2020版高考理科数学突破二轮复习新课标通用讲义:专题五第2讲圆锥曲线的定义、方程与性质
第2部分 专题5 第2讲 圆锥曲线的定义、方程及性质 课件(共67张PPT)
2.[双曲线的几何性质]双曲线C:
x2 4
-
y2 2
=1的右焦点为F,点P在双
曲线C的一条渐近线上,O为坐标原点,则下列说法不正确的是( )
A.双曲线C的离心率为
6 2
B.双曲线y42-x82=1与双曲线C的渐近线相同
C.若PO⊥PF,则△PFO的面积为 2
D.|PF|的最小值为2
D [对于A,因为a=2,b= 2,所以c= a2+b2= 6,所以双
x2 4
+y2=1的
左、右焦点为F1,F2,P是C上的动点,则下列结论正确的是( )
A.离心率e=
5 2
B.|P→F2|的最大值为3
C.△PF1F2的面积最大为2 3
D.|P→F1+P→F2|的最小值为2
D
[由椭圆C:
x2 4
+y2=1,得a=2,b=1,∴c=
a2-b2 =
3
,则e=
c a
=
3 2
∴2 AE = AC ,
即3+3a=6,
从而得a=1,FC=3a=3.
∴p=FG=21FC=23,因此抛物线方程为y2=3x,故选C.
1234
法二:由法一可知∠CBD=60°, 则由|AF|=1-cpos 60°=3可知p=31-12=32, ∴2p=3, ∴抛物线的标准方程为y2=3x.]
1234
y=± 3x [ba= c2-a2a2= e2-1= 3, 故双曲线C的渐近线方程为y=± 3x.]
3.(2021·新高考卷Ⅰ)已知O为坐标原点,抛物线C:y2=2px(p >0)的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且
PQ⊥OP.若|FQ|=6,则C的准线方程为________.
高考数学二轮专题五解析几何第讲 圆锥曲线的定义方程与性质课件
(1)B
(2)B
(3)ACD
第2讲 圆锥曲线的定义、
返回
返回
解题方略
1.圆锥曲线的定义 (1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|); (2)双曲线:||PF1|-|PF2||=2a(2a<|F1F2|); (3)抛物线:|PF|=|PM|(点F不在定直线l上,PM⊥l于点 M).
第2讲 圆锥曲线的定义、 方程与性质
名师解读《普通高中数学课程标准》(2020年修订版)
1.了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和 解决实际问题中的作用. 2.掌握椭圆的定义、标准方程及简单几何性质. 3.了解抛物线、双曲线的定义、几何图形及标准方程,知道它 们的简单几何性质.
Contents
B.12,0
C.(1,0)
D.(2,0)
(2)(2020·全国卷Ⅰ)设F1,F2是双曲线C:x2-y32=1的两个
焦点,O为坐标原点,点P在C上且|OP|=2,则△PF1F2的面积
为
()
7 A.2
B.3
5 C.2
D.2
返回
(3)(多选)已知椭圆C的中心为坐标原点,焦点F1,F2在y
轴上,短轴长等于2,离心率为
返回
(2)(2020·武汉市学习质量检测)已知点P在椭圆Γ:
x2 a2
+
y2 b2
=1(a>b>0)上,点P在第一象限,点P关于原点O的对称点为
A,点P关于x轴的对称点为Q,设
―PD→
=
3 4
―PQ→
,直线AD与椭
圆Γ的另一个交点为B,若PA⊥PB,则椭圆Γ的离心率e=
()
1
2
A.2
B. 2
高考数学二轮复习解析几何5.5圆锥曲线的定义和标准方程学案理
③方程 2x 2 5x 2 0 的两根可分别作为椭圆和双曲线的离心率;
2
2
2
xy
x
2
④双曲线
1与椭圆
y 1有相同的焦点 .
25 9
35
其中真命题的序号为 【课中研讨】 :
(写出所有真命题的序号)
2
2
xy
例 1 、已知双曲线 2 2 1(a 0, b 0) 的两条渐近线均和圆
ab
2
2
C : x y 6 x 5 0 相切,
2. 能否由定义建立适当的平面直角坐标系求出三种圆锥曲线的标准方程? 并体会求曲线方程或轨迹的过程。
二、高考真题再现
( 11 安徽 21)(本小题满分 13 分)
uuur uur
设
,点 A 的坐标为( 1,1 ),点 B 在抛物线 y x 上运动,点 Q 满足 BQ QA ,经过
Q 点与 M x 轴垂直的直线交抛物线于点
uuur M ,点 P 满足 QM
uuur MP , 求点 P 的轨迹方程。
三、基本概念检测 1、已知直线 L 过双曲线 C 的一个焦点,且与 为 C 的实轴长的 2 倍, C 的离心率为
C 的对称轴垂直, L 与 C 交于 A, B 两点, AB
小学 +初中 +高中 +努力 =大学
小学 +初中 +高中 +努力 =大学
小学 +初中 +高中 +努力 =大学
二轮复习专题五:解析几何
§ 5.5 圆锥曲线的定义和标准方程
【学习目标】 1、了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用; 2、掌握椭圆的定义、几何图形、标准方程。 【学法指导】 1. 先认真阅读教材和一轮复习笔记,处理好知识网络构建,构建知识体系,形成系统的认识; 2. 限时 30 分钟独立、规范完成探究部分,并总结规律方法; 3. 找出自己的疑惑和需要讨论的问题准备课上讨论质疑; 4. 重点理解的内容:圆锥曲线的定义、几何图形、标准方程。 【高考方向】 1. 圆锥曲线的定义及点在曲线上的认识 2. 求轨迹与轨迹方程 【课前预习】 : 一、知识网络构建 1. 三种圆锥曲线的定义是什么?
