2023重点初中招生考试检测试卷数学

合集下载

2023年新疆维吾尔自治区区内初中班招生测试卷数学

2023年新疆维吾尔自治区区内初中班招生测试卷数学

1. 一个长方形的长是20厘米,宽是10厘米。

如果将长增加到30厘米,宽减少到5厘米,新的长方形面积是多少平方厘米?- A. 150- B. 200- C. 250- D. 3002. 解方程:2(3x - 4) = 4x + 6,x的值是多少?- A. 2- B. 3- C. 4- D. 53. 一个圆的周长是31.4厘米。

求圆的半径是多少厘米?(取π≈3.14)- A. 4- B. 5- C. 6- D. 74. 一个等腰三角形的底边长为12厘米,两腰边长为10厘米。

求这个三角形的高是多少厘米?- A. 6- B. 8- C. 9- D. 105. 已知直角三角形的两个直角边分别为6厘米和8厘米,求它的面积是多少平方厘米?- A. 24- B. 30- C. 36- D. 486. 解不等式:3x + 5 < 2(x + 7),x的范围是:- A. x < 9- B. x > 9- C. x < -9- D. x > -97. 一个长方体的长为5厘米,宽为3厘米,高为2厘米。

它的表面积是多少平方厘米?- A. 22- B. 30- C. 62- D. 708. 解方程:x²- 9 = 0,x的值可能是:- A. 3和-3- B. 9和-9- C. 6和-6- D. 2和-29. 一个正方形的对角线长度是√50厘米,求它的边长是多少厘米?- A. 5- B. 7- C. 10- D. 2510. 一个等边三角形的周长为21厘米,它的面积是多少平方厘米?(取√3≈1.732)- A. 15.6- B. 18- C. 20.7- D. 22.5。

数学2023中考试卷

数学2023中考试卷

数学2023中考试卷一、选择题(每题3分,共30分)1. 下列实数中,是无理数的是()A. 3.14B. (1)/(3)C. √(4)D. √(5)2. 如图,直线a∥ b,∠ 1 = 50^∘,则∠ 2的度数为()A. 50^∘B. 130^∘C. 40^∘D. 60^∘3. 计算( - 2x^2)^3的结果是()A. -6x^6B. 8x^6C. -8x^6D. -6x^54. 若关于x的一元二次方程x^2-2x + k = 0有两个相等的实数根,则k的值为()B. -1C. 2D. -25. 一组数据2,4,3,x,4的平均数是3,则x的值为()A. 2B. 3C. 1D. 46. 在平面直角坐标系中,点P(-3,4)关于y轴对称的点的坐标是()A. (3,4)B. ( - 3,-4)C. (3,-4)D. (4,-3)7. 已知函数y=(k)/(x)(k≠0)的图象经过点(2, - 3),则k的值为()A. -6B. 6C. (2)/(3)D. -(2)/(3)8. 一个圆锥的底面半径为3,母线长为5,则这个圆锥的侧面积为()B. 30πC. 24πD. 9π9. 若二次函数y = ax^2+bx + c(a≠0)的图象开口向下,对称轴为直线x = 1,且图象经过点(3, - 2),则a + b + c的值()A. 大于-2B. 等于-2C. 小于-2D. 无法确定。

10. 如图,在ABC中,∠ ACB = 90^∘,AC = BC = 4,将ABC绕点A顺时针旋转60^∘得到ADE,连接BE,则BE的长为()A. 2√(3)-2B. 4C. 3√(3)D. 2√(2)二、填空题(每题3分,共18分)11. 分解因式:x^2-9=_(x + 3)(x - 3)。

12. 不等式3x - 2>4的解集是_x>2。

13. 若正多边形的一个外角是45^∘,则这个正多边形的边数是_8。

2023年重庆市中考数学试卷A卷(带答案及解析)

2023年重庆市中考数学试卷A卷(带答案及解析)

重庆市2023年初中学业水平暨高中招生考试数学试题(A 卷)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框黑。

1.8的相反数是()A.-8B.8C.18D.-182.四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B. C.D.3.反比例函数y =-4x的图象一定经过的点是()A.1,4B.-1,-4C.-2,2D.2,24.若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是()A.1:2B.1:4C.1:8D.1:165.如图,AB ∥CD ,AD ⊥AC ,若∠1=55°,则∠2的度数为()A.35°B.45°C.50°D.55°6.估计28+10 的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间7.用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,⋯⋯,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.548.如图,AC是⊙O的切线,B为切点,连接OA,OC。

若∠A=30°,AB=23,BC=3,则OC的长度是()A.3B.23C.13D.69.如图,在正方形ABCD中,点E,F分别在BC,CD上,连接AE,AF,EF,∠EAF=45°。

若∠BAE=α,则∠FEC一定等于()A.2αB.90°-2αC.45°-αD.90°-α10.在多项式x-y-z-m-n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”。

2023年四川省宜宾中考数学试题(含答案解析)

2023年四川省宜宾中考数学试题(含答案解析)

宜宾市2023年初中学业水平考试暨高中阶段学校招生考试数学(考试时间:120分钟,全卷满分:150分)一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上.1.2的相反数是()A.2B. -22.下列计算正确的是()A. 4a-2a = 2 B. 2ab+3ba = 5abC. a + a 2 =a 3D. 5x 2y-3xy 2 =2xy3.下列图案中,既是轴对称图形,又是中心对称图形的是()A.4.为积极践行节能减排的发展理念,宜宾大力推进“电动宜宾"工程,2022年城区己建成充电基础设施接口超过8500个.将8500用科学记数法表示为() C. 8.5X1O 3 D. 8.5xlO 4B. 85x102A. ().85 xlO 4ZD=24。

,则ZE 等于()C. 24°D. 16°6. “今有鸡兔同笼,上有三十五头,下有九十四足, 问鸡兔各几何”是《孙子算经》卷中著名数学问题.意思是:鸡兔同笼,从上面数,有35个头;从下面数,有94条腿.问鸡兔各有多少只?若设鸡有x 只,兔有y 只,则所列方程组正确的是( )A.x+y = 354x + 2y = 94 B.x+y = 352x+4y = 94 C.x+y = 944x+2y = 35 D.x+y = 942x+4y = 357.如图,己知点A 、B 、C 在。

O 上,C 为AB 的中点.若ZBAC = 35°,则NAO8等于( )A.140°B.120°C.110°D.70°x-228.分式方程J=—的解为()x-3x-3A.2B.3C.4D.59.《梦溪笔谈》是我国古代科技著作,其中它记录了计算圆弧长度的''会圆术”.如图,AB是以点O为圆心、Q4为半径的圆弧,N是的中点,MN CAB.“会圆术”给出AB的弧长/的近似值计算公式:MNl=当OA=4,ZAOB=60°时,贝以的值为()OA11-4右 C.8-2>/3 D.8-4^310.如图,边长为6的正方形ABCQ中,M为对角线8。

2023年四川省凉山州数学中考真题(原卷版和解析版)

2023年四川省凉山州数学中考真题(原卷版和解析版)

