2012年干驿镇中心学校初中分校精选数学试卷1
2012届初中学业考试数学科样卷
2012届初中学业考试数学样卷说明:1、本卷共3个大题,共23个小题,全卷满分120分,考试时间120分钟.2、本卷加设附加题试卷原始值满分为50分,考试时间30分钟,附加题不计入学业水平考试成绩。
是否增设附加题以及附加分数的使用,由各州市决定,学生可自行选择是否参加附加题考试。
3、本卷分试题卷和答题卷,答案要写在答题卷上,不得在试卷上作答,否则不给分.一、选择题(本大题共8小题,每小题3分,共24分.每小题只有一个正确答案,请将正确答案的序号填在题后的括号内) 1.下列各数中,负数是( )A .(12)--B . 11-- C . (1)-D . 21-2.下列各等式成立的是( )A .752a a a =+ B .236()a a -= C .21(1)(1)a a a -=+- D .222()a b a b +=+3. 如图所示的几何体的俯视图是( )A .B .C .D .4.已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形 C .当∠ABC =90°时,它是矩形 D .当AC =BD 时,它是正方形 5.某企业1~5月份利润的变化情况图所示,以下说法与图中反映 的信息相符的是( )A .1~2月份利润的增长快于2~3月份分利润的增长B .1~4月份利润的极差与1~5月份利润的极差不同C .1~5月份利润的的众数是130万元D .1~5月份利润的中位数为120万元6.如图反映的过程是:小强从家去菜地浇水,又去玉米地除草,然后回家.如果菜地和玉米地的距离为a 千米,小强在玉米地除草比在菜地浇水多用的时间为b 分钟,则a ,b 的值分别为( )第3题图A .1.1,8B .0.9,3C .1.1,12D .0.9,87.关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足( ) A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠5 8.如图,平面直角坐标系中,OB 在x 轴上,∠ABO =90º,点A 的坐标为(1,2).将△AOB 绕点A 逆时针旋转90º,点O 的对应点C 恰好落在双曲线y = kx(x >0)上,则k =( )A .2B .3C .4D .6 二、填空题(本大题共6小题,每小题3分,共18分) 9.的整数 10.函数1y x =-中,自变量x 的取值范围是12.因式分解:4162-a = .13.温总理在2012年3月5日政府工作报告中指出:“汇总公共财政预算、政府性基金预算中安排用于教育的支出,以及其他财政性教育经费,2012年国家财政性教育经费支出21984.63亿元,占国内生产总值4%以上。
2012年七年级期中考试数学试卷
▲
的思想方法,使得原题变为可以继续用平方
(3)请用上述方法因式分解 x 4 x 5 ;
2
28. (本题 12 分) 如图,在△ ABC 中, AD BC , AE 平分∠ BAC ,∠ B =70°,∠ C =30°. (1)求∠ BAE 的度数; (2)求∠ DAE 的度数; (3)探究:如果只知道∠ B =∠ C + 40°,也能得出∠ DAE 的度数?你认为可以吗? 若能,请你写出求解过程;若不能,请说明理由. A
a3
C.
a5
D.
a6
2.有下列长度的三条线段能构成三角形的是 A. 1cm,2cm,3cm B. 1cm,2cm,4cm C. 2cm,3cm,4cm D. 2cm,3cm,6cm
3.下列生活中的现象,属于平移的是 A. C. 闹钟的钟摆的运动 DVD 片在光驱中运行 B. 升降电梯往上升
D.秋天的树叶从树上随风飘落
7.下列各式中,能用平方差公式分解因式的是 A. a b
2 2
B. a b
2
2
2
C. b a
2
2
D. a b
2
2
8.若 4a kab 9b 是完全平方式,则常数 k 的值为
2
A. 6
B. 12
C. 6
D. 12
第 6 题图
二.填空题(本大题共 10 题,每题 3 分,共 30 分.不需写出解答过程,请把答案直接填写 在答题卡相应位置上) 9. 计算 y y 的结果为
2012 年七年级期中考试数学试卷
(考试形式:闭卷 满分:150 分 考试时间:120 分钟)
一、选择题(本大题共 8 小题,每小题 3 分,共 24 分.每题的四个选项中,只有一个选项 是符合要求的,请将正确选项前的字母代号填写在答题卡相应位置上) 1.计算 a a 的结果为
2012年中考数学试题及答案(word版)
2011年初中毕业生学业考试试题卷数 学考生注意:1.本卷为数学试题卷,全卷共4页,三大题25小题,满分150分.考试时间为120分钟. 2.一律在《答题卡》相应位置作答,在试题卷上答题视为无效. 3.可以使用科学计算器.一、选择题(以下每小题均有A ,B ,C ,D 四个选项,其中只有一个选项正确,请用2B 铅笔在《答题卡》上填涂正确选项的字母框,每小题3分,共30分) 1. 5-的绝对值是( )A .5B .15C .5-D .0.5 2.如图1,在平行四边形ABCD 中,E 是AB 延长线上的一点,若60A ∠=,则1∠的度数为( ) A .120oB .60oC .45oD .30o3.2008年5月12日,在我国四川省汶川县发生里氏8.0级强烈地震.面对地震灾害,中央和各级政府快速作出反应,为地震灾区提供大量资金用于救助和灾后重建,据统计,截止5月31日,各级政府共投入抗震救灾资金22600000000元人民币,22600000000用科学记数法表示为( ) A .1022.610⨯ B .112.2610⨯ C .102.2610⨯ D .822610⨯4.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是()5.刘翔在今年五月结束的“好运北京”田径测试赛中获得了110m 栏的冠军.赛前他进行了刻苦训练,如果对他10次训练成绩进行统计分析,判断他的成绩是否稳定,则需要知道刘翔这10次成绩的( ) A .众数 B .方差 C .平均数 D .中位数6.如果两个相似三角形的相似比是1:2,那么它们的面积比是( ) A .1:2B .1:4C .D. 2︰1A .B .C .D . (图1)ABECD 17.8名学生在一次数学测试中的成绩为80,82,79,69,74,78,x ,81,这组成绩的平均数是77,则x 的值为( ) A .76 B .75 C .74 D .73 8.二次函数2(1)2y x =-+的最小值是( )A .2-B .2C .1-D .19.对任意实数x ,点2(2)P x x x -,一定不在..( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 10.根据如图2所示的(1),(2),(3)三个图所表示的规律,依次下去第n 个图中平行四边形的个数是( ) A .3n B .3(1)n n + C .6nD .6(1)n n +二、填空题(每小题4分,共20分) 11.分解因式:24x -= .12.如图3,正方形ABCD 的边长为4cm ,则图中阴影部分的面积为 cm 2. 13.符号“f ”表示一种运算,它对一些数的运算结果如下: (1)(1)0f =,(2)1f =,(3)2f =,(4)3f =,…(2)122f ⎛⎫=⎪⎝⎭,133f ⎛⎫= ⎪⎝⎭,144f ⎛⎫= ⎪⎝⎭,155f ⎛⎫= ⎪⎝⎭,… 利用以上规律计算:1(2008)2008f f ⎛⎫-=⎪⎝⎭.14.在一个不透明的盒子中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23, 则n = . 15.如图4,在12×6的网格图中(每个小正方形的边长均为1个单位),⊙A 的半径为1,⊙B 的 半径为2,要使⊙A 与静止的⊙B 相切,那么 ⊙A 由图示位置需向右平移 个单位.(图……(1)(2) (3)(图3)A B三、解答题 16.(本题满分10分)如图5,在平面直角坐标系xoy 中,(15)A -,, (10)B -,,(43)C -,. (1)求出ABC △的面积.(4分) (2)在图5中作出ABC △关于y 轴的对称图形111A B C △.(3分) (3)写出点111A B C ,,的坐标.(3分)17.(本题满分10分)某校八年级(1)班50名学生参加2007年贵阳市数学质量监控考试,全班学生的成绩统计如下表:请根据表中提供的信息解答下列问题:(1)该班学生考试成绩的众数是 .(3分) (2)该班学生考试成绩的中位数是 .(4分)(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.(3分)(图5)18.(本题满分10分)如图6,反映了甲、乙两名自行车运动员在公路上进行训练时的行驶路程s (千米)和行驶时间t (小时)之间的关系,根据所给图象,解答下列问题: (1)写出甲的行驶路程s 和行驶时间(0)t t ≥之间的函数关系式.(3分)(2)在哪一段时间内,甲的行驶速度小于乙的行驶速度;在哪一段时间内,甲的行驶速度大于乙的行驶速度.(4分) (3)从图象中你还能获得什么信息?请写出其中的一条.(3分) 19.(本题满分10分)如图7,某拦河坝截面的原设计方案为:A H ∥BC ,坡角74ABC ∠=,坝顶到坝脚的距离6m AB =.为了提高拦河坝的安全性,现将坡角改为55o ,由此,点A 需向右平移至点D ,请你计算AD 的长(精确到0.1m ).(图7)A BCD H55o (图6)20.(本题满分10分)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述(1)请估计:当很大时,摸到白球的频率将会接近 .(精确到0.1)(3分) (2)假如你摸一次,你摸到白球的概率()P 白球 .(3分) (3)试估算盒子里黑、白两种颜色的球各有多少只?(4分) 21.