高三数学二轮复习-专题五第二讲-椭圆、双曲线、抛物线课件
抛物线的方程及几何性质
(5分)(2011·山东)设M(x0,y0)为抛物线C: x2=8y上一点,F为抛物线C的焦点,以F为 圆心、|FM|为半径的圆和抛物线C的准线相交, 则y0的取值范围是
A.(0,2)
B.[0,2]
C.(2,+∞)
D.[2,+∞)
【标准解答】 ∵x2=8y, ∴焦点F的坐标为 (0,2), 准线方程为y=-2.
∴c2=a2-b2=8.∴e=ac=2 4 2=
2 2.
答案 D
4.(2011·辽宁)已知F是抛物线y2=x的焦点,A,B是该
抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的 距离为
3 A.4
B.1
5
7
C.4
D.4
解析 ∵|AF|+|BF|=xA+xB+12=3,∴xA+xB=52.
解析 由于直线AB的斜率为-ba,故OP的斜率为-ba,
直线OP的方程为y=-bax.
与椭圆方程ax22+by22=1联立,解得x=±
2 2 a.
因为PF1⊥x轴,所以x=- 22a,
从而- 22a=-c,即a= 2c. 又|F1A|=a+c= 10+ 5, 故 2c+c= 10+ 5,解得c= 5, 从而a= 10.所以所求的椭圆方程为1x02 +y52=1. 答案 1x02 +y52=1
又双曲线的离心率e= a2a+b2= a7,所以 a7=247, 所以a=2,b2=c2-a2=3, 故双曲线的方程为x42-y32=1.
答案 x42-y32=1
圆锥曲线是高考考查的重点,一般会涉及到 圆锥曲线的定义、离心率、圆锥曲线的几何 性质及直线与圆锥曲线的位置关系等. 在命题 中体现知识与能力的综合,一般地,选择题、 填空题的难度属中档偏下,解答题综合性较 强,能力要求较高,故在复习的过程中,注 重基础的同时,要兼顾直线与圆锥曲线的综 合问题的强化训练,尤其是对推理、运算能 力的训练.
数学(理)高考二轮复习:专题五第二讲《椭圆、双曲线、抛物线的定义、方程与性质》课件(共46张PPT)
a2+b2=25
a2=20
依题意1=ba×2
,解得b2=5 ,∴双曲线 C 的方程为
2x02 -y52=1.
第二讲 椭圆、双曲线、抛物线的定义、方程与性质
考点一
课前自主诊断
课堂对点补短 限时规范训练 上页 下页
试题
通解 优解
考点一
考点二
考点三
2.设 F1,F2 分别为椭圆x42+y2=1 的左、右焦点,点 P 在椭圆上,
第二讲 椭圆、双曲线、抛物线的定义、方程与性质 课前自主诊断 课堂对点补短
考点三 直线与椭圆、双曲线、抛物线的位置关系
限时规范训练 上页 下页
试题
解析
考点一 考点二
考点三
6.(2016·高考全国Ⅰ卷)设圆 x2+y2+2x-15=0 的圆心为 A,直 线 l 过点 B(1,0)且与 x 轴不重合,l 交圆 A 于 C,D 两点,过 B 作 AC 的平行线交 AD 于点 E. (1)证明|EA|+|EB|为定值,并写出点 E 的轨迹方程; (2)设点 E 的轨迹为曲线 C1,直线 l 交 C1 于 M,N 两点,过 B 且 与 l 垂直的直线与圆 A 交于 P,Q 两点,求四边形 MPNQ 面积 的取值范围.
