; 3、服务机构
2020/11/30
21
➢ 定长分布(D):每个顾客接受的服 务时间是一个确定的常数。
➢ 负指数分布(M):每个顾客接受的
服务时间相互独立,具有相同的负指
数分布: e- t t0
f(t)=
0
t<0
其中>0为一常数。
2020/11/30
22
➢ K阶爱尔朗分布(Ek):
f(t)=
k(kt)k-1 · e- kt
2
无形排队现象:如几个旅客同时打电话 订车票;如果有一人正在通话,其他人只 得在各自的电话机前等待,他们分散在不 同的地方,形成一个无形的队列在等待通 电话。
排队的不一定是人,也可以是物。如生 产线上的原材料,半成品等待加工;因故 障而停止运行的机器设备在等待修理;码 头上的船只等待装货或卸货;要下降的飞 机因跑道不空而在空中盘旋等。
理;出价高的顾客应优先考虑。
2020/11/30
20
❖ 3、服务机制
包括:服务员的数量及其连接方式(串联还是并联) 顾客是单个还是成批接受服务; 服务时间的分布
记某服务台的服务时间为V,其分布函数 为B(t),密度函数为b(t),则常见的分布 有:定长分布(D)

第十章 排队论(1)

第十章 排队论(1)

等待起飞的飞机 飞机
为一致起见, 服务的对象统称为" 为一致起见,将服务的对象统称为"顾 统称为 客",将提供服务的服务者称为"服务员" 提供服务的服务者称为"服务员" 称为 或"服务机构". 服务机构" 千差万别的排队系统可以描述为:顾客为 千差万别的排队系统可以描述为: 了得到某种服务到达系统, 了得到某种服务到达系统,若不能立即获 得服务而又允许排队等待, 得服务而又允许排队等待,则加入等待队 伍,待获得服务后离开系统. 待获得服务后离开系统.
输入过程
Poisson流(M):顾客相继到达时间间隔 n}是 流 顾客相继到达时间间隔{X 是 顾客相继到达时间间隔 相互独立的,服从负指数分布(Exponential 相互独立的,服从负指数分布 负指数分布 distribution),其密度函数为, ,其密度函数为
λe λt a(t) = 0 t≥0 t<0

需求 群体
排队结构
离开
服务过程
排队论是研究排队系统的数学理论 排队论是研究排队系统的数学理论 排队系统 和方法,是运筹学的一个重要分支. 和方法,是运筹学的一个重要分支.在 日常生活中, 日常生活中,人们会遇到各种各样的排 队问题. 队问题.
商业服务系统
系统类型 银行出纳服务 ATM机服务 机服务 商店收银台 管道服务 机场检票处 经纪人服务 顾客 人 人 人 阻塞的管道 人 人 服务台 出纳 ATM机 机 收银员 管道工 航空公司代理人 股票经纪人
排队系统的主要数量指标和记号
忙期B 忙期 闲期 I (服务机构连续忙碌的时间 这一指标决定 服务机构连续忙碌的时间), 服务机构连续忙碌的时间 (服务机构连续保持空闲的时间 忙期与闲 服务机构连续保持空闲的时间),忙期与闲 服务机构连续保持空闲的时间 了服务人员的服务强度. 了服务人员的服务强度 期交替出现. 期交替出现 当系统处于状态n时 λn:当系统处于状态 时,新来顾客的平均到达率 当系统处于状态 (即单位时间内来到系统的平均顾客数) 即单位时间内来到系统的平均顾客数) 当系统处于状态n时 整个系统的平均服务率, n:当系统处于状态 时,整个系统的平均服务率, 当系统处于状态 即单位时间内可以服务完的顾客数) 即单位时间内可以服务完的顾客数)

排队论

排队论

泊松输入中的顾客到达间隔时间 T 相互独立且服从同参数 λ 的负指数分 布,其密度函数为
其平均到达间隔时间为
λ 称为到达率。
三. 排队系统的主要特征
1. 输入过程 ⑴ 定长输入( D, Deterministic ) ⑵泊松输入 (最简单流, M ) ⑶ 一般独立输入( G,General Independent ) —— 指顾客到达间隔时间 T 为相互独立且同分布的随机变量。最简单 流是它的一个特例。 此外,在本章所讨论的排队系统中,总假定输入过程是平稳的,或 称对时间是齐次的。 平稳的输入过程 —— 指顾客到达间隔时间的分布与时间无关。否则就称 为非平稳的。
服务台m
服务台 1