凉山州2023年初中毕业暨高中阶段学校招生考试数学试卷试卷满分150分考试时间120分钟A 卷(共100分)第Ⅰ卷选择题(共48分)一、选择题(共12小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置.1.下列各数中,为有理数的是()A.B.3.232232223⋅⋅⋅C.π3D.2.如图是由4个相同的小立方体堆成的几何体的俯视图,小正方形中的数字表示该位置小立方体的个数,则这个几何体的主视图是()A. B. C. D.3.若一组数据123,,,,n x x x x 的方差为2,则数据1233,3,3,,3n x x x x ++++ 的方差是()A.2B.5C.6D.114.下列计算正确的是()A.248a a a ⋅= B.22423a a a += C.()362328a b a b = D.222()a b a b -=-5.2022年12月26日,成昆铁路复线全线贯通运营.据统计12月26日至1月25日,累计发送旅客144.6万人次.将数据144.6万用科学记数法表示的是()A.51.44610⨯ B.61.44610⨯ C.70.144610⨯ D.71.44610⨯6.点()2,3P -关于原点对称的点P '的坐标是()A.()2,3 B.()2,3-- C.()3,2- D.()2,3-7.光线在不同介质中的传播速度是不同的,因此光线从水中射向空气时,要发生折射.由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,145,2120∠=︒∠=︒,则34∠+∠=()A.165︒B.155︒C.105︒D.90︒8.分式21x xx --的值为0,则x 的值是()A .B.1-C.1D.0或19.如图,在ABF △和DCE △中,点E 、F 在BC 上,BE CF =,B C ∠=∠,添加下列条件仍无法证明ABF DCE ≌△△的是()A.AFB DEC ∠=∠B.AB DC =C.A D ∠=∠D.AF DE=10.如图,在等腰ABC 中,40A ∠=︒,分别以点A 、点B 为圆心,大于12AB 为半径画弧,两弧分别交于点M 和点N ,连接MN ,直线MN 与AC 交于点D ,连接BD ,则DBC ∠的度数是()A.20︒B.30︒C.40︒D.50︒11.如图,在O 中,30OA BC ADB BC ⊥∠=︒=,,OC =()A.1B.2C.23D.412.已知抛物线()20y ax bx c a =++≠的部分图象如图所示,则下列结论中正确的是()A.<0abcB.420a b c -+<C.30a c +=D.20am bm a ++≤(m为实数)第Ⅱ卷非选择题(共52分)二、填空题(共5个小题,每小题4分,共20分)13.计算()20( 3.14)21π-+-_________.14.已知21y my -+是完全平方式,则m 的值是_________.15.如图,ABCO 的顶点O A C 、、的坐标分别是()()()003012,、,、,.则顶点B 的坐标是_________.16.不等式组()5231131722x x x x⎧+>-⎪⎨-≤-⎪⎩的所有整数解的和是_________.17.如图,在Rt ABC △纸片中,90ACB ∠=︒,CD 是AB 边上的中线,将ACD 沿CD 折叠,当点A 落在点A '处时,恰好CA AB '⊥,若2BC =,则CA '=_________.三、解答题(共5小题,共32分)解答应写出文字说明、证明过程或演算步骤.18.先化简,再求值:()()()2(2)222x y x y x y y x y +-+--+,其中202312x ⎛⎫= ⎪⎝⎭,20222y =.19.解方程:2211x x x =+-.20.2023年“五一”期间,凉山旅游景点,人头攒动,热闹非凡,州文广旅局对本次“五一”假期选择泸沽湖、会理古城、螺髻九十九里、邛海沪山风景区(以下分别用A B C D 、、、表示)的游客人数进行了抽样调查,并将调查情况绘制成如下不完整的两幅统计图.请根据以上信息回答:(1)本次参加抽样调查的游客有多少人?(2)将两幅不完整的统计图补充完整;(3)若某游客随机选择A B C D 、、、四个景区中的两个,用列表或画树状图的方法,求他第一个景区恰好选择A 的概率.21.超速容易造成交通事故.高速公路管理部门在某隧道内的C E 、两处安装了测速仪,该段隧道的截面示意图如图所示,图中所有点都在同一平面内,且A D B F 、、、在同一直线上.点C 、点E 到AB 的距离分别为CD EF 、,且7m,895m CD EF CE ===,在C 处测得A 点的俯角为30︒,在E 处测得B 点的俯角为45︒,小型汽车从点A 行驶到点B 所用时间为45s .(1)求,A B 两点之间的距离(结果精确到1m );(2)若该隧道限速80千米/小时,判断小型汽车从点A 行驶到点B 是否超速?并通过计算说明理由.(参考1.7≈≈)22.如图,在ABCD Y 中,对角线AC 与BD 相交于点O ,CAB ACB ∠=∠,过点B 作BE AB ⊥交AC 于点E .(1)求证:AC BD ⊥;(2)若10AB =,16AC =,求OE 的长.B 卷(共50分)四、填空题(共2小题,每小题5分,共10分)23.已知2210x x --=,则3231052027x x x -++的值等于_________.24.如图,边长为2的等边ABC 的两个顶点A B 、分别在两条射线OM ON 、上滑动,若OM ON ⊥,则OC 的最大值是_________.五、解答题(共4小题,共40分)25.凉山州雷波县是全国少有的优质脐橙最适生态区.经过近20年的发展,雷波脐橙多次在中国西部农业博览会上获得金奖,雷波县也被誉名为“中国优质脐橙第一县”,某水果商为了解雷波脐橙的市场销售情况,购进了雷波脐橙和资中血橙进行试销.在试销中,水果商将两种水果搭配销售,若购买雷波脐橙3千克,资中血橙2千克,共需78元人民币;若购买雷波脐橙2千克,资中血橙3千克,共需72元人民币.(1)求雷波脐橙和资中血橙每千克各多少元?(2)一顾客用不超过1440元购买这两种水果共100千克,要求雷波脐橙尽量多,他最多能购买雷波脐橙多少千克?26.阅读理解题:阅读材料:如图1,四边形ABCD 是矩形,AEF △是等腰直角三角形,记BAE ∠为α、FAD ∠为β,若1tan 2α=,则1tan 3β=.证明:设BE k =,∵1tan 2α=,∴2AB k =,易证()AAS AEB EFC △≌△∴2,EC k CF k ==,∴,3FD k AD k ==∴1tan 33DF k AD k β===,若45αβ+=︒时,当1tan 2α=,则1tan 3β=.同理:若45αβ+=︒时,当1tan 3α=,则1tan 2β=.根据上述材料,完成下列问题:如图2,直线39y x =-与反比例函数(0)my x x=>的图象交于点A ,与x 轴交于点B .将直线AB 绕点A 顺时针旋转45︒后的直线与y 轴交于点E ,过点A 作AM x ⊥轴于点M ,过点A 作AN y ⊥轴于点N ,已知5OA =.(1)求反比例函数的解析式;(2)直接写出tan tan BAM NAE ∠∠、的值;(3)求直线AE 的解析式.27.如图,CD 是O 的直径,弦AB CD ⊥,垂足为点F ,点P 是CD 延长线上一点,DE AP ⊥,垂足为点E ,∠∠EAD FAD =.(1)求证:AE 是O 的切线;(2)若4,2PA PD ==,求O 的半径和DE 的长.28.如图,已知抛物线与x 轴交于()1,0A 和()5,0B -两点,与y 轴交于点C .直线33y x =-+过抛物线的顶点P .(1)求抛物线的函数解析式;(2)若直线()50x m m =-<<与抛物线交于点E ,与直线BC 交于点F .①当EF 取得最大值时,求m 的值和EF 的最大值;②当EFC 是等腰三角形时,求点E 的坐标.凉山州2023年初中毕业暨高中阶段学校招生考试数学试卷试卷满分150分考试时间120分钟A卷(共100分)第Ⅰ卷选择题(共48分)一、选择题(共12小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置.1.下列各数中,为有理数的是()A. B.3.232232223⋅⋅⋅ C.π3 D.【答案】A【解析】【分析】根据立方根、无理数与有理数的概念即可得.【详解】解:A2=,是有理数,则此项符合题意;B、3.232232223⋅⋅⋅是无限不循环小数,是无理数,则此项不符合题意;C、π3是无理数,则此项不符合题意;D是无理数,则此项不符合题意;故选:A.【点睛】本题考查了立方根、无理数与有理数,熟记无理数与有理数的概念是解题关键.2.如图是由4个相同的小立方体堆成的几何体的俯视图,小正方形中的数字表示该位置小立方体的个数,则这个几何体的主视图是()A. B. C. D.【答案】B【解析】【分析】根据俯视图可确定主视图的列数和小正方形的个数,即可解答.【详解】解:由俯视图可得主视图有2列组成,左边一列由2个小正方形组成,右边一列由1个小正方形组成.故选:B .【点睛】本题考查了由三视图判断几何体的知识,由几何体的俯视图可确定该几何体的主视图和左视图,要熟练掌握.3.若一组数据123,,,,n x x x x 的方差为2,则数据1233,3,3,,3n x x x x ++++ 的方差是()A.2B.5C.6D.11【答案】A 【解析】【分析】根据方差的定义进行求解,方差是用来衡量一组数据波动大小的量,每个数都加3,所以波动不会变,方差不变.【详解】解:当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,设原平均数为x ,现在的平均数为3x +,原来的方差22221121()()(2n s x x x x x x n ⎡⎤=-+-+⋯+-=⎣⎦,现在的方差()()()22222121333333n S x x x x x x n ⎡⎤=+--++--+⋯++--⎣⎦,222121(()()n x x x x x x n ⎡⎤=-+-++-⎣⎦ ,2=.故选:A .【点睛】本题考查了方差的定义.当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.4.下列计算正确的是()A.248a a a ⋅=B.22423a a a += C.()362328a b a b = D.222()a b a b -=-【答案】C 【解析】【分析】利用同底数幂的乘法法则,合并同类项法则,幂的乘方法则,积的乘方法则和完全平方公式分别计算,即可得出正确答案.【详解】解:A .246a a a ⋅=,故该选项错误,不合题意;B .22223a a a +=,故该选项错误,不合题意;C .()362328a b a b =,故该选项正确,符合题意;D .222()2a b a ab b -=-+,故该选项错误,不合题意;故选:C .【点睛】本题考查同底数幂的乘法、合并同类项、幂的乘方,积的乘方和完全平方公式等知识点,熟练掌握各项运算法则是解题的关键.5.2022年12月26日,成昆铁路复线全线贯通运营.据统计12月26日至1月25日,累计发送旅客144.6万人次.将数据144.6万用科学记数法表示的是()A.51.44610⨯ B.61.44610⨯ C.70.144610⨯ D.71.44610⨯【答案】B【解析】【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:144.6万61.44610=⨯,故选B .【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.6.点()2,3P -关于原点对称的点P '的坐标是()A.()2,3 B.()2,3-- C.()3,2- D.()2,3-【答案】D【解析】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数,可得答案.【详解】解:点()2,3P -关于原点对称的点P '的坐标是()2,3-,故选D .【点睛】本题考查关于原点对称的点的坐标,解题的关键是记住“关于原点对称的点,横坐标与纵坐标都互为相反数”.7.光线在不同介质中的传播速度是不同的,因此光线从水中射向空气时,要发生折射.由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,145,2120∠=︒∠=︒,则34∠+∠=()A.165︒B.155︒C.105︒D.90︒【答案】C【解析】【分析】根据平行线的性质,两直线平行,同位角相等或同旁内角互补,即可求出答案.【详解】解:如图所示,AB CD ∥,光线在空气中也平行,13∠∠∴=,24180∠+∠=︒.145,2120︒∠=︒∠= ,345∴∠=︒,418012060∠=︒-︒=︒.344560105∴∠+∠=︒+︒=︒.故选:C .【点睛】本题考查了平行线的性质的应用,解题的关键在于熟练掌握平行线的性质.8.分式21x x x --的值为0,则x 的值是()A.0B.1-C.1D.0或1【答案】A【解析】【分析】根据分式值为0的条件进行求解即可.【详解】解:∵分式21x x x --的值为0,∴2010x x x ⎧-=⎨-≠⎩,解得0x =,【点睛】本题主要考查了分式值为0的条件,熟知分式值为0的条件是分子为0,分母不为0是解题的关键.9.如图,在ABF △和DCE △中,点E 、F 在BC 上,BE CF =,B C ∠=∠,添加下列条件仍无法证明ABF DCE ≌△△的是()A.AFB DEC∠=∠ B.AB DC = C.A D ∠=∠ D.AF DE=【答案】D【解析】【分析】根据BE CF =,可得BF CE =,再根据全等三角形的判定方法,逐项判断即可求解.【详解】解:∵BE CF =,∴BF CE =,∵B C ∠=∠,A 、添加AFB DEC ∠=∠,可利用角边角证明ABF DCE ≌△△,故本选项不符合题意;B 、添加AB DC =,可利用边角边证明ABF DCE ≌△△,故本选项不符合题意;C 、添加AD ∠=∠,可利用角角边证明ABF DCE ≌△△,故本选项不符合题意;D 、添加AF DE =,无法证明ABF DCE ≌△△,故本选项不符合题意;故选:D【点睛】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.10.如图,在等腰ABC 中,40A ∠=︒,分别以点A 、点B 为圆心,大于12AB 为半径画弧,两弧分别交于点M 和点N ,连接MN ,直线MN 与AC 交于点D ,连接BD ,则DBC ∠的度数是()A.20︒B.30︒C.40︒D.50︒【解析】【分析】先根据等边对等角求出70ABC ∠=︒,由作图方法可知,MN 是线段AB 的垂直平分线,则AD BD =,可得40ABD A ==︒∠∠,由此即可得到30DBC ABC ABD ∠=∠-∠=︒.【详解】解:∵在等腰ABC 中,40A ∠=︒,AB AC =,∴180702A ABC ACB ︒-===︒∠∠∠,由作图方法可知,MN 是线段AB 的垂直平分线,∴AD BD =,∴40ABD A ==︒∠∠,∴30DBC ABC ABD ∠=∠-∠=︒,故选B .【点睛】本题主要考查了等腰三角形的性质与判定,线段垂直平分线的尺规作图,三角形内角和定理等等,灵活运用所学知识是解题的关键.11.如图,在O 中,30OA BC ADB BC ⊥∠=︒=,,OC =()A.1B.2C.D.4【答案】B【解析】【分析】连接OB ,由圆周角定理得60AOB ∠=︒,由OA BC ⊥得,60COE BOE ∠=∠=︒,CE BE ==,在Rt OCE 中,由sin 60CE OC =︒,计算即可得到答案.【详解】解:连接OB ,如图所示,,30ADB ∠=︒ ,223060AOB ADB ∴∠=∠=⨯︒=︒,OA BC ⊥,60COE BOE ∴∠=∠=︒,113322CE BE BC ===⨯,在Rt OCE 中,603COE CE ∠=︒=,,32sin 6032CE OC ∴==︒,故选:B .【点睛】本题主要考查了圆周角定理,垂径定理,解直角三角形,解题的关键是熟练掌握圆周角定理,垂径定理,添加适当的辅助线.12.已知抛物线()20y ax bx c a =++≠的部分图象如图所示,则下列结论中正确的是()A.<0abc B.420a b c -+< C.30a c += D.20am bm a ++≤(m为实数)【答案】C【解析】【分析】根据开口方向,与y 轴交于负半轴和对称轴为直线1x =可得00a c ><,,20b a =-<,由此即可判断A ;根据对称性可得当2x =-时,0y >,当=1x -时,0y =,由此即可判断B 、C ;根据抛物线开口向上,对称轴为直线1x =,可得抛物线的最小值为a c -+,由此即可判断D .【详解】解:∵抛物线开口向上,与y 轴交于负半轴,∴00a c ><,,∵抛物线对称轴为直线1x =,∴12b a-=,∴20b a =-<,∴0abc >,故A 中结论错误,不符合题意;∵当4x =时,0y >,抛物线对称轴为直线1x =,∴当2x =-时,0y >,∴420a b c -+>,故B 中结论错误,不符合题意;∵当3x =时,0y =,抛物线对称轴为直线1x =,∴当=1x -时,0y =,∴0a b c -+=,又∵2b a =-,∴30a c +=,故C 中结论正确,符合题意;∵抛物线对称轴为直线1x =,且抛物线开口向上,∴抛物线的最小值为2a b c a a c a c ++=-+=-+,∴2am bm c a c ++≥-+,∴20am bm a ++≥,故D 中结论错误,不符合题意;故选C .【点睛】本题主要考查了二次函数图象与系数的关系,二次函数图象的性质等等,熟练掌握二次函数的相关知识是解题的关键.第Ⅱ卷非选择题(共52分)二、填空题(共5个小题,每小题4分,共20分)13.计算0( 3.14)π-+_________.【答案】【解析】【分析】根据零指数幂、二次根式的性质进行计算即可.【详解】()03.14π-+11=+-=.【点睛】本题考查了实数的混合运算,二次根式的性质等知识,掌握任何一个不为零的数的零次幂都是1是解题的关键.14.已知21y my -+是完全平方式,则m 的值是_________.【答案】2±【解析】【分析】根据()2222a b a ab b ±=±+,计算求解即可.【详解】解:∵21y my -+是完全平方式,∴2m -=±,解得2m =±,故答案为:2±.【点睛】本题考查了完全平方公式.解题的关键在于熟练掌握:()2222a b a ab b ±=±+.15.如图,ABCO 的顶点O A C 、、的坐标分别是()()()003012,、,、,.则顶点B 的坐标是_________.