10,点 P(2,1)在 C 的一条渐近线上,则 C 的方程为( A )
A.2x02 -y52=1
B.x52-2y02 =1
C.8x02-2y02 =1
D.2x02-8y02 =1
第二讲 椭圆、双曲线、抛物线的定义、方程与性质
考点一
课前自主诊断
课堂对点补短
限时规范训练 上页 下页
试题
解析
考点一 考点二 考点三
长即可表示出面积,解方程求 b 即可. 由题意知双曲线的渐近线方程为 y=±b2x,圆的方程为 x2+y2=4,
2020版高考数学大二轮复习第二部分专题5解析几何第2讲椭圆、双曲线、抛物线课件文
2.(2019·武汉质检)已知双曲线x42-by22=1(b>0)的渐近线方程为 3x±y=0,则 b=(
)
A.2 3
B. 3
3 C. 2
D.12
解析:因为双曲线x42-by22=1(b>0)的渐近线方程为 y=±b2x,又渐近线方程为 y=± 3x,
所以b2= 3,b=2 3,故选 A. 答案:A
[题后悟通] 1.直线与圆锥曲线有两个不同的公共点的判定 通常的方法是直线方程与圆锥曲线方程联立,消元后得到一元二次ቤተ መጻሕፍቲ ባይዱ程,其 Δ>0;另 一方法就是数形结合,如直线与双曲线有两个不同的公共点,可通过判定直线的斜率 与双曲线渐近线的斜率的大小得到.
4.(2019·桂林、崇左模拟)以抛物线 C:y2=2px(p>0)的顶点为圆心的圆交 C 于 A,B 两点,交 C 的准线于 D,E 两点.已知|AB|=2 6,|DE|=2 10,则 p 等于________. 解析:如图,|AB|=2 6,|AM|= 6, |DE|=2 10,|DN|= 10,|ON|=p2, ∴xA= 26p2=3p, ∵|OD|=|OA|, ∴ |ON|2+|DN|2= |OM|2+|AM|2, ∴p42+10=p92+6,解得:p= 2.(负值舍去) 答案: 2
线的焦点坐标为( )
A.( 3,0)
B.(0, 3)
C.(2 3,0)
D.(0,2 3)
解析:抛物线 y2=2px(p>0)上的点到准线的最小距离为 3,就是顶点到焦点的距离是 3,即p2= 3,则抛物线的焦点坐标为( 3,0).故选 A.
答案:A
3.(2019·大连模拟)过椭圆2x52+1y62 =1 的中心任作一直线交椭圆于 P,Q 两点,F 是椭
专题五第2讲圆锥曲线的概念与性质和最值问题
(1)在解答题中作为考题的第一问,由已 知条件直接求圆锥曲线的方程. (2)在选择题或填空题中与圆锥曲线的几 何性质交汇命题.
训 练 高 效 提 能
菜
单
高考专题辅导与训练· 数学(理科)
第一部分 何
基 础 要 点 整 合
专题五
解析几
解 题 规 范 流 程
x2 2 【例 1】 (1)(2013· 朝阳一模)以双曲线 3 -y =1 的 右 焦 点 为 焦 点, 顶 点在 原 点 的 抛 物线 的 标准 方 程 是 ________. (2)(2013· 烟台一模)若点 P 是以 A(- 10, 0)、 B( 10, 0)为焦点,实轴长为 2 2的双曲线与圆 x2+y2=10 的一 个交点,则|PA|+|PB|的值为 A.2 2 B.4 2 C.4 3 D.6 2
答案
5
训 练 高 效 提 能
菜
单
高考专题辅导与训练· 数学(理科)
第一部分 何
基 础 要 点 整 合
专题五
解析几
解 题 规 范 流 程
考点三:圆锥曲线中的最值或范围问题
函数与方程的思想方法 题型 解答题 难度 [考情一点通] 中档或较难
考 点 核 心 突 破
以直线和圆锥曲线为背景,通过巧妙的设计 与整合,考查直线与圆锥曲线相交弦的最值 考查 、三角形或四边形面积的最值、某个量的取 内容 值范围等,最值问题常与函数、解不等式等 知识交汇,一般要应用函数的单调性、基本 不等式或条件中某个量自身的范围求解.
