二道区外国语学校2018-2019学年高三上学期11月月考数学试卷含答案
二道区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(1)
二道区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设集合P={3,log 2a},Q={a ,b},若P ∩Q={0},则P ∪Q=( ) A .{3,0}B .{3,0,1}C .{3,0,2}D .{3,0,1,2}2.已知平面向量与的夹角为,且||=1,|+2|=2,则||=( )A .1 B. C .3 D .23. 若集合A={x|1<x <3},B={x|x >2},则A ∩B=( ) A .{x|2<x <3} B .{x|1<x <3} C .{x|1<x <2} D .{x|x >1}4. 集合U=R ,A={x|x 2﹣x ﹣2<0},B={x|y=ln (1﹣x )},则图中阴影部分表示的集合是( )A .{x|x ≥1}B .{x|1≤x <2}C .{x|0<x ≤1}D .{x|x ≤1}5. 学校将5个参加知识竞赛的名额全部分配给高一年级的4个班级,其中甲班级至少分配2个名额,其它班级可以不分配或分配多个名额,则不同的分配方案共有( ) A .20种 B .24种 C .26种 D .30种6. 设函数f (x )=,则f (1)=( )A .0B .1C .2D .37. 函数f (x )=Asin (ωx+θ)(A >0,ω>0)的部分图象如图所示,则f()的值为()A. B .0 C. D.8. “x >0”是“>0”成立的( )A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件9. 若直线l的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),则( )A .l ∥αB .l ⊥αC .l ⊂αD .l 与α相交但不垂直10.已知命题p :“∀x ∈R ,e x >0”,命题q :“∃x 0∈R ,x 0﹣2>x 02”,则( )A .命题p ∨q 是假命题B .命题p ∧q 是真命题C .命题p ∧(¬q )是真命题D .命题p ∨(¬q )是假命题班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________11.已知数列{a n}中,a1=1,a n+1=a n+n,若利用如图所示的程序框图计算该数列的第10项,则判断框内的条件是()A.n≤8?B.n≤9?C.n≤10?D.n≤11?12.函数f(x)=cos2x﹣cos4x的最大值和最小正周期分别为()A.,πB.,C.,πD.,二、填空题13.方程(x+y﹣1)=0所表示的曲线是.14.已知数列{a n}中,a1=1,a n+1=a n+2n,则数列的通项a n=.15.如图所示是y=f(x)的导函数的图象,有下列四个命题:①f(x)在(﹣3,1)上是增函数;②x=﹣1是f(x)的极小值点;③f(x)在(2,4)上是减函数,在(﹣1,2)上是增函数;④x=2是f(x)的极小值点.其中真命题为(填写所有真命题的序号).16.=.17.已知函数()f x 23(2)5x =-+,且12|2||2|x x ->-,则1()f x ,2()f x 的大小关系 是 . 18.下列命题:①集合{},,,a b c d 的子集个数有16个; ②定义在R 上的奇函数()f x 必满足(0)0f =;③2()(21)2(21)f x x x =+--既不是奇函数又不是偶函数; ④A R =,B R =,1:||f x x →,从集合A 到集合B 的对应关系f 是映射; ⑤1()f x x=在定义域上是减函数. 其中真命题的序号是 .三、解答题19.已知p :2x 2﹣3x+1≤0,q :x 2﹣(2a+1)x+a (a+1)≤0(1)若a=,且p ∧q 为真,求实数x 的取值范围. (2)若p 是q 的充分不必要条件,求实数a 的取值范围.20.已知曲线21()f x e x ax=+(0x ≠,0a ≠)在1x =处的切线与直线2(1)20160e x y --+= 平行.(1)讨论()y f x =的单调性;(2)若()ln kf s t t ≥在(0,)s ∈+∞,(1,]t e ∈上恒成立,求实数的取值范围.21.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ;(2)设(){}1nn n b a --是等比数列,且257,71b b ==,求数列{}n b 的前n 项和n T .【命题意图】本题考查等差数列与等比数列的通项与前n 项和、数列求和等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及分类讨论思想、方程思想、分组求和法的应用.22.如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D、E分别是AC、AB上的点,且DE∥BC,将△ADE 沿DE折起到△A1DE的位置,使A1D⊥CD,如图2.(Ⅰ)求证:平面A1BC⊥平面A1DC;(Ⅱ)若CD=2,求BD与平面A1BC所成角的正弦值;(Ⅲ)当D点在何处时,A1B的长度最小,并求出最小值.23.已知函数,.(Ⅰ)求函数的最大值;(Ⅱ)若,求函数的单调递增区间.24.已知函数f(x)=x2﹣ax+(a﹣1)lnx(a>1).(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若a=2,数列{a n}满足a n+1=f(a n).(1)若首项a1=10,证明数列{a n}为递增数列;(2)若首项为正整数,且数列{a n}为递增数列,求首项a1的最小值.二道区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:∵P∩Q={0},∴log2a=0∴a=1从而b=0,P∪Q={3,0,1},故选B.【点评】此题是个基础题.考查集合的交集和并集及其运算,注意集合元素的互异性,以及对数恒等式和真数是正数等基础知识的应用.2.【答案】D【解析】解:由已知,|+2|2=12,即,所以||2+4||||×+4=12,所以||=2;故选D.【点评】本题考查了向量的模的求法;一般的,要求向量的模,先求向量的平方.3.【答案】A【解析】解:∵A={x|1<x<3},B={x|x>2},∴A∩B={x|2<x<3},故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.4.【答案】B【解析】解:由Venn图可知,阴影部分的元素为属于A当不属于B的元素构成,所以用集合表示为A∩(∁U B).A={x|x2﹣x﹣2<0}={x|﹣1<x<2},B={x|y=ln(1﹣x)}={x|1﹣x>0}={x|x<1},则∁U B={x|x≥1},则A∩(∁U B)={x|1≤x<2}.故选:B.【点评】本题主要考查Venn图表达集合的关系和运算,比较基础.5.【答案】A【解析】解:甲班级分配2个名额,其它班级可以不分配名额或分配多个名额,有1+6+3=10种不同的分配方案;甲班级分配3个名额,其它班级可以不分配名额或分配多个名额,有3+3=6种不同的分配方案;甲班级分配4个名额,其它班级可以不分配名额或分配多个名额,有3种不同的分配方案;甲班级分配5个名额,有1种不同的分配方案.故共有10+6+3+1=20种不同的分配方案,故选:A.【点评】本题考查分类计数原理,注意分类时做到不重不漏,是一个中档题,解题时容易出错,本题应用分类讨论思想.6.【答案】D【解析】解:∵f(x)=,f(1)=f[f(7)]=f(5)=3.故选:D.7.【答案】C【解析】解:由图象可得A=,=﹣(﹣),解得T=π,ω==2.再由五点法作图可得2×(﹣)+θ=﹣π,解得:θ=﹣,故f(x)=sin(2x﹣),故f()=sin(﹣)=sin=,故选:C.【点评】本题主要考查由函数y=Asin(ωx+θ)的部分图象求函数的解析式,属于中档题.8.【答案】A【解析】解:当x>0时,x2>0,则>0∴“x>0”是“>0”成立的充分条件;但>0,x2>0,时x>0不一定成立∴“x>0”不是“>0”成立的必要条件;故“x>0”是“>0”成立的充分不必要条件;故选A【点评】判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p 为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.9.【答案】B【解析】解:∵=(1,0,2),=(﹣2,0,4),∴=﹣2,∴∥,因此l⊥α.故选:B.10.【答案】C【解析】解:命题p:“∀x∈R,e x>0”,是真命题,命题q:“∃x0∈R,x0﹣2>x02”,即﹣x0+2<0,即:+<0,显然是假命题,∴p∨q真,p∧q假,p∧(¬q)真,p∨(¬q)假,故选:C.【点评】本题考查了指数函数的性质,解不等式问题,考查复合命题的判断,是一道基础题.11.【答案】B【解析】解:n=1,满足条件,执行循环体,S=1+1=2n=2,满足条件,执行循环体,S=1+1+2=4n=3,满足条件,执行循环体,S=1+1+2+3=7n=10,不满足条件,退出循环体,循环满足的条件为n≤9,故选B.【点评】本题主要考查了当型循环结构,算法和程序框图是新课标新增的内容,在近两年的新课标地区高考都考查到了,这启示我们要给予高度重视,属于基础题.12.【答案】B【解析】解:y=cos2x﹣cos4x=cos2x(1﹣cos2x)=cos2x•sin2x=sin22x=,故它的周期为=,最大值为=.故选:B.二、填空题13.【答案】两条射线和一个圆.【解析】解:由题意可得x2+y2﹣4≥0,表示的区域是以原点为圆心的圆的外部以及圆上的部分.由方程(x+y﹣1)=0,可得x+y﹣1=0,或x2+y2=4,故原方程表示一条直线在圆外的地方和一个圆,即两条射线和一个圆,故答案为:两条射线和一个圆.【点评】本题主要考查直线和圆的方程的特征,属于基础题.14.【答案】2n﹣1.【解析】解:∵a 1=1,a n+1=a n +2n,∴a 2﹣a 1=2, a 3﹣a 2=22, …a n ﹣a n ﹣1=2n ﹣1,相加得:a n ﹣a 1=2+22+23+2…+2n ﹣1,a n =2n ﹣1,故答案为:2n﹣1,15.【答案】 ①【解析】解:由图象得:f (x )在(1,3)上递减,在(﹣3,1),(3,+∞)递增,∴①f (x )在(﹣3,1)上是增函数,正确, x=3是f (x )的极小值点,②④不正确;③f (x )在(2,4)上是减函数,在(﹣1,2)上是增函数,不正确, 故答案为:①.16.【答案】 2 .【解析】解: =2+lg100﹣2=2+2﹣2=2,故答案为:2.【点评】本题考查了对数的运算性质,属于基础题.17.【答案】12()()f x f x >] 【解析】考点:不等式,比较大小.【思路点晴】本题主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用. 分析二次函数的图象,主要有两个要点:一个是看二次项系数的符号,它确定二次函数图象的开口方向;二是看对称轴和最值,它确定二次函数的具体位置.对于函数图象判断类似题要会根据图象上的一些特殊点进行判断,如函数图象与正半轴的交点,函数图象的最高点与最低点等. 18.【答案】①② 【解析】试题分析:子集的个数是2n,故①正确.根据奇函数的定义知②正确.对于③()241f x x =-为偶函数,故错误.对于④0x =没有对应,故不是映射.对于⑤减区间要分成两段,故错误.考点:子集,函数的奇偶性与单调性.【思路点晴】集合子集的个数由集合的元素个数来决定,一个个元素的集合,它的子集的个数是2n个;对于奇函数来说,如果在0x =处有定义,那么一定有()00f =,偶函数没有这个性质;函数的奇偶性判断主要根据定义()()()(),f x f x f x f x -=-=-,注意判断定义域是否关于原点对称.映射必须集合A 中任意一个元素在集合B 中都有唯一确定的数和它对应;函数的定义域和单调区间要区分清楚,不要随意写并集.1三、解答题19.【答案】【解析】解:p :,q :a ≤x ≤a+1;∴(1)若a=,则q :;∵p ∧q 为真,∴p ,q 都为真;∴,∴;∴实数x 的取值范围为;(2)若p 是q 的充分不必要条件,即由p 能得到q ,而由q 得不到p ;∴,∴;∴实数a 的取值范围为.【点评】考查解一元二次不等式,p ∧q 真假和p ,q 真假的关系,以及充分不必要条件的概念.20.【答案】(1)()f x 在1(,)e -∞-,1(,)e +∞上单调递增,在1(,0)e -,1(0,)e 上单调递减;(2)1[,)2+∞. 【解析】试题解析:(1)由条件可得221'(1)1f e e a=-=-,∴1a =, 由21()f x e x x =+,可得2222211'()e x f x e x x -=-=,由'()0f x >,可得2210,0,e x x ⎧->⎨≠⎩解得1x e >或1x e <-;由'()0f x <,可得2210,0,e x x ⎧-<⎨≠⎩解得10x e -<<或10x e <<. 所以()f x 在1(,)e -∞-,1(,)e +∞上单调递增,在1(,0)e -,1(0,)e上单调递减. (2)令()ln g t t t =,当(0,)s ∈+∞,(1,]t e ∈时,()0f s >,()ln 0g t t t =>,由()ln kf s t t ≥,可得ln ()t t k f s ≥在(0,)x ∈+∞,(1,]t e ∈时恒成立, 即max ln ()t t k f s ⎡⎤≥⎢⎥⎣⎦max()()g t f s ⎡⎤=⎢⎥⎣⎦,故只需求出()f s 的最小值和()g t 的最大值. 由(1)可知,()f s 在1(0,)e 上单调递减,在1(,)e+∞上单调递增, 故()f s 的最小值为1()2f e e=, 由()ln g t t t =可得'()ln 10g t t =+>在区间(1,]e 上恒成立,所以()g t 在(1,]e 上的最大值为()ln g e e e e ==, 所以只需122e k e ≥=, 所以实数的取值范围是1[,)2+∞. 考点:1、利用导数研究函数的单调性及求切线斜率;2、不等式恒成立问题.【方法点晴】本题主要考查的是利用导数研究函数的单调性、利用导数研究函数的最值、不等式的恒成立和导数的几何意义,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(闭区间上还要注意比较端点处函数值的大小). 21.【答案】【解析】(1)设等差数列{}n a 的首项为1a ,公差为d ,则由990S =,15240S =,得119369015105240a d a d +=⎧⎨+=⎩,解得12a d ==,……………3分 所以2(n 1)22n a n =+-⨯=,即2n a n =,(1)22(1)2n n n S n n n -=+⨯=+,即1n S n n =+().……………5分22.【答案】【解析】【分析】(Ⅰ)在图1中,△ABC中,由已知可得:AC⊥DE.在图2中,DE⊥A1D,DE⊥DC,即可证明DE⊥平面A1DC,再利用面面垂直的判定定理即可证明.(Ⅱ)如图建立空间直角坐标系,设平面A1BC的法向量为,利用,BE与平面所成角的正弦值为.(Ⅲ)设CD=x(0<x<6),则A1D=6﹣x,利用=(0<x<6),即可得出.【解答】(Ⅰ)证明:在图1中,△ABC中,DE∥BC,AC⊥BC,则AC⊥DE,∴在图2中,DE⊥A1D,DE⊥DC,又∵A1D∩DC=D,∴DE⊥平面A1DC,∵DE∥BC,∴BC⊥平面A1DC,∵BC⊂平面A1BC,∴平面A1BC⊥平面A1DC.(Ⅱ)解:如图建立空间直角坐标系:A1(0,0,4)B(3,2,0),C(0,2,0),D(0,0,0),E(2,0,0).则,,设平面A1BC的法向量为则,解得,即则BE与平面所成角的正弦值为(Ⅲ)解:设CD=x(0<x<6),则A1D=6﹣x,在(2)的坐标系下有:A1(0,0,6﹣x),B(3,x,0),∴==(0<x<6),即当x=3时,A1B长度达到最小值,最小值为.23.【答案】【解析】【知识点】三角函数的图像与性质恒等变换综合【试题解析】(Ⅰ)由已知当,即,时,(Ⅱ)当时,递增即,令,且注意到函数的递增区间为24.【答案】【解析】解:(Ⅰ)∵,∴(x>0),当a=2时,则在(0,+∞)上恒成立,当1<a<2时,若x∈(a﹣1,1),则f′(x)<0,若x∈(0,a﹣1)或x∈(1,+∞),则f′(x)>0,当a>2时,若x∈(1,a﹣1),则f′(x)<0,若x∈(0,1)或x∈(a﹣1,+∞),则f′(x)>0,综上所述:当1<a<2时,函数f(x)在区间(a﹣1,1)上单调递减,在区间(0,a﹣1)和(1,+∞)上单调递增;当a=2时,函数(0,+∞)在(0,+∞)上单调递增;当a>2时,函数f(x)在区间(0,1)上单调递减,在区间(0,1)和(a﹣1,+∞)上单调递增.(Ⅱ)若a=2,则,由(Ⅰ)知函数f(x)在区间(0,+∞)上单调递增,(1)因为a1=10,所以a2=f(a1)=f(10)=30+ln10,可知a2>a1>0,假设0<a k<a k+1(k≥1),因为函数f(x)在区间(0,+∞)上单调递增,∴f(a k+1)>f(a k),即得a k+2>a k+1>0,由数学归纳法原理知,a n+1>a n对于一切正整数n都成立,∴数列{a n}为递增数列.(2)由(1)知:当且仅当0<a1<a2,数列{a n}为递增数列,∴f(a1)>a1,即(a1为正整数),设(x≥1),则,∴函数g(x)在区间上递增,由于,g(6)=ln6>0,又a1为正整数,∴首项a1的最小值为6.【点评】本题考查导数的运用:求单调区间,同时考查函数的零点存在定理和数学归纳法的运用,考查运算能力,属于中档题.选做题:本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分7分.如果多做,则按所做的前两题计分.【选修4-2:矩阵与变换】。
高2018级高三(上)11月月考数学试题(理科)【含答案】
2.已知复数 z 满足 z(1 i) 2i ,则复数 z 在复平面内对应的点所在象限为( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
3.“直线 l 与平面 内无数条直线垂直”是“直线 l 与平面 垂直”的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不必要也不充分条件
15.在 ABC
中,已知
AB
2
,|
CA CB
|| CA CB
|
, cos 2A
2 sin 2
B
C 2
1,则
BA 在 BC
方向上的投
影为__________.
数学(理科)“11 月月考”考试题
第2页共4页
16.已知数列an 的前 n 项和为 Sn ,直线 y x 2 2 与圆 x2 y2 2an 2 交于 An , Bn n N * 两点,且
高 2018 级高三(上)11 月月考
数学(理科)试题 共 1 张 4 页 考试时间:120 分钟 满分:150 分
注意事项: 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷 1 至 2 页,第Ⅱ卷 3 至 4 页,共 4 页。考
生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。
(1)求角 A 的大小; (2)若 a 4 ,求 ABC 面积的最大值.
