2016年北师大版九年级数学上册图形的位似(1)

合集下载

北师大版数学九年级上册《位似图形》教案

北师大版数学九年级上册《位似图形》教案

北师大版数学九年级上册《位似图形》教案一. 教材分析北师大版数学九年级上册《位似图形》是学生在学习了相似图形的基础上,进一步研究位似图形的性质和应用。

本节课的内容包括位似图形的定义、位似比、位似变换等,通过这些内容的学习,使学生能够理解位似图形的概念,掌握位似变换的方法,并能够运用位似图形的性质解决实际问题。

二. 学情分析学生在学习本节课之前,已经学习了相似图形的性质,对图形的相似性有一定的认识。

但是,对于位似图形的概念和性质,以及位似变换的方法,可能还比较陌生。

因此,在教学过程中,需要通过具体的实例和活动,帮助学生理解和掌握位似图形的性质和应用。

三. 教学目标1.理解位似图形的概念,掌握位似比的概念和计算方法。

2.掌握位似变换的方法,能够运用位似图形的性质解决实际问题。

3.培养学生的空间想象能力,提高学生的数学思维能力。

四. 教学重难点1.位似图形的概念和性质。

2.位似比的概念和计算方法。

3.位似变换的方法和应用。

五. 教学方法采用问题驱动法、实例教学法、小组合作学习法等教学方法,通过具体的实例和活动,引导学生探究位似图形的性质和应用,激发学生的学习兴趣,培养学生的空间想象能力和数学思维能力。

六. 教学准备1.准备相关的教学实例和图片。

2.准备教学课件和板书设计。

3.准备练习题和作业。

七. 教学过程1.导入(5分钟)通过展示一些相关的实例和图片,引导学生回顾相似图形的性质,为新课的学习做好铺垫。

2.呈现(15分钟)介绍位似图形的定义和性质,通过具体的实例和活动,引导学生探究位似比的概念和计算方法,以及位似变换的方法。

3.操练(15分钟)通过一些练习题,帮助学生巩固位似图形的性质和应用,提高学生的解题能力。

4.巩固(10分钟)通过一些综合性的练习题,帮助学生巩固位似图形的性质和应用,提高学生的综合运用能力。

5.拓展(10分钟)通过一些拓展性的问题和活动,激发学生的学习兴趣,提高学生的数学思维能力。

图形的位似课件北师大版数学九年级上册

图形的位似课件北师大版数学九年级上册
E

E' O C'

A' B'
A
B
知识精讲
2. 位似图形的性质
(1)对应点所在的直线经过位似中心;
(2)任意一组对应点到位似中心的距离之比等于相似比;
(3)对应边平行或在同一条直线上.
D
′ ′′
=
.


D'
O
C'
E'
A'
D
C
E
B'
B

A
′ ′′
=
.


C
E
D'C'
E'
A A'OB' B

知识精讲
3. 位似图形的画法(将一个图形放大或缩小)
(1)确定位似中心和图形上的关键点;
(2)连接位似中心与关键点并延长所得线段;
(3)根据相似比确定位似图形上的关键点;
A'
(4)顺次连接位似图形上的关键点,得到位似图形.
A
画一个△A′B ′C ′,使它与∆位似,且相似比为2.
C'
C
O
B

分析: 设 = .
由矩形的周长
矩形与矩形′ ′ ′是位似图形


=
′ ′
D'
D
A
C'
C
B
用表示的长
用表示AB ′ , ′的长
B'
典例精讲
【例题3】如图,矩形与矩形′ ′ ′是
位似图形,为位似中心.已知矩形的周长为
24,′ = 4,′ = 2,求, 的长.

