2015年辽宁省沈阳市铁西区七年级(下)期末数学试卷与参考答案PDF
2015学年七年级(下)期末数学试题(含答案)
七年级(下)期末数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出正确的选项.注意可以用多种不同的方法来选取正确答案.1.下列各式的计算中,正确的是()A.﹣2﹣2=﹣4 B.(+1)0=0 C.(﹣)﹣3=27 D.(m2+1)0=12.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的一组对边上,如果∠1=25°,那么∠2的度数是()A.30°B.25°C.20°D.15°(第2题) (第5题)3.若3x=a,3y=b,则3x﹣2y等于()A.B.2ab C.a+D.4.若分式方程=2+有增根,则a的值为()A.4 B.2 C.1 D.05.如图是近年来我国年财政收入同比(与上一年比较)增长率的折线统计图,其中2008年我国财政收入约为61330亿元.下列命题:①2007年我国财政收入约为61330(1﹣19.5%)亿元;②这四年中,2009年我国财政收入最少;③2010年我国财政收入约为61330(1+11.7%)(1+21.3%)亿元.其中正确的有()A.3个B.2个C.1个D.0个6.计算1÷的结果是()A.﹣m2﹣2m﹣1 B.﹣m2+2m﹣1 C.m2﹣2m﹣1 D.m2﹣17.已知多项式ax+b与2x2﹣x+2的乘积展开式中不含x的一次项,且常数项为﹣4,则a b的值为()A.﹣2 B.2 C.﹣1 D.18.为保证某高速公路在2013年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲、乙两队合作,可比规定时间提前14天完成任务.若设规定的时间为x天,由题意列出的方程是()A.+=B.+=C.﹣=D.+=9.下列不等式变形中,一定正确的是()A.若ac>bc,则a>b B.若a>b,则ac2>bc2C.若ac2>bc2,则a>b D.若a>0,b>0,且,则a>b10.不等式组的解集是3<x<a+2,则a的取值范围是()A.a>1 B.a≤3 C.a<1或a>3 D.1<a≤3二、认真填一填(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.分解因式:2x3﹣8xy2=.12.芝麻作为食品和药物,均广泛使用,经测算,一粒芝麻重量约有0.00000201kg,用科学记数法表示10粒芝麻的重量为.13.下列说法中:(1)不相交的两条直线叫做平行线;(2)经过一点,有且只有一条直线与已知直线平行;(3)垂直于同一条直线的两直线平行;(4)直线a∥b,b∥c,则a∥c;(5)两条直线被第三条直线所截,同位角相等.其中正确的是.14.如果关于x的不等式(a﹣1)x>a+5和2x>4的解集相同,则a的值为.15.如果x2﹣2(m﹣1)x+m2+3是一个完全平方式,则m=.16.如果记y ==f (x ),并且f (1)表示当x =1时y 的值,即f (1)==;f ()表示当x =时y 的值,即f ()==;…那么f (1)+f (2)+f ()+f (3)+…+f (n +1)+f()= (结果用含n 的代数式表示).三、全面答一答(本题有8个小题,共66分.解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以) 17.解下列方程(组):(1) (2)﹣2=.18.计算:(1)()﹣1﹣4×(﹣2)﹣2+(﹣π+3.14)0﹣()﹣2(2)用简便方法计算:1252﹣124×126﹣2101×(﹣0.5)99.19.解不等式组,并从其解集中选取一个能使下面分式有意义的整数,代入求值.20.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.21.设b=ma是否存在实数m,使得(2a﹣b)2﹣(a﹣2b)(a+2b)+4a(a+b)能化简为2a2,若能,请求出满足条件的m值;若不能,请说明理由.22.某市为提高学生参与体育活动的积极性,2011年9月围绕“你最喜欢的体育运动项目(只写一项)”这一问题,对初一新生进行随机抽样调查,下图是根据调查结果绘制成的统计图(不完整).请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)根据条形统计图中的数据,求扇形统计图中“最喜欢足球运动”的学生数所对应扇形的圆心角度数.(3)请将条形统计图补充完整.(4)若该市2011年约有初一新生21000人,请你估计全市本届学生中“最喜欢足球运动”的学生约有多少人.23.(1)已知a、b、c是△ABC的三边长,试判断代数式(a2+b2﹣c2)2与4a2b2的大小.(2)已知a、b、c是△ABC的三边长,且3a3+6a2b﹣3a2c﹣6abc=0,则△ABC是什么三角形?24.为了抓住世博会商机,某商店决定购进A、B两种世博会纪念品,若购进A种纪念品10件,B 种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定拿出4000元全部用来购进这两种纪念品,考虑市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B钟纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少?参考答案一、仔细选一选1.解:A、﹣2﹣2=﹣,错误;B、(+1)0=1,错误;C、(﹣)﹣3=﹣27,错误;D、(m2+1)0=1,正确;故选D2.解:∵a∥b,∴∠1=∠3,∵∠2+∠3=45°,∴∠2=45°﹣∠3=45°﹣∠1=20°.故选C3.3x﹣2y=3x÷32y=3x÷32y=3x÷(3y)2=a÷b2=.故选A.4.解:已知方程去分母得:x=2(x﹣4)+a,解得:x=8﹣a,由分式方程有增根,得到x=4,即8﹣a=4,则a=4.故选:A5.解:①2007年的财政收入应该是,不是2007年我国财政收入约为61330(1﹣19.5%)亿元,所以①错.②因为是正增长所以2009年比2007年和2008年都高,所以②错.③2010年我国财政收入约为61330(1+11.7%)(1+21.3%)亿元.所以③正确.故选C.6.解:1÷=1××(m+1)(m﹣1)=﹣(m﹣1)2=﹣m2+2m﹣1.故选B.7.解:∵(ax+b)(2x2﹣x+2)=2ax3+(2b﹣a)x2+(2a﹣b)x+2b,又∵展开式中不含x的一次项,且常数项为﹣4,∴,解得:,∴a b=(﹣1)﹣2=1,选D.8.解:设规定的时间为x天,由题意得,+=.故选D.9.解:A.当c<0,不等号的方向改变.故此选项错误;B.当c=0时,符号为等号,故此选项错误;C.不等式两边乘(或除以)同一个正数,不等号的方向不变,正确;D.分母越大,分数值越小,故此选项错误.故选C.10.解:根据题意可知a﹣1≤3即a+2≤5,所以a≤3,又因为3<x<a+2,即a+2>3,所以a>1,所以1<a≤3,故选:D.二、认真填一填(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.解:∵2x3﹣8xy2=2x(x2﹣4y2)=2x(x+2y)(x﹣2y).故答案为:2x(x+2y)(x﹣2y).12.解:0.00000201=2.01×10﹣6,故答案为:2.01×10﹣6.13.解:(1)在同一平面内,不相交的两条直线叫做平行线;故错误;(2)经过直线外一点,有且只有一条直线与已知直线平行;故错误;(3)在同一平面内,垂直于同一条直线的两直线平行;故错误;(4)直线a∥b,b∥c,则a∥c;故正确;(5)两条平行直线被第三条直线所截,同位角相等,故错误.其中正确的是(4).14.解:由2x>4得x>2,∵两个不等式的解集相同,∴由(a﹣1)x>a+5可得x>,∴=2,解得a=7.故答案为:7.15.解:∵x2﹣2(m﹣1)x+m2+3是一个完全平方式,∴(m﹣1)2=m2+3,即m2﹣2m+1=m2+3,解得:m=﹣1,故答案为:﹣116.解:∵根据题意,f(2)==,f()==;f(3)==,f()==;…f(n+1)=,f()==;∴f(1)+f(2)+f()+f(3)+…+f(n+1)+f()=+++++…++=+1+1+…+1=故答案为:+n.三、全面答一答(本题有8个小题,共66分.解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以)17.解:(1)方程组整理得:,①×6+②×5得:57x=﹣38,解得:x=﹣,把x=﹣代入①得:y=﹣,则方程组的解为;(2)去分母得:x﹣2x+6=3,解得:x=3,经检验x=3是增根,分式方程无解.18.解:(1)原式=2﹣4×+1﹣9=﹣7;(2)原式=1252﹣(125﹣1)×(125+1)﹣2×(﹣2×0.5)99=1252﹣1252+1+2=3.19.解:,由①得,x<2,由②得,x>﹣3,所以,不等式组的解集是﹣3<x<2,÷﹣=×﹣=﹣=,分式有意义,则x2﹣1≠0,3x≠0,解得x≠±1,x≠0,所以,使得分式有意义的整数只有﹣2,代入得:原式===.20.解:(2)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.21.解:不能化简为2a2,理由:∵设b=ma,∴(2a﹣b)2﹣(a﹣2b)(a+2b)+4a(a+b)=4a2﹣4ab+b2﹣a2+4b2+4ab+4a2=7a2+5b2=7a2+5(ma)2=7a2+5m2a2=(7+5m2)a2=2a2,故7+5m2=2,解得:5m2=﹣5,不合题意,错误.22.解:(1)100÷20%=500,∴本次抽样调查的样本容量是500;(2)∵360°×=43.2°,∴扇形统计图中“最喜欢足球运动”的学生数所对应的扇形圆心角度数为43.2°;(3)如图:(4)21000×=2520(人)全市本届学生中“最喜欢足球运动”的学生约有2520人;23.解:(1)(a2+b2﹣c2)2﹣4a2b2第11页(共11页)=(a 2+b 2﹣c 2+2ab )(a 2+b 2﹣c 2﹣2ab )=[(a +b )2﹣c 2][(a ﹣b )2﹣c 2]=(a +b +c )(a +b ﹣c )(a ﹣b ﹣c )(a ﹣b +c ),∵a ,b ,c 是三角形ABC 三边,∴a +b +c >0,a +b ﹣c >0,a ﹣b ﹣c <0,a ﹣b +c >0,∴(a +b +c )(a +b ﹣c )(a ﹣b ﹣c )(a ﹣b +C )<0,即值为负数,(a 2+b 2﹣c 2)2<4a 2b 2(2)3a 3+6a 2b ﹣3a 2c ﹣6abc =0,可得:a (a ﹣c )(a +2b )=0,所以a =c ,所以△ABC 是等腰三角形.24.解:(1)设我校购进一件A 种纪念品需要a 元,购进一件B 种纪念品需要b 元,由题意,得,∴解方程组得:答:购进一件A 种纪念品需要50元,购进一件B 种纪念品需要100元.(2)设我校购进A 种纪念品x 个,购进B 种纪念品y 个,由题意,得则,解得,解得:20≤y ≤25 ∵y 为正整数∴y =20,21,22,23,24,25答:共有6种进货方案;(3)设总利润为W 元,由题意,得W =20x +30y =20(200﹣2 y )+30y =﹣10y +4000(20≤y ≤25)∵﹣10<0,∴W 随y 的增大而减小,∴当y =20时,W 有最大值W 最大=﹣10×20+4000=3800(元)答:当购进A 种纪念品160件,B 种纪念品20件时,可获最大利润,最大利润是3800元.。
2015年辽宁省沈阳市中考数学试卷(含详细答案)
__
__一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只
__
__有一项是符合题目要求的)
__
__
__
__
__ABCD
__
名__3.下列事件为必然事件的是()
_C.抛出的篮球会下落D.任意买一张电影票,座位号是2的倍数
_
__A.100B.90
_题
校
学
业A.a4a2a8B.(a5)2a7
,OB与AC相交于点E.
(1)求OCA的度数;
(2)若COB3AOBOC23,求图中阴影部分面积.(结果保留和根号)
19.(本小题满分10分)
我国是世界上严重缺水的国家之一,全国总用水量逐年上升,全国总用水量可分为农
业用水量、工业用水量和生活用水量三部分.为了合理利用水资源,我国连续多年对
水资源的利用情况进行跟踪调查,将所得数据进行处理,绘制了2008年全国总用水量
分布情况扇形统计图和2004~2008年全国生活用水量折线统计图的一部分如下:
22.(本小题满分10分)
如图,已知一次函数y3
k
x的图象相交于点A(4,n),与x轴
(1)2007年全国生活用水量比2004年增加了16%,则2004年全国生活用水量
为亿m3,2008年全国生活用水量比2004年增加了20%,则2008年全
数学试卷第3页(共34页)
相交于点B.
(1)填空:n的值为,k的值为;
(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐
标;
(3)考察反比函数yk
数学试卷第4页(共34页)
_此(3)当m35时,请直接写出t的值;
2015-2016学年度第二学期期末检测七年级数学试题及答案
abb(1) (2) (3)2015-2016学年度第二学期期末检测七年级数学试题考试时间:90分钟 班级: 姓名: 一、选择题:(每小题3分,共36分。
每小题四个选项中,只有一个是正确的,请将正确的选项序号填在右边的括号内。
)1.如图,下列条件中不一定能推出a ∥b 的是( ) A.∠1=∠3 B. ∠2=∠4 C. ∠1=∠4 D. ∠2+∠3=180°2.在平面直角坐标系中,若点P 在x 轴的下方,y 轴的左方,到每条坐标轴的距离都是3,则点P 的坐标为( )A.(3,3)B.(3,-3)C.(-3,3)D.(-3,-3) 3.下列各式中计算正确的是( ) A.()532x x= B. 422743x x x =+C. ()()639x x x =-÷- D. ()x x x x x x ---=+--23214.水是生命之源,水是由氢原子和氧原子组成的,其中氢原子的直径为0.0000000001m ,把这个数值用科学记数法表示为( )A.1×10 9B. 1×1010C. 1×10 -9D. 1×10 -105.已知三角形两边的长分别为2a 、3a ,则第三边的长可以是( ) A. a B. 3 a C. 5 a D. 7 a6.如图,将等边三角形ABC 剪去一个角后,则∠1+∠2的大小为( ) A. 120° B. 180° C. 200° D. 240°7.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是( ) A.正三角形 C.正四边形 B.正六边形 D.正八边形 8.以5厘米的长为半径作圆,可以作( ) A. 1个 B. 2个 C. 3个 D. 无数个9.用如图所示的卡片拼成一个长为(2a+3b ),宽为(a+b )的长方形,则需要(1)型卡片、(2)型卡片和(3)型卡片的张数分别是( )A.2,5,3B.2,3,5C.3,5,2D.3,2,510.等腰三角形的周长为13cm ,其中一边的长为3cm ,则该等腰三角形的腰长为( )A.7cmB.3cmC.7cm 或3cmD.5cm11.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为( ) A.5 B.6 C.7 D.812.下列说法:①直径是弦 ②弦是直径 ③半圆是弧,但弧不一定是半圆 ④长度相等的两条弧是等弧中,正确的有( )A.1个B.2个C.3个D.4个 二、填空题(每空3分,共30分)13.已知点A 到x 轴的距离为3,到y 轴的距离为4,且它在第二象限内,则点A 的坐标为 . 14.若2 m=3,,2 n=4,则22m-n= .15.若25-+=+÷+)()()(y x y x y x m ,则m 的值为 . 16.计算:=⨯+--2331(5)2( .17.一个长方形的面积是)(2269ab b a -平方米,其长为3ab 米,则宽为 米(用含a 、b 的式子表示)18.一个多边形的内角和等于108019.如图,已知∠A=20°, ∠B=45° AC ⊥DE 于点则∠D= ,∠BED= . 20.用正三角形和正四边形作平面镶嵌,在一个顶点周围,可以有 个正三角形和 个正四边形.三、解答题(共54分,解答应写出必要的计算过程、推演步骤或文字说明) 21(15分) (1)223102)2(a a a a ÷-+∙(2))2()12)(2(--++-a a b a b a (3))1)(2(2)3(3)2(2-+++-+x x x x xa b1243c22(6分)解方程组⎩⎨⎧-=+=-22382y x y x23(7分)如图,AD 是△ABC 的中线,BE 是△ABD 的中线 (1) 若∠ABE=15°,∠BAD=30°,求∠BED 的度数; (2) 画出△BED 的BD 边上的高线EF ;(3) 若△ABC 的面积为40,BD=5,求BD 边上的高EF 。
2015年辽宁省沈阳市中考数学试卷(含详细答案)
数学试卷第2页(共34页)绝密★启用前辽宁省沈阳市2015年初中学生学业水平(升学)考试数学本试卷满分150分,考试时间120分钟.参考公式:抛物线2y ax bx c=++的顶点是24(,)24b ac ba a--,对称轴是直线2bxa=-.第Ⅰ卷(选择题共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.比0大的数是( )A.2-B.32-C.0.5-D.12.如图是由6个相同的小立方块搭成的几何体,这个几何体的左视图是( )A B C D3.下列事件为必然事件的是 ( )A.经过有交通信号灯的路口,遇到红灯B.明天一定会下雨C.抛出的篮球会下落D.任意买一张电影票,座位号是2的倍数4.如图,在ABC△中,点D是边AB上一点,点E是边AC上一点,且DE BC∥,40B∠=,60AED∠=,则A∠的度数是( )A.100B.90C.80D.705.下列计算结果正确的是( )A.428a a a=B.527()a a=C.222()a b a b-=-D.222()ab a b=6.一组数据2,3,4,4,5,5,5的中位数和众数分别是( )A.3.5,5B.4,4C.4,5D.4.5,47.顺次连接对角线相等的四边形的各边中点,所形成的四边形是( )A平行四边形B.菱形C.矩形D.正方形8.在平面直角坐标系中,二次函数2)0y a x h a=-≠(()的图象可能是( )A B C D第Ⅱ卷(非选择题共126分)二、填空题(本大题共8小题,每小题4分,共32分.把答案填写在题中的横线上)9.分解因式:22ma mb-=.10.不等式组30,240xx-⎧⎨+⎩<≥的解集是.11.如图,在ABC△中,AB AC=,30B∠=,以点A为圆心,以3cm为半径作A,当AB=cm时,BC与A相切.12.某跳远队甲、乙两名运动员最近10次跳远成绩的平均数为602cm,若甲跳远成绩的方差为265.84s=甲,乙跳远成绩的方差为2285.21s=乙,则成绩比较稳定的是(填“甲”或“乙”).13.在一个不透明的袋中装有12个红球和若干个黑球,每个球除颜色外都相同,任意摸出一个球是黑球的概率为14,那么袋中的黑球有个.14.如图,ABC△与DEF△位似,位似中心为点O,且ABC△的面积等于DEF△面积的49,则:AB DE=.15.如图1,在某个盛水容器中,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水.小水杯内水的高度y()cm和注水时间x(s)之间的关系满足如图2中的图象,则至少需要s能把小水杯注满水. -------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________姓名________________考生号_____________________________________________数学试卷第1页(共34页)16.如图,正方形ABCD绕点B逆时针旋转30后得到正方形BEFG,EF与AD相交于点H,延长DA交GF 于点K,若正方形ABCD边长为3,则AK=.三、解答题(本大题共9小题,共94分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)计算:203127|52|()(tan601)3-+--+-.18.(本小题满分8分)如图,点E为矩形ABCD外一点,AE DE=,连接EB EC,分别与AD相交于点F G,.求证:(1)E EAB DC≌△△;(2)EFG EGF∠=∠.19.(本小题满分10分)我国是世界上严重缺水的国家之一,全国总用水量逐年上升,全国总用水量可分为农业用水量、工业用水量和生活用水量三部分.