18.(本小题满分 12 分) 某中学准备对高 2020 级学生文理科倾向做摸底调查,由教务处对高一学生文科、理科进行了问卷,问卷共 100 道
题,每题 1 分,总分 100 分。教务处随机抽取了 200 名学生的问卷成绩(单位:分)进行统计,将数据按照 0, 20 , 20, 40 ,40, 60 ,60,80 ,80,100 分成 5 组,绘制的频率分布直方图如图所示,若将不低于 60 分的称为“文
二道区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案
二道区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知函数()cos()3f x x π=+,则要得到其导函数'()y f x =的图象,只需将函数()y f x =的图象( )A .向右平移2π个单位B .向左平移2π个单位 C. 向右平移23π个单位 D .左平移23π个单位2. 已知集合{}|5A x N x =∈<,则下列关系式错误的是( )A .5A ∈B .1.5A ∉C .1A -∉D .0A ∈3. 若将函数y=tan (ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan (ωx+)的图象重合,则ω的最小值为( ) A.B.C.D.4. 如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是( )A.= B.∥ C. D.5. 直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”的逆命题、否命题、逆否命题中真命题的个数为( ) A .0B .1C .2D .36. 在“唱响内江”选拔赛中,甲、乙两位歌手的5次得分情况如茎叶图所示,记甲、乙两人的平均得分分别、,则下列判断正确的是( )A.<,乙比甲成绩稳定 B.<,甲比乙成绩稳定C.>,甲比乙成绩稳定 D.>,乙比甲成绩稳定7. 若双曲线M 上存在四个点A ,B ,C ,D ,使得四边形ABCD 是正方形,则双曲线M 的离心率的取值范围是( ) A. B.C.D.班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8.若函数f(x)=2sin(ωx+φ)对任意x都有f(+x)=f(﹣x),则f()=()A.2或0 B.0 C.﹣2或0 D.﹣2或29.满足集合M⊆{1,2,3,4},且M∩{1,2,4}={1,4}的集合M的个数为()A.1 B.2 C.3 D.410.设M={x|﹣2≤x≤2},N={y|0≤y≤2},函数f(x)的定义域为M,值域为N,则f(x)的图象可以是()A.B.C.D.11.下列函数中,在区间(0,+∞)上为增函数的是()A.y=x﹣1B.y=()x C.y=x+D.y=ln(x+1)12.如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为()A.30 B.50 C.75 D.150二、填空题13.在(1+x)(x2+)6的展开式中,x3的系数是.14.已知函数y=f(x),x∈I,若存在x0∈I,使得f(x0)=x0,则称x0为函数y=f(x)的不动点;若存在x0∈I,使得f(f(x0))=x0,则称x0为函数y=f(x)的稳定点.则下列结论中正确的是.(填上所有正确结论的序号)①﹣,1是函数g(x)=2x2﹣1有两个不动点;②若x0为函数y=f(x)的不动点,则x0必为函数y=f(x)的稳定点;③若x 0为函数y=f (x )的稳定点,则x 0必为函数y=f (x )的不动点; ④函数g (x )=2x 2﹣1共有三个稳定点;⑤若函数y=f (x )在定义域I 上单调递增,则它的不动点与稳定点是完全相同.15.【2017-2018第一学期东台安丰中学高三第一次月考】函数()2ln f x x x =-的单调递增区间为__________. 16.用描述法表示图中阴影部分的点(含边界)的坐标的集合为 .17.已知直线l :ax ﹣by ﹣1=0(a >0,b >0)过点(1,﹣1),则ab 的最大值是 . 18.抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF|=4,则点M 的横坐标x= .三、解答题19.【海安县2018届高三上学期第一次学业质量测试】已知函数()()2xf x x ax a e =++,其中a R ∈,e 是自然对数的底数.(1)当1a =时,求曲线()y f x =在0x =处的切线方程; (2)求函数()f x 的单调减区间;(3)若()4f x ≤在[]4,0-恒成立,求a 的取值范围.20.已知数列{a n }满足a 1=,a n+1=a n +,数列{b n }满足b n =(Ⅰ)证明:b n ∈(0,1)(Ⅱ)证明:=(Ⅲ)证明:对任意正整数n 有a n.21.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ;(2)设(){}1nn n b a --是等比数列,且257,71b b ==,求数列{}n b 的前n 项和n T .【命题意图】本题考查等差数列与等比数列的通项与前n 项和、数列求和等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及分类讨论思想、方程思想、分组求和法的应用.22.已知函数f (x )=x 2﹣mx 在[1,+∞)上是单调函数.(1)求实数m 的取值范围;(2)设向量,求满足不等式的α的取值范围.23.已知函数f (x )=log 2(m+)(m ∈R ,且m >0).(1)求函数f (x )的定义域;(2)若函数f (x )在(4,+∞)上单调递增,求m 的取值范围.24.(本小题满分12分)若二次函数()()20f x ax bx c a =++≠满足()()+12f x f x x -=, 且()01f =.(1)求()f x 的解析式; (2)若在区间[]1,1-上,不等式()2f x x m >+恒成立,求实数m 的取值范围.二道区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】B【解析】试题分析:函数()cos ,3f x x π⎛⎫=+∴ ⎪⎝⎭()5'sin cos 36f x x x ππ⎛⎫⎛⎫=-+=+ ⎪ ⎪⎝⎭⎝⎭,所以函数 ()cos 3f x x π⎛⎫=+ ⎪⎝⎭,所以将函数函数()y f x =的图象上所有的点向左平移2π个单位长度得到5cos cos 326y x x πππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭,故选B.考点:函数()sin y A x ωϕ=+的图象变换. 2. 【答案】A【解析】试题分析:因为{}|5A x N x =∈< ,而1.5,1,.5,1N N A A ∉-∉∴∉-∉,即B 、C 正确,又因为0N ∈且05<,所以0A ∈,即D 正确,故选A. 1考点:集合与元素的关系. 3. 【答案】D【解析】解:y=tan (ωx+),向右平移个单位可得:y=tan[ω(x ﹣)+]=tan (ωx+)∴﹣ω+k π=∴ω=k+(k ∈Z ), 又∵ω>0∴ωmin =.故选D .4. 【答案】D【解析】解:由图可知,,但不共线,故,故选D .【点评】本题考查平行向量与共线向量、相等向量的意义,属基础题.5. 【答案】B【解析】解:∵直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”,∴命题P 是真命题,∴命题P 的逆否命题是真命题; ¬P :“若直线m 不垂直于α,则m 不垂直于l ”,∵¬P 是假命题,∴命题p 的逆命题和否命题都是假命题. 故选:B .6.【答案】A【解析】解:由茎叶图可知=(77+76+88+90+94)=,=(75+86+88+88+93)==86,则<,乙的成绩主要集中在88附近,乙比甲成绩稳定,故选:A【点评】本题主要考查茎叶图的应用,根据平均数和数据的稳定性是解决本题的关键.7.【答案】A【解析】解:∵双曲线M上存在四个点A,B,C,D,使得四边形ABCD是正方形,∴由正方形的对称性得,其对称中心在原点,且在第一象限的顶点坐标为(x,x),∴双曲线渐近线的斜率k=>1,∴双曲线离心率e=>.∴双曲线M的离心率的取值范围是(,+∞).故选:A.【点评】本题考查双曲线的离心率的取值的范围的求法,是中档题,解题时要认真审题,注意双曲线性质的合理运用.8.【答案】D【解析】解:由题意:函数f(x)=2sin(ωx+φ),∵f(+x)=f(﹣x),可知函数的对称轴为x==,根据三角函数的性质可知,当x=时,函数取得最大值或者最小值.∴f()=2或﹣2故选D.9.【答案】B【解析】解:∵M∩{1,2,4}={1,4},∴1,4是M中的元素,2不是M中的元素.∵M⊆{1,2,3,4},∴M={1,4}或M={1,3,4}.故选:B.10.【答案】B【解析】解:A项定义域为[﹣2,0],D项值域不是[0,2],C项对任一x都有两个y与之对应,都不符.故选B.【点评】本题考查的是函数三要素,即定义域、值域、对应关系的问题.11.【答案】D【解析】解:①y=x﹣1在区间(0,+∞)上为减函数,②y=()x是减函数,③y=x+,在(0,1)是减函数,(1,+∞)上为,增函数,④y=lnx在区间(0,+∞)上为增函数,∴A,B,C不正确,D正确,故选:D【点评】本题考查了基本的函数的单调区间,属于基本题目,关键掌握好常见的函数的单调区间.12.【答案】B【解析】解:该几何体是四棱锥,其底面面积S=5×6=30,高h=5,则其体积V=S×h=30×5=50.故选B.二、填空题13.【答案】20.【解析】解:(1+x)(x2+)6的展开式中,x3的系数是由(x2+)6的展开式中x3与1的积加上x2与x的积组成;又(x2+)6的展开式中,通项公式为T r+1=•x12﹣3r,令12﹣3r=3,解得r=3,满足题意;令12﹣3r=2,解得r=,不合题意,舍去;所以展开式中x3的系数是=20.故答案为:20.14.【答案】①②⑤【解析】解:对于①,令g (x )=x ,可得x=或x=1,故①正确;对于②,因为f (x 0)=x 0,所以f (f (x 0))=f (x 0)=x 0,即f (f (x 0))=x 0,故x 0也是函数y=f (x )的稳定点,故②正确;对于③④,g (x )=2x 2﹣1,令2(2x 2﹣1)2﹣1=x ,因为不动点必为稳定点,所以该方程一定有两解x=﹣,1,由此因式分解,可得(x ﹣1)(2x+1)(4x 2+2x ﹣1)=0还有另外两解,故函数g (x )的稳定点有﹣,1,,其中是稳定点,但不是不动点,故③④错误;对于⑤,若函数y=f (x )有不动点x 0,显然它也有稳定点x 0;若函数y=f (x )有稳定点x 0,即f (f (x 0))=x 0,设f (x 0)=y 0,则f (y 0)=x 0 即(x 0,y 0)和(y 0,x 0)都在函数y=f (x )的图象上,假设x 0>y 0,因为y=f (x )是增函数,则f (x 0)>f (y 0),即y 0>x 0,与假设矛盾; 假设x 0<y 0,因为y=f (x )是增函数,则f (x 0)<f (y 0),即y 0<x 0,与假设矛盾; 故x 0=y 0,即f (x 0)=x 0,y=f (x )有不动点x 0,故⑤正确. 故答案为:①②⑤.【点评】本题考查命题的真假的判断,新定义的应用,考查分析问题解决问题的能力.15.【答案】⎛ ⎝⎭【解析】16.【答案】 {(x ,y )|xy >0,且﹣1≤x ≤2,﹣≤y ≤1} .【解析】解:图中的阴影部分的点设为(x ,y )则{x ,y )|﹣1≤x ≤0,﹣≤y ≤0或0≤x ≤2,0≤y ≤1}={(x ,y )|xy >0且﹣1≤x ≤2,﹣≤y ≤1}故答案为:{(x ,y )|xy >0,且﹣1≤x ≤2,﹣≤y ≤1}.17.【答案】 .【解析】解:∵直线l :ax ﹣by ﹣1=0(a >0,b >0)过点(1,﹣1), ∴a+b ﹣1=0,即a+b=1,∴ab ≤=当且仅当a=b=时取等号,故ab 的最大值是故答案为:【点评】本题考查基本不等式求最值,属基础题.18.【答案】 3 .【解析】解:∵抛物线y 2=4x=2px ,∴p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|MF|=4=x+=4, ∴x=3, 故答案为:3.【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.三、解答题19.【答案】(1)210x y -+=(2)当2a =时,()f x 无单调减区间;当2a <时,()f x 的单调减区间是()2,a --;当2a >时,()f x 的单调减区间是(),2a --.(3)244,4e ⎡⎤-⎣⎦【解析】试题分析:(1)先对函数解析式进行求导,再借助导数的几何意义求出切线的斜率,运用点斜式求出切线方程;(2)先对函数的解析式进行求导,然后借助导函数的值的符号与函数单调性之间的关系进行分类分析探求;(3)先不等式()4f x ≤进行等价转化,然后运用导数知识及分类整合的数学思想探求函数的极值与最值,进而分析推证不等式的成立求出参数的取值范围。
城区外国语学校2018-2019学年高三上学期11月月考数学试卷含答案
城区外国语学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 在△ABC 中,若a=2bcosC ,则△ABC 一定是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形2. 已知函数f (x )=3cos (2x ﹣),则下列结论正确的是( )A .导函数为B .函数f (x )的图象关于直线对称C .函数f (x )在区间(﹣,)上是增函数D .函数f (x )的图象可由函数y=3co s2x 的图象向右平移个单位长度得到3. 已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为( )A .24B .80C .64D .2404. 棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为( )A .B .18C .D .5. 若三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA=2,AB=1,AC=2,∠BAC=60°,则球O 的表面积为( ) A .64π B .16π C .12π D .4π班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________6. 定义某种运算S=a ⊗b ,运算原理如图所示,则式子+的值为( )A .4B .8C .10D .137. “”是“A=30°”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也必要条件8. 边长为2的正方形ABCD 的定点都在同一球面上,球心到平面ABCD 的距离为1,则此球的表面积为( )A .3πB .5πC .12πD .20π9. 已知f (x )=2sin (ωx+φ)的部分图象如图所示,则f (x )的表达式为( )A .B .C .D .10.函数sin()y A x ωϕ=+在一个周期内的图象如图所示,此函数的解析式为( ) A .2sin(2)3y x π=+B .22sin(2)3y x π=+C .2sin()23x y π=-D .2sin(2)3y x π=-11.圆C 1:(x+2)2+(y ﹣2)2=1与圆C 2:(x ﹣2)2+(y ﹣5)2=16的位置关系是( )A.外离 B.相交 C.内切 D.外切12.已知f(x)=ax3+bx+1(ab≠0),若f(2016)=k,则f(﹣2016)=()A.k B.﹣k C.1﹣k D.2﹣k二、填空题13.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为.14.△ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60°,b=2,则c的值为.15.已知命题p:∃x∈R,x2+2x+a≤0,若命题p是假命题,则实数a的取值范围是.(用区间表示)16.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全校学生中抽取1名学生,抽到高二年级女生的概率为19.0,先采用分层抽样(按年级分层)在全校抽取100人,则应在高三年级中抽取的人数等于.17.下列命题:①函数y=sinx和y=tanx在第一象限都是增函数;②若函数f(x)在[a,b]上满足f(a)f(b)<0,函数f(x)在(a,b)上至少有一个零点;③数列{a n}为等差数列,设数列{a n}的前n项和为S n,S10>0,S11<0,S n最大值为S5;④在△ABC中,A>B的充要条件是cos2A<cos2B;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强.其中正确命题的序号是(把所有正确命题的序号都写上).18.直线l:(t为参数)与圆C:(θ为参数)相交所得的弦长的取值范围是.三、解答题19.已知函数y=x+有如下性质:如果常数t>0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数.(1)已知函数f(x)=x+,x∈[1,3],利用上述性质,求函数f(x)的单调区间和值域;(2)已知函数g(x)=和函数h(x)=﹣x﹣2a,若对任意x1∈[0,1],总存在x2∈[0,1],使得h(x2)=g(x1)成立,求实数a的值.20.如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中点.(1)求证:AC⊥平面BDEF;(2)求二面角H﹣BD﹣C的大小.21.已知f(x)=x2﹣3ax+2a2.(1)若实数a=1时,求不等式f(x)≤0的解集;(2)求不等式f(x)<0的解集.22.已知等比数列{a n}中,a1=,公比q=.(Ⅰ)S n为{a n}的前n项和,证明:S n=(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{b n}的通项公式.23.已知函数f(x)=x3+x.(1)判断函数f(x)的奇偶性,并证明你的结论;(2)求证:f(x)是R上的增函数;(3)若f(m+1)+f(2m﹣3)<0,求m的取值范围.(参考公式:a3﹣b3=(a﹣b)(a2+ab+b2))24.已知角α的终边在直线y=x上,求sinα,cosα,tanα的值.城区外国语学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】B【解析】解:由余弦定理得cosC=,把cosC 代入a=2bcosC 得:,∴a 2=a 2+b 2﹣c 2,∴c 2=b 2.又b 和c 都大于0, 则b=c ,即三角形为等腰三角形.故选B【点评】此题考查了余弦定理,以及三角形的形状判定,利用余弦定理表示出cosC 是本题的突破点.2. 【答案】B【解析】解:对于A ,函数f ′(x )=﹣3sin (2x ﹣)•2=﹣6sin (2x ﹣),A 错误;对于B ,当x=时,f ()=3cos (2×﹣)=﹣3取得最小值,所以函数f (x )的图象关于直线对称,B 正确;对于C ,当x ∈(﹣,)时,2x ﹣∈(﹣,),函数f (x )=3cos (2x ﹣)不是单调函数,C 错误;对于D ,函数y=3co s2x 的图象向右平移个单位长度,得到函数y=3co s2(x ﹣)=3co s (2x ﹣)的图象,这不是函数f (x )的图象,D 错误. 故选:B .【点评】本题考查了余弦函数的图象与性质的应用问题,是基础题目.3. 【答案】B 【解析】 试题分析:8058631=⨯⨯⨯=V ,故选B. 考点:1.三视图;2.几何体的体积. 4. 【答案】D【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:故该几何体的表面积为:3×22+3×()+=,故选:D.5.【答案】A【解析】解:如图,三棱锥S﹣ABC的所有顶点都在球O的球面上,∵AB=1,AC=2,∠BAC=60°,∴BC=,∴∠ABC=90°.∴△ABC截球O所得的圆O′的半径r=1,∵SA⊥平面ABC,SA=2∴球O的半径R=4,∴球O的表面积S=4πR2=64π.故选:A.【点评】本题考查球的表面积的求法,合理地作出图形,数形结合求出球半径,是解题的关键.6.【答案】C【解析】解:模拟执行程序,可得,当a≥b时,则输出a(b+1),反之,则输出b(a+1),∵2tan=2,lg=﹣1,∴(2tan)⊗lg=(2tan)×(lg+1)=2×(﹣1+1)=0,∵lne=1,()﹣1=5,∴lne⊗()﹣1=()﹣1×(lne+1)=5×(1+1)=10,∴+=0+10=10.故选:C.7.【答案】B【解析】解:“A=30°”⇒“”,反之不成立.故选B【点评】本题考查充要条件的判断和三角函数求值问题,属基本题.8. 【答案】C【解析】解:∵正方形的边长为2,∴正方形的对角线长为=2, ∵球心到平面ABCD 的距离为1,∴球的半径R==,则此球的表面积为S=4πR 2=12π.故选:C .【点评】此题考查了球的体积和表面积,求出球的半径是解本题的关键.9. 【答案】 B【解析】解:∵函数的周期为T==,∴ω=又∵函数的最大值是2,相应的x 值为∴=,其中k ∈Z取k=1,得φ=因此,f (x )的表达式为,故选B【点评】本题以一个特殊函数求解析式为例,考查由y=Asin (ωx+φ)的部分图象确定其解析式、三角函数的图象与性质,周期与相位等概念,属于基础题.10.【答案】B 【解析】考点:三角函数()sin()f x A x ωϕ=+的图象与性质.11.【答案】D【解析】解:由圆C 1:(x+2)2+(y ﹣2)2=1与圆C 2:(x ﹣2)2+(y ﹣5)2=16得: 圆C 1:圆心坐标为(﹣2,2),半径r=1;圆C 2:圆心坐标为(2,5),半径R=4.两个圆心之间的距离d==5,而d=R+r,所以两圆的位置关系是外切.故选D12.【答案】D【解析】解:∵f(x)=ax3+bx+1(ab≠0),f(2016)=k,∴f(2016)=20163a+2016b+1=k,∴20163a+2016b=k﹣1,∴f(﹣2016)=﹣20163a﹣2016b+1=﹣(k﹣1)+1=2﹣k.故选:D.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.二、填空题13.【答案】12【解析】考点:分层抽样14.【答案】.【解析】解:∵△ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60°,b=2,∴由正弦定理可得:,解得:a=3,∴利用余弦定理:a2=b2+c2﹣2bccosA,可得:9=4+c2﹣2c,即c2﹣2c﹣5=0,∴解得:c=1+,或1﹣(舍去).故答案为:.【点评】本题主要考查了正弦定理,余弦定理,在解三角形中的综合应用,考查了转化思想和计算能力,属于基础题.15.【答案】(1,+∞)【解析】解:∵命题p:∃x∈R,x2+2x+a≤0,当命题p是假命题时,命题¬p:∀x∈R,x2+2x+a>0是真命题;即△=4﹣4a<0,∴a>1;∴实数a的取值范围是(1,+∞).故答案为:(1,+∞).【点评】本题考查了命题与命题的否定的真假性相反问题,也考查了二次不等式恒成立的问题,是基础题目.16.【答案】25【解析】考点:分层抽样方法.17.【答案】②③④⑤【解析】解:①函数y=sinx和y=tanx在第一象限都是增函数,不正确,取x=,,但是,,因此不是单调递增函数;②若函数f(x)在[a,b]上满足f(a)f(b)<0,函数f(x)在(a,b)上至少有一个零点,正确;③数列{a n}为等差数列,设数列{a n}的前n项和为S n,S10>0,S11<0,∴=5(a6+a5)>0,=11a6<0,∴a5+a6>0,a6<0,∴a5>0.因此S n最大值为S5,正确;④在△ABC中,cos2A﹣cos2B=﹣2sin(A+B)sin(A﹣B)=2sin(A+B)sin(B﹣A)<0⇔A>B,因此正确;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强,正确.其中正确命题的序号是②③④⑤.【点评】本题综合考查了三角函数的单调性、函数零点存在判定定理、等差数列的性质、两角和差化积公式、线性回归分析,考查了推理能力与计算能力,属于难题.18.【答案】[4,16].【解析】解:直线l:(t为参数),化为普通方程是=,即y=tanα•x+1;圆C的参数方程(θ为参数),化为普通方程是(x﹣2)2+(y﹣1)2=64;画出图形,如图所示;∵直线过定点(0,1),∴直线被圆截得的弦长的最大值是2r=16,最小值是2=2×=2×=4∴弦长的取值范围是[4,16].故答案为:[4,16].【点评】本题考查了直线与圆的参数方程的应用问题,解题时先把参数方程化为普通方程,再画出图形,数形结合,容易解答本题.三、解答题19.【答案】【解析】解:(1)由已知可以知道,函数f(x)在x∈[1,2]上单调递减,在x∈[2,3]上单调递增,f(x)min=f(2)=2+2=4,又f(1)=1+4=5,f(3)=3+=;f(1)>f(3)所以f(x)max=f(1)=5所以f(x)在x∈[1,3]的值域为[4,5].(2)y=g(x)==2x+1+﹣8设μ=2x+1,x∈[0,1],1≤μ≤3,则y=﹣8,由已知性质得,当1≤u≤2,即0≤x≤时,g(x)单调递减,所以递减区间为[0,];当2≤u≤3,即≤x≤1时,g(x)单调递增,所以递增区间为[,1];由g(0)=﹣3,g()=﹣4,g(1)=﹣,得g(x)的值域为[﹣4,﹣3].因为h(x)=﹣x﹣2a为减函数,故h(x)∈[﹣1﹣2a,﹣2a],x∈[0,1].根据题意,g(x)的值域为h(x)的值域的子集,从而有,所以a=.20.【答案】【解析】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD.又∵平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,且AC⊂平面ABCD,∴AC⊥平面BDEF;(2)解:设AC∩BD=O,取EF的中点N,连接ON,∵四边形BDEF是矩形,O,N分别为BD,EF的中点,∴ON∥ED,∵ED⊥平面ABCD,∴ON⊥平面ABCD,由AC⊥BD,得OB,OC,ON两两垂直.∴以O为原点,OB,OC,ON所在直线分别为x轴,y轴,z轴,如图建立空间直角坐标系.∵底面ABCD是边长为2的菱形,∠BAD=60°,BF=3,∴B(1,0,0),D(﹣1,0,0),H(,,)∴=(﹣,,),=(2,0,0).设平面BDH的法向量为=(x,y,z),则令z=1,得=(0,﹣,1)由ED⊥平面ABCD,得平面BCD的法向量为=(0,0,﹣3),则cos<,>=﹣,由图可知二面角H﹣BD﹣C为锐角,∴二面角H﹣BD﹣C的大小为60°【点评】本题考查面面垂直的性质,考查线面垂直,考查面面角,考查向量法的运用,正确求出平面的法向量是关键.【解析】解:(1)当a=1时,依题意得x2﹣3x+2≤0因式分解为:(x﹣2)(x﹣1)≤0,解得:x≥1或x≤2.∴1≤x≤2.不等式的解集为{x|1≤x≤2}.(2)依题意得x2﹣3ax+2a2<0∴(x﹣a)(x﹣2a)<0…对应方程(x﹣a)(x﹣2a)=0得x1=a,x2=2a当a=0时,x∈∅.当a>0时,a<2a,∴a<x<2a;当a<0时,a>2a,∴2a<x<a;综上所述,当a=0时,原不等式的解集为∅;当a>0时,原不等式的解集为{x|a<x<2a};当a<0时,原不等式的解集为{x|2a<x<a};22.【答案】【解析】证明:(I)∵数列{a n}为等比数列,a1=,q=∴a n=×=,S n=又∵==S n∴S n=(II)∵a n=∴b n=log3a1+log3a2+…+log3a n=﹣log33+(﹣2log33)+…+(﹣nlog33)=﹣(1+2+…+n)=﹣∴数列{b n}的通项公式为:b n=﹣【点评】本题主要考查等比数列的通项公式、前n项和以及对数函数的运算性质.【解析】解:(1)f(x)是R上的奇函数证明:∵f(﹣x)=﹣x3﹣x=﹣(x3+x)=﹣f(x),∴f(x)是R上的奇函数(2)设R上任意实数x1、x2满足x1<x2,∴x1﹣x2<0,f(x1)﹣f(x2)=(x1﹣x2)+[(x1)3﹣(x2)3]=(x1﹣x2)[(x1)2+(x2)2+x1x2+1]=(x1﹣x2)[(x1+x2)2+1]<0恒成立,2+x2因此得到函数f(x)是R上的增函数.(3)f(m+1)+f(2m﹣3)<0,可化为f(m+1)<﹣f(2m﹣3),∵f(x)是R上的奇函数,∴﹣f(2m﹣3)=f(3﹣2m),∴不等式进一步可化为f(m+1)<f(3﹣2m),∵函数f(x)是R上的增函数,∴m+1<3﹣2m,∴24.【答案】【解析】解:直线y=x,当角α的终边在第一象限时,在α的终边上取点(1,),则sinα=,cosα=,tanα=;当角α的终边在第三象限时,在α的终边上取点(﹣1,﹣),则sinα=﹣,cosα=﹣,tanα=.【点评】本题考查三角函数的定义,涉及分类讨论思想的应用,属基础题.。