【答案】()42,【解析】【分析】根据“平行四边形的对边平行且相等的性质”得到点B 的纵坐标与点C 的纵坐标相等,且3BC OA ==,即可得到结果.【详解】解: 在ABCO 中,()00O ,,()30A ,,3BC OA ∴==,BC AO ∥,∴点B 的纵坐标与点C 的纵坐标相等,()42B ∴,,故答案为:()42,.【点睛】本题主要考查了平行四边形的性质和坐标与图形的性质,此题充分利用了“平行四边形的对边相等且平行”的性质.16.不等式组()5231131722x x x x ⎧+>-⎪⎨-≤-⎪⎩的所有整数解的和是_________.【答案】7【解析】【分析】先分别解不等式组中的两个不等式,得到不等式组的解集,再确定整数解,最后求和即可.【详解】解:()5231131722x x x x ⎧+>-⎪⎨-≤-⎪⎩①②,由①得:53>32x x ---,∴2>5x -,解得:5>2x -;由②得:2143x x -≤-,整理得:416x ≤,解得:4x ≤,∴不等式组的解集为:542x -<≤,∴不等式组的整数解为:2-,1-,0,1,2,3,4;∴()21012347-+-+++++=,故答案为:7【点睛】本题考查的是求解一元一次不等式组的整数解,熟悉解一元一次不等式组的方法与步骤是解本题的关键.17.如图,在Rt ABC △纸片中,90ACB ∠=︒,CD 是AB 边上的中线,将ACD 沿CD 折叠,当点A 落在点A '处时,恰好CA AB '⊥,若2BC =,则CA '=_________.【答案】【解析】【分析】由Rt ABC △,90ACB ∠=︒,CD 是AB 边上的中线,可知CD AD =,则ACD A ∠=∠,由翻折的性质可知,ACD A CD '∠=∠,A C AC '=,则ACD A CD A '∠=∠=∠,如图,记A C '与AB 的交点为E ,90CEA ∠=︒,由180CEA ACD A CD A '∠+∠+∠+∠=︒,可得30A ∠=︒,根据tan BC A C AC A'==∠,计算求解即可.【详解】解:∵Rt ABC △,90ACB ∠=︒,CD 是AB 边上的中线,∴CD AD =,∴ACD A ∠=∠,由翻折的性质可知,ACD A CD '∠=∠,A C AC '=,∴ACD A CD A '∠=∠=∠,如图,记A C '与AB 的交点为E ,∵CA AB '⊥,∴90CEA ∠=︒,∵180CEA ACD A CD A '∠+∠+∠+∠=︒,∴30A ∠=︒,∴tan BC A C AC A'===∠,故答案为:【点睛】本题考查了直角三角形斜边的中线等于斜边的一半,翻折的性质,等边对等角,三角形内角和定理,正切.解题的关键在于对知识的熟练掌握与灵活运用.三、解答题(共5小题,共32分)解答应写出文字说明、证明过程或演算步骤.18.先化简,再求值:()()()2(2)222x y x y x y y x y +-+--+,其中202312x ⎛⎫= ⎪⎝⎭,20222y =.【答案】2xy ,1【解析】【分析】根据()2222a b a ab b ±=±+,()()22a b a b a b +-=-,单项式乘以多项式法则进行展开,再加减运算,代值计算即可.【详解】解:原式()2222244422x xy y x y xy y =++----2222244422x xy y x y xy y =++-+--2xy =.当202312x ⎛⎫= ⎪⎝⎭,20222y =时,原式202320221222⎛⎫ ⎪⨯⎝⎭=⨯1=.【点睛】本题考查了化简求值问题,完全平方公式、平方差公式,单项式乘以多项式法则,掌握公式及法则是解题的关键.19.解方程:2211x x x =+-.【答案】2x =【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:2211x x x =+-方程两边同乘()()11x x +-,得()12x x -=,整理得,220x x --=,∴()()120x x +-=,解得:11x -=,22x =,检验:当=1x -时,()()110x x +-=,=1x -是增根,当2x =时,()()1130x x +-=≠,∴原方程的解为2x =.【点睛】本题考查了分式方程的解法,属于基本题型,熟练掌握解分式方程的方法是解题关键.20.2023年“五一”期间,凉山旅游景点,人头攒动,热闹非凡,州文广旅局对本次“五一”假期选择泸沽湖、会理古城、螺髻九十九里、邛海沪山风景区(以下分别用A B C D 、、、表示)的游客人数进行了抽样调查,并将调查情况绘制成如下不完整的两幅统计图.请根据以上信息回答:(1)本次参加抽样调查的游客有多少人?(2)将两幅不完整的统计图补充完整;(3)若某游客随机选择A B C D 、、、四个景区中的两个,用列表或画树状图的方法,求他第一个景区恰好选择A 的概率.【答案】(1)600人(2)见解析(3)14【解析】【分析】(1)用选择B 景区的人数除以其人数占比即可求出参与调查的游客人数;(2)先求出选则C 景区的人数和选择A 景区的人数占比,再求出选择C 景区的人数占比,最后补全统计图即可;(3)先画出树状图得到所有等可能性的结果数,然后找到他第一个景区恰好选择A 的结果数,最后依据概率计算公式求解即可.【小问1详解】解:6010%600÷=人,∴本次参加抽样调查的游客有600人;【小问2详解】解:由题意得,选择C 景区的人数为60018060240120---=人,选择A 景区的人数占比为10180%060030%⨯=,∴选择C 景区的人数占比为120100%20%600⨯=补全统计图如下:【小问3详解】解:画树状图如下:由树状图可知,一共有12种等可能性的结果数,其中他第一个景区恰好选择A 的结果数有3种,∴他第一个景区恰好选择A 的概率为31124=.【点睛】本题主要考查了扇形统计图与条形统计图信息相关联,树状图法或列表法求解概率,正确读懂统计图和画出树状图是解题的关键.21.超速容易造成交通事故.高速公路管理部门在某隧道内的C E 、两处安装了测速仪,该段隧道的截面示意图如图所示,图中所有点都在同一平面内,且A D B F 、、、在同一直线上.点C 、点E 到AB 的距离分别为CD EF 、,且7m,895m CD EF CE ===,在C 处测得A 点的俯角为30︒,在E 处测得B 点的俯角为45︒,小型汽车从点A 行驶到点B 所用时间为45s .(1)求,A B 两点之间的距离(结果精确到1m );(2)若该隧道限速80千米/小时,判断小型汽车从点A 行驶到点B 是否超速?并通过计算说明理由.(参考1.7≈≈)【答案】(1)900m(2)小型汽车从点A 行驶到点B 没有超速.【解析】【分析】(1)证明四边形DCEF 为矩形,可得895m CE DF ==,结合30CAD ∠=︒,45EBF ∠=︒,7m CD EF ==,可得tan 30CD AD ==︒,7BF EF ==,再利用线段的和差关系可得答案;(2)先计算小型汽车的速度,再统一单位后进行比较即可.【小问1详解】解:∵点C 、点E 到AB 的距离分别为CD EF 、,∴CD AB ⊥,EF AB ⊥,而CE AB ∥,∴90DCE ∠=︒,∴四边形DCEF 为矩形,∴895m CE DF ==,由题意可得:30CAD ∠=︒,45EBF ∠=︒,7m CD EF ==,∴tan 30CD AD ==︒,7BF EF ==,∴()8957900m AB AF BF AD DF BF =-=+-=+-=【小问2详解】∵小型汽车从点A 行驶到点B 所用时间为45s .∴汽车速度为()90020m/s 45=,∵该隧道限速80千米/小时,∴80km/h ()80100022m/s 3600⨯=≈,∵2022<,∴小型汽车从点A 行驶到点B 没有超速.【点睛】本题考查的是解直角三角形的应用,理解俯角的含义,熟练的运用锐角三角函数解题是关键.22.如图,在ABCD Y 中,对角线AC 与BD 相交于点O ,CAB ACB ∠=∠,过点B 作BE AB ⊥交AC 于点E .(1)求证:AC BD ⊥;(2)若10AB =,16AC =,求OE 的长.【答案】(1)见详解(2)92【解析】【分析】(1)可证AB CB =,从而可证四边形ABCD 是菱形,即可得证;(2)可求6OB =,再证EBO BAO ∽ ,可得EO BO BO AO=,即可求解.【小问1详解】证明:CAB ACB ∠=∠ ,AB CB ∴=,四边形ABCD 是平行四边形,∴四边形ABCD 是菱形,AC BD ∴⊥.【小问2详解】解: 四边形ABCD 是平行四边形,128OA AC ∴==,AC BD ^ ,BE AB ⊥,90AOB BOE ABE ∴∠=∠=∠=︒,OB ∴=6==,90EBO BEO ∠+∠=︒ ,90ABO EBO ∠+∠=︒,BEO ABO ∴∠=∠,EBO BAO ∴∽ ,EO BO BO AO ∴=,668EO ∴=解得:92OE =.【点睛】本题考查了平行四边形的性质,菱形的判定及性质,勾股定理,三角形相似的判定及性质,掌握相关的判定方法及性质是解题的关键.B 卷(共50分)四、填空题(共2小题,每小题5分,共10分)23.已知2210x x --=,则3231052027x x x -++的值等于_________.【答案】2023【解析】【分析】把2210x x --=化为:221x x =+代入降次,再把221x x -=代入求值即可.【详解】解:由2210x x --=得:221x x =+,221x x -=,3231052027x x x -++()23211052027x x x x =+-++22631052027x x x x =+-++2482027x x =-++()2422027x x =--+412027=-⨯+2023=,故答案为:2023.【点睛】本题考查的是代数式的求值,找到整体进行降次是解题的关键.24.如图,边长为2的等边ABC 的两个顶点A B 、分别在两条射线OM ON 、上滑动,若OM ON ⊥,则OC 的最大值是_________.【答案】11+【解析】【分析】如图所示,取AB 的中点D ,连接OD CD ,,先根据等边三角形的性质和勾股定理求出CD =,再根据直角三角形的性质得到112OD AB ==,再由OC OD CD ≤+可得当O C D 、、三点共线时,OC有最大值,最大值为1+【详解】解:如图所示,取AB 的中点D ,连接OD CD ,,∵ABC 是边长为2的等边三角形,∴2CD AB BC AB ==⊥,,∴1BD AD ==,∴CD ==,∵OM ON ⊥,即90AOB ∠=︒,∴112OD AB ==,∵OC OD CD ≤+,∴当O C D 、、三点共线时,OC 有最大值,最大值为1+故答案为:1+【点睛】本题主要考查了等边三角形的性质,勾股定理,直角三角形斜边上的中线的性质等等,正确作出辅助线确定当O C D 、、三点共线时,OC 有最大值是解题的关键.五、解答题(共4小题,共40分)25.凉山州雷波县是全国少有的优质脐橙最适生态区.经过近20年的发展,雷波脐橙多次在中国西部农业博览会上获得金奖,雷波县也被誉名为“中国优质脐橙第一县”,某水果商为了解雷波脐橙的市场销售情况,购进了雷波脐橙和资中血橙进行试销.在试销中,水果商将两种水果搭配销售,若购买雷波脐橙3千克,资中血橙2千克,共需78元人民币;若购买雷波脐橙2千克,资中血橙3千克,共需72元人民币.(1)求雷波脐橙和资中血橙每千克各多少元?(2)一顾客用不超过1440元购买这两种水果共100千克,要求雷波脐橙尽量多,他最多能购买雷波脐橙多少千克?【答案】(1)雷波脐橙和资中血橙每千克分别为18元,12元.(2)最多能购买雷波脐橙40千克.【解析】【分析】(1)设雷波脐橙和资中血橙每千克分别为x 元,y 元,购买雷波脐橙3千克,资中血橙2千克,共需78元人民币;若购买雷波脐橙2千克,资中血橙3千克,共需72元人民币,再建立方程组即可;(2)设最多能购买雷波脐橙m 千克,根据顾客用不超过1440元购买这两种水果共100千克,再建立不等式即可.【小问1详解】解:设雷波脐橙和资中血橙每千克分别为x 元,y 元,则32782372x y x y +=⎧⎨+=⎩①②,①+②得;55150x y +=,则30x y +=③把③代入①得:18x =,把③代入②得:12y =,∴方程组的解为:1812x y =⎧⎨=⎩,答:雷波脐橙和资中血橙每千克分别为18元,12元.【小问2详解】设最多能购买雷波脐橙m 千克,则()181********m m +-≤,∴6240m ≤,解得:40m ≤,答:最多能购买雷波脐橙40千克.【点睛】本题考查的是二元一次方程组的应用,一元一次不等式的应用,确定相等关系是解本题的关键.26.阅读理解题:阅读材料:如图1,四边形ABCD 是矩形,AEF △是等腰直角三角形,记BAE ∠为α、FAD ∠为β,若1tan 2α=,则1tan 3β=.证明:设BE k =,∵1tan 2α=,∴2AB k =,易证()AAS AEB EFC △≌△∴2,EC k CF k ==,∴,3FD k AD k==∴1tan 33DF k AD k β===,若45αβ+=︒时,当1tan 2α=,则1tan 3β=.同理:若45αβ+=︒时,当1tan 3α=,则1tan 2β=.根据上述材料,完成下列问题:如图2,直线39y x =-与反比例函数(0)m y x x =>的图象交于点A ,与x 轴交于点B .将直线AB 绕点A 顺时针旋转45︒后的直线与y 轴交于点E ,过点A 作AM x ⊥轴于点M ,过点A 作AN y ⊥轴于点N ,已知5OA =.(1)求反比例函数的解析式;(2)直接写出tan tan BAM NAE ∠∠、的值;(3)求直线AE 的解析式.【答案】(1)12(0)y x x =>(2)1tan 3BAM ∠=,1tan 2NAE ∠=(3)112y x =+【解析】【分析】(1)首先求出点()3,0B ,然后设(),39A a a -,在Rt AOM △中,利用勾股定理求出4a =,得到()4,3A ,然后代入(0)m y x x=>求解即可;(2)首先根据()4,3A ,()3,0B 得到4MO =,3BO =,求出1MB =,3AM =,然后利用正切值的概念求出1tan 3BM BAM AM ∠==,然后证明出四边形NOMA 是矩形,得到45BAM NAE ∠+∠=︒,然后由1tan 3BAM ∠=即可求出1tan 2NAE ∠=;(3)首先根据矩形的性质得到4AN OM ==,3NO AM ==,然后利用1tan 2NAE ∠=求出2NE =,进而得到()0,1E ,然后设直线AE 的解析式为y kx b =+,利用待定系数法将()0,1E 和()4,3A 代入求解即可.【小问1详解】将0y =代入39y x =-得,3x =,∴()3,0B ,∵直线39y x =-与反比例函数(0)m y x x =>的图象交于点A ,∴设(),39A a a -,∵AM x ⊥,5OA =,∴在Rt AOM △中,222OM AM AO +=,∴()222395a a +-=,∴解得14a =,275a =,∵点A 的横坐标要大于点B 的横坐标,∴275a =应舍去,∴4a =,∴()4,3A ,∴将()4,3A 代入(0)m y x x =>,解得12m =;∴反比例函数的解析式为12(0)y x x =>;【小问2详解】∵()4,3A ,()3,0B ,∴4MO =,3BO =,∴1MB =,3AM =,∵AM x ⊥,∴1tan 3BM BAM AM ∠==,∵AN y ⊥,90NOM ∠=︒,∴四边形NOMA 是矩形,∴90NAM ∠=︒,∵将直线AB 绕点A 顺时针旋转45︒后的直线与y 轴交于点E ,∴45BAE ∠=︒,∴45BAM NAE ∠+∠=︒,∵1tan 3BAM ∠=,∴1tan 2NAE ∠=;【小问3详解】∵四边形NOMA 是矩形,∴4AN OM ==,3NO AM ==,∵AN y ⊥,1tan 2NAE ∠=,∴12NE AN =,即142NE =,∴解得2NE =,∴1OE ON NE =-=,∴()0,1E ,∴设直线AE 的解析式为y kx b =+,∴将()0,1E 和()4,3A 代入得,143b x b =⎧⎨+=⎩,∴解得112b x =⎧⎪⎨=⎪⎩,∴直线AE 的解析式为112y x =+.【点睛】此题考查了反比例函数,一次函数和几何综合题,矩形的性质,解直角三角形,勾股定理等知识,解题的关键是正确理解材料的内容.27.如图,CD 是O 的直径,弦AB CD ⊥,垂足为点F ,点P 是CD 延长线上一点,DE AP ⊥,垂足为点E ,∠∠EAD FAD =.(1)求证:AE 是O 的切线;(2)若4,2PA PD ==,求O 的半径和DE 的长.【答案】(1)证明见解析(2)O 的半径为3,DE 的长为65【解析】【分析】(1)先根据直角三角形的性质可得90FAD ODA ∠+∠=︒,再根据等腰三角形的性质可得OAD ODA ∠=∠,从而可得90OAE ∠=︒,然后根据圆的切线的判定即可得证;(2)设O 的半径为r ,则OA OD r ==,2OP r =+,在Rt OAP △中,利用勾股定理求解即可得;根据相似三角形的判定可得PDE POA ,根据相似三角形的性质即可得.【小问1详解】证明:如图,连接OA ,弦AB CD ⊥,90FAD ODA ∴∠+∠=︒,EAD FAD ∠=∠ ,90EAD ODA ∴∠+∠=︒,OA OD = ,OAD ODA ∠=∠∴,90EAD OAD ∴∠+∠=︒,即90OAE ∠=︒,AE OA ∴⊥,又OA 是O 的半径,AE ∴是O 的切线.【小问2详解】解:如图,连接OA ,设O 的半径为r ,则OA OD r ==,2PD =Q ,2OP r ∴=+,在Rt OAP △中,222OA PA OP +=,即()22242r r +=+,解得3r =,3,5OA OP ∴==,,A DE AP E OA ⊥⊥ ,DE OA ∴∥,PDE POA ∴ ,DE PD OA OP ∴=,即235DE =,解得65DE =,所以O 的半径为3,DE 的长为65.【点睛】本题考查了圆的切线的判定、勾股定理、相似三角形的判定与性质、等腰三角形的性质等知识点,熟练掌握圆的切线的判定,相似三角形的判定与性质是解题关键.28.如图,已知抛物线与x 轴交于()1,0A 和()5,0B -两点,与y 轴交于点C .直线33y x =-+过抛物线的顶点P .(1)求抛物线的函数解析式;(2)若直线()50x m m =-<<与抛物线交于点E ,与直线BC 交于点F .①当EF 取得最大值时,求m 的值和EF 的最大值;②当EFC 是等腰三角形时,求点E 的坐标.【答案】(1)245y x x =--+(2)①当52m =-时,EF 有最大值,最大值为254;②()38-,或()45-,或)52--【解析】。