考 点 核 心 突 破
1 C.2或 2
训 练 高 效 提 能
菜
单
高考专题辅导与训练· 数学(理科)
第一部分 何
基 础 要 点 整 合
(浙江专用)2020高考数学二轮复习专题五解析几何第2讲椭圆、双曲线、抛物线教案
第2讲 椭圆、双曲线、抛物线圆锥曲线的定义及标准方程[核心提炼]1.圆锥曲线的定义、标准方程 名称 椭圆双曲线 抛物线定义|PF 1|+|PF 2|=2a (2a >|F 1F 2|)||PF 1|-|PF 2||=2a (2a <|F 1F 2|)|PF |=|PM |点F 不在直线l 上,PM ⊥l 于M 标准方程x 2a 2+y 2b 2=1(a >b >0) x 2a 2-y 2b 2=1(a >0,b >0)y 2=2px (p >0)所谓“定型”,就是曲线焦点所在的坐标轴的位置;所谓“定量”,就是指利用待定系数法求出方程中的a 2,b 2,p 的值.[典型例题](1)(2019·杭州市高考二模)设倾斜角为α的直线l 经过抛物线Г:y 2=2px (p >0)的焦点F ,与抛物线Г交于A ,B 两点,设点A 在x 轴上方,点B 在x 轴下方.若|AF ||BF |=m ,则cos α的值为( )A.m -1m +1 B.mm +1C.m -1mD .2mm +1(2)椭圆x 24+y 2=1上到点C (1,0)的距离最小的点P 的坐标为________.(3)(2019·高考浙江卷)已知椭圆x 29+y 25=1的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,|OF |为半径的圆上,则直线PF 的斜率是________.【解析】 (1)设抛物线y 2=2px (p >0)的准线为l :x =-p2.如图所示,分别过点A ,B 作AM ⊥l ,BN ⊥l ,垂足分别为M ,N .在三角形ABC 中,∠BAC 等于直线AB 的倾斜角α, 由|AF ||BF |=m ,|AF |=m |BF |,|AB |=|AF |+|BF |=(m +1)|BF |, 根据抛物线的定义得:|AM |=|AF |=m |BF |,|BN |=|BF |, 所以|AC |=|AM |-|MC |=m |BF |-|BF |=(m -1)|BF |,在直角三角形ABC 中,cos α=cos ∠BAC =|AC ||AB |=(m -1)|BF |(m +1)|BF |=m -1m +1,故选A.(2)设点P (x ,y ),则|PC |2=(x -1)2+y 2=(x -1)2+⎝ ⎛⎭⎪⎫1-x 24 =34x 2-2x +2=34⎝⎛⎭⎪⎫x -432+23.因为-2≤x ≤2,所以当x =43时,|PC |min =63,此时点P 的坐标为⎝ ⎛⎭⎪⎫43,53或⎝ ⎛⎭⎪⎫43,-53.(3)通解:依题意,设点P (m ,n )(n >0),由题意知F (-2,0),所以线段FP 的中点M ⎝ ⎛⎭⎪⎫-2+m 2,n 2在圆x 2+y 2=4上,所以⎝ ⎛⎭⎪⎫-2+m 22+⎝ ⎛⎭⎪⎫n 22=4,又点P (m ,n )在椭圆x 29+y 25=1上,所以m 29+n 25=1,所以4m 2-36m -63=0,所以m =-32或m =212(舍去),n =152,所以k PF =152-0-32-(-2)=15.优解:如图,取PF 的中点M ,连接OM ,由题意知|OM |=|OF |=2,设椭圆的右焦点为F 1,连接PF 1.在△PFF 1中,OM 为中位线,所以|PF 1|=4,由椭圆的定义知|PF |+|PF 1|=6,所以|PF |=2,因为M 为PF 的中点,所以|MF |=1.在等腰三角形OMF 中,过O 作OH ⊥MF 于点H ,所以|OH |=22-⎝ ⎛⎭⎪⎫122=152,所以k PF =tan ∠HFO =15212=15.【答案】 (1)A (2)⎝ ⎛⎭⎪⎫43,53或⎝ ⎛⎭⎪⎫43,-53 (3)15(1)圆锥曲线定义的应用①已知椭圆、双曲线上一点及焦点,首先要考虑使用椭圆、双曲线的定义求解. ②应用抛物线的定义,灵活将抛物线上的点到焦点的距离与到准线的距离相互转化使问题得解.(2)圆锥曲线方程的求法求解圆锥曲线标准方程的方法是“先定型,后计算”.①定型.就是指定类型,也就是确定圆锥曲线的焦点位置,从而设出标准方程. ②计算.即利用待定系数法求出方程中的a 2,b 2或p .另外,当焦点位置无法确定时,抛物线常设为y 2=2ax 或x 2=2ay (a ≠0),椭圆常设为mx 2+ny 2=1(m >0,n >0),双曲线常设为mx 2-ny 2=1(mn >0).[对点训练]1.已知F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,点⎝⎛⎭⎪⎫1,22在椭圆上,且点(-1,0)到直线PF 2的距离为455,其中点P (-1,-4),则椭圆的标准方程为( )A .x 2+y 24=1B.x 24+y 2=1 C .x 2+y 22=1D.x 22+y 2=1 解析:选D.设F 2的坐标为(c ,0)(c >0),则kPF 2=4c +1,故直线PF 2的方程为y =4c +1(x -c ),即4c +1x -y -4cc +1=0,点(-1,0)到直线PF 2的距离d =⎪⎪⎪⎪⎪⎪-4c +1-4c c +1⎝ ⎛⎭⎪⎫4c +12+1=4⎝ ⎛⎭⎪⎫4c +12+1=455,即⎝ ⎛⎭⎪⎫4c +12=4,解得c =1或c =-3(舍去),所以a 2-b 2=1.①又点⎝ ⎛⎭⎪⎫1,22在椭圆E 上, 所以1a 2+12b 2=1,② 由①②可得⎩⎪⎨⎪⎧a 2=2,b 2=1,所以椭圆的标准方程为x 22+y 2=1.