二道区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案
二道区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知直线l :2y kx =+过椭圆)0(12222>>=+b a b y a x 的上顶点B 和左焦点F ,且被圆224x y +=截得的弦长为L,若5L ≥e 的取值范围是( ) (A ) ⎥⎦⎤⎝⎛550, ( B )0⎛⎝⎦ (C ) ⎥⎦⎤⎝⎛5530, (D ) ⎥⎦⎤⎝⎛5540, 2. 圆心在直线2x +y =0上,且经过点(-1,-1)与(2,2)的圆,与x 轴交于M ,N 两点,则|MN |=( ) A .4 2 B .4 5 C .2 2D .2 53. 已知函数f (x )=ax 3﹣3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则实数a 的取值范围是( ) A .(1,+∞) B .(2,+∞) C .(﹣∞,﹣1)D .(﹣∞,﹣2)4. 数列1,3,6,10,…的一个通项公式是( ) A .21n a n n =-+ B .(1)2n n n a -=C .(1)2n n n a += D .21n a n =+ 5. 执行如图的程序框图,则输出S 的值为( )A .2016B .2C .D .﹣16. (m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( ) A .(1,+∞) B .(﹣∞,﹣1) C.D.7. 已知点F 是抛物线y 2=4x 的焦点,点P 在该抛物线上,且点P 的横坐标是2,则|PF|=( ) A .2 B .3 C .4 D .5 8. 经过点()1,1M 且在两轴上截距相等的直线是( ) A .20x y +-= B .10x y +-=班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________C .1x =或1y =D .20x y +-=或0x y -=9. 如图,空间四边形ABCD 中,M 、G 分别是BC 、CD 的中点,则等( )A .B .C .D .10.执行如图的程序框图,如果输入的100N =, 则输出的x =( )A .0.95B .0.98C .0.99D .1.0011.已知定义在实数集R 上的函数f (x )满足f (1)=3,且f (x )的导数f ′(x )在R 上恒有f ′(x )<2(x ∈R ),则不等式f (x )<2x+1的解集为( ) A .(1,+∞) B .(﹣∞,﹣1)C .(﹣1,1)D .(﹣∞,﹣1)∪(1,+∞)12.若实数x ,y 满足,则(x ﹣3)2+y 2的最小值是( )A .B .8C .20D .2二、填空题13.不等式()2110ax a x +++≥恒成立,则实数的值是__________.14.已知i 是虚数单位,且满足i 2=﹣1,a ∈R ,复数z=(a ﹣2i )(1+i )在复平面内对应的点为M ,则“a=1”是“点M 在第四象限”的 条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”)15.满足关系式{2,3}⊆A ⊆{1,2,3,4}的集合A 的个数是 .16.已知函数21,0()1,0x x f x x x ⎧-≤=⎨->⎩,()21xg x =-,则((2))f g = ,[()]f g x 的值域为 .【命题意图】本题考查分段函数的函数值与值域等基础知识,意在考查分类讨论的数学思想与运算求解能力. 17.下列四个命题申是真命题的是 (填所有真命题的序号) ①“p ∧q 为真”是“p ∨q 为真”的充分不必要条件;②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等; ③在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30°的角;④动圆P 过定点A (﹣2,0),且在定圆B :(x ﹣2)2+y 2=36的内部与其相内切,则动圆圆心P 的轨迹为一个椭圆.18.若a ,b 是函数f (x )=x 2﹣px+q (p >0,q >0)的两个不同的零点,且a ,b ,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q 的值等于 .三、解答题19.已知函数f (x )=1+(﹣2<x ≤2).(1)用分段函数的形式表示函数; (2)画出该函数的图象; (3)写出该函数的值域.20.已知函数f (x )=lnx ﹣ax+(a ∈R ).(Ⅰ)当a=1时,求曲线y=f (x )在点(1,f (1))处的切线方程; (Ⅱ)若函数y=f (x )在定义域内存在两个极值点,求a 的取值范围.21.(本小题满分12分)已知向量,a b 满足:||1a =,||6b =,()2a b a ∙-=. (1)求向量与的夹角; (2)求|2|a b -.22.(本题满分15分)已知抛物线C 的方程为22(0)y px p =>,点(1,2)R 在抛物线C 上.(1)求抛物线C 的方程;(2)过点(1,1)Q 作直线交抛物线C 于不同于R 的两点A ,B ,若直线AR ,BR 分别交直线:22l y x =+于M ,N 两点,求MN 最小时直线AB 的方程.【命题意图】本题主要考查抛物线的标准方程及其性质以及直线与抛物线的位置关系等基础知识,意在考查运算求解能力.23.已知f (x )=x 3+3ax 2+bx 在x=﹣1时有极值为0. (1)求常数 a ,b 的值;(2)求f (x )在[﹣2,﹣]的最值.24.(选做题)已知f (x )=|x+1|+|x ﹣1|,不等式f (x )<4的解集为M . (1)求M ;(2)当a ,b ∈M 时,证明:2|a+b|<|4+ab|.二道区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】 B【解析】依题意,2, 2.b kc ==设圆心到直线l 的距离为d,则L =解得2165d ≤。
二道区第二中学2018-2019学年高三上学期11月月考数学试卷含答案
二道区第二中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 中,“”是“”的( )ABC ∆A B >cos 2cos 2B A >A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.2. 已知ω>0,0<φ<π,直线x=和x=是函数f (x )=sin (ωx+φ)图象的两条相邻的对称轴,则φ=( )A .B .C .D .3. 已知函数f (x )=Asin (ωx+φ)(a >0,ω>0,|φ|<)的部分图象如图所示,则f (x )的解析式是()A .f (x )=sin (3x+)B .f (x )=sin (2x+)C .f (x )=sin (x+)D .f (x )=sin (2x+)4. sin (﹣510°)=( )A .B .C .﹣D .﹣5. 数列1,,,,,,,,,,…的前100项的和等于( )A .B .C .D .6. 已知向量=(1,),=(,x )共线,则实数x 的值为( )A .1B .C .tan35°D .tan35°7. 已知a >0,实数x ,y 满足:,若z=2x+y 的最小值为1,则a=( )A .2B .1C .D .8. 已知AC ⊥BC ,AC=BC ,D 满足=t+(1﹣t ),若∠ACD=60°,则t 的值为( )A .B .﹣C .﹣1D .9. 一个几何体的三视图如图所示,则该几何体的体积是( )A .64B .72C .80D .112班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________【命题意图】本题考查三视图与空间几何体的体积等基础知识,意在考查空间想象能力与运算求解能力.10.已知直线:过椭圆的上顶点和左焦点,且被圆l 2y kx =+)0(12222>>=+b aby a x B F 截得的弦长为,若的取值范围是( )224x y +=L L ≥e (A ) ( B ) (C )(D ) ⎦⎤⎝⎛550,0⎛ ⎝⎥⎦⎤ ⎝⎛5530,⎥⎦⎤ ⎝⎛5540,11.设n S 是等比数列{}n a 的前项和,425S S =,则此数列的公比q =( )A .-2或-1B .1或2C.1±或2D .2±或-112.若集合A={x|1<x <3},B={x|x >2},则A ∩B=()A .{x|2<x <3}B .{x|1<x <3}C .{x|1<x <2}D .{x|x >1}二、填空题13.已知为抛物线上两个不同的点,为抛物线的焦点.若线段的中点的纵坐标为2,M N 、24y x =F MN ,则直线的方程为_________.||||10MF NF +=MN 14.不等式的解集为 .15.把函数y=sin2x 的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为 .16.已知关于 的不等式在上恒成立,则实数的取值范围是__________17.如图所示,正方体ABCD ﹣A ′B ′C ′D ′的棱长为1,E 、F 分别是棱AA ′,CC ′的中点,过直线EF 的平面分别与棱BB ′、DD ′交于M 、N ,设BM=x ,x ∈[0,1],给出以下四个命题:①平面MENF ⊥平面BDD ′B ′;②当且仅当x=时,四边形MENF 的面积最小;③四边形MENF 周长l=f (x ),x ∈0,1]是单调函数;④四棱锥C ′﹣MENF 的体积v=h (x )为常函数;以上命题中真命题的序号为 .18.对于|q|<1(q 为公比)的无穷等比数列{a n }(即项数是无穷项),我们定义S n (其中S n 是数列{a n }的前n 项的和)为它的各项的和,记为S ,即S=S n =,则循环小数0. 的分数形式是 .三、解答题19.已知圆C :(x ﹣1)2+y 2=9内有一点P (2,2),过点P 作直线l 交圆C 于A ,B 两点.(1)当l 经过圆心C 时,求直线l 的方程;(2)当弦AB 被点P 平分时,求直线l 的方程.20.一艘客轮在航海中遇险,发出求救信号.在遇险地点南偏西方向10海里的处有一艘海A 45oB 难搜救艇收到求救信号后立即侦查,发现遇险客轮的航行方向为南偏东,正以每小时9海里的速度向75o一小岛靠近.已知海难搜救艇的最大速度为每小时21海里.(1)为了在最短的时间内追上客轮,求海难搜救艇追上客轮所需的时间;(2)若最短时间内两船在处相遇,如图,在中,求角的正弦值.C ABC B21.证明:f (x )是周期为4的周期函数;(2)若f (x )=(0<x ≤1),求x ∈[﹣5,﹣4]时,函数f (x )的解析式.18.已知函数f (x )=是奇函数.22.(本小题满分10分)选修4-1:几何证明选讲1111]如图,点为圆上一点,为圆的切线,为圆的直径,.C O CP CE 3CP =(1)若交圆于点,,求的长;PE O F 165EF =CE (2)若连接并延长交圆于两点,于,求的长.OP O ,A B CD OP ⊥D CD23.已知数列{a n }满足a 1=a ,a n+1=(n ∈N *).(1)求a 2,a 3,a 4;(2)猜测数列{a n }的通项公式,并用数学归纳法证明.24.(本小题满分12分)已知在中,角所对的边分别为且ABC ∆C B A ,,,,,c b a .)3(sin ))(sin (sin c b C a b B A -=-+(Ⅰ)求角的大小;A(Ⅱ) 若,,求.2a =ABC ∆c b ,二道区第二中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】A.【解析】在中ABC ∆2222cos 2cos 212sin 12sin sin sin sin sin B A B A A B A B>⇒->-⇔>⇔>,故是充分必要条件,故选A.A B ⇔>2. 【答案】A【解析】解:因为直线x=和x=是函数f (x )=sin (ωx+φ)图象的两条相邻的对称轴,所以T==2π.所以ω=1,并且sin (+φ)与sin (+φ)分别是最大值与最小值,0<φ<π,所以φ=.故选A .【点评】本题考查三角函数的解析式的求法,注意函数的最值的应用,考查计算能力. 3. 【答案】D【解析】解:由图象知函数的最大值为1,即A=1,函数的周期T=4(﹣)=4×=,解得ω=2,即f (x )=2sin (2x+φ),由五点对应法知2×+φ=,解得φ=,故f (x )=sin (2x+),故选:D 4. 【答案】C【解析】解:sin (﹣510°)=sin (﹣150°)=﹣sin150°=﹣sin30°=﹣,故选:C . 5. 【答案】A 【解析】解:=1×故选A . 6.【答案】B【解析】解:∵向量=(1,),=(,x)共线,∴x====,故选:B.【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题.7.【答案】C【解析】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z的截距最小,此时z最小.即2x+y=1,由,解得,即C(1,﹣1),∵点C也在直线y=a(x﹣3)上,∴﹣1=﹣2a,解得a=.故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.8.【答案】A【解析】解:如图,根据题意知,D在线段AB上,过D作DE⊥AC,垂足为E,作DF⊥BC,垂足为F;若设AC=BC=a ,则由得,CE=ta ,CF=(1﹣t )a ;根据题意,∠ACD=60°,∠DCF=30°;∴;即;解得.故选:A .【点评】考查当满足时,便说明D ,A ,B 三点共线,以及向量加法的平行四边形法则,平面向量基本定理,余弦函数的定义. 9. 【答案】C.【解析】10.【答案】 B【解析】依题意,2, 2.b kc ==设圆心到直线的距离为,则解得。
二道区民族中学2018-2019学年高三上学期11月月考数学试卷含答案
二道区民族中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误 的是( )A .若m ∥β,则m ∥lB .若m ∥l ,则m ∥βC .若m ⊥β,则m ⊥lD .若m ⊥l ,则m ⊥β2. 已知函数y=x 3+ax 2+(a+6)x ﹣1有极大值和极小值,则a 的取值范围是( )A .﹣1<a <2B .﹣3<a <6C .a <﹣3或a >6D .a <﹣1或a >23. 直线2x+y+7=0的倾斜角为( )A .锐角B .直角C .钝角D .不存在4. 等比数列{a n }中,a 3,a 9是方程3x 2﹣11x+9=0的两个根,则a 6=( )A .3B .C .±D .以上皆非5. 已知函数,且,则( )x x x f 2sin )(-=)2(31(log ),23(ln 3.02f c f b f a ===A .B .C .D .c a b >>a c b >>a b c >>b a c>>【命题意图】本题考查导数在单调性上的应用、指数值和对数值比较大小等基础知识,意在考查基本运算能力.6. 已知三棱柱 的侧棱与底面边长都相等,在底面上的射影为的中点, 111ABC A B C -1A ABC BC 则异面直线与所成的角的余弦值为()AB 1CC ABD .347. 设是两个不同的平面,是一条直线,以下命题正确的是( )βα,A .若,,则 B .若,,则α⊥l βα⊥β⊂l α//l βα//β⊂l C .若,,则 D .若,,则α⊥l βα//β⊥l α//l βα⊥β⊥l 8. 设F 1,F 2为椭圆=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则的值为()A .B .C .D .9. 圆锥的高扩大到原来的 倍,底面半径缩短到原来的,则圆锥的体积( )12A.缩小到原来的一半B.扩大到原来的倍C.不变D.缩小到原来的1610.设m 是实数,若函数f (x )=|x ﹣m|﹣|x ﹣1|是定义在R 上的奇函数,但不是偶函数,则下列关于函数f (x )的性质叙述正确的是()A .只有减区间没有增区间B .是f (x )的增区间班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________C .m=±1D .最小值为﹣311.已知双曲线﹣=1的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的渐近线方程为y=±x ,则该双曲线的方程为( )A .﹣=1B .﹣y 2=1C .x 2﹣=1D .﹣=112.已知集合,,则满足条件的集合的2{320,}A x x x x R =-+=∈{05,}B x x x N =<<∈A C B ⊆⊆C 个数为 A 、B 、C 、D 、234二、填空题13.抛物线y 2=8x 上到顶点和准线距离相等的点的坐标为 . 14.函数f (x )=x 3﹣3x+1在闭区间[﹣3,0]上的最大值、最小值分别是 .15.已知数列{a n }中,a 1=1,a n+1=a n +2n ,则数列的通项a n = .16.将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为 . 17.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于 . 18.已知θ是第四象限角,且sin (θ+)=,则tan (θ﹣)= .三、解答题19.已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7}.(1)求A ∪B ;(2)求(∁U A )∩B ;(3)求∁U (A ∩B ). 20.已知函数f (x )=ax 3+bx 2﹣3x 在x=±1处取得极值.求函数f (x )的解析式.21.已知函数f(x)=lnx﹣ax﹣b(a,b∈R)(Ⅰ)若函数f(x)在x=1处取得极值1,求a,b的值(Ⅱ)讨论函数f(x)在区间(1,+∞)上的单调性(Ⅲ)对于函数f(x)图象上任意两点A(x1,y1),B(x2,y2)(x1<x2),不等式f′(x0)<k恒成立,其中k为直线AB的斜率,x0=λx1+(1﹣λ)x2,0<λ<1,求λ的取值范围.22.(本小题满分12分)一个盒子里装有编号为1、2、3、4、5的五个大小相同的小球,第一次从盒子里随机抽取2个小球,记下球的编号,并将小球放回盒子,第二次再从盒子里随机抽取2个小球,记下球的编号.(Ⅰ)求第一次或第二次取到3号球的概率;ξξ(Ⅱ)设为两次取球时取到相同编号的小球的个数,求的分布列与数学期望.23.已知椭圆E:=1(a>b>0)的焦距为2,且该椭圆经过点.(Ⅰ)求椭圆E的方程;(Ⅱ)经过点P(﹣2,0)分别作斜率为k1,k2的两条直线,两直线分别与椭圆E交于M,N两点,当直线MN 与y轴垂直时,求k1k2的值.24.(本小题满分12分)已知数列的各项均为正数,,.{}n a 12a =114n n n na a a a ++-=+(Ⅰ)求数列的通项公式;{}n a (Ⅱ)求数列的前项和.11n n a a +⎧⎫⎨⎬+⎩⎭n n S二道区民族中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】【分析】由题设条件,平面α∩β=l,m是α内不同于l的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可【解答】解:A选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;综上D选项中的命题是错误的故选D2.【答案】C【解析】解:由于f(x)=x3+ax2+(a+6)x﹣1,有f′(x)=3x2+2ax+(a+6).若f(x)有极大值和极小值,则△=4a2﹣12(a+6)>0,从而有a>6或a<﹣3,故选:C.【点评】本题主要考查函数在某点取得极值的条件.属基础题.3.【答案】C【解析】【分析】设直线2x+y+7=0的倾斜角为θ,则tanθ=﹣2,即可判断出结论.【解答】解:设直线2x+y+7=0的倾斜角为θ,则tanθ=﹣2,则θ为钝角.故选:C.4.【答案】C【解析】解:∵a3,a9是方程3x2﹣11x+9=0的两个根,∴a3a9=3,又数列{a n}是等比数列,则a62=a3a9=3,即a6=±.故选C5.【答案】D6.【答案】D【解析】考点:异面直线所成的角.7. 【答案】111]C 【解析】考点:线线,线面,面面的位置关系8. 【答案】C【解析】解:F 1,F 2为椭圆=1的两个焦点,可得F 1(﹣,0),F 2().a=2,b=1.点P 在椭圆上,若线段PF 1的中点在y 轴上,PF 1⊥F 1F 2,|PF 2|==,由勾股定理可得:|PF 1|==.==.故选:C .【点评】本题考查椭圆的简单性质的应用,考查计算能力. 9. 【答案】A 【解析】试题分析:由题意得,设原圆锥的高为,底面半径为,则圆锥的体积为,将圆锥的高扩大到原来2113V r h π=的倍,底面半径缩短到原来的,则体积为,所以,故选A.12222111(2)326V r h r h ππ=⨯=122V V =考点:圆锥的体积公式.110.【答案】B【解析】解:若f (x )=|x ﹣m|﹣|x ﹣1|是定义在R 上的奇函数,则f (0)=|m|﹣1=0,则m=1或m=﹣1,当m=1时,f (x )=|x ﹣1|﹣|x ﹣1|=0,此时为偶函数,不满足条件,当m=﹣1时,f (x )=|x+1|﹣|x ﹣1|,此时为奇函数,满足条件,作出函数f (x )的图象如图:则函数在上为增函数,最小值为﹣2,故正确的是B ,故选:B【点评】本题主要考查函数的奇偶性的应用,根据条件求出m 的值是解决本题的关键.注意使用数形结合进行求解. 11.【答案】B【解析】解:已知抛物线y 2=4x 的焦点和双曲线的焦点重合,则双曲线的焦点坐标为(,0),即c=,又因为双曲线的渐近线方程为y=±x ,则有a 2+b 2=c 2=10和=,解得a=3,b=1.所以双曲线的方程为:﹣y 2=1.故选B .【点评】本题主要考查的知识要点:双曲线方程的求法,渐近线的应用.属于基础题. 12.【答案】D【解析】, .{|(1)(2)0,}{1,2}A x x x x =--=∈=R {}{}|05,1,2,3,4=<<∈=N B x x x ∵,∴可以为,,,.⊆⊆A C B C {}1,2{}1,2,3{}1,2,4{}1,2,3,4二、填空题13.【答案】 ( 1,±2) .【解析】解:设点P 坐标为(a 2,a )依题意可知抛物线的准线方程为x=﹣2a2+2=,求得a=±2∴点P的坐标为(1,±2)故答案为:(1,±2).【点评】本题主要考查了两点间的距离公式、抛物线的简单性质,属基础题. 14.【答案】 3,﹣17 .【解析】解:由f′(x)=3x2﹣3=0,得x=±1,当x<﹣1时,f′(x)>0,当﹣1<x<1时,f′(x)<0,当x>1时,f′(x)>0,故f(x)的极小值、极大值分别为f(﹣1)=3,f(1)=﹣1,而f(﹣3)=﹣17,f(0)=1,故函数f(x)=x3﹣3x+1在[﹣3,0]上的最大值、最小值分别是3、﹣17.15.【答案】 2n﹣1 .【解析】解:∵a1=1,a n+1=a n+2n,∴a2﹣a1=2,a3﹣a2=22,…a n﹣a n﹣1=2n﹣1,相加得:a n﹣a1=2+22+23+2…+2n﹣1,a n=2n﹣1,故答案为:2n﹣1,16.【答案】 4+ .【解析】解:作出正四棱柱的对角面如图,∵底面边长为6,∴BC=,球O的半径为3,球O1的半径为1,则,在Rt△OMO1中,OO1=4,,∴=,∴正四棱柱容器的高的最小值为4+.故答案为:4+.【点评】本题考查球的体积和表面积,考查空间想象能力和思维能力,是中档题.17.【答案】 .【解析】解:从等边三角形的三个顶点及三边中点中随机的选择4个,共有=15种选法,其中4个点构成平行四边形的选法有3个,∴4个点构成平行四边形的概率P==.故答案为:.【点评】本题考查古典概型及其概率计算公式的应用,是基础题.确定基本事件的个数是关键. 18.【答案】 .