为了合理利用水资源,我国连续多年对水资源的利用情况进行跟踪调查,将所得数据进行处理,绘制了2008年全国总用水量分布情况扇形统计图和2004~2008年全国生活用水量折线统计图的一部分如下:(1)2007年全国生活用水量比2004年增加了16%,则2004年全国生活用水量为亿3m,2008年全国生活用水量比2004年增加了20%,则2008年全国生活用水量为亿3m;(2)根据以上信息,请补全折线统计图;(3)根据以上信息,2008年全国总用水量为亿3m;(4)我国2008年水资源总量约为42.7510⨯亿3m,根据国外的经验,一个国家当年的全国总用水量超过这个国家年水资源总量的20%,就有可能发生“水危机”.依据这个标准,2008年我国是否属于可能发生“水危机”的行列?并说明理由.20.(本小题满分10分)高速铁路列车已成为中国人出行的重要交通工具,其平均速度是普通铁路列车平均速度的3倍,同样行驶690km,高速铁路列车比普通铁路列车少运行了4.6h,求高速铁路列车的平均速度.21.(本小题满分10分)如图,四边形ABCD是O的内接四边形,2ABC D∠=∠,连接OA OB OC AC,,,OB,与AC相交于点E.(1)求OCA∠的度数;(2)若323COB AOB OC∠=∠=,,求图中阴影部分面积.(结果保留π和根号)22.(本小题满分10分)如图,已知一次函数332y x=-与反比例函数kyx=的图象相交于点4A n(,),与x轴相交于点B.(1)填空:n的值为,k的值为;(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(3)考察反比函数kyx=的图象,当2y≥-时,请直接写出自变量x的取值范围.数学试卷第3页(共34页)数学试卷第4页(共34页)数学试卷 第5页(共34页) 数学试卷 第6页(共34页)23.(本小题满分12分)如图,在平面直角坐标系中,四边形OABC 的顶点O 是坐标原点,点A 在第一象限,点C 在第四象限,点B 的坐标为6009050OA AB OAB OC =∠==(,),,,.点P 是线段OB 上的一个动点(点P 不与点O ,B 重合),过点P 与y 轴平行的直线l 交边OA 或边AB 于点Q ,交边OC 或边BC 于点R ,设点P 横坐标为t ,线段QR 的长度为m .已知40t =时,直线l 恰好经过点C . (1)求点A 和点C 的坐标;(2)当030t <<时,求m 关于t 的函数关系式; (3)当35m =时,请直接写出t 的值;(4)直线l 上有一点M ,当90PMB POC ∠+∠=,且PMB △的周长为60时,请直接写出满足条件的点M 的坐标.24.(本小题满分12分)如图,在□ABCD 中,6460AB BC B ==∠=,,,点E 是边AB 上的一点,点F 是边CD 上一点,将□ABCD 沿EF 折叠,得到四边形EFGH ,点A 的对应点为点H ,点D 的对应点为点G .(1)当点H 与点C 重合时.①填空:点E 到CD 的距离是 ; ②求证:BCE GCF ≌△△; ③求CEF △的面积;(2)当点H 落在射线BC 上,且1CH =时,直线EH 与直线CD 交于点M ,请直接写出MEF △的面积.温馨提醒:考生可以根据题意,在备用图中补充图形,以便作答.25.(本小题满分14分)如图,在平面直角坐标系中,抛物线232234y x x -=-+与x 轴交于B ,C 两点(点B 在点C 的左侧),与y 轴交于点A ,抛物线的顶点为D .(1)填空:点A 的坐标为( , ),点B 的坐标为( , ),点C 的坐标为( , ),点D 的坐标为( , ); (2)点P 是线段BC 上的动点(点P 不与点B ,C 重合).①过点P 作x 轴的垂线交抛物线于点E ,若PE PC =,求点E 的坐标;②在①的条件下,点F 是坐标轴上的点,且点F 到EA 和ED 的距离相等,请直接写出线段EF 的长;③若点Q 是线段AB 上的动点(点Q 不与点A ,B 重合),点R 是线段AC 上的动点(点R 不与点A ,C 重合),请直接写出PQR △周长的最小值. 温馨提醒:考生可以根据题意,在备用图中补充图形,以便作答.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共34页)数学试卷 第8页(共34页)辽宁省沈阳市2015年初中学生学业水平(升学)考试数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】A 、B 、C 都是负数,故A 、B 、C 错误;1是正数,故D 正确,故选D 。
2014-2015学年辽宁省沈阳市铁西区七年级(下)期末数学试卷
2014-2015学年辽宁省沈阳市铁西区七年级(下)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)计算(﹣xy2)3,结果正确的是()A.x3y5B.﹣x3y6 C.x3y6D.﹣x3y52.(3分)在下列“绿色食品、回收、节能、节水”四个标志中,是轴对称图形的是()A.B.C.D.3.(3分)如图,四边形ABCD中,对角线AC垂直平分BD,垂足为点E,下列结论不一定成立的是()A.AB=AD B.CA平分∠BCD C.AB=BD D.△BEC≌△DEC4.(3分)一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是()A.摸出的四个球中至少有一个球是白球B.摸出的四个球中至少有一个球是黑球C.摸出的四个球中至少有两个球是黑球D.摸出的四个球中至少有两个球是白球5.(3分)如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF 的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC6.(3分)根据如图所示的程序计算,若输入的x值为,则输出的结果y的值为()A.B.C.D.7.(3分)小玲在一次班会中参与知识抢答活动,现有语文题6道,数学题5道,综合题9道,她从中随机抽取1道,抽中数学题的概率是()A.B.C.D.8.(3分)已知等腰△ABC中,AB=AC,点D为BC边上一点,连接AD,若△ACD 和△ABD都是等腰三角形,则∠ACB的度数为()A.36°B.45°C.36°或45°D.36°或45°或72°二、填空题(共8小题,每小题2分,满分16分)9.(2分)我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.000075千克以下.将0.000075用科学记数法表示为.10.(2分)如图,已知AB∥CD,在图中所标注的角中,与∠1相等的角(不包括∠1)有个.11.(2分)已知△ABC的面积为25,边BC长为10,则BC边上的高为.12.(2分)如图,在Rt△ABC中,∠C=90°,BC=3,AC=6,点D是AC边上的动点,且点D从点C向点A运动.若设CD=x,△ABD的面积为y,则y与x之间的关系式为.13.(2分)一个不透明的箱子里共有四个球,这四个球除编号不同外其余都相同,把它们分别编号为1,2,3,4.从箱子中随机摸出一个球,则摸出的球是编号为2的球的概率为.14.(2分)如图,点B在线段AD上,BC∥DE,AB=ED,请添加一个适当的条件:,使△ABC≌△EDB(不再添加其它字母或辅助线)15.(2分)如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为.16.(2分)在四边形ABCD中,AB=AD,∠B+∠D=180°,点E、F分别是BC、CD 上的点,且EF=BE+FD,若∠EAF=55°,则∠BAD的度数为.三、解答题(共9小题,满分60分)17.(6分)计算[(x+y)2﹣(x﹣y)2]÷(2xy).18.(6分)用乘法公式计算:582﹣61×59.19.(6分)如图,直线AB∥CD,点C在△AEF的边AE上,边EF与直线CD交于点G.已知∠BAF=16°,∠E+∠CGE=78°,求∠EAF的度数.20.(6分)如图,△ABC和△ADE中,∠BAC=∠DAE,AB=AE,AD=AC,连接BD,CE,若BD=8,求CE的长.21.(6分)从2、3、4这三个数字中任取两个数字组成一个两位数,求组成的两位数能被3整除的概率是多少?22.(6分)如图,直线AB、CD被直线EF所截,且AB∥CD,FG⊥EF于点F,判断∠BEF与∠DFG之间存在什么关系?并说明理由.23.如图,在一个边长为10cm的正方形的四个角上,都剪去大小相同的小正方形,当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化.(1)在这个变化中,自变量、因变量各是什么?(2)若小正方形的边长为xcm(0<x<5),图中阴影部分的面积为ycm2,请直接写出y与x之间的关系式;并求出当x=3cm时,阴影部分的面积y.24.(12分)如图,已知△ABC.(1)尺规作图:作∠ACB的平分线CD,交AB于点D;(2)画图:在(1)的条件下,过点A画AE∥CD交BC的延长线于点E,请判断CA与CE是否相等?并说明理由.25.(12分)如图,△ABC中,BD⊥AC于点D,CE⊥AB于点E,且BD、CE交于点F,点G是线段CD上一点,连接AF、GF,若AF=GF,BD=CD.(1)求∠CAF的度数;(2)判断线段FG与BC的位置关系,并说明理由.2014-2015学年辽宁省沈阳市铁西区七年级(下)期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)计算(﹣xy2)3,结果正确的是()A.x3y5B.﹣x3y6 C.x3y6D.﹣x3y5【分析】根据积的乘方的性质进行计算,然后再选取答案.【解答】解:原式=﹣()3x3y6=﹣x3y6.故选:B.【点评】本题考查了积的乘方的性质:等于把每个因式分别乘方,再把所得的幂相乘.2.(3分)在下列“绿色食品、回收、节能、节水”四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(3分)如图,四边形ABCD中,对角线AC垂直平分BD,垂足为点E,下列结论不一定成立的是()A.AB=AD B.CA平分∠BCD C.AB=BD D.△BEC≌△DEC【分析】先根据线段垂直平分线的性质得出AB=AD,BC=BD,再对各选项进行逐一分析即可.【解答】解:∵对角线AC垂直平分BD,∴AB=AD,BC=BD,故A正确;∵BC=CD,AC⊥BD,∴CA平分∠BCD,故B正确;∵AC垂直平分BD,∴BE=DE,BC=CD,在Rt△BEC与Rt△DEC中,∵,∴△BEC≌△DEC(HL),故D正确.故选:C.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.4.(3分)一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是()A.摸出的四个球中至少有一个球是白球B.摸出的四个球中至少有一个球是黑球C.摸出的四个球中至少有两个球是黑球D.摸出的四个球中至少有两个球是白球【分析】必然事件就是一定发生的事件,依据定义即可作出判断.【解答】解:A、是随机事件,故A选项错误;B、是必然事件,故B选项正确;C、是随机事件,故C选项错误;D、是随机事件,故D选项错误.故选:B.【点评】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(3分)如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF 的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC【分析】本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.【解答】解:∵AB∥DE,AC∥DF,∴∠A=∠D,(1)AB=DE,则△ABC和△DEF中,,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故D选项错误;故选:C.【点评】本题考查了全等三角形的不同方法的判定,注意题干中“不能”是解题的关键.6.(3分)根据如图所示的程序计算,若输入的x值为,则输出的结果y的值为()A.B.C.D.【分析】根据所在范围确定利用哪个函数解析式计算,然后代入求值即可.【解答】解:∵1<≤2,∴当x=时,y=﹣+2=.故选:D.【点评】本题考查了函数求值,正确读懂程序图,确定正确的算式是关键.7.(3分)小玲在一次班会中参与知识抢答活动,现有语文题6道,数学题5道,综合题9道,她从中随机抽取1道,抽中数学题的概率是()A.B.C.D.【分析】由小玲在一次班会中参与知识抢答活动,现有语文题6道,数学题5道,综合题9道,直接利用概率公式求解即可求得答案.【解答】解:∵小玲在一次班会中参与知识抢答活动,现有语文题6道,数学题5道,综合题9道,∴她从中随机抽取1道,抽中数学题的概率是:=.故选:C.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.8.(3分)已知等腰△ABC中,AB=AC,点D为BC边上一点,连接AD,若△ACD和△ABD都是等腰三角形,则∠ACB的度数为()A.36°B.45°C.36°或45°D.36°或45°或72°【分析】△ACD和△ABD都是等腰三角形,但没有说具体的边相等,所以应分情况讨论.(1)AD=BD,DC=AD,那么△ADB和△ADC是全等三角形,可求得∠ADC,进一步得到∠C;(2)AB=BD,CD=AD,那么∠B=∠C=∠DAC,∠BAD=∠BDA=2∠C,然后用∠C 表示出△ABC的内角和,即可求得5∠C,进一步得到∠C.【解答】解:应分两种情况:(1)如图:AD=BD,DC=AD,那么△ADB和△ADC是全等三角形,可求得∠ADC=90°,那么∠C=45°;(2)如图:AB=BD,CD=AD,那么∠B=∠C=∠DAC,∠BAD=∠BDA=2∠C,然后用∠C表示出△ABC的内角和,即可求得5∠C=180°,那么∠C=36°.故选:C.【点评】本题考查了全等三角形的判定和性质及等腰三角形的性质;本题的易错点在于判断此题应分情况讨论,难点在于画出图形,得到各种情况里所求的角的关系.二、填空题(共8小题,每小题2分,满分16分)9.(2分)我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.000075千克以下.将0.000075用科学记数法表示为7.5×10﹣5.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000075=7.5×10﹣5.故答案为:7.5×10﹣5.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.(2分)如图,已知AB∥CD,在图中所标注的角中,与∠1相等的角(不包括∠1)有2个.【分析】根据平行线的性质,得出∠1=∠5,再根据对顶角相等,得出∠3=∠5,即可得出结论.【解答】解:∵AB∥CD,∴∠1=∠5,∵∠5与∠3是对顶角,∴∠3=∠5,∴∠1=∠3=∠5,∴与∠1相等的角有2个.故答案为:2【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.两直线相交,对顶角也相等.11.(2分)已知△ABC的面积为25,边BC长为10,则BC边上的高为5.【分析】根据三角形的面积公式即可得到结论.【解答】解:∵△ABC的面积为25,边BC长为10,∴BC边上的高=2×25÷10=5,故答案为:5.【点评】此题主要考查了三角形的面积,熟记三角形的面积公式是解题的关键.12.(2分)如图,在Rt△ABC中,∠C=90°,BC=3,AC=6,点D是AC边上的动点,且点D从点C向点A运动.若设CD=x,△ABD的面积为y,则y与x之间的关系式为y=﹣x+9.【分析】根据S=S△ABC﹣S△BCD,利用三角形面积公式计算即可解决问题.△ADB=S△ABC﹣S△BCD,【解答】解:∵S△ADB∴y=×3×6﹣×3×x,∴y=﹣x+9,故答案为y=﹣x+9.【点评】本题考查函数关系式、三角形面积公式等知识,解题的关键是记住三角形的面积公式,学会利用分割法求三角形面积,属于中考常考题型.13.(2分)一个不透明的箱子里共有四个球,这四个球除编号不同外其余都相同,把它们分别编号为1,2,3,4.从箱子中随机摸出一个球,则摸出的球是编号为2的球的概率为.【分析】直接根据概率公式求解即可.【解答】解:∵一个不透明的箱子里共有四个球,编号为2的只有1个,∴随机摸出一个球,则摸出的球是编号为2的球的概率=.故答案为:.【点评】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.14.(2分)如图,点B在线段AD上,BC∥DE,AB=ED,请添加一个适当的条件:BC=DB(答案不唯一),使△ABC≌△EDB(不再添加其它字母或辅助线)【分析】由全等三角形的判定方法SAS得出△ABC≌△EDB即可.【解答】解:添加条件为:BC=DB;理由如下:在△ABC和△EDB中,,∴△ABC≌△EDB(SAS);故答案为:BC=DB(答案不唯一).【点评】本题考查了全等三角形的判定方法;熟记三角形全等的判定方法是解决问题的关键.15.(2分)如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为n2+2.【分析】分析数据可得:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…则知第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1).据此可以求得答案.【解答】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1)=n2+2.故答案为:n2+2.【点评】此题属于图形与数字结合规律的题目.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.16.(2分)在四边形ABCD中,AB=AD,∠B+∠D=180°,点E、F分别是BC、CD 上的点,且EF=BE+FD,若∠EAF=55°,则∠BAD的度数为110°.【分析】延长FD到G使DG=BE,连接AG,如图,先证明△ABE≌△ADG得到AE=AG,∠BAE=∠GAD,再证明△AEF≌△AGF得到∠EAF=∠FAG=55°,然后利用∠BAE=∠GAD得到∠BAD=∠EAG=2∠EAF=110°.【解答】解:延长FD到G使DG=BE,连接AG,如图,∵∠B+∠D=180°,∠ADG+∠D=180°,∴∠B=∠ADG,在△ABE和△ADG,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠GAD,∵EF=BE+FD,∴EF=DG+DF=GF,在△AEF和△AGF中,∴△AEF≌△AGF,∴∠EAF=∠FAG=55°,∵∠BAE=∠GAD,∴∠BAD=∠EAG=2∠EAF=110°.故答案为110°.【点评】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.解决本题的关键是构建△ABE≌△ADG,三、解答题(共9小题,满分60分)17.(6分)计算[(x+y)2﹣(x﹣y)2]÷(2xy).【分析】原式中括号中利用完全平方公式展开,再利用多项式除以单项式法则计算即可得到结果.【解答】解:原式=(x2+2xy+y2﹣x2+2xy﹣y2)÷(2xy)=4xy÷(2xy)=2.【点评】此题考查了整式的除法,熟练掌握运算法则是解本题的关键.18.(6分)用乘法公式计算:582﹣61×59.【分析】利用平方差公式,即可解答.【解答】解:582﹣61×59.=582﹣(60+1)(60﹣1)=582﹣602+1=(58+60)×(58﹣60)+1=118×(﹣2)+1=﹣236+1=﹣235.【点评】本题考查了平方差公式,解决本题的关键是熟记平方差公式.19.(6分)如图,直线AB∥CD,点C在△AEF的边AE上,边EF与直线CD交于点G.已知∠BAF=16°,∠E+∠CGE=78°,求∠EAF的度数.【分析】先根据三角形外角性质,求得∠ACG=∠E+∠CGE=78°,再根据平行线的性质,求得∠BAC=102°,最后计算∠EAF的度数.【解答】解:∵∠ACG是△CEG的外角,∴∠ACG=∠E+∠CGE=78°,又∵直线AB∥CD,∴∠ACG+∠BAC=180°,∴∠BAC=102°,∵∠BAF=16°,∴∠EAF=102°﹣16°=86°.【点评】本题主要考查了平行线的性质以及三角形外角性质,解题时注意:三角形的外角等于与它不相邻的两个内角的和.20.(6分)如图,△ABC和△ADE中,∠BAC=∠DAE,AB=AE,AD=AC,连接BD,CE,若BD=8,求CE的长.【分析】利用SAS即可证得△ABC≌△AED,根据全等三角形的对应边相等即可求解.【解答】解:∵在△ABC和△AED中,,∴△ABC≌△AED,∴CE=BD=8.