(本题满分10分) 如图8,在ABCD 中,E ,F 分别为边AB ,CD 的 中点,连接E 、BF 、BD .(1)求证:ADE CBF △≌△.(5分)(2)若A D ⊥BD ,则四边形BFDE 是什么特殊四边形?请证明你的结论.(5分)(图8)A BCDEF22.(本题满分8分)汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2005年盈利1500万元,到2007年盈利2160万元,且从2005年到2007年,每年盈利的年增长率相同. (1)该公司2006年盈利多少万元?(6分)(2)若该公司盈利的年增长率继续保持不变,预计2008年盈利多少万元?(2分) 23.(本题满分10分) 利用图象解一元二次方程230x x +-=时,我们采用的一种 方法是:在平面直角坐标系中画出抛物线2y x =和直线3y x =-+,两图象交点的横坐标就是该方程的解.(1)填空:利用图象解一元二次方程230x x +-=,也可以这样求解:在平面直角坐标系中画出抛物线y = 和直线y x =-,其交点的横坐标就是 该方程的解.(4分) (2)已知函数6y x =-的图象(如图9所示),利用图象求方程630x x-+=的近似解(结果保留两个有效数字).(6分)(图9)24.(本题满分10分)如图10,已知AB 是⊙O 的直径,点C 在⊙O 上,且13AB =, 5BC =. (1)求sin BAC ∠的值.(3分)(2)如果OD AC ⊥,垂足为D ,求AD 的长.(3分) (3)求图中阴影部分的面积(精确到0.1).(4分)(图10)25.(本题满分12分)某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用. 设每个房间每天的定价增加x 元.求:(1)房间每天的入住量y (间)关于x (元)的函数关系式.(3分) (2)该宾馆每天的房间收费z (元)关于x (元)的函数关系式.(3分)(3)该宾馆客房部每天的利润w (元)关于x (元)的函数关系式;当每个房间的定价为每天多少元时,w 有最大值?最大值是多少?(6分)贵阳市2008年初中毕业生学业考试数学参考答案及评分标准一、选择题:二、填空题:11. (x +2)(x -2) 12. 8 13. 1 14. 1 15. 2、4、6、8三、解答题:16. (1)()()平方单位或7.52153521=⨯⨯=∆ABC S ………………4分(2)如图5…………………………………3分(3)A 1(1,5),B 1(1,0),C 1(4,3)…3分17. (1)88分……………………………………3分(2)86分……………………………………4分 (3)不能说张华的成绩处于中游偏上的水平……………………………………1分 因为全班成绩的中位数是86分,83分低 于全班成绩的中位数………………………2分18. (1)s=2t ………………………………………………………………3分(2)在0< t < 1时,甲的行驶速度小于乙的行驶速度;在t > 1时,甲的行驶速度大于乙的行驶速度. ……………………………………………4分(3)只要说法合乎情理即可给分 …………………………………………3分19. 如图7,过点A 作A E ⊥BC 于点E ,过点D 作DF ⊥BC 于点F . ………2分在Rt △ABE 中, 分6.............................................................................65.174cos 6cos cos ≈=∠=∴=∠o ABE AB BE ABBEABE ∵AH ∥BC∴DF = AE ≈ 5.77 …………………………………………………7分 ()分米分中,在 ...10..................................................2.41.65-4.04BE -BF EF AD 9..........................................................04.455tan 77.5tan ,tan Rt ≈===∴≈≈∠=∴=∠∆oDBF DF BF BFDFDBF BDF20. (1)0.6 …………………………………………………………………3分(2)0.6 …………………………………………………………………3分 (3)40×0.6=24,40-24=16 ………………………………………2分21. (1)在平行四边形ABCD 中,∠A =∠C ,AD =CD ,∵E 、F 分别为AB 、CD 的中点∴AE=CF ……………………………………………………2分()分中,和在 ...5......................................................................SAS CFB AED CF AE C A CB AD CFB AED ∆≅∆∴⎪⎩⎪⎨⎧=∠=∠=∆∆ (2)若AD ⊥BD ,则四边形BFDE 是菱形. …………………………1分77.574sin 6sin ,sin ≈=∠=∴=∠o ABE AB AE AB AEABE 分4.....................................................................77.574sin 6sin ≈=∠=∴oABE AB AE (图7)A BCD H 55o.5............................................................ .BFDE BFDE DF,EB EB//DF 3...................................................................... BE AB 21DE ,AB E ..2..........).........90ADB AB Rt ABD BD AD 分是菱形四边形是平行四边形四边形且由题意可知分的中点是分是斜边(或,且是,证明:∴∴===∴=∠∆∆∴⊥ o22. (1)设每年盈利的年增长率为x ,………………………………..1分 根据题意得1500(1﹢x )2 =2160 ………………………..….3分 解得x 1 = 0.2, x 2 = -2.2(不合题意,舍去)…………....4分 ∴1500(1 + x )=1500(1+0.2)=1800 ……………………5分 答:2006年该公司盈利1800万元. …………………………6分(2) 2160(1+0.2)=2592答:预计2008年该公司盈利2592万元. ……………………2分 23. (1)32-x ………………………………………………………4分(2)由图象得出方程的近似解为: 分6......................................................4.44.121≈-≈,xx24. (1)∵AB 是⊙O 的直径,点C 在⊙O 上∴∠ACB = 90o ....................................................1分 ∵AB =13,BC =5 分3 (13)5sin ==∠∴AB BC BAC (2)在Rt △ABC 中,分分......3...................................................................... 6AC 21AD 1................................................125132222==∴--=-=BC AB AC (3)()分平方单位.4....................4.3612521213212≈⨯⨯-⎪⎭⎫⎝⎛⨯=π阴影部分S11 ()()()()()()分元有最大值,且最大值是元时,天当每个房间的定价为每就是说,,此时,有最大值时,当分分分分.....6.............................. .15210410 410200.210 4 (1521021010)11080042101 2.......................................106020106020033.........................120004010110602002 3. (10)601.25222w x w x x x x x x x w x x x x z x y =+=+--=++-=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-+=++-=⎪⎭⎫ ⎝⎛-+=-=。
2012年江西省中学考试数学精彩试题及问题详解(word版)