服务台 2
服务台 1 服务台 2
···
···
服务台 m
服务台 m
三. 排队系统的主要特征
1. 输入过程 2. 服务时间 τ 的分布 3. 服务机构(服务台) 4. 服务规则
⑴ 先到先服务(FCFS) ⑵ 后到先服务(LCFS)
如信息处理、仓库中堆积的货物等。 ⑶ 随机服务(SIRO) ⑷ 优先权服务(PR) ⑸ 一般服务规则(GD)
1909年,由丹麦工程师爱尔朗(A.K.Erlang)在研究电话系统时初创的。
§l 排队论的基本概念及研究的问题
一.排队论中有两个基本概念:
顾客:把提出需求的对象称为顾客(或需求); 服务:把实现服务的设施称为服务机构(或服务台)。
顾客和服务机构组成一个排队系统,称为随机服务系统。 因此也称排队论为随机服务系统理论
⑴ 定长输入( D, Deterministic ) —— 每隔一定时间 α 到达一个顾客,顾客到达间隔时间 T 的分布函数为
三. 排队系统的主要特征

排队论(讲义)ppt课件

排队论(讲义)ppt课件

概率关系着对时间的数量分配。一个事件A的概率 P(A)是对应事件A要发生可能性 的数量分配。概率有很多不同的定义,常用的有三种:
(1)古个典数定。义:P(A)=NA/N 其中N是可能结果的总个数,NA是事件A在其中发生的结果的
例1. 求抛两个骰子并且决定和为7的概率p。
总共有36种可能的结果,所以N= 36
排队论 Queueing Theory
主讲:周在莹
;.
1
CONTENUNIT 1 排队模型
UNIT 2 排队网络模型
UNIT 3 应用之:QUICK PASS系统
结束语
;.
PREPARATION 概率论和随机过程
Part 1.概率论基础
1。 概率的定义
独立性: 如果P(AB)=P(A)P(B),事件A和B叫做相互独立的事件 独立性的概念可以推广到三个或多个事件。
;.
3 全概率公式和贝叶斯定理 全概率公式:给定一组互斥事件E1,E2,,…,En,这些事件的并集包括所有可能的
结果,同时给任一个任意事件A,那么全概率公式可以表示为: n
P(A)=∑P(A|Ei)P(Ei) i=1
在离散型随机变量中,只有几何分布具有无后效性。这两种分布可以分别用来描 绘离散等待时间和连续等待时间。
在排队理论中,指数分布是很重要的。
;.
6 k-爱尔朗分布 概率密度: f(x)= (λkx)n-1λke-λkx /(n-1)! x≥0,λ>0.
0 x<0 数字特征: E[X]=1/λ; Var[X]=1/(kλ2 )
;.
5 (负)指数分布
它是一种连续型的概率分布,它的概率密度为
f(x)= λe-λx x≥0
0

第10章 排队论

第10章 排队论

独立的。换言之,即在时间区间(t,t+∆t)和(0,t)内到达 的顾客数无关。
14
(2)平稳性:即在一定的时间间隔内到达系统的顾客数只与这 段时间的长短有关,而与这段时间由什么时间开始无关。换言之, 即在时间区间(t,t+∆t)内到达系统的顾客数,只与∆t的大小 有关,而与t无关。 (3)普通性:即在瞬时内只能有一个顾客到达,而不可能有两 个以上的顾客到达。换言之,即对于充分小的∆t,在时间区间 (t,t+∆t)内有两个或两个以上到达的概率极小,以致可忽略 不计,或者说不存在批量到达问题。 泊松分布的密度函数是:
表10.3 服务时间分布
服务时间( 分钟) 服务时间 ( 分钟 ) 分布次数 10 1 10 2 8 3 5 4 4 5 2 6 1 7 1 8 1 9 以上 合 计 42
不难发现,上述两种分布均接近于泊松分布形式。
13
根据有关数据,不难算出如下的指标值: 根据有关数据,不难算出如下的指标值: 平均到达率( )= )=42/ 分钟) 平均到达率(λ)= /145=0.29(人/分钟) = ( 平均到达时间( )=145/41=3.46(分钟/人) 平均到达时间(1/λ)= )= / = (分钟/ 平均服务率( )= )=42/ 分钟) 平均服务率(µ)= /130=0.323(人/分钟) = ( 平均服务时间( )=130/42=3.1(分钟/人) 平均服务时间(1/µ)= )= / = (分钟/ 这些指标都是排队系统分析中非常重要的数量指标。 这些指标都是排队系统分析中非常重要的数量指标。 二、泊松分布(Poisson) 泊松分布( ) 表示在时间区间( ,t)内到达的顾客数, ,t)内到达的顾客数 设N(t)表示在时间区间(0,t)内到达的顾客数,Pn(t) 表示在时间区间 表示在时间区间( ,t) 内有n个顾客到达的概率, 表示在时间区间(0,t) 内有n个顾客到达的概率,当 Pn(t) 符合下列三个条件时,通常就说顾客到达数服从泊松 符合下列三个条件时, 分布: 分布: (1)无后效性:即在不相重叠的时间区间内顾客的到达数是相互