【点评】本题考查了全等三角形的判定与性质,证明△ABC≌△AED是关键.21.(6分)从2、3、4这三个数字中任取两个数字组成一个两位数,求组成的两位数能被3整除的概率是多少?【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中能被3整除的两位数的情况,再利用概率公式即可求得答案.【解答】解:根据题意画树状图得:∵共有6种等可能的结果,其中能被3整除的两位数的有:24,42,∴其中能被3整除的两位数的概率是:=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(6分)如图,直线AB、CD被直线EF所截,且AB∥CD,FG⊥EF于点F,判断∠BEF与∠DFG之间存在什么关系?并说明理由.【分析】先根据平行线的性质,得出∠DFE=180°﹣∠BEF,再根据垂线的定义,得出∠DFE=90°﹣∠DFG,最后根据180°﹣∠BEF=90°﹣∠DFG,得出结果.【解答】解:∠BEF﹣∠DFG=90°理由:∵AB∥CD,∴∠BEF+∠DFE=180°,即∠DFE=180°﹣∠BEF,∵FG⊥EF,∴∠DFE=90°﹣∠DFG,∴180°﹣∠BEF=90°﹣∠DFG,∴∠BEF﹣∠DFG=90°.【点评】本题主要考查了平行线的性质以及垂线的定义,解决问题的关键是根据等量关系:180°﹣∠BEF=90°﹣∠DFG得出结论.23.如图,在一个边长为10cm的正方形的四个角上,都剪去大小相同的小正方形,当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化.(1)在这个变化中,自变量、因变量各是什么?(2)若小正方形的边长为xcm(0<x<5),图中阴影部分的面积为ycm2,请直接写出y与x之间的关系式;并求出当x=3cm时,阴影部分的面积y.【分析】(1)根据常量与变量的定义即可求解;(2)用正方形的面积减去四周四个小正方形的面积列式即可得出y与x之间的关系式,再代值计算即可得解.【解答】解:(1)在这个变化中,自变量是小正方形的边长、因变量是阴影部分的面积;(2)y与x之间的关系式为y=102﹣4x2=100﹣4x2,当x=3cm时,阴影部分的面积y=100﹣4×32=64cm2.【点评】本题考查了函数关系式,常量与变量,函数求值,是基础题,熟练掌握长方形面积公式是解题的关键.24.(12分)如图,已知△ABC.(1)尺规作图:作∠ACB的平分线CD,交AB于点D;(2)画图:在(1)的条件下,过点A画AE∥CD交BC的延长线于点E,请判断CA与CE是否相等?并说明理由.【分析】(1)直接利用角平分线的作法进而得出答案;(2)直接利用平行线的判定与性质进而得出答案.【解答】解:(1)如图所示:CD即为所求;(2)如图所示:AE即为所求,AC=CE,理由:∵AE∥CD,∴∠EAC=∠DCA,∠AEC=∠DCB,∵∠ACB的平分线CD,∴∠BCD=∠DCA,∴∠CAE=∠BEA,∴AC=CE.【点评】此题主要考查了平行线的判定以及复杂作图,正确掌握角平分线的性质是解题关键.25.(12分)如图,△ABC中,BD⊥AC于点D,CE⊥AB于点E,且BD、CE交于点F,点G是线段CD上一点,连接AF、GF,若AF=GF,BD=CD.(1)求∠CAF的度数;(2)判断线段FG与BC的位置关系,并说明理由.【分析】(1)根据ASA证明△ABD≌△FCD,得AD=DF,则△ADF是等腰直角三角形,所以∠CAF=45°;(2)FG∥BC,理由是:证明∠FGA=∠DCB,根据同位角相等,两直线平行得出结论.【解答】解:(1)∵BD⊥AC,CE⊥AB,∴∠BEF=∠CDF=90°,∵∠EFB=∠DFC,∴∠EBF=∠FCD,∵BD=CD,∠ADB=∠CDF,∴△ABD≌△FCD,∴AD=DF,∴△ADF是等腰直角三角形,∴∠CAF=45°;(2)FG∥BC,理由是:∵AF=FG,∴∠FGA=∠CAF=45°,∵BD⊥AC,BD=CD,∴△BDC是等腰直角三角形,∴∠DCB=45°,∴∠FGA=∠DCB,∴FG∥BC.【点评】本题考查了等腰直角三角形和全等三角形的性质和判定,熟练掌握全等的四种判定方法:SSS、SAS、AAS、ASA,另外可以利用证明一个三角形是等腰直角三角形,从而求出角的度数为45°.第21页(共21页)。
2015年初一第二学期数学期末试卷(带答案)
2015年初一第二学期数学期末试卷(带答案)距离期末考试还有不到一个月的时间了,在这段时间内突击做一些试题是非常有帮助的,下文整理了2015年初一第二学期数学期末试卷,希望对大家有所帮助!预祝大家取得好成绩! 一、选择题(每题3分,共30分) 1.点P(2,-3)所在象限为( ) A、第一象限 B、第二象限 C、第三象限 D、第四象限 2.当a大于b时,下列各式中不正确的是( ) A、a-3大于b-3 B、3-a小于3-b C、 D、 3.点A(-3,-5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为( ) A、(1,-8) B、(1, -2) C、(-7,-1 ) D、( 0,-1) 4.如右图,下列能判定∥的条件有( )个. (1) (2) ;(3) ;(4) . A.1 B.2 C.3 D.4 5.在直角坐标系中,点P(6-2x,x-5)在第四象限, 则x的取值范围是( ). A、3 6.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( ) A.∠A=∠1+∠2 B.2∠A=∠1+∠2 C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2) 7.已知五个命题,正确的有( ) (1)有理数与无理数之和是无理数⑵有理数与无理数之积是无理数 (3)无理数与无理数之积是无理数⑷无理数与无理数之积是有理数 (5)所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。
A. 1个B. 2个C. 3个D.4个 8.为了了解参加某运动会的2000名运动员的年龄情况,从中抽取了100名运动员的年龄,就这个问题来说,下面说法正确的是( ). A.2000名运动员是总体B.100名运动员是所抽取的一个样本 C.样本容量为100名D.抽取的100名运动员的年龄是样本 9.若是49的算术平方根,则= ( ) A. 7 B. -7 C. 49 D.-49 10. 如右图,,且∠A=25度,∠C=45度,则∠E的度数是( ) A. B. C. D. 二、填空题(每题3分,共24分) 11.点P在第二象限,P到x轴的距离为4,P到y轴距离为3,则点P的坐标为( , ) 12. 的算术平方根是_____. 13.若不等式组解集为x大于2,则的取值范围是. 14. 两根木棒的长分别为和.要选择第三根木棒,将它们钉成一个三角形框架,那幺,第三根木棒长( )的范围是____________. 15. 在自然数范围内,方程x+3y=10的解是____ ___. 16. 下列各数中,有理数为;无理数为 (相邻两个3之间的7逐渐加1个) 17. 小陈从O点出发,前进5米后向右转20度,再前进5米后又向右转20度,,这样一直走下去,他第一次回到出发点O时一共走了_________. 18、为了估计池塘里有多少条鱼,先从湖里捕捞100条鱼坐上标记,然后放回池塘去,经过一段时间,待有有标记的鱼完全混合于鱼群后,第二次再捕捞100条鱼,发现有5条有标记,那幺你估计池塘里有多少条鱼 三、解下列各题(共76分) 19. (每题6分)(1)计算 (2) 解方程组 (3))解不等式组并把不等式组的解集在数轴上表示出来 20 完成下面的解题过程,并在括号内填上依据。
沈阳市七年级下学期期末数学试题
沈阳市七年级下学期期末数学试题一、选择题1.如图所示,直线a ,b 被直线c 所截,则1∠与2∠是( )A .同位角B .内错角C .同旁内角D .对顶角 2.以下列各组数据为边长,可以构成等腰三角形的是( ) A .1cm 、2cm 、3cmB .3cm 、 3cm 、 4cmC .1cm 、3cm 、1cmD .2cm 、 2cm 、 4cm3.若a =-0.32,b =-3-2,c =21()2--,d =01()3-,则它们的大小关系是( ) A .a <b <c <dB .a <d <c <bC .b <a <d <cD .c <a <d <b 4.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .m 2+m ﹣6=(m+3)(m ﹣2)C .(a+4)(a ﹣4)=a 2﹣16D .x 2+y 2=(x+y )(x ﹣y )5.下列条件中,能判定△ABC 为直角三角形的是( ).A .∠A=2∠B -3∠C B .∠A+∠B=2∠C C .∠A-∠B=30°D .∠A=12∠B=13∠C 6.如图,P 1是一块半径为1的半圆形纸板,在P 1的右上端剪去一个直径为1的半圆后得到图形P 2,然后依次剪去一个更小的半圆(其直径为前一个被剪去的半圆的半径)得到图形P 3、P 4…P n …,记纸板P n 的面积为S n ,则S n -S n +1的值为( )A .12n π⎛⎫ ⎪⎝⎭B .14n π⎛⎫ ⎪⎝⎭C .2112n π+⎛⎫ ⎪⎝⎭D .2112n π-⎛⎫ ⎪⎝⎭7.冠状病毒是引起病毒性肺炎的病原体的一种,可以在人群中扩散传播,某冠状病毒的直径大约是0.000000081米,用科学计数法可表示为( )A .-98.110⨯B .-88.110⨯C .-98110⨯D .-78.110⨯ 8.下列各式由左边到右边的变形,是因式分解的是( ) A .x (x +y )=x 2+xyB .2x 2+2xy =2x (x +y )C .(x +1)(x -2)=(x -2)(x +1)D .2111x x x x x ⎛⎫++=++ ⎪⎝⎭9.下列各式中,能用平方差公式计算的是( )A .(p +q )(p +q )B .(p ﹣q )(p ﹣q )C .(p +q )(p ﹣q )D .(p +q )(﹣p ﹣q ) 10.平面直角坐标系中,点A 到x 轴的距离为1,到y 轴的距离为3,且在第二象限,则点A 的坐标为( )A .()1,3-B .()3,1-C .()1,3-D .()3,1- 二、填空题11.新型冠状肺炎病毒(COVID ﹣19)的粒子,其直径在120~140纳米即0.00000012米~0.00000014米之间,数据0.00000012用科学记数法可以表示为_____.12.用简便方法计算:10.12﹣2×10.1×0.1+0.01=_____.13.如图,在△ABC 中,∠B 和∠C 的平分线交于点O ,若∠A =50°,则∠BOC =_____.14.如图,在△ABC 中,点D 为BC 边上一点,E 、F 分别为AD 、CE 的中点,且ABC S ∆=8cm 2,则BEF S ∆=____.15.每支圆珠笔3元,每本练习簿4元,买圆珠笔和练习簿共花了14元,则买了圆珠笔______支.16.计算:()20202019133⎛⎫-⋅-= ⎪⎝⎭_____.17.已知2x =3,2y =5,则22x+y-1=_____.18.水由氢原子和氧原子组成,其中氢原子的直径约为0.000 000 000 1 m,这个数据用科学记数法表示为____.19.如图,在三角形纸片ABC 中剪去∠C 得到四边形ABDE ,且∠C =40°,则∠1+∠2的度数为_____.20.计算:2m·3m=______. 三、解答题21.如图,在△ABC 中,∠ABC =56º,∠ACB =44º,AD 是BC 边上的高,AE 是△ABC 的角平分线,求出∠DAE 的度数.22.先化简,再求值:(3x +2)(3x -2)-5x (x +1)-(x -1)2,其中x 2-x -10=0.23.化简与计算:(1)1201(3)(2)3π-⎛⎫---+- ⎪⎝⎭(2)(﹣2a 3)3+(﹣4a )2•a 7﹣2a 12÷a 324.已知关于x,y 的方程组260250x y x y mx +-=⎧⎨-++=⎩(1)请直接写出方程260x y +-=的所有正整数解(2)若方程组的解满足x+y=0,求m 的值(3)无论实数m 取何值,方程x -2y+mx+5=0总有一个固定的解,请直接写出这个解?25.如图,大圆的半径为r ,直径AB 上方两个半圆的直径均为r ,下方两个半圆的直径分别为a ,b .(1)求直径AB 上方阴影部分的面积S 1;(2)用含a ,b 的代数式表示直径AB 下方阴影部分的面积S 2= ;(3)设a =r +c ,b =r ﹣c (c >0),那么( )(A )S 2=S 1;(B )S 2>S 1;(C )S 2<S 1;(D )S 2与S 1的大小关系不确定;(4)请对你在第(3)小题中所作的判断说明理由.26.如果a c =b ,那么我们规定(a ,b )=c .例如;因为23=8,所以(2,8)=3. (1)根据上述规定填空:(3,27)= ,(4,1)= ,(2,0.25)= ; (2)记(3,5)=a ,(3,6)=b ,(3,30)=c .判断a ,b ,c 之间的等量关系,并说明理由.27.如图,在△ABC 中,∠ACB =90°,∠ABC 与∠BAC 的角平分线相交于点P ,连接CP ,过点P 作DE ⊥CP 分别交AC 、BC 于点D 、E ,(1)若∠BAC =40°,求∠APB 与∠ADP 度数;(2)探究:通过(1)的计算,小明猜测∠APB =∠ADP ,请你说明小明猜测的正确性(要求写出过程).28.(1)已知2(1)()2x x x y ---=,求222x y xy +-的值. (2)已知等腰△ABC 的三边长为,,a b c ,其中,a b 满足:a 2+b 2=6a+12b-45,求△ABC 的周长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据同旁内角的定义可判断.【详解】∵∠1和∠2都在直线c 的下侧,且∠1和∠2在直线a 、b 之内∴∠1和∠2是同旁内角的关系故选:C .【点睛】本题考查同旁内角的理解,紧抓定义来判断.2.B解析:B【分析】先判断三边长是否能构成三角形,再判断是否是等腰三角形.【详解】上述选项中,A 、C 、D 不能构成三角形,错误B 中,满足三角形三边长关系,且有2边相等,是等腰三角形,正确故选:B .【点睛】本题考查的等腰三角形的性质和三角形三边长的关系,注意在判断等腰三角形的时候,一定要先满足三边长能构成三角形.3.C解析:C【分析】直接利用负整数指数幂的性质和零指数幂的性质分别化简比较即可求解.【详解】∵2090.3.0a =-=-,2193b =--=-,2142c -⎛⎫=-= ⎪⎝⎭,0113d ⎛⎫-= ⎪⎝⎭=, ∴它们的大小关系是:b <a <d <c故选:C【点睛】本题考查负整数指数幂的性质、零指数幂的性质及有理数大小比较,正确化简各数是解题的关键.4.B解析:B【解析】试题分析:因式分解是指将几个多项式的和的形式转化个几个多项式或多项式的积的形式.A 、没有完全分解,还可以利用平方差公式进行;B 、正确;C 、不是因式分解;D 、无法进行因式分解.考点:因式分解5.D解析:D【分析】根据三角形内角和定理和各选项中的条件计算出△ABC 的内角,然后根据直角三角形的判定方法进行判断.【详解】解:A 、∠A+∠B+∠C=180°,而∠A=2∠B=3∠C ,则∠A=108011°,所以A 选项错误; B 、∠A+∠B+∠C=180°,而∠A+∠B=2∠C ,则∠C=60°,不能确定△ABC 为直角三角形,所以B 选项错误;C 、∠A+∠B+∠C=180°,而∠A=∠B=30°,则∠C=150°,所以B 选项错误;D 、∠A+∠B+∠C=180°,而∠A=12∠B=13∠C ,则∠C=90°,所以D 选项正确. 故选:D .【点睛】此题考查三角形内角和定理,直角三角形的定义,解题关键在于掌握三角形内角和是180°. 6.C解析:C【分析】首先分析题意,找到规律,并进行推导得出答案.【详解】根据题意得,n ≥2,S 1=12π×12=12π, S 2=12π﹣12π×(12)2, …S n =12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n ﹣1]2, S n +1=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n ﹣1]2﹣12π×[(12)n ]2, ∴S n ﹣S n +1=12π×(12)2n =(12)2n +1π. 故选C .【点睛】 考查学生通过观察、归纳、抽象出数列的规律的能力.7.B解析:B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000000081=-88.110 ;故选B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.8.B解析:B【分析】根据因式分解的意义求解即可.【详解】A 、从左边到右边的变形不属于因式分解,故A 不符合题意;B 、把一个多项式转化成几个整式积的形式,故B 符合题意;C 、从左边到右边的变形不属于因式分解,故C 不符合题意;D 、因式分解是把一个多项式化为几个整式的积的形式,而1x是分式,故D 不符合题意.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.9.C解析:C【分析】利用完全平方公式和平方差公式对各选项进行判断.【详解】(p+q)(p+q)=(p+q)2=p2+2pq+q2;(p﹣q)(p﹣q)=(p﹣q)2=p2﹣2pq+q2;(p+q)(p﹣q)=p2﹣q2;(p+q)(﹣p﹣q)=﹣(p+q)2=﹣p2﹣2pq﹣q2.故选:C.【点睛】本题考查了完全平方公式和平方差公式,熟练掌握公式的结构及其运用是解答的关键.10.B解析:B【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【详解】解:∵P在第二象限,且点P到x轴、y轴的距离分别是1,3,∴点P的横坐标为-3,纵坐标为1,∴P点的坐标为(-3,1).故选:B.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.二、填空题11.2×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:2×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00 000 012=1.2×10﹣7,故答案是:1.2×10﹣7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.100【分析】利用完全平方公式解答.【详解】解:原式=(10.1﹣0.1)2=102=100.故答案是:100.【点睛】本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得(解析:100【分析】利用完全平方公式解答.【详解】解:原式=(10.1﹣0.1)2=102=100.故答案是:100.【点睛】本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得(10.1-0.1)的值.13.115°.【分析】根据三角形的内角和定理得出∠ABC+∠ACB=130°,然后根据角平分线的概念得出∠OBC+∠OCB,再根据三角形的内角和定理即可得出∠BOC的度数.【详解】解;∵∠A=5解析:115°.【分析】根据三角形的内角和定理得出∠ABC+∠ACB=130°,然后根据角平分线的概念得出∠OBC+∠OCB,再根据三角形的内角和定理即可得出∠BOC的度数.【详解】解;∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵∠B和∠C的平分线交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12×(∠ABC+∠ACB)=12×130°=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=115°,故答案为:115°.【点睛】本题考查了三角形的内角和定理和三角形的角平分线的概念,关键是求出∠OBC+∠OCB 的度数.14.2【分析】根据点F是CE的中点,推出S△BEF=S△BEC,同理得S△EBC=S△ABC,由此可得出答案.【详解】∵点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=EC解析:2【分析】根据点F是CE的中点,推出S△BEF=12S△BEC,同理得S△EBC=12S△ABC,由此可得出答案.【详解】∵点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=12EC,高相等;∴S△BEF=12S△BEC,同理得S△EBC=12S△ABC,∴S△BEF=14S△ABC,且S△ABC=8,∴S△BEF=2,故答案为:2.