故选D.2.(2019·嘉兴一中高考适应性考试)若双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点到渐近线的距离等于焦距的34倍,则双曲线的离心率为________,如果双曲线上存在一点P 到双曲线的左右焦点的距离之差为4,则双曲线的虚轴长为________.解析:因为右焦点到渐近线的距离为b ,若右焦点到渐近线的距离等于焦距的34倍, 所以b =34·2c =32c , 平方得b 2=34c 2=c 2-a 2,即a 2=14c 2,则c =2a ,则离心率e =c a=2,因为双曲线上存在一点P 到双曲线的左右焦点的距离之差为4, 所以2a =4,则a =2, 从而b =16-4=2 3. 答案:2 4 3圆锥曲线的几何性质[核心提炼]1.椭圆、双曲线中,a ,b ,c 之间的关系(1)在椭圆中:a 2=b 2+c 2,离心率为e =ca=1-⎝ ⎛⎭⎪⎫b a 2; (2)在双曲线中:c 2=a 2+b 2,离心率为e =ca=1+⎝ ⎛⎭⎪⎫b a 2. 2.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±bax .注意离心率e 与渐近线的斜率的关系.[典型例题](1)(2019·高考浙江卷)渐近线方程为x ±y =0的双曲线的离心率是( ) A.22B .1 C. 2 D .2 (2)以椭圆上一点和两个焦点为顶点的三角形的面积的最大值为1,则椭圆长轴长的最小值为( )A .1 B. 2 C .2 D .2 2【解析】 (1)因为双曲线的渐近线方程为x ±y =0,所以无论双曲线的焦点在x 轴上还是在y 轴上,都满足a =b ,所以c =2a ,所以双曲线的离心率e =c a= 2.故选C.(2)设a ,b ,c 分别为椭圆的长半轴长,短半轴长,半焦距,依题意知,当三角形的高为b 时面积最大,所以12×2cb =1,bc =1,而2a =2b 2+c 2≥22bc =22(当且仅当b =c =1时取等号),故选D.【答案】 (1)C (2)D圆锥曲线性质的应用(1)分析圆锥曲线中a ,b ,c ,e 各量之间的关系是求解问题的关键.(2)确定椭圆和双曲线的离心率的值及范围,其关键就是确立一个关于a ,b ,c 的方程(组)或不等式(组),再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式.建立关于a ,b ,c 的方程(组)或不等式(组),要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.[注] 求椭圆、双曲线的离心率,常利用方程思想及整体代入法,该思想及方法利用待定系数法求方程时经常用到.[对点训练]1.(2019·绍兴诸暨高考二模)设双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点分别是F 1,F 2,点P 在双曲线上,且满足∠PF 2F 1=2∠PF 1F 2=60°,则此双曲线的离心率等于( )A .23-2 B.3+12C.3+1D .23+2解析:选C.设双曲线的焦距长为2c ,因为点P 为双曲线上一点,且∠PF 1F 2=30°,∠PF 2F 1=60°, 所以P 在右支上,∠F 2PF 1=90°, 即PF 1⊥PF 2,|PF 1|=2c sin 60°=3c , |PF 2|=2c cos 60°=c ,所以由双曲线的定义可得|PF 1|-|PF 2|=(3-1)c =2a , 所以e =c a=23-1=3+1.故选C.2.(2019·宁波高考模拟)如图,F 1、F 2是椭圆C 1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若AF 1⊥BF 1,且∠AF 1O =π3,则C 1与C 2的离心率之和为( )A .2 3B .4C .2 5D .2 6解析:选A.F 1、F 2是椭圆C 1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若AF 1⊥BF 1,且∠AF 1O =π3,可得A ⎝ ⎛⎭⎪⎫-12c ,32c ,B ⎝ ⎛⎭⎪⎫12c ,-32c , 代入椭圆方程可得c 24a 2+3c 24b 2=1,可得e 24+34e 2-4=1,可得e 4-8e 2+4=0,解得e =3-1.代入双曲线方程可得:c 24a 2-3c 24b2=1,可得:e 24-34-4e 2=1,可得:e 4-8e 2+4=0,解得e =3+1, 则C 1与C 2的离心率之和为2 3. 故选A.直线与圆锥曲线 [核心提炼]1.直线与圆锥曲线位置关系与“Δ”的关系将直线方程与圆锥曲线方程联立,消去一个变量(如y )得到方程Ax 2+Bx +C =0. ①若A =0,则:圆锥曲线可能为双曲线或抛物线,此时直线与圆锥曲线只有一个交点. ②若A ≠0,则:当Δ>0时,直线与圆锥曲线有两个交点(相交);当Δ=0时,直线与圆锥曲线有一个交点(相切);当Δ<0时,直线与圆锥曲线没有交点(相离).2.直线与圆锥曲线相交时的弦长设而不求,根据根与系数的关系,进行整体代入,即当直线与圆锥曲线交于点A (x 1,y 1),B (x 2,y 2)时,|AB |=1+k 2·|x 1-x 2|=1+1k2|y 1-y 2|,其中|x 1-x 2|=(x 1+x 2)2-4x 1x 2. 考向1 位置关系的判断[典型例题]在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p>0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H .