北师大版数学九年级上册 图形的位似

北师大版数学九年级上册  图形的位似

8 图形的位似第1课时位似图形及其画法1.了解图形的位似的概念,会判断简单的位似图形和位似中心.2.理解位似图形的性质,能利用位似将一个图形放大或缩小,解决一些简单的实际问题.3.采用引导、启发、合作、探究等方法,经历观察、发现、动手操作、归纳、交流等数学活动,获得知识,形成技能,发展思维,学会学习.4.使学生亲身经历位似图形的概念形成过程和位似图形性质的探索过程,感受数学知识的实用性.【教学重点】图形的位似概念、位似图形的性质及利用位似把一个图形放大或缩小.【教学难点】探索位似概念、位似图形的性质及利用位似准确地把一个图形通过不同的方法放大或缩小.一、情境导入,初步认识下列图片是形状相同的一组图形.在图①上取一点A与图②上取相应点B的连线是否经过镜头中心P?换其它点呢?【教学说明】展示现实生活中的位似图形,让学生体会本课的价值,激发学生的兴趣.启发学生寻找图形的特点.二、思考探究,获取新知观察下面图形,有相似图形吗?如果有,有什么特征?【教学说明】教师演示引导学生观察对应点连线、对应边有什么特点.【归纳总结】如果两个图形不仅相似,而且每组对应点所在的直线都经过同一点,并且对应边平行(或在同一直线上),那么这样的两个图形叫做位似图形, 这个点叫做位似中心. 显然,位似图形是相似图形的特殊情形,其相似比又叫做它们的位似比.注意:同时满足下面三个条件的两个图形才叫做位似图形.三条件缺一不可:①两图形相似;②每组对应点所在直线都经过同一点;③对应边互相平行(或在同一直线上).2.把下面的四边形缩小到原来的12(相似比是12或位似比是12).解:(位似中心在图形外)作法略.四边形A′B′C′D′即为所求.你有其他画法吗?请互相交流.【教学说明】启发学生自己画,引导学生利用位似图形的性质画位似图形.组织学生讨论位似中心的位置有几种情况并画出图形.【归纳总结】画位似图形的方法:1.确定位似中心;2.找对应点;3.连线;4.下结论.三、运用新知,深化理解1. 下列说法中正确的是(D )A.位似图形可以通过平移而相互得到B.位似图形的对应边平行且相等C.位似图形的位似中心不只有一个D.位似中心到对应点的距离之比都相等2.如图,火焰的光线穿过小孔O ,在竖直的屏幕上形成倒立的实像,像的长度BD=2cm ,OA=60cm,OB=15cm ,则AC 的长度为8cm.3. 如图,五边形A ′B ′C ′D ′E ′与五边形ABCDE 是位似图形,且位似比为12. 若五边形ABCDE 的面积为17cm 2, 周长为20cm ,那么五边形A ′B ′C ′D ′E ′的面积为2174cm ,周长为 10 cm .4.如图,A ′B ′∥AB ,B ′C ′∥BC ,且OA ′∶A ′A=4∶3,则△ABC 与 △A ′B ′C ′ 是位似图形,位似比为 7∶4 ;△OAB 与 △OA ′B ′ 是位似图形,位似比为 7∶4 .答案:△A ′B ′C ′ 7∶4 △OA ′B ′ 7∶45.如图:三角形ABC ,请你在网格中画出把三角形ABC 以C 为位似中心放大2倍的三角形.【教学说明】小组合作交流、探究,动手操作.通过例题、练习,让学生总结解决问题的方法,以培养学生良好的学习习惯.四、师生互动,课堂小结通过本节课的学习,你有哪些收获?1.布置作业:教材“习题4.13”中第1、2 题.2.完成练习册中相应练习.在学习图形的位似概念过程中,让学生用类比的方法认识到事物总是互相联系的,温故而知新.而通过“位似图形的性质”的探索,让学生认识到事物的结论必须通过大胆猜测、推理和归纳.在分析理解位似图形性质时,加强师生的互动,提高学生分析问题、解决问题的能力.第2课时平面直角坐标系中的位似变换1.理解位似图形的定义,能熟练地利用坐标变化将一个图形放大与缩小.2.理解平移、轴对称、旋转和位似四种变换的基本性质,会按要求画出经变换后的图形.3.在具体活动操作中,培养学生的动手操作能力,进一步增强用位似变换来解决实际问题的能力.4.在观察、操作、推理、归纳等探索过程中,进一步培养学生综合运用知识的能力,体验成功的喜悦,树立良好的数学自信心.【教学重点】用图形的坐标变化来表示图形的位似变换,能综合运用平移、轴对称、旋转和位似进行图案设计.【教学难点】体会用图形的坐标变化来表示图形的位似变换的变化规律.一、情境导入,初步认识问题如图,已知点A(0,3),B(2,0)是平面直角坐标系内的两点,连接AB.(1)将线段AB向左平移3个单位得到线段A1B1,画出图形,并写出A1,B1的坐标;(2)作出线段AB关于y轴对称的线段A2B2,并写出A2,B2点的坐标;(3)将线段AB绕原点O旋转180°得到线段A3B3,画出图形,并写出A3,B3的坐标.(4)以原点O为位似中心,位似比为12,把线段AB缩小,得到线段A4B4,请在图中画出线段A4B4,写出A4,B4坐标.观察对应点坐标的变化,你有什么发现?【教学说明】问题(1)、(2)、(3),从学生已有的知识入手,以问题为载体,自然复习平移、轴对称、旋转等变换.而问题(4),则是承上启下为新课的学习做好铺垫,同时,与问题(1)、(2)、(3)一起形成了完整的知识结构,这样以旧引新,帮助学生建立新旧知识间的联系.对问题(1)、(2)、(3)的处理,可采用灵活多样形式,既可自主探究,也可小组讨论相互交流,教师也可适时参与讨论.在处理问题(4)时,教师可给学生充裕的探讨时间,让学生自己发现结论.二、思考探究,获取新知通过上面的问题(4)思考,可以发现:在平面直角坐标系中,如果位似是以原点为位似中心,位似比为k,那么位似图形对应点坐标的比为k或-k.这一结论是否正确呢?下面我们再通过探究来验证一下.问题如图,△ABC三个顶点坐标分别为A(2,3),B(2,1),C(4,3),以点O为位似中心,相似比为2,将△ABC放大,得到△A1B1C1.(1)请在图中画出所有满足要求的△A1B1C1;(2)写出A、B、C的对应点A1,B1,C1的坐标;(3)观察对应顶点坐标的变化,你有什么发现?分析与解(1)作直线OA,OB,OC,在射线OA、OB、OC上,截取A1,B 1,C 1,使1112===OA OB OC OA OB OC,依次连接A 1,B 1,C 1,得△A 1B 1C 1,则△A 1B 1C 1是适合要求的图形;类似地,在第三象限可画△A 2B 2C 2,使得△A 2B 2C 2是以O 为位似中心,位似比为2的放大图形,如图所示:(2)把△ABC 放大后,A ,B ,C 的对应点为A 1(4,6),B 1(4,2),C 1(8,6);A 2(-4,-6),B 2(-4,-2),C 2(-8,-6);(3)观察对应点坐标的变化,可以发现,各顶点的横、纵坐标均是其对应点横、纵坐标的k 倍或-k 倍.【教学说明】通过对上述问题的探究思考,让学生主动参与数学知识的“再发现”,在动手——猜想——交流——归纳过程中进一步体验坐标平面内的位似变换性质.性质 在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比为k 或-k.三、典例精析,掌握新知例1 △OEF 是△OAB 以点O 为位似中心;由△OAB 放大而得到的,若点A 、B 坐标分别为(-1,4)和(3,2),且相似比为3∶1,求点E 、F 的坐标.分析与解 由坐标平面内以原点O 为位似中心的两个图形的对应顶点坐标之间的关系可以知道,点E ,F 的坐标应为(-1×3,4×3)和(3×3,2×3)或(-1×(-3),4×(-3))和(3×(-3),2×(-3)),即E 、F 的坐标为(-3,12)和(9,6)或(3,-12)和(-9,-6).例2 如图,四边形ABCD 的坐标分别为A (-6,6),B (-8,2),C (-4,0),D (-2,4),画出它的一个以原点O 为位似中心,相似比为12的位似图形. 分析与解 问题的关键是要确定位似图形各个顶点的坐标.根据前面的规律,点A的对应点A′的坐标为(-6×12,6×12),即(-3,3).类似地,可以确定其他顶点的坐标.如图,利用位似中对应点的坐标的变化规律,分别取A′(-3,3),B′(-4,1),C(-2,0),D′(-1,2).依次连接A′,B′,C′,D′,四边形A′B′C′D′就是要求的四边形ABCD的位似图形.【教学说明】这里的两道题都可让学生自主探究,教师巡视,发现问题及时指导,最后教师再展示解题过程,锻炼学生的解题能力.在例2中,还可以画出四边形ABCD类似原点O在第四象限的位似图形,可让学生试一试.四、运用新知,深化理解1.如图表示△AOB和把它缩小后得到的△OCD,求△AOB与△COD的相似比.2.如图,△ABC三个顶点坐标分别为A(2,-2),B(4,-5),C(5,-2),以原点O为位似中心,将这个三角形放大为原来的2倍.【教学说明】所选的两道题是前面知识的延续,学生可自主完成,教师巡视,对优秀者应给予鼓励,增强他们学习兴趣.五、师生互动,课堂小结1.通过本节课的学习,你有哪些收获?2.列举出生活中的位似图案.【教学说明】针对问题1,学生可发表各自看法,这样一方面可提炼本节知识点,另一方面也可对所存在的问题进行探讨,完善知识技能.而问题2则可让学生感受数学来源于生活,从而更深理解本节知识.1.布置作业:从教材P51习题27.3中选取.2.完成练习册中相应练习.本课时可类比上一课时的教学方式进行,只不过本课时涉及到了平面直角坐标系,教学时教师应让学生充分参与,体会平面直角坐标系中的位似变换,以培养学生的动手操作能力和用位似变换解决实际问题的能力.本课的难点是用图形的坐标变化来表示图形的位似变换的变化规律,教师可让学生以小组为单位进行讨论,争取让学生自己发现规律,教师再予以适当点拨,以培养学生的探究能力.。

北师大版九年级数学上册《图形的位似(第1课时)》精品教案

北师大版九年级数学上册《图形的位似(第1课时)》精品教案

《图形的位似》精品教案【教学目标】1.知识与技能(1).了解位似多边形及其有关概念,了解位似与相似的联系和区别,掌握位似多边形的性质.(2).掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.2.过程与方法培养学生的观察、归纳、探索和动手的能力。