【点睛】本题考查了三角形的性质,充分运用三角形的面积公式以及三角形的中线的性质是解本题的关键.15.2【分析】设圆珠笔x 支,表示出练习簿的数量,根据圆珠笔和练习簿数量都是整数,求出x 的值即可.【详解】设圆珠笔x 支,则练习簿本,圆珠笔和练习簿数量都是整数,则x=2时,, 故答案为2.【点睛解析:2【分析】设圆珠笔x 支,表示出练习簿的数量,根据圆珠笔和练习簿数量都是整数,求出x 的值即可.【详解】设圆珠笔x 支,则练习簿1434x -本,圆珠笔和练习簿数量都是整数,则x=2时,14324x -=, 故答案为2.【点睛】明确圆珠笔和练习簿数量都是整数是本题的关键,难度较小.16.【分析】先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.【详解】解:故答案为【点睛】此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键. 解析:1.3- 【分析】先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.【详解】解:()20202019133⎛⎫-⋅- ⎪⎝⎭()2019201911333⎛⎫⎛⎫=-⋅-⨯- ⎪ ⎪⎝⎭⎝⎭ ()201911333⎡⎤⎛⎫⎛⎫=-⨯-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 1.3=- 故答案为1.3-【点睛】 此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键.17.【分析】根据同底数幂的乘法,底数不变,指数相加;同底数幂的除法,底数不变,指数相减,可得答案.【详解】解:22x+y-1=22x×2y÷2=(2x )2×2y÷2=9×5÷2=故答案为 解析:452【分析】根据同底数幂的乘法,底数不变,指数相加;同底数幂的除法,底数不变,指数相减,可得答案.【详解】解:22x+y-1=22x ×2y ÷2=(2x )2×2y ÷2=9×5÷2 =452故答案为:452. 【点睛】本题考查了同底数幂的乘法与除法的逆用,熟记法则并根据法则计算是解题关键.18.1×10-10.【解析】【分析】根据科学记数法的定义进行求解即可.【详解】根据题意得:0.0000000001m=1×10-10(m).故答案为:1×10-10.【点睛】本题考查科学解析:1×10-10.【解析】【分析】根据科学记数法的定义进行求解即可.【详解】根据题意得:0.0000000001m=1×10-10(m).故答案为:1×10-10.【点睛】本题考查科学记数法,其形式为:a×10n(1≤a<10,n为整数).19.220°【分析】根据三角形的外角的性质以及三角形内角和定理求解即可.【详解】解:∵∠1=∠C+∠CED,∠2=∠C+∠EDC,∴∠1+∠2=∠C+∠CED+∠EDC+∠C,∵∠C+∠CE解析:220°【分析】根据三角形的外角的性质以及三角形内角和定理求解即可.【详解】解:∵∠1=∠C+∠CED,∠2=∠C+∠EDC,∴∠1+∠2=∠C+∠CED+∠EDC+∠C,∵∠C+∠CED+∠EDC=180°,∠C=40°,∴∠1+∠2=180°+40°=220°,故答案为:220°.【点睛】本题考查剪纸问题,三角形内角和定理,三角形的外角的性质等知识,熟悉相关性质是解题的关键.20.6m2【分析】根据单项式乘以单项式的法则解答即可.【详解】解:.故答案为:.【点睛】本题考查了单项式乘以单项式的法则,属于基础题型,熟练掌握运算法则是解题关键.解析:6m 2【分析】根据单项式乘以单项式的法则解答即可.【详解】解:2236m m m ⋅=.故答案为:26m .【点睛】本题考查了单项式乘以单项式的法则,属于基础题型,熟练掌握运算法则是解题关键.三、解答题21.6°【解析】试题分析:先根据三角形内角和求出∠BAC 的度数,由AE 是△ABC 的角平分线,求出∠DAC 的度数,由AD 是BC 边上的高,求出∠EAC 的度数,再利用角的和差求出∠DAE 的度数.解:∵在△ABC 中,∠ABC =56°,∠ACB =44°∴∠BA C =180°-∠ABC-∠ACB =80°∵AE 是△ABC 的角平分线∴∠EAC=12∠BA C =40° ∵AD 是BC 边上的高,∠ACB =44°∴∠DAC=90°-∠ACB =46°∴∠DAE=∠DAC-∠EAC=6°22.3x 2-3x -5,25【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项利用完全平方公式展开,去括号合并得到最简结果,将已知的方程变形后代入即可求值.【详解】原式=()222945521x x x x x -----+=222945521x x x x x ----+-=2335x x --,当2100x x =--,即210x x =-时,原式=()235310525x x -=⨯-=-【点睛】本题考查整式的混合运算-化简求值,涉及的知识点有:完全平方公式、平方差公式、去括号法则及合并同类项法则,熟练掌握以上公式及法则是解题的关键.23.(1)-11;(2)6a 9【分析】(1)根据负指数幂运算法则,零指数幂运算法则进行运算即可求解(2)根据幂的乘方运算法则,同底数幂乘方和除法运算法则,先算乘法,后算乘除即可求解.【详解】(1)1201(3)(2)3π-⎛⎫---+- ⎪⎝⎭=391--+=-11故答案为:-11(2)(﹣2a 3)3+(﹣4a )2•a 7﹣2a 12÷a 3=-8a 9+16a 2•a 7-2a 9=-8a 9+16a 9-2a 9=6a 9故答案为:6a 9【点睛】本题考查了整式的混合运算,有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.要熟练掌握负指数幂运算法则,零指数幂运算法,幂的乘方运算法则,同底数幂乘法和除法运算法等.24.(1)24,21x x y y ==⎧⎧⎨⎨==⎩⎩(2)-136(3)02.5x y =⎧⎨=⎩【解析】分析:(1)先对方程变形为x=6-2y ,然后可带入数值求解;(2)把已知的x+y=0和方程x+2y-6=0组合成方程组,求解方程组的解,然后代入方程x-2y+mx+5=0即可求m 的值;(3)方程整理后,根据无论m 如何变化,二元一次方程组总有一个固定的解,列出方程组,解方程组即可;详解:(1)∵x+2y-6=0∴x=6-2y当y=1时,x=4,当y=2时,x=2∴24,21x x y y ==⎧⎧⎨⎨==⎩⎩(2)根据题意,把x+y=6和x+2y-6=0构成方程组为:6260x y x y +=⎧⎨+-=⎩和 解得66x y =-⎧⎨=⎩ 把66x y =-⎧⎨=⎩代入x-2y+mx+5=0, 解得m=136- (3)∵无论实数m 取何值,方程x -2y+mx+5=0总有一个固定的解,∴x=0时,m 的值与题目无关∴y=2.5∴02.5x y =⎧⎨=⎩点睛:此题主要考查了二元一次方程组的应用,对方程组中的方程灵活变形,构成可解方程是解题关键,有一定的难度,合理选择加减消元法和代入消元法解题是关键.25.(1)214r π ;(2)14ab π ;(3)C ;(4)理由见解析【分析】(1)用半径为r 的半圆的面积减去直径为r 的圆的面积即可;(2)用直径为(a +b )的半圆的面积减去直径为a 的半圆的面积,再减去直径为b 的半圆的面积即可;(3)(4)将a =r +c ,b =r ﹣c ,代入S 2,然后与S 1比较即可.【详解】解:(1)S 1=222111244r r r πππ-=; (2)S 2=22211111()222424a b a b πππ+•-•-•, =18π(a +b )2﹣18πa 2﹣218b π =14ab π, 故答案为:14ab π;(3)选:C ;(4)将a =r +c ,b =r ﹣c ,代入S 2,得:S 2=14π(r +c )(r ﹣c )=14π(r 2﹣c 2), ∵c >0,∴r 2>r 2﹣c 2,即S 1>S 2.故选C .【点睛】 此题考查了列代数式表示图形的面积,解题的关键是:结合图形分清各个半圆的半径及熟记圆的面积公式.26.(1)3,0,﹣2;(2)a +b =c ,理由见解析.【分析】(1)直接根据新定义求解即可;(2)先根据新定义得出关于a ,b ,c 的等式,然后根据幂的运算法则求解即可.【详解】(1)∵33=27,∴(3,27)=3,∵40=1,∴(4,1)=0,∵2﹣2=14, ∴(2,0.25)=﹣2.故答案为:3,0,﹣2;(2)a +b =c .理由:∵(3,5)=a ,(3,6)=b ,(3,30)=c ,∴3a =5,3b =6,3c =30,∴3a ×3b =5×6=3c =30,∴3a ×3b =3c ,∴a +b =c .【点睛】本题考查了新定义运算,明确新定义的运算方法是解答本题的关键,本题也考查了有理数的乘方、同底数幂的乘法运算.27.(1)135APB ∠=︒,135PDA ∠=︒;(2)正确,理由见解析.【分析】(1)根据三角形的三条角平分线交于一点可知CP 平分∠BCA ,可得∠PCD =45°,从而由三角形外角性质可求∠ADP =135°,再∠BAC =40°,可求∠BAC 度数,根据角平分线的定义求出PBA PAB ∠+∠,然后利用三角形的内角和定理列式计算即可得解.(2)同理(1)直接可得135PDA ∠=︒.由角平分线可求()1452PBA PAB ABC BAC ∴∠+∠=∠+∠=︒,进而可得135APB ∠=︒,由此得出结论. 【详解】解:(1)180ABC ACB BAC ∠+∠+∠=︒,90ACB ∠=︒,∠BAC =40°,50ABC =∴∠︒.ABC ∠与ACB ∠的角平分线相交于点P ,1252PBA ABC ∴∠=∠=︒,1202PAB BAC ∠=∠=︒. 114522PBA PAB ABC BAC ∴∠+∠=∠+∠=︒ 180PBA PAB APB ∠+∠+∠=︒,18045135APB ∴∠=︒-︒=︒.ABC ∠与ACB ∠的角平分线相交于点P ,∴CP 是∠ACB 的角平分线,∴∠PCD =1452∠=︒ACB , ∵DE ⊥CP ,∴45PDC ∠=︒,∴135PDA ∠=︒.终上所述:135APB ∠=︒,135PDA ∠=︒.∴PCD+ADP ∠=∠∠ ∠ADP =(2)小明猜测是正确的,理由如下:ABC ∠与ACB ∠的角平分线相交于点P ,∴CP 是∠ACB 的角平分线,∴∠PCD =1452∠=︒ACB , ∵DE ⊥CP ,∴45PDC ∠=︒,∴135PDA ∠=︒.ABC ∠与ACB ∠的角平分线相交于点P ,12PBA ABC ∴∠=∠,12PAB BAC ∠=∠. ∵90ACB ∠=︒,∴90ABC BAC ∠+∠=︒()1452PBA PAB ABC BAC ∴∠+∠=∠+∠=︒ 180PBA PAB APB ∠+∠+∠=︒,18045135APB ∴∠=︒-︒=︒.故∠APB =∠ADP .【点睛】本题考查三角形的内角和定理,三角形的角平分线的定义,整体思想的利用和有效的进行角的等量代换是正确解答本题的关键.28.(1)2;(2)15.【分析】(1)先化简条件,再把求值的代数式变形,整体代入即可,(2)利用两个非负数之和为0的性质得到等腰三角形的两边长,后分类讨论即可得到答案.【详解】解:(1) 2(1)()2x x x y ---=,222,x x x y ∴--+=2,y x ∴-=2222222()2 2.2222x y x xy y y x xy +-+-∴-==== (2) a 2+b 2=6a+12b-45,226912360,a a b b ∴-++-+=22(3)(6)0,a b ∴-+-=3,6,a b ∴==当3a =为腰时,三角形不存在,当6b =为腰时,三角形三边分别为:6,6,3,∴ △ABC 的周长为:15.【点睛】本题考查的是代数式的求值,熟练整体代入的方法,同时考查非负数之和为零的性质,三角形三边的关系,等腰三角形的性质,掌握以上知识是解题的关键.。
2015七年级(下)期末数学试卷附答案
七年级(下)期末数学试卷一、精心选一选,一锤定音!(本题10小题,每小题3分,共30分,每小题只有一个选项是正确的)(请将正确的填在后面的答题栏内)1.下列各数中,是无理数的是()A.B.3.14 C.D.2.如图,直线AB∥CD,与直线EF分别交于M,N,则图中与∠END相等的角(∠END除外)的个数为()A.1 B.2 C.3 D.43.点(﹣2015,2015)在()A.第一象限B.第二象限C.第三象限D.第四象限4.已知是二元一次方程4x+ay=7的一组解,则a的值为()A.﹣5 B.5 C.D.﹣5.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.3﹣x>3﹣y C.2x>2y D.﹣6.要反映某种股票的涨跌情况,最好选择()A.条形统计图B.折线统计图C.扇形统计图D.列表7.把不等式组的解集表示在数轴上,下列选项正确的是()A.B. C.D.8.下列命题错误的有()①实数与数轴上的点一一对应;②无限小数就是无理数;③直线外一点到这条直线的垂线段叫做点到直线的距离;④两条直线被第三条直线所截,同旁内角互补.A.1个B.2个C.3个D.4个9.下列说法中正确的是()A.实数﹣a2是负数B.C.|﹣a|一定是正数D.实数﹣a的绝对值是a10.如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是()A.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠EC.∠A﹣∠C+∠D+∠E=180°D.∠E﹣∠C+∠D﹣∠A=90°二、耐心填空,准确无误(每小题3分,共计18分)11.已知实数x、y满足+|y+3|=0,则x+y的值为.12.一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成组.13.如图,已知AB∥CD∥EF,∠x=80°,∠z=25°,则∠y=.14.根据图中所给的信息,每件T恤和每瓶矿泉水的价格分别是元和元.15.若方程组只有四个整数解,则实数a的取值范围.16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2015的坐标是.三、用心做一做,显现你的能力.(本大题共8个小题,共72分)17.3××﹣||1)解方程组(2)解不等式组.1)如图,若∠1=∠2,则AB∥CD,试判断命题的真假:(填“真”或“假”).(2)若上述命题为真命题,请说明理由,若上述命题为假命题,请你再添加一条件,使该命题成为真命题,并说明理由.20.解不等式(2x+1)(3x﹣2)>0时,根据有理数乘法法则“两数相乘,同号得正”有①,或②,解不等式①,得x>;解不等式②,得x<,则不等式(2x+1)(3x﹣2)>0的解集为x>或x<,请参照例题,解不等式<0.21.如图,已知△ABC平移后得到△A1B1C1,点A(﹣1,3)平移后得到A1(﹣4,2),(1)写出B,C的坐标:B(,),C(,).(2)画出△ABC,并指出平移规律;(3)求△ABC的面积.22.某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)被调查的学生共有人,并补全条形统计图;(2)在扇形统计图中,m=,n=,表示区域C的圆心角为度;(3)全校学生中喜欢篮球的人数大约有多少?23.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.24.如图(1),在平面直角坐标系中,A(a,0),C(b,2),过C作CB⊥x轴,且满足(a+b)2+=0.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.参考答案与试题解析一、精心选一选,一锤定音!(本题10小题,每小题3分,共30分,每小题只有一个选项是正确的)(请将正确的填在后面的答题栏内)1.下列各数中,是无理数的是()A.B.3.14 C.D.考点:无理数.分析:根据无理数是无限不循环小数,可得答案.解答:解:A、=2是有理数,故A错误;B、3.14是有理数,故B错误;C、=2是有理数,故C错误;D、=2是无理数,故D正确;故选:D.点评:本题考查了无理数,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.如图,直线AB∥CD,与直线EF分别交于M,N,则图中与∠END相等的角(∠END除外)的个数为()A.1 B.2 C.3 D.4考点:平行线的性质.分析:先根据平行线的性质得出∠END=∠EMD,再由对顶角相等得出∠END=∠CNF,∠EMB=∠AMN,由此可得出结论.解答:解:∵直线AB∥CD,∴∠END=∠EMD.∵∠END=∠CNF,∠EMB=∠AMN,∴∠END=∠CNF=∠EMB=∠AMN.故选C.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.3.点(﹣2015,2015)在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:首先根据2015>0,﹣2015<0,可得点的横坐标小于0,纵坐标大于0,然后根据每个象限的点的横坐标、纵坐标的正负,可得点在第二象限,据此解答即可.解答:解:∵2015>0,﹣2015<0,∴点的横坐标小于0,纵坐标大于0,∴点在第二象限,故选:B.点评:此题主要考查了点的坐标,以及象限的特征和判断,解答此题的关键是要明确:建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限,坐标轴上的点不属于任何一个象限,要明确每个象限的点的横坐标、纵坐标的正负.4.已知是二元一次方程4x+ay=7的一组解,则a的值为()A.﹣5 B.5 C.D.﹣考点:二元一次方程的解.专题:计算题.分析:把x与y的值代入方程计算即可求出a的值.解答:解:把代入方程得:8﹣3a=7,解得:a=.故选C.点评:此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.3﹣x>3﹣y C.2x>2y D.﹣考点:不等式的性质.分析:A:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.B:首先根据不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,判断出﹣x<﹣y;然后根据不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,可得3﹣x<3﹣y,据此判断即可.C:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可.D:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.解答:解:∵x>y,∴x﹣3>y﹣3,∴选项A正确;∵x>y,∴﹣x<﹣y,∴3﹣x<3﹣y,∴选项B错误;∵x>y,∴2x>2y,∴选项C正确;∵x>y,∴﹣,∴选项D正确.故选:B.点评:此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.6.要反映某种股票的涨跌情况,最好选择()A.条形统计图B.折线统计图C.扇形统计图D.列表考点:统计图的选择.分析:根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.解答:解:要反映某种股票的涨跌情况,最好选择折线统计图,故选:B.点评:本题考查的是统计图的选择,利用扇形统计图、折线统计图、条形统计图各自的特点来判断是解题关键.7.把不等式组的解集表示在数轴上,下列选项正确的是()A.B. C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:本题的关键是先解不等式组,然后再在数轴上表示.解答:解:由(1)得x>﹣1,由(2)得x≤1,所以﹣1<x≤1.故选B.点评:本题考查一元一次不等式组的解集及在数轴上的表示方法.8.下列命题错误的有()①实数与数轴上的点一一对应;②无限小数就是无理数;③直线外一点到这条直线的垂线段叫做点到直线的距离;④两条直线被第三条直线所截,同旁内角互补.A.1个B.2个C.3个D.4个考点:命题与定理.分析:根据数轴上的点与实数的关系对①进行判断;根据无理数的定义对②进行判断;根据点到直线的距离的定义对③进行判断;根据平行线的性质对④进行判断.解答:解:实数与数轴上的点一一对应,所以①为真命题;无限不循环小数是无理数,所以②为假命题;直线外一点到这条直线的垂线段的长叫做点到直线的距离,所以③为假命题;两条平行直线被第三条直线所截,同旁内角互补,所以④为假命题.故选C.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.下列说法中正确的是()A.实数﹣a2是负数B.C.