机密★2012年6月19日江西省2012年初中毕业暨中等学校招生考试数学试题说明:1.本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(共6小题,每小题3分,满分18分)1.-1的绝对值是( )A.2B.0C.﹣1D.+12.等腰三角形的顶角为80°,则它的底角是( )A.20°B.50°C.60°D.80°3.下列运算正确的是( ).A.633a a a =+B.336a a a =÷-C.3332a a a =⋅D.6328)2(a a -=- 4.如图,有a 、b 、c 三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( )A.a 户最长B. b 户最长C. c 户最长D.三户一样长5.如图,如果在阳光下你的身影的方向为北偏东60°方向,那么太阳相对于你的方向是( )A.南偏西60°B.南偏西30°C.北偏东60°D.北偏东30°6.某人驾车从A 地上高整公路前往B 地,中途在服务区休息了一段时间.出发时油箱中存油40升,到B 地后发现油箱中还剩油4升,则从出发后B 地油箱中所剩油y (升)与时间t (小时)之间函数大致图形是( )二、填空题(共8小题,每小题3分,满分24分)7.一个正方体有 个面.8.当4-=x 时,x 36-的值是 .9.如图,AC 经过⊙O 的圆心O ,AB 与⊙O 相切于点B ,若∠A =50°,则∠C = 度.10.已知关于x 的一元二次方程022=-+m x x 有两个相等的实数根,则m 的值是 .11.已知2)(,8)(22=+=-n m n m ,则22n m += .12.已知一次函数b kx y +=(b ≠0)经过(2,-1),(-3,4)两点,则它的图象不经过第 象限.13.如图,已知正五边形ABCDE ,请用无刻度...的直尺,准确画出它的一条对称轴(保留画图痕迹). 14.如图正方形ABCD 与正三角形AEF 的顶点A 重合,将△AEF 绕其顶点A 旋转,在旋转过程中,当BE=DF 时,∠BAE 的大小可以是 .三、解答题(共4小题,每小题6分,共24分)15.化简:aa a a +-÷-221)11(.16.解不等式组:⎩⎨⎧≥--+;13,112x x 并将解集在数轴上表示出来.17.如图,已知两菱形ABCD 、CEFG ,其中点A 、C 、F 在同一直线上,连接BE 、DG.(1)在不添加辅助线时,写出其中的两对全等三角形;(2)证明:BE=DG .18.如图,有大小、质地相同,仅颜色不同的两双拖鞋(分左、右脚)共四只,放置在地板上[可表示为(21A A 、),(21B B 、)].(1)若先从两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,求恰好匹配相同颜色的一双拖鞋的概率;[](2)其从这四只拖鞋中随机地取出两只,利用树形(状)图或表格列举出所有可能出现的结果,并求恰好匹配成相同颜色的一双拖鞋的概率.四、(本大题共2小题,每小题8分,共16分)19.如图,等腰梯形ABCD 放置在平面直角坐标系中,已知A(-2,0)、B (6,0)、D (0,3),反比例函数的图象经过点C.(1)求点C 坐标和反比例函数的解析式;(2)将等腰梯形ABCD 向上平移m 个单位后,使点B 恰好落在曲线上,求m 的值.20.小华写信给老家的爷爷,问候“八一”建军节.折叠长方形信纸,装入标准信封时发现:若将信纸如图①连续两次对折后,沿着信封口边线装入时,宽绰有3.8㎝;若将信纸如图②三等分折叠后,同样方法装入时,宽绰1.4㎝.试求信纸的纸长与信封的口宽.五、(本大题共2小题,每小题9分,共18分)21.我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机选出10名男生,分别测量出他们的身高(单位:㎝),收集并整理如下统计表:根据以上表格信息,解答如下问题:(1)计算这组数据的三个统计量:平均数、中位数和众数;(2)请你选择其中一个统计量作为选定标准,找出这10名男生中具有“普通身高”的是哪几位男生?说明理由;(3)若该年级共有280名男生,按(2)中选定标准,请你估算出该年级男生中具有“普通身高”的人数约有多少名?22.如图1,小红家的阳台上放置了一个晒衣架.如图2是晒衣架的(一端的横截面)侧面示意图,立杆AB、CD相交于点O,B、D两点立于地面,经测量:AB=CD=136㎝,OA=OC=51㎝,OE=OF=34㎝,现将晒衣架完全稳固张开,扣链EF成一条线段,且EF=32㎝.(1)求证:AC∥BD;(2)求扣链EF与立杆AB的夹角∠OEF的度数(精确到0.1°);(3)小红的连衣裙穿在衣架后的总长度达到122㎝,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.(参考数据:sin61.9°≈0.882,cos61.9°≈0.471,tan28.1°≈0.533;可使用科学计算器.)六、(本大题共2小题,每小题10分,共20分)23.如图,已知二次函数34:21+-=x x y L 与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C .(1)写出A 、B 两点的坐标;(2)二次函数k kx kx y L 34:22+-=(k ≠0),顶点为P.①直接写出二次函数2L 与二次函数1L 有关图象的两条相同的性质;②是否存在实数k ,使△ABP 为等边三角形?如存在,请求出k 的值;如不存在,请说明理由; ③若直线k y 8=与抛物线2L 交于E 、F 两点,问线段EF 的长度是否发生变化?如果不会,请求出EF 的长度;如果会,请说明理由.24.已知,纸片⊙O的半径为2,如图1,沿弦AB折叠操作.(1)如图2,当折叠后的AB经过圆心O时,求AB弧的长;(2)如图3,当弦AB=2时,求折叠后AB弧所在圆的圆心O′到弦AB的距离;(3)在图1中,再将纸片⊙O沿弦CD折叠操作.①如图4,当AB∥CD,折叠后的CD弧与AB弧所在圆外切于点P,设点O到弦AB、CD的距离之和为d,求d的值;②如图5,当AB与CD不平行,折叠后的CD弧与AB弧所在圆外切于点P时,设点M为AB的中点,点N为CD的中点.试探究四边形OMPN的形状,并证明你的结论.。
2012年初中毕业生学业及升学考试数学试题及答案-推荐下载
2012 年 初 中 毕 业 生 学 业 考 试
数学试卷
【说明】全卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷 1-2 页,第Ⅱ卷 3-10 页。考试时间 120 分 钟,
满分 150 分。考试结束后,第Ⅱ卷和答题卡按规定装袋上交。
第Ⅰ卷(选择题 共 40 分)
注意事项: 1.答第Ⅰ卷前,考生务必将自己的学校、姓名、准考证号、考试科目填涂在答题卡
C.3
C.x4÷x=x3
C.6,4
C. 3 4
D.-3
D.(x5)2=x7
D.10,6
D. 4 3
此等腰梯形的周长是
A.19
B.20
6.下列几何体中,正视图是等腰三角形的是
A
B
C.21
7.若⊙ O1 、⊙ O2 的半径分别为 4 和 6,圆心距 O1O2 =8,则⊙ O1 与⊙ O2 的位置关系是
AB 边于点 E、D,则△DEG 和△CBG 的面积比是
A. 1∶4
C.1∶3
3x y x 3y
B.1∶2
D.2∶9
1 3
数学试卷第 2 页(共 10 页)
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2012年初中毕业与升学统一考试数学试卷(贵州贵阳市)(详细解析)
2012年初中毕业与升学统一考试数学试卷(贵州贵阳市)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2012?贵阳)下列整数中,小于﹣3的整数是()A.﹣4 B.﹣2 C.2D.3考点:有理数大小比较;绝对值。
专题:推理填空题。
分析:根据正数都大于负数,两个负数比较大小,其绝对值大的反而小,得出2和3都大于﹣3,求出|﹣3|=3,|﹣2|=2,|﹣4|=4,比较即可.解答:解:∵﹣4<﹣3<﹣2<2<3,∴整数﹣4、﹣2、2、3中,小于﹣3的整数是﹣4,故选A.点评:本题考查了绝对值和有理数的大小比较的应用,有理数的大小比较法则是:正数都大于0,正数大于一切负数,负数都小于0,两个负数比较大小,其绝对值大的反而小.2.(3分)(2012?贵阳)在5月份的助残活动中,盲聋哑学校收到社会捐款约110000元,将110000元用科学记数法表示为()A.1.1×103元B.1.1×104元C.1.1×105元D.1.1×106元考点:科学记数法—表示较大的数。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将110000用科学记数法表示为: 1.1×105.故选:C.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2012?贵阳)下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是()A.圆锥B.圆柱C.三棱柱D.球考点:简单几何体的三视图。
分析:根据几何体的三种视图,进行选择即可.解答:解:A、圆锥的主视图、左视图都是等腰三角形,俯视图是圆形,不符合题意,故此选项错误;B、圆柱的主视图、左视图可以都是矩形,俯视图是圆形,不符合题意,故此选项错误;C、三棱柱的主视图、左视图都是矩形,俯视图是三角形,不符合题意,故此选项错误;D、球的三视图都是圆形,故此选项正确.故选:D.点评:本题考查了几何体的三种视图,注意所有的看到的棱都应表现在三视图中.4.(3分)(2012?贵阳)如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.B C∥EF D.∠A=∠EDF考点:全等三角形的判定。
2012年中考模拟考试数学试卷(含答案)