第十章排队论

第十章排队论

2.2 泊松流
• 设 N (t )表示在时间区间 0, t 内到达的顾客数 (t 0) ( 令Pn (t1 , t2 )表示在时间区间 t1 , t2 (t2 t1 ) 内有 n 0)个顾客到达的概率,即
Pn (t1 ,t2 ) P N (t2 ) N (t1 ) n (t2 t1 , n 0)
服务台的各 种排列方式
1.3 排队模型的分类
排队模型分类方法——D.G.Kendall,1953
– 构成排队模型的三个主要特征指标
• (1) 相继顾客到达间隔时间的分布; • (2) 服务时间的分布; • (3) 服务台的个数。
– 根据这三个特征对排队模型进行分类的Kendall记号: X/Y/Z
区间 情况
0,t
个数 概率
t , t t
个数 概率 个数
0,t t
概率
( A) ( B) (C )
n n 1 n2 n3 0
Pn (t ) Pn 1 (t ) Pn 2 (t ) Pn 3 (t ) P0 (t )
0 1 2 3 n
船舶到达数n
0 1 2 3 4 5 6 7
频数
12 43 64 74 71 49 26 19
频率(%)
0.033 0.118 0.175 0.203 0.195 0.134 0.071 0.052
8
9 10以上 合计
4
2 1 365
0.011
0.005 0.003 1.000
2.1 经验分布
实际中测定相继到达时间间隔的方法 • 以τi表示第i号顾客到达的时刻,以si表示对它的服务时间,这样可算出相继 到达的间隔时间ti (ti=τi+1-τi)和排队等待时间wi,它们的关系如下:

排队论讲解

排队论讲解

排队论是一种研究排队系统的数学理论,它主要用于研究系统在不同的服务策略下的性能指标,如平均等待时间、平均服务时间、系统吞吐量等。

排队系统是指由顾客和服务台组成的系统,顾客按照先来先服务的原则依次到达服务台,并在服务台得到服务。

排队论的基本模型包括M/M/s、M/M/c、M/G/s、M/G/c等模型,其中M表示顾客到达的随机变量是泊松分布,G表示服务时间的随机变量是几何分布,c表示服务台的容量限制,s表示系统的服务速度。