(1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由.【解】 (1)由已知得M (0,t ),P ⎝ ⎛⎭⎪⎫t 22p ,t . 又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t ,ON 的方程为y =p t x ,代入y 2=2px ,整理得px2-2t 2x =0,解得x 1=0,x 2=2t2p .因此H ⎝ ⎛⎭⎪⎫2t 2p ,2t .所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其他公共点. 理由如下:直线MH 的方程为y -t =p 2t x ,即x =2tp(y -t ).代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t ,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其他公共点.考向2 弦长问题[典型例题]已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( )A .16B .14C .12D .10【解析】 抛物线C :y 2=4x 的焦点为F (1,0),由题意可知l 1,l 2的斜率存在且不为0.不妨设直线l 1的斜率为k ,则l 1:y =k (x -1),l 2:y =-1k (x -1),由⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1),消去y得k 2x 2-(2k 2+4)x +k 2=0,设A (x 1,y 1),B (x 2,y 2),所以x 1+x 2=2k 2+4k 2=2+4k2,由抛物线的定义可知,|AB |=x 1+x 2+2=2+4k 2+2=4+4k2.同理得|DE |=4+4k 2,所以|AB |+|DE |=4+4k2+4+4k 2=8+4⎝ ⎛⎭⎪⎫1k 2+k 2≥8+8=16,当且仅当1k2=k 2,即k =±1时取等号,故|AB |+|DE |的最小值为16,故选A.【答案】 A考向3 分点(中点)问题[典型例题]已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为4,且经过点P (2,53).(1)求椭圆C 的方程;(2)若直线l 经过M (0,1),且与C 交于A ,B 两点,MA →=-23MB →,求l 的方程.【解】 (1)依题意知,2c =4,则椭圆C 的焦点为F 1(-2,0),F 2(2,0),2a =|PF 1|+|PF 2|=(2+2)2+(53)2+(2-2)2+(53)2=6,所以b 2=a 2-c 2=5,所以椭圆C 的方程为x 29+y 25=1.(2)当l 的斜率不存在时,l 与x 轴垂直,则l 的方程为x =0,A ,B 为椭圆短轴上的两点,不符合题意.当l 的斜率存在时,设l 的方程为y =kx +1,由⎩⎪⎨⎪⎧x 29+y 25=1,y =kx +1,得(9k 2+5)x 2+18kx -36=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-18k 9k 2+5,x 1·x 2=-369k 2+5,由MA →=-23MB →得,(x 1,y 1-1)=-23(x 2,y 2-1),则x 1=-23x 2,所以13x 2=-18k 9k 2+5,-23x 22=-369k 2+5,所以(-54k 9k 2+5)2=549k 2+5,解得k =±13,故直线l 的方程为y =±13x +1.解决直线与圆锥曲线位置关系问题的步骤(1)设方程及点的坐标;(2)联立直线方程与曲线方程得方程组,消元得方程(注意二次项系数是否为零); (3)应用根与系数的关系及判别式;(4)结合已知条件、中点坐标公式、斜率公式及弦长公式求解.[对点训练]1.(2018·高考浙江卷)已知点P (0,1),椭圆x 24+y 2=m (m >1)上两点A ,B 满足AP →=2PB →,则当m =________时,点B 横坐标的绝对值最大.解析:设A (x 1,y 1),B (x 2,y 2),由AP →=2 PB →,得⎩⎪⎨⎪⎧-x 1=2x 2,1-y 1=2(y 2-1),即x 1=-2x 2,y 1=3-2y 2.因为点A ,B 在椭圆上,所以⎩⎪⎨⎪⎧4x 224+(3-2y 2)2=m ,x 224+y 22=m ,得y 2=14m +34,所以x 22=m -(3-2y 2)2=-14m 2+52m -94=-14(m -5)2+4≤4,所以当m =5时,点B 横坐标的绝对值最大,最大值为2.答案:52.(2019·温州十五校联合体联考)过点M (0,1)且斜率为1的直线l 与双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两渐近线交于点A ,B ,且BM →=2AM →,则直线l 的方程为____________;如果双曲线的焦距为210,则b 的值为________.解析:直线l 的方程为y =x +1,两渐近线的方程为y =±b ax .其交点坐标分别为⎝ ⎛⎭⎪⎫a b -a ,b b -a ,⎝ ⎛⎭⎪⎫-a a +b ,b a +b .由BM →=2AM →,得x B =2x A .