【解析】解:∵θ是第四象限角,∴,则,又sin(θ+)=,∴cos(θ+)=.∴cos()=sin(θ+)=,sin()=cos(θ+)=.则tan(θ﹣)=﹣tan()=﹣=.故答案为:﹣.三、解答题19.【答案】【解析】解:全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7}.(1)A∪B={1,2,3,4,5,7}(2)(∁U A)={1,3,6,7}∴(∁U A)∩B={1,3,7}(3)∵A∩B={5}∁U(A∩B)={1,2,3,4,6,7}.【点评】本题考查了交、并、补集的混合运算,熟练掌握交、并、补集的定义是解本题的关键. 20.【答案】【解析】解:(1)f'(x)=3ax2+2bx﹣3,依题意,f'(1)=f'(﹣1)=0,即,解得a=1,b=0.∴f(x)=x3﹣3x.【点评】本题考查了导数和函数极值的问题,属于基础题.21.【答案】【解析】解:(Ⅰ)f(x)的导数为f′(x)=﹣a,由题意可得f′(1)=0,且f(1)=1,即为1﹣a=0,且﹣a﹣b=1,解得a=1.b=﹣2,经检验符合题意.故a=1,b=﹣2;(Ⅱ)由(Ⅰ)可得f′(x)=﹣a,x>1,0<<1,①若a≤0,f′(x)>0,f(x)在(1,+∞)递增;②0<a<1,x∈(1,),f′(x)>0,x∈(,+∞),f′(x)<0;③a≥1,f′(x)<0.f(x)在(1,+∞)递减.综上可得,a≤0,f(x)在(1,+∞)递增;0<a<1,f(x)在(1,)递增,在(,+∞)递减;a≥1,f(x)在(1,+∞)递减.(Ⅲ)f′(x0)=﹣a=﹣a,直线AB的斜率为k===﹣a,f′(x0)<k⇔<,即x2﹣x1<ln[λx1+(1﹣λ)x2],即为﹣1<ln[λ+(1﹣λ)],令t=>1,t﹣1<lnt[λ+(1﹣λ)t],即t﹣1﹣tlnt+λ(tlnt﹣lnt)<0恒成立,令函数g(t)=t﹣1﹣tlnt+λ(tlnt﹣lnt),t>1,①当0<λ时,g ′(t )=﹣lnt+λ(lnt+1﹣)=,令φ(t )=﹣tlnt+λ(tlnt+t ﹣1),t >1,φ′(t )=﹣1﹣lnt+λ(2+lnt )=(λ﹣1)lnt+2λ﹣1,当0<λ≤时,φ′(t )<0,φ(t )在(1,+∞)递减,则φ(t )<φ(1)=0,故当t >1时,g ′(t )<0,则g (t )在(1,+∞)递减,g (t )<g (1)=0符合题意;②当<λ<1时,φ′(t )=(λ﹣1)lnt+2λ﹣1>0,解得1<t <,当t ∈(1,),φ′(t )>0,φ(t )在(1,)递增,φ(t )>φ(1)=0;当t ∈(1,),g ′(t )>0,g (t )在(1,)递增,g (t )>g (1)=0,则有当t ∈(1,),g (t )>0不合题意.即有0<λ≤.【点评】本题考查导数的运用:求单调区间和极值、最值,同时考查函数的单调性的运用,不等式恒成立思想的运用,运用分类讨论的思想方法是解题的关键.22.【答案】【解析】解:(Ⅰ)事件“第一次或第二次取到3号球的概率”的对立事件为“二次取球都没有取到3号球”,∴所求概率为(6分)2244225516125C C P C C =-⋅=(Ⅱ) ,,,(9分)0,1,2,ξ=23253(0)10C P C ξ===1123253(1)5C C P C ξ⋅===22251(2)10C P C ξ===(10分)∴ (12分)3314012105105E ξ=⨯+⨯+⨯=23.【答案】【解析】解:(Ⅰ)由题意得,2c=2, =1;解得,a 2=4,b 2=1;故椭圆E 的方程为+y 2=1;(Ⅱ)由题意知,当k 1=0时,M 点的纵坐标为0,直线MN 与y 轴垂直,则点N 的纵坐标为0,故k 2=k 1=0,这与k 2≠k 1矛盾.当k 1≠0时,直线PM :y=k 1(x+2);由得,(+4)y 2﹣=0;解得,y M =;∴M (,),同理N (,),由直线MN 与y轴垂直,则=;∴(k 2﹣k 1)(4k 2k 1﹣1)=0,∴k 2k 1=.【点评】本题考查了椭圆方程的求法及椭圆与直线的位置关系的判断与应用,属于中档题. 24.【答案】(本小题满分12分)解: (Ⅰ)由得,∴是等差数列,公差为4,首项为4,(3分)114n n n na a a a ++-=+2214n n a a +-={}2n a ∴,由得(6分)244(1)4n a n n =+-=0n a>na =(Ⅱ)∵, (9分)1112n n a a +==+ ∴数列的前项和为11n na a +⎧⎫⎨⎬+⎩⎭n .(12分)11111)1)2222-+++=L。
二道江区外国语学校2018-2019学年高三上学期11月月考数学试卷含答案
二道江区外国语学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则点P 轨迹方程为( )A .86210x y --=B .86210x y +-=C .68210x y +-=D .68210x y --=【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力.2. 投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A .0.648 B .0.432 C .0.36 D .0.312 3. 已知函数f (x )=3cos (2x ﹣),则下列结论正确的是( )A .导函数为B .函数f (x )的图象关于直线对称C .函数f (x )在区间(﹣,)上是增函数D .函数f (x )的图象可由函数y=3co s2x 的图象向右平移个单位长度得到4.如图,三行三列的方阵中有9个数a ij (i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )A.B.C.D.5. 给出下列函数: ①f (x )=xsinx ; ②f (x )=e x +x ; ③f (x )=ln(﹣x );∃a >0,使f (x )dx=0的函数是( ) A .①② B .①③C .②③D .①②③6. 线段AB 在平面α内,则直线AB 与平面α的位置关系是( )A .AB ⊂αB .AB ⊄αC .由线段AB 的长短而定D .以上都不对7. 已知函数f (x )=x 2﹣,则函数y=f (x )的大致图象是( )A. B. C. D.班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽 车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘 坐甲车的4名同学中恰有2名同学是来自同一年级的乘坐方式共有( )种. A .24 B .18 C .48 D .36【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力. 9. 直线x+y ﹣1=0与2x+2y+3=0的距离是( ) A.B.C.D.10.直线l 过点P (2,﹣2),且与直线x+2y ﹣3=0垂直,则直线l 的方程为( )A .2x+y ﹣2=0B .2x ﹣y ﹣6=0C .x ﹣2y ﹣6=0D .x ﹣2y+5=011.定义在[1,+∞)上的函数f (x )满足:①当2≤x ≤4时,f (x )=1﹣|x ﹣3|;②f (2x )=cf (x )(c 为正常数),若函数的所有极大值点都落在同一直线上,则常数c 的值是( ) A .1B .±2C.或3D .1或212.5名运动员争夺3项比赛冠军(每项比赛无并列冠军),获得冠军的可能种数为( )A .35 B.C.D .53二、填空题13.等差数列{}n a 的前项和为n S ,若37116a a a ++=,则13S 等于_________.14.一船以每小时12海里的速度向东航行,在A 处看到一个灯塔B 在北偏东60°,行驶4小时后,到达C 处,看到这个灯塔B 在北偏东15°,这时船与灯塔相距为 海里.15.已知实数x ,y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,若目标函数ay x z +=2仅在点)4,3(取得最小值,则a 的取值范围是 . 16.已知实数x ,y满足,则目标函数z=x ﹣3y 的最大值为17.下列关于圆锥曲线的命题:其中真命题的序号 .(写出所有真命题的序号). ①设A ,B 为两个定点,若|PA|﹣|PB|=2,则动点P 的轨迹为双曲线;②设A ,B 为两个定点,若动点P 满足|PA|=10﹣|PB|,且|AB|=6,则|PA|的最大值为8; ③方程2x 2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率; ④双曲线﹣=1与椭圆有相同的焦点.18.设p:实数x满足不等式x2﹣4ax+3a2<0(a<0),q:实数x满足不等式x2﹣x﹣6≤0,已知¬p是¬q的必要非充分条件,则实数a的取值范围是.三、解答题19.(本小题满分12分)某校高二奥赛班N名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100-110的学生数有21人.(1)求总人数N和分数在110-115分的人数;(2)现准备从分数在110-115的名学生(女生占13)中任选3人,求其中恰好含有一名女生的概率;(3)为了分析某个学生的学习状态,对其下一阶段的学生提供指导性建议,对他前7次考试的数学成绩(满分150分),物理成绩y进行分析,下面是该生7次考试的成绩.数学88 83 117 92 108 100 112物理94 91 108 96 104 101 106已知该生的物理成绩y与数学成绩是线性相关的,若该生的数学成绩达到130分,请你估计他的物理成绩大约是多少?附:对于一组数据11(,)u v,22(,)u v……(,)n nu v,其回归线v uαβ=+的斜率和截距的最小二乘估计分别为:^121()()()ni iiniiu u v vu uβ==--=-∑∑,^^a v uβ=-.20.已知﹣2≤x≤2,﹣2≤y≤2,点P的坐标为(x,y)(1)求当x,y∈Z时,点P满足(x﹣2)2+(y﹣2)2≤4的概率;(2)求当x,y∈R时,点P满足(x﹣2)2+(y﹣2)2≤4的概率.21.已知函数y=x+有如下性质:如果常数t>0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数.(1)已知函数f(x)=x+,x∈[1,3],利用上述性质,求函数f(x)的单调区间和值域;(2)已知函数g(x)=和函数h(x)=﹣x﹣2a,若对任意x1∈[0,1],总存在x2∈[0,1],使得h(x2)=g(x1)成立,求实数a的值.22.甲乙两个地区高三年级分别有33000人,30000人,为了了解两个地区全体高三年级学生在该地区二模考试的数学成绩情况,采用分层抽样方法从两个地区一共抽取了105名学生的数学成绩,并作出了如下的频数分布统计表,规定考试成绩在[120,150]内为优秀.(Ⅰ)计算x ,y 的值;(Ⅱ)根据抽样结果分别估计甲地区和乙地区的优秀率;若将此优秀率作为概率,现从乙地区所有学生中随机抽取3人,求抽取出的优秀学生人数ξ的数学期望;(Ⅲ)根据抽样结果,从样本中优秀的学生中随机抽取3人,求抽取出的甲地区学生人数η的分布列及数学期望.23.如图,在四边形ABCD 中,,,3,2,45AD DC AD BC AD CD AB DAB ⊥===∠=, 四 边形绕着直线AD 旋转一周.(1)求所成的封闭几何体的表面积; (2)求所成的封闭几何体的体积.24.已知f (x )=log 3(1+x )﹣log 3(1﹣x ). (1)判断函数f (x )的奇偶性,并加以证明;(2)已知函数g (x )=log ,当x ∈[,]时,不等式 f (x )≥g (x )有解,求k 的取值范围.二道江区外国语学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】D【解析】由切线性质知PQ CQ ⊥,所以222PQ PC QC =-,则由PQ PO =,得,2222(3)(4)4x y x y -++-=+,化简得68210x y --=,即点P 的轨迹方程,故选D ,2. 【答案】A【解析】解:由题意可知:同学3次测试满足X ∽B (3,0.6),该同学通过测试的概率为=0.648.故选:A .3. 【答案】B【解析】解:对于A ,函数f ′(x )=﹣3sin (2x ﹣)•2=﹣6sin (2x ﹣),A 错误;对于B ,当x=时,f ()=3cos (2×﹣)=﹣3取得最小值,所以函数f (x )的图象关于直线对称,B 正确;对于C ,当x ∈(﹣,)时,2x ﹣∈(﹣,),函数f (x )=3cos (2x ﹣)不是单调函数,C 错误;对于D ,函数y=3co s2x 的图象向右平移个单位长度,得到函数y=3co s2(x ﹣)=3co s (2x ﹣)的图象,这不是函数f (x )的图象,D 错误. 故选:B .【点评】本题考查了余弦函数的图象与性质的应用问题,是基础题目.4. 【答案】D【解析】古典概型及其概率计算公式. 【专题】计算题;概率与统计.【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论.【解答】解:从9个数中任取3个数共有C 93=84种取法,三个数分别位于三行或三列的情况有6种;∴所求的概率为=故选D .【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较简单.5.【答案】B【解析】解:对于①,f(x)=xsinx,∵(sinx﹣xcosx)′=xsinx,∴xsinxdx=(sinx﹣xcosx)=2sina﹣2acosa,令2sina﹣2acosa=0,∴sina=acosa,又cosa≠0,∴tana=a;画出函数y=tanx与y=x的部分图象,如图所示;在(0,)内,两函数的图象有交点,即存在a>0,使f(x)dx=0成立,①满足条件;对于②,f(x)=e x+x,(e x+x)dx=(e x+x2)=e a﹣e﹣a;令e a﹣e﹣a=0,解得a=0,不满足条件;对于③,f(x)=ln(﹣x)是定义域R上的奇函数,且积分的上下限互为相反数,所以定积分值为0,满足条件;综上,∃a>0,使f(x)dx=0的函数是①③.故选:B.【点评】本题主要考查了定积分运算性质的应用问题,当被积函数为奇函数且积分区间对称时,积分值为0,是综合性题目.6.【答案】A【解析】解:∵线段AB在平面α内,∴直线AB上所有的点都在平面α内,∴直线AB与平面α的位置关系:直线在平面α内,用符号表示为:AB⊂α故选A.【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上.7. 【答案】A【解析】解:由题意可得,函数的定义域x ≠0,并且可得函数为非奇非偶函数,满足f (﹣1)=f (1)=1,可排除B 、C 两个选项.∵当x >0时,t==在x=e 时,t 有最小值为∴函数y=f (x )=x 2﹣,当x >0时满足y=f (x )≥e 2﹣>0,因此,当x >0时,函数图象恒在x 轴上方,排除D 选项 故选A8. 【答案】A【解析】分类讨论,有2种情形.孪生姐妹乘坐甲车,则有12121223=C C C 种. 孪生姐妹不乘坐甲车,则有12121213=C C C 种. 共有24种. 选A.9. 【答案】A【解析】解:直线x+y ﹣1=0与2x+2y+3=0的距离,就是直线2x+2y ﹣2=0与2x+2y+3=0的距离是:=.故选:A .10.【答案】B【解析】解:∵直线x+2y ﹣3=0的斜率为﹣,∴与直线x+2y ﹣3=0垂直的直线斜率为2, 故直线l 的方程为y ﹣(﹣2)=2(x ﹣2),化为一般式可得2x ﹣y ﹣6=0故选:B【点评】本题考查直线的一般式方程和垂直关系,属基础题.11.【答案】D【解析】解:∵当2≤x ≤4时,f (x )=1﹣|x ﹣3|. 当1≤x <2时,2≤2x <4,则f (x )=f (2x )=(1﹣|2x ﹣3|),此时当x=时,函数取极大值; 当2≤x ≤4时, f (x )=1﹣|x ﹣3|;此时当x=3时,函数取极大值1;当4<x ≤8时,2<≤4,则f (x )=cf ()=c (1﹣|﹣3|), 此时当x=6时,函数取极大值c .∵函数的所有极大值点均落在同一条直线上,即点(,),(3,1),(6,c )共线,∴=,解得c=1或2. 故选D .【点评】本题考查的知识点是三点共线,函数的极值,其中根据已知分析出分段函数f (x )的解析式,进而求出三个函数的极值点坐标,是解答本题的关键.12.【答案】D【解析】解:每一项冠军的情况都有5种,故5名学生争夺三项冠军,获得冠军的可能的种数是 53,故选:D .【点评】本题主要考查分步计数原理的应用,属于基础题.二、填空题13.【答案】26 【解析】试题分析:由题意得,根据等差数列的性质,可得371177362a a a a a ++==⇒=,由等差数列的求和11313713()13262a a S a +===.考点:等差数列的性质和等差数列的和.14.【答案】 24【解析】解:根据题意,可得出∠B=75°﹣30°=45°,在△ABC 中,根据正弦定理得:BC==24海里,则这时船与灯塔的距离为24海里.故答案为:24.15.【答案】(,2)-∞-【解析】不等式组表示的平面区域的角点坐标分别为(1,0),(0,1),(3,4)A B C , ∴2A z =,B z a =,64C z a =+. ∴64264a a a+<⎧⎨+<⎩,解得2a <-.16.【答案】 5【解析】解:由z=x ﹣3y 得y=,作出不等式组对应的平面区域如图(阴影部分):平移直线y=,由图象可知当直线y=经过点C 时,直线y=的截距最小,此时z 最大,由,解得,即C (2,﹣1).代入目标函数z=x ﹣3y , 得z=2﹣3×(﹣1)=2+3=5, 故答案为:5.17.【答案】 ②③ .【解析】解:①根据双曲线的定义可知,满足|PA|﹣|PB|=2的动点P 不一定是双曲线,这与AB 的距离有关系,所以①错误.②由|PA|=10﹣|PB|,得|PA|+|PB|=10>|AB|,所以动点P 的轨迹为以A ,B 为焦点的图象,且2a=10,2c=6,所以a=5,c=3,根据椭圆的性质可知,|PA|的最大值为a+c=5+3=8,所以②正确.③方程2x 2﹣5x+2=0的两个根为x=2或x=,所以方程2x 2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率,所以③正确.④由双曲线的方程可知,双曲线的焦点在x 轴上,而椭圆的焦点在y 轴上,所以它们的焦点不可能相同,所以④错误.故正确的命题为②③. 故答案为:②③.【点评】本题主要考查圆锥曲线的定义和性质,要求熟练掌握圆锥曲线的定义,方程和性质.18.【答案】.【解析】解:∵x 2﹣4ax+3a 2<0(a <0), ∴(x ﹣a )(x ﹣3a )<0, 则3a <x <a ,(a <0), 由x 2﹣x ﹣6≤0得﹣2≤x ≤3,∵¬p 是¬q 的必要非充分条件, ∴q 是p 的必要非充分条件,即,即≤a <0,故答案为:三、解答题19.【答案】(1)60N =,6n =;(2)815P =;(3)115. 【解析】试题解析:(1)分数在100-110内的学生的频率为1(0.040.03)50.35P =+⨯=,所以该班总人数为21600.35N ==, 分数在110-115内的学生的频率为21(0.010.040.050.040.030.01)50.1P =-+++++⨯=,分数在110-115内的人数600.16n =⨯=.(2)由题意分数在110-115内有6名学生,其中女生有2名,设男生为1234,,,A A A A ,女生为12,B B ,从6名学生中选出3人的基本事件为:12(,)A A ,13(,)A A ,14(,)A A ,11(,)A B ,12(,)A B ,23(,)AA ,24(,)A A ,21(,)AB ,22(,)A B ,34(,)A A ,31(,)A B ,32(,)A B ,41(,)A B ,42(,)A B ,12(,)B B 共15个.其中恰 好含有一名女生的基本事件为11(,)A B ,12(,)A B ,22(,)A B ,21(,)A B ,31(,)A B ,32(,)A B ,41(,)A B ,42(,)A B ,共8个,所以所求的概率为815P =. (3)12171788121001007x --+-++=+=;69844161001007y --+-+++=+=;由于与y 之间具有线性相关关系,根据回归系数公式得到^4970.5994b ==,^1000.510050a =-⨯=,∴线性回归方程为0.550y x =+,∴当130x =时,115y =.1考点:1.古典概型;2.频率分布直方图;3.线性回归方程.【易错点睛】本题主要考查古典概型,频率分布直方图,线性回归方程,数据处理和计算能力.求线性回归方程,关键在于正确求出系数,a b ,一定要将题目中所给数据与公式中的,,a b c 相对应,再进一步求解.在求解过程中,由于,a b 的计算量大,计算时应仔细谨慎,分层进行,避免因计算而产生错误,特别是回归直线方程中一次项系数为,b 常数项为这与一次函数的习惯表示不同.20.【答案】【解析】解:如图,点P 所在的区域为长方形ABCD 的内部(含边界),满足(x ﹣2)2+(y ﹣2)2≤4的点的区域为以(2,2)为圆心,2为半径的圆面(含边界).(1)当x ,y ∈Z 时,满足﹣2≤x ≤2,﹣2≤y ≤2的点有25个,满足x ,y ∈Z ,且(x ﹣2)2+(y ﹣2)2≤4的点有6个,依次为(2,0)、(2,1)、(2,2)、(1,1)、(1,2)、(0,2);∴所求的概率P=.(2)当x ,y ∈R 时,满足﹣2≤x ≤2,﹣2≤y ≤2的面积为:4×4=16,满足(x﹣2)2+(y﹣2)2≤4,且﹣2≤x≤2,﹣2≤y≤2的面积为:=π,∴所求的概率P==.【点评】本题考查的知识点是几何概型概率计算公式,计算出满足条件和所有基本事件对应的几何量,是解答的关键,难度中档.21.【答案】【解析】解:(1)由已知可以知道,函数f(x)在x∈[1,2]上单调递减,在x∈[2,3]上单调递增,f(x)min=f(2)=2+2=4,又f(1)=1+4=5,f(3)=3+=;f(1)>f(3)所以f(x)max=f(1)=5所以f(x)在x∈[1,3]的值域为[4,5].(2)y=g(x)==2x+1+﹣8设μ=2x+1,x∈[0,1],1≤μ≤3,则y=﹣8,由已知性质得,当1≤u≤2,即0≤x≤时,g(x)单调递减,所以递减区间为[0,];当2≤u≤3,即≤x≤1时,g(x)单调递增,所以递增区间为[,1];由g(0)=﹣3,g()=﹣4,g(1)=﹣,得g(x)的值域为[﹣4,﹣3].因为h(x)=﹣x﹣2a为减函数,故h(x)∈[﹣1﹣2a,﹣2a],x∈[0,1].根据题意,g(x)的值域为h(x)的值域的子集,从而有,所以a=.22.【答案】【解析】解:(Ⅰ)∵抽样比f==,∴甲地区抽取人数==55人,乙地区抽取人数==50人,∴由频数分布表知:解得x=6,y=7.(Ⅱ)由频数分布表知甲地区优秀率==,乙地区优秀率==,现从乙地区所有学生中随机抽取3人,抽取出的优秀学生人数ξ的可能取值为0,1,2,3,ξ~B (3,),∴E ξ=3×=.(Ⅲ)从样本中优秀的学生中随机抽取3人,抽取出的甲地区学生人数η的可能取值为0,1,2,3,P (η=0)==,P (η=1)==,P (η=2)==,P (η=3)==,∴η的分布列为:0 123E η==1.【点评】本题考查频数分布表的应用,考查离散型随机变量的分布列和数学期望的求法,是中档题,在历年高考中都是必考题型.23.【答案】(1)(8π+;(2)203π. 【解析】考点:旋转体的概念;旋转体的表面积、体积.24.【答案】【解析】解:(1)f(x)=log3(1+x)﹣log3(1﹣x)为奇函数.理由:1+x>0且1﹣x>0,得定义域为(﹣1,1),(2分)又f(﹣x)=log3(1﹣x)﹣log3(1+x)=﹣f(x),则f(x)是奇函数.(2)g(x)=log=2log3,(5分)又﹣1<x<1,k>0,(6分)由f(x)≥g(x)得log3≥log3,即≥,(8分)即k2≥1﹣x2,(9分)x∈[,]时,1﹣x2最小值为,(10分)则k2≥,(11分)又k>0,则k≥,即k的取值范围是(﹣∞,].【点评】本题考查函数的奇偶性的判断和证明,考查不等式有解的条件,注意运用对数函数的单调性,考查运算化简能力,属于中档题.。
二道区二中2018-2019学年高三上学期11月月考数学试卷含答案