3.情感态度和价值观在学生解决问题的过程中,激发学生的创新意识,培养学生坚忍不拔、勇于探索的学习品质;在合作学习及相互交流中,培养学生团队精神。

【教学重点】位似多边形的有关概念、性质与作图.【教学难点】利用位似将一个图形放大或缩小.【教学方法】合作、探究【课前准备】多媒体课件【教学过程】一、复习回顾下列是一些图的变换,请连线:我们发现:前三个图中的两个图形都是全等的,而第四个图形中的两个图形相似,那么第四个图是怎样的一种变换呢?二、探究新知1.位似图形的定义下面的一组图片是形状相同的图形,在图片①上取一点A,它与另一图片(如图片②)上的相应点B之间的连线是否经过镜头P 的中心?在图片上换其它的点试一试,还有类似的结论吗?可以发现:直线AB 都经过镜头中心点,且PB PA 都等于一个固定值. 问题:下面两个多边形相似,将两个图形的顶点相连,观察发现连接的直线相交于点O. OEOE OD OD OC OC OB OB OA OA ',',',','有什么关系?OEOE OD OD OC OC OB OB OA OA '''''====. 归纳: 一般地,如果两个相似多边形任意一组对应顶点P,P'所在的直线都经过同一个点O ,且有OP'=k ·OP(k ≠0),那么这样的两个多边形叫做位似多边形,点O 称为位似中心。

实际上,k 就是这两个相似多边形的相似比。

位似多边形是具有特殊位置关系的相似多边形.例1:下列各组图形中,是位似图形的有( D )A .2对B .3对C .4对D .5对练习:如图,△ABC 与△DEF 是位似图形,O 是位似中心,OA=AD ,则△ABC 与△DEF 的位似比是( A ) A.21 B.31 C.2 D.3 2.位似图形的性质:性质:① 两个图形相似.②对应点的连线相较于一点,对应边互相平行或在同一直线上.③任意一对对应点到位似中心的距离之比等于相似比.3.作位似多边形如图,已知△ABC ,以点O 为位似中心画△DEF ,使其与△ABC 位似,且位似比为2.思考:1. 如何利用位似将一个图形放大或缩小?画位似图形的一般步骤是什么?2. 画位似图形时需要注意什么问题?解:画射线OA,OB,OC;在射线OA,OB,OC 上分别取点D,E,F,使OD = 2OA,OE = 2OB,OF = 2OC;顺序连接D,E,F,使△DEF 与△ABC 位似,相似比为2.画法二:△ABC与△DEF异侧解:画射线OA,OB,OC;沿着射线OA,OB,OC反方向上分别取点D,E,F,OD = 2OA,OE = 2OB, OF = 2OC;顺序连接D,E,F,使△DEF与△ABC位似,相似比为2.画位似图形的关键是画出图形中顶点的对应点,画图的方法大致有两种:一是每对对应点都在位似中心的同侧,二是每对对应点在位似中心的异侧.例2:已知点O在△ABC内,以点O为位似中心画一个三角形,使它与△ABC位似,且位似比为1:2.画法一:△ABC与△DEF在同侧解:画射线OA,OB,OC;在射线OA,OB,OC上分别取点D,E,F,使OA = 2OD,OB = 2OE,OC = 2OF;顺序连接D,E,F,使△DEF与△ABC位似,位似比为1:2.画法二: △ABC与△DEF在异侧解:画射线OA,OB,OC;在射线OA,OB,OC反向延长线上分别取点D,E,F,使OA = 2OD,OB =2OE,OC = 2OF;顺序连接D,E,F,使△DEF与△ABC位似,位似比为1:2.练习:1.如图,△ABC与△A′B′C′是位似图形,且位似比是1∶2,若AB=2 cm,则A′B′=____4____ cm,并在图中画出位似中心O.2.在任意一个三角形内部画一个小三角形,使其各边与原三角形各边平行,则它们的位似中心是(D)A.一定点B.原三角形三边垂直平分线的交点C.原三角形角平分线的交点D.位置不定的一点三、巩固提高:1.如图,矩形ABCD与矩形A′B′C′D′是位似图形,点A是位似中心,已知矩形ABCD的周长为24,BB′=4,DD′=2,求AB和AD的长.解:∵矩形ABCD的周长为24,∴AB+AD=12,设AB=x,则AD=12-x,∴A'B'=x+4,A'D'=14-x∵矩形ABCD与矩形A′B′C′D′是位似图形,∴矩形ABCD∽矩形A′B′C′D′x-14x-124x,''''=+=∴xDAADBAAB即解得:x=8∴AB=8,AD=12-x=4.2.如图,在6×8的网格图中,每个小正方形边长均为1,点O和△ABC的顶点均为小正方形的顶点.(1)以点O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1∶2;(2)连接(1)中的AA′,求四边形AA′C′C的周长.(结果保留根号)解:(1)如图(2)AA′=CC′=2.在Rt△OA′C′中, OA′=OC′=2,22''''22=+=OCOACA得24=AC同理可得∴四边形AA′C′C的周长=264+。

北师大版九年级数学上册导学案图形的位似 (1)

北师大版九年级数学上册导学案图形的位似 (1)

A DBC E(2) 北师大版九年级数学上册导学案年级九班级学科 数学课题 4.8图形的位似(1) 第 1 课时 总 课时编制人审核人使用时间第 周星期使用者课堂流程 具 体 内 容学习 目标 1.理解位似多边形的定义及相关性质。

2.能利用图形的位似将一个图形放大或缩小.学法指导温故 知新1. 相似多边形的定义是什么?2. 相似三角形的定义是什么?(3分钟) 1.课前自己独立完成,学科长检查。

教 学知识点1:位似多边形(阅读书上P113内容)1.如果两个相似多边形每组对应点所在的直线都经过同一个点,那么这样的两个多边形叫做 。

这个点叫做 。

例1:指出下图中的图形是否是位似图形?若是,指出位似中心。

位似中心为位似中心为注意:位似多边满足两个条件:(1)是相似多边形;(2)两多边形每组对应点所在的直线都经过同一点。

2.自学书上P113-P114例11)在这道例题中,=DE AB ,DF AC = ,=EFBC. 你发现了什么?(8分钟) 2.自己阅读课本,把看不明白得用红笔画出来,然后对子之间相互交流。

(10分钟)3.自己独立完成,完成有困难的与本组成员合作完成。

(10分钟)4.学科长带领本组成员审题并分析该题的解题思路,达到共同完成得目的。

P (1)A CB 2)在这道例题中,满足条件的△DEF 可以在以点O 的另一侧吗?你如果可以,你能试着画一下吗?如图:知识点2:位似多边形的画法 一般步骤为:(1)确定位似中心; (2)确定原图形的关键点,通常是多边形的顶点;(3)确定位似比; (4)找出新多边形的对应关键点。