2023重点初中招生考试检测试卷数学

2023重点初中招生考试检测试卷数学

2023重点初中招生考试检测试卷数学2023年的重点初中招生考试即将到来,数学是其中重要的一科。

为了帮助考生更好地备考,本文将为大家提供一套数学试卷,内容涵盖初中数学各个知识点,以期帮助考生全面复习和提升成绩。

【试卷一】第一部分:选择题1. 已知a=2,b=3,c=4,d=5,e=6。

若a+b+c+d+e的值等于多少?A. 20B. 25C. 30D. 352. 某商店的折扣活动是原价的8折,小明买了一件原价为150元的衣服,他需要支付多少钱?A. 8元B. 80元C. 120元D. 150元3. 设a×b=10,b×c=20,c×a=5,则a、b和c的值分别为多少?A. a=2,b=5,c=4B. a=5,b=2,c=4C. a=4,b=2,c=5D. a=2,b=4,c=54. 若一根杆的长度是10cm,把它分成三段,其中一段是4cm,另一段是3cm,那么第三段的长度是多少?A. 2cmB. 3cmC. 4cmD. 5cm5. 在一杯饮料中,若果汁占总体积的1/3,碳酸水占总体积的2/5,那么其他成分占总体积的比例是多少?A. 1/3B. 2/5C. 1/15D. 11/15第二部分:填空题1. 计算:12 ÷ 4 × 3 + 5 - 2 = ________2. 已知正方形的边长为6cm,则其面积为 ________ 平方厘米。

3. 平行四边形的一条底边的长度为12cm,高为6cm,则其面积为________ 平方厘米。

4. 当x=3时,方程2x - 7 = ________5. 圆的周长公式为C = 2πr,当半径r=5cm时,圆的周长为________ 厘米。

第三部分:解答题1. 一块长方形薄板的长为8cm,宽为6cm。

如果从中剪去一块边长为2cm的正方形,剩下的面积是多少平方厘米?解:薄板的面积为长乘以宽,即8cm × 6cm = 48 平方厘米。

2023年四川省眉山市中考数学真题(解析版)

2023年四川省眉山市中考数学真题(解析版)
眉山市 2023 年初中学业水平暨高中阶段学校招生考试数学试卷
第 I 卷(选择题 共 48 分) 一、选择题:本大题共 12 个小题,每小题 4 分,共 48 分,在每个小题给出的四个选项中, 只有一项是正确的,请把答题卡上相应题目的正确选项涂黑.
1 1. 2 的倒数是( )
A. 1 2
B. 2
【答案】B
y 0 ,由此即可判断②;根据 x 1 时, y 0 ,即可判断③;利用图象法即可判断④.
【详解】解:∵二次函数开口向上,与 y 轴交于 y 轴负半轴,
∴ a 0,c 0 , ∵二次函数的对称轴为直线 x= 1 , ∴ b 1,
2a
∴b 2a 0 ,
∴ abc<0 ,故①正确;
【详解】解:
x
y
2m
5②

① ② 得 2x 2y 2m 6 ,
x y m3,
代入 x y 4 ,可得 m 3 4 , 解得 m 1,
故选:B.
【点睛】本题考查了根据解的情况求参数,熟练利用加减法整理代入是解题的关键. 8. 由相同的小正方体搭成的立体图形的部分视图如图所示,则搭成该立体图形的小正方体的最少个数为 ()
A. 6
B. 9
【答案】B
C. 10
D. 14
【解析】
【分析】根据俯视图可得底层最少有 6 个,再结合左视图可得第二层最少有 2 个,即可解答.
【详解】解:根据俯视图可得搭成该立体图形的小正方体第三层最少为 6 个, 根据左视图第二层有 2 个,可得搭成该立体图形的小正方体第二层最少为 2 个, 根据左视图第二层有 1 个,可得搭成该立体图形的小正方体第二层最少为 1 个,
()
A. 2.1106

2023年甘肃省武威市中考数学真题(答案解析)

2023年甘肃省武威市中考数学真题(答案解析)

武威市2023年初中毕业、高中招生考试数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.【答案】C【解析】解:9的算术平方根是3,故选C2.【答案】A【解析】解:等式两边乘以2b ,得6ab =,故选:A .3.【答案】B【解析】解:()222222a a a a a a a +-=+-=,故选:B4.【答案】D【解析】∵直线y kx =(k 是常数,0k ≠)经过第一、第三象限,∴0k >,∴k 的值可为2,故选:D .5.【答案】C【解析】解:∵BD 是等边ABC 的边AC 上的高,∴1302DBC ABC ∠=∠=︒,∵DB DE =,∴30DBE DEB ∠=∠=︒,故选C6.【答案】A【解析】去分母得()21x x +=,解方程得2x =-,检验:2x =-是原方程的解,故选A .7.【答案】B【解析】解:∵将矩形ABCD 对折,使边AB 与DC ,BC 与AD 分别重合,展开后得到四边形EFGH ,∴EF GH ⊥,EF 与GH 互相平分,∴四边形EFGH 是菱形,∵2FH AB ==,4GE BC ==,∴菱形EFGH 的面积为1124422FH GE ⋅=⨯⨯=.故选:B8.【答案】D【解析】解:A 选项,年龄范围为9899-的人数为10人,对应的百分比为10%,则可得1010%100÷=(人),即该小组共统计了100名数学家的年龄,故选项正确,不符合题意;B 选项,由A 选项可知该小组共统计了100名数学家的年龄,则1005%5m =⨯=,故选项正确,不符合题意;C 选项,由扇形统计图可知,长寿数学家年龄在9293-岁的占的百分比最大,即长寿数学家年龄在9293-岁的人数最多,故选项正确,不符合题意;D 选项,《数学家传略辞典》中收录的数学家年龄在9697-岁的人数估计有112200242100⨯=人,故选项错误,符合题意.故选:D .9.【答案】B【解析】解:如图,过B 作BQ ⊥平面镜EF ,∴90QBE QBF ∠=∠=︒,ABC CBQ ABQ MBQ ∠+∠=∠=∠,而90CBQ QBM CBM ∠+∠=∠=︒,∴5090CBQ CBQ ︒+∠=︒-∠,∴20CBQ ∠=︒,∴902070EBC ∠=︒-︒=︒,故选B .10.【答案】C【解析】解:∵正方形ABCD 的边长为4,E 为CD 边的中点,∴4AB BC CD AD ====,90C D ∠=∠=︒,2CE DE ==,当P 与A ,B 重合时,PE 最长,此时PE ==,运动路程为0或4,结合函数图象可得(4,M ,故选C 二、填空题:本大题共6小题,每小题3分,共18分.11.【答案】()21a x -【解析】解:()()2222211ax ax a a x x a x -+=-+=-,故答案为:()21a x -12.【答案】2-(答案不唯一,合理即可)【解析】解:∵关于x 的一元二次方程2240x x c ++=有两个不相等的实数根,∴224144160c c ∆=-⨯⨯=->,解得14c <,当2c =-时,满足题意,故答案为:2-(答案不唯一,合理即可)13.【答案】10907-【解析】解:把海平面以上9050米记作“9050+米”,则海平面以下10907米记作10907-米,故答案为:10907-.14.【答案】35【解析】解:,A CDB ∠∠Q 是 BC所对的圆周角,55,A CDB ∴∠=∠=︒AB 是O 的直径,90ACB ∠=︒ ,在Rt ACB △中,90905535ABC A ∠=︒-∠=︒-︒=︒,故答案为:35.15.【答案】【解析】解:在菱形ABCD 中,60DAB ∠=︒,160,302DAB DCB BAC DAC DCF DAB ∴∠=∠=︒∠=∠=∠=∠=︒,DF CD ⊥Q ,90DFC ∴∠=︒,9060DFC DCF ∴∠=︒-∠=︒,在Rt CDF △中,12DF CF =,603030,ADF DFC DAF ∠=∠-∠=︒-︒=︒Q ,FAD ADF ∴∠=∠11,23AF DF CF AC ∴===同理,13CE AC =,13EF AC AF CE AC ∴=--=,12EF AE ∴=,在Rt ABE △中,cos3032AB AE ==︒12EF AE ∴==故答案为:16.【答案】5π【解析】150********n r l πππ⨯⨯===故填:5π.三、解答题:本大题共6小题,共32分.解答时,应写出必要的文字说明、证明过程或演算步骤.17.【答案】32⨯==-=18.【答案】21x -<≤【解析】解:解不等式组:6234x x x x >--⎧⎪⎨+≤⎪⎩①②,解不等式①,得2x >-.解不等式②,得1x ≤.因此,原不等式组的解集为21x -<≤.19.【答案】4ba b+【解析】解:原式22(2)2()()a b a b a b a b a b a b a b +--=-⋅+-+-22a b a b a b a b+-=-++4b a b =+.20.【答案】见解析【解析】解:如图,即点A ,G ,D ,H 把O 的圆周四等分.理由如下:如图,连接,,,,,,,AE DE AC DC OE OH OG AH ,由作图可得: AB BC CD==,且OA OB AB ==,∴AOB 为等边三角形,60AOB ∠=︒,同理可得:60BOC COD ∠=∠=︒,∴180AOB BOC COD ∠+∠+∠=︒,∴A ,O ,D 三点共线,AD 为直径,∴=90ACD ∠︒,设CD x =,而30DAC ∠=︒,∴2AD x =,AC =,由作图可得:DE AE AC ===,而OA OD x ==,∴⊥EO AD ,OE ==,∴由作图可得AG AH ==,而OA OH x ==,∴22222OA OH x AH +==,∴90AOH =︒∠,同理90AOG DOG DOH ∠=︒=∠=∠,∴点A ,G ,D ,H 把O 的圆周四等分.21.【答案】(1)13(2)19【解析】(1)P (小亮抽到卡片A )13=.(2)列表如下:小刚小亮A B C A(),A A (),A B (),A C B (),B A (),B B (),B C C(),C A (),C B (),C C 或画树状图如下:共有9种等可能的结果,两人都抽到卡片C 的结果有1种,所以,P (两人都抽到卡片C )19=.22.【答案】新生物A 处到皮肤的距离约为8.4cm【解析】解:过点A 作AH MN ⊥,垂足为H .由题意得,35ABH DBN ∠=∠= ,22ACH ECN ∠=∠= ,在Rt AHB △中,tan tan 350.70AH AH AH BH ABH ==≈∠︒.在Rt AHC 中,tan tan 220.40AH AH AH CH ACH ==≈∠︒.∵CH BH BC -=,∴90.400.70AH AH -=,∴()8.4cm AH =.答:新生物A 处到皮肤的距离约为8.4cm .四、解答题:本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤.23.【答案】(1)16(2)35(3)八年级,理由见解析【解析】(1)解:由中位数的概念,可知40人成绩的中位数是第20、21位的成绩,由统计图知A 组4人,B 组10人,C 组10人,则中位数在C 组,第20、21位的成绩分别是16,16,则中位数是1616162+=;故答案为:16;(2)解:612003540+⨯=(人),这200名学生八年级下学期期末地理成绩达到优秀的约有35人,故答案为:35;(3)解:因为抽取的八年级学生的期末地理成绩的平均分(或中位数)下学期的比上学期的高,所以八年级学生下学期期末地理成绩更好.24.【答案】(1)()3,2B(2)32n m =-+(3)863y x =-【解析】(1)解:∵点()3,B a 在反比例函数()60y x x =>的图象上,∴623a ==,∴()3,2B .(2)∵点()3,2B在一次函数y mx n =+的图象上,∴32m n +=,即32n m =-+.(3)如图,连接OB .∵192OAB B S OA x =⋅⋅=△,∴1392OA ⋅⨯=,∴6OA =,∴()0,6A -,∴6n =-,∴326m -+=-,∴83m =,∴一次函数的表达式为:863y x =-.25.【答案】(1)见解析(2)245【解析】(1)证明:∵ AC AC=,∴ADC B ∠=∠.∵OB OC =,∴B OCB ∠=∠.∵CO 平分BCD ∠,∴OCB OCD ∠=∠,∴ADC OCD ∠=∠.∵CE AD ⊥,∴90ADC ECD ∠+∠=︒,∴90OCD ECD ∠+∠=︒,即CE OC ⊥.∵OC 为O 的半径,∴CE 是O 的切线.(2)连接OD ,得OD OC =,∴ODC OCD ∠=∠.∵OCD OCB B ∠=∠=∠,∴ODC B ∠=∠,∵CO CO =,∴OCD OCB ≌,∴CD CB =.∵AB 是O 的直径,∴90ACB ∠=︒,∴3sin 1065AC AB B =⋅=⨯=,∴8CB ==,∴8CD =,∴324sin sin 855CE CD ADC CD B =⋅∠=⋅=⨯=.26.【答案】(1)①见解析;②AD DF BD =+,理由见解析;(2DF BD =+,理由见解析;(3)【解析】(1)①证明:∵ABC 和BDE 都是等边三角形,∴AB BC =,BE BD =,60ABC EBD ∠=∠=︒,∴ABC CBE EBD CBE ∠-∠=∠-∠,∴ABE CBD ∠=∠,∴()SAS ABE CBD ≅△△.∴AE CD =.②AD DF BD =+.理由如下:∵DF 和DC 关于AD 对称,∴DF DC =.∵AE CD =,∴AE DF =.∴AD AE DE DF BD =+=+.(2DF BD =+.理由如下:如图,过点B 作BE AD ⊥于点E ,得90BED ∠=︒.∵DF 和DC 关于AD 对称,∴DF DC =,ADF ADC ∠=∠.∵CD BD ⊥,∴45ADF ADC ∠=∠=︒,∴45EBD ∠=︒.∴22DE BD =.∵ABC 是直角三角形,AB AC =,∴=45ABC ∠︒,2AB BC =,∴ABC CBE EBD CBE ∠-∠=∠-∠,∴ABE CBD ∠=∠,∴sin sin ABE CBD ∠=∠,∴AE CD AB BC=,∴AE BC CD AB ⋅=⋅,∴22AE CD =.∴22222222AD AE DE =+=+=+,即DF BD =+.(3)∵33BD CD DF ==,34DF DF DF =+=,∵AD =2DF DC ==,∴6BD =.如图,过点A 作AH BD ⊥于点H .∵AB AC AF ==,∴()11222HF BF BD DF ==-=,BC ==∴2222AF AC BC ===.∴cos5HF AFB AF ∠===.27.【答案】(1)23y x x=-+(2)四边形OCPD 是平行四边形,理由见解析(3)【解析】(1)解:∵抛物线2y x bx =-+过点()4,4B -,∴1644b -+=-,∴3b =,∴23y x x =-+;(2)四边形OCPD 是平行四边形.理由:如图1,作PD OA ⊥交抛物线于点D ,垂足为H ,连接PC ,OD .∵点P 在y x =-上,∴OH PH =,45POH ∠=︒,连接BC ,∵4OC BC ==,∴OB =,∵BP =,∴OP OB BP =-=,∴22222OH PH ===,当2D x =时,4322D DH y ==-+⨯=,∴224PD DH PH =+=+=,∵()0,4C -,∴4OC =,∴PD OC =,∵OC x ⊥轴,PD x ⊥轴,∴PD OC ∥,∴四边形OCPD 是平行四边形;(3)如图2,由题意得,BP OQ =,连接BC .在OA 上方作OMQ ,使得45MOQ ∠=︒,OM BC =,∵4OC BC ==,BC OC ⊥,∴45CBP ∠=︒,∴CBP MOQ ∠=∠,∵BP OQ =,CBP MOQ ∠=∠,BC OM =,∴()SAS CBP MOQ △≌△,∴CP MQ =,∴CP BQ MQ BQ MB +=+≥(当M ,Q ,B 三点共线时最短),∴CP BQ +的最小值为MB ,∵454590MOB MOQ BOQ ∠=∠+∠=︒+︒=︒,∴MB ==即CP BQ +的最小值为.。