|﹣a|一定是正数D.实数﹣a的绝对值是a考点:实数.分析:A、根据平方运算的特点即可判定;B、根据平方根的性质即可判定;C、根据绝对值的性质即可判定;D、根据实数的绝对值的性质进行即可判定.解答:解:A、实数﹣a2是负数,a=0时不成立,故选项错误;B、,符合二次根式的意义,故选项正确,C、|﹣a|一定不一定是正数,a=0时不成立,故选项错误;D、实数﹣a的绝对值不一定是a,a为负数时不成立,故选项错误.故选B.点评:本题考查的是实数的分类及二次根式、绝对值的性质,解答此题时要注意0既不是正数,也不是负数.10.如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是()A.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠EC.∠A﹣∠C+∠D+∠E=180°D.∠E﹣∠C+∠D﹣∠A=90°考点:平行线的性质.分析:过点C作CG∥AB,过点D作DH∥EF,根据两直线平行,内错角相等可得∠A=∠ACG,∠CDH=∠DCG,两直线平行,同旁内角互补可得∠EDH=180°﹣∠E,然后表示出∠C整理即可得解.解答:解:如图,过点C作CG∥AB,过点D作DH∥EF,则∠A=∠ACG,∠EDH=180°﹣∠E,∵AB∥EF,∴CG∥DH,∴∠CDH=∠DCG,∴∠C=∠ACG+∠CDH=∠A+∠D﹣(180°﹣∠E),∴∠A﹣∠C+∠D+∠E=180°.故选C.点评:本题考查了平行线的性质,此类题目难点在于过拐点作平行线.二、耐心填空,准确无误(每小题3分,共计18分)11.已知实数x、y满足+|y+3|=0,则x+y的值为﹣2.考点:非负数的性质:算术平方根;非负数的性质:绝对值.分析:根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.解答:解:由题意得,x﹣1=0,y+3=0,解得x=1,y=﹣3,所以,x+y=1+(﹣3)=﹣2.故答案为:﹣2.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.12.一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成10组.考点:频数(率)分布表.分析:求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.解答:解:143﹣50=93,93÷10=9.3,所以应该分成10组.故答案为:10.点评:本题考查频率分布表中组数的确定,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.13.如图,已知AB∥CD∥EF,∠x=80°,∠z=25°,则∠y=125°.考点:平行线的性质.分析:先根据AB∥CD,∠x=80°,∠z=25°得出∠CEF的度数,再由CD∥EF即可得出∠y的度数.解答:解:∵AB∥CD,∠x=80°,∠z=25°,∴∠z+∠CEF=∠x=80°,∴∠CEF=80°﹣25°=55°.∵CD∥EF,∴∠y=180°﹣55°=125°.故答案为:125°.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.14.根据图中所给的信息,每件T恤和每瓶矿泉水的价格分别是20元和2元.考点:二元一次方程组的应用.分析:通过理解图形可知本题存在两个等量关系,即每件T恤价格×2+每瓶矿泉水的价格×2=44,每件T恤价格+每瓶矿泉水的价格×3=26.根据这两个等量关系可列出方程组.解答:解:设每件T恤价格和每瓶矿泉水的价格分别为x元,y元,则,解得.故每件T恤和每瓶矿泉水的价格分别是20元和2元.故答案为:20,2.点评:考查了二元一次方程组的应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.15.若方程组只有四个整数解,则实数a的取值范围﹣3<a≤﹣2.考点:一元一次不等式组的整数解.分析:首先解不等式组,根据不等式组只有四个整数解,即可确定a的范围.解答:解:,解①得:x≥a,解②得:x<2.则不等式组的解集是:a≤x<2,则不等式组的整数解是:1,0,﹣1,﹣2.则﹣3<a≤﹣2.故答案是:﹣3<a≤﹣2.点评:本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2015的坐标是(504,504).考点:规律型:点的坐标.分析:观察图象,每四个点一圈进行循环,每一圈第一个点在第三象限,根据点的脚标与坐标寻找规律.解答:解:2015÷4=503…3,∴顶点A2015与顶点A3所在的象限相同,其坐标为:横坐标是503+1=504,纵坐标是503+1=504,∴A2015(504,504).故答案为:(504,504).点评:本题主要考查对正方形的性质,坐标与图形性质及点的坐标等知识点的理解和掌握,能根据已知找出规律是解此题的关键.三、用心做一做,显现你的能力.(本大题共8个小题,共72分)17.3××﹣||考点:实数的运算.分析:本题涉及绝对值、二次根式化简、三次根式化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3×(2﹣)×﹣(2﹣)=4﹣2﹣2+=2﹣.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、三次根式、绝对值等考点的运算.1)解方程组(2)解不等式组.考点:解二元一次方程组;解一元一次不等式组.专题:计算题.分析:(1)方程组利用加减消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.解答:解:(1),①+②得:3x=6,即x=2,把x=2代入①得:y=2,则方程组的解为;(2),由①得:x>1,由②得:x≤2,则不等式组的解集为1<x≤2.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.1)如图,若∠1=∠2,则AB∥CD,试判断命题的真假:假(填“真”或“假”).(2)若上述命题为真命题,请说明理由,若上述命题为假命题,请你再添加一条件,使该命题成为真命题,并说明理由.考点:命题与定理;平行线的判定与性质.分析:(1)利用平行线的判定方法进而判断即可;(2)利用平行线的判定方法求出即可.解答:解:(1)若∠1=∠2,则AB∥CD,是假命题;故答案为:假;(2)加条件:BE∥FD,∴∠EBD=∠FDN,又∵∠1=∠2,∴∠ABD=∠CDN,∴AB∥CD.点评:此题主要考查了命题与定理以及平行线的判定,正确把握平行线的判定方法是解题关键.20.解不等式(2x+1)(3x﹣2)>0时,根据有理数乘法法则“两数相乘,同号得正”有①,或②,解不等式①,得x>;解不等式②,得x<,则不等式(2x+1)(3x﹣2)>0的解集为x>或x<,请参照例题,解不等式<0.考点:解一元一次不等式组.专题:阅读型.分析:根据题中的解题方法可把原不等式化为①,或②,然后分别解两个不等式组,再得到原不等式的解集.解答:解:根据题意得①,或②,解不等式①,得﹣<x<;解不等式②无解,所以原不等式的解集为﹣<x<.点评:本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.21.如图,已知△ABC平移后得到△A1B1C1,点A(﹣1,3)平移后得到A1(﹣4,2),(1)写出B,C的坐标:B(﹣5,2),C(﹣2,﹣2).(2)画出△ABC,并指出平移规律;(3)求△ABC的面积.考点:作图-平移变换.分析:(1)根据直角坐标系的特点写出各点的坐标;(2)根据题意可得,△ABC向左平移3个单位,向下平移1个单位得到△A1B1C1,作出△ABC;(3)用△ABC所在的矩形的面积减去三个小三角形的面积即可.解答:解;(1)由图可得,B(﹣5,2),C(﹣2,﹣2);(2)所作图形如图所示:△ABC向左平移3个单位,向下平移1个单位得到△A1B1C1;(3)S△ABC=5×4﹣×1×2﹣×3×4﹣×3×5=20﹣1﹣6﹣7.5=5.5.故答案为;﹣5,2,﹣2,﹣2.点评:本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.22.某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)被调查的学生共有100人,并补全条形统计图;(2)在扇形统计图中,m=30,n=10,表示区域C的圆心角为144度;(3)全校学生中喜欢篮球的人数大约有多少?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用B组频数除以其所占的百分比即可求得样本容量;(2)用A组人数除以总人数即可求得m值,用D组人数除以总人数即可求得n值;(3)用总人数乘以D类所占的百分比即可求得全校喜欢篮球的人数;解答:解:(1)观察统计图知:喜欢乒乓球的有20人,占20%,故被调查的学生总数有20÷20%=100人,喜欢跳绳的有100﹣30﹣20﹣10=40人,条形统计图为:(2)∵A组有30人,D组有10人,共有100人,∴A组所占的百分比为:30%,D组所占的百分比为10%,∴m=30,n=10;表示区域C的圆心角为×360°=144°;(3)∵全校共有2000人,喜欢篮球的占10%,∴喜欢篮球的有2000×10%=200人.点评:本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.23.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.考点:一元一次不等式组的应用;二元一次方程组的应用.专题:方案型;图表型.分析:(1)等量关系为:甲件数+乙件数=160;甲总利润+乙总利润=1100.(2)设出所需未知数,甲进价×甲数量+乙进价×乙数量<4300;甲总利润+乙总利润>1260.解答:解:(1)设甲种商品应购进x件,乙种商品应购进y件.根据题意得:.解得:.答:甲种商品购进100件,乙种商品购进60件.(2)设甲种商品购进a件,则乙种商品购进(160﹣a)件.根据题意得.解不等式组,得65<a<68.∵a为非负整数,∴a取66,67.∴160﹣a相应取94,93.方案一:甲种商品购进66件,乙种商品购进94件.方案二:甲种商品购进67件,乙种商品购进93件.答:有两种购货方案,其中获利最大的是方案一.点评:解决本题的关键是读懂题意,找到所求量的等量关系及符合题意的不等关系式组:甲件数+乙件数=160;甲总利润+乙总利润=1100.甲进价×甲数量+乙进价×乙数量<4300;甲总利润+乙总利润>1260.24.如图(1),在平面直角坐标系中,A(a,0),C(b,2),过C作CB⊥x轴,且满足(a+b)2+=0.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.考点:坐标与图形性质;解二元一次方程组;平行线的性质;三角形的面积.分析:(1)根据非负数的性质得到a=﹣b,a﹣b+4=0,解得a=﹣2,b=2,则A(﹣2,0),B(2,0),C(2,2),即可计算出三角形ABC的面积=4;(2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=×90°=45°;(3)先根据待定系数法确定直线AC的解析式为y=x+1,则G点坐标为(0,1),然后利用S△PAC=S△APG+S△CPG进行计算.解答:解:(1)∵(a+b)2≥0,≥0,∴a=﹣b,a﹣b+4=0,∴a=﹣2,b=2,∵CB⊥AB∴A(﹣2,0),B(2,0),C(2,2)∴三角形ABC的面积=×4×2=4;(2)∵CB∥y轴,BD∥AC,∴∠CAB=∠ABD,∴∠3+∠4+∠5+∠6=90°,过E作EF∥AC,∵BD∥AC,∴BD∥AC∥EF,∵AE,DE分别平分∠CAB,∠ODB,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED=∠1+∠2=×90°=45°;(3)存在.理由如下:设P点坐标为(0,t),直线AC的解析式为y=kx+b,把A(﹣2,0)、C(2,2)代入得,解得,∴直线AC的解析式为y=x+1,∴G点坐标为(0,1),∴S△PAC=S△APG+S△CPG=|t﹣1|•2+|t﹣1|•2=4,解得t=3或﹣1,∴P点坐标为(0,3)或(0,﹣1).点评:本题考查了平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.也考查了非负数的性质.。
2015年新人教版七年级数学下册期末试卷5
2015年七年级(下)期末数学试卷一、选择题(每小题3分,共36分)1.(3分)(2011•北海)点P(2,﹣3)所在的象限为()A .第一象限B.第二象限C.第三象限D.第四象限2.(3分)(2014春•岑溪市期末)如图,已知∠1=∠2,则AB∥CD的根据是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.同旁内角相等,两直线平行D.两直线平行,同位角相等3.(3分)(2010•怀柔区二模)不等式2x>4的解集在数轴上表示为()A .B.C.D.4.(3分)(2014春•岑溪市期末)已知a<b,则下列式子正确的是()A .a+5>b+5 B.3a>3b C.﹣5a>﹣5b D.>5.(3分)(2014春•岑溪市期末)不等式组的解集是的()A .﹣3<x<﹣2 B.x<﹣2 C.x<﹣3 D.无解6.(3分)(2014春•岑溪市期末)下列说法正确的是()A.25的平方根是5 B.(﹣4)2的平方根是4C.±4是64的立方根D.﹣8的立方根是﹣27.(3分)(2014春•岑溪市期末)不等式的解集在数轴上表示出来是()A .B.C.D.8.(3分)(2014春•岑溪市期末)2014年中考已经结束,市教科研所随机抽取1000名学生试卷进行调查分析,这个问题的样本是()A. 1000 B. 1000名C.1000名考生的数学试卷D. 1000名学生9.(3分)(2014春•岑溪市期末)下列调查中,适合用全面调查的是()A.了解某班同学立定跳远的情况B.了解一批炮弹的杀伤半径C.了解某种品牌奶粉中含三聚氰胺的百分比D.了解全国青少年喜欢的电视节目10.(3分)(2014春•岑溪市期末)设“●”“▲”“■”表示三种不同的物体,现用天平称称了两次,情况如图所示,那么●▲■这三种物体按质量从大到小的顺序排列()A .■●▲B.■▲●C.▲●■D.▲■●11.(3分)(2009•福州)二元一次方程组的解是()A .B.C.D.12.(3分)(2014春•岑溪市期末)如果点M(3a﹣9,1﹣a)是第三象限的整数点,则M的坐标为()A.(﹣3,﹣1)B.(﹣2,﹣1)C.(﹣6,0)D.(0,﹣4)二、填空题(每小题3分,共18分)13.(3分)(2014春•岑溪市期末)在平面直角坐标系中,将点P(1,3)向下平移2个单位后的点的坐标为.14.(3分)(2009•遂宁)把不等式组的解集表示在数轴上,如图所示,那么这个不等式组的解集是.15.(3分)(2014春•范县期末)在方程2x+y=5中,用x的代数式表示y,得y=.16.(3分)(2014春•岑溪市期末)求式子的值:=.17.(3分)(2014春•岑溪市期末)今年5月11日是母亲节,赵勇同学想买双鞋孝敬母亲,而母亲只告诉他自己的脚长是24,那么赵同学该买码.(已知用x表示脚长,用y表示鞋码,则有2x﹣y=10)18.(3分)(2008•泰州)用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当未进入木块的钉子长度足够时,每次钉入木块的钉子长度是前一次的.已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后铁钉进入木块的长度是2cm,若铁钉总长度为acm,则a的取值范围是.三、解答题(46分)19.(6分)(2014春•岑溪市期末)计算:﹣﹣.20.(6分)(2014春•岑溪市期末)解方程组.21.(6分)(2014春•岑溪市期末)解不等式5x+15>4x﹣13,并把它的解集在数轴上表示出来.22.(6分)(2014春•岑溪市期末)解不等式组.23.(6分)(2014春•天门期末)已知:如图,AD∥BE,∠1=∠2,求证:∠A=∠E.24.(8分)(2014春•岑溪市期末)新华社北京5月22日电,5月22日7时50分许,有2两辆无牌汽车在乌鲁木齐市沙依巴克区公园北街的一个早市冲撞群众,此后2辆车发生爆炸起火.截至发稿时已造成31人死亡,90余人受伤.中共中央总书记、国家主席、中央军委主席习近平得知消息后,立即作出重要批示,要求迅速侦破案件,从严惩处暴恐分子;及时组织救治受伤群众,安抚受害者家属,全面加强社会面巡控和重点部位防控,严防发生连锁反应.对暴恐活动和恐怖分子必须警钟长鸣、重拳出击、持续保持严打高压态势,全力维护社会稳定.并开展为期一年严打暴恐行为,以新疆为主战场,对于此次“乌鲁木齐5.22暴恐案”某校准备开展一个爱国主义及民族团结教育活动,在学生中做了一次抽样调查,并把调查结果分为三类:A、知道“乌鲁木齐5.22暴恐案”B、知道“乌鲁木齐5.22暴恐案”,并表示强烈愤慨C、不知道“乌鲁木齐5.22暴恐案”如图是根据调查结果绘制的部分统计图,根据提供的信息回答问题:(1)已知A类学生占抽样调查学生数的30%,则抽样调查的学生有多少人?(2)计算B类学生的人数并根据计算补全统计图;(3)如果该校共有2000人,是估计该校有多少学生知道“乌鲁木齐5.22暴恐案”事件,并表示强烈愤慨.25.(8分)(2014春•岑溪市期末)今年5月份我市连续遭遇强降雨的袭击,受灾严重,现将300吨救灾物资运往某灾区,现有A、B两种型号的车可供调用,已知A型车每辆可装20吨,B型车每辆可装15吨,在每辆车按载重量且不超载的条件下,把300吨救灾物资装运完,问:在以确定调用5辆A型车的前提下至少还需要调用B型车多少辆?2015年七年级(下)期末数学试卷参考答案一、选择题(每小题3分,共36分)1.D 2.B 3.B 4.C 5.C 6.D 7.A 8.C 9.A 10.B 11.C 12.A二、填空题(每小题3分,共18分)13.(1,1)14.x>1 15.5-2x 16.4 17.39 18.3<a≤3.5三、解答题(46分)19.20.21.22.23.24.25.。
沈阳市七年级下学期期末数学试题题及答案
4.下列各式中,计算结果为x2﹣1的是( )
A. B.
C. D.
5.如图,已知直线 ∥ , , ,则 ()
A. B. C. D.
6.若x2+kx+16是完全平方式,则k的值为( )
A.4B.±4C.8D.±8
7.下列说法中,正确的个数有( )
二、填空题
11.最薄的金箔的厚度为 ,用科学记数法表示为________ .
12.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学计数法表示为________________.
13.若把代数式 化为 的形式,其中 、 为常数,则 ______.
14.如果 与 的乘积中不含x2项,则m=______________.
22.如图,△ABC中,AE是△ABC的角平分线,AD是BC边上的高.
(1)若∠B=35°,∠C=75°,求∠DAE的度数;
(2)若∠B=m°,∠C=n°,(m<n),则∠DAE=°(直接用m、n表示).
23.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=60°,∠C=50°,求∠DAC及∠BOA的度数.
26.因式分解:
(1) ;
(2) .
27.已知有理数 满足: ,且 ,求 的值.
28.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1,可以得到 这个等式,请解答下列问题:
(1)写出图2中所表示的数学等式.
(2)根据整式乘法的运算法则,通过计算验证上述等式.
(3)利用(1)中得到的结论,解决下面的问题:
24.如图,有一块长为 米,宽为 米的长方形空地,计划修筑东西、南北走向的两条道路,其余进行绿化(阴影部分),已知道路宽为 米,东西走向的道路与空地北边界相距1米,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.
沈阳市七年级下学期期末数学试题题及答案
A.∠A-∠B=∠CB.∠A=60°,∠B=40°
C.∠A+∠B=∠CD.∠A:∠B:∠C=1:1:2
二、填空题
11.分解因式: __________.
12.如果 是关于x、y的二元一次方程mx-10=3y的一个解,则m的值为_____.
13.已知a+b=5,ab=3,求:
(3)若给定一个二次三项式2a25ab3b2,试用拼图的方式将其因式分解.(请仿照(2)在几何图形中标上有关数量)
24.化简与计算:
(1)
(2)(﹣2a3)3+(﹣4a)2•a7﹣2a12÷a3
25.先化简后求值: ,其中 , .