M/M/s模型是指服务台的服务速度s是固定的,即服务台的服务速度不受顾客到达的影响,这种模型主要用于研究系统的平均等待时间和平均服务时间。

M/M/c模型是指服务台的容量限制c是固定的,即服务台的服务速度受到顾客到达的影响,这种模型主要用于研究系统的排队长度和服务率。

排队论的应用非常广泛,包括电话系统、银行系统、航空系统、医疗系统等。

在实际应用中,排队论可以帮助企业优化服务流程,提高服务质量,减少顾客等待时间,提高顾客满意度,从而提高企业的竞争力和经济效益。

排队论的应用还在不断地拓展和深化,例如近年来出现的排队论模型包括多服务台排队模型、排队网络模型、排队论与动态优化模型等。

这些模型可以更好地模拟实际系统中的复杂排队情况,提高系统的服务质量和效率。

第十章 排队论(2)PPT课件

第十章 排队论(2)PPT课件

[M/M/1]:[//FCFS]的系统指标
系统中的平均顾客数N
NkPk kρk(1ρ)(1ρ)kρk
k0
k0
k0
(1ρ)(1ρρ)2
ρ λ 1ρ μλ
[M/M/1]:[//FCFS]的系统指(k1)kP (k1ρ)k(1ρ )(1ρ) (k1ρ)k
k1
k1
k1
p k (t () λ k kλ e ! λt t k 0, 1,2 λ 0
即服从以为参数的Poisson分布。
定理说明,如果顾客到达为Poisson流的话, 则达到顾客数的分布为Poisson分布.考虑 到从Poisson过程或其概率分布来分析顾客 的到达情况不便.而实际问题中比较容易得 到和进行分析的往往是顾客相继到达系统的 时刻或相继到达的时间间隔, 因此一般以顾 客到达的时间间隔分布来对排队系统进行分 析.
P
1
P
2
λ μ λ μ
P0 P1
λ μ
2 P 0
Pn
λ μ
Pn
λ μ
n
P 0
Pk 1
k0
得到 1μ λμ λ2 μ λn P01