2023年江西省中考数学真题(原卷版和解析版)

2023年江西省中考数学真题(原卷版和解析版)

江西省2023年初中学业水平考试数学试题卷一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置.错选、多选或未选均不得分.1.下列各数中,正整数...是()A.3 B.2.1 C.0D.2-2.下列图形中,是中心对称图形的是()A. B. C.D.3.有意义,则a 的值可以是()A.1- B.0 C.2 D.64.计算()322m 的结果为()A.68m B.66m C.62m D.52m 5.如图,平面镜MN 放置在水平地面CD 上,墙面PD CD ⊥于点D ,一束光线AO 照射到镜面MN 上,反射光线为OB ,点B 在PD 上,若35AOC ∠=︒,则OBD ∠的度数为()A.35︒B.45︒C.55︒D.65︒6.如图,点A ,B ,C ,D 均在直线l 上,点P 在直线l 外,则经过其中任意三个点,最多可画出圆的个数为()A.3个B.4个C.5个D.6个二、填空题(本大题共6小题,每小题3分,共18分)7.单项式5ab -的系数为______.8.我国海洋经济复苏态势强劲.在建和新开工海上风电项目建设规模约1800万千瓦,比上一年同期翻一番,将18000000用科学记数法表示应为_______.9.计算:(a+1)2﹣a 2=_____.10.将含30︒角的直角三角板和直尺按如图所示的方式放置,已60α∠=︒,点B ,C 表示的刻度分别为1cm,3cm ,则线段AB 的长为_______cm .11.《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC ).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度如图,点A ,B ,Q 在同一水平线上,ABC ∠和AQP ∠均为直角,AP 与BC 相交于点D .测得40cm 20cm 12m AB BD AQ ===,,,则树高PQ =______m .12.如图,在ABCD Y 中,602B BC AB ∠=︒=,,将AB 绕点A 逆时针旋转角α(0360α︒<<︒)得到AP ,连接PC ,PD .当PCD 为直角三角形时,旋转角α的度数为_______.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:038tan 453+︒-(2)如图,AB AD =,AC 平分BAD ∠.求证:ABC ADC △△≌.14.如图是44⨯的正方形网格,请仅用无刻度的直尺.....按要求完成以下作图(保留作图痕迹).(1)在图1中作锐角ABC ,使点C 在格点上;(2)在图2中的线段AB 上作点Q ,使PQ 最短.15.化简2111x x x x x x -⎛⎫+⋅ ⎪+-⎝⎭.下面是甲、乙两同学的部分运算过程:解:原式()()()()()()21111111x x x x x x x x x x⎡⎤-+-=+⋅⎢⎥+-+-⎣⎦……解:原式221111x x x x x x x x--=⋅+⋅+-……(1)甲同学解法的依据是________,乙同学解法的依据是________;(填序号)①等式的基本性质;②分式的基本性质;③乘法分配律;④乘法交换律.(2)请选择一种解法,写出完整的解答过程.16.为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动,根据活动要求,每班需要2名宣传员,某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.(1)“甲、乙同学都被选为宣传员”是_______事件:(填“必然”、“不可能”或“随机”)(2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.17.如图,已知直线y x b =+与反比例函数(0)k y x x =>的图象交于点(2,3)A ,与y 轴交于点B ,过点B 作x 轴的平行线交反比例函数(0)k y x x=>的图象于点C .(1)求直线AB 和反比例函数图象的表达式;(2)求ABC 的面积.四、解答题(本大题共3小题,每小题8分,共24分)18.今年植树节,某班同学共同种植一批树苗,如果每人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?19.如图1是某红色文化主题公园内的雕塑,将其抽象成加如图2所示的示意图,已知点B ,A ,D ,E 均在同一直线上,AB AC AD ==,测得55 1.8m 2m B BC DE ∠=︒==,,.(结果保小数点后一位)(1)连接CD ,求证:DC BC ⊥;(2)求雕塑的高(即点E 到直线BC 的距离).(参考数据:sin 550.82cos550.57tan 55 1.43︒≈︒≈︒≈,,)20.如图,在ABC 中,464AB C =∠=︒,,以AB 为直径的O 与AC 相交于点D ,E 为 ABD 上一点,且40ADE ∠=︒.(1)求 BE的长;(2)若76EAD ∠=︒,求证:CB 为O 的切线.五、解答题(本大题共2小题,每小题9分,共18分)21.为了解中学生的视力情况,某区卫健部门决定随机抽取本区部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.整理描述初中学生视力情况统计表视力人数百分比0.6及以下84%0.7168%0.82814%0.93417%1.0m34%1.1及以上46n 合计200100%高中学生视力情况统计图(1)m =_______,n =_______;(2)被调查的高中学生视力情况的样本容量为_______;(3)分析处理:①小胡说:“初中学生的视力水平比高中学生的好.”请你对小胡的说法进行判断,并选择一个能反映总体的统计量...说明理由:②约定:视力未达到1.0为视力不良.若该区有26000名初中学生,估计该区有多少名初中学生视力不良?并对视力保护提出一条合理化建议.22.课本再现思考我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形的一个判定定理;对角线互相垂直的平行四边形是菱形.(1)定理证明:为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.己知:在ABCD Y 中,对角线BD AC ⊥,垂足为O .求证:ABCD Y 是菱形.(2)知识应用:如图2,在ABCD Y 中,对角线AC 和BD 相交于点O ,586AD AC BD ===,,.①求证:ABCD Y 是菱形;②延长BC 至点E ,连接OE 交CD 于点F ,若12E ACD ∠=∠,求OF EF的值.六、解答题(本大题共12分)23.综合与实践问题提出:某兴趣小组开展综合实践活动:在Rt ABC △中,90C ∠=︒,D 为AC 上一点,2CD =,动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿C B A →→匀速运动,到达点A 时停止,以DP 为边作正方形DPEF 设点P 的运动时间为s t ,正方形DPEF 的而积为S ,探究S 与t 的关系(1)初步感知:如图1,当点P 由点C 运动到点B 时,①当1t =时,S =_______.②S 关于t 的函数解析式为_______.(2)当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象请根据图象信息,求S 关于t 的函数解析式及线段AB 的长.(3)延伸探究:若存在3个时刻123,,t t t (123t t t <<)对应的正方形DPEF 的面积均相等.①12t t +=_______;②当314t t =时,求正方形DPEF 的面积.江西省2023年初中学业水平考试数学试题卷一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置.错选、多选或未选均不得分.1.下列各数中,正整数...是()A.3B.2.1C.0D.2-【答案】A【解析】【分析】根据有理数的分类即可求解.-不是正数,【详解】解:3是正整数,2.1是小数,不是整数,0不是正数,2故选:A.【点睛】本题考查了有理数的分类,熟练掌握有理数的分类是解题的关键.2.下列图形中,是中心对称图形的是()A. B. C.D.【答案】B【解析】【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【详解】解:选项A、C、D均不能找到这样的一个点,使图形绕某一点旋转180︒后与原来的图形重合,所以不是中心对称图形;选项B能找到这样的一个点,使图形绕某一点旋转180︒后与原来的图形重合,所以是中心对称图形;故选:B.【点睛】本题主要考查了中心对称图形,关键是找出对称中心.3.有意义,则a 的值可以是()A.1- B.0 C.2 D.6【答案】D【解析】【分析】根据二次根式有意义的条件即可求解.有意义,∴40a -≥,解得:4a ≥,则a 的值可以是6故选:D .【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.4.计算()322m 的结果为()A.68m B.66m C.62m D.52m 【答案】A【解析】【分析】根据积的乘方计算法则求解即可.【详解】解:()32628m m =,故选A .【点睛】本题主要考查了积的乘方计算,熟知相关计算法则是解题的关键.5.如图,平面镜MN 放置在水平地面CD 上,墙面PD CD ⊥于点D ,一束光线AO 照射到镜面MN 上,反射光线为OB ,点B 在PD 上,若35AOC ∠=︒,则OBD ∠的度数为()A.35︒B.45︒C.55︒D.65︒【答案】C【解析】【分析】根据题意可得AOC BOD ∠=∠,进而根据直角三角形的两个锐角互余即可求解.【详解】解:依题意,AOC BOD ∠=∠,35AOC ∠=︒∴35BOD ∠=︒,∵PD CD ⊥,∴9055OBD BOD ∠=︒-∠=︒,故选:C .【点睛】本题考查了直角三角形中两个锐角互余,入射角等于反射角,熟练掌握以上知识是解题的关键.6.如图,点A ,B ,C ,D 均在直线l 上,点P 在直线l 外,则经过其中任意三个点,最多可画出圆的个数为()A.3个B.4个C.5个D.6个【答案】D【解析】【分析】根据不共线三点确定一个圆可得,直线上任意2个点加上点P 可以画出一个圆,据此列举所有可能即可求解.【详解】解:依题意,,A B ;,A C ;,A D ;,B C ;,B D ,,C D 加上点P 可以画出一个圆,∴共有6个,故选:D .【点睛】本题考查了确定圆的条件,熟练掌握不共线三点确定一个圆是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7.单项式5ab -的系数为______.【答案】5-【解析】【分析】根据单项式系数的定义:单项式中的数字因数,得出结果即可.【详解】解:单项式5ab -的系数是5-.故答案是:5-.【点睛】本题考查单项式的系数,解题的关键是掌握单项式系数的定义.8.我国海洋经济复苏态势强劲.在建和新开工海上风电项目建设规模约1800万千瓦,比上一年同期翻一番,将18000000用科学记数法表示应为_______.【答案】71.810⨯【解析】【分析】根据科学记数法的表示形式进行解答即可.【详解】解:718000000=1.810⨯,故答案为:71.810⨯.【点睛】本题考查科学记数法,熟练掌握科学记数法的表示形式为10n a ⨯(110a ≤<,a 为整数)的形式,n 的绝对值与小数点移动的位数相同是解题的关键.9.计算:(a+1)2﹣a 2=_____.【答案】2a+1【解析】【详解】【分析】原式利用完全平方公式展开,然后合并同类项即可得到结果.【详解】(a+1)2﹣a 2=a 2+2a+1﹣a 2=2a+1,故答案为2a+1.【点睛】本题考查了整式的混合运算,熟练掌握完全平方公式以及合并同类项的法则是解题的关键.10.将含30︒角的直角三角板和直尺按如图所示的方式放置,已60α∠=︒,点B ,C 表示的刻度分别为1cm,3cm ,则线段AB 的长为_______cm .【答案】2【解析】【分析】根据平行线的性质得出60ACB ∠=︒,进而可得ABC 是等边三角形,根据等边三角形的性质即可求解.【详解】解:∵直尺的两边平行,∴60ACB α∠=∠=︒,又60A ∠=︒,∴ABC 是等边三角形,∵点B ,C 表示的刻度分别为1cm,3cm ,∴2cm BC =,∴2cmAB BC ==∴线段AB 的长为2cm ,故答案为:2.【点睛】本题考查了平行线的性质,等边三角形的性质与判定,得出60ACB ∠=︒是解题的关键.11.《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC ).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度如图,点A ,B ,Q 在同一水平线上,ABC ∠和AQP ∠均为直角,AP 与BC 相交于点D .测得40cm 20cm 12m AB BD AQ ===,,,则树高PQ =______m .【答案】6【解析】【分析】根据题意可得ABD AQP ∽,然后相似三角形的性质,即可求解.【详解】解:∵ABC ∠和AQP ∠均为直角∴BD PQ ∥,∴ABD AQP ∽,∴BD AB PQ AQ=∵40cm 20cm 12m AB BD AQ ===,,,∴2m 120640AQ BD PQ AB ⨯⨯===,故答案为:6.【点睛】本题考查了相似三角形的应用,熟练掌握相似三角形的性质与判定是解题的关键.12.如图,在ABCD Y 中,602B BC AB ∠=︒=,,将AB 绕点A 逆时针旋转角α(0360α︒<<︒)得到AP ,连接PC ,PD .当PCD 为直角三角形时,旋转角α的度数为_______.【答案】90︒或270︒或180︒【解析】【分析】连接AC ,根据已知条件可得90BAC ∠=︒,进而分类讨论即可求解.【详解】解:连接AC ,取BC 的中点E ,连接AE ,如图所示,∵在ABCD Y 中,602B BC AB ∠=︒=,,∴12BE CE BC AB ===,∴ABE 是等边三角形,∴60BAE AEB ∠=∠=︒,AE BE =,∴AE EC=∴1302EAC ECA AEB ∠=∠=∠=︒,∴90BAC ∠=︒∴AC CD ⊥,如图所示,当点P 在AC 上时,此时90BAP BAC ∠=∠=︒,则旋转角α的度数为90︒,当点P 在CA 的延长线上时,如图所示,则36090270α=︒-︒=︒当P 在BA 的延长线上时,则旋转角α的度数为180︒,如图所示,∵PA PB CD ==,PB CD ∥,∴四边形PACD 是平行四边形,∵AC AB⊥∴四边形PACD 是矩形,∴90PDC ∠=︒即PDC △是直角三角形,综上所述,旋转角α的度数为90︒或270︒或180︒故答案为:90︒或270︒或180︒.【点睛】本题考查了平行四边形的性质与判定,等边三角形的性质与判定,矩形的性质与判定,旋转的性质,熟练掌握旋转的性质是解题的关键.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:038tan 453+︒-(2)如图,AB AD =,AC 平分BAD ∠.求证:ABC ADC △△≌.【答案】(1)2;(2)证明见解析【解析】【分析】(1)先计算立方根,特殊角三角函数值和零指数幂,再计算加减法即可;(2)先由角平分线的定义得到BAC DAC ∠=∠,再利用SAS 证明ABC ADC △△≌即可.【详解】解:(1)原式211=+-2=;(2)∵AC 平分BAD ∠,∴BAC DAC ∠=∠,在ABC 和ADC △中,AB AD BAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABC ADC △△≌.【点睛】本题主要考查了实数的运算,零指数幂,特殊角三角函数值,全等三角形的判定,角平分线的定义等等,灵活运用所学知识是解题的关键.14.如图是44⨯的正方形网格,请仅用无刻度的直尺.....按要求完成以下作图(保留作图痕迹).(1)在图1中作锐角ABC ,使点C 在格点上;(2)在图2中的线段AB 上作点Q ,使PQ 最短.【答案】(1)作图见解析(2)作图见解析【解析】【分析】(1)如图,取格点K ,使90AKB ∠=︒,在K 的左上方的格点C 满足条件,再画三角形即可;(2)利用小正方形的性质取格点M ,连接PM 交AB 于Q ,从而可得答案.【小问1详解】解:如图,ABC 即为所求作的三角形;【小问2详解】如图,Q 即为所求作的点;【点睛】本题考查的是复杂作图,同时考查了三角形的外角的性质,正方形的性质,垂线段最短,熟记基本几何图形的性质再灵活应用是解本题的关键.15.化简2111x x x x x x-⎛⎫+⋅ ⎪+-⎝⎭.