2012年中考模拟试卷数 学 试 题注意事项:1.本试卷共6页.全卷满分150分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(下列各题给出的四个选项中,只有一个是正确的.每小题3分,满分24分) 1. 21-是A .2的相反数B .21 的相反数 C .2-的相反数 D .21-的相反数2.花果山风景区一年接待旅游者约876000人,这个数可以用科学记数法表示为A .0.876×106 B. 876×103 C. 8.76×106 D. 8.76×105 3.下列运算中,计算正确的是A .3x 2+2x 2=5x 4B .(-x 2)3=-x 6C .(2x 2y )2=2x 4y 2D .(x +y 2)2=x 2+y44.体育课上,体育委员记录了6位同学在25秒内连续垫排球的情况,6位同学连续垫球的个数分别为30、27、32、30、28、34,则这组数据的众数和极差分别是 A .33,7B .32,4C .30,4D .30,75.如右图所示的几何体是由一些小立方块搭成的,则这个几何体的左视图是6.已知23x =,那么在数轴上与实数x 对应的点可能是A .1PB .4PC .2P 或3PD . 1P 或4P7.如图,已知□ABCD ,∠A =45°,AD =4,以AD 为直径的半圆O 与BC 相切于点B ,则图中第5题ABDC阴影部分的面积为A .42B .π+2C .4D .228.如图,在55⨯的正方形网格中,以AB 为边画直角△ABC ,使点C 在格点上,满足这样条件的点C 的个数A .6B .7C .8D .9二、填空(每小题3分,共24分)9.写出一个小于0的无理数______▲_______. 10.函数y =-1-x x 中自变量x 的取值范围_______▲________.11.分解因式:2441a a -+= _______▲______.12.已知等腰梯形的面积为24cm 2,中位线长为6cm ,则等腰梯形的高为____▲_____cm . 13.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=35°,那么∠2是 ▲ °.14. 已知实数m 是关于x 的方程2x 2-3x -1=0的一根,则代数式4m 2-6m -2值为___▲__. 15.如图,△ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC 绕点B 顺时针旋转到△A ’BC ’的位置,则点A 经过的路径长为 ▲ .(结果保留π).16.某中学在校内安放了几个圆柱形饮水桶的木制支架(如图①),若不计木条的厚度,其俯视图如图②所示,已知AD 垂直平分BC ,AD=BC=40cm ,则圆柱形饮水桶的底面半径的最大值是 ▲ cm .第8题第13题第16题CA第7题三、解答题:(本大题共有12小题,共102分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分6分)计算:121(2)3-⎛⎫-- ⎪⎝⎭-0(2-18.(本题满分6分)先化简211()111a a a a -÷-+-,再选取一个使原式有意义的a 的值代入求值.19.(本题满分6分)解方程:2250x x +-= 20.(本题满分6分)如图,四边形ABCD 是正方形,点E 在BC 上,DF ⊥AE ,垂足为F ,请你在AE 上确定一点G ,使△ABG ≌△DAF ,请你写出两种确定点G 的方案,并就其中一种方案的具体作法证明△ABG ≌△DAF .方案一:作法: ; 方案二:(1)作法: .(2) 证明:21.(本题满分6分)某手机专营店代理销售A 、B 两种型号手机.手机的进价、售价如下表:用36000元购进 A 、B 两种型号的手机,全部售完后获利6300元,求购进A 、B 两种 型号手机的数量。
2012年期中考八年级数学试卷
2012年秋季郊尾、枫江、蔡襄教研小片区八年级期中考数学试卷(时间:120分钟,满分:150分)8个小题,每小题只有一个正确选项,每小题32分).)()22- B、82与- C、221-与 D、22--与).3,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:AB=∠FAC,确结论的个数是().B、2个C、3个D、4个A(a,3)和点B(4,b)关于y轴对称,则a+b的值是().、-1 C、7 D、-7有意义,则a的值是( ).a≥0 B.a≤0 C.a=0 D.a≠0,∠BAC=130°,若MP和QN分别垂直平分AB和AC,等于 ( ) .° B、75° C、80° D、105°0.163π71中无理数有().B、2个C、3个D、4个,在△ABC中,∠C=90°,∠B=15°,AB的垂直平分线于D,交AB于E,•DB=12cm,则AC=().A.4cm B.5m C.6cm D.7cm二、填空题(本大题共8小题,每小题填对得4分,共32分).9、9的平方根是 .10、小明的墙上挂着一个电子表,对面的墙上挂着一面镜子,小明看到镜子中的表的时间如右图所示,那么实际的时间是 .11、若x2=0,则3x=_____ ___.12、若等腰三角形的一边长等于5,另一边长等于3,则它的周长等于 .13、若(a-1)²+︱b-9︱=0,则a+b为 .14、如图9,在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=6cm,则D到AB的距离是 .15、已知∠AOB=30°,P在OA上且OP=3cm,点P关于直线OB的对称点是Q,那么PQ=________.16、等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形的一个底角的度数为 .三、解答题:(本大题共8小题,共86分.解答要写出必要的文字说明、证明过程或演算步骤).17、求下列各式的值:(每小题各8分,共计16分)(1)9+25+327-(22|4|--18、(8分)解方程.04832=-x___MQAPNCB(第8题图)19、(8分)如图,在平面直角坐标系中,A (-1,5)、B (-1,0)、C (-4,3). (1)在图中作出△ABC 关于y 轴的对称图形△A 1B 1C 1.(2)写出点A 1、B 1、C 1的坐标.20、(10分)如右图所示,已知,AB//CD ,E 是BC 的中点, 直线AE 与DC 的延长线交于点F. 求证:AB=CF. 21、(10分)如图,△ABC 中,D 、E 分别是AC 、ABBD 与CE 交于点O ,∠EBO=∠DCO 且BE=CD. 求证:△ABC 是等腰三角形.22、(10分)如图,在四边形ABCD 中, 点E 是BC 的中点,点F 是CD 的中点, 且AE ⊥BC ,AF ⊥CD 。
2012年江西省中考数学试题和答案(word版)
江西省2012年初中毕业暨中等学校招生考试数学试题说明:1.本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(共6小题,每小题3分,满分18分)1.-1的绝对值是( )A.2B.0C.﹣1D.+12.等腰三角形的顶角为80°,则它的底角是( )A.20°B.50°C.60°D.80°3.下列运算正确的是( ).A.633a a a =+B.336a a a =÷-C.3332a a a =⋅D.6328)2(a a -=- 4.如图,有a 、b 、c 三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( )A.a 户最长B. b 户最长C. c 户最长D.三户一样长5.如图,如果在阳光下你的身影的方向为北偏东60°方向,那么太阳相对于你的方向是( )A.南偏西60°B.南偏西30°C.北偏东60°D.北偏东30°6.某人驾车从A 地上高整公路前往B 地,中途在服务区休息了一段时间.出发时油箱中存油40升,到B 地后发现油箱中还剩油4升,则从出发后B 地油箱中所剩油y (升)与时间t (小时)之间函数大致图形是( )二、填空题(共8小题,每小题3分,满分24分)7.一个正方体有 个面.8.当4-=x 时,x 36-的值是 .9.如图,AC 经过⊙O 的圆心O ,AB 与⊙O 相切于点B ,若∠A =50°,则∠C = 度.10.已知关于x 的一元二次方程022=-+m x x 有两个相等的实数根,则m 的值是 .11.已知2)(,8)(22=+=-n m n m ,则22n m += .12.已知一次函数b kx y +=(b ≠0)经过(2,-1),(-3,4)两点,则它的图象不经过第 象限.13.如图,已知正五边形ABCDE ,请用无刻度...的直尺,准确画出它的一条对称轴(保留画图痕迹). 14.如图正方形ABCD 与正三角形AEF 的顶点A 重合,将△AEF 绕其顶点A 旋转,在旋转过程中,当BE=DF 时,∠BAE 的大小可以是 .三、解答题(共4小题,每小题6分,共24分)15.化简:aa a a +-÷-221)11(.16.解不等式组:⎩⎨⎧≥--+;13,112x x 并将解集在数轴上表示出来.17.如图,已知两菱形ABCD 、CEFG ,其中点A 、C 、F 在同一直线上,连接BE 、DG.(1)在不添加辅助线时,写出其中的两对全等三角形;(2)证明:BE=DG .18.如图,有大小、质地相同,仅颜色不同的两双拖鞋(分左、右脚)共四只,放置在地板上[可表示为(21A A 、),(21B B 、)].(1)若先从两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,求恰好匹配相同颜色的一双拖鞋的概率;[](2)其从这四只拖鞋中随机地取出两只,利用树形(状)图或表格列举出所有可能出现的结果,并求恰好匹配成相同颜色的一双拖鞋的概率.四、(本大题共2小题,每小题8分,共16分)19.如图,等腰梯形ABCD 放置在平面直角坐标系中,已知A(-2,0)、B (6,0)、D (0,3),反比例函数的图象经过点C.(1)求点C 坐标和反比例函数的解析式;(2)将等腰梯形ABCD 向上平移m 个单位后,使点B 恰好落在曲线上,求m 的值.20.小华写信给老家的爷爷,问候“八一”建军节.折叠长方形信纸,装入标准信封时发现:若将信纸如图①连续两次对折后,沿着信封口边线装入时,宽绰有3.8㎝;若将信纸如图②三等分折叠后,同样方法装入时,宽绰1.4㎝.试求信纸的纸长与信封的口宽.五、(本大题共2小题,每小题9分,共18分)21.我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机选出10名男生,分别测量出他们的身高(单位:㎝),收集并整理如下统计表:根据以上表格信息,解答如下问题:(1)计算这组数据的三个统计量:平均数、中位数和众数;(2)请你选择其中一个统计量作为选定标准,找出这10名男生中具有“普通身高”的是哪几位男生?说明理由;(3)若该年级共有280名男生,按(2)中选定标准,请你估算出该年级男生中具有“普通身高”的人数约有多少名?22.如图1,小红家的阳台上放置了一个晒衣架.