λ ρ
μ
称为服务强度,则
P0ρk11ρ 0ρ1
k0
P n ρ n ( 1ρ)n0, 1 ,2
可以看出, 是系统中至少有一个顾客的概率,也就是服务 台处于忙状态下的概率,因而称为服务强度,反映了系统的 繁忙程度.另外, <1的条件下才能使系统达到统计平衡.
生灭过程和Poisson过程
在排队论模型中,以“生灭过程”模拟顾客 到达与离去的随机发生过程。
在排队论中,如果N(t)表示时刻t系统中的顾 客数,则{N(t),t0}就构成了一个随机过程。 如果用“生”表示顾客的到达,“灭”表示 顾客的离去,则对许多排队过程来说,{N(t), t0}就是一类特殊的随机过程 - 生灭过程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章 排队论(Queuing Theory)
1
第十章 排队论(Queuing Theory)
排队论(queuing),也称随机服务系统理论,是 运筹学的一个主要分支。
1909年,丹麦哥本哈根电子公司电话工程师A. K. Erlang的开创性论文“概率论和电话通讯理论” 标志此理论的诞生。排队论的发展最早是与电话, 通信中的问题相联系的,并到现在是排队论的传统 的应用领域。近年来在计算机通讯网络系统、交通 运输、医疗卫生系统、库存管理、作战指挥等各领 域中均得到应用。
为稳态(steady state)解,或称统计平衡状态 (Statistical Equilibrium State)的解。
lim
t
p n
(t )
pn
15
稳态的物理意义见右图, pn 系统的稳态一般很快都 能达到,但实际中达不 到稳态的现象也存在。
过渡状态
稳Байду номын сангаас状态
t
图3 排队系统状态变化示意图
16
8
§1.2 排队系统的模型分类
上述特征中最主要的、影响最大的是: • 顾客相继到达的间隔时间分布 • 服务时间的分布 • 服务台数
D.G.Kendall,1953提出了分类法,称为Kendall 记号(适用于并列服务台)即:[X/Y/Z]:[A/B/C]
9
[X/Y/Z]:[A/B/C]式中:
X——顾客相继到达间隔时间分布。
如 : [M/M/1]:[∞/∞/FCFS] 即 为 顾 客 到 达 为 泊 松 过程,服务时间为负指数分布,单台,无限容量, 无限源,先到先服务的排队系统模型。
10
系统指标 (1) 队长,指在系统中的顾客数,它的期望值记Ls; (2) 排队长,指在系统中排队等待服务的顾客数,它的 期望值记作Lq
M—负指数分布Markov,D—确定型分布Deterministic, Ek—K阶爱尔朗分布 Erlang, GI— 一般相互独立随机分布(General Independent), G —一般随机分布。
Y——服务时间分布 Z——并列的服务台数 A——排队系统的最大容量 B——顾客源数量 C——排队规则
17
• M/M/C型系统和C个M/M/1型系统
• 系统容量有限制的多服务台模型(M/M/C/N/∞)
5
2. 排队规则
1)损失制。顾客到达时,如果所有的服务台都被 占用,且服务机构又不允许顾客等待,顾客只能离 去,这种服务规则就是损失制。 2)等待制。当顾客到达时,如果所有服务台都被顾 客占用而无空闲,这时该顾客自动加入队列排队等 待服务,服务完才离开。 (1)先到先服务FCFS (2)后到先服务 LCFS (3)随机服务RAND (4)有优先权服务 PR。
3.最优化问题:即包括最优设计(静态优化), 最优运营(动态优化)。
13
1.4 排队问题求解(主要指性态问题)
求解一般排队系统问题的目的主要是通 过研究排队系统运行的效率指标,估计服务 质量,确定系统的合理结构和系统参数的合 理值,以便实现对现有系统合理改进和对新 建系统的最优设计等。
14
1.4 排队问题求解(主要指性态问题)
2
§1 排队论的基本概念
§1.1 排队系统的组成与特征
排队系统一般有三个基本组成部分: 1.输入过程; 2.排队规则; 3.服务机构。
顾客源
顾客到达 排队结构 服务规则 服务机构
离去
排队规则
图1 排队系统示意图
3
1. 输入过程
输入即为顾客的到达,可有下列3种情况: 1)顾客来源。顾客总体(称为顾客源)的组成可能是有 限的,也可能是无限的。
12
1.3 排队论研究的基本问题
1.排队系统的统计推断:即通过对排队系统主 要参数的统计推断和对排队系统的结构分析,判 断一个给定的排队系统符合于哪种模型,以便根 据排队理论进行研究。
2.系统性态问题:即研究各种排队系统的概率 规律性,主要研究队长分布、等待时间分布和忙 期分布等统计指标,包括了瞬态和稳态两种情形。
6
3. 服务机构
1)服务机构可以是单服务员和多服务员服务, 这种服务形式与队列规则联合后形成了多种不同队 列,不同形式的排队服务机构,如:
1 单队单服务台
1
2
..
..
n
多队多服务台(并列)
1
2 。。。
n
单队多服务台(并列)
1
2
... n
单队多服务台(串列)
1
1
2
3
2
混合形式
7
2)服务方式分为单个顾客服务和成批顾客服务。 3)服务时间分为确定型和随机型。 4)服务时间的分布在这里我们假定是平稳的。
如:上游河水流入水库可以认为总体是无限的,工 厂内停机待修的机器显然是有限的总体。 2)顾客到达方式。顾客到来的方式可能是一个一个 的,也可能是成批的。 如:到餐厅就餐就有单个到来的顾客和受邀请来参 加宴会的成批顾客。
4
3)顾客流的概率分布。顾客随机一个(批)个(批)来 到排队系统,顾客流的概率分布用来描述相继到达的 顾客之间的间隔时间分布是确定的还是随机的,分布 参数是什么,到达的间隔时间是否独立,分布是随时 间变化的还是平稳的。
§2 排队论主要知识点
• 排队系统的组成与特征 • 排队系统的模型分类 • 顾客到达间隔时间和服务时间的经验分布与
理论分布 • 稳态概率Pn的计算 • 标准的M/M/1模型([M/M/1]:[∞/∞/FCFS]) • 系统容量有限制的模型[M/M/1]:[N/∞/FCFS] • 顾客源有限模型[M/M/1][∞/M/ FCFS] • 标准的[M/M/C]模型[M/M/C]:[∞/∞/FCFS]
排队问题的一般步骤: 1. 确定或拟合排队系统顾客到达的时间
间隔分布和服务时间分布。 2. 研究系统状态的概率。系统状态是指
系统中顾客数。状态概率用Pn(t)表示,即在t 时刻系统中有n个顾客的概率,也称瞬态概率。
求解状态概率Pn(t)方法是建立含Pn(t)的微分差分方程,
通过求解微分差分方程得到系统瞬态解,常常使用它的极限称
系统 中顾 客数
=
在队列中等 待服务的顾
客数
+
正被服 务的顾
客数
一般情形,Ls(或Lq)越大,说明服务效率越低。
11
(3) 逗留时间,指一个顾客在系统中的停留时 间,它的期望值记作Ws; (4) 等待时间,指一个顾客在系统中排队等待的 时间,它的期望值记作Wq;
逗留时间 = 等待时间 + 服务时间
相关文档
最新文档