26.杨辉三角是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n(此处n=0,1,2,3,4...)的展开式中的系数.杨辉三角最本质的特征是:它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两数之和.
∴∠1+∠2= (∠ABC+∠ACB)= (180º-∠A)=90º- ∠A,
∴∠BOC=180º-(∠1+∠2)=180º-(________)=90º+ ∠A.
(探究2):如图2,已知O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?请说明理由.
(应用):如图3,在RtΔAOB中,∠AOB=90º,已知AB不平行与CD,AC、BD分别是∠BAO和∠ABO的角平分线,又CE、DE分别是∠ACD和∠BDC的角平分线,则∠E=_______;
17.如图,若AB∥CD,∠C=60°,则∠A+∠E=_____度.
18.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3=_____.
辽宁省沈阳市七年级下学期数学期末考试试卷
辽宁省沈阳市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、相信你的选择 (共10题;共20分)1. (2分)若|a|=4,=3,且a+b<0,则a﹣b的值是()A . 1,7B . -1,7C . 1,-7D . -1,-72. (2分)下列各数(-2)0 , - (-2), (-2)2, (-2)3中, 负数的个数为()A . 1B . 2C . 3D . 43. (2分)若点P(a,a﹣2)在第四象限,则a的取值范围是()A . ﹣2<a<0B . 0<a<2C . a>2D . a<04. (2分)如图,点E在BC的延长线上,下列条件中能判断AB∥CD的是()A . ∠3=∠4B . ∠D=∠DCEC . ∠1=∠2D . ∠B=∠25. (2分) (2018九上·宁波期中) 如图,在△ABC中,AC=6,BC=8,若AC,BC边上的中线BE,AD 垂直相交于点O,则AB=()A . 5B . 4C . 3D . 26. (2分) (2015八上·丰都期末) 如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A . 90°﹣αB . 90°+ αC .D . 360°﹣α7. (2分) (2020八下·上饶月考) 如图,在 ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC 交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是()A . 梯形B . 矩形C . 菱形D . 正方形8. (2分)某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y与时间x的关系的大致图象是A .B .C .D .9. (2分)一个等腰三角形的两条边长分别是方程x2-7x+10=0的两根,则该等腰三角形的周长是()A . 12B . 9C . 13D . 12或910. (2分)下列不是利用三角形稳定性的是()A . 伸缩晾衣架B . 三角形房架C . 自行车的三角形车架D . 矩形门框的斜拉条二、试试你的身手 (共8题;共14分)11. (1分)(2019·上海模拟) 计算: = ________.12. (7分) (2019七下·营口月考) 完成下面的证明:已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD,求证:∠EGF=90°证明:∵HG∥AB(已知)∴∠1=∠3________又∵HG∥CD(已知)∴∠2=∠4∵AB∥CD(已知)∴∠BEF+________=180°________又∵EG平分∠BEF(已知)∴∠1=∠________又∵FG平分∠EFD(已知)∴∠2=∠ ________∴∠1+∠2=(________)∴∠1+∠2=90°∴∠3+∠4=90° =________即∠EGF=90°.13. (1分) (2019八上·贵州月考) 已知一个三角形的两条边长分别为2和7,且第三边长为奇数,那么第三边长是________.14. (1分) (2020八上·重庆开学考) 已知某商品每箱盈利10元,现每天可售出50箱,如果每箱商品每涨价1元,日销售量就减少2箱.设每箱涨价元时(其中为正整数),每天的总利润为元,则与之间的关系式为________.15. (1分) (2012八下·建平竞赛) 如图,AD=8cm,CD=6cm,AD⊥CD,BC=24cm,AB=26cm,则S四边形ABCD=________.16. (1分)在等腰三角形ABC中,∠C=90°,BC=2cm.如果以AC的中点O为旋转中心,将这个三角形旋转180°,点B落在点B′处,那么点B′与点B的原来位置相距________cm.17. (1分)(2017·宁波) 如图,用同样大小的黑色棋子按如图所示的规律摆放:则第⑦个图案有________个黑色棋子.18. (1分) (2019八上·嘉兴期末) 如图,在Rt△ABC中,∠C=90°,DE垂直平分AB,连结AD.若AC=6,BC=8,则CD的长为________.三、挑战你的技能 (共10题;共80分)19. (20分) (2020七下·玄武期中) 计算:(1)﹣20160﹣|﹣5|;(2)(3a2)2﹣a2•2a2+(﹣2a3)2+a2;(3)(x+5)2﹣(x﹣2)(x﹣3);(4)(2x+y﹣2)(2x+y+2).20. (5分) (2019七下·揭西期末) 化简:﹣12x2y3÷(﹣3xy2)(﹣ xy)21. (5分)(2020·浙江模拟) 计算:22. (15分)计算:(1) 3x2(﹣y﹣xy2+x2);(2)(﹣4xy)•(xy+3x2y);(3).23. (5分)(2020·岑溪模拟) 计算:24. (10分)已知如图,AO⊥BC,DO⊥OE.(1)不添加其它条件情况下,请尽可能多地写出图中有关角的等量关系(至少3个);(2)如果∠COE=35°,求∠AOD的度数.25. (5分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.26. (5分)如图(1、2)的直线a与b既不相交也不平行,为什么会出现这样的情况?与同学们讨论一下.27. (5分)如图,A、B两点分别位于一个假山两边,请你利用全等三角形的知识设计一种测量A、B间距离的方案,并说明其中的道理.(1)测量方案:(2)理由:28. (5分)在平面直角坐标系中,点A(2,0),点B(0,3)和点C(0,2);(1)请写出OB的长度;(2)如图:若点D在x轴上,且点D的坐标为(﹣3,0),求证:△AOB≌△COD;(3)若点D在第二象限,且△AOB≌△COD,则这时点D的坐标是(直接写答案).参考答案一、相信你的选择 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、试试你的身手 (共8题;共14分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、挑战你的技能 (共10题;共80分)答案:19-1、答案:19-2、答案:19-3、答案:19-4、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:答案:23-1、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、考点:解析:答案:26-1、考点:解析:答案:27-1、考点:解析:答案:28-1、考点:解析:。
辽宁省沈阳市七年级下学期数学期末试卷
辽宁省沈阳市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2016九下·黑龙江开学考) 下列图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .2. (2分) (2018八上·海淀期末) 叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为()A .B .C .D .3. (2分) (2020七上·吴兴期末) 如图,三条直线a、b、c相交于一点,则∠1+∠2+∠3=()A . 360°B . 180°C . 120°D . 90°4. (2分)如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()A .B .C .D .5. (2分)如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是()A . 2cm<OA<5cmB . 2cm<OA<8cmC . 1cm<OA<4cmD . 3cm<OA<8cm6. (2分) (2019七上·上海月考) 下列等式成立的是()A . x2+x2=x4B . 2a2﹣a2=2C . (2a)2=2a2D . 2a2•a2=2a47. (2分) (2020八上·武汉月考) 如图,△ABC、△CDE都是等腰直角三角形,AC=BC,DC=EC,∠ACB=∠ECD =90°,且∠AEB=130°,则∠EBD的度数是()A . 50°B . 40°C . 45°D . 60°8. (2分)在一个不透明的口袋中放着红色、黑色、黄色的橡皮球共有30个,它们除颜色外其它全相同.小刚通过多次摸球试验后发现从中摸到红色球或黄色球的频率稳定在0.15和0.45之间,则口袋中黑色球的个数可能是()A . 14B . 20C . 9D . 69. (2分)如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠4=70°,则∠3等于()A . 40°B . 50°C . 70°D . 80°10. (2分) (2019八上·合肥期中) 如图,中, BP平分∠ABC,AP⊥BP于P,连接PC,若的面积为3.5cm2 ,的面积为4.5cm2 ,则的面积为().A . 0.25cm2B . 0.5 cm2C . 1cm2D . 1.5cm2二、填空题 (共6题;共6分)11. (1分)如果∠A=36°18′,那么∠A的余角为________12. (1分)(2017·天桥模拟) 计算:﹣2+(﹣2)0=________.13. (1分) (2019七下·孝义期中) 如图,已知,,,则________.14. (1分) (2017九上.德惠期末) 有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、 (6)点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是________.15. (1分) (2019八下·盐湖期中) 如图,在平面直角坐标系中,已知点A(1,1)点B(0,2),若在y轴上找一点C ,使△ABC是等腰三角形,则点C的坐标为________16. (1分) (2020七上·福田期中) 数学真奇妙,小慧同学研究有两个有理数a和b,若计算a+b,a-b,ab,的值,发现有三个结果恰好相同,小慧突发灵感,想考考大家,请你们求 ________三、解答题 (共7题;共63分)17. (10分) (2019七下·新罗期末) 先化简,再求值:2(3x3﹣y2)﹣(3y2+x3),其中x=﹣1,18. (5分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E=1 .19. (3分)有这样一个问题:探究函数y=x2+的图象与性质.小东根据学习函数的经验,对函数y=x2+的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=x2+的自变量x的取值范围是________(2)下表是y与x的几组对应值.x…﹣3﹣2﹣1﹣﹣123…y…﹣﹣﹣m…求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,),结合函数的图象,写出该函数的其它性质(一条即可)________20. (10分) (2015九上·福田期末) 小鹏和小娟玩一种游戏:小鹏手里有三张扑克牌分别是3、4、5,小娟有两张扑克牌6、7,现二人各自把自己的牌洗匀,小鹏从小娟的牌中任意抽取一张,小娟从小鹏的牌中任意抽取一张,计算两张数字之和,如果和为奇数,则小鹏胜;如果和为偶数则小娟胜.(1)用列表或画树状图的方法,列出小鹏和小娟抽得的数字之和所有可能出现的情况;(2)请判断该游戏对双方是否公平?并说明理由.21. (10分)(2017·绥化) 如图,A、B、C为某公园的三个景点,景点A和景点B之间有一条笔直的小路,现要在小路上建一个凉亭P,使景点B、景点C到凉亭P的距离之和等于景点B到景点A的距离,请用直尺和圆规在所给的图中作出点P.(不写作法和证明,只保留作图痕迹)22. (10分) (2019七上·灌阳期中) 如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为米,广场长为米,宽为米。
2014-2015年辽宁省沈阳市铁西区七年级(上)期末数学试卷和参考答案
2014-2015学年辽宁省沈阳市铁西区七年级(上)期末数学试卷一、选择题(下列各题的四个选项中,只有一个是正确的,每小题2分,共16分)1.(2分)下列各数中,绝对值最大的数是()A.﹣3 B.﹣2 C.0 D.12.(2分)下列调查中,适合采用全面调查的是()A.对全国中学生心理健康现状的调查B.对某种食品合格情况的调查C.对某电视节目收视率的调查D.对你所在班级同学身高情况的调查3.(2分)如图,点C是直线AB上一点,已知∠ACD=46°,则∠BCD的度数是()A.44°B.46°C.124° D.134°4.(2分)若一元一次方程ax+b=0的解是x=1,则a,b的关系为()A.相等B.互为相反数C.互为倒数D.互为负倒数5.(2分)下列四个图形中,每个小正方形都标上了颜色.若要求一个正方体两个相对面上的颜色都一样,那么不可能是这一个正方体的展开图的是()A.B.C.D.6.(2分)为了解某中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出如图所示的频数分布直方图(每组数据包含最大值,不包含最小值),估计该校这300名男生的身高满足:164.5cm<身高≤174.5cm的人数约有()A.12 B.16 C.28 D.1687.(2分)地球上水的总储量约为 1.39×1018立方米,但目前能被人们生产、生活利用的水只占总储量的0.77%,因此我们要节约用水,那么用科学记数法表示能被人们生产、生活利用的水约为()A.1.0703×1015立方米 B.1.0703×1016立方米C.1.0703×1017立方米 D.1.0703×1018立方米8.(2分)如图是由若干块小正方体积木堆成的几何体,在这个基础上要把它堆成一个立方体,那么至少还需要的小正方体积木的块数为()A.38 B.42 C.48 D.52二、填空题(每小题2分,共16分)9.(2分)×(﹣3)=1.10.(2分)如图是某个几何体的三视图,则该几何体的名称是.11.(2分)一个代数式减去x2﹣y2等于x2+2y2,则这个代数式是.12.(2分)已知线段AB=5cm,点C是线段AB上一点,且BC=2cm,则AC=.13.(2分)计算:50°﹣15°30′=.14.(2分)某校根据去年七年级学生参加某次考试的数学成绩的等级,绘制成如图所示的扇形统计图,则图中表示A等级的扇形圆心角的度数为.15.(2分)某款服装每件进价为200元,按标价的八折销售时,利润率为10%,设这款服装每件的标价为x元,根据题意可列方程为:.16.(2分)如图,已知∠AOB=m度,OA1平分∠AOB,OA2平分∠AOA1,OA3平分∠AOA2,OA4平分∠AOA3,…,OA n平分∠AOA n﹣1,则∠AOA n的度数为度.三、解答题(17、18题5分,19题6分,共16分)17.(5分)计算:12×(﹣)+6×﹣(﹣1)2.18.(5分)化简:2x﹣[2(x+3y)﹣3(x﹣2y)].19.(6分)解方程:(x﹣4)﹣3(3x+4)=﹣.四、解答题(每小题6分,共12分)20.(6分)如图,已知线段AC=15cm,点B为线段AC延长线上一点,且BC= AC,点D为AC的中点,求DB的长.21.(6分)同学们,你们知道怎样解“绝对值方程|4x|=5”吗?我们可以这样考虑:因为|5|=5,|﹣5|=5,所以有4x=5或4x=﹣5,分别解得x=或x=﹣,根据以上解法,求方程|﹣3x+2|=8的解.五、解答题(本题8分)22.(8分)在飞机飞行时,飞行方向是用飞行路线与实际的南或北方向线之间的夹角大小来表示的,如图,用AN(南北线)与飞行线之间顺时针方向夹角作为飞行方向角,从A到B的飞行方向角为35°,从A到C的飞行方向角为60°,从A到D的飞行方向角为145°,试求AB与AC之间夹角为多少度?AD与AC之间夹角为多少度?并画出从A飞出且方向角为105°的飞行线.六、解答题(本题10分)23.(10分)列一元一次方程解应用题:桌面上有甲、乙、丙三个圆柱形的杯子,底面积分别为60平方厘米、80平方厘米、100平方厘米,杯深均为15cm,各装有15厘米高的水.现小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5,若不计杯子厚度,则甲杯内水的高度变为多少厘米?七、解答题(本题10分)24.(10分)读书成为现代人的时尚,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图,请回答:(1)在统计的这段时间内,共有多少万人次到图书馆阅读?其中商人占的百分比为多少?(2)将条形统计图补充完整;(3)若12月份到图书馆的读者共28000人次,请估计其中约有多少人次读者是职工?八、解答题(共1小题,满分12分)25.(12分)用正方形硬纸板做三棱柱盒子.每个盒子由3个长方形侧面和2个等边三角形底面组成,硬纸板以如图2两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面B方法:剪4个侧面和5个底面现有19张硬纸板,裁剪时x张用了A方法,其余用B方法.(1)用含x的式子分别表示裁剪出的侧面和底面的个数;(2)若裁剪完后,一共有92个侧面,求一共裁剪出多少个底面?(3)如果用这些裁剪出的侧面和底面作三棱柱盒子,那么最多能做多少个?请直接写出答案.2014-2015学年辽宁省沈阳市铁西区七年级(上)期末数学试卷参考答案与试题解析一、选择题(下列各题的四个选项中,只有一个是正确的,每小题2分,共16分)1.(2分)下列各数中,绝对值最大的数是()A.﹣3 B.﹣2 C.0 D.1【解答】解:|﹣3|>|﹣2|>|1|>|0|,故选:A.2.(2分)下列调查中,适合采用全面调查的是()A.对全国中学生心理健康现状的调查B.对某种食品合格情况的调查C.对某电视节目收视率的调查D.对你所在班级同学身高情况的调查【解答】解:对全国中学生心理健康现状的调查,适合采用抽样调查,对某种食品合格情况的调查,适合采用抽样调查,对某电视节目收视率的调查,适合采用抽样调查,对你所在班级同学身高情况的调查,适合采用全面调查.故选:D.3.(2分)如图,点C是直线AB上一点,已知∠ACD=46°,则∠BCD的度数是()A.44°B.46°C.124° D.134°【解答】解:∵∠ACB=180°,∠ACD=180°,∴∠BCD=∠ACB﹣∠ACD=180°﹣46°=134°,故选:D.4.(2分)若一元一次方程ax+b=0的解是x=1,则a,b的关系为()A.相等B.互为相反数C.互为倒数D.互为负倒数【解答】解:把x=1代入方程ax+b=0得:a+b=0,a=﹣b,故选:B.5.(2分)下列四个图形中,每个小正方形都标上了颜色.若要求一个正方体两个相对面上的颜色都一样,那么不可能是这一个正方体的展开图的是()A.B.C.D.【解答】解:选项C中红色面和绿色面都是相邻的,故不可能是一个正方体两个相对面上的颜色都一样,故选C.6.(2分)为了解某中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出如图所示的频数分布直方图(每组数据包含最大值,不包含最小值),估计该校这300名男生的身高满足:164.5cm<身高≤174.5cm的人数约有()A.12 B.16 C.28 D.168【解答】解:由频数分布直方图可得,该校这300名男生的身高满足:164.5cm<身高≤174.5cm的人数约有:300×=168,故选:D.7.(2分)地球上水的总储量约为 1.39×1018立方米,但目前能被人们生产、生活利用的水只占总储量的0.77%,因此我们要节约用水,那么用科学记数法表示能被人们生产、生活利用的水约为()A.1.0703×1015立方米 B.1.0703×1016立方米C.1.0703×1017立方米 D.1.0703×1018立方米【解答】解:1.39×1018×0.77%﹣1.0703×1018(立方米)故选:D.8.(2分)如图是由若干块小正方体积木堆成的几何体,在这个基础上要把它堆成一个立方体,那么至少还需要的小正方体积木的块数为()A.38 B.42 C.48 D.52【解答】解:由图得:可以摆成棱长为4的立方体,一共需要4×4×4=64块,已经有12块,还需要64﹣12=52块;故选:D.