3.总结自己的发现:我的收获及存在的问题:(4分钟)5.老师提问:每组抽查两名同学回答。

流 程课堂检测1. 关于对位似图形的表述,下列命题正确的是_________ .(只填序号)①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.2.如图,五边形ABCDE和五边形A1B1C1D1E1是位似图形,点A和点A1是一对对应点,P是位似中心,且2 PA=3 PA1,则五边形ABCDE和五边形A1B1C1D1E1的相似比等于 ( )A、32.B、23.C、53.D、35.(10分钟)6.学生独立完成,老师巡查,学科长负责批阅。

北师大版数学九年级上册 图形的位似 第1课时

北师大版数学九年级上册    图形的位似 第1课时
第四章 图形的相似
4.8 图形的位似(第1课时)
图 1 是一幅宣传海报,它由一组形状相同的图片组成,在
图片①和图片②上任取一组对应镜头中心点O,且
OA OA
都等于一个固定值.
图1
图 2 是两个相似五边形,设直线AA′与BB′相交于点O,那么
OA
直线CC′,DD′ ,EE′是否也都经过点O?OA
图3
例 如图 4 已知△ABC,以点O为位似中心画一个
△DEF, 使它与△ABC位似,且相似比为 2.
解:如图 5,画射线OA,OB,OC;在射
图4
线OA,OB,OC上分别取点D,E,F,使
OD=2OA,OE=2OB,OF=2OC;顺次连接
点D,E,F,则△DEF与△ABC位似,且相
似比为 2. 图5
这个新图形与已知图形形状相同. 请你用这个方法把一个已知图形放大.
1.已知点 O 在△ABC内,以点 O 为位似中心画一个三角形, 使
它与△ABC反向位似,且相似比为12 .
解:如图 6,连接 AO,BO,CO, 然后分别延长到 D,E,F,
使得OD=
1 2
AO,EO=
1 2
BO,FO=
A
1 2
CO.
E
F
O
D C
B
图6
,
OB OB
,
OC OC
,
OD OD
,
OE OE
有什么关系?
图2
一般地,如果两个相似多边形任意一组对应顶点 P,P′ 所在的
直线都经过同一个点O,且有OP′=k·OP(k ≠ 0),那么这样的两个
多边形叫做位似多边形,点O叫做位似中心. 实际上,k 就是这两个 相似多边形的相似比.

北师大版九年级数学上册图形的位似(一)课件

北师大版九年级数学上册图形的位似(一)课件
D.OA1∶A1A=2∶3
例题欣赏2::
在直角坐标系中,四边形OABC的 顶点坐标分别为O(0,0),A( 6,0),B(3,6),C(-3,3).以 原点O为位似中心画一个四边形, 使它与四边形OABC位似,且类似 比是2:3。(自己动手画另一个图 形)
y
原坐标 O(0,0) 8 A(6,0)
标是 (D )
,则点 B1)
B.(-2,-3)
C.(2,3)或(-2,-3)
D.(3,2)或(-3,-2)
通过本节课的学习,你在知识上和方法上 有哪些收获?请说说看
1、位似图形、位似中心、类似比的定义。 2、在直角坐标系中,以O为位似中心的两个位 似多边形的坐标和类似比之间有什么关系?
B(3,6)
横纵坐标×-32 O′(0,0) A′(-4,0) B′(-2,-4)
6
B
C(-3,3) C′(2,-2)
4
C
2
以原点O为位 似中心,与 四边形OABC
类似比为2:
- - - -2 O 2 4 6 8 x 3的位似图形
8 64 -
有两个,它
原坐标 横纵坐标×32
24-
们关于原点 成中A 心对称。
问题2:
OA',OB',OC',OD',OE' OA OB OC OD OE'
有什么关系?
位似概念:
如果两个类似多边形每组对应点所在的 直线都经过同一个点O且每组对应点与
与O 点的距离之比都等于一个定值k, 例如OA′=k·OA(k≠0),那么这样的
两个多边形叫做位似多边形,点O叫做 位似中心。
位似比与类似比的关系
位似多边形上任意一对对应点到位似 中心的距离之比k等于类似比。

数学北师大版九年级上册位似图形(一)

数学北师大版九年级上册位似图形(一)
【情境创设】 初三班的同学们准备召开一次班会,他们 想把下面的图样放大,使放大前后对应线 问题的关键在于要改 段的比为 1 ︰ 3 ,然后制成彩纸活跃气氛, 变图形的大小,但不 请你帮助他们找到放大图样的方法。 能改变图形的形状。
下面我们就一起来学 习一种把图形放大或 缩小的方法
第四章 图形的相似
第8节
图形的位似(一)
大麦地中心学校 施文翠
ห้องสมุดไป่ตู้
学习目标
1.理解位似多边形的定义及相关性质。 2.理解相似多边形与位似多边形的联系 与区别。
3.掌握判断两个多边形是否是位似多边形的 方法,并能准确指出位似中心和相似比。 4、掌握把多边形按照一定比例放大或缩小的 绘图方法。
课堂前置
每一组对应点的连线 以上五幅图片是形状相同的图形,取图 都经过镜头中心点 中相对应的两点A、B ,它们的连线经 P 过镜头中心P吗?换其他的对应点试一 试,还有类似规律吗?
【自主探究一】
2、例1中相似比为2,测量课本114页图4—39中 对应点到位似中心的距离.
OF OD , , 相等 思考:OE 有什么关系? OB OC OA
2
对应点到位似中心的距离之比k与相似比有什么 关系?
对应点到位似中心的距离之比等于相似比。
要放大或缩小一个多边 形,只要调整对应点与 位似中心的距离,使其 比值等于放缩的比例。
例1、如图,已知△ABC,以点O为位似中心画一个 △DEF,使它与△ABC位似,且相似比为2
解:1、画射线OA,OB,OC. 2、在射线OA,OB,OC上取点D,E,F使 OD=2OA,OE=2OB,OF=2OC 顺次连接D、E、F
D A
则△DEF与△ABC位似,相似比为2 若D与A是对应点,D在哪儿? D点还可以取在哪儿? F 若 D在射线OA上D距离O点多远?

北师大版九年级数学上册《图形的位似》

北师大版九年级数学上册《图形的位似》

(1)上述所求作的四边形DEFG是正方形吗?为 什么?
(2)在△ABC中,如果BC=10,高AQ=6,求上
述正方形DEFG的边长.
A
G
F
G1 F1
B D1 E1 D
EC
(1)以点P为位似中心,按相似比2:1将图形放大,
得图1;
(2)以点Q为位似中心,按相似比1:2将图形缩小,
得图2。
图1与图2的相似比是(
如图,D,E分别AB,AC上的点.
(1)如果DE∥BC,那么∆ADE和 ∆ABC是位似图形吗?为什么? B
A DE
C
(2)如果∆ADE和 ∆ABC是位似图形,那么 DE∥BC吗?为什么?
解:(2) DE∥BC.理由是: ∆ADE和 ∆ABC是位似图形, ∆ADE∽ ∆ABC
∠ADE=∠B
DE∥BC.
观察下图中的五个图,回答下列问题:
(1)在各图中,位似图形的位似中心与这两个图形有
什么位置关系? 位置不一样,位似中心就不一样.
(2)在各图中,任取一对对应点,度量这两个点到位
似中心的距离.它们的比与位似比有什么关系?再换一对
对应点试一试.
相等.
位似图形的对应点和位似中心在 同一条直线上,它们到位似中心的 距离之比等于相似比.
S△ABC
C1 .