如图2是晒衣架的(一端的横截面)侧面示意图,立杆AB 、CD 相交于点O ,B 、D 两点立于地面,经测量:AB=CD =136㎝,OA=OC =51㎝,OE=OF =34㎝,现将晒衣架完全稳固张开,扣链EF 成一条线段,且EF =32㎝.(1)求证:AC ∥BD ;(2)求扣链EF 与立杆AB 的夹角∠OEF 的度数(精确到0.1°);(3)小红的连衣裙穿在衣架后的总长度达到122㎝,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.(参考数据:sin61.9°≈0.882,cos61.9°≈0.471,tan28.1°≈0.533;可使用科学计算器.)六、(本大题共2小题,每小题10分,共20分)23.如图,已知二次函数34:21+-=x x y L 与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C .(1)写出A 、B 两点的坐标;(2)二次函数k kx kx y L 34:22+-=(k ≠0),顶点为P.①直接写出二次函数2L 与二次函数1L 有关图象的两条相同的性质;②是否存在实数k ,使△ABP 为等边三角形?如存在,请求出k 的值;如不存在,请说明理由; ③若直线k y 8=与抛物线2L 交于E 、F 两点,问线段EF 的长度是否发生变化?如果不会,请求出EF 的长度;如果会,请说明理由.24.已知,纸片⊙O的半径为2,如图1,沿弦AB折叠操作.(1)如图2,当折叠后的AB经过圆心O时,求AB弧的长;(2)如图3,当弦AB=2时,求折叠后AB弧所在圆的圆心O′到弦AB的距离;(3)在图1中,再将纸片⊙O沿弦CD折叠操作.①如图4,当AB∥CD,折叠后的CD弧与AB弧所在圆外切于点P,设点O到弦AB、CD的距离之和为d,求d的值;②如图5,当AB与CD不平行,折叠后的CD弧与AB弧所在圆外切于点P时,设点M为AB的中点,点N为CD的中点.试探究四边形OMPN的形状,并证明你的结论.。
2012年初中毕业生学业考试模拟试卷及参考答案-推荐下载
三角形的周长是偶数时, 那么 x 的值可以是 ____________ .
16.如图, n 1个上底、两腰长皆为 1,下底长为 2 的等腰梯形的下底均在同一直线上,
设四边形 P1M1N1N2 面积为 S1,四边形 P2M2N2N3 的面积为 S2,……,四边形 PnMnNnNn+1 的
面积记为 Sn ,通过计算可得 S1 _____
(A) 一个都没有 (B) 只有②
6.下列命题中是真命题的是 ( )
(A) 有一个角是 60 的三角形是正三角形
(B) 两条对应边成比例的两个三角形相似 (C) 有一条边两个角相等的两个三角形全等
D. 1
3
(B) 抛一枚硬币,正面朝上 (D) 经过某一有交通信号灯的路口恰好遇到
(C) 只有③
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2012年期中考八年级数学试卷
2012年秋季八年级期中考数学科试卷第1面(共2面)学 中学题班姓名号_- ;座 2012年秋季郊尾、枫江、蔡襄教研小片区A. 4cm B . 5m C . 6cm D . 7cm答] 号: 位: 座; 要; 不; ;刚 .............绽.......... …:豹:号考考准 名姓 级班密-- ------- 校学八年级期中考数学试卷(时间:120分钟,满分:150分)、选择题(本大题共8个小题,每小题只有一个正确选项,每小题二、填空题(本大题共8小题,每小题填对得4分,共32分).9、 9的平方根是.10、 小明的墙上挂着一个电子表,对面的墙上挂着一面镜子,小明看到镜子中的4分,共32分).1、下列各组数中,互为相反数的一组是( )A 、2 与 J (—2$B 、-2与后C 、1 与-222 .下列平面图形中,不是轴对称图形的是( ).B表的时间如右图所示,那么实际的时间是 11、若 x 2=0,贝U 3匸= _________ .记HI12、若等腰三角形的一边长等于 5,另一边长等于3,则它的周长等于 .13、若(a-1 )2 + | b-9 | =0,则 a+b 为 . (第2题图)C 14、 如图 9,在厶 ABC 中, / C=90o , AD 平分/ BACBC=10cr pBD=6cm 则D 到AB 的距离是15、 已知/ AOB=30 , P 在 OA 上且 OP=3cm点P 关于直线OB 的对称点是Q,那么PQ= _________16、等腰三角形一腰上的高与另一腰的夹角为 40°,则这个等腰三角形的一个底 3、如图 3,A ABd A AEF AB=AE / B=Z E,则对于结论:①AC=AF ②/ FAB W EAB ③ EF=BC ④/E 一 AB=/ FAC 其中正•确结论的个数是( )• A 1个 B 、2个 C 、3个 D 、4个D角的度数为三、解答题:(本大题共8小题,共86分.解答要写出必要的文字说4、已知点A (a ,3)和点B (4,b )关于y 轴对称,则a+b 的值是( A 、1 B 、-1 C 、7 D 、-75、若化有意义,则a 的值是( ). A . a >0 B6、如右图,/ BAC=130 ,若MP 和QN 分别垂直平分 则/ PAQ 等于() A 、50° B 、75° C 、80° D 、105°7、在 0.16、 <3、一、3「8、 3 A 、1 个 B 、2 个 C1丄中无理数有( 7、3个 D)•明、证明过程或演算步骤)17、求下列各式的值:(每小题各8分,共计16分)(1). 9 + . 52 + —27(2) , (-3)2 -‘-64-( , 3)2- |-4|a 工A18、(8 分)解方程.3x 2 -48= 0). 、4个 8、如图,在厶ABC 中,/ C=90,/ B=150,AB 的垂直平分线 交 BC 于 D,交 AB 于 E ,?DB=12cm 则 AC=( ).(第8题图)2012年秋季八年级期中考数学科试卷第 2面(共2面)19、(8分)如图,在平面直角坐标系中, A (- 1, 5)、B (- 1, 0)、C (- 4, (1)在图中作出△ ABC 关于y 轴的对称图形△y丰A i BC .(2) 写出点A 、B 、G 的坐标.23、(12分)如图,在等边 △ ABC 中,点D , E 分别在边BC , AB 上,24、( 12 分),如图,在平面直角坐标系中,△AOB 为等腰直角三角形, A (4, 4)20、(10分)如右图所示,已知,AB//CD , E 是BC 的中点, 直线AE 与DC 的延长线交于点F.求证:AB=CF.(2)若C 为x 轴正半轴上一动点,以 AC 为直角边作等腰直角△ ACD , /ACD=90。
2012年中考数学样题参考答案.doc
2012年中考数学样题参考答案选择题(每题3分,共30分)一、BADCD BADBA二、填空题(每题3分,共18分)11. 15; 12. 6; 13. (-4,3) 14.38; 15.53; 16. 4n ;三、解答题(每小题8分,共16分)17..解:原式21=····································································· 6分3=··················································································· 8分18. 解:原式=213(3)32(2)(2)a a a a a a a +---÷-++- ······················································ 2分 =213(2)(2)32(3)a a a a a a a +-+---+-· ··········································································· 3分 1233a a a a +-=--- ······························································································ 4分 =33a - ········································································································ 6分 a 取值时只要不取2,2-,3就可以. ······························································· 7分求值正确.原式 ····························································································· 9分四、解答题(每小题9分,共18分)19.(1)200 ······································································································· 2分 (2)补充图:扇形图中补充的 跳绳25% ························································· 3分 其它20% ······································································································ 4分 条形图中补充的高为50 ···················································································· 5分(3)54 ········································································································ 7分 (4)解:1860×40%=744(人)答:最喜欢“球类”活动的学生约有744人. ······················································ 9分 20.