二道区二中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设a=sin145°,b=cos52°,c=tan47°,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <b <a C .b <a <c D .a <c <b 2. f()=,则f (2)=( ) A .3B .1C .2D.3. 如果点P 在平面区域220,210,20x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩上,点Q 在曲线22(2)1x y ++=上,那么||PQ 的最小值为( )A1 B1C. 1 D1 4. 若当R x ∈时,函数||)(x a x f =(0>a 且1≠a )始终满足1)(≥x f ,则函数3||log xx y a =的图象大致是 ( )【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等. 5. 已知三棱锥A ﹣BCO ,OA 、OB 、OC 两两垂直且长度均为6,长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),则MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积为( )A .B .或36+C .36﹣D .或36﹣6. 口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是( ) A .0.42 B .0.28 C .0.3 D .0.7班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________7. 已知一三棱锥的三视图如图所示,那么它的体积为( ) A .13 B .23C .1D .28. 已知复数z 满足(3+4i )z=25,则=( ) A .3﹣4iB .3+4iC .﹣3﹣4iD .﹣3+4i9. 江岸边有一炮台高30米,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距( )A .10米B .100米C .30米D .20米 10.已知f (x )=x 3﹣3x+m ,在区间[0,2]上任取三个数a ,b ,c ,均存在以f (a ),f (b ),f (c )为边长的三角形,则m 的取值范围是( )A .m >2B .m >4C .m >6D .m >811.复数z 满足(1+i )z=2i ,则z 在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限12.满足集合M ⊆{1,2,3,4},且M ∩{1,2,4}={1,4}的集合M 的个数为( ) A .1B .2C .3D .4二、填空题13.在△ABC 中,若a=9,b=10,c=12,则△ABC 的形状是 .14.如图所示是y=f (x )的导函数的图象,有下列四个命题: ①f (x )在(﹣3,1)上是增函数; ②x=﹣1是f (x )的极小值点;③f (x )在(2,4)上是减函数,在(﹣1,2)上是增函数; ④x=2是f (x )的极小值点.其中真命题为 (填写所有真命题的序号).15.直线ax+by=1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且△AOB 是直角三角形(O 是坐标原点),则点P (a ,b )与点(1,0)之间距离的最小值为 . 16.下列命题:①集合{},,,a b c d 的子集个数有16个; ②定义在R 上的奇函数()f x 必满足(0)0f =;③2()(21)2(21)f x x x =+--既不是奇函数又不是偶函数;④A R =,B R =,1:||f x x →,从集合A 到集合B 的对应关系f 是映射; ⑤1()f x x=在定义域上是减函数. 其中真命题的序号是 .17.若曲线f (x )=ae x +bsinx (a ,b ∈R )在x=0处与直线y=﹣1相切,则b ﹣a= . 18.已知随机变量ξ﹣N (2,σ2),若P (ξ>4)=0.4,则P (ξ>0)= .三、解答题19.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c=asinC ﹣ccosA .(1)求A ;(2)若a=2,△ABC 的面积为,求b ,c .20.在等比数列{a n }中,a 1a 2a 3=27,a 2+a 4=30试求:(1)a 1和公比q ;(2)前6项的和S 6.21.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100](Ⅰ)求图中x 的值,并估计该班期中考试数学成绩的众数;(Ⅱ)从成绩不低于90分的学生和成绩低于50分的学生中随机选取2人,求这2人成绩均不低于90分的概率.22.设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式(2)当d>1时,记c n=,求数列{c n}的前n项和T n.23.24.已知椭圆C:=1(a>2)上一点P到它的两个焦点F1(左),F2(右)的距离的和是6.(1)求椭圆C的离心率的值;(2)若PF2⊥x轴,且p在y轴上的射影为点Q,求点Q的坐标.二道区二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】A【解析】解:∵a=sin145°=sin35°,b=cos52°=sin38°,c=tan47°>tan45°=1, ∴y=sinx 在(0,90°)单调递增, ∴sin35°<sin38°<sin90°=1, ∴a <b <c 故选:A【点评】本题考查了三角函数的诱导公式的运用,正弦函数的单调性,难度不大,属于基础题.2. 【答案】A【解析】解:∵f ()=,∴f (2)=f ()==3.故选:A .3. 【答案】A 【解析】试题分析:根据约束条件画出可行域||PQ Z =表示圆上的点到可行域的距离,当在点A 处时,求出圆心到可 行域的距离内的点的最小距离5,∴当在点A 处最小, ||PQ 最小值为15-,因此,本题正确答案是15-.考点:线性规划求最值. 4. 【答案】C【解析】由||)(x a x f =始终满足1)(≥x f 可知1>a .由函数3||log xx y a =是奇函数,排除B ;当)1,0(∈x 时,0||log <x a ,此时0||log 3<=xx y a ,排除A ;当+∞→x 时,0→y ,排除D ,因此选C . 5. 【答案】D【解析】【分析】由于长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),有空间想象能力可知MN 的中点P 的轨迹为以O 为球心,以1为半径的球体,故MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可. 【解答】解:因为长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界), 有空间想象能力可知MN 的中点P 的轨迹为以O 为球心,以1为半径的球体,则MN 的中点P 的轨迹与三棱锥的面所围成的几何体可能为该球体的或该三棱锥减去此球体的,即:或.故选D6. 【答案】C【解析】解:∵口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球, 在口袋中摸球,摸到红球,摸到黑球,摸到白球这三个事件是互斥的 摸出红球的概率是0.42,摸出白球的概率是0.28, ∵摸出黑球是摸出红球或摸出白球的对立事件, ∴摸出黑球的概率是1﹣0.42﹣0.28=0.3, 故选C .【点评】本题考查互斥事件的概率,注意分清互斥事件与对立事件之间的关系,本题是一个简单的数字运算问题,只要细心做,这是一个一定会得分的题目.7. 【答案】 B【解析】解析:本题考查三视图与几何体的体积的计算.如图该三棱锥是边长为2的正方体1111ABCD A B C D -中的一个四面体1ACED ,其中11ED =,∴该三棱锥的体积为112(12)2323⨯⨯⨯⨯=,选B . 8. 【答案】B解析:∵(3+4i )z=25,z===3﹣4i .∴=3+4i . 故选:B .9. 【答案】C【解析】解:如图,过炮台顶部A 作水平面的垂线,垂足为B ,设A 处观测小船C 的俯角为45°,设A 处观测小船D 的俯角为30°,连接BC 、BD Rt △ABC 中,∠ACB=45°,可得BC=AB=30米Rt△ABD中,∠ADB=30°,可得BD=AB=30米在△BCD中,BC=30米,BD=30米,∠CBD=30°,由余弦定理可得:CD2=BC2+BD2﹣2BCBDcos30°=900∴CD=30米(负值舍去)故选:C【点评】本题给出实际应用问题,求炮台旁边两条小船距的距离.着重考查了余弦定理、空间线面的位置关系等知识,属于中档题.熟练掌握直线与平面所成角的定义与余弦定理解三角形,是解决本题的关键.10.【答案】C【解析】解:由f′(x)=3x2﹣3=3(x+1)(x﹣1)=0得到x1=1,x2=﹣1(舍去)∵函数的定义域为[0,2]∴函数在(0,1)上f′(x)<0,(1,2)上f′(x)>0,∴函数f(x)在区间(0,1)单调递减,在区间(1,2)单调递增,则f(x)min=f(1)=m﹣2,f(x)max=f(2)=m+2,f(0)=m由题意知,f(1)=m﹣2>0 ①;f(1)+f(1)>f(2),即﹣4+2m>2+m②由①②得到m>6为所求.故选C【点评】本题以函数为载体,考查构成三角形的条件,解题的关键是求出函数在区间[0,2]上的最小值与最大值11.【答案】A【解析】解:∵复数z满足(1+i)z=2i,∴z===1+i,它在复平面内对应点的坐标为(1,1),故选A.12.【答案】B【解析】解:∵M∩{1,2,4}={1,4},∴1,4是M中的元素,2不是M中的元素.∵M⊆{1,2,3,4},∴M={1,4}或M={1,3,4}.故选:B.二、填空题13.【答案】锐角三角形【解析】解:∵c=12是最大边,∴角C是最大角根据余弦定理,得cosC==>0∵C∈(0,π),∴角C是锐角,由此可得A、B也是锐角,所以△ABC是锐角三角形故答案为:锐角三角形【点评】本题给出三角形的三条边长,判断三角形的形状,着重考查了用余弦定理解三角形和知识,属于基础题.14.【答案】①【解析】解:由图象得:f(x)在(1,3)上递减,在(﹣3,1),(3,+∞)递增,∴①f(x)在(﹣3,1)上是增函数,正确,x=3是f(x)的极小值点,②④不正确;③f(x)在(2,4)上是减函数,在(﹣1,2)上是增函数,不正确,故答案为:①.15.【答案】.【解析】解:∵△AOB是直角三角形(O是坐标原点),∴圆心到直线ax+by=1的距离d=,即d==,整理得a2+2b2=2,则点P(a,b)与点Q(1,0)之间距离d==≥,∴点P(a,b)与点(1,0)之间距离的最小值为.故答案为:.【点评】本题主要考查直线和圆的位置公式的应用以及两点间的距离公式,考查学生的计算能力.16.【答案】①②【解析】试题分析:子集的个数是2n,故①正确.根据奇函数的定义知②正确.对于③()241=-为偶函数,故错误.f x x对于④0x =没有对应,故不是映射.对于⑤减区间要分成两段,故错误. 考点:子集,函数的奇偶性与单调性.【思路点晴】集合子集的个数由集合的元素个数来决定,一个个元素的集合,它的子集的个数是2n个;对于奇函数来说,如果在0x =处有定义,那么一定有()00f =,偶函数没有这个性质;函数的奇偶性判断主要根据定义()()()(),f x f x f x f x -=-=-,注意判断定义域是否关于原点对称.映射必须集合A 中任意一个元素在集合B 中都有唯一确定的数和它对应;函数的定义域和单调区间要区分清楚,不要随意写并集.1 17.【答案】 2 .【解析】解:f (x )=ae x +bsinx 的导数为f ′(x )=ae x+bcosx ,可得曲线y=f (x )在x=0处的切线的斜率为k=ae 0+bcos0=a+b , 由x=0处与直线y=﹣1相切,可得a+b=0,且ae 0+bsin0=a=﹣1,解得a=﹣1,b=1, 则b ﹣a=2.故答案为:2.18.【答案】 0.6 .【解析】解:随机变量ξ服从正态分布N (2,σ2), ∴曲线关于x=2对称,∴P (ξ>0)=P (ξ<4)=1﹣P (ξ>4)=0.6, 故答案为:0.6.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题.三、解答题19.【答案】【解析】解:(1)c=asinC ﹣ccosA ,由正弦定理有:sinAsinC ﹣sinCcosA ﹣sinC=0,即sinC •(sinA ﹣cosA ﹣1)=0,又,sinC ≠0,所以sinA ﹣cosA ﹣1=0,即2sin (A ﹣)=1,所以A=;(2)S△ABC =bcsinA=,所以bc=4,a=2,由余弦定理得:a 2=b 2+c 2﹣2bccosA ,即4=b 2+c 2﹣bc , 即有,解得b=c=2.20.【答案】【解析】解:(1)在等比数列{a n}中,由已知可得:…(3分)解得:或…(6分)(2)∵∴当时,.…(10分)当时,…(14分)【点评】本题主要考查了利用等比数列的通项公式求解等比数列的基本量,及等比数列的求和公式的应用,解题的关键是熟练应用公式.21.【答案】【解析】解:(Ⅰ)由(0.006×3+0.01+0.054+x)×10=1,解得x=0.018,前三组的人数分别为:(0.006×2+0.01+0.018)×10×50=20,第四组为0.054×10×50=27人,故数学成绩的众数落在第四组,故众数为75分.(Ⅱ)分数在[40,50)、[90,100]的人数分别是3人,共6人,∴这2人成绩均不低于90分的概率P==.【点评】本题考查频率分布直方图及古典概型的问题,前者要熟练掌握直方图的基本性质和如何利用直方图求众数;后者往往和计数原理结合起来考查.22.【答案】【解析】解:(1)设a1=a,由题意可得,解得,或,当时,a n=2n﹣1,b n=2n﹣1;当时,a n=(2n+79),b n=9•;(2)当d>1时,由(1)知a n=2n﹣1,b n=2n﹣1,∴c n==,∴T n=1+3•+5•+7•+9•+…+(2n﹣1)•,∴T n=1•+3•+5•+7•+…+(2n﹣3)•+(2n﹣1)•,∴T n=2+++++…+﹣(2n﹣1)•=3﹣,∴T n=6﹣.23.【答案】一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图),(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X,求X的分布列和数学期望.(以直方图中的频率作为概率)【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差.【专题】概率与统计.【分析】(1)求解得a=0.03,由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20根据平均数值公式求解即可.(2)X~B(3,),根据二项分布求解P(X=0),P(X=1),P(X=2)=,P(X=3),列出分布列,求解数学期望即可.【解析】解:(1)由题意得,(0.02+0.032+a+0.018)×10=1解得a=0.03;又由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20,而50个样本小球重量的平均值为:=0.2×10+0.32×20+0.3×30+0.18×40=24.6(克)故估计盒子中小球重量的平均值约为24.6克.(2)利用样本估计总体,该盒子中小球的重量在[5,15]内的0.2;则X~B(3,),X=0,1,2,3;P(X=0)=×()3=;P(X=1)=×()2×=;P(X=2)=×()×()2=;P(X=3)=×()3=,∴X的分布列为:即E(X)=0×=.【点评】本题考查了离散型的随机变量及概率分布列,数学期望的求解,注意阅读题意,得出随机变量的数值,准确求解概率,难度不大,需要很好的计算能力24.【答案】【解析】解:(1)根据椭圆的定义得2a=6,a=3;∴c=;∴;即椭圆的离心率是;(2);∴x=带入椭圆方程得,y=;所以Q(0,).。
二道区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
二道区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. △ABC 的三内角A ,B ,C 所对边长分别是a ,b ,c ,设向量,,若,则角B 的大小为( )A .B .C .D .2. 已知a ,b 都是实数,那么“a 2>b 2”是“a >b ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3. 如果向量满足,且,则的夹角大小为( )A .30°B .45°C .75°D .135° 4. 下列函数中,,都有得成立的是( )a ∀∈R ()()1f a f a +-=A . B.())f x x =-2()cos ()4f x x π=-C .D .2()1xf x x =+11()212xf x =+-5. 已知命题p :“∀∈[1,e],a >lnx ”,命题q :“∃x ∈R ,x 2﹣4x+a=0””若“p ∧q ”是真命题,则实数a 的取值范围是()A .(1,4]B .(0,1]C .[﹣1,1]D .(4,+∞)6. 已知双曲线﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,若双曲线右支上存在一点P ,使得F 2关于直线PF 1的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( )A .1<e <B .e >C .e >D .1<e <7. 在长方体ABCD ﹣A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离是( )A .B .C .D .8. 已知A ,B 是以O 为圆心的单位圆上的动点,且||=,则•=()A .﹣1B .1C .﹣D .9. 已知等差数列{a n }满足2a 3﹣a +2a 13=0,且数列{b n } 是等比数列,若b 8=a 8,则b 4b 12=()A .2B .4C .8D .1610.若,则 1sin()34πα-=cos(2)3πα+= A 、 B 、 C 、 D 、78-14-1478班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________11.已知双曲线C :﹣=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 1作直线l ⊥x 轴交双曲线C的渐近线于点A ,B 若以AB 为直径的圆恰过点F 2,则该双曲线的离心率为( )A .B .C .2D .12.袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )A .至少有一个白球;都是白球B .至少有一个白球;至少有一个红球C .恰有一个白球;一个白球一个黑球D .至少有一个白球;红、黑球各一个二、填空题13.已知圆O :x 2+y 2=1和双曲线C :﹣=1(a >0,b >0).若对双曲线C 上任意一点A (点A 在圆O外),均存在与圆O 外切且顶点都在双曲线C 上的菱形ABCD ,则﹣= .14.在三角形ABC 中,已知AB=4,AC=3,BC=6,P 为BC 中点,则三角形ABP 的周长为 . 15.以抛物线y 2=20x 的焦点为圆心,且与双曲线:的两条渐近线都相切的圆的方程为 . 16.与圆22:240C x y x y +-+=外切于原点,且半径为的圆的标准方程为 17.如图,在三棱锥中,,,,为等边三角形,则P ABC -PA PB PC ==PA PB ⊥PA PC ⊥PBC △PC 与平面所成角的正弦值为______________.ABC 0,1n =()s n n=+⋅1n n +3?>输出s【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力.18.如图是一个正方体的展开图,在原正方体中直线AB 与CD 的位置关系是 .三、解答题19.(本题满分12分)设向量,,,记函数))cos (sin 23,(sin x x x -=)cos sin ,(cos x x x +=R x ∈.b a x f ⋅=)((1)求函数的单调递增区间;)(x f (2)在锐角中,角的对边分别为.若,,求面积的最大值.ABC ∆C B A ,,c b a ,,21)(=A f 2=a ABC ∆20.在平面直角坐标系xOy 中,F 1、F 2分别为椭圆C : =1(a >b >0)的左、右焦点,B 为短轴的一个端点,E 是椭圆C 上的一点,满足,且△EF 1F 2的周长为.(1)求椭圆C 的方程;(2)设点M 是线段OF 2上的一点,过点F 2且与x 轴不垂直的直线l 交椭圆C 于P 、Q 两点,若△MPQ 是以M 为顶点的等腰三角形,求点M 到直线l 距离的取值范围.21.(本题满分15分)若数列满足:(为常数, ),则称为调和数列,已知数列为调和数{}n x 111n nd x x +-=d *n N ∈{}n x {}n a 列,且,.11a =123451111115a a a a a ++++=(1)求数列的通项;{}n a n a (2)数列的前项和为,是否存在正整数,使得?若存在,求出的取值集合;若不存2{}nna n n S n 2015n S ≥n 在,请说明理由.【命题意图】本题考查数列的通项公式以及数列求和基础知识,意在考查运算求解能力.22.设不等式的解集为.(1)求集合;(2)若,∈,试比较与的大小。
二道区高级中学2018-2019学年高三上学期11月月考数学试卷含答案
二道区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1.已知长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成角的大小为()A.60°B.90°C.45°D.以上都不正确2.已知集合A={x|a﹣1≤x≤a+2},B={x|3<x<5},则A∩B=B成立的实数a的取值范围是()A.{a|3≤a≤4} B.{a|3<a≤4} C.{a|3<a<4} D.∅3.若a>b,则下列不等式正确的是()A.B.a3>b3C.a2>b2D.a>|b|4.某工厂生产某种产品的产量x(吨)与相应的生产能耗y(吨标准煤)有如表几组样本数据:0.7,则这组样本数据的回归直线方程是()A.=0.7x+0.35 B.=0.7x+1 C.=0.7x+2.05 D.=0.7x+0.455.把“二进制”数101101(2)化为“八进制”数是()A.40(8)B.45(8)C.50(8)D.55(8)6.如图所示的程序框图,若输入的x值为0,则输出的y值为()A.B.0 C.1 D.或07.设函数y=的定义域为M,集合N={y|y=x2,x∈R},则M∩N=()A.∅B.N C.[1,+∞)D.M班级_______________座号______姓名_______________分数__________________________________________________________________________________________________________________8. 如图,圆O 与x 轴的正半轴的交点为A ,点C 、B 在圆O 上,且点C 位于第一象限,点B 的坐标为(,﹣),∠AOC=α,若|BC|=1,则cos 2﹣sincos﹣的值为( )A .B .C .﹣D .﹣9. 函数y=x+xlnx 的单调递增区间是( ) A .(0,e ﹣2)B .(e ﹣2,+∞)C .(﹣∞,e ﹣2)D .(e ﹣2,+∞)10.若函数()y f x =的定义域是[]1,2016,则函数()()1g x f x =+的定义域是( )A .(]0,2016 B .[]0,2015 C .(]1,2016 D .[]1,201711.已知集合{}|5A x N x =∈<,则下列关系式错误的是( )A .5A ∈B .1.5A ∉C .1A -∉D .0A ∈ 12.若直线y=kx ﹣k 交抛物线y 2=4x 于A ,B 两点,且线段AB 中点到y 轴的距离为3,则|AB|=( ) A .12B .10C .8D .6二、填空题13.等比数列{a n }的前n 项和为S n ,已知S 3=a 1+3a 2,则公比q= .14.已知面积为的△ABC 中,∠A=若点D 为BC 边上的一点,且满足=,则当AD 取最小时,BD 的长为 .15.已知函数f (x )=有3个零点,则实数a 的取值范围是 .16.已知随机变量ξ﹣N (2,σ2),若P (ξ>4)=0.4,则P (ξ>0)= .17.观察下列等式 1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49 …照此规律,第n 个等式为 .18.某工程队有5项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后立即进 行那么安排这5项工程的不同排法种数是 .(用数字作答)三、解答题19.(本题满分15分)正项数列}{n a 满足121223+++=+n n n n a a a a ,11=a .(1)证明:对任意的*N n ∈,12+≤n n a a ;(2)记数列}{n a 的前n 项和为n S ,证明:对任意的*N n ∈,32121<≤--n n S .【命题意图】本题考查数列的递推公式与单调性,不等式性质等基础知识,意在考查推理论证能力,分析和解决问题的能力.20.等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 32=9a 2a 6, (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{}的前n 项和.21.设命题p :实数x 满足x 2﹣4ax+3a 2<0,其中a >0;命题q :实数x 满足x 2﹣5x+6≤0(1)若a=1,且q ∧p 为真,求实数x 的取值范围; (2)若p 是q 必要不充分条件,求实数a 的取值范围.22.如图,在三棱柱ABC ﹣A 1B 1C 1中,底面△ABC 是边长为2的等边三角形,D 为AB 中点. (1)求证:BC 1∥平面A 1CD ;(2)若四边形BCCB1是正方形,且A1D=,求直线A1D与平面CBB1C1所成角的正弦值.123.将射线y=x(x≥0)绕着原点逆时针旋转后所得的射线经过点A=(cosθ,sinθ).(Ⅰ)求点A的坐标;(Ⅱ)若向量=(sin2x,2cosθ),=(3sinθ,2cos2x),求函数f(x)=•,x∈[0,]的值域.24.在平面直角坐标系中,△ABC各顶点的坐标分别为:A(0,4);B(﹣3,0),C(1,1)(1)求点C到直线AB的距离;(2)求AB边的高所在直线的方程.二道区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题13.2.14..15.(,1).16.0.6.17.n+(n+1)+(n+2)+…+(3n﹣2)=(2n﹣1)2.18.12三、解答题19.(1)详见解析;(2)详见解析.20.21.22.23.24.。
二道区第一中学2018-2019学年高三上学期11月月考数学试卷含答案
1. 已知一个算法的程序框图如图所示,当输出的结果为
1 时,则输入的值为( 2
)
班级_______________ 座号______ 姓名_______________ 分数_______________ ___________________________________________________________________________________________________
9. 【答案】A 【解析】解:由题意,p=2,故抛物线的准线方程是 x=1, ∵抛物线 y2=﹣4x 的焦点作直线交抛物线于 A(x1,y1)B(x2,y2)两点 ∴|AB|=2﹣(x1+x2), 又 x1+x2=﹣6 ∴∴|AB|=2﹣(x1+x2)=8 故选 A 10.【答案】D 【解析】解:∵命题 p;对任意 x∈R,2x2﹣2x+1≤0 是假命题, 命题 q:存在 x∈R,sinx+cosx= 故选 D. 是真命题, ∴①不正确,②正确,③不正确,④正确.
第 4 页,共 14 页
二道区第一中学 2018-2019 学年高三上学期 11 月月考数学试卷含答案(参考答案) 一、选择题
1. 【答案】 D 【解析】
x0 1 1 x ,当 x 0 时, 2 ,解得 x 1 ,当 x 0 时, lg x , 2 2 lg x x 0 解得 x 10 ,所以输入的是 1 或 10 ,故选 D.
A. 2
B. 1
C. 1 或 2
D. 1 或 10
2. 已知 x,y∈R,且 积为( A.4 ﹣ ) B.4 ﹣ C.