若a b -a =-2a a +b ,得a =3b ,由a 2+b 2=10b 2=10得b =1,若-aa +b =2ab -a,得a =-3b (舍去).答案:y =x +1 1专题强化训练1.(2018·高考浙江卷)双曲线x 23-y 2=1的焦点坐标是( ) A .(-2,0),(2,0)B .(-2,0),(2,0)C .(0,-2),(0,2)D .(0,-2),(0,2)解析:选B.由题可知双曲线的焦点在x 轴上,因为c 2=a 2+b 2=3+1=4,所以c =2,故焦点坐标为(-2,0),(2,0).故选B.2.已知圆M :(x -1)2+y 2=38,椭圆C :x 23+y 2=1,若直线l 与椭圆交于A ,B 两点,与圆M 相切于点P ,且P 为AB 的中点,则这样的直线l 有( )A .2条B .3条C .4条D .6条解析:选C.当直线AB 斜率不存在时且与圆M 相切时,P 在x 轴上,故满足条件的直线有2条;当直线AB 斜率存在时,设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0), 由x 213+y 21=1,x 223+y 22=1,两式相减,整理得:y 1-y 2x 1-x 2=-13·x 1+x 2y 1+y 2, 则k AB =-x 03y 0,k MP =y 0x 0-1,k MP ·k AB =-1,k MP ·k AB =-x 03y 0·y 0x 0-1=-1,解得x 0=32, 由32<3,可得P 在椭圆内部, 则这样的P 点有2个,即直线AB 斜率存在时,也有2条. 综上可得,所示直线l 有4条.故选C.3.若椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)和圆x 2+y 2=(b2+c )2有四个交点,其中c 为椭圆的半焦距,则椭圆的离心率e 的取值范围为( )A .(55,35) B .(0,25) C .(25,35) D .(35,55) 解析:选 A.由题意可知,椭圆的上、下顶点在圆内,左、右顶点在圆外,则⎩⎪⎨⎪⎧a >b2+c ,b <b2+c⇒⎩⎪⎨⎪⎧(a -c )2>14(a 2-c 2),a 2-c 2<2c⇒55<e <35.4.(2019·学军中学质检)双曲线M :x 2-y 2b2=1的左、右焦点分别为F 1,F 2,记|F 1F 2|=2c ,以坐标原点O 为圆心,c 为半径的圆与双曲线M 在第一象限的交点为P ,若|PF 1|=c +2,则点P 的横坐标为( )A.3+12 B.3+22 C.3+32D.332解析:选A.由点P 在双曲线的第一象限可得|PF 1|-|PF 2|=2,则|PF 2|=|PF 1|-2=c ,又|OP |=c ,∠F 1PF 2=90°,由勾股定理可得(c +2)2+c 2=(2c )2,解得c =1+ 3.易知△POF 2为等边三角形,则x P =c2=3+12. 5.已知离心率e =52的双曲线C :x 2a 2-y2b2=1(a >0,b >0)的右焦点为F ,O 为坐标原点,以OF 为直径的圆与双曲线C 的一条渐近线相交于O ,A 两点,若△AOF 的面积为4,则a 的值为( )A .2 2B .3C .4D .5 解析:选C.因为e =1+⎝ ⎛⎭⎪⎫b a 2=52,所以b a =12,|AF ||OA |=b a =12,设|AF |=m ,|OA |=2m ,由面积关系得12·m ·2m =4,所以m =2,由勾股定理,得c =m 2+(2m )2=25,又c a =52,所以a =4,故选C.6.(2019·宁波市诺丁汉大学附中高三期末考试)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F 作圆x 2+y 2=a 2的两条切线,切点分别为A 、B ,双曲线左顶点为M ,若∠AMB =120°,则该双曲线的离心率为( )A. 2B. 3 C .3 D .2解析:选D.依题意,作图如图所示: 因为OA ⊥FA ,∠AMO =60°,OM =OA , 所以△AMO 为等边三角形, 所以OA =OM =a ,在直角三角形OAF 中,OF =c ,所以该双曲线的离心率e =c a =OF OA =1sin 30°=2,故选D.7.(2019·杭州高三模拟)已知双曲线C :x 2a 2-y 2b2=1的右顶点为A ,O 为坐标原点,以A为圆心的圆与双曲线C 的某一条渐近线交于两点P ,Q ,若∠PAQ =π3且OQ →=5OP →,则双曲线C的离心率为( )A.213 B .2 C.72D .3 解析:选A.由图知△APQ 是等边三角形,设PQ 中点是H ,圆的半径为r ,则AH ⊥PQ ,AH =32r ,PQ =r ,因为OQ →=5OP →,所以OP =14r ,PH =12r ,即OH =14r +12r =34r ,所以tan ∠HOA =AH OH =233,即b a =233,b 2a 2=c 2-a 2a 2=43,从而得e =c a =213,故选A. 8.如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1B.|BF |2-1|AF |2-1 C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1解析:选A.由图形可知,△BCF 与△ACF 有公共的顶点F ,且A ,B ,C 三点共线,易知△BCF 与△ACF 的面积之比就等于|BC ||AC |.由抛物线方程知焦点F (1,0),作准线l ,则l 的方程为x =-1.因为点A ,B 在抛物线上,过A ,B 分别作AK ,BH 与准线垂直,垂足分别为点K ,H ,且与y 轴分别交于点N ,M .