解:(1)根据题意可列表或树状图如下:第一次第二次12341 —— (1,2) (1,3) (1,4)2 (2,1) —— (2,3) (2,4)3 (3,1) (3,2) —— (3,4) 4(4,1)(4,2)(4,3)——·············································································· 5分···························································································· 5分从表或树状图可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种, ∴P (和为奇数)23= ···················································································· 7分 (2)不公平.∵小明先挑选的概率是P (和为奇数)23=,小亮先挑选的概率是P (和为偶数)13=,∵2133≠,∴不公平. ····················································································· 9分五、解答证明题(每小题8分,共16分) 21.(1)证明:∵AD 平分∠BAC∴∠BAD=21∠BAC . (1,2) (1,3) (1,4) 2341 (1,1) (2,3) (2,4) 1342 (3,1) (3,2) (3,4) 1243 (4,1) (4,2) (4,3)1234 第一次摸球第二次摸球∵AE 平分∠BAF . ∴∠BAE=21∠BAF . 2分 ∵∠BAC+∠BAF=180°∴∠BAD+∠BAE=21 (∠BAC+∠BAF )= 21×180°=90° ∴∠DAE=90°.即DA ⊥AE . 4分 (2)AB=DE 5分 理由是:∵AB=AC ,AD 平分∠BAC . ∴AD ⊥BC ,即∠ADB=90°. ∵BE ⊥AE .∴∠AEB=90° 又∵∠DAE=90°(已证),∴四边形AEBD 是矩形.故AB=DE . 8分22、解:(1)不同.理由如下:往、返距离相等,去时用了2小时,而返回时用了2.5小时,∴往、返速度不同. ··················································································· 2分(2)设返程中y 与x 之间的表达式为y kx b =+,则120 2.505.k b k b =+⎧⎨=+⎩,解之,得48240.k b =-⎧⎨=⎩,···················································································· 5分∴48240y x =-+.(2.55x x ≤≤)(评卷时,自变量的取值范围不作要求) ······ 6分 (3)当4x =时,汽车在返程中,48424048y ∴=-⨯+=.∴这辆汽车从甲地出发4h 时与甲地的距离为48km . ········································· 8分六、解答证明题(23小题10分,24小题12分,共22分) 23、证明:(1) 连结AC ,如图∵C 是弧BD 的中点∴∠BDC =∠DBC 1分 又∠BDC =∠BAC在三角形ABC 中,∠ACB =90°,CE ⊥AB ∴ ∠BCE=∠BAC∠BCE =∠DBC 3分 ∴ CF =BF 4分因此,CF =BF . (2)解法一:作CG ⊥AD 于点G , ∵C 是弧BD 的中点∴ ∠CAG =∠BAC , 即AC 是∠BAD 的角平分线.·············· 5分 ∴ CE =CG ,AE =AG 6分 在Rt △BCE 与Rt △DCG 中,CE =CG , CB =CD ∴Rt △BCE ≌Rt △DCG∴BE =DG 7分 ∴AE =AB -BE =AG =AD +DG 即 6-BE =2+DG∴2BE =4,即 BE =2 8分又 △BCE ∽△BAC∴ 212BC BEAB ==· 9分 32±=BC (舍去负值)∴32=BC 10分(2)解法二:∵AB 是⊙O 的直径,CE ⊥AB∴∠BEF=︒=∠90ADB , 5分 在Rt ADB △与Rt FEB △中,∵FBE ABD ∠=∠ ∴ADB △∽FEB △,则BFABEF AD =即BFEF 62=, ∴EF BF 3= 6分 又∵CF BF =, ∴EF CF 3= 利用勾股定理得:EF EF BF BE 2222=-= 7分又∵△EBC ∽△ECA 则CEBE AE CE =,即则BE AE CE ⋅=28分 ∴BE BE EF CF ⋅-=+)6()(2即EF EF EF EF 22)226()3(2⋅-=+∴22=EF 9分 ∴3222=+=CE BE BC 10分24.解:(1)解方程01682=+-x x ,得421==x x由实数m 是方程01682=+-x x 的一个实数根,得m=4 ∴点A ,C 的坐标分别是A (4,0)和C (0,4). 1分将A (4,0)和C (0,4)的坐标分别代人c bx x y ++-=221 得⎩⎨⎧==⇒⎩⎨⎧==++-414048c b c c b ∴抛物线的解析式为4212++-=x x y 3分 (2)由4212++-=x x y ,令y=0,得04212=++-x x ,解此方程得2,421-==x x∴点B 的坐标为B (2,0),故AB=6, S △ABC =21·AB ·CO=12 4分设AD=k (0≤k ≤6), ∵ED ∥BC ∴△ADE ∽△ABC ,从而36)6()(222k k AB AD S S ABC ADE ===∆∆ ∴32k S ADE=∆ (5分) 同理可知,3)6(2-=∆k S BDF6分∴S 四边形DECF =S △ABC -S △ADE -S △BDF=6)3(3243222+--=+-k k k (7分) 当且仅当k =3时,S 四边形DECF 有最大值为6,此时D (1,0) 8分 (3)存在满足条件的点N ,使得∠NOB=∠AMO ,设点N (y x ,) ∵若M 是⊙G 的优弧ACO 上的一个动点∴∠NOB=∠AMO=∠ACO=45° 9分 ①当点N 在x 轴上方时,tan45°=x y xy-=⇒=-1 又∵4212++-=x x y ∴4212++-x x 3220842±=⇒=--⇒-=x x x x ∵点N 在这个抛物线位于y 轴左侧的图象上,从而有N (232,322--) 10分 ②当点N 在x 轴下方时,tan45°=x y xy=⇒=--1 又∵4212++-=x x y ∴22842122±=⇒=⇒=++-x x x x x ∵点N 在这个抛物线位于y 轴左侧的图象上,从而有N (22,22--) 12分。
2012年中考数学试题(含答案)
2012年中考数学试题一、选择题:1.若x 5=,则x 的值是【 】A .5B .-5C .5±D .51 2.下列运算正确的是【 】A .5510a a a +=B .339a a a ⋅=C .()3393a 9a = D .1239a a a ÷=3.函数y x 2=-中自变量x 的取值范围是【 】A .x 2>B .x 2≥C .x 2≤D .x 2<4.某种微粒子,测得它的质量为0.00006746克,这个质量用科学记数法表示(保留三个有效数字应为【 】 A .56.7510⨯- 克 B .56.7410-⨯ 克 C .66.7410-⨯ 克 D . 66.7510-⨯克 5.若关于x 的一元二次方程2x 2x m 0-+=有两个不相等的实数根,则m 的取值范围是【 】 A .m 1< B .m 1<- C .m 1> D . m 1>- 6.下列命题中,真命题是【 】A .有两条对角线相等的四边形是等腰梯形B .两条对角线互相垂直且平分的四边形是正方形C .等边三角形既是轴对称图形又是中心对称图形D .有一个角是60°的等腰三角形是等边三角形7.如图,在△ABC 中,∠ACB =90°,∠A =20°,若将△ABC 沿CD 折叠,使B 点落在AC 边上的E 处,则∠ADE 的度数是【 】A .30°B .40°C .50°D .55°8.一组数据为2、3、5、7、3、4,对于这组数据,下列说法错误的是【 】A .平均数是4B .极差是5C .众数是3D . 中位数是6 9.若m 、n 是一元二次方程2x 5x 20--=的两个实数根,则m n mn +-的值是【 】 A .-7 B .7 C .3 D . -310.圆锥底面圆的半径为1㎝,母线长为6㎝,则圆锥侧面展开图的圆心角是【 】 A .30° B .60° C .90° D . 120°第Ⅱ卷(非选择题)二、填空题:11.因式分解:2ax 2ax a -+= ▲ .12.如图,□ABCD 中,AB =5,AD =3,AE 平分∠DAB 交BC 的延长线于F 点,则CF = ▲ .13.已知:P A 、PB 与⊙O 相切于A 点、B 点,OA =1,P A =3,则图中阴影部分的面积是 ▲ (结果保留π).14.某学校有80名学生,参加音乐、美术、体育三个课外小组(每人只参加一项),这80人中若有40%的人参加优育小组,35%的人参加美术小组,则参加音乐小组的有 ▲ 人. 15.直线y (3a)x b 2=-+-在直角坐标系中的图象如图所示, 化简:2b a a 6a 92b ---+--= ▲ .16.在△ABC 中,AB =5,AC =3,AD 是BC 边上的中线,则AD 的取值范围是 ▲ .第14题 第15题 第17题 三、计算题:本大题共2个小题,每小题6分,共12分.17.计算:)2014cos301212-⎛⎫+-⎪⎝⎭18.解方程:11x 3x 22x -+=-- 解不等式组()2x 13x 22x 4⎧--⎪⎨-⎪⎩≥<19.如图,图中的小方格都是边长为1的正方形,△ABC的顶点坐标分别为A(-3 ,0),B(-1 ,-2),C(-2 ,2).(1)请在图中画出△ABC绕B点顺时针旋转90°后的图形;(2)请直接写出以A、B、C为顶点的平行四边形的第四个顶点D的坐标.20.如图,在与河对岸平行的南岸边有A、B、D三点,A、B、D三点在同一直线上,在A点处测得河对岸C点在北偏东60°方向;从A点沿河边前进200米到达B点,这时测得C点在北偏东30°方向,求河宽CD.21.有质地均匀的A.B.C.D四张卡片,上面对应的图形分别是圆、正方形、正三角形、平行四边形,将这四张卡片放入不透明的盒子中摇匀,从中随机抽出一张(不放回),再随机抽出第二张.(1)如果要求抽出的两张卡片上的图形,既有圆又有三角形,请你用列表或画树状图的方法,求出出现这种情况的概率;(2)因为四张卡片上有两张上的图形,既是中心对称图形,又是轴对称图形,所以小明和小东约定做一个游戏,规则是:如果抽出的两个图形,既是中心对称图形又是轴对称图形,则小明赢;否则,小东赢。