A1
O B B1
典例分析
3、如图,以O为位似中心,将四边形ABCD 放大为原来的2倍.
C' D'
C D
. O
A
B
A'
B'
典例分析
4、如图在6×6的方格中画出等腰梯形ABCD 的位似图形,位似中心为点A,所画图形与 原等腰梯形ABCD的位似比为2:1.

新北师大版九年级数学上册《图形的位似(1)》公开课课件.ppt

新北师大版九年级数学上册《图形的位似(1)》公开课课件.ppt

一、教材分析
(三)实践验证
二、目标分析
三、过程设计
做 数
学 四、教学反思
①每组对应点到位似中心的距离
之比都等于相似比。

②两图形可位于位似中心的同侧
或异侧。

③位似中心可位于图形外或图形
内或图形的某条边上。

④本对质应区线别段:平行或共线。 位似多边形是具有特殊位置关系的相似多
面向全体,巩固双基 1.两个位似多边形中的对应角相___等______,对应线
一、教材分析
二、目标分析
理解位似多边形的概念、性质;弄 清位似与相似的关系;利用位似知 识对图形进行放大与缩小。
三、过程设计
四五、、教教说学学反设明思计
让学生自主探究、总结归纳、理 解应用新知。
一、教材分析 二、目标分析 三、过程设计 四、教学反思
理解位似的概念、
性质;弄清位似与相
似的关系;利用位似
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
思考:位似多边形具有哪些一般相 似多边形所不具备的性质?
(一)观察猜想
想 ①对应线段有可能平行,也可能共线。

北师大版九年级数学上册4.8.1图形的位似(一)课件

北师大版九年级数学上册4.8.1图形的位似(一)课件

1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” 2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 3、反思自我时展示了勇气,自我反思是一切思想的源泉。 4、好的教师是让学生发现真理,而不只是传授知识。 5、数学教学要“淡化形式,注重实质.
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月下午10时12分21.11.722:12November 7, 2021 7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观
察是思考和识记之母。”2021年11月7日星期日10时12分1秒22:12:017 November 2021 8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。下午10时12
分1秒下午10时12分22:12:0121.11.7
总结梳理 内化目标
达标检测 反思目标
达标检测 反思目标
答案
图形的位似(一)
创设情景 明确目标
学习目标:
1.掌握位似图形的定义和画法. 2.掌握位似与相似的联系与区别.
探究点(一)位似图形的概念
探究点(二)画位似图形
探究点(二)画位似图形
思考:1. 如何利用位似将一个图形放大或缩? 画位似图形的一般步骤是什么?
2. 画位似图形时需要注意什么问题?

图形的位似课件北师大版数学九年级上册(1)

图形的位似课件北师大版数学九年级上册(1)
中描出点A″,B″, C″,用线段顺次连接O,
A″, B″, C″, O.
则四边形OA″B″C″就是符合要求的四
边形.
B
-6
4
C
2
A′'
-4
-2
B′'
O
-2
-4
-6
2
C′'
4
Ax
随堂练习
1.在平面直角坐标系中,已知点A(6,4),B(4,-2),以原点O为位似