二道区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案
二道区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知直线:过椭圆的上顶点和左焦点,且被圆l 2y kx =+)0(12222>>=+b aby a x B F 截得的弦长为,若的取值范围是( )224x y +=L L ≥e (A ) ( B ) (C )(D ) ⎦⎤⎝⎛550,0⎛ ⎝⎥⎦⎤ ⎝⎛5530,⎥⎦⎤ ⎝⎛5540,2. 圆心在直线2x +y =0上,且经过点(-1,-1)与(2,2)的圆,与x 轴交于M ,N 两点,则|MN |=()A .4B .425C .2D .2253. 已知函数f (x )=ax 3﹣3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则实数a 的取值范围是( )A .(1,+∞)B .(2,+∞)C .(﹣∞,﹣1)D .(﹣∞,﹣2)4. 数列1,3,6,10,…的一个通项公式是( )A .B .C .D .21n a n n =-+(1)2n n n a -=(1)2n n n a +=21n a n =+5. 执行如图的程序框图,则输出S 的值为()A .2016B .2C .D .﹣16. (m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( )A .(1,+∞)B .(﹣∞,﹣1)C .D .7. 已知点F 是抛物线y 2=4x 的焦点,点P 在该抛物线上,且点P 的横坐标是2,则|PF|=( )A .2B .3C .4D .5班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 经过点且在两轴上截距相等的直线是( )()1,1M A . B .20x y +-=10x y +-=C .或D .或1x =1y =20x y +-=0x y -=9. 如图,空间四边形ABCD 中,M 、G 分别是BC 、CD 的中点,则等()A .B .C .D .10.执行如图的程序框图,如果输入的,100N =则输出的( )x =A . B . 0.950.98C .D .0.99 1.0011.已知定义在实数集R 上的函数f (x )满足f (1)=3,且f (x )的导数f ′(x )在R 上恒有f ′(x )<2(x ∈R ),则不等式f (x )<2x+1的解集为( )A .(1,+∞)B .(﹣∞,﹣1)C .(﹣1,1)D .(﹣∞,﹣1)∪(1,+∞)12.若实数x ,y 满足,则(x ﹣3)2+y 2的最小值是( )A .B .8C .20D .2二、填空题13.不等式恒成立,则实数的值是__________.()2110ax a x +++≥14.已知i 是虚数单位,且满足i 2=﹣1,a ∈R ,复数z=(a ﹣2i )(1+i )在复平面内对应的点为M ,则“a=1”是“点M 在第四象限”的 条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”) 15.满足关系式{2,3}⊆A ⊆{1,2,3,4}的集合A 的个数是 .16.已知函数,,则 ,的值域21,0()1,0x x f x x x ⎧-≤=⎨->⎩()21xg x =-((2))f g =[()]f g x 为.【命题意图】本题考查分段函数的函数值与值域等基础知识,意在考查分类讨论的数学思想与运算求解能力.17.下列四个命题申是真命题的是 (填所有真命题的序号)①“p ∧q 为真”是“p ∨q 为真”的充分不必要条件;②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等;③在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30°的角;④动圆P 过定点A (﹣2,0),且在定圆B :(x ﹣2)2+y 2=36的内部与其相内切,则动圆圆心P 的轨迹为一个椭圆. 18.若a ,b 是函数f (x )=x 2﹣px+q (p >0,q >0)的两个不同的零点,且a ,b ,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q 的值等于 . 三、解答题19.已知函数f (x )=1+(﹣2<x ≤2).(1)用分段函数的形式表示函数;(2)画出该函数的图象;(3)写出该函数的值域.20.已知函数f (x )=lnx ﹣ax+(a ∈R ).(Ⅰ)当a=1时,求曲线y=f (x )在点(1,f (1))处的切线方程;(Ⅱ)若函数y=f (x )在定义域内存在两个极值点,求a 的取值范围.21.(本小题满分12分)已知向量满足:,,.,a b r r ||1a =r ||6b =r ()2a b a ∙-=r r r(1)求向量与的夹角;(2)求.|2|a b -r r22.(本题满分15分)已知抛物线的方程为,点在抛物线上.C 22(0)y px p =>(1,2)R C(1)求抛物线的方程;C (2)过点作直线交抛物线于不同于的两点,,若直线,分别交直线于(1,1)Q C R A B AR BR :22l y x =+,两点,求最小时直线的方程.M N MN AB 【命题意图】本题主要考查抛物线的标准方程及其性质以及直线与抛物线的位置关系等基础知识,意在考查运算求解能力.23.已知f (x )=x 3+3ax 2+bx 在x=﹣1时有极值为0.(1)求常数 a ,b 的值; (2)求f (x )在[﹣2,﹣]的最值.24.(选做题)已知f (x )=|x+1|+|x ﹣1|,不等式f (x )<4的解集为M .(1)求M ;(2)当a ,b ∈M 时,证明:2|a+b|<|4+ab|.二道区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】 B【解析】依题意,2, 2.b kc ==设圆心到直线的距离为,则解得。
二道区实验中学2018-2019学年高三上学期11月月考数学试卷含答案
二道区实验中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知函数f (x )=,则的值为()A .B .C .﹣2D .32. 在△ABC 中,若a=2bcosC ,则△ABC 一定是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形3. 已知双曲线kx 2﹣y 2=1(k >0)的一条渐近线与直线2x+y ﹣3=0垂直,则双曲线的离心率是( )A .B .C .4D .4. 十进制数25对应的二进制数是( )A .11001B .10011C .10101D .100015. 下列式子表示正确的是( )A 、B 、C 、D 、{}00,2,3⊆{}{}22,3∈{}1,2φ∈{}0φ⊆6. 如图,AB 是半圆O 的直径,AB =2,点P 从A 点沿半圆弧运动至B 点,设∠AOP =x ,将动点P 到A ,B 两点的距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为()7. 下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为()A .y=sinxB .y=1g2xC .y=lnxD .y=﹣x 3【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】函数的性质及应用.班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________【分析】根据正弦函数的单调性,对数的运算,一次函数的单调性,对数函数的图象及单调性的定义即可判断每个选项的正误,从而找出正确选项.8. 函数,的值域为( )2-21y x x =-[0,3]x ∈ A. B. C. D.9. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若sinB=2sinC ,a 2﹣c 2=3bc ,则A 等于()A .30°B .60°C .120°D .150°10.给出下列各函数值:①sin100°;②cos (﹣100°);③tan (﹣100°);④.其中符号为负的是( )A .①B .②C .③D .④11.如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为()A .B .4C .D .212.设集合A={x|x+2=0},集合B={x|x 2﹣4=0},则A ∩B=( )A .{﹣2}B .{2}C .{﹣2,2}D .∅二、填空题13.已知函数f (x )=x 3﹣ax 2+3x 在x ∈[1,+∞)上是增函数,求实数a 的取值范围 .14.已知圆C 1:(x ﹣2)2+(y ﹣3)2=1,圆C 2:(x ﹣3)2+(y ﹣4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值 . 15.如图,一船以每小时20km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°方向,行驶4小时后,船到达C 处,看到这个灯塔在北偏东15°方向,这时船与灯塔间的距离为 km .16.已知圆,则其圆心坐标是_________,的取值范围是________.22240C x y x y m +-++=:m 【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力.17.在各项为正数的等比数列{a n }中,若a 6=a 5+2a 4,则公比q= .18.在等差数列{a n }中,a 1,a 2,a 4这三项构成等比数列,则公比q= .三、解答题19.如图,已知椭圆C,点B 坐标为(0,﹣1),过点B 的直线与椭圆C 的另外一个交点为A ,且线段AB 的中点E 在直线y=x 上.(1)求直线AB 的方程;(2)若点P 为椭圆C 上异于A ,B 的任意一点,直线AP ,BP 分别交直线y=x 于点M ,N ,直线BM 交椭圆C 于另外一点Q .①证明:OM •ON 为定值;②证明:A 、Q 、N 三点共线.20.(本小题满分12分)已知分别是椭圆:的两个焦点,是椭圆上12,F F C 22221(0)x y a b a b+=>>P成等差数列.1122||,|||PF F F PF (1)求椭圆的标准方程;、C (2)已知动直线过点,且与椭圆交于两点,试问轴上是否存在定点,使得l F C A B 、x Q 716QA QB ⋅=-u u u r u u u r 恒成立?若存在,求出点的坐标;若不存在,请说明理由.Q 21.已知,其中e 是自然常数,a ∈R(Ⅰ)讨论a=1时,函数f (x )的单调性、极值;(Ⅱ)求证:在(Ⅰ)的条件下,f(x)>g(x)+.22.2015年第7届女足世界杯在加拿大埃德蒙顿联邦体育场打响,某连锁分店销售某种纪念品,每件纪念品的成本为4元,并且每件纪念品需向总店交3元的管理费,预计当每件纪念品的售价为x元(7≤x≤9)时,一年的销售量为(x﹣10)2万件.(Ⅰ)求该连锁分店一年的利润L(万元)与每件纪念品的售价x的函数关系式L(x);(Ⅱ)当每件纪念品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值.23.已知函数f(x)=e﹣x(x2+ax)在点(0,f(0))处的切线斜率为2.(Ⅰ)求实数a的值;(Ⅱ)设g(x)=﹣x(x﹣t﹣)(t∈R),若g(x)≥f(x)对x∈[0,1]恒成立,求t的取值范围;(Ⅲ)已知数列{a n}满足a1=1,a n+1=(1+)a n,求证:当n≥2,n∈N时f()+f()+L+f()<n•()(e为自然对数的底数,e≈2.71828).24.设点P的坐标为(x﹣3,y﹣2).(1)在一个盒子中,放有标号为1,2,3的三张卡片,现在从盒子中随机取出一张卡片,记下标号后把卡片放回盒中,再从盒子中随机取出一张卡片记下标号,记先后两次抽取卡片的标号分别为x、y,求点P在第二象限的概率;(2)若利用计算机随机在区间上先后取两个数分别记为x、y,求点P在第三象限的概率.二道区实验中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:∵函数f(x)=,∴f()==﹣2,=f(﹣2)=3﹣2=.故选:A.2.【答案】B【解析】解:由余弦定理得cosC=,把cosC代入a=2bcosC得:,∴a2=a2+b2﹣c2,∴c2=b2.又b和c都大于0,则b=c,即三角形为等腰三角形.故选B【点评】此题考查了余弦定理,以及三角形的形状判定,利用余弦定理表示出cosC是本题的突破点.3.【答案】A【解析】解:由题意双曲线kx2﹣y2=1的一条渐近线与直线2x+y+1=0垂直,可得渐近线的斜率为,又由于双曲线的渐近线方程为y=±x故=,∴k=,∴可得a=2,b=1,c=,由此得双曲线的离心率为,故选:A.【点评】本题考查直线与圆锥曲线的关系,解题的关键是理解一条渐近线与直线2x+y+1=0垂直,由此关系求k,熟练掌握双曲线的性质是求解本题的知识保证.4.【答案】A【解析】解:25÷2=12 (1)12÷2=6 06÷2=3 03÷2=1 (1)1÷2=0 (1)故25(10)=11001(2)故选A .【点评】本题考查的知识点是十进制与其它进制之间的转化,其中熟练掌握“除k 取余法”的方法步骤是解答本题的关键. 5. 【答案】D 【解析】试题分析:空集是任意集合的子集。
二道区第三中学2018-2019学年高三上学期11月月考数学试卷含答案
二道区第三中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知数列{}n a 是各项为正数的等比数列,点22(2,log )M a 、25(5,log )N a 都在直线1y x =-上,则数列{}n a 的前n 项和为( )A .22n- B .122n +- C .21n - D .121n +-2. 方程x= 所表示的曲线是( )A .双曲线B .椭圆C .双曲线的一部分D .椭圆的一部分3. 如图,该程序运行后输出的结果为( )A .7B .15C .31D .634. 已知函数f (x )=Asin (ωx+φ)(a >0,ω>0,|φ|<)的部分图象如图所示,则f (x )的解析式是( )A .f (x )=sin (3x+) B .f (x )=sin (2x+) C .f (x )=sin (x+) D .f (x )=sin (2x+)5. 已知向量与的夹角为60°,||=2,||=6,则2﹣在方向上的投影为( ) A .1B .2C .3D .46. 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A .B .C .D .7.若椭圆+=1的离心率e=,则m 的值为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .1B .或C .D .3或8. 函数y=a x +1(a >0且a ≠1)图象恒过定点( )A .(0,1)B .(2,1)C .(2,0)D .(0,2)9. =( )A .2B .4C .πD .2π10.已知函数f (x )=x (1+a|x|).设关于x 的不等式f (x+a )<f (x )的解集为A ,若,则实数a 的取值范围是( )A .B .C .D .11.设0<a <b 且a+b=1,则下列四数中最大的是( )A .a 2+b 2B .2abC .aD .12.如图,在正方体1111ABCD A B C D -中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )A 1CA B A.直线 B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力.二、填空题13.已知数列{a n }中,2a n ,a n+1是方程x 2﹣3x+b n =0的两根,a 1=2,则b 5= .14.在ABC ∆中,角A B C 、、的对边分别为a b c 、、,若1cos 2c B a b ⋅=+,ABC ∆的面积S =, 则边c 的最小值为_______.【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能力.15.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为( )A .1B .±1CD .【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.16.若的展开式中含有常数项,则n的最小值等于.17.已知z,ω为复数,i为虚数单位,(1+3i)z为纯虚数,ω=,且|ω|=5,则复数ω=.18.在极坐标系中,曲线C1与C2的方程分别为2ρcos2θ=sinθ与ρcosθ=1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1与C2交点的直角坐标为.三、解答题19.已知椭圆C:+=1(a>b>0)与双曲线﹣y2=1的离心率互为倒数,且直线x﹣y﹣2=0经过椭圆的右顶点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设不过原点O的直线与椭圆C交于M、N两点,且直线OM、MN、ON的斜率依次成等比数列,求△OMN 面积的取值范围.20.设a>0,是R上的偶函数.(Ⅰ)求a的值;(Ⅱ)证明:f(x)在(0,+∞)上是增函数.21.设{a n}是公比小于4的等比数列,S n为数列{a n}的前n项和.已知a1=1,且a1+3,3a2,a3+4构成等差数列.(1)求数列{a n}的通项公式;(2)令b n=lna3n+1,n=12…求数列{b n}的前n项和T n.22.已知函数f (x )=|x ﹣a|.(1)若f (x )≤m 的解集为{x|﹣1≤x ≤5},求实数a ,m 的值. (2)当a=2且0≤t <2时,解关于x 的不等式f (x )+t ≥f (x+2).23.某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图.(1)求直方图中的值;(2)求月平均用电量的众数和中位数.1111]24.已知{}n a 是等差数列,{}n b 是等比数列,n S 为数列{}n a 的前项和,111a b ==,且3336b S =,228b S =(*n N ∈).(1)求n a 和n b ; (2)若1n n a a +<,求数列11n n a a +⎧⎫⎨⎬⎩⎭的前项和n T .二道区第三中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】C【解析】解析:本题考查等比数列的通项公式与前n 项和公式.22log 1a =,25log 4a =,∴22a =,516a =,∴11a =,2q =,数列{}n a 的前n 项和为21n-,选C .2. 【答案】C【解析】解:x=两边平方,可变为3y 2﹣x 2=1(x ≥0),表示的曲线为双曲线的一部分;故选C .【点评】本题主要考查了曲线与方程.解题的过程中注意x 的范围,注意数形结合的思想.3. 【答案】如图,该程序运行后输出的结果为( )D【解析】解:因为A=1,s=1判断框内的条件1≤5成立,执行s=2×1+1=3,i=1+1=2; 判断框内的条件2≤5成立,执行s=2×3+1=7,i=2+1=3; 判断框内的条件3≤5成立,执行s=2×7+1=15,i=3+1=4; 判断框内的条件4≤5成立,执行s=2×15+1=31,i=4+1=5; 判断框内的条件5≤5成立,执行s=2×31+1=63,i=5+1=6;此时6>5,判断框内的条件不成立,应执行否路径输出63,所以输入的m 值应是5. 故答案为5.【点评】本题考查了程序框图中的当型循环结构,当型循环是先判断后执行,满足条件进入循环,不满足条件,算法结束.4. 【答案】D【解析】解:由图象知函数的最大值为1,即A=1,函数的周期T=4(﹣)=4×=,解得ω=2,即f (x )=2sin (2x+φ),由五点对应法知2×+φ=,解得φ=,故f (x )=sin (2x+), 故选:D5. 【答案】A【解析】解:∵向量与的夹角为60°,||=2,||=6,∴(2﹣)•=2﹣=2×22﹣6×2×cos60°=2,∴2﹣在方向上的投影为=.故选:A.【点评】本题考查了平面向量数量积的定义与投影的计算问题,是基础题目.6.【答案】C【解析】【知识点】样本的数据特征茎叶图【试题解析】由题知:所以m可以取:0,1,2.故答案为:C7.【答案】D【解析】解:当椭圆+=1的焦点在x轴上时,a=,b=,c=由e=,得=,即m=3当椭圆+=1的焦点在y轴上时,a=,b=,c=由e=,得=,即m=.故选D【点评】本题主要考查了椭圆的简单性质.解题时要对椭圆的焦点在x轴和y轴进行分类讨论.8.【答案】D【解析】解:令x=0,则函数f(0)=a0+3=1+1=2.∴函数f(x)=a x+1的图象必过定点(0,2).故选:D.【点评】本题考查了指数函数的性质和a0=1(a>0且a≠1),属于基础题.9.【答案】A【解析】解:∵(﹣cosx﹣sinx)′=sinx﹣cosx,∴==2.故选A.10.【答案】A【解析】解:取a=﹣时,f(x)=﹣x|x|+x,∵f(x+a)<f(x),∴(x﹣)|x﹣|+1>x|x|,(1)x<0时,解得﹣<x<0;(2)0≤x≤时,解得0;(3)x>时,解得,综上知,a=﹣时,A=(﹣,),符合题意,排除B、D;取a=1时,f(x)=x|x|+x,∵f(x+a)<f(x),∴(x+1)|x+1|+1<x|x|,(1)x<﹣1时,解得x>0,矛盾;(2)﹣1≤x≤0,解得x<0,矛盾;(3)x>0时,解得x<﹣1,矛盾;综上,a=1,A=∅,不合题意,排除C,故选A.【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查学生分析解决问题的能力,注意排除法在解决选择题中的应用.11.【答案】A【解析】解:∵0<a<b且a+b=1∴∴2b>1∴2ab﹣a=a(2b﹣1)>0,即2ab>a又a2+b2﹣2ab=(a﹣b)2>0∴a2+b2>2ab∴最大的一个数为a2+b2故选A12.【答案】D.第Ⅱ卷(共110分)二、填空题13.【答案】﹣1054.【解析】解:∵2a n,a n+1是方程x2﹣3x+b n=0的两根,∴2a n+a n+1=3,2a n a n+1=b n,∵a1=2,∴a2=﹣1,同理可得a3=5,a4=﹣7,a5=17,a6=﹣31.则b5=2×17×(﹣31)=1054.故答案为:﹣1054.【点评】本题考查了一元二次方程的根与系数的关系、递推关系,考查了推理能力与计算能力,属于中档题.14.【答案】115.【答案】A【解析】16.【答案】5【解析】解:由题意的展开式的项为T r+1=C n r (x 6)n ﹣r()r=C n r=C n r令=0,得n=,当r=4时,n 取到最小值5故答案为:5.【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条件转化成指数为0,得到n 的表达式,推测出它的值.17.【答案】 ±(7﹣i ) .【解析】解:设z=a+bi (a ,b ∈R ),∵(1+3i )z=(1+3i )(a+bi )=a ﹣3b+(3a+b )i 为纯虚数,∴.又ω===,|ω|=,∴.把a=3b 代入化为b 2=25,解得b=±5,∴a=±15.∴ω=±=±(7﹣i ).故答案为±(7﹣i ).【点评】熟练掌握复数的运算法则、纯虚数的定义及其模的计算公式即可得出.18.【答案】 (1,2) .【解析】解:由2ρcos 2θ=sin θ,得:2ρ2cos 2θ=ρsin θ, 即y=2x 2.由ρcos θ=1,得x=1.联立,解得:.∴曲线C 1与C 2交点的直角坐标为(1,2).故答案为:(1,2).【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是基础题.三、解答题19.【答案】【解析】解:(Ⅰ)∵双曲线的离心率为,所以椭圆的离心率,又∵直线x ﹣y ﹣2=0经过椭圆的右顶点,∴右顶点为(2,0),即a=2,c=,b=1,…∴椭圆方程为:.…(Ⅱ)由题意可设直线的方程为:y=kx+m•(k≠0,m≠0),M(x1,y1)、N(x2,y2)联立消去y并整理得:(1+4k2)x2+8kmx+4(m2﹣1)=0…则,于是…又直线OM、MN、ON的斜率依次成等比数列.∴…由m≠0得:又由△=64k2m2﹣16(1+4k2)(m2﹣1)=16(4k2﹣m2+1)>0,得:0<m2<2显然m2≠1(否则:x1x2=0,则x1,x2中至少有一个为0,直线OM、ON中至少有一个斜率不存在,与已知矛盾)…设原点O到直线的距离为d,则∴故由m的取值范围可得△OMN面积的取值范围为(0,1)…【点评】本题考查直线与圆锥曲线的综合应用,弦长公式以及三角形的面积的表式,考查转化思想以及计算能力.20.【答案】【解析】解:(1)∵a>0,是R上的偶函数.∴f(﹣x)=f(x),即+=,∴+a•2x=+,2x(a﹣)﹣(a﹣)=0,∴(a﹣)(2x+)=0,∵2x+>0,a>0,∴a﹣=0,解得a=1,或a=﹣1(舍去),∴a=1;(2)证明:由(1)可知,∴∵x >0,∴22x >1,∴f'(x )>0,∴f (x )在(0,+∞)上单调递增; 【点评】本题主要考查函数单调性的判断问题.函数的单调性判断一般有两种方法,即定义法和求导判断导数正负.21.【答案】【解析】解:(1)设等比数列{a n }的公比为q <4,∵a 1+3,3a 2,a 3+4构成等差数列.∴2×3a 2=a 1+3+a 3+4,∴6q=1+7+q 2,解得q=2.(2)由(1)可得:a n =2n ﹣1.b n =lna 3n+1=ln23n =3nln2.∴数列{b n }的前n 项和T n =3ln2×(1+2+…+n )=ln2.22.【答案】【解析】解:(1)∵f (x )≤m ,∴|x ﹣a|≤m ,即a ﹣m ≤x ≤a+m ,∵f (x )≤m 的解集为{x|﹣1≤x ≤5},∴,解得a=2,m=3.(2)当a=2时,函数f (x )=|x ﹣2|,则不等式f (x )+t ≥f (x+2)等价为|x ﹣2|+t ≥|x|.当x ≥2时,x ﹣2+t ≥x ,即t ≥2与条件0≤t <2矛盾.当0≤x <2时,2﹣x+t ≥x ,即0,成立.当x <0时,2﹣x+t ≥﹣x ,即t ≥﹣2恒成立.综上不等式的解集为(﹣∞,].【点评】本题主要考查绝对值不等式的解法,要求熟练掌握绝对值的化简技巧.23.【答案】(1)0.0075x =;(2)众数是230,中位数为224.【解析】试题分析:(1)利用频率之和为一可求得的值;(2)众数为最高小矩形底边中点的横坐标;中位数左边和右边的直方图的面积相等可求得中位数.1试题解析:(1)由直方图的性质可得(0.0020.00950.0110.01250.0050.0025)201x ++++++⨯=,∴0.0075x =.考点:频率分布直方图;中位数;众数.24.【答案】(1)21n a n =-,12n n b -=或1(52)3n a n =-,16n n b -=;(2)21n n +. 【解析】试题解析:(1)设{}n a 的公差为d ,{}n b 的公比为, 由题意得2(33)36,(2)8,q d q d ⎧+=⎨+=⎩解得2,2,d q =⎧⎨=⎩或2,36.d q ⎧=-⎪⎨⎪=⎩ ∴21n a n =-,12n n b -=或1(52)3n a n =-,16n n b -=. (2)若+1n n a a <,由(1)知21n a n =-,∴111111()(21)(21)22121n n a a n n n n +==--+-+, ∴111111(1)2335212121n n T n n n =-+-++-=-++…. 考点:1、等差数列与等比数列的通项公式及前项和公式;2、裂项相消法求和的应用.。
二道区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案