下面是甲、乙两同学的部分运算过程:解:原式()()()()()()21111111x x x x x x x x x x ⎡⎤-+-=+⋅⎢⎥+-+-⎣⎦……解:原式221111x x x x x x x x--=⋅+⋅+-……(1)甲同学解法的依据是________,乙同学解法的依据是________;(填序号)①等式的基本性质;②分式的基本性质;③乘法分配律;④乘法交换律.(2)请选择一种解法,写出完整的解答过程.【答案】(1)②,③(2)见解析【分析】(1)根据所给的解题过程即可得到答案;(2)甲同学的解法:先根据分式的基本性质把小括号内的分式先同分,然后根据分式的加法计算法则求解,最后根据分式的乘法计算法则求解即可;乙同学的解法:根据乘法分配律去括号,然后计算分式的乘法,最后合并同类项即可.【小问1详解】解:根据解题过程可知,甲同学解法的依据是分式的基本性质,乙同学解法的依据是乘法分配律,故答案为:②,③;【小问2详解】解:甲同学的解法:原式()()()()()()21111111x x x x x x x x x x ⎡⎤-+-=+⋅⎢⎥+-+-⎣⎦()()()()221111x x x x x x x x x =⋅+++---+()()()()211112x x x x x x =⋅+-+-2x =;乙同学的解法:原式221111x x x x x x x x--=⋅+⋅+-()()()()111111x x x x x x x x x x=⋅+⋅+-+--+11x x =-++2x =.【点睛】本题主要考查了分式的混合计算,熟知相关计算法则是解题的关键.16.为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动,根据活动要求,每班需要2名宣传员,某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.(1)“甲、乙同学都被选为宣传员”是_______事件:(填“必然”、“不可能”或“随机”)(2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.【答案】(1)随机(2)16【分析】(1)由确定事件与随机事件的概念可得答案;(2)先画树状图得到所有可能的情况数与符合条件的情况数,再利用概率公式计算即可.【小问1详解】解:“甲、乙同学都被选为宣传员”是随机事件;【小问2详解】画树状图为:共有12种等可能的结果,其中选中的两名同学恰好是甲,丁的结果数为2,所以选中的两名同学恰好是甲,丁的概率21126==.【点睛】本题考查的是事件的含义,利用画树状图求解随机事件的概率,熟记事件的概念与分类以及画树状图的方法是解本题的关键.17.如图,已知直线y x b =+与反比例函数(0)k y x x =>的图象交于点(2,3)A ,与y 轴交于点B ,过点B 作x 轴的平行线交反比例函数(0)k y x x=>的图象于点C .(1)求直线AB 和反比例函数图象的表达式;(2)求ABC 的面积.【答案】(1)直线AB 的表达式为1y x =+,反比例函数的表达式为6y x=(2)6【解析】【分析】(1)利用待定系数法求函数解析式即可;(2)由一次函数解析式求得点B 的坐标,再根据BC x ∥轴,可得点C 的纵坐标为1,再利用反比例函数表达式求得点C 坐标,即可求得结果.【小问1详解】解:∵直线y x b =+与反比例函数(0)k y x x=>的图象交于点(2,3)A ,∴236k =⨯=,23b +=,即1b =,∴直线AB 的表达式为1y x =+,反比例函数的表达式为6y x =.【小问2详解】解:∵直线1y x =+的图象与y 轴交于点B ,∴当0x =时,1y =,∴()0,1B ,∵BC x ∥轴,直线BC 与反比例函数(0)k y x x =>的图象交于点C ,∴点C 的纵坐标为1,∴61x=,即6x =,∴()6,1C ,∴6BC =,∴12662ABC S =⨯⨯= .【点睛】本题考查用待定系数法求一次函数和反比例函数解析式、一次函数与反比例函数的交点、一次函数与y 轴的交点,熟练掌握用待定系数法求函数解析式是解题的关键.四、解答题(本大题共3小题,每小题8分,共24分)18.今年植树节,某班同学共同种植一批树苗,如果每人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?【答案】(1)该班的学生人数为45人(2)至少购买了甲树苗80棵【解析】【分析】(1)设该班的学生人数为x 人,根据两种方案下树苗的总数不变列出方程求解即可;(2)根据(1)所求求出树苗的总数为155棵,设购买了甲树苗m 棵,则购买了乙树苗()155m -棵树苗,再根据总费用不超过5400元列出不等式求解即可.【小问1详解】解:设该班的学生人数为x 人,由题意得,320425x x +=-,解得45x =,∴该班的学生人数为45人;【小问2详解】解:由(1)得一共购买了34520155⨯+=棵树苗,设购买了甲树苗m 棵,则购买了乙树苗()155m -棵树苗,由题意得,()30401555400m m +-≤,解得80m ≥,∴m 得最小值为80,∴至少购买了甲树苗80棵,答:至少购买了甲树苗80棵.【点睛】本题主要考查了一元一次方程的实际应用,一元一次不等式的实际应用,正确理解题意找到等量关系列出方程,找到不等关系列出不等式是解题的关键.19.如图1是某红色文化主题公园内的雕塑,将其抽象成加如图2所示的示意图,已知点B ,A ,D ,E 均在同一直线上,AB AC AD ==,测得55 1.8m 2m B BC DE ∠=︒==,,.(结果保小数点后一位)(1)连接CD ,求证:DC BC ⊥;(2)求雕塑的高(即点E 到直线BC 的距离).(参考数据:sin 550.82cos550.57tan 55 1.43︒≈︒≈︒≈,,)【答案】(1)见解析(2)雕塑的高约为4.2米【解析】【分析】(1)根据等边对等角得出,B ACB ACD ADC ∠=∠∠=∠,根据三角形内角和定理得出()2180B ADC ∠+∠=︒,进而得出90BCD ∠=︒,即可得证;(2)过点E 作EF BC ⊥,交BC 的延长线于点F ,在Rt BDC 中,得出 1.8cos cos55BC AD B ==︒,则1.82cos55BE AD DE =+=+︒,在Rt EBF △中,根据sin EF BE B =⋅,即可求解.【小问1详解】解:∵AB AC AD ==,∴,B ACB ACD ADC∠=∠∠=∠∵180B ADC BCD ∠+∠+∠=︒即()2180B ADC ∠+∠=︒∴90B ADC ∠+∠=︒即90BCD ∠=︒∴DC BC ⊥;【小问2详解】如图所示,过点E 作EF BC ⊥,交BC 的延长线于点F ,在Rt BDC 中,55 1.8m 2mB BC DE ∠=︒==,,∴cos BC B AD=,∴ 1.8cos cos55BC AD B ==︒∴ 1.82cos55BE AD DE =+=+︒在Rt EBF △中,sin EFB BE =,∴sin EF BE B=⋅1.82sin 55cos55⎛⎫=+⨯︒⎪︒⎝⎭1.820.820.57⎛⎫≈+⨯ ⎪⎝⎭4.2≈(米).答:雕塑的高约为4.2米.【点睛】本题考查了等腰三角形的性质,三角形内角和定理的应用,解直角三角形的应用,熟练掌握三角函数的定义是解题的关键.20.如图,在ABC 中,464AB C =∠=︒,,以AB 为直径的O 与AC 相交于点D ,E 为 ABD 上一点,且40ADE ∠=︒.(1)求 BE的长;(2)若76EAD ∠=︒,求证:CB 为O 的切线.【答案】(1)109π(2)证明见解析【解析】【分析】(1)如图所示,连接OE ,先求出2OE OB OA ===,再由圆周角定理得到280AOE ADE ==︒∠∠,进而求出100∠=︒BOE ,再根据弧长公式进行求解即可;(2)如图所示,连接BD ,先由三角形内角和定理得到64AED ∠=︒,则由圆周角定理可得64ABD AED ==︒∠∠,再由AB 是O 的直径,得到90ADB ∠=︒,进而求出26BAC ∠=︒,进一步推出90ABC ∠=︒,由此即可证明BC 是O 的切线.【小问1详解】解:如图所示,连接OE ,∵AB 是O 的直径,且4AB =,∴2OE OB OA ===,∵E 为 ABD 上一点,且40ADE ∠=︒,∴280AOE ADE ==︒∠∠,∴180100BOE AOE ∠=︒-=︒∠,∴ BE 的长1002101809ππ⨯⨯==;【小问2详解】证明:如图所示,连接BD ,∵76EAD ∠=︒,40ADE ∠=︒,∴18064AED EAD ADE =︒--=︒∠∠∠,∴64ABD AED ==︒∠∠,∵AB 是O 的直径,∴90ADB ∠=︒,∴9026BAC ABD =︒-=︒∠∠,∵64C ∠=︒,∴18090ABC C BAC =︒--=︒∠∠∠,即AB BC ⊥,∵OB 是O 的半径,∴BC 是O 的切线.【点睛】本题主要考查了切线的判定,求弧长,圆周角定理,三角形内角和定理等等,正确作出辅助线是解题的关键.五、解答题(本大题共2小题,每小题9分,共18分)21.为了解中学生的视力情况,某区卫健部门决定随机抽取本区部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.整理描述初中学生视力情况统计表视力人数百分比0.6及以下84%0.7168%0.82814%0.93417%1.0m34%1.1及以上46n合计200100%高中学生视力情况统计图(1)m=_______,n=_______;(2)被调查的高中学生视力情况的样本容量为_______;(3)分析处理:①小胡说:“初中学生的视力水平比高中学生的好.”请你对小胡的说法进行判断,并选择一个能反映总体的统计量...说明理由:②约定:视力未达到1.0为视力不良.若该区有26000名初中学生,估计该区有多少名初中学生视力不良?并对视力保护提出一条合理化建议.【答案】(1)68;23%;(2)320;(3)①小胡的说法合理,选择中位数,理由见解析;②11180人,合理化建议见解析,合理即可.【解析】【分析】(1)由总人数乘以视力为1.0的百分比可得m的值,再由视力1.1及以上的人数除以总人数可得n 的值;(2)由条形统计图中各数据之和可得答案;(3)①选择视力的中位数进行比较即可得到小胡说法合理;②由初中生总人数乘以样本中视力不良的百分比即可,根据自身体会提出合理化建议即可.【小问1详解】解:由题意可得:初中样本总人数为:200人,∴34%20068m =⨯=(人),4620023%n =÷=;【小问2详解】由题意可得:144460826555320+++++=,∴被调查的高中学生视力情况的样本容量为320;【小问3详解】①小胡说:“初中学生的视力水平比高中学生的好.”小胡的说法合理;初中学生视力的中位数为第100个与第101个数据的平均数,落在视力为1.0这一组,而高中学生视力的中位数为第160个与第161个数据的平均数,落在视力为0.9的这一组,而1.0>0.9,∴小胡的说法合理.②由题意可得:()26000134%23%=11180⨯--(人),∴该区有26000名中学生,估计该区有11180名中学生视力不良;合理化建议为:学校可以多开展用眼知识的普及,规定时刻做眼保健操.【点睛】本题考查的是从频数分布表与频数分布直方图中获取信息,中位数的含义,利用样本估计总体,理解题意,确定合适的统计量解决问题是解本题的关键.22.课本再现思考我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形的一个判定定理;对角线互相垂直的平行四边形是菱形.(1)定理证明:为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.己知:在ABCD Y 中,对角线BD AC ⊥,垂足为O .求证:ABCD Y 是菱形.(2)知识应用:如图2,在ABCD Y 中,对角线AC 和BD 相交于点O ,586AD AC BD ===,,.①求证:ABCD Y 是菱形;②延长BC 至点E ,连接OE 交CD 于点F ,若12E ACD ∠=∠,求OF EF的值.【答案】(1)见解析(2)①见解析;②58【解析】【分析】(1)根据平行四边形的性质证明AOB COB ≌得出AB CB =,同理可得DOA ODC ≌,则DA DC =,AB CD =,进而根据四边相等的四边形是菱形,即可得证;(2)①勾股定理的逆定理证明AOD △是直角三角形,且90AOD ∠=︒,得出AC BD ⊥,即可得证;②根据菱形的性质结合已知条件得出E COE ∠=∠,则142OC OE AC ===,过点O 作OG CD ∥交BC 于点G ,根据平行线分线段成比例求得1522CG CB ==,然后根据平行线分线段成比例即可求解.【小问1详解】证明:∵四边形ABCD 是平行四边形,∴AO CO =,AB DC =,∵BD AC⊥∴90AOB COB ∠=∠=︒,在,AOB COB 中,AO CO AOB COB BO BO =⎧⎪∠=∠⎨⎪=⎩∴AOB COB≌∴AB CB =,同理可得DOA ODC ≌,则DA DC =,又∵AB CD=∴AB BC CD DA===∴四边形ABCD 是菱形;【小问2详解】①证明:∵四边形ABCD 是平行四边形,586AD AC BD ===,,.∴113,422DO BO BD AO CO AC ======在AOD △中,225AD =,22223425AO OD +=+=,∴222AD AO OD =+,∴AOD △是直角三角形,且90AOD ∠=︒,∴AC BD ⊥,∴四边形ABCD 是菱形;②∵四边形ABCD 是菱形;∴ACB ACD∠=∠∵12E ACD ∠=∠,∴12E ACB ∠=∠,∵ACB E COE ∠=∠+∠,∴E COE ∠=∠,∴142OC OE AC ===,如图所示,过点O 作OG CD ∥交BC 于点G ,∴1BG BO GC OD==,∴115222CG BC AD ===,∴55248OF GC EF CE ===.【点睛】本题考查了菱形的性质与判定,勾股定理以及勾股定理的逆定理,等腰三角形的性质与判定,平行线分线段成比例,熟练掌握菱形的性质与判定是解题的关键.六、解答题(本大题共12分)23.综合与实践问题提出:某兴趣小组开展综合实践活动:在Rt ABC △中,90C ∠=︒,D 为AC 上一点,CD =,动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿C B A →→匀速运动,到达点A 时停止,以DP 为边作正方形DPEF 设点P 的运动时间为s t ,正方形DPEF 的而积为S ,探究S 与t 的关系(1)初步感知:如图1,当点P 由点C 运动到点B 时,①当1t =时,S =_______.②S 关于t 的函数解析式为_______.(2)当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象请根据图象信息,求S 关于t 的函数解析式及线段AB 的长.(3)延伸探究:若存在3个时刻123,,t t t (123t t t <<)对应的正方形DPEF 的面积均相等.①12t t +=_______;②当314t t =时,求正方形DPEF 的面积.【答案】(1)①3;②24S t =+(2)()281828S t t t =-+≤≤,6AB =(3)①4;②349【解析】【分析】(1)①先求出1CP =,再利用勾股定理求出DP =,最后根据正方形面积公式求解即可;②仿照(1)①先求出CP t =,进而求出222DP t =+,则222S DP t ==+;(2)先由函数图象可得当点P 运动到B 点时,26S DP ==,由此求出当2t =时,6S =,可设S 关于t 的函数解析式为()242S a t =-+,利用待定系数法求出2818S t t =-+,进而求出当281818S t t =-+=时,求得t 的值即可得答案;(3)①根据题意可得可知函数()242S t =-+可以看作是由函数22S t =+向右平移四个单位得到的,设()()()1221P m n Q m n m m >,,,是函数22S t =+上的两点,则()14m n +,,()24m n +,是函数()242S t =-+上的两点,由此可得121212044m m m m m m +=<<+<+,,则2144m m ++=,根据题意可以看作21321244m m t t m t ==+=+,,,则124t t +=;②由(3)①可得134t t =+,再由314t t =,得到143t =,继而得答案.【小问1详解】解:∵动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿C B A →→匀速运动,∴当1t =时,点P 在BC 上,且1CP =,∵90C ∠=︒,CD =,∴DP ==∴23S DP ==,故答案为:3;②∵动点P 以每秒1个单位的速度从C 点出发,在BC 匀速运动,∴CP t =,∵90C ∠=︒,CD =,∴22222DP CP CD t =+=+,∴222S DP t ==+;【小问2详解】解:由图2可知当点P 运动到B 点时,26S DP ==,∴246t +=,。