二、填空题(每小题2分,共16分)9.(2分)﹣×(﹣3)=1.【解答】解:1÷(﹣3)=﹣.故答案为:﹣.10.(2分)如图是某个几何体的三视图,则该几何体的名称是三棱柱.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故答案为:三棱柱.11.(2分)一个代数式减去x2﹣y2等于x2+2y2,则这个代数式是2x2+y2.【解答】解:这个代数式是(x2+2y2)+(x2﹣y2)=x2+2y2+x2﹣y2=2x2+y2,故答案为2x2+y2.12.(2分)已知线段AB=5cm,点C是线段AB上一点,且BC=2cm,则AC=3cm.【解答】解:如图,∵点C是线段AB上一点,∴AC=AB﹣BC,∵AB=5,BC=2,∴AC=5﹣2=3,故答案为:3cm.13.(2分)计算:50°﹣15°30′=34°30′..﹣15°30′=34°30′【解答】解:原式=49°60′.故答案为:34°30′14.(2分)某校根据去年七年级学生参加某次考试的数学成绩的等级,绘制成如图所示的扇形统计图,则图中表示A等级的扇形圆心角的度数为108°.【解答】解:参加考试的总人数是60÷20%=300(人),则A等级的扇形统计图的圆心角度数是360×=108°.故答案是:108°.15.(2分)某款服装每件进价为200元,按标价的八折销售时,利润率为10%,设这款服装每件的标价为x元,根据题意可列方程为:0.8x﹣200=200×10%.【解答】解:设这款服装每件的标价为x元,根据题意可列方程为:0.8x﹣200=200×10%.故答案为:0.8x﹣200=200×10%16.(2分)如图,已知∠AOB=m度,OA1平分∠AOB,OA2平分∠AOA1,OA3平分∠AOA2,OA4平分∠AOA3,…,OA n平分∠AOA n﹣1,则∠AOA n的度数为度.【解答】解:∵∠AOB=α,OA1平分∠AOB,∴∠AOA1=∠AOB=,∵OA2平分∠AOA1,∴∠AOA2=∠AOA1=m,同理∠AOA3=∠AOB=,∠AOA4═∠AOB=,…,∠AOA n=,故答案为:三、解答题(17、18题5分,19题6分,共16分)17.(5分)计算:12×(﹣)+6×﹣(﹣1)2.【解答】解:12×(﹣)+6×﹣(﹣1)2=12×(﹣)+6×﹣1=﹣4+16﹣1=11.18.(5分)化简:2x﹣[2(x+3y)﹣3(x﹣2y)].【解答】解:原式=2x﹣2(x+3y)+3(x﹣2y)=2x﹣2x﹣6y+3x﹣6y=3x﹣12y.19.(6分)解方程:(x﹣4)﹣3(3x+4)=﹣.【解答】解:去分母得:(x﹣4)﹣6(3x+4)=﹣15,去括号得:x﹣4﹣18x﹣24=﹣15,移项合并得:17x=﹣13,解得:x=﹣.四、解答题(每小题6分,共12分)20.(6分)如图,已知线段AC=15cm,点B为线段AC延长线上一点,且BC= AC,点D为AC的中点,求DB的长.【解答】解:∵点D为AC的中点,∴DC=AC,又∵BC=AC,∴DB=DC+BC=AC+AC=AC=16.5(cm).故DB的长度为16.5cm.21.(6分)同学们,你们知道怎样解“绝对值方程|4x|=5”吗?我们可以这样考虑:因为|5|=5,|﹣5|=5,所以有4x=5或4x=﹣5,分别解得x=或x=﹣,根据以上解法,求方程|﹣3x+2|=8的解.【解答】解:因为|8|=8,|﹣8|=8,所以有﹣3x+2=8或﹣3x+2=﹣8,分别解得x=﹣2或x=.五、解答题(本题8分)22.(8分)在飞机飞行时,飞行方向是用飞行路线与实际的南或北方向线之间的夹角大小来表示的,如图,用AN(南北线)与飞行线之间顺时针方向夹角作为飞行方向角,从A到B的飞行方向角为35°,从A到C的飞行方向角为60°,从A到D的飞行方向角为145°,试求AB与AC之间夹角为多少度?AD与AC之间夹角为多少度?并画出从A飞出且方向角为105°的飞行线.【解答】解:由题意可知∠NAB=35°,∠NAC=60°,∠NAD=145°.故AB与AC之间夹角为∠NAC﹣∠NAB=60°﹣35°=25°,AD与AC之间夹角为∠NAD﹣∠NAC=145°﹣60°=85°,从A飞出且方向角为105°的飞行线,即∠NAE=105°.六、解答题(本题10分)23.(10分)列一元一次方程解应用题:桌面上有甲、乙、丙三个圆柱形的杯子,底面积分别为60平方厘米、80平方厘米、100平方厘米,杯深均为15cm,各装有15厘米高的水.现小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5,若不计杯子厚度,则甲杯内水的高度变为多少厘米?【解答】解:设甲杯内水的高度变为3xcm,则此时乙杯水的高度变为4xcm,丙杯内水的高度变为5xcm,60×(15﹣3x)+80×(15﹣4x)=100×(5x﹣15)解得,x=3.6∴3x=10.8,即甲杯内水的高度变为10.8厘米.七、解答题(本题10分)24.(10分)读书成为现代人的时尚,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图,请回答:(1)在统计的这段时间内,共有多少万人次到图书馆阅读?其中商人占的百分比为多少?(2)将条形统计图补充完整;(3)若12月份到图书馆的读者共28000人次,请估计其中约有多少人次读者是职工?【解答】解:(1)根据题意得:4÷25%=16(万人次),商人占的百分比为×100%=12.5%;故答案为:8;12.5;(2)职工的人数为16﹣(4+2+4)=6(万人次),补全条形统计图,如图所示:(3)根据题意得:×100%×28000=10500(人次),答:估计其中约有10500人次读者是职工.八、解答题(共1小题,满分12分)25.(12分)用正方形硬纸板做三棱柱盒子.每个盒子由3个长方形侧面和2个等边三角形底面组成,硬纸板以如图2两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面B方法:剪4个侧面和5个底面现有19张硬纸板,裁剪时x张用了A方法,其余用B方法.(1)用含x的式子分别表示裁剪出的侧面和底面的个数;(2)若裁剪完后,一共有92个侧面,求一共裁剪出多少个底面?(3)如果用这些裁剪出的侧面和底面作三棱柱盒子,那么最多能做多少个?请直接写出答案.【解答】解:(1)∵裁剪时x张用了A方法,∴裁剪时(19﹣x)张用了B方法.∴侧面的个数为:6x+4(19﹣x)=(2x+76)个,底面的个数为:5(19﹣x)=(95﹣5x)个;(2)由题意,得2x+76=92,解得x=8,所以95﹣5x=95﹣5×8=55(个).答:若裁剪完后,一共有92个侧面,则一共裁剪出55个底面;(3)由题意,得3(95﹣5x)=2(2x+76),解得:x=7,则盒子的个数为:(2x+76)÷3=30.答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.。
沈阳市数学七年级下学期期末数学试题题
沈阳市数学七年级下学期期末数学试题题一、选择题1.以下列各组数据为边长,可以构成等腰三角形的是( )A .1cm 、2cm 、3cmB .3cm 、 3cm 、 4cmC .1cm 、3cm 、1cmD .2cm 、 2cm 、 4cm2.已知,则a 2-b 2-2b 的值为 A .4 B .3 C .1 D .0 3.下列图形可由平移得到的是( )A .B .C .D .4.下列从左到右的变形,是因式分解的是( )A .()()23x 3x 9x -+=-B .()()()()y 1y 33y y 1+-=-+C .()24yz 2y z z 2y 2z zy z -+=-+ D .228x 8x 22(2x 1)-+-=-- 5.32236x y 3x y -分解因式时,应提取的公因式是( )A .3xyB .23x yC .233x yD .223x y 6.下列式子是完全平方式的是( ) A .a 2+2ab ﹣b 2 B .a 2+2a +1C .a 2+ab +b 2D .a 2+2a ﹣1 7.已知关于x ,y 的方程x 2m﹣n ﹣2+4y m +n +1=6是二元一次方程,则m ,n 的值为( ) A .m =1,n =-1 B .m =-1,n =1 C .14m ,n 33==- D .14,33m n =-= 8.已知关于,x y 的二元一次方程组725ax y x y +=⎧⎨-=⎩和432x y x by +=⎧⎨+=-⎩有相同的解,则-a b 的值是( )A .13B .9C .9-D .13-9.下列运算正确的是( )A .a 2·a 3=a 6B .a 5+a 3=a 8C .(a 3)2=a 5D .a 5÷a 5=1 10.若一个多边形的每个内角都等于与它相邻外角的2倍,则它的边数为( )A .4B .5C .6D .8 二、填空题11.如果62x y =⎧⎨=-⎩是关于x 、y 的二元一次方程mx -10=3y 的一个解,则m 的值为_____.12.若(3x+2y )2=(3x ﹣2y )2+A ,则代数式A 为______.13.分解因式:x 2﹣4x=__.14.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.15.计算:23()a =____________.16.下列各数中: 3.14-,327-,π,2,17-,是无理数的有______个. 17.某校七年级社会实践小组去商场调查商品的销售情况,了解到该商场以每件80元的价格购进某品牌衬衫500件,并以每件120元的价格销售400件.该商场准备采取促销措施,将剩下的衬衫降价销售,每件衬衫至多降价______元,销售完这批衬衫才能达到盈利45%的预期目标.18.如图,已知AE 是△ABC 的边BC 上的中线,若AB=8cm,△ACE 的周长比△AEB 的周长多2cm,则AC=_____.19.已知代数式2x-3y 的值为5,则-4x+6y=______.20.一个两位数的十位上的数是个位上的数的2倍,若把两个数字对调,则新得到的两位数比原两位数小36,则原两位数是_______.三、解答题21.如图,CD ⊥AB ,EF ⊥AB ,垂足分别为D 、F ,∠1=∠2,若∠A =65°,∠B =45°,求∠AGD 的度数.22.计算:(1)-22+30(2)(2a )3+a 8÷(-a )5(3)(x +2y -3)(x -2y +3)(4)(m +2)2(m -2)223.把下列各式分解因式:(1)4x 2-12x 3(2)x 2y +4y -4xy(3)a 2(x -y )+b 2(y -x )24.在校运动会中,篮球队和排球队共有24支,其中篮球队每队10名队员,排球队每队12名队员,共有260名队员.请问篮球队、排球队各有多少支?(利用二元一次方程组解决问题)25.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC向右平移4个单位后得到的△A1B1C1;(2)图中AC与A1C1的关系是:_____.(3)画出△ABC的AB边上的高CD;垂足是D;(4)图中△ABC的面积是_____.26.如图,AB∥CD,点E、F在直线AB上,G在直线CD上,且∠EGF=90°,∠BFG=140°,求∠CGE的度数.27.如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若FG⊥BC于点H,BC平分∠ABD,∠D=112°,求∠1的度数.28.在南通市中小学标准化建设工程中,某校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元;(2)根据学校实际,需购进电脑和电子白板共31台,若总费用不超过30万元,则至多购买电子白板多少台?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先判断三边长是否能构成三角形,再判断是否是等腰三角形.【详解】上述选项中,A 、C 、D 不能构成三角形,错误B 中,满足三角形三边长关系,且有2边相等,是等腰三角形,正确故选:B .【点睛】本题考查的等腰三角形的性质和三角形三边长的关系,注意在判断等腰三角形的时候,一定要先满足三边长能构成三角形.2.C解析:C【分析】先将原式化简,然后将a−b =1整体代入求解.【详解】()()2212221a b a b b a b a b ba b ba b-∴--+--+--=,====.故答案选:C .【点睛】此题考查的是整体代入思想在代数求值中的应用. 3.A解析:A【详解】解:观察可知A 选项中的图形可以通过平移得到,B 、C 选项中的图形需要通过旋转得到,D 选项中的图形可以通过翻折得到,故选:A4.D解析:D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】根据因式分解的定义得:从左边到右边的变形,是因式分解的是22-+-=--.其他不是因式分解:A,C右边不是积的形式,B左边不是多项8x8x22(2x1)式.故选D.【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.5.D解析:D【解析】【分析】分别找出系数的最大公约数和相同字母的最低指数次幂,即可确定公因式.【详解】解:6x3y2-3x2y3=3x2y2(2x-y),因此6x3y2-3x2y3的公因式是3x2y2.故选:D.【点睛】本题主要考查公因式的确定,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的. 6.B解析:B【分析】利用完全平方公式的结构特征判断即可.【详解】解:下列式子是完全平方式的是a2+2a+1=(a+1)2,故选B.【点睛】此题考查了完全平方式:(a+b)²=a²+2ab+b²,熟练掌握完全平方公式是解本题的关键.7.A解析:A【分析】根据二元一次方程的概念列出关于m、n的方程组,解之即可.【详解】∵关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴22111m n m n --=⎧⎨++=⎩即230m n m n -=⎧⎨+=⎩, 解得:11m n =⎧⎨=-⎩, 故选:A .【点睛】本题考查了二元一次方程的定义、解二元一次方程组,理解二元一次方程的定义,熟练掌握二元一次方程组的解法是解答的关键.8.A解析:A【分析】先解方程组425x y x y +=⎧⎨-=⎩求出该方程组的解,然后把这个解分别代入7ax y +=与32x by +=-即可求出a 、b 的值,进一步即可求出答案.【详解】解:解方程组425x y x y +=⎧⎨-=⎩,得31x y =⎧⎨=⎩, 把31x y =⎧⎨=⎩代入7ax y +=,得317a +=,解得:a =2, 把31x y =⎧⎨=⎩代入32x by +=-,得92b +=-,解得:b =﹣11, ∴a -b =2-(﹣11)=13.故选:A .【点睛】本题考查了同解方程组的知识,正确理解题意、熟练掌握解二元一次方程组的方法是解题关键.9.D解析:D【分析】通过幂的运算公式进行计算即可得到结果.【详解】A .23235a a a a +==,故A 错误;B .538a a a +≠,故B 错误; C .()23326a a a ⨯==,故C 错误; D .5501a a a ÷==,故D 正确;故选:D .本题主要考查了整式乘除中的幂的运算性质,准确运用公式是解题的关键.10.C解析:C【分析】设出外角的度数,表示出内角的度数,根据一个内角与它相邻的外角互补列出方程,解方程得到答案.【详解】解:设外角为x ,则相邻的内角为2x ,由题意得,2180x x +=︒,解得,60x =︒,多边形的边数为:360606÷︒=,故选:C .【点睛】本题考查的是多边形内、外角的知识,理解一个多边形的一个内角与它相邻外角互补是解题的关键.二、填空题11.【分析】把x 、y 的值代入方程计算即可求出m 的值.【详解】解:把代入方程得:6m -10=﹣6,解得:m =故答案为:【点睛】本题考查二元一次方程的解,解题的关键是理解方程的解能使方程左右 解析:23【分析】把x 、y 的值代入方程计算即可求出m 的值.【详解】解:把62x y =⎧⎨=-⎩代入方程得:6m -10=﹣6, 解得:m =23故答案为:23本题考查二元一次方程的解,解题的关键是理解方程的解能使方程左右两边相等.12.24xy【解析】∵(3x+2y)2=(3x﹣2y)2+A,∴(3x)2+2×3x×2y+(2y)2=(3x)2-2×3x×2y+(2y)2+A,即9x2+12xy+4y2=9x2-12xy+解析:24xy【解析】∵(3x+2y)2=(3x﹣2y)2+A,∴(3x)2+2×3x×2y+(2y)2=(3x)2-2×3x×2y+(2y)2+A,即9x2+12xy+4y2=9x2-12xy+4y2+A∴A=24xy,故答案为24xy.【点睛】本题考查了完全平方公式,熟记完全平方公式是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.13.x(x﹣4)【详解】解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).解析:x(x﹣4)【详解】解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).14.65【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,AB∥CD,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解解析:65【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,AB∥CD,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解得∠1=65°.故答案为:65.【点睛】本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.15..【分析】直接根据积的乘方运算法则进行计算即可.【详解】.故答案为:.【点睛】此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.-.解析:6a【分析】直接根据积的乘方运算法则进行计算即可.【详解】233236a a a.()=(1)()-.故答案为:6a【点睛】此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.16.【分析】根据无理数的定义判断即可.【详解】解:在,,,,五个数中,无理数有,,两个.故答案为:2.【点睛】本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键.解析:2【分析】根据无理数的定义判断即可.【详解】解:在 3.14-,π,17-五个数中,无理数有π,两个. 故答案为:2.【点睛】本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键. 17.【分析】设每件衬衫降价x 元,正好达到预期目标,根据销售收入-成本=利润,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设每件衬衫降价x 元,正好达到预期目标,根据题意得:120解析:20【分析】设每件衬衫降价x 元,正好达到预期目标,根据销售收入-成本=利润,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设每件衬衫降价x 元,正好达到预期目标,根据题意得:120×400+(120-x )×(500-400)-80×500=80×500×45%,解得:x=20.答:每件衬衫降价10元,正好达到预期目标.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 18.10cm【分析】依据AE 是△ABC 的边BC 上的中线,可得CE =BE ,再根据AE =AE ,△ACE 的周长比△AEB 的周长多2cm ,即可得到AC 的长.【详解】解:∵AE 是△ABC 的边BC 上的中线,解析:10cm【分析】依据AE是△ABC的边BC上的中线,可得CE=BE,再根据AE=AE,△ACE的周长比△AEB 的周长多2cm,即可得到AC的长.【详解】解:∵AE是△ABC的边BC上的中线,∴CE=BE,又∵AE=AE,△ACE的周长比△AEB的周长多2cm,∴AC−AB=2cm,即AC−8cm=2cm,∴AC=10cm,故答案为10cm.【点睛】本题考查了三角形中线的有关计算,分析得到两个三角形的周长的差等于两边的差是解题的关键.19.-10【分析】原式前两项提取-2变形后,将已知代数式的值代入计算即可求出值.【详解】解:∵2x-3y=5,∴原式=-2(2x-3y)=-2×5=-10.故答案为:-10.【点睛】本题解析:-10【分析】原式前两项提取-2变形后,将已知代数式的值代入计算即可求出值.【详解】解:∵2x-3y=5,∴原式=-2(2x-3y)=-2×5=-10.故答案为:-10.【点睛】本题考查了代数式求值,熟练掌握运算法则是解题的关键.20.84【分析】设原两位数的个位上的数字为x,则十位上的数字为2x,根据数位问题的数量关系建立方程求出其解就可以得出结论.