中心,类似比为 ,把△ABO缩小,则点A的对应点A'的坐标



y

如图,四边形A′B′C′D′的边长为四边

形ABCD的边长的___倍,对应点的连

线都过点___.
O
所以四边形A′B′C′D′与四边形ABCD


位似,位似中心为点O, 类似比为 .
D
6
4
2
A
A'
-2
O
2
B'
D'
-2
C' -4
-6
C
B
4
6 x
归纳总结
通过上面各个问题的探究,你能得出什么结论?
4
C′, D′, A′,
2 A
则四边形A'B'C' D′就是符合要
求的四边形.
O
B (A′)
2
C
D
D'
4
6
8
10
x
课堂小结
性质
位似图形
与坐标
在坐标系中
画位似图
在平面直角坐标系中,将一个多
边形每个顶点的横坐标、纵坐标
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年北师大版九年级数学上册图形的位似(1)一、选择题(共16小题)1.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,3) B.(4,3) C.(3,1) D.(4,1)2.如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′点A、B、A′、B′均在图中在格点上.若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为()A.(,n)B.(m,n)C.(m,)D.()3.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()A.(2,5) B.(2.5,5)C.(3,5) D.(3,6)4.如图,△ABE和△CDE是以点E为位似中心的位似图形,已知点A(3,4),点C(2,2),点D(3,1),则点D的对应点B的坐标是()A.(4,2) B.(4,1) C.(5,2) D.(5,1)5.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为()A(2,2)(3,2) B.(2,4)(3,1)C.(2,2)(3,1)D.(3,1),(2,2)6.如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC与△DEF的面积之比为()A.1:2 B.1:4 C.1:5 D.1:67.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4) D.(﹣2,1)或(2,﹣1)8.如图△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A.(1,2) B.(1,1) C.(,)D.(2,1)9.下列说法正确的是()A.相等的圆心角所对的弧相等B.无限小数是无理数C.阴天会下雨是必然事件D.在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k10.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是()A.3 B.6 C.9 D.1211.在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为,把△EFO缩小,则点E的对应点E′的坐标是()A(﹣2,1) B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)12.如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1) B.(2,0) C.(3,3) D.(3,1)13.已知两点A(5,6)、B(7,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的得到线段CD,则点A的对应点C的坐标为()A .(2,3)B .(3,1)C .(2,1)D .(3,3)14.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABO 与△A ′B ′O ′是以点P 为位似中心的位似图形,它们的顶点均在格点(网格线的交点)上,则点P 的坐标为( )A .(0,0)B .(0,1)C .(﹣3,2)D .(3,﹣2) 15.下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形; ②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比. 其中正确命题的序号是( )A .②B .①②C .③④D .②③④16.如图,坐标原点O 为矩形ABCD 的对称中心,顶点A 的坐标为(1,t ),AB ∥x 轴,矩形A ′B ′C ′D ′与矩形ABCD 是位似图形,点O 为位似中心,点A ′,B ′分别是点A ,B 的对应点,=k .已知关于x ,y 的二元一次方程(m ,n 是实数)无解,在以m ,n 为坐标(记为(m ,n )的所有的点中,若有且只有一个点落在矩形A ′B ′C ′D ′的边上,则k •t 的值等于( )A .B .1C .D . 二、填空题(共4小题)17.如图,△ABC 与△DEF 位似,位似中心为点O ,且△ABC 的面积等于△DEF 面积的,则AB :DE= .18.如图,正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,相似比为1:,点A 的坐标为(0,1),则点E 的坐标是 .19.如图,以O 为位似中心,将边长为256的正方形OABC 依次作位似变换,经第一次变化后得正方形OA 1B 1C 1,其边长OA 1缩小为OA 的,经第二次变化后得正方形OA 2B 2C 2,其边长OA 2缩小为OA 1的,经第三次变化后得正方形OA 3B 3C 3,其边长OA 3缩小为OA 2的,…,依次规律,经第n 次变化后,所得正方形OA n B n C n 的边长为正方形OABC 边长的倒数,则n= .20.如图,平面直角坐标系xOy 中,点A 、B 的坐标分别为(3,0)、(2,﹣3),△AB ′O ′是△ABO 关于点A 的位似图形,且O ′的坐标为(﹣1,0),则点B ′的坐标为 .三、解答题(共9小题)21.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (2,﹣4),B (3,﹣2),C (6,﹣3).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)以M 点为位似中心,在网格中画出△A 1B 1C 1的位似图形△A 2B 2C 2,使△A 2B 2C 2与△A 1B 1C 1的相似比为2:1.22.如图,在10×10的正方形网格中,点A ,B ,C ,D 均在格点上,以点A 为位似中心画四边形AB ′C ′D ′,使它与四边形ABCD 位似,且相似比为2.(1)在图中画出四边形AB ′C ′D ′;(2)填空:△AC ′D ′是 三角形.23.如图,在边上为1个单位长度的小正方形网格中:(1)画出△ABC 向上平移6个单位长度,再向右平移5个单位长度后的△A 1B 1C 1.(2)以点B 为位似中心,将△ABC 放大为原来的2倍,得到△A 2B 2C 2,请在网格中画出△A 2B 2C 2.(3)求△CC 1C 2的面积.24.已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3)、B (3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC 向下平移4个单位长度得到的△A 1B 1C 1,点C 1的坐标是 ;(2)以点B 为位似中心,在网格内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2:1,点C 2的坐标是 ;(3)△A 2B 2C 2的面积是 平方单位.25.在13×13的网格图中,已知△ABC 和点M (1,2). (1)以点M 为位似中心,位似比为2,画出△ABC 的位似图形△A ′B ′C ′;(2)写出△A ′B ′C ′的各顶点坐标.26.如图,将△ABC 在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△A 3B 3C 3.(1)△ABC 与△A 1B 1C 1的位似比等于 ;(2)在网格中画出△A 1B 1C 1关于y 轴的轴对称图形△A 2B 2C 2; (3)请写出△A 3B 3C 3是由△A 2B 2C 2怎样平移得到的? (4)设点P (x ,y )为△ABC 内一点,依次经过上述三次变换后,点P 的对应点的坐标为 .27.如图,在平面直角坐标系xOy 中,△ABC 三个顶点坐标分别为A (﹣2,4),B (﹣2,1),C (﹣5,2).(1)请画出△ABC 关于x 轴对称的△A 1B 1C 1.(2)将△A 1B 1C 1的三个顶点的横坐标与纵坐标同时乘以﹣2,得到对应的点A 2,B 2,C 2,请画出△A 2B 2C 2.(3)求△A 1B 1C 1与△A 2B 2C 2的面积比,即: = (不写解答过程,直接写出结果).28.如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别为A (﹣1,2),B (﹣3,4)C (﹣2,6)(1)画出△ABC 绕点A 顺时针旋转90°后得到的△A 1B 1C 1(2)以原点O 为位似中心,画出将△A 1B 1C 1三条边放大为原来的2倍后的△A 2B 2C 2.29.如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (﹣2,1),B (﹣1,4),C (﹣3,2).(1)画出△ABC 关于y 轴对称的图形△A 1B 1C 1,并直接写出C 1点坐标;(2)以原点O 为位似中心,位似比为1:2,在y 轴的左侧,画出△ABC 放大后的图形△A 2B 2C 2,并直接写出C 2点坐标;(3)如果点D (a ,b )在线段AB 上,请直接写出经过(2)的变化后点D 的对应点D 2的坐标.2016年北师大版九年级数学上册同步测试:4.8+图形的位似(1)参考答案与试题解析一、选择题(共16小题)1.如图,线段AB 两个端点的坐标分别为A (6,6),B (8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的后得到线段CD ,则端点C 的坐标为( )A .(3,3)B .(4,3)C .(3,1)D .(4,1) 【考点】位似变换;坐标与图形性质. 