二道区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知函数,则要得到其导函数的图象,只需将函数()cos(3f x x π=+'()y f x =()y f x =的图象()A .向右平移个单位 B .向左平移个单位2π2πC. 向右平移个单位 D .左平移个单位23π23π2. 已知集合{}|5A x N x =∈<,则下列关系式错误的是( )A .5A ∈B .1.5A ∉C .1A -∉D .0A ∈3. 若将函数y=tan (ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan (ωx+)的图象重合,则ω的最小值为( )A .B .C .D .4.如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是()A .=B .∥C .D .5. 直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”的逆命题、否命题、逆否命题中真命题的个数为( )A .0B .1C .2D .36. 在“唱响内江”选拔赛中,甲、乙两位歌手的5次得分情况如茎叶图所示,记甲、乙两人的平均得分分别、,则下列判断正确的是()A .<,乙比甲成绩稳定B .<,甲比乙成绩稳定C .>,甲比乙成绩稳定D .>,乙比甲成绩稳定7. 若双曲线M 上存在四个点A ,B ,C ,D ,使得四边形ABCD 是正方形,则双曲线M 的离心率的取值范围是( )A .B .C .D .班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8.若函数f(x)=2sin(ωx+φ)对任意x都有f(+x)=f(﹣x),则f()=()A.2或0B.0C.﹣2或0D.﹣2或29.满足集合M⊆{1,2,3,4},且M∩{1,2,4}={1,4}的集合M的个数为()A.1B.2C.3D.410.设M={x|﹣2≤x≤2},N={y|0≤y≤2},函数f(x)的定义域为M,值域为N,则f(x)的图象可以是()A.B.C.D.11.下列函数中,在区间(0,+∞)上为增函数的是()A.y=x﹣1B.y=()x C.y=x+D.y=ln(x+1)12.如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为()A.30B.50C.75D.150二、填空题13.在(1+x)(x2+)6的展开式中,x3的系数是 .14.已知函数y=f(x),x∈I,若存在x0∈I,使得f(x0)=x0,则称x0为函数y=f(x)的不动点;若存在x0∈I ,使得f(f(x0))=x0,则称x0为函数y=f(x)的稳定点.则下列结论中正确的是 .(填上所有正确结论的序号)①﹣,1是函数g (x )=2x 2﹣1有两个不动点;②若x 0为函数y=f (x )的不动点,则x 0必为函数y=f (x )的稳定点;③若x 0为函数y=f (x )的稳定点,则x 0必为函数y=f (x )的不动点;④函数g (x )=2x 2﹣1共有三个稳定点;⑤若函数y=f (x )在定义域I 上单调递增,则它的不动点与稳定点是完全相同.15.【2017-2018第一学期东台安丰中学高三第一次月考】函数的单调递增区间为__________.()2ln f x x x =-16.用描述法表示图中阴影部分的点(含边界)的坐标的集合为 .17.已知直线l :ax ﹣by ﹣1=0(a >0,b >0)过点(1,﹣1),则ab 的最大值是 .18.抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF|=4,则点M 的横坐标x= .三、解答题19.【海安县2018届高三上学期第一次学业质量测试】已知函数,其中,是()()2x f x x ax a e =++a R ∈e 自然对数的底数.(1)当时,求曲线在处的切线方程;1a =()y f x =0x =(2)求函数的单调减区间;()f x (3)若在恒成立,求的取值范围.()4f x ≤[]4,0-a20.已知数列{a n }满足a 1=,a n+1=a n +,数列{b n }满足b n =(Ⅰ)证明:b n ∈(0,1)(Ⅱ)证明:=(Ⅲ)证明:对任意正整数n 有a n.21.(本小题满分12分)已知等差数列的前项和为,且,.{}n a n n S 990S =15240S =(1)求的通项公式和前项和;{}n a n a n n S (2)设是等比数列,且,求数列的前n 项和.(){}1nn n b a --257,71b b =={}n b n T 【命题意图】本题考查等差数列与等比数列的通项与前项和、数列求和等基础知识,意在考查逻辑思维能力、n 运算求解能力、代数变形能力,以及分类讨论思想、方程思想、分组求和法的应用.22.已知函数f (x )=x 2﹣mx 在[1,+∞)上是单调函数.(1)求实数m 的取值范围;(2)设向量,求满足不等式的α的取值范围.23.已知函数f (x )=log 2(m+)(m ∈R ,且m >0).(1)求函数f (x )的定义域;(2)若函数f (x )在(4,+∞)上单调递增,求m 的取值范围.24.(本小题满分12分)若二次函数满足,()()20f x ax bx c a =++≠()()+12f x f x x -=且.()01f =(1)求的解析式;()f x (2)若在区间上,不等式恒成立,求实数的取值范围.[]1,1-()2f x x m >+m二道区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】B 【解析】试题分析:函数,所以函数()cos ,3f x x π⎛⎫=+∴ ⎪⎝⎭()5'sin cos 36f x x x ππ⎛⎫⎛⎫=-+=+ ⎪ ⎪⎝⎭⎝⎭,所以将函数函数的图象上所有的点向左平移个单位长度得到()cos 3f x x π⎛⎫=+ ⎪⎝⎭()y f x =2π,故选B.5cos cos 326y x x πππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭考点:函数的图象变换.()sin y A x ωϕ=+2. 【答案】A 【解析】试题分析:因为{}|5A x N x =∈< ,而,即B 、C 正确,又因为且,1.5,1,.5,1N N A A ∉-∉∴∉-∉0N ∈05<所以,即D 正确,故选A. 10A ∈考点:集合与元素的关系.3. 【答案】D【解析】解:y=tan (ωx+),向右平移个单位可得:y=tan[ω(x ﹣)+]=tan (ωx+)∴﹣ω+k π=∴ω=k+(k ∈Z ),又∵ω>0∴ωmin =.故选D . 4. 【答案】D【解析】解:由图可知,,但不共线,故,故选D .【点评】本题考查平行向量与共线向量、相等向量的意义,属基础题. 5. 【答案】B【解析】解:∵直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”,∴命题P 是真命题,∴命题P 的逆否命题是真命题;¬P :“若直线m 不垂直于α,则m 不垂直于l ”,∵¬P 是假命题,∴命题p 的逆命题和否命题都是假命题.故选:B . 【解析】解:由茎叶图可知=(77+76+88+90+94)=,=(75+86+88+88+93)==86,则<,乙的成绩主要集中在88附近,乙比甲成绩稳定,故选:A【点评】本题主要考查茎叶图的应用,根据平均数和数据的稳定性是解决本题的关键.7.【答案】A【解析】解:∵双曲线M上存在四个点A,B,C,D,使得四边形ABCD是正方形,∴由正方形的对称性得,其对称中心在原点,且在第一象限的顶点坐标为(x,x),∴双曲线渐近线的斜率k=>1,∴双曲线离心率e=>.∴双曲线M的离心率的取值范围是(,+∞).故选:A.【点评】本题考查双曲线的离心率的取值的范围的求法,是中档题,解题时要认真审题,注意双曲线性质的合理运用.8.【答案】D【解析】解:由题意:函数f(x)=2sin(ωx+φ),∵f(+x)=f(﹣x),可知函数的对称轴为x==,根据三角函数的性质可知,当x=时,函数取得最大值或者最小值.∴f()=2或﹣2故选D.9.【答案】B【解析】解:∵M∩{1,2,4}={1,4},∴1,4是M中的元素,2不是M中的元素.∵M⊆{1,2,3,4},∴M={1,4}或M={1,3,4}.故选:B.【解析】解:A项定义域为[﹣2,0],D项值域不是[0,2],C项对任一x都有两个y与之对应,都不符.故选B.【点评】本题考查的是函数三要素,即定义域、值域、对应关系的问题.11.【答案】D【解析】解:①y=x﹣1在区间(0,+∞)上为减函数,②y=()x是减函数,③y=x+,在(0,1)是减函数,(1,+∞)上为,增函数,④y=lnx在区间(0,+∞)上为增函数,∴A,B,C不正确,D正确,故选:D【点评】本题考查了基本的函数的单调区间,属于基本题目,关键掌握好常见的函数的单调区间. 12.【答案】B【解析】解:该几何体是四棱锥,其底面面积S=5×6=30,高h=5,则其体积V=S×h=30×5=50.故选B.二、填空题13.【答案】 20 .【解析】解:(1+x)(x2+)6的展开式中,x3的系数是由(x2+)6的展开式中x3与1的积加上x2与x的积组成;又(x2+)6的展开式中,通项公式为T r+1=•x12﹣3r,令12﹣3r=3,解得r=3,满足题意;令12﹣3r=2,解得r=,不合题意,舍去;所以展开式中x3的系数是=20.故答案为:20.14.【答案】 ①②⑤ 【解析】解:对于①,令g (x )=x ,可得x=或x=1,故①正确;对于②,因为f (x 0)=x 0,所以f (f (x 0))=f (x 0)=x 0,即f (f (x 0))=x 0,故x 0也是函数y=f (x )的稳定点,故②正确;对于③④,g (x )=2x 2﹣1,令2(2x 2﹣1)2﹣1=x ,因为不动点必为稳定点,所以该方程一定有两解x=﹣,1,由此因式分解,可得(x ﹣1)(2x+1)(4x 2+2x ﹣1)=0还有另外两解,故函数g (x )的稳定点有﹣,1,,其中是稳定点,但不是不动点,故③④错误;对于⑤,若函数y=f (x )有不动点x 0,显然它也有稳定点x 0;若函数y=f (x )有稳定点x 0,即f (f (x 0))=x 0,设f (x 0)=y 0,则f (y 0)=x 0即(x 0,y 0)和(y 0,x 0)都在函数y=f (x )的图象上,假设x 0>y 0,因为y=f (x )是增函数,则f (x 0)>f (y 0),即y 0>x 0,与假设矛盾;假设x 0<y 0,因为y=f (x )是增函数,则f (x 0)<f (y 0),即y 0<x 0,与假设矛盾;故x 0=y 0,即f (x 0)=x 0,y=f (x )有不动点x 0,故⑤正确.故答案为:①②⑤.【点评】本题考查命题的真假的判断,新定义的应用,考查分析问题解决问题的能力.15.【答案】⎛⎝【解析】16.【答案】 {(x ,y )|xy >0,且﹣1≤x ≤2,﹣≤y ≤1} .【解析】解:图中的阴影部分的点设为(x ,y )则{x ,y )|﹣1≤x ≤0,﹣≤y ≤0或0≤x ≤2,0≤y ≤1}={(x ,y )|xy >0且﹣1≤x ≤2,﹣≤y ≤1}故答案为:{(x ,y )|xy >0,且﹣1≤x ≤2,﹣≤y ≤1}.17.【答案】 .【解析】解:∵直线l :ax ﹣by ﹣1=0(a >0,b >0)过点(1,﹣1),∴a+b ﹣1=0,即a+b=1,∴ab ≤=当且仅当a=b=时取等号,故ab 的最大值是故答案为:【点评】本题考查基本不等式求最值,属基础题.18.【答案】 3 .【解析】解:∵抛物线y 2=4x=2px ,∴p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|MF|=4=x+=4,∴x=3,故答案为:3.【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.三、解答题19.【答案】(1)(2)当时,无单调减区间;当时,的单调减区间210x y -+=2a =()f x 2a <()f x 是;当时,的单调减区间是.(3)()2,a --2a >()f x (),2a --244,4e ⎡⎤-⎣⎦【解析】试题分析:(1)先对函数解析式进行求导,再借助导数的几何意义求出切线的斜率,运用点斜式求出切线方程;(2)先对函数的解析式进行求导,然后借助导函数的值的符号与函数单调性之间的关系进行分类分析探求;(3)先不等式进行等价转化,然后运用导数知识及分类整合的数学思想探求函数的极()4f x ≤值与最值,进而分析推证不等式的成立求出参数的取值范围。
二道区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
二道区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 定义在R 上的奇函数f (x )满足f (x+3)=f (x ),当0<x ≤1时,f (x )=2x ,则f (2015)=( )A .2B .﹣2C .﹣D .2. 已知函数满足,且,分别是上的偶函数和奇函数,()xF x e =()()()F x g x h x =+()g x ()h x R 若使得不等式恒成立,则实数的取值范围是( )(0,2]x ∀∈(2)()0g x ah x -≥A .B .C .D.(,-∞(,-∞(0,)+∞3. 设数集M={x|m ≤x ≤m+},N={x|n ﹣≤x ≤n},P={x|0≤x ≤1},且M ,N 都是集合P 的子集,如果把b ﹣a 叫做集合{x|a ≤x ≤b}的“长度”,那么集合M ∩N 的“长度”的最小值是( )A .B .C .D .4. 如图,正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是AA 1,AD 的中点,则CD 1与EF 所成角为()A .0°B .45°C .60°D .90°5. 若函数y=x 2+bx+3在[0,+∞)上是单调函数,则有( )A .b ≥0B .b ≤0C .b >0D .b <06. 抛物线x 2=4y 的焦点坐标是( )A .(1,0)B .(0,1)C .()D .()7. 已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}中元素的个数是( )A .1B .3C .5D .98. “p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要9. 在△ABC 中,a 2=b 2+c 2+bc ,则A 等于( )A .120°B .60°C .45°D .30°10.自主招生联盟成行于2009年清华大学等五校联考,主要包括“北约”联盟,“华约”联盟,“卓越”联盟和“京派”联盟.在调查某高中学校高三学生自主招生报考的情况,得到如下结果: ①报考“北约”联盟的学生,都没报考“华约”联盟②报考“华约”联盟的学生,也报考了“京派”联盟班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________③报考“卓越”联盟的学生,都没报考“京派”联盟④不报考“卓越”联盟的学生,就报考“华约”联盟根据上述调查结果,下列结论错误的是( )A .没有同时报考“华约” 和“卓越”联盟的学生B .报考“华约”和“京派”联盟的考生一样多C .报考“北约” 联盟的考生也报考了“卓越”联盟D .报考“京派” 联盟的考生也报考了“北约”联盟11.已知PD ⊥矩形ABCD 所在的平面,图中相互垂直的平面有()A .2对B .3对C .4对D .5对12.在△ABC 中,AB 边上的中线CO=2,若动点P 满足=(sin 2θ)+(cos 2θ)(θ∈R ),则(+)•的最小值是( )A .1B .﹣1C .﹣2D .0二、填空题13.若x ,y 满足约束条件,若z =2x +by (b >0)的最小值为3,则b =________.{x +y -5≤02x -y -1≥0x -2y +1≤0)14.已知线性回归方程=9,则b= .15.已知集合{}|03,A x x x R =<∈≤,{}|12,B x x x R =-∈≤≤,则A ∪B = ▲ .16.在中,角的对边分别为,若,的面积,ABC ∆A B C 、、a b c 、、1cos 2c B a b ⋅=+ABC∆S =则边的最小值为_______.c 【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能力.17.已知点G 是△ABC 的重心,若∠A=120°,•=﹣2,则||的最小值是 .18.如图,在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,那么直线AM 和CN所成角的余弦值为 .三、解答题19.已知集合P={x|2x2﹣3x+1≤0},Q={x|(x﹣a)(x﹣a﹣1)≤0}.(1)若a=1,求P∩Q;(2)若x∈P是x∈Q的充分条件,求实数a的取值范围.20.某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段,,,,,进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下).(Ⅰ)体育成绩大于或等于70分的学生常被称为“体育良好”.已知该校高一年级有1000名学生,试估计高一年级中“体育良好”的学生人数;(Ⅱ)为分析学生平时的体育活动情况,现从体育成绩在和的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在的概率;(Ⅲ)假设甲、乙、丙三人的体育成绩分别为,且分别在,,三组中,其中.当数据的方差最大时,写出的值.(结论不要求证明)(注:,其中为数据的平均数)21.已知条件4:11px≤--,条件22:q x x a a+<-,且p是的一个必要不充分条件,求实数的取值范围.22.(本小题满分12分)在△ABC中,∠A,∠B,∠C所对的边分别是a、b、c,不等式x2cos C+4x sin C+6≥0对一切实数x恒成立.(1)求cos C的取值范围;(2)当∠C取最大值,且△ABC的周长为6时,求△ABC面积的最大值,并指出面积取最大值时△ABC的形状.【命题意图】考查三角不等式的求解以及运用基本不等式、余弦定理求三角形面积的最大值等.23.已知函数上为增函数,且θ∈(0,π),,m∈R.(1)求θ的值;(2)当m=0时,求函数f(x)的单调区间和极值;(3)若在上至少存在一个x0,使得f(x0)>g(x0)成立,求m的取值范围.24.如图,摩天轮的半径OA为50m,它的最低点A距地面的高度忽略不计.地面上有一长度为240m的景观带MN,它与摩天轮在同一竖直平面内,且AM=60m.点P从最低点A处按逆时针方向转动到最高点B处,记∠AOP=θ,θ∈(0,π).(1)当θ=时,求点P距地面的高度PQ;(2)试确定θ的值,使得∠MPN取得最大值.二道区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】B【解析】解:因为f (x+3)=f (x ),函数f (x )的周期是3,所以f (2015)=f (3×672﹣1)=f (﹣1);又因为函数f (x )是定义R 上的奇函数,当0<x ≤1时,f (x )=2x ,所以f (﹣1)=﹣f (1)=﹣2,即f (2015)=﹣2.故选:B .【点评】本题主要考查了函数的周期性、奇偶性的运用,属于基础题,解答此题的关键是分析出f (2015)=f (3×672﹣1)=f (﹣1). 2. 【答案】B 【解析】试题分析:因为函数满足,且分别是上的偶函数和奇函数,()xF x e =()()()F x g x h x =+()(),g x h x R 使得不等式()()()()()()(],,,,0,222x x x xxxe e e e e g x h x eg x h x g x h x x ---+-∴=+=-∴==∀∈Q 恒成立, 即恒成立, ()()20g x ah x -≥22022xxxxe e e e a --+--≥g ()2222xx xxx x x xe e e ea e e e e -----++∴≤=--, 设,则函数在上单调递增,, 此时不等()2x x x x e e e e--=-++x x t e e -=-x x t e e -=-(]0,2220t e e -∴<≤-式,当且仅当,即时, 取等号,,故选B.2t t +≥2t t=t =a ∴≤考点:1、函数奇偶性的性质;2、不等式恒成立问题及函数的最值.【方法点晴】本题主要考查函数奇偶性的性质、不等式恒成立问题及函数的最值,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数 .本题是利用方法①求得的最大值的.3. 【答案】C【解析】解:∵集M={x|m ≤x ≤m+},N={x|n ﹣≤x ≤n},P={x|0≤x ≤1},且M ,N 都是集合P 的子集,∴根据题意,M 的长度为,N 的长度为,当集合M ∩N 的长度的最小值时,M 与N 应分别在区间[0,1]的左右两端,故M ∩N 的长度的最小值是=.故选:C .4.【答案】C【解析】解:连结A1D、BD、A1B,∵正方体ABCD﹣A1B1C1D1中,点E,F分别是AA1,AD的中点,∴EF∥A1D,∵A1B∥D1C,∴∠DA1B是CD1与EF所成角,∵A1D=A1B=BD,∴∠DA1B=60°.∴CD1与EF所成角为60°.故选:C.【点评】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.5.【答案】A【解析】解:抛物线f(x)=x2+bx+3开口向上,以直线x=﹣为对称轴,若函数y=x2+bx+3在[0,+∞)上单调递增函数,则﹣≤0,解得:b≥0,故选:A.【点评】本题考查二次函数的性质和应用,是基础题.解题时要认真审题,仔细解答.6.【答案】B【解析】解:∵抛物线x2=4y中,p=2,=1,焦点在y轴上,开口向上,∴焦点坐标为(0,1),故选:B.【点评】本题考查抛物线的标准方程和简单性质的应用,抛物线x2=2py的焦点坐标为(0,),属基础题. 7.【答案】C【解析】解:∵A={0,1,2},B={x﹣y|x∈A,y∈A},∴当x=0,y分别取0,1,2时,x﹣y的值分别为0,﹣1,﹣2;当x=1,y分别取0,1,2时,x﹣y的值分别为1,0,﹣1;当x=2,y分别取0,1,2时,x﹣y的值分别为2,1,0;∴B={﹣2,﹣1,0,1,2},∴集合B={x ﹣y|x ∈A ,y ∈A}中元素的个数是5个.故选C . 8. 【答案】B 【解析】试题分析:因为假真时,真,此时为真,所以,“ 真”不能得“为假”,而“为p p q ∨p ⌝p q ∨p ⌝p ⌝假”时为真,必有“ 真”,故选B. p p q ∨考点:1、充分条件与必要条件;2、真值表的应用.9. 【答案】A【解析】解:根据余弦定理可知cosA=∵a 2=b 2+bc+c 2,∴bc=﹣(b 2+c 2﹣a 2)∴cosA=﹣∴A=120°故选A 10.【答案】D【解析】集合表示报考“北约”联盟的学生,集合表示报考“华约”联盟的学生,A B 集合表示报考“京派”联盟的学生,集合表示报考“卓越”联盟的学生,C D 由题意得,∴,U A B B CD C D B =∅⎧⎪⊆⎪⎨=∅⎪⎪=⎩I I ðU A D B C D B⊆⎧⎪=⎨⎪=⎩ð选项A .,正确;B D =∅I 选项B .,正确; BC =选项C .,正确. AD ⊆11.【答案】D【解析】解:∵PD ⊥矩形ABCD 所在的平面且PD ⊆面PDA ,PD ⊆面PDC ,∴面PDA ⊥面ABCD ,面PDC ⊥面ABCD ,又∵四边形ABCD 为矩形∴BC ⊥CD ,CD ⊥AD∵PD ⊥矩形ABCD 所在的平面∴PD ⊥BC ,PD ⊥CD ∵PD ∩AD=D ,PD ∩CD=D∴CD ⊥面PAD ,BC ⊥面PDC ,AB ⊥面PAD ,∵CD ⊆面PDC ,BC ⊆面PBC ,AB ⊆面PAB ,A DB=C∴面PDC⊥面PAD,面PBC⊥面PCD,面PAB⊥面PAD综上相互垂直的平面有5对故答案选D12.【答案】C【解析】解:∵=(sin2θ)+(cos2θ)(θ∈R),且sin2θ+cos2θ=1,∴=(1﹣cos2θ)+(cos2θ)=+cos2θ•(﹣),即﹣=cos2θ•(﹣),可得=cos2θ•,又∵cos2θ∈[0,1],∴P在线段OC上,由于AB边上的中线CO=2,因此(+)•=2•,设||=t,t∈[0,2],可得(+)•=﹣2t(2﹣t)=2t2﹣4t=2(t﹣1)2﹣2,∴当t=1时,(+)•的最小值等于﹣2.故选C.【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题.二、填空题13.【答案】【解析】约束条件表示的区域如图,当直线l:z=2x+by(b>0)经过直线2x-y-1=0与x-2y+1=0的交点A(1,1)时,z min=2+b,∴2+b =3,∴b=1.答案:114.【答案】 4 .【解析】解:将代入线性回归方程可得9=1+2b,∴b=4故答案为:4【点评】本题考查线性回归方程,考查计算能力,属于基础题.15.【答案】1-1,3]【解析】试题分析:A∪B={}{}≤≤≤=1-1,3]<∈-∈U|03,|12,x x x R x x x R考点:集合运算【方法点睛】1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.16.【答案】117.【答案】 .【解析】解:∵∠A=120°,•=﹣2,∴||•||=4,又∵点G是△ABC的重心,∴||=|+|==≥=故答案为:【点评】本题考查的知识点是向量的模,三角形的重心,基本不等式,其中利用基本不等式求出|+|的取值范围是解答本题的关键,另外根据点G是△ABC的重心,得到=(+),也是解答本题的关键. 18.【答案】 .【解析】解:如图,将AM平移到B1E,NC平移到B1F,则∠EB1F为直线AM与CN所成角设边长为1,则B1E=B1F=,EF=∴cos∠EB1F=,故答案为【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题. 三、解答题19.【答案】 【解析】解:(1)当a=1时,Q={x|(x ﹣1)(x ﹣2)≤0}={x|1≤x ≤2}则P ∩Q={1}(2)∵a ≤a+1,∴Q={x|(x ﹣a )(x ﹣a ﹣1)≤0}={x|a ≤x ≤a+1}∵x ∈P 是x ∈Q 的充分条件,∴P ⊆Q ∴,即实数a 的取值范围是【点评】本题属于以不等式为依托,求集合的交集的基础题,以及充分条件的运用,也是高考常会考的题型. 20.【答案】【解析】【知识点】样本的数据特征古典概型【试题解析】(Ⅰ)由折线图,知样本中体育成绩大于或等于70分的学生有人,所以该校高一年级学生中,“体育良好”的学生人数大约有人.(Ⅱ)设 “至少有1人体育成绩在”为事件,记体育成绩在的数据为,,体育成绩在的数据为,,,则从这两组数据中随机抽取2个,所有可能的结果有10种,它们是:,,,,,,,,,.而事件的结果有7种,它们是:,,,,,,,因此事件的概率.(Ⅲ)a ,b ,c 的值分别是为,,.21.【答案】.[]1,2-【解析】试题分析:先化简条件得,分三种情况化简条件,由是的一个必要不充分条件,可分三种情况p 31x -≤<p列不等组,分别求解后求并集即可求得符合题意的实数的取值范围.试题解析:由411x ≤--得:31p x -≤<,由22x x a a +<-得()()10x a x a +--<⎡⎤⎣⎦,当12a =时,:q ∅;当12a <时,():1,q a a --;当12a >时,():,1q a a --由题意得,p 是的一个必要不充分条件,当12a =时,满足条件;当12a <时,()[)1,3,1a a --⊆-得11,2a ⎡⎫∈-⎪⎢⎣⎭,当12a >时,()[),13,1a a --⊆-得1,22a ⎛⎤∈ ⎥⎝⎦综上,[]1,2a ∈-.考点:1、充分条件与必要条件;2、子集的性质及不等式的解法.【方法点睛】本题主要考查子集的性质及不等式的解法、充分条件与必要条件,属于中档题,判断是的什么p 条件,需要从两方面分析:一是由条件能否推得条件,二是由条件能否推得条件.对于带有否定性的命题p p 或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.本题的解答是根据集合思想解不等式求解的.22.【答案】【解析】23.【答案】【解析】解:(1)∵函数上为增函数,∴g′(x)=﹣+≥0在,mx﹣≤0,﹣2lnx﹣<0,∴在上不存在一个x0,使得f(x0)>g(x0)成立.②当m>0时,F′(x)=m+﹣=,∵x∈,∴2e﹣2x≥0,mx2+m>0,∴F′(x)>0在恒成立.故F(x)在上单调递增,F(x)max=F(e)=me﹣﹣4,只要me﹣﹣4>0,解得m>.故m的取值范围是(,+∞)【点评】本题考查利用导数求闭区间上函数的最值,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.24.【答案】【解析】解:(1)由题意得PQ=50﹣50cosθ,从而当时,PQ=50﹣50cos=75.即点P距地面的高度为75米.(2)由题意得,AQ=50sinθ,从而MQ=60﹣50sinθ,NQ=300﹣50sinθ.又PQ=50﹣50cosθ,所以tan,tan.从而tan∠MPN=tan(∠NPQ﹣∠MPQ)==.令g(θ)=.θ∈(0,π)则,θ∈(0,π).由g′(θ)=0,得sinθ+cosθ﹣1=0,解得.当时,g′(θ)>0,g(θ)为增函数;当x时,g′(θ)<0,g(θ)为减函数.所以当θ=时,g(θ)有极大值,也是最大值.因为.所以.从而当g(θ)=tan∠MNP取得最大值时,∠MPN取得最大值.即当时,∠MPN取得最大值.【点评】本题考查了与三角函数有关的最值问题,主要还是利用导数研究函数的单调性,进一步求其极值、最值.。
二道区高中2018-2019学年上学期高三数学期末模拟试卷含答案