重点初中招生考试试卷数学

重点初中招生考试试卷数学

一、选择题(每题5分,共50分)1. 下列各数中,正数是()A. -3.5B. -2/3C. 0D. 2/32. 如果a > b,那么下列不等式中正确的是()A. a + 1 > b + 1B. a - 1 < b - 1C. a + 1 < b + 1D. a - 1 > b - 13. 下列各式中,分母含有x的式子是()A. x^2 + 3x + 2B. x^2 - 2x + 1C. x^2 + 4x + 4D. x^2 - 4x + 44. 若一个等腰三角形的底边长为8cm,腰长为10cm,则该三角形的周长是()A. 26cmB. 24cmC. 22cmD. 20cm5. 下列关于二次函数y = ax^2 + bx + c(a ≠ 0)的说法正确的是()A. 当a > 0时,函数图像开口向上,顶点在x轴上方B. 当a < 0时,函数图像开口向上,顶点在x轴下方C. 当a > 0时,函数图像开口向下,顶点在x轴上方D. 当a < 0时,函数图像开口向下,顶点在x轴下方6. 下列各数中,属于无理数的是()A. √4B. √9C. √16D. √257. 若直角三角形的两条直角边长分别为3cm和4cm,则斜边长是()A. 5cmB. 6cmC. 7cmD. 8cm8. 下列关于一元一次方程x - 3 = 2的说法正确的是()A. 方程的解为x = 1B. 方程的解为x = 5C. 方程的解为x = -1D. 方程的解为x = -59. 下列关于平行四边形和矩形的说法正确的是()A. 所有平行四边形都是矩形B. 所有矩形都是平行四边形C. 所有平行四边形都是菱形D. 所有矩形都是菱形10. 若一个正方形的对角线长为10cm,则该正方形的面积是()A. 50cm^2B. 100cm^2C. 150cm^2D. 200cm^2二、填空题(每题5分,共50分)11. 已知a = 2,b = -3,则a + b的值为______。

2023年南京市某重点学校初一新生分班考试数学试卷含参考答案

2023年南京市某重点学校初一新生分班考试数学试卷含参考答案

2023年南京市某重点学校初一新生分班考试数学试卷(时间:90分钟总分:100分)题号一二三四五六总分得分一、正确填空。

(22分)1.某计算机1秒钟能进行七十亿五千零六万四千次计算,横线上的数写作(),四舍五入到亿位约是()。

2.用最小的质数、最小的自然数、最小的合数组成最小的三位数是()。

3.在数轴上表示-2.5、1.125、−12、2这四个数,其中()离0所对应的点最远。

4.两根彩带,分别长48厘米和32厘米,把它们剪成长度一样的短彩带且没有剩余,每根短彩带最长是()厘米,一共剪成了()根短彩带。

5.我国《国旗法》规定:国旗长与宽的比是3:2,国旗通用尺寸分5种规格,各界酌情选用。

如果选用的国旗宽是96厘米,那么长应该是()厘米。

6、一个圆柱和一个圆锥底面周长的比是2:3,它们的体积相等。

如果圆柱的高是12分米,那么圆锥的高是()分米。

7.将红、黄、蓝、白四种颜色的球各8个放到一个袋子里,至少要取()个球,才可以保证取到两个颜色相同的球。

8.一棵榕树上有百灵鸟和松鼠共15只,有44条腿,百灵鸟()只,松鼠()只。

9.小力在美术课上用橡皮泥捏制了一个火箭模型(如右图),下面是底面周长为9.42厘米、高为5厘米的圆柱,上面的圆锥底面与圆柱底面一样大,高为3厘米,算一算火箭主体部分需要橡皮泥()立方厘米。

(π取3.14)10.根据如图所示的规律用小棒搭正方形,搭1个正方形用4根小棒,搭2个正方形用7根小棒……搭10个正方形用()根小棒,搭n个正方形用()根小棒。

(第13题)(第14题)11.如图所示是用棱长为1厘米的小正方体搭成的几何体,它共用了()个小正方体,它的表面积是()平方厘米。

12.研究人员发现,蟋蟀每分钟叫的次数与当地气温之间有如下关系: t=h÷3(t表示当地气温,h表示蟋蟀每分钟叫的次数)。

如果测得蟋蟀每分钟大约叫105次,那么此时当地气温是()℃;如果测得当地气温是21℃,那么此时蟋蟀每分钟大约叫()次。

2023重点初中招生考试检测试卷数学

2023重点初中招生考试检测试卷数学

2023重点初中招生考试检测试卷数学摘要:1.引言:介绍2023年重点初中招生考试检测试卷数学的重要性2.试卷结构:分析试卷的各个部分,如选择题、填空题、解答题等3.试题特点:总结试卷的难度、考点分布、题型创新等方面4.解题策略:提供针对不同题型的解题方法和技巧5.备考建议:给出备考重点初中数学考试的建议和注意事项6.结语:鼓励考生积极备考,取得优异成绩正文:【引言】2023年重点初中招生考试检测试卷数学作为衡量学生学习能力的重要手段,吸引了广大考生和家长的关注。

为了帮助考生更好地备战这场考试,本文将对试卷进行详细解析,以期为大家提供有益的参考。

【试卷结构】2023年重点初中招生考试检测试卷数学整体结构稳定,分为选择题、填空题、解答题等部分。

选择题主要考察基本概念、运算技巧等方面,填空题以考察思维能力为主,解答题则涉及知识点较广,需要考生综合运用所学知识解决实际问题。

【试题特点】1.难度适中:试卷整体难度系数较为适中,既考验了考生的基本素质,又有一定挑战性。

2.考点分布合理:试卷覆盖了初中数学的基本知识点,突出重点,注重基础与能力的结合。

3.题型创新:部分题目在传统题型的基础上有所创新,考查考生的应变能力。

【解题策略】1.选择题:运用排除法、代入法等方法,快速准确地解答。

2.填空题:注意审题,填入正确答案,尽量避免失误。

3.解答题:理清思路,按照步骤分步解答,注意答题规范。

【备考建议】1.系统复习:按照教材顺序,全面复习初中数学知识点,打牢基础。

2.强化训练:多做模拟题和真题,提高解题速度和准确率。

3.查漏补缺:针对自己的薄弱环节,有针对性地进行强化训练。

4.调整心态:保持良好的学习状态,增强信心,迎接考试。

【结语】2023年重点初中招生考试检测试卷数学的挑战在于考查考生的综合素质和能力。

只要我们坚定信心,科学备考,相信自己,就一定能在这场考试中取得优异成绩。

2023重点初中招生考试检测试卷数学

2023重点初中招生考试检测试卷数学

2023重点初中招生考试检测试卷数学摘要:一、引言1.2023年重点初中招生考试检测试卷数学简介2.数学试卷对于学生的重要性二、试卷内容分析1.选择题部分2.填空题部分3.解答题部分4.附加题部分三、试题难度及考察知识点1.试题难度适中,注重基础知识和基本技能2.考察知识点全面,涵盖代数、几何、概率与统计等四、学生应对策略1.扎实掌握基础知识,强化基本技能2.熟悉各类题型,提高解题速度和准确率3.注重学科素养,培养数学思维能力五、总结1.2023年重点初中招生考试检测试卷数学对于学生具有重要意义2.学生应积极应对,提高自己的数学素养和应试能力正文:随着2023年的到来,重点初中招生考试检测试卷数学也成为了广大学生关注的焦点。

数学作为基础学科之一,在学生的学习过程中具有举足轻重的地位。

因此,对于即将参加重点初中招生考试的学生来说,数学试卷的质量和内容显得尤为重要。

2023年重点初中招生考试检测试卷数学共分为选择题、填空题、解答题和附加题四部分。

选择题部分涵盖了代数、几何、概率与统计等多个知识点,既注重基础知识的考察,也体现了数学学科的特点。

填空题部分则侧重于对基本技能的考查,要求学生在熟练掌握知识点的基础上,具备较强的运算能力。

解答题部分是试卷的重中之重,共有若干道题目,涉及各个知识点。

学生需要在解答题部分展示自己的数学素养和解题能力,对每个问题进行深入分析,给出详细的解答过程。

附加题部分则是对学生综合运用知识能力的考查,题目具有一定的难度,要求学生具备较强的数学思维能力。

面对这样一份试卷,学生应如何应对呢?首先,学生要扎实掌握基础知识,强化基本技能。

基础知识是学习数学的基石,只有掌握了基础知识,才能在解题过程中游刃有余。

其次,学生要熟悉各类题型,提高解题速度和准确率。

最后,学生要注重学科素养,培养数学思维能力。

这样,在应对2023年重点初中招生考试检测试卷数学时,学生才能够取得理想的成绩。

总之,2023年重点初中招生考试检测试卷数学对于学生具有重要意义。

2023年江苏省中考数学测评考试试卷附解析

2023年江苏省中考数学测评考试试卷附解析

2023年江苏省中考数学测评考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图所示,兄弟两人在家中向窗外观察,则( )A .两人的盲区一样大B .母母的盲区大C .弟弟的盲区大D .两人盲区大小无法确定2.二次函数342++=x x y 的图象可以由二次函数2x y =的图象平移而得到,下列平移正确的是( )A .先向左平移2个单位长度,再向上平移1个单位长度B .先向左平移2个单位长度,再向下平移1个单位长度C .先向右平移2个单位长度,再向上平移1个单位长度D .先向右平移2个单位长度,再向下平移1个单位长度3.下面的函数是反比例函数的是( )A .13+=x yB .x x y 22+=C .2x y =D .x y 2= 4.下列计算中,正确的是( )A . 325+=B .321-=C .3282-=D .3333+= 5.等腰三角形形一个底角的余角等于30°,它的顶角等于( )A .30°B .60°C .90°D . 以上都不对 6.如图,△ABC 、△ADE 及△EFG 都是等边三角形,D 和G 分别为AC 和AE 的中点。