【专题】几何图形问题.【分析】利用位似图形的性质结合两图形的位似比进而得出C 点坐标.【解答】解:∵线段AB 的两个端点坐标分别为A (6,6),B (8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的后得到线段CD , ∴端点C 的横坐标和纵坐标都变为A 点的一半, ∴端点C 的坐标为:(3,3). 故选:A .【点评】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.2.如图,△ABO 缩小后变为△A ′B ′O ,其中A 、B 的对应点分别为A ′、B ′点A 、B 、A ′、B ′均在图中在格点上.若线段AB 上有一点P (m ,n ),则点P 在A ′B ′上的对应点P ′的坐标为( )A .(,n )B .(m ,n )C .(m ,)D .()【考点】位似变换;坐标与图形性质. 【专题】压轴题.【分析】根据A ,B 两点坐标以及对应点A ′,B ′点的坐标得出坐标变化规律,进而得出P ′的坐标.【解答】解:∵△ABO 缩小后变为△A ′B ′O ,其中A 、B 的对应点分别为A ′、B ′点A 、B 、A ′、B ′均在图中在格点上,即A 点坐标为:(4,6),B 点坐标为:(6,2),A ′点坐标为:(2,3),B ′点坐标为:(3,1),∴线段AB 上有一点P (m ,n ),则点P 在A ′B ′上的对应点P ′的坐标为:().故选D .【点评】此题主要考查了位似图形的性质,根据已知得出对应点坐标的变化是解题关键.3.如图,线段CD 两个端点的坐标分别为C (1,2)、D (2,0),以原点为位似中心,将线段CD 放大得到线段AB ,若点B 坐标为(5,0),则点A 的坐标为( )A.(2,5) B.(2.5,5)C.(3,5) D.(3,6)【考点】位似变换;坐标与图形性质.【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出A点坐标.【解答】解:∵以原点O为位似中心,在第一象限内,将线段CD放大得到线段AB,∴B点与D点是对应点,则位似比为:5:2,∵C(1,2),∴点A的坐标为:(2.5,5)故选:B.【点评】此题主要考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.4.如图,△ABE和△CDE是以点E为位似中心的位似图形,已知点A(3,4),点C(2,2),点D(3,1),则点D的对应点B的坐标是()A.(4,2) B.(4,1) C.(5,2) D.(5,1)【考点】位似变换;坐标与图形性质.【分析】设点B的坐标为(x,y),然后根据位似变换的性质列式计算即可得解.【解答】解:设点B的坐标为(x,y),∵△ABE和△CDE是以点E为位似中心的位似图形,∴=,=,解得x=5,y=2,所以,点B的坐标为(5,2).故选C.【点评】本题考查了位似变换,坐标与图形性质,灵活运用位似变换的性质并列出方程是解题的关键.5.(如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为()A.(2,2),(3,2)B.(2,4),(3,1)C.(2,2),(3,1)D.(3,1),(2,2)【考点】位似变换;坐标与图形性质.【专题】压轴题.【分析】直接利用位似图形的性质得出对应点坐标乘以得出即可.【解答】解:∵线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点的坐标为:(2,2),(3,1).故选:C.【点评】此题主要考查了位似变换,正确把握位似图形的性质是解题关键.6.如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC与△DEF 的面积之比为()A.1:2 B.1:4 C.1:5 D.1:6【考点】位似变换.【分析】利用位似图形的性质首先得出位似比,进而得出面积比.【解答】解:∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.故选:B.【点评】此题主要考查了位似图形的性质,得出位似比是解题关键.7.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)【考点】位似变换;坐标与图形性质.【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,即可求得答案.【解答】解:∵点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,∴点A的对应点A′的坐标是:(﹣2,1)或(2,﹣1).故选:D.【点评】此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于±k.8.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A.(1,2) B.(1,1) C.(,)D.(2,1)【考点】位似变换;坐标与图形性质.【分析】首先利用等腰直角三角形的性质得出A点坐标,再利用位似是特殊的相似,若两个图形△ABC和△A′B′C′以原点为位似中心,相似比是k,△ABC上一点的坐标是(x,y),则在△A′B′C′中,它的对应点的坐标是(kx,ky)或(﹣kx,ky),进而求出即可.【解答】解:∵∠OAB=∠OCD=90°,AO=AB,CO=CD,等腰Rt△OAB与等腰Rt△OCD 是位似图形,点B的坐标为(1,0),∴BO=1,则AO=AB=,∴A(,),∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1:2,∴点C的坐标为:(1,1).故选:B.【点评】此题主要考查了位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.9.下列说法正确的是()A.相等的圆心角所对的弧相等B.无限小数是无理数C.阴天会下雨是必然事件D.在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k【考点】位似变换;无理数;圆心角、弧、弦的关系;随机事件.【分析】根据圆周角定理以及无理数的定义和随机事件的定义和位似图形的性质分别判断得出答案即可.【解答】解:A、根据同圆或等圆中相等的圆心角所对的弧相等,故此选项错误;B、根据无限不循环小数是无理数,故此选项错误;C、阴天会下雨是随机事件,故此选项错误;D、根据位似图形的性质得出:在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,故此选项正确;故选:D.【点评】此题主要考查了圆周角定理以及无理数的定义和随机事件的定义和位似图形的性质等知识,熟练掌握相关性质是解题关键.10.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是()A.3 B.6 C.9 D.12【考点】位似变换.【分析】利用位似图形的面积比等于位似比的平方,进而得出答案.【解答】解:∵△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,△ABC的面积是3,∴△ABC与△A′B′C′的面积比为:1:4,则△A′B′C′的面积是:12.故选:D.【点评】此题主要考查了位似图形的性质,利用位似图形的面积比等于位似比的平方得出是解题关键.11.在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为,把△EFO缩小,则点E的对应点E′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)【考点】位似变换;坐标与图形性质.【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k进行计算即可.【解答】解:∵点E(﹣4,2),以O为位似中心,相似比为,∴点E的对应点E′的坐标为:(﹣4×,2×)或(﹣4×(﹣),2×(﹣)),即(﹣2,1)或(2,﹣1),故选:D.【点评】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.12.如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1) B.(2,0) C.(3,3) D.(3,1)【考点】位似变换;坐标与图形性质.【分析】根据位似变换的性质可知,△ODC∽△OBA,相似比是,根据已知数据可以求出点C的坐标.【解答】解:由题意得,△ODC∽△OBA,相似比是,∴=,又OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选:A.【点评】本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.13.已知两点A(5,6)、B(7,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的得到线段CD,则点A的对应点C的坐标为()A.(2,3) B.(3,1) C.(2,1) D.(3,3)【考点】位似变换;坐标与图形变化-平移.【专题】几何变换.【分析】先根据点平移的规律得到A点平移后的对应点的坐标为(4,6),然后根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k求解.【解答】解:∵线段AB向左平移一个单位,∴A点平移后的对应点的坐标为(4,6),∴点C的坐标为(4×,6×),即(2,3).故选A.【点评】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.也考查了坐标与图形变化﹣平移.14.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABO与△A′B′O′是以点P为位似中心的位似图形,它们的顶点均在格点(网格线的交点)上,则点P的坐标为()A.(0,0) B.(0,1) C.(﹣3,2)D.(3,﹣2)【考点】位似变换;坐标与图形性质.【分析】利用位似图形的性质得出连接各对应点,进而得出位似中心的位置.【解答】解:如图所示:P点即为所求,故P点坐标为:(﹣3,2).故选:C.【点评】此题主要考查了位似变换,根据位似图形的性质得出是解题关键.15.下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.其中正确命题的序号是()A.②B.①② C.③④ D.