2012初中数学综合试题答案
2012年中考适应性考试数学试题参考答案及评分标准一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案 D C B A D D C D B C二、填空题(每小题3分,共18分)11. 3 12. 体育委员买了2个篮球,3个足球剩余的钱。
13. 13±14.k<25124k≠且 15. 12 16. 4三、解答题(17小题5分,18、19、20小题各6分,共23分)17.解:原式=2-433232⨯++………………………………3分=2-23323++…………………………4分 =5 ……………………………………5分18.解:()() 201512112 23xx x->⎧⎪⎨+-+⎪⎩≥由(1)可得,x<2………………………………………………2分由(2)可得,x≥-1. …………………………………………4分∴原不等式组的解集为-1≤x<2. ………………………………5分-1 0 2 ………………6分19.证明:连结AC、DB ………………1分∠A和∠D都是 CB所对的圆周角,∴∠A=∠D 同理∠C=∠B ………………3分∴ PAC∽ PDB ……………………4分∴PA PCPD PB=………………………………5分即PA PB=PC PD ……………………6分•PB ACDO20.解:(1)将P (-2,1)代入xmy =2中,得m = -2 …………1分 ∴反比例函数的解析式为x y 22-= ………………2分将Q (1,n )代入解析式xy 22-=中,得n = -2 ………… 3分 将P (-2,1),Q (1,-2)代入y 1=ax +b 中 得⎩⎨⎧+=-+-=ba ba 221 解得 ⎩⎨⎧-=-=11b a ∴一次函数的解析式为:y 1=-x -1 ………………5分(2)由图象可知:当2-<x 或10<<x 时y 1>y 2 ………………………… 6分四、实践应用题(21小题6分,22、23、24题各8分)21.(1)解:240+60=300(人) 240⨯3%=7.2即本次共调查了300名村民,被调查的村民中有8人参加合作医疗并获得返款. ………………………………………………2分 (2) 240300⨯10000=8000(人) ……………………………3分 (3)设平均增长率为x ,则有80002(1)x +=9600 …………5分 解得x ≈0.0954 或x ≈-2.0954(舍去)故平均每年增长率为9.54%. ………………………………6分 22.解:在Rt △ABC 中 tan30°=AB CB (1)分AB =30tan CB =103≈17.32(米)……………………………………3分在Rt △CDB 中 tan18°=DB CB…………………………4分DB =81tan CB =325.010≈30.77(米)………………………………… 6分 DA =DB -AB ≈30.77-17.32=13.45(米)4+DA =17.45>15(米)…………………………………………………………7分 ∴离原坡脚15米的花坛应拆除 …………………………………………8分 23.解:设抢修车的速度为x 千米/时,则吉普车的速度为1.5x 千米/时.…1分 由题意得,1515151.560xx-=. ………………………………………………4分解得,20x =. ……………………………………………………………6分经检验,20x =是原方程的解,并且20, 1.530x x ==都符合题意. ……7分 答:抢修车的的速度为20千米/时,吉普车的速度为30千米/时.……8分 24.解:(1)他们在景区游玩了3个小时 ……………………………3分 (2) 由图可得当0≤t <1时 y=30t …………………………………………………4分当1≤t <2 时 y=30+20(t-1)即 y=20t+10 …………………………6分当2≤t ≤4 时y=50+10(t-2)即 y=10t+30 ………………………… 8分 五、推理论证题(本题9分)25.(1)证明:如25答图1连结OB . …………………………1分 ∵△ABC 和△BDE 都是等边三角形,∴∠ABC=∠EBD=60°. ∴∠CBE=60°,∠OBC=30°. ∴∠OBE=90°. ∴BE 是⊙O 的切线. ………………………………………3分(2)证明:如25答图1,连结MB . ……………………4分则∠CMB=180°-∠A=120°.∵∠CBF=60°+60°=120°,∴∠CMB=∠CBF .又∵∠BCM=∠FCB ,∴△CMB ∽△CBF .∴CFCB CBCM =即CF CM CB ⋅=2. ……………………………………5分又∵AC=CB ,∴CF CM AC ⋅=2. …………………………………6分(3)解:如25答图2,作DG//BE ,GH//DE . ………………7分∵AC∥BE∥DG ,∴EGCE BDAB =.∵BC∥DE∥HG ,∴EGCE DH BD =.∴DHBDBD AB =. …………………………………8分 ∴22⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛DH BD BD AB .又∵221⎪⎭⎫ ⎝⎛=BD AB S S ,232⎪⎭⎫ ⎝⎛=DH BD S S , ∴3221S S S S =,即2213.s s s =. …………………………9分25答图125答图2六、拓展探索题(本题10分)26.解:(1)如图1所示,连接AC ,则AC =5.在Rt△AOC 中,AC =5 ,OA =1 ,则OC =2 ∴点C 的坐标为(0,2). …………………1分 设切线BC 的解析式为b kx y +=,它过点C (0,2),B (−4,0),则有⎩⎨⎧=+-=042b k b ,解之得⎪⎩⎪⎨⎧==221b k . ∴221+=x y . ………………………3分 (2)如图1所示,设点G 坐标为(x ,y ),过点G 作GH ⊥x 轴,垂足为H 点.则OH =x , GH =y =21x + 2. …………………………………………4分 连接AP , AG ,则∠AGC =21×120°=60°.在Rt△ACG 中 ,∠AGC =60°,AC =5∴AG =3152. ……………………………………………………5分 在Rt△AGH 中, 2AH +2GH =2AG ,且AH =OH -OA =x -1 ,GH =21x + 2. ∴2(1)x -+21(2)2x +=2)3152(.解之得,1x =332,2x = −332(舍去). ∴点G 的坐标为(332,33+ 2). ………………………………6分 (3)在移动过程中,存在点A ,使△AEF 为直角三角形.AE =AF ,∴∠AEF =∠AFE ≠90°.∴要使△AEF 为直角三角形,只能是∠EAF =90°. ………………7分 如图2所示,当圆心A 在点B 的右侧时,过点A 作AM ⊥BC ,垂足为点M . 在Rt△AEF 中,AE =AF =R =5, 则EF =10,O A CBD xyGPH图1AM =21EF =2110.在Rt△OBC 中,OC =2 , OB =4,则BC =25∠BOC= ∠BMA =90°,∠OBC =∠MBA ,∴△BOC ∽△BMA .∴OC MA =BCBA.∴AB =225. ∴OA =OB -AB =4-225. ∴点A 的坐标为(-4+225,0). ……………………………8分 当圆心A 在点B 的左侧时,设圆心为A ′,过点A ′作A′M ′⊥BC 于点M ′,可得△A ′M ′B ≌△AMB ,得A ′B =AB =225.∴OA ′=OB + A ′B =4 +225.∴点A ′的坐标为(-4-225,0)综上所述,点A 的坐标为(-4+225,0)或(-4-225,0). ………………………………………………………………10分。
2012.4中考