若AB =4时,则图形ABCDEFG 外围的周长是( )A .12B .15C .18D .217.下列说法错误的是( )A .三个角都相等的三角形是等边三角形B .有两个角是60°的三角形是等边三角形C .有一个角是60°的等腰三角形是等边三角形D .有两个角相等的等腰三角形是等边三角形8.如图,若∠1 与∠2互为补角,∠2 与∠3 互为补角,则一定有( )A . 1l ∥2lB .3l ∥4lC .13l l ⊥D .24l l ⊥9.在a 2□4a □4的空格□中,任意填上“+”或“-”,在所有得到的代数式中,能构成完全平方式的概率是( )A .1B .12C .13D .1410.从n 个苹果和3个雪梨中,任选1个,若选中苹果的概率是12,则n 的值是( ) A . 6 B . 3 C . 2 D . 1 11.如图所示,绕旋转中心旋转60°后能与自身重合的是( )12.下面计算正确的是( )A .-5 ×(-4)×(-2) )×(-2) = 5 ×4×2×2=80B .(-12)×(11134--)=-4+3+1=0C .(- 9)×5 ×(-4 )×0 = 9×5×4 = 180D .-2×5 -2×(-1)-(-2)×2 =-2(5+1-2)=-813.7 的相反数的14减去-8 的倒数的 2 倍的差等于( )A .2B . -2C .112- D .112二、填空题14.如果一个几何体的主视图是等腰三角形,那么这个几何体可以是 .(填上满足条件的一个几何体即可)15.Rt △ABC 的斜边AB =6厘米,直角边AC =3厘米,以C 为圆心,2厘米为半径的圆和AB 的位置关系是 ;4厘米为半径的圆和AB 的位置关系是 ;若和AB 相切,那么半径长为 .16.矩形面积为26cm ,长为cm x ,那么这个矩形的宽(cm)y 与长(cm)x 的函数关系为 . 17.已知a 与b 2成反比例,且当 a=6 时,b=3,则b=-2时,a= .18.一个样本有20个数据,分组以后落在20.5~22.5内的频数是4,则这一小组的频率是 .19.将正整数按如图所示的规律排列下去.若用有序数对(n ,m)表示第n 排,从左到右第m 个数,如(4,3)表示数9,则(7,2)表示的数是 .20.如图所示,在△ABC 中,∠B=35°,∠C=60°,AE 是∠BAC 的平分线,AD ⊥BC 于D ,则∠DAE 的度数为 .21.构造一个以67为根的一元一次方程(要求含未知数的项至少有两项): . 三、解答题22.一个物体的三视图如图所示,请描述该物体的形状.23.在电视台举行的某选秀比赛中,甲、乙、丙三位评委对选手的综合表现,分别给出“待 定”或“通过”的结论.(1)写出三位评委给出 A 选手的所有可能的结论;(2)对于选手 A ,只有甲、乙两位评委给出相同结论的概率是多少?24.巳知点A(a ,b)在反比例函数y = 2x的图象上,它与原点O 5a+b 的值.±3.25.如图,在 Rt△ABC中,CD⊥AB,D为垂足,∠B=30°.求证:::=.AD AC CD BC26.根据下列条件,,写出仍能成立的不等式.(1)72>-,两边都加2;(2)35-<,两边都减1;(3)23<,两边都乘以4;(4)39>-,两边都除以 3;(5)24->-,两边都乘以3-;(6)168-<-,两边都除以一4.观察以上各题的结果,你有什么发现吗?27.如图,∠1 =∠2,∠1+∠3 =180,问CD、EF平行吗?为什么?28.如图所示,木工师傅用角尺画出工件边缘的两条垂线,这两条垂线平行吗?为什么?29.解方程:2+---=.(5)(5)(1)24x x x30.检查一个商场听装啤酒 10 瓶的重量,超量记为“+”,不足记为“-”. 检查结果如下(单位:mL):-3,+2,-2, -1,-5,+3,-2 ,+3,+1,-1(1)总的情况是超量还是不足?(2)每听平均超量或不足多少?(3)最多与最少相差多少?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.D4.C5.B6.B7.D8.B.9.B10.B11.A12.A13.C二、填空题14.圆锥或正三棱锥或正四棱锥15.相离;相交;33 216.6(0)y xx=>17.13. 518.0.219.2320.12.5°21.例如:926x x=-等三、解答题22.该物体是一个圆柱被左右两侧平面及水平面切片成缺口面形成的几何图形,它的形状如解图所示.23.(1)评委给出 A选手的所有可能结果如下:由上可知评委给出 A 选手所有可能的结果有8种.(2)对于 A 选手,“只有甲、乙两住评委给出相同的结论”有 2 种,即“通过一通过一待定”、“待定一待定一通过”,所以对于 A选手“只有甲、乙两位评委给出相同结论”的概率是1 424.25.∵CD⊥AB,∠B=30°,∴:1:2CD BC=,∵∠B= 30°,∠ACB= 90°,∴∠A = 60°,∠ACD= 30°,∴:1:2AD AC=,∴::AD AC CD BC=.26.(1)9>O;(2)-4<4;(3)8<12;(4)1>-3;(5)6<12;(6)4>2 结论:①不等式的两边加上(或减去)同一个数,所得到的不等式仍成立;②:不等式的两边都乘(或都除以)同一个正数,所得的不等式仍成立;不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得的不等式成立27.平行,说明∠CDF+∠3=180°28.平行,利用∠ACD=∠BEF29.x=2530.(1)不足 (2)不足0.5 mL,(3)8 mL。

2023年浙江省杭州市中考数学测评试题附解析

2023年浙江省杭州市中考数学测评试题附解析

2023年浙江省杭州市中考数学测评试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是( )A .B .C .D .2.如图,从小区的某栋楼的A 、B 、C 、D 四个位置向对面楼方向看,所看到的范围的大小顺序是( ) A .A>B>C>D B .D>C>B>AC .C>D>B>AD .B>A>D>CA3.如图是正方体的一个平面展开图,如果折叠成原来的正方体时与边a 重合的是( ) A .d B .eC .fD .i4.烟花厂为扬州烟花三月经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度(m)h 与飞行时间(s)t 的关系式是252012h t t =-++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A .3sB .4sC .5sD .6s5.下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同一个圆中,相等的圆周角所对的弦相等;④三个点确定一个圆. 其中正确命题的个数为( ) A .1 个B .2 个C .3 个D .4 个6.某学习小组在讨论“变化的鱼”时,知道大鱼和小鱼是位似图形(如图所示),则小鱼上的点(a ,b )对应大鱼上的点.( ) A .(-2a ,-2b )B .(-a ,-2b )C .(-2b ,-2a )D .(-2a ,-b )7.抛物线2y ax =和22y x =的形状相同,则 a 的值是( ) A .2B .-2C .2±D . 不确定8.从正方形的铁片上,截去2 cm 宽的一条长方形铁片,余下铁片的面积是48cm 2,则原来正方形铁片的面积是( ) A .6cm 2 B .8 cm 2C .36 cm 2D .64 cm 29. 若方程2(1)()4x x a x bx ++=+-,则( )A .4a =,3b =B . 4a =-,3b =C . 4a =,3b =-D . 4a =-,3b =-10.计算482375+-的结果是( ) A . 3B .1C .53D .6375- 11.直线2y x =-+和直线2y x =-的交点 P 的坐标是( ) A . P (2, 0) B . P (-2,0) C . P (0,2) D . P (0, -2) 12.从1~9这9个自然数中任取一个,是2的倍数或3的倍数的概率为( )A .79B .29C . 23D . 5913.在数轴上,原点及原点右边的点表示的数是( ) A . 正数B .负数C .非负数D .非正数二、填空题14.将如图折成一个正方体形状的盒子,折好后与“迎”字相对的字是 .15.袋中共有 5 个大小相同的红球和自球,任意摸出一球为红球的概率是25,则袋中红球有个,白球有 个,任意模出两个球均为红球的概率是 . 16.己在同一直角坐标系中,函数11(0)y k x k =≠的图象与22(0)k y k x=≠的图象没有公共点,则12k k .(填“>”、“=”或“<”)17.点(5,9)与点(x ,y )于原点对称,则x y += .18.已知5筐苹集的质量分别为(单位:kg):52;49;50,53,51,则这5筐苹果的平均质 量为 kg .19.观察如图所示的正六边形ABCDEF ,图中的线段AB 是由 平移得到的;是否能把线段EF 平移得到线段CD? (填“能”或“不能”).20.如图,在直角三角形ABC 中,∠ACB=90°,CD ⊥AB , 点D 为垂足. 在不添加辅助线的情况下,请写出图中一对相等的锐角: .(写出一对即可).F DE A B C A DCB DCBAEM21.已知直线1l 与2l 都经过点P ,并且1l ∥3l ,2l ∥3l ,那么1l 与2l 必然重合,这是因为 . 22.(1)75°= 直角; (2)29平角= ; (3)135°= 周角. 三、解答题23.路灯下,两个亭子及其影子的情况如图所示,请你确定灯泡的位置,并画出灯下小明 的影子.24.如图,在梯形ABCD 中,AD//BC ,∠A=90°,AB=7,AD=2,BC=3,试在边AB 上确定点P 的位置,使得以P 、A 、D 为顶点的三角形与以P 、B 、C 为顶点的三角形相似.25.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到点C ,使DC BD ,连结AC 交⊙O 于点F .(1)AB 与AC 的大小有什么关系?为什么?(2)按角的大小分类,请你判断ABC △属于哪一类三角形,并说明理由.26.如图,在等腰梯形 ABCD 中,AB ∥CD ,CD=50cm,AB=130cm,高h=DE=40cm ,以直线AB 为轴旋转一圈,得到一个上、下是圆锥,中间是圆柱的组合体,求这个组合体的全面积.27.已知一次函数y=3x-2k 的图象与反比例函y=k-3x 的图象相交,其中一个交点的纵坐标为6,求一次函数的图象与x 轴、y 轴的交点坐标. (-103,0),(0,10).28.观察下图中的图形,并阅读图形下面的相关文字:通过分析上面的材料,十边形钓对角线有多少条?n 边形的对角线有多少条?29.如图所示,□ABCD 中,AE ,CF 分别平分∠BAD ,∠DCB .求证:AFCE 是平行四边形.30.一个盛有水的圆柱形水桶,其底面半径为18 cm ,再将一个半径为8 cm 的铁球放入桶内,正好沉没在桶内的水面下,问桶内的水面上升了多少?(精确到0.1cm ,球的体积为343R )【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.3.A4.B5.C6.A7.C8.D9.D10.A11.A12.C13.C二、填空题14.运15.2,3,1 1016.< 017.-1418.5119.线段ED,不能20.答案不唯一,如∠1 =∠A,∠2=∠B等21.经过直线外一点.有且只有一条直线与已知直线平行22.(1)56 (2)40 (3)38三、解答题23.如图所示,虚线交点 P为灯泡的位置,线段 AB 为小明的影子.24.514,1,6. 25.(1)AB=AC ,可以连结AD ;(2)等腰三角形.26.如图①,∵ 等腰梯形 ABCD 中,CD= 50 cm ,AB= 130 cm ,且 DE ∥AB ,∴1(13050)402AE =-=cm ,,∴AD = cm ,∴40S rl ππ==⨯⨯=圆锥侧,2240504000S rh πππ==⨯⨯=圆柱侧∴24000S S Sπ∆=+=+圆锥侧圆柱侧cm 2.27.28. 35条,(3)2n n - 29.证明AE ∥CF 即可30.2.1 cm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2023重点初中招生考试检测试卷数学
【实用版】
目录
一、考试试卷概述
二、试卷内容分析
三、备考建议
正文
一、考试试卷概述
2023 年重点初中招生考试数学试卷是一份针对初中毕业生的数学能力检测试卷。

这份试卷的主要目的是评估学生在数学方面的基本知识和技能,以及解决问题的能力。

考试范围涵盖了初中阶段的所有数学课程,包括代数、几何、概率与统计等。

这份试卷将帮助学校更好地选拔优秀的学生,同时也为学生提供一个自我检测的机会。

二、试卷内容分析
1.代数部分:代数部分主要考察学生的代数运算能力,包括一元一次方程、一元二次方程、因式分解、分式方程等。

此外,还包括一些代数综合题,需要学生运用所学的知识解决实际问题。

2.几何部分:几何部分主要考察学生的几何图形识别、性质及应用能力,包括三角形、四边形、圆等常见几何图形。

此外,还包括一些几何综合题,需要学生运用所学的几何知识解决实际问题。

3.概率与统计部分:概率与统计部分主要考察学生的概率与统计基本概念、数据处理能力,包括概率的计算、事件的概率、数据的收集与整理等。

此外,还包括一些概率与统计综合题,需要学生运用所学的概率与统计知识解决实际问题。

4.解决问题能力部分:这部分主要考察学生的数学应用能力,需要学
生运用所学的数学知识解决实际问题。

题目可能会涉及生活、科学、社会等方面,需要学生具备较强的综合素质和创新思维。

三、备考建议
1.扎实掌握基础知识:要想在数学考试中取得好成绩,首先要扎实掌握基础知识。

学生可以通过复习课本、做课后习题等方式,加强对基础知识的理解和记忆。

2.提高解题能力:学生在备考过程中,要注重提高解题能力。

可以通过做一些典型题、难题、综合题,培养自己的解题技巧和策略。

3.注重数学应用:数学是一门应用性很强的学科,学生在备考过程中要注重数学应用。

可以多做一些实际问题,提高自己的数学应用能力。

4.培养创新思维:在备考过程中,学生要注重培养自己的创新思维。

可以通过做一些开放性问题、探究性问题,培养自己的创新思维能力。

5.保持良好的心态:考试前,学生要保持良好的心态,不要过于紧张。

相关文档
最新文档