②③④【考点】位似变换;命题与定理.【分析】利用位似图形的定义与性质分别判断得出即可.【解答】解:①相似图形不一定是位似图形,位似图形一定是相似图形,故①错误;②位似图形一定有位似中心,故②正确;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,且对应边互相平行;那么,这两个图形是位似图形,故③错误;④位似图形上任意一对对应点到位似中心的距离之比等于位似比,故④错误.正确的选项为:②.故选:A.【点评】此题主要考查了位似图形的性质与定义,熟练掌握位似图形的性质是解题关键.16.如图,坐标原点O为矩形ABCD的对称中心,顶点A的坐标为(1,t),AB∥x轴,矩形A′B′C′D′与矩形ABCD是位似图形,点O为位似中心,点A′,B′分别是点A,B的对应点,=k.已知关于x,y的二元一次方程(m,n是实数)无解,在以m,n为坐标(记为(m,n)的所有的点中,若有且只有一个点落在矩形A′B′C′D′的边上,则k•t的值等于()A.B.1 C.D.【考点】位似变换;二元一次方程组的解;坐标与图形性质.【专题】压轴题.【分析】首先求出点A′的坐标为(k,kt),再根据关于x,y的二元一次方程(m,n是实数)无解,可得mn=3,且n≠1;然后根据以m,n为坐标(记为(m,n)的所有的点中,有且只有一个点落在矩形A′B′C′D′的边上,可得反比例函数n=的图象只经过点A′或C′;最后判断出反比例函数n=的图象经过C′点,则A ′点的坐标是(3,1),所以k •t=1,据此解答即可. 【解答】解:∵矩形A ′B ′C ′D ′与矩形ABCD 是位似图形, =k ,顶点A 的坐标为(1,t ),∴点A ′的坐标为(k ,kt ),∵矩形A ′B ′C ′D ′与矩形ABCD 是位似图形,点O 为位似中心, ∴矩形A ′B ′C ′D ′也关于点O 成中心对称. ∵关于x ,y 的二元一次方程(m ,n 是实数)无解,∴mn=3,且n ≠1,即n=(m ≠3),∵以m ,n 为坐标(记为(m ,n )的所有的点中,有且只有一个点落在矩形A ′B ′C ′D ′的边上,∴反比例函数n=的图象只经过点A ′或C ′,∵矩形A ′B ′C ′D ′关于点O 成中心对称,反比例函数n=的图象关于点O 成中心对称,∴反比例函数n=的图象经过C ′点,如果反比例函数n=的图象不经过C ′点,则以m ,n 为坐标(记为(m ,n )的所有的点中,如果有点落在矩形A ′B ′C ′D ′的边上,则至少有两个点落在矩形A ′B ′C ′D ′的边上,∴A ′点的坐标是(3,1), ∴k •t=1. 故选:B .【点评】(1)此题主要考查了位似变换问题,要熟练掌握,解答此题的关键是要明确:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.(2)此题还考查了二元一次方程组的求解方法,以及坐标与图形的性质,要熟练掌握.二、填空题(共4小题)17.如图,△ABC 与△DEF 位似,位似中心为点O ,且△ABC 的面积等于△DEF 面积的,则AB :DE= 2:3 .【考点】位似变换.【分析】由△ABC 经过位似变换得到△DEF ,点O 是位似中心,根据位似图形的性质,即可得AB ∥DE ,即可求得△ABC 的面积:△DEF 面积=,得到AB :DE ═2:3.【解答】解:∵△ABC 与△DEF 位似,位似中心为点O ,∴△ABC ∽△DEF ,∴△ABC 的面积:△DEF 面积=()2=,∴AB :DE=2:3,故答案为:2:3.【点评】此题考查了位似图形的性质.注意掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.18.如图,正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,相似比为1:,点A 的坐标为(0,1),则点E 的坐标是(,).【考点】位似变换;坐标与图形性质.【专题】常规题型.【分析】由题意可得OA:OD=1:,又由点A的坐标为(0,1),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.【解答】解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,∴OA:OD=1:,∵点A的坐标为(0,1),即OA=1,∴OD=,∵四边形ODEF是正方形,∴DE=OD=.∴E点的坐标为:(,).故答案为:(,).【点评】此题考查了位似变换的性质与正方形的性质.此题比较简单,注意理解位似变换与相似比的定义是解此题的关键.19.如图,以O为位似中心,将边长为256的正方形OABC依次作位似变换,经第一次变化后得正方形OA1B1C1,其边长OA1缩小为OA的,经第二次变化后得正方形OA2B2C2,其边长OA2缩小为OA1的,经第三次变化后得正方形OA3B3C3,其边长OA3缩小为OA2的,…,依次规律,经第n次变化后,所得正方形OA n B n C n的边长为正方形OABC边长的倒数,则n=16.【考点】位似变换;正方形的性质.【专题】压轴题;规律型.【分析】由图形的变化规律可知正方形OA n B n C n的边长为×256,据此即可求解.【解答】解:由图形的变化规律可得×256=,解得n=16.故答案为:16.【点评】本题主要考查了正方形的性质及位似变换,解题的关键是正确的找出图形的变化规律.20.如图,平面直角坐标系xOy中,点A、B的坐标分别为(3,0)、(2,﹣3),△AB′O′是△ABO关于点A的位似图形,且O′的坐标为(﹣1,0),则点B′的坐标为(,﹣4).【考点】位似变换;坐标与图形性质.【专题】压轴题.【分析】根据位似图形的性质画出图形,利用对应边之间的关系得出B′点坐标即可.【解答】解:过点B作BE⊥x轴于点E,B′作B′F⊥x轴于点F,∵点A 、B 的坐标分别为(3,0)、(2,﹣3),△AB ′O ′是△ABO 关于的A 的位似图形,且O ′的坐标为(﹣1,0), ∴==,AE=1,EO=2,BE=3, ∴==,∴=, 解得:AF=, ∴EF=, ∴FO=2﹣=, ∵=,解得:B ′F=4,则点B ′的坐标为:(,﹣4).故答案为:(,﹣4).【点评】此题主要考查了位似图形的性质以及相似三角形的性质,根据已知得出对应边之间的关系是解题关键.三、解答题(共9小题)21.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (2,﹣4),B (3,﹣2),C (6,﹣3).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)以M 点为位似中心,在网格中画出△A 1B 1C 1的位似图形△A 2B 2C 2,使△A 2B 2C 2与△A 1B 1C 1的相似比为2:1.【考点】作图-位似变换;作图-轴对称变换.【专题】作图题.【分析】(1)利用轴对称图形的性质进而得出对应点位置进而画出图形即可;(2)利用位似图形的性质得出对应点位置进而画出图形即可. 【解答】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:△A 2B 2C 2,即为所求.【点评】此题主要考查了轴对称变换以及位似变换,根据题意得出对应点位置是解题关键.22.如图,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB′C′D′,使它与四边形ABCD位似,且相似比为2.(1)在图中画出四边形AB′C′D′;(2)填空:△AC′D′是等腰直角三角形.【考点】作图-位似变换.【专题】作图题.【分析】(1)延长AB到B′,使AB′=2AB,得到B的对应点B′,同样得到C、D的对应点C′,D′,再顺次连接即可;(2)利用勾股定理求出AC′2=42+82=80,AD′2=62+22=40,C′D′2=62+22=40,那么AD′=C′D′,AD′2+C′D′2=AC′2,即可判定△AC′D′是等腰直角三角形.【解答】解:(1)如图所示:(2)∵AC′2=42+82=16+64=80,AD′2=62+22=36+4=40,C′D′2=62+22=36+4=40,∴AD′=C′D′,AD′2+C′D′2=AC′2,∴△AC′D′是等腰直角三角形.故答案为:等腰直角.【点评】本题考查了作图﹣位似变换.画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.同时考查了勾股定理及其逆定理等知识.熟练掌握网格结构以及位似变换的定义是解题的关键.23.如图,在边上为1个单位长度的小正方形网格中:(1)画出△ABC向上平移6个单位长度,再向右平移5个单位长度后的△A1B1C1.(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.(3)求△CC1C2的面积.【考点】作图-位似变换;作图-平移变换.【分析】(1)根据平移的性质画出图形即可;(2)根据位似的性质画出图形即可;(3)根据三角形的面积公式求出即可.【解答】解:(1)如图所示:;(2)如图所示:;(3)如图所示:△CC1C2的面积为×3×6=9.【点评】本题考查了平移的性质,位似的性质,三角形的面积公式的应用,能根据性质的特点进行画图是解此题的关键,考查了学生的动手操作能力.24.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0);(3)△A2B2C2的面积是10平方单位.【考点】作图-位似变换;作图-平移变换.【专题】作图题.【分析】(1)利用平移的性质得出平移后图象进而得出答案;(2)利用位似图形的性质得出对应点位置即可;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.【解答】解:(1)如图所示:C1(2,﹣2);故答案为:(2,﹣2);(2)如图所示:C2(1,0);故答案为:(1,0);(3)∵A2C22=20,B2C=20,A2B2=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:×20=10平方单位.故答案为:10.【点评】此题主要考查了位似图形的性质以及平移的性质和三角形面积求法等知识,得出对应点坐标是解题关键.25.在13×13的网格图中,已知△ABC和点M(1,2).(1)以点M为位似中心,位似比为2,画出△ABC的位似图形△A′B′C′;(2)写出△A′B′C′的各顶点坐标.【考点】作图-位似变换.【专题】作图题.【分析】(1)利用位似图形的性质即可位似比为2,进而得出各对应点位置;(2)利用所画图形得出对应点坐标即可.【解答】解:(1)如图所示:△A′B′C′即为所求;。

相关文档
最新文档