二道区高中2018-2019学年上学期高三数学期末模拟试卷含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知函数,其中,对任意的都成立,在122()32f x x ax a =+-(0,3]a ∈()0f x ≤[]1,1x ∈-和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为,则( )T T =A .B .C .D .20152201532015232015222. 抛物线y=4x 2的焦点坐标是( )A .(0,1)B .(1,0)C .D .3. 已知函数满足,且,分别是上的偶函数和奇函数,()xF x e =()()()F x g x h x =+()g x ()h x R 若使得不等式恒成立,则实数的取值范围是( )(0,2]x ∀∈(2)()0g x ah x -≥A .B .C .D .(,-∞(,-∞(0,)+∞4. 如果执行如图所示的程序框图,那么输出的a=()A .2B .C .﹣1D .以上都不正确5. 设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( )A .3πa 2B .6πa 2C .12πa 2D .24πa 26. 已知,,那么夹角的余弦值()A .B .C .﹣2D .﹣7. 已知数列的首项为,且满足,则此数列的第4项是( ){}n a 11a =11122n n n a a +=+A .1B . C.D .1234588. 两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .akmB .akmC .2akmD .akm9. 抛物线y=x 2的焦点坐标为( )A .(0,)B .(,0)C .(0,4)D .(0,2)10.方程x= 所表示的曲线是( )A .双曲线B .椭圆C .双曲线的一部分D .椭圆的一部分11.如图,在正方体中,是侧面内一动点,若到直线与直线的距离1111ABCD A B C D -P 11BB C C P BC 11C D 相等,则动点的轨迹所在的曲线是()PA 1 C A.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力.12.在△ABC 中,,则这个三角形一定是()A .等腰三角形B .直角三角形C .等腰直角三角D .等腰或直角三角形二、填空题13.函数f (x )=log a (x ﹣1)+2(a >0且a ≠1)过定点A ,则点A 的坐标为 . 14.函数的单调递增区间是 .15.函数f (x )=a x +4的图象恒过定点P ,则P 点坐标是 .16.已知i 是虚数单位,且满足i 2=﹣1,a ∈R ,复数z=(a ﹣2i )(1+i )在复平面内对应的点为M ,则“a=1”是“点M 在第四象限”的 条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”) 17.已知函数,,其图象上任意一点处的切线的斜率恒()ln a f x x x =+(0,3]x ∈00(,)P x y 12k ≤成立,则实数的取值范围是.18.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,则函数y=ax 2﹣2bx+1在(﹣∞,2]上为减函数的概率是 .三、解答题19.在直角坐标系xOy 中,过点P (2,﹣1)的直线l 的倾斜角为45°.以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,曲线C 的极坐标方程为ρsin 2θ=4cos θ,直线l 和曲线C 的交点为A ,B .(1)求曲线C 的直角坐标方程; (2)求|PA|•|PB|. 20.(本小题满分16分)在互联网时代,网校培训已经成为青年学习的一种趋势,假设某网校的套题每日的销售量()h x (单位:千套)与销售价格(单位:元/套)满足的关系式()()()h x f x g x =+(37x <<,m 为常数),其中()f x 与()3x -成反比,()g x 与()7x -的平方成正比,已知销售价格为5元/套时,每日可售出套题21千套,销售价格为3.5元/套时,每日可售出套题69千套.(1) 求()h x 的表达式;(2) 假设网校的员工工资,办公等所有开销折合为每套题3元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数)21.【海安县2018届高三上学期第一次学业质量测试】已知函数,其中,是()()2x f x x ax a e =++a R ∈e 自然对数的底数.(1)当时,求曲线在处的切线方程;1a =()y f x =0x =(2)求函数的单调减区间;()f x (3)若在恒成立,求的取值范围.()4f x ≤[]4,0-a 22.已知二次函数f (x )的图象过点(0,4),对任意x 满足f (3﹣x )=f (x ),且有最小值是.(1)求f (x )的解析式;(2)求函数h (x )=f (x )﹣(2t ﹣3)x 在区间[0,1]上的最小值,其中t ∈R ;(3)在区间[﹣1,3]上,y=f (x )的图象恒在函数y=2x+m 的图象上方,试确定实数m 的范围. 23.如图所示的几何体中,EA ⊥平面ABC ,BD ⊥平面ABC ,AC=BC=BD=2AE=,M 是AB 的中点.(1)求证:CM ⊥EM ;(2)求MC 与平面EAC 所成的角.24.解不等式|2x﹣1|<|x|+1. 二道区高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1. 【答案】C 【解析】试题分析:因为函数,对任意的都成立,所以,解得22()32f x x ax a =+-()0f x ≤[]1,1x ∈-()()1010f f -≤⎧⎪⎨≤⎪⎩或,又因为,所以,在和两数间插入共个数,使之与,构成等3a ≥1a ≤-(0,3]a ∈3a =122015,...a a a 2015比数列,,,两式相乘,根据等比数列的性质得,T 122015...a a a =A 201521...T a a a =A ()()2015201521201513T a a ==⨯,故选C.T =201523考点:1、不等式恒成立问题;2、等比数列的性质及倒序相乘的应用.2. 【答案】C【解析】解:抛物线y=4x 2的标准方程为 x 2=y ,p=,开口向上,焦点在y 轴的正半轴上,故焦点坐标为(0,),故选C .【点评】本题考查抛物线的标准方程,以及简单性质的应用;把抛物线y=4x 2的方程化为标准形式,是解题的关键. 3. 【答案】B 【解析】试题分析:因为函数满足,且分别是上的偶函数和奇函数,()xF x e =()()()F x g x h x =+()(),g x h x R 使得不等式()()()()()()(],,,,0,222x x x xxxe e e e e g x h x eg x h x g x h x x ---+-∴=+=-∴==∀∈ 恒成立, 即恒成立, ()()20g x ah x -≥22022xxx xe ee e a --+--≥A()2222x x x xx xx xe e e ea e ee e -----++∴≤=--, 设,则函数在上单调递增,, 此时不等()2x x x xe e e e--=-++x x t e e -=-x x t e e -=-(]0,2220t e e -∴<≤-式当且仅当,即时, 取等号,,故选B.2t t +≥2t t=t =a ∴≤考点:1、函数奇偶性的性质;2、不等式恒成立问题及函数的最值.【方法点晴】本题主要考查函数奇偶性的性质、不等式恒成立问题及函数的最值,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数 .本题是利用方法①求得的最大值的.4.【答案】B【解析】解:模拟执行程序,可得a=2,n=1执行循环体,a=,n=3满足条件n≤2016,执行循环体,a=﹣1,n=5满足条件n≤2016,执行循环体,a=2,n=7满足条件n≤2016,执行循环体,a=,n=9…由于2015=3×671+2,可得:n=2015,满足条件n≤2016,执行循环体,a=,n=2017不满足条件n≤2016,退出循环,输出a的值为.故选:B.5.【答案】B【解析】解:根据题意球的半径R满足(2R)2=6a2,所以S球=4πR2=6πa2.故选B6.【答案】A【解析】解:∵,,∴=,||=,=﹣1×1+3×(﹣1)=﹣4,∴cos<>===﹣,故选:A.【点评】本题考查了向量的夹角公式,属于基础题.7.【答案】B【解析】8.【答案】D【解析】解:根据题意,△ABC中,∠ACB=180°﹣20°﹣40°=120°,∵AC=BC=akm,∴由余弦定理,得cos120°=,解之得AB=akm,即灯塔A与灯塔B的距离为akm,故选:D.【点评】本题给出实际应用问题,求海洋上灯塔A与灯塔B的距离.着重考查了三角形内角和定理和运用余弦定理解三角形等知识,属于基础题.9.【答案】D【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,∴焦点坐标为(0,2).故选:D.【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.10.【答案】C【解析】解:x=两边平方,可变为3y2﹣x2=1(x≥0),表示的曲线为双曲线的一部分;故选C.【点评】本题主要考查了曲线与方程.解题的过程中注意x的范围,注意数形结合的思想. 11.【答案】D.第Ⅱ卷(共110分)12.【答案】A【解析】解:∵,又∵cosC=,∴=,整理可得:b2=c2,∴解得:b=c.即三角形一定为等腰三角形.故选:A.二、填空题13.【答案】 (2,2) .【解析】解:∵log a1=0,∴当x﹣1=1,即x=2时,y=2,则函数y=log a(x﹣1)+2的图象恒过定点(2,2).故答案为:(2,2).【点评】本题考查对数函数的性质和特殊点,主要利用log a1=0,属于基础题.14.【答案】 [2,3) .【解析】解:令t=﹣3+4x ﹣x 2>0,求得1<x <3,则y=,本题即求函数t 在(1,3)上的减区间.利用二次函数的性质可得函数t 在(1,3)上的减区间为[2,3),故答案为:[2,3). 15.【答案】 (0,5) .【解析】解:∵y=a x 的图象恒过定点(0,1),而f (x )=a x +4的图象是把y=a x 的图象向上平移4个单位得到的,∴函数f (x )=a x +4的图象恒过定点P (0,5),故答案为:(0,5).【点评】本题考查指数函数的性质,考查了函数图象的平移变换,是基础题. 16.【答案】 充分不必要 【解析】解:∵复数z=(a ﹣2i )(1+i )=a+2+(a ﹣2)i ,∴在复平面内对应的点M 的坐标是(a+2,a ﹣2),若点在第四象限则a+2>0,a ﹣2<0,∴﹣2<a <2,∴“a=1”是“点M 在第四象限”的充分不必要条件,故答案为:充分不必要.【点评】本题考查条件问题,考查复数的代数表示法及其几何意义,考查各个象限的点的坐标特点,本题是一个基础题. 17.【答案】21≥a 【解析】试题分析:,因为,其图象上任意一点处的切线的斜率恒成立,'21()a f x x x =-(0,3]x ∈00(,)P x y 12k ≤,,,恒成立,由.12112a x x ∴-≤(0,3]x ∈x x a +-≥∴221(0,3]x ∈2111,222x x a -+≤∴≥考点:导数的几何意义;不等式恒成立问题.【易错点睛】本题主要考查了导数的几何意义;不等式恒成立问题等知识点求函数的切线方程的注意事项:(1)首先应判断所给点是不是切点,如果不是,要先设出切点. (2)切点既在原函数的图象上也在切线上,可将切点代入两者的函数解析式建立方程组.(3)在切点处的导数值就是切线的斜率,这是求切线方程最重要的条件.18.【答案】 .【解析】解:由题意,函数y=ax 2﹣2bx+1在(﹣∞,2]上为减函数满足条件.∵第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,∴a 取1时,b 可取2,3,4,5,6;a 取2时,b 可取4,5,6;a 取3时,b 可取6,共9种∵(a ,b )的取值共36种情况∴所求概率为=.故答案为:. 三、解答题19.【答案】【解析】(1)∵ρsin 2θ=4cos θ,∴ρ2sin 2θ=4ρcos θ,…∵ρcos θ=x ,ρsin θ=y ,∴曲线C 的直角坐标方程为y 2=4x …(2)∵直线l 过点P (2,﹣1),且倾斜角为45°.∴l 的参数方程为(t 为参数).…代入 y 2=4x 得t 2﹣6t ﹣14=0…设点A ,B 对应的参数分别t 1,t 2∴t 1t 2=﹣14…∴|PA|•|PB|=14.…20.【答案】(1) ()()210473h x x x =+-- (37x <<)(2) 13 4.33x =≈试题解析:(1) 因为()f x 与3x -成反比,()g x 与7x -的平方成正比,所以可设:()13k f x x =-,()()227g x k x =-,12.00k k ≠≠,,则()()()()21273k h x f x g x k x x =+=+--则 ………………………………………2分因为销售价格为5元/套时,每日可售出套题21千套,销售价格为2.5元/套时,每日可售出套题69千套所以,()()521, 3.569h h ==,即12124212492694k k k k ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:12104k k =⎧⎨=⎩, ……………6分所以,()()210473h x x x =+-- (37x <<) ………………………………………8分(2) 由(1)可知,套题每日的销售量()()210473h x x x =+--,答:当销售价格为4.3元/套时,网校每日销售套题所获得的利润最大.…………16分考点:利用导数求函数最值21.【答案】(1)(2)当时,无单调减区间;当时,的单调减区间210x y -+=2a =()f x 2a <()f x 是;当时,的单调减区间是.(3)()2,a --2a >()f x (),2a --244,4e ⎡⎤-⎣⎦【解析】试题分析:(1)先对函数解析式进行求导,再借助导数的几何意义求出切线的斜率,运用点斜式求出切线方程;(2)先对函数的解析式进行求导,然后借助导函数的值的符号与函数单调性之间的关系进行分类分析探求;(3)先不等式进行等价转化,然后运用导数知识及分类整合的数学思想探求函数的极()4f x ≤值与最值,进而分析推证不等式的成立求出参数的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二道区外国语学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设复数1i z =-(i 是虚数单位),则复数22z z+=( ) A.1i - B.1i + C. 2i + D. 2i -【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力.2. 如果执行右面的框图,输入N=5,则输出的数等于( )A. B. C. D.3.给出定义:若(其中m 为整数),则m 叫做离实数x 最近的整数,记作{x},即{x}=m在此基础上给出下列关于函数f (x )=|x ﹣{x}|的四个命题:①;②f (3.4)=﹣0.4;③;④y=f (x )的定义域为R,值域是;则其中真命题的序号是( )A .①②B .①③C .②④D .③④4. 平面α与平面β平行的条件可以是( )A .α内有无穷多条直线与β平行B .直线a ∥α,a ∥βC .直线a ⊂α,直线b ⊂β,且a ∥β,b ∥αD .α内的任何直线都与β平行5. 某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________1的半圆,则其侧视图的面积是( )A. B. C .1 D.6. 若关于的不等式2043x ax x +>++的解集为31x -<<-或2x >,则的取值为( ) A . B .12 C .12- D .2-7. 对于区间[a ,b]上有意义的两个函数f (x )与g (x ),如果对于区间[a ,b]中的任意数x 均有|f (x )﹣g(x )|≤1,则称函数f (x )与g (x )在区间[a ,b]上是密切函数,[a ,b]称为密切区间.若m (x )=x 2﹣3x+4与n (x )=2x ﹣3在某个区间上是“密切函数”,则它的一个密切区间可能是( )A .[3,4]B .[2,4]C .[1,4]D .[2,3]8. 三个数a=0.52,b=log 20.5,c=20.5之间的大小关系是( ) A .b <a <c B .a <c <b C .a <b <c D .b <c <a 9.已知向量,且,则sin2θ+cos 2θ的值为( )A .1B .2C.D .310.已知函数[)[)1(1)sin 2,2,212()(1)sin 22,21,222nn x n x n n f x x n x n n ππ+⎧-+∈+⎪⎪=⎨⎪-++∈++⎪⎩(n N ∈),若数列{}m a 满足*()()m a f m m N =∈,数列{}m a 的前m 项和为m S ,则10596S S -=( ) A.909 B.910 C.911 D.912【命题意图】本题考查数列求和等基础知识,意在考查分类讨论的数学思想与运算求解能力. 11.正方体的内切球与外接球的半径之比为( ) A.B.C.D.1210y -+=的倾斜角为( )A .150B .120C .60 D .30二、填空题13.抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF|=4,则点M 的横坐标x= . 14.椭圆+=1上的点到直线l :x ﹣2y ﹣12=0的最大距离为 .15.设p :实数x 满足不等式x 2﹣4ax+3a 2<0(a <0),q :实数x 满足不等式x 2﹣x ﹣6≤0,已知¬p 是¬q 的必要非充分条件,则实数a 的取值范围是 . 16.幂函数1222)33)(+-+-=m mx m m x f (在区间()+∞,0上是增函数,则=m .17.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,且,B=45°,面积S=2,则b 等于 .18.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()1e ex x f x =-,其中e 为自然对数的底数,则不等式()()2240f x f x -+-<的解集为________.三、解答题19.(本小题满分12分)设函数()()2741201x x f x a a a --=->≠且.(1)当a =()0f x <的解集; (2)当[]01x ∈,时,()0f x <恒成立,求实数的取值范围.20.已知f (x )=x 2﹣3ax+2a 2.(1)若实数a=1时,求不等式f (x )≤0的解集; (2)求不等式f (x )<0的解集.21.某港口的水深y (米)是时间t (0≤t ≤24,单位:小时)的函数,下面是每天时间与水深的关系表: t 0 3 6 9 12 15 18 21 24 y 10 13 9.9 7 10 13 10.1 7 10经过长期观测,y=f (t )可近似的看成是函数y=Asin ωt+b (1)根据以上数据,求出y=f (t )的解析式;(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?22f x=sinωx+φω00φ2π(2)求函数g(x)=f(x)+sin2x的单调递增区间.23.已知f(α)=,(1)化简f(α);(2)若f(α)=﹣2,求sinαcosα+cos2α的值.24.已知函数f(x)=(Ⅰ)求函数f(x)单调递增区间;(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a﹣c)cosB=bcosC,求f(A)的取值范围.二道区外国语学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】2.【答案】D【解析】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选D.3.【答案】B【解析】解:①∵﹣1﹣<﹣≤﹣1+∴{﹣}=﹣1∴f(﹣)=|﹣﹣{﹣}|=|﹣+1|=∴①正确;②∵3﹣<3.4≤3+∴{3.4}=3∴f(3.4)=|3.4﹣{3.4}|=|3.4﹣3|=0.4∴②错误;③∵0﹣<﹣≤0+∴{﹣}=0∴f(﹣)=|﹣﹣0|=,∵0﹣<≤0+∴{}=0∴f()=|﹣0|=,∴f(﹣)=f()∴③正确;④y=f (x )的定义域为R ,值域是[0,] ∴④错误. 故选:B .【点评】本题主要考查对于新定义的理解与运用,是对学生能力的考查.4. 【答案】D【解析】解:当α内有无穷多条直线与β平行时,a 与β可能平行,也可能相交,故不选A .当直线a ∥α,a ∥β时,a 与β可能平行,也可能相交,故不选 B .当直线a ⊂α,直线b ⊂β,且a ∥β 时,直线a 和直线 b 可能平行,也可能是异面直线,故不选 C .当α内的任何直线都与β 平行时,由两个平面平行的定义可得,这两个平面平行, 故选 D .【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况.5. 【答案】B【解析】解:由三视图知几何体的直观图是半个圆锥,又∵正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,∴半圆锥的底面半径为1,高为,即半圆锥的侧视图是一个两直角边长分别为1和的直角三角形,故侧视图的面积是,故选:B .【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.6. 【答案】D 【解析】试题分析:由题意得,根据不等式与方程的关系可知,不等式解集的端点就是对应的方程的根,可得方程2043x ax x +=++,解得3,1,x x x a =-=-=-,其对应的根分别为3,1,2x x x =-=-=,所以2a =-,故选D.考点:不等式与方程的关系.7. 【答案】D【解析】解:∵m (x )=x 2﹣3x+4与n (x )=2x ﹣3,∴m (x )﹣n (x )=(x 2﹣3x+4)﹣(2x ﹣3)=x 2﹣5x+7.令﹣1≤x 2﹣5x+7≤1,则有,∴2≤x≤3.故答案为D.【点评】本题考查了新定义函数和解一元二次不等式组,本题的计算量不大,新定义也比较容易理解,属于基础题.8.【答案】A【解析】解:∵a=0.52=0.25,b=log20.5<log21=0,c=20.5>20=1,∴b<a<c.故选:A.【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用.9.【答案】A【解析】解:由题意可得=sinθ﹣2cosθ=0,即tanθ=2.∴sin2θ+cos2θ===1,故选A.【点评】本题主要考查两个向量数量积公式的应用,两个向量垂直的性质;同角三角函数的基本关系的应用,属于中档题.10.【答案】A.【解析】11.【答案】C【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长, 设正方体的棱长为:2a ,所以内切球的半径为:a ;外接球的直径为2a ,半径为:a ,所以,正方体的内切球与外接球的半径之比为:故选C12.【答案】C 【解析】10y -+=,可得直线的斜率为k =tan 60αα==,故选C.1 考点:直线的斜率与倾斜角.二、填空题13.【答案】 3 .【解析】解:∵抛物线y 2=4x=2px ,∴p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|MF|=4=x+=4, ∴x=3, 故答案为:3.【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.14.【答案】 4 .【解析】解:由题意,设P (4cos θ,2sin θ)则P 到直线的距离为d==,当sin (θ﹣)=1时,d 取得最大值为4,故答案为:4.15.【答案】.【解析】解:∵x 2﹣4ax+3a 2<0(a <0), ∴(x ﹣a )(x ﹣3a )<0, 则3a <x <a ,(a <0), 由x 2﹣x ﹣6≤0得﹣2≤x ≤3,∵¬p 是¬q 的必要非充分条件, ∴q 是p 的必要非充分条件,即,即≤a <0,故答案为:16.【答案】 【解析】【方法点睛】本题主要考查幂函数的定义与性质,属于中档题.幂函数定义与性质应用的三个关注点:(1)若幂函数()y xR αα=∈是偶函数,则α必为偶数.当α是分数时,一般将其先化为根式,再判断;(2)若幂函数()y x R αα=∈在()0,+∞上单调递增,则α0>,若在()0,+∞上单调递减,则0α<;(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较. 1 17.【答案】 5 .【解析】解:∵,B=45°,面积S=2,∴S=acsinB==2a=2.∴a=1由余弦定理得b 2=a 2+c 2﹣2accosB=12+(4)2﹣2×1××=25∴b=5. 故答案为:5.【点评】本题考查三角形的面积公式:三角形的面积等于任意两边与它们夹角正弦的一半、考查利用三角形的余弦定理求边长.18.【答案】()32-,【解析】∵()1e ,e x x f x x R =-∈,∴()()11xx x x f x e e f x e e --⎛⎫-=-=--=- ⎪⎝⎭,即函数()f x 为奇函数,又∵()0xxf x e e-=+>'恒成立,故函数()f x 在R 上单调递增,不等式()()2240f x f x -+-<可转化为()()224f x f x -<-,即224x x -<-,解得:32x -<<,即不等式()()2240f x f x -+-<的解集为()32-,,故答案为()32-,. 三、解答题19.【答案】(1)158⎛⎫-∞ ⎪⎝⎭,;(2)()11128a ⎫∈⎪⎪⎝⎭,,. 【解析】试题分析:(1)由于122a -==⇒()14127222x x ---<⇒()127412x x -<--⇒158x <⇒原不等式的解集为158⎛⎫-∞ ⎪⎝⎭,;(2)由()()274144227lg241lg lg lg 0128x x a a x x a x a --<⇒-<-⇒+<.设()44lg lg 128a g x x a =+,原命题转化为()()1012800g a g <⎧⎪<<⎨<⎪⎩⇒又0a >且1a ≠⇒()11128a ⎫∈⎪⎪⎝⎭,,.考点:1、函数与不等式;2、对数与指数运算.【方法点晴】本题考查函数与不等式、对数与指数运算,涉及函数与不等式思想、数形结合思想和转化化高新,以及逻辑思维能力、等价转化能力、运算求解能力与能力,综合性较强,属于较难题型. 第一小题利用函数与不等式思想和转化化归思想将原不等式转化为()127412x x -<--,解得158x <;第二小题利用数学结合思想和转化思想,将原命题转化为()()1012800g a g <⎧⎪<<⎨<⎪⎩ ,进而求得:()11128a ⎫∈⎪⎪⎝⎭,,. 20.【答案】【解析】解:(1)当a=1时,依题意得x 2﹣3x+2≤0因式分解为:(x ﹣2)(x ﹣1)≤0, 解得:x ≥1或x ≤2. ∴1≤x ≤2.不等式的解集为{x|1≤x ≤2}.(2)依题意得x 2﹣3ax+2a 2<0∴(x ﹣a )(x ﹣2a )<0… 对应方程(x ﹣a )(x ﹣2a )=0 得x 1=a ,x 2=2a 当a=0时,x ∈∅.当a >0时,a <2a ,∴a <x <2a ; 当a <0时,a >2a ,∴2a <x <a ;综上所述,当a=0时,原不等式的解集为∅; 当a >0时,原不等式的解集为{x|a <x <2a};当a <0时,原不等式的解集为{x|2a <x <a};21.【答案】【解析】解:(1)由表中数据可以看到:水深最大值为13,最小值为7,∴=10,且相隔9小时达到一次最大值说明周期为12,因此,,故(0≤t ≤24)(2)要想船舶安全,必须深度f (t )≥11.5,即∴,解得:12k+1≤t ≤5+12k k ∈Z又0≤t ≤24当k=0时,1≤t ≤5;当k=1时,13≤t≤17;故船舶安全进港的时间段为(1:00﹣5:00),(13:00﹣17:00).【点评】本题主要考查三角函数知识的应用问题.解决本题的关键在于求出函数解析式.求三角函数的解析式注意由题中条件求出周期,最大最小值等.22.【答案】【解析】(本题满分12分)解:(1)由表格给出的信息知,函数f(x)的周期为T=2(﹣0)=π.所以ω==2,由sin(2×0+φ)=1,且0<φ<2π,所以φ=.所以函数的解析式为f(x)=sin(2x+)=cos2x…6分(2)g(x)=f(x)+sin2x=sin2x+cos2x=2sin(2x+),令2k≤2x+≤2k,k∈Z则得kπ﹣≤x≤kπ+,k∈Z故函数g(x)=f(x)+sin2x的单调递增区间是:,k∈Z…12分【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,正弦函数的单调性,周期公式的应用,属于基本知识的考查.23.【答案】【解析】解:(1)f(α)===﹣tanα;…5(分)(2)∵f(α)=﹣2,∴tanα=2,…6(分)∴sinαcosα+cos2α====.…10(分)24.【答案】【解析】解:(Ⅰ)∵f(x)=sin cos+cos2=sin(+),∴由2k≤+≤2kπ,k∈Z可解得:4kπ﹣≤x≤4kπ,k∈Z,∴函数f(x)单调递增区间是:[4kπ﹣,4kπ],k∈Z.(Ⅱ)∵f(A)=sin(+),∵由条件及正弦定理得sinBcosC=(2sinA﹣sinC)cosB=2sinAcosB﹣sinCcosB,∴则sinBcosC+sinCcosB=2sinAcosB,∴sin(B+C)=2sinAcosB,又sin(B+C)=sinA≠0,∴cosB=,又0<B<π,∴B=.∴可得0<A<,∴<+<,∴sin(+)<1,故函数f(A)的取值范围是(1,).【点评】本题考查三角函数性质及简单的三角变换,要求学生能正确运用三角函数的概念和公式对已知的三角函数进行化简求值,属于中档题.。