2012年初中毕业升学试题一、选择题(共12小题,每小题2分,满分24分)1.-8的倒数的相反数是 ( ) A .8 B .-8C .18D .18-2.中央电视台“情系玉树,大爱无疆”赈灾晚会共收到社会各界为玉树捐款2 175 000 000元,用科学记数法表示捐款数应为 ( )A .102.17510⨯元 B. 92.17510⨯元 C. 821.7510⨯元 D. 7217.510⨯元 3. 抛物线3)2(2+-=x y 的顶点坐标是 ( )A .(2,3)B .(–2,3)C .(2,–3)D .(–2,–3)4.下列运算中,结果正确的是 ( ) A.224325x x x += B. ()222x y x y +=+ C.()325xx = D. 336x x x ⋅=5.如图,将置于平面直角坐标系中的三角板AOB 绕O 点顺时针旋转90°得到△A ′OB ′. 已知∠AOB =30°,∠B =90°,AB =1,则点B ′的坐标为 ( )A .(23,23) B .(23,23) C .(23,21) D .(21,23)6.如图,在直角梯形ABCD 中,AD ∥BC ,点E 是边CD 的中点,若AB =AD +BC ,BE =25,则梯形ABCD 的面积为 ( )A .425 B . 25 C .225 D . 825 7. 在同一直角坐标系中,函数y=kx-k 与(0)ky k x=≠的图像大致是 ( )8.将一张长与宽的比为2∶1的长方形纸片按如图①、②所示的方式对折,然后沿图③中的虚线裁剪,得到图④,最后将图④的纸片再展开铺平,所得到的图案是 ( )图① 图② 图③ 图④(A ) (B ) (C ) (D )9.清明节前,某班分成甲、乙两组去距离学校4km 的烈士陵园扫墓.甲组步行,乙组骑自行车,他们同时从学校出发,结果乙组比甲组早20min 到达目的地.已知骑自行车的速度是步行速度的2倍,设步行的速度为x km /h ,则x 满足的方程为 ( )A .x 4-x 24=20 B .x 24-x 4=20 C .x 4-x 24=31 D .x 24-x 4=31 10.如图,以AB 为直径的半圆O 上有两点D 、E ,ED 与BA 的延长线交于点C ,且有DC=OE , 若∠C=20°,则∠EOB 的度数是 ( ) (A )40° (B )50° (C )60° (D )80°11.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s (km),甲出发后的时间为t (h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是 ( ) A .甲的速度是4km/h B .乙的速度是10km/h C .乙比甲晚出发1h D .甲比乙晚到B 地3h12.周末,身高都为1.6米的小芳、小丽来到溪江公园,准备用她们所学的知识测算南塔的高度.如图,小芳站在A 处测得她看塔顶的仰角α为45°,小丽站在B 处测得她看塔顶的仰角β为30°.她们又测出A 、B 两点的距离为30米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年干驿镇中心学校初中分校精选数学试卷1
一:填空与选择
1:如图,直角梯形ABCD 中,∠A=90°,∠B=45°,底边AB=5,高AD=3,点E 由B 沿折线BCD 向点D 移动,EM ⊥AB 于M ,EN ⊥AD 于N ,设BM=x ,矩形AMEN 的面积为y ,那么y 与x 之间的函数关系
的图象大致是( )
:
2:如图,点A ,B 的坐标分别为(1,4)和(4,4),抛物线y=a (x-m )2+n 的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为-3,则点D 的横坐标最大值为
_____
3:从边长为a 的大正方形纸板中间挖去一个边长为b 的小正方形后,将其截成四个相同的等腰梯形﹙如图①﹚,可以拼成一个平行四边形﹙如图②﹚.
现有一平行四边形纸片ABCD ﹙如图③﹚,已知∠A=45°,AB=6,AD=4.若将该纸片按图②方式截成四个相同的等腰梯形,然后按图①方式拼图,则得到的大正方形的面积为 _______
4: 如图,等腰Rt △ABC
(∠ACB=90°)的直角边与正方形DEFG 的边长均为2,且AC 与DE 在同一直线
上,开始时点C 与点D 重合,让△ABC 沿这条直线向右平移,直到点A 与点E 重合为止.设CD 的长为x ,△ABC 与正方形DEFG 重合部分(图中阴影部分)的面积为y ,则y 与x
之间的函数关系的图象大致是( )
.
5:已知二次函数y=(
x-2a )2+
(a-1)(a 为常数),当a
取不同的值时,其图象构成一个“抛物线系”.如图分别是当a=-1,a=0,a=1,a=2时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是
y=
A 、
B 、
C 、
D 、
6:如图,在平面直角坐标系中,将矩形OABC沿OB对折,使点A落在A1处,A点坐标为(,0),C点坐标为(0,1),则A1点的坐标为()
.
2:如图,二次函数(m<4)的图象与x轴相交于点A、B两点.
(1)求点A、B的坐标(可用含字母m的代数式表示);
(2)如果这个二次函数的图象与反比例函数的图象相交于点C,且∠BAC的正弦值为,求这个二次函数的解析式.
3:(1)将抛物线y1=2x2向右平移2个单位,得到抛物线y2的图象,则y2=
(2)如图,P是抛物线y2对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x、抛物线y2交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t=
4:王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y=- x2+ x,其中y(m)是球的飞行高度,x(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.
(1)请写出抛物线的开口方向,顶点坐标,对称轴.
(2)请求出球飞行的最大水平距离.
(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式.
5:如图,把一张长12cm,宽10cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).
(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?
(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.
6:某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.
(1)求商场经营该商品原来一天可获利润多少元?
(2)设后来该商品每件降价x元,商场一天可获利润y元.
①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?
②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元.
7: 施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(如图1所示).
(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;
(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽2.5米、高5米的特种车辆?请通过计算说明;
(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A、D点在抛物线上.B、C点在地面OM线上(如图2所示).为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少,请你帮施工队计算一下.
8:如图,梯形ABCD中,AD∥BC,∠BAD=90°,AD=1,E为AB的中点,AC是ED的垂直平分线.(1)求证DB=DC;
(2)在图(2)的线段AB上找出一点P,使PC+PD的值最小,标出点P的位置,保留画图痕迹,并求出PB的值.
9: 抛物线y=x2+(m-3)x-m+2的图象交x轴正半轴于点A,交x轴负半轴于点B,交y轴于点C.
(1)求m的取值范围;
(2)若△ABC恰为等腰三角形,求m.
10:如图,矩形ABCD,M为CD中点,点E在线段MC上运动,GH垂直平分AE,垂足为O,分别交于AD、BC于点G、H,AB=3,BC=4.
(1)求AE:GH;
(2)设CE=x,四边形AHEG的面积为y,求y关于x的函数关系式;当y取最大值时,判断四边形AHEG 的形状,并说明理由.
11: 如图,在平面直角坐标系中,抛物线A(-1,0),B(3,0),C(0,-1)三点.
(1)求该抛物线的表达式;
(2)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形,求所有满足条件点P的坐标.
12: 如图,在直角坐标系xOy中,正方形OCBA的顶点A,C分别在y轴,x轴上,点B坐标为(6,6),抛物线y=ax2+bx+c经过点A,B两点,且3a-b=-1.
(1)求a,b,c的值;
(2)如果动点E,F同时分别从点A,点B出发,分别沿A→B,B→C运动,速度都是每秒1个单位长度,当点E到达终点B时,点E,F随之停止运动,设运动时间为t秒,△EBF的面积为S.
①试求出S与t之间的函数关系式,并求出S的最大值;
②当S取得最大值时,在抛物线上是否存在点R,使得以E,B,R,F为顶点的四边形是平行四边形?如果存在,求出点R的坐标;如果不存在,请说明理由.
13: 在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点.
(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,过点F作FH⊥FC,交直线AB于点H.判断FH与FC的数量关系并加以证明;
(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.
14:如图,△OAB是边长为2的等边三角形,过点A的直线+m与x轴交于点E.
(1)求点E的坐标;
(2)求过A、O、E三点的抛物线解析式;
(3)若点P是(2)中求出的抛物线AE段上一动点(不与A、E重合),设四边形OAPE的面积为S,求S的最大值.。