【详解】解:设原两位数的个位上的数为x,则十位上的数字为2x,由题意,得解析:84【分析】设原两位数的个位上的数字为x,则十位上的数字为2x,根据数位问题的数量关系建立方程求出其解就可以得出结论.【详解】解:设原两位数的个位上的数为x,则十位上的数字为2x,由题意,得10×2x+x-(10x+2x)=36,解得:x=4,则十位数字为:2×4=8,则原两位数为84.故答案为:84.【点睛】本题考查了一元一次方程的应用-数字问题,考查了百位数字×100+十位上的数字×10+个位数字的运用,解答时根据数位问题的数量关系建立方程式是关键.三、解答题21.70°【分析】由CD⊥AB,EF⊥AB可得出∠CDF=∠EFB=90°,利用“同位角相等,两直线平行”可得出CD∥EF,利用“两直线平行,同位角相等”可得出∠DCB=∠1,结合∠1=∠2可得出∠DCB=∠2,利用“内错角相等,两直线平行”可得出DG∥BC,利用“两直线平行,同位角相等”可得出∠ADG的度数,在△ADG中,利用三角形内角和定理即可求出∠AGD的度数.【详解】解:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF,∴∠DCB=∠1.∵∠1=∠2,∴∠DCB=∠2,∴DG∥BC,∴∠ADG=∠B=45°.又∵在△ADG中,∠A=65°,∠ADG=45°,∴∠AGD=180°﹣∠A﹣∠ADG=70°【点睛】本题考查了平行线的判定与性质以及三角形内角和定理,利用平行线的性质求出∠ADG的度数是解题的关键.22.(1)-3 (2)7a3(3)x2-4y2+12y-9(4)m4-8m2+16【分析】(1)原式利用零指数幂法则及乘方的意义化简,计算即可得到结果;(2)先利用积的乘方公式和同底数幂的除法公式计算,然后合并即可得到结果;(3)原式利用平方差公式,以及完全平方公式化简即可得到结果;(4)原式先利用平方差方式计算,再利用完全平方公式计算即可得到结果.【详解】(1)2042331=-+-=-+;(2)()()533833()872a a a a a a ÷=+-=+-; (3) ()()()()23232323x y x y y x x y +--+---=+⎡⎤⎡⎤⎣⎦⎣⎦()2222234129x y x y y =--=-+-;(4)()()()()2222222m m m m +-+-=⎡⎤⎣⎦ ()42228146m m m =-+-=.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.23.(1)4x 2(1-3x )(2)y (x -2)2(2)(x -y )(a +b )(a -b ) 【分析】(1)直接利用提公因式法分解因式即可;(2)先提取公因式,然后利用完全平方公式分解因式即可;(3)先提取公因式,然后利用平方差公式分解因式即可.【详解】(1)()232412413x x x x =--; (2)()()22244442x y y xy y x x y x +-=+-=-; (3)()()()()()2222()()a x y b y x x y a b x y a b a b =--=-+--+-.【点睛】本题考查了分解因式,解题的关键是熟练掌握提取公因式法和公式法分解因式.24.篮球队14支,排球队10支【分析】根据题意可知,本题中的等量关系是“有24支队”和“260名运动员”,列方程组求解即可.【详解】设篮球队x 支,排球队y 支,由题意可得:241012260x y x y +=⎧⎨+=⎩解的:1410x y =⎧⎨=⎩答:设篮球队14支,排球队10支【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.25.(1)画图见解析;(2)平行且相等;(3)画图见解析;(4)8【分析】(1)根据网格结构找出点A 、B 、C 向右平移4个单位后的对应点A 1、B 1、C 1的位置,然后顺次连接即可;(2)根据平移的性质解答;(3)延长AB ,作出AB 的高CD 即可;(4)利用△ABC 所在的矩形的面积减去四周三个三角形的面积,列式计算即可得解.【详解】解:(1)如图所示,(2)根据平移的性质得出,AC 与A 1C 1的关系是:平行且相等;(3)如图所示,(4)△ABC 的面积=5×7-12×7×5-12×7×2-12×5×1=8. 26.50︒.【分析】 先根据平行线的性质得出BFG FGC ∠=∠,再根据CGE FGC EGF ∠=∠-∠结合已知角度即可求解.【详解】证明://AB CD ,∠BFG =140°,BFG FGC ∴∠=∠=140°,又∵CGE FGC EGF ∠=∠-∠,∠EGF =90°,1409050CGE ∴∠=︒-︒=︒. 【点睛】本题考查的是平行线的性质,熟知平行线及角平分线的性质是解答此题的关键.解题时注意:两直线平行,内错角相等.27.(1)见解析;(2)56°【分析】(1)先证∠1=∠CGF 即可,然后根据平行线的判定定理证明即可;(2)先根据平行线的性质、角平分线的性质以及垂直的性质得到∠1+∠4=90°,再求出∠4即可.【详解】(1)证明:∵FG ∥AE ,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴AB ∥CD .(2)解:∵AB ∥CD ,∴∠ABD +∠D =180°,∵∠D =112°,∴∠ABD =180°﹣∠D =68°,∵BC 平分∠ABD ,∴∠4=12∠ABD =34°, ∵FG ⊥BC ,∴∠1+∠4=90°,∴∠1=90°﹣34°=56°.【点睛】本题考查三角形内角和定理、平行线的性质、角平分线的定义等知识,解题的关键是熟练应用相关性质和定理.28.(1)电脑0.5万元,电子白板1.5万元;(2)14台【分析】(1)设每台电脑x 元,每台电子白板y 元,根据题意列出方程组,解方程组即可;(2)设购进电子白板m 台,则购进电脑()31m -台,根据总费用不超过30万元,列出不等式,根据m 实际意义即可求解.【详解】(1)设每台电脑x 元,每台电子白板y 元,则2 3.52 2.5x y x y +=⎧⎨+=⎩,解得0.51.5x y =⎧⎨=⎩故每台电脑0.5万元,每台电子白板1.5万元;(2)设购进电子白板m 台,则购进电脑()31m -台,由题意得1.50.5(31)30m m +-≤解得14.5m ≤,又因为m 是正整数,则14m ≤,故至多购买电子白板14台.【点睛】本题考查了二元一次方程组应用,一元一次不等式应用,综合性较强,难度不大,根据题意列出二元一次方程组、一元一次不等式是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年辽宁省沈阳市铁西区七年级(下)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)计算(﹣xy2)3,结果正确的是()A.x3y5B.﹣x3y6 C.x3y6D.﹣x3y52.(3分)在下列“绿色食品、回收、节能、节水”四个标志中,是轴对称图形的是()A.B.C.D.3.(3分)如图,四边形ABCD中,对角线AC垂直平分BD,垂足为点E,下列结论不一定成立的是()A.AB=AD B.CA平分∠BCD C.AB=BD D.△BEC≌△DEC4.(3分)一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是()A.摸出的四个球中至少有一个球是白球B.摸出的四个球中至少有一个球是黑球C.摸出的四个球中至少有两个球是黑球D.摸出的四个球中至少有两个球是白球5.(3分)如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF 的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC6.(3分)根据如图所示的程序计算,若输入的x值为,则输出的结果y的值为()A.B.C.D.7.(3分)小玲在一次班会中参与知识抢答活动,现有语文题6道,数学题5道,综合题9道,她从中随机抽取1道,抽中数学题的概率是()A.B.C.D.8.(3分)已知等腰△ABC中,AB=AC,点D为BC边上一点,连接AD,若△ACD 和△ABD都是等腰三角形,则∠ACB的度数为()A.36°B.45°C.36°或45°D.36°或45°或72°二、填空题(共8小题,每小题2分,满分16分)9.(2分)我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.000075千克以下.将0.000075用科学记数法表示为.10.(2分)如图,已知AB∥CD,在图中所标注的角中,与∠1相等的角(不包括∠1)有个.11.(2分)已知△ABC的面积为25,边BC长为10,则BC边上的高为.12.(2分)如图,在Rt△ABC中,∠C=90°,BC=3,AC=6,点D是AC边上的动点,且点D从点C向点A运动.若设CD=x,△ABD的面积为y,则y与x之间的关系式为.13.(2分)一个不透明的箱子里共有四个球,这四个球除编号不同外其余都相同,把它们分别编号为1,2,3,4.从箱子中随机摸出一个球,则摸出的球是编号为2的球的概率为.14.(2分)如图,点B在线段AD上,BC∥DE,AB=ED,请添加一个适当的条件:,使△ABC≌△EDB(不再添加其它字母或辅助线)15.(2分)如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为.16.(2分)在四边形ABCD中,AB=AD,∠B+∠D=180°,点E、F分别是BC、CD 上的点,且EF=BE+FD,若∠EAF=55°,则∠BAD的度数为.三、解答题(共9小题,满分60分)17.(6分)计算[(x+y)2﹣(x﹣y)2]÷(2xy).18.(6分)用乘法公式计算:582﹣61×59.19.(6分)如图,直线AB∥CD,点C在△AEF的边AE上,边EF与直线CD交于点G.已知∠BAF=16°,∠E+∠CGE=78°,求∠EAF的度数.20.(6分)如图,△ABC和△ADE中,∠BAC=∠DAE,AB=AE,AD=AC,连接BD,CE,若BD=8,求CE的长.21.(6分)从2、3、4这三个数字中任取两个数字组成一个两位数,求组成的两位数能被3整除的概率是多少?22.(6分)如图,直线AB、CD被直线EF所截,且AB∥CD,FG⊥EF于点F,判断∠BEF与∠DFG之间存在什么关系?并说明理由.23.如图,在一个边长为10cm的正方形的四个角上,都剪去大小相同的小正方形,当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化.(1)在这个变化中,自变量、因变量各是什么?(2)若小正方形的边长为xcm(0<x<5),图中阴影部分的面积为ycm2,请直接写出y与x之间的关系式;并求出当x=3cm时,阴影部分的面积y.24.(12分)如图,已知△ABC.(1)尺规作图:作∠ACB的平分线CD,交AB于点D;(2)画图:在(1)的条件下,过点A画AE∥CD交BC的延长线于点E,请判断CA与CE是否相等?并说明理由.25.(12分)如图,△ABC中,BD⊥AC于点D,CE⊥AB于点E,且BD、CE交于点F,点G是线段CD上一点,连接AF、GF,若AF=GF,BD=CD.(1)求∠CAF的度数;(2)判断线段FG与BC的位置关系,并说明理由.2014-2015学年辽宁省沈阳市铁西区七年级(下)期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)计算(﹣xy2)3,结果正确的是()A.x3y5B.﹣x3y6 C.x3y6D.﹣x3y5【解答】解:原式=﹣()3x3y6=﹣x3y6.故选:B.2.(3分)在下列“绿色食品、回收、节能、节水”四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.3.(3分)如图,四边形ABCD中,对角线AC垂直平分BD,垂足为点E,下列结论不一定成立的是()A.AB=AD B.CA平分∠BCD C.AB=BD D.△BEC≌△DEC【解答】解:∵对角线AC垂直平分BD,∴AB=AD,BC=BD,故A正确;∵BC=CD,AC⊥BD,∴CA平分∠BCD,故B正确;∵AC垂直平分BD,∴BE=DE,BC=CD,在Rt△BEC与Rt△DEC中,∵,∴△BEC≌△DEC(HL),故D正确.故选:C.4.(3分)一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是()A.摸出的四个球中至少有一个球是白球B.摸出的四个球中至少有一个球是黑球C.摸出的四个球中至少有两个球是黑球D.摸出的四个球中至少有两个球是白球【解答】解:A、是随机事件,故A选项错误;B、是必然事件,故B选项正确;C、是随机事件,故C选项错误;D、是随机事件,故D选项错误.故选:B.5.(3分)如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF 的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC【解答】解:∵AB∥DE,AC∥DF,∴∠A=∠D,(1)AB=DE,则△ABC和△DEF中,,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故D选项错误;故选:C.6.(3分)根据如图所示的程序计算,若输入的x值为,则输出的结果y的值为()A.B.C.D.【解答】解:∵1<≤2,∴当x=时,y=﹣+2=.故选:D.7.(3分)小玲在一次班会中参与知识抢答活动,现有语文题6道,数学题5道,综合题9道,她从中随机抽取1道,抽中数学题的概率是()A.B.C.D.【解答】解:∵小玲在一次班会中参与知识抢答活动,现有语文题6道,数学题5道,综合题9道,∴她从中随机抽取1道,抽中数学题的概率是:=.故选:C.8.(3分)已知等腰△ABC中,AB=AC,点D为BC边上一点,连接AD,若△ACD 和△ABD都是等腰三角形,则∠ACB的度数为()A.36°B.45°C.36°或45°D.36°或45°或72°【解答】解:应分两种情况:(1)如图:AD=BD,DC=AD,那么△ADB和△ADC是全等三角形,可求得∠ADC=90°,那么∠C=45°;(2)如图:AB=BD,CD=AD,那么∠B=∠C=∠DAC,∠BAD=∠BDA=2∠C,然后用∠C表示出△ABC的内角和,即可求得5∠C=180°,那么∠C=36°.故选:C.二、填空题(共8小题,每小题2分,满分16分)9.(2分)我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.000075千克以下.将0.000075用科学记数法表示为7.5×10﹣5.【解答】解:0.000075=7.5×10﹣5.故答案为:7.5×10﹣5.10.(2分)如图,已知AB∥CD,在图中所标注的角中,与∠1相等的角(不包括∠1)有2个.【解答】解:∵AB∥CD,∴∠1=∠5,∵∠5与∠3是对顶角,∴∠3=∠5,∴∠1=∠3=∠5,∴与∠1相等的角有2个.故答案为:211.(2分)已知△ABC的面积为25,边BC长为10,则BC边上的高为5.【解答】解:∵△ABC的面积为25,边BC长为10,∴BC边上的高=2×25÷10=5,故答案为:5.12.(2分)如图,在Rt△ABC中,∠C=90°,BC=3,AC=6,点D是AC边上的动点,且点D从点C向点A运动.若设CD=x,△ABD的面积为y,则y与x之间的关系式为y=﹣x+9.=S△ABC﹣S△BCD,【解答】解:∵S△ADB∴y=×3×6﹣×3×x,∴y=﹣x+9,故答案为y=﹣x+9.13.(2分)一个不透明的箱子里共有四个球,这四个球除编号不同外其余都相同,把它们分别编号为1,2,3,4.从箱子中随机摸出一个球,则摸出的球是编号为2的球的概率为.【解答】解:∵一个不透明的箱子里共有四个球,编号为2的只有1个,∴随机摸出一个球,则摸出的球是编号为2的球的概率=.故答案为:.14.(2分)如图,点B在线段AD上,BC∥DE,AB=ED,请添加一个适当的条件:BC=DB(答案不唯一),使△ABC≌△EDB(不再添加其它字母或辅助线)【解答】解:添加条件为:BC=DB;理由如下:在△ABC和△EDB中,,∴△ABC≌△EDB(SAS);故答案为:BC=DB(答案不唯一).15.(2分)如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为n2+2.【解答】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1)=n2+2.故答案为:n2+2.16.(2分)在四边形ABCD中,AB=AD,∠B+∠D=180°,点E、F分别是BC、CD 上的点,且EF=BE+FD,若∠EAF=55°,则∠BAD的度数为110°.【解答】解:延长FD到G使DG=BE,连接AG,如图,∵∠B+∠D=180°,∠ADG+∠D=180°,∴∠B=∠ADG,在△ABE和△ADG,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠GAD,∵EF=BE+FD,∴EF=DG+DF=GF,在△AEF和△AGF中,∴△AEF≌△AGF,∴∠EAF=∠FAG=55°,∵∠BAE=∠GAD,∴∠BAD=∠EAG=2∠EAF=110°.故答案为110°.三、解答题(共9小题,满分60分)17.(6分)计算[(x+y)2﹣(x﹣y)2]÷(2xy).【解答】解:原式=(x2+2xy+y2﹣x2+2xy﹣y2)÷(2xy)=4xy÷(2xy)=2.18.(6分)用乘法公式计算:582﹣61×59.【解答】解:582﹣61×59.=582﹣(60+1)(60﹣1)=582﹣602+1=(58+60)×(58﹣60)+1=118×(﹣2)+1=﹣236+1=﹣235.19.(6分)如图,直线AB∥CD,点C在△AEF的边AE上,边EF与直线CD交于点G.已知∠BAF=16°,∠E+∠CGE=78°,求∠EAF的度数.【解答】解:∵∠ACG是△CEG的外角,∴∠ACG=∠E+∠CGE=78°,又∵直线AB∥CD,∴∠ACG+∠BAC=180°,∴∠BAC=102°,∵∠BAF=16°,∴∠EAF=102°﹣16°=86°.20.(6分)如图,△ABC和△ADE中,∠BAC=∠DAE,AB=AE,AD=AC,连接BD,CE,若BD=8,求CE的长.【解答】解:∵在△ABC和△AED中,,∴△ABC≌△AED,∴CE=BD=8.21.(6分)从2、3、4这三个数字中任取两个数字组成一个两位数,求组成的两位数能被3整除的概率是多少?【解答】解:根据题意画树状图得:∵共有6种等可能的结果,其中能被3整除的两位数的有:24,42,∴其中能被3整除的两位数的概率是:=.22.(6分)如图,直线AB、CD被直线EF所截,且AB∥CD,FG⊥EF于点F,判断∠BEF与∠DFG之间存在什么关系?并说明理由.【解答】解:∠BEF﹣∠DFG=90°理由:∵AB∥CD,∴∠BEF+∠DFE=180°,即∠DFE=180°﹣∠BEF,∵FG⊥EF,∴∠DFE=90°﹣∠DFG,∴180°﹣∠BEF=90°﹣∠DFG,∴∠BEF﹣∠DFG=90°.23.如图,在一个边长为10cm的正方形的四个角上,都剪去大小相同的小正方形,当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化.(1)在这个变化中,自变量、因变量各是什么?(2)若小正方形的边长为xcm(0<x<5),图中阴影部分的面积为ycm2,请直接写出y与x之间的关系式;并求出当x=3cm时,阴影部分的面积y.【解答】解:(1)在这个变化中,自变量是小正方形的边长、因变量是阴影部分的面积;(2)y与x之间的关系式为y=102﹣4x2=100﹣4x2,当x=3cm时,阴影部分的面积y=100﹣4×32=64cm2.24.(12分)如图,已知△ABC.(1)尺规作图:作∠ACB的平分线CD,交AB于点D;(2)画图:在(1)的条件下,过点A画AE∥CD交BC的延长线于点E,请判断CA与CE是否相等?并说明理由.【解答】解:(1)如图所示:CD即为所求;(2)如图所示:AE即为所求,AC=CE,理由:∵AE∥CD,∴∠EAC=∠DCA,∠AEC=∠DCB,∵∠ACB的平分线CD,∴∠BCD=∠DCA,∴∠CAE=∠BEA,∴AC=CE.25.(12分)如图,△ABC中,BD⊥AC于点D,CE⊥AB于点E,且BD、CE交于点F,点G是线段CD上一点,连接AF、GF,若AF=GF,BD=CD.(1)求∠CAF的度数;(2)判断线段FG与BC的位置关系,并说明理由.【解答】解:(1)∵BD⊥AC,CE⊥AB,∴∠BEF=∠CDF=90°,∵∠EFB=∠DFC,∴∠EBF=∠FCD,∵BD=CD,∠ADB=∠CDF,∴△ABD≌△FCD,∴AD=DF,∴△ADF是等腰直角三角形,∴∠CAF=45°;(2)FG∥BC,理由是:∵AF=FG,∴∠FGA=∠CAF=45°,∵BD⊥AC,BD=CD,∴△BDC是等腰直角三角形,∴∠DCB=45°,∴∠FGA=∠DCB,∴FG∥BC.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.ODABCEAODCB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。