由抛物线定义,得|BM |=|BF |-1,|AN |=|AF |-1.在△CAN 中,BM ∥AN ,所以 |BC ||AC |=|BM ||AN |=|BF |-1|AF |-1.9.(2019·温州高考模拟)过抛物线C :y 2=2px (p >0)的焦点F 的直线交该抛物线于A ,B 两点,若|AF |=8|OF |(O 为坐标原点),则|AF ||BF |=________.解析:由题意,|AF |=4p ,设|BF |=x ,由抛物线的定义,可得p -x 4p -x =x x +4p ,解得x =47p ,所以|AF ||BF |=7,故答案为7.答案:710.(2019·浙江名校协作体高三期末考试)设双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,过点F 作与x 轴垂直的直线交两渐近线于A ,B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若OP →=λOA →+μOB →,λμ=425(λ,μ∈R ),则双曲线的离心率e 的值是________.解析:由题意可知,双曲线的渐近线为y =±b ax ,右焦点为F (c ,0),则点A ,B ,P 的坐标分别为⎝ ⎛⎭⎪⎫c ,bc a ,⎝ ⎛⎭⎪⎫c ,-bc a ,⎝ ⎛⎭⎪⎫c ,b 2a ,所以OA →,OB →,OP →的坐标为⎝ ⎛⎭⎪⎫c ,bc a ,⎝ ⎛⎭⎪⎫c ,-bc a ,⎝ ⎛⎭⎪⎫c ,b 2a ,又OP →=λOA →+μOB →,则⎝ ⎛⎭⎪⎫c ,b 2a =λ⎝ ⎛⎭⎪⎫c ,bc a +μ⎝ ⎛⎭⎪⎫c ,-bc a ,即⎩⎪⎨⎪⎧λ+μ=1b a=λc a -μc a ,又λμ=425,解得λ=45,μ=15,所以b a =4c 5a -c 5a ⇒e 2-1=35e ⇒e =54. 答案:5411.(2019·台州市高考一模)如图,过抛物线y 2=4x 的焦点F 作直线与抛物线及其准线分别交于A ,B ,C 三点,若FC →=4FB →,则|AB →|=________.解析:分别过A ,B 作准线的垂线,垂足分别为A 1,B 1,则DF =p =2,由抛物线的定义可知FB =BB 1,AF =AA 1,因为FC →=4FB →,所以DF BB 1=FC BC =43,所以FB =BB 1=32.所以FC =4FB =6,所以cos ∠DFC =DF FC =13,所以cos ∠A 1AC =AA 1AC =AF AF +6=13,解得AF =3, 所以AB =AF +BF =3+32=92.答案:9212.设双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是__________.解析:由题意不妨设点P 在双曲线的右支上,现考虑两种极限情况:当PF 2⊥x 轴时,|PF 1|+|PF 2|有最大值8;当∠P 为直角时,|PF 1|+|PF 2|有最小值27.因为△F 1PF 2为锐角三角形,所以|PF 1|+|PF 2|的取值范围为(27,8).答案:(27,8)13.(2019·浙江新高考冲刺卷)如图,过双曲线x 2a 2-y 2b2=1(a ,b >0)左焦点F 1的直线交双曲线左支于A ,B 两点,C 是双曲线右支上一点,且A ,C 在x 轴的异侧,若满足|OA |=|OF 1|=|OC |,|CF 1|=2|BF 1|,则双曲线的离心率为________.解析:取双曲线的右焦点F 2,连接CF 2,延长交双曲线于D ,连接AF 2,DF 1, 由|OA |=|OF 1|=|OC |=|OF 2|=c , 可得四边形F 1AF 2C 为矩形, 设|CF 1|=2|BF 1|=2m , 由对称性可得|DF 2|=m , |AF 1|=4c 2-4m 2, 即有|CF 2|=4c 2-4m 2,由双曲线的定义可得2a =|CF 1|-|CF 2|=2m -4c 2-4m 2,① 在直角三角形DCF 1中,|DC |=m +4c 2-4m 2,|CF 1|=2m ,|DF 1|=2a +m , 可得(2a +m )2=(2m )2+(m +4c 2-4m 2)2,② 由①②可得3m =4a ,即m =4a 3, 代入①可得,2a =8a3-4c 2-64a 29,化简可得c 2=179a 2,即有e =c a =173. 故答案为173. 答案:17314.椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c ,0)关于直线y =bcx 的对称点Q 在椭圆上,则椭圆的离心率是________.解析:设椭圆的另一个焦点为F 1(-c ,0),如图,连接QF 1,QF ,设QF 与直线y =b cx 交于点M .由题意知M 为线段QF 的中点,且OM ⊥FQ , 又O 为线段F 1F 的中点, 所以F 1Q ∥OM ,所以F 1Q ⊥QF ,|F 1Q |=2|OM |. 在Rt △MOF 中,tan ∠MOF =|MF ||OM |=bc, |OF |=c ,可解得|OM |=c 2a ,|MF |=bca,故|QF |=2|MF |=2bc a ,|QF 1|=2|OM |=2c2a.由椭圆的定义得|QF |+|QF 1|=2bc a +2c2a=2a ,整理得b =c ,所以a =b 2+c 2=2c ,故e =c a =22. 答案:2215.(2019·温州模拟)已知直线l :y =-x +3与椭圆C :mx 2+ny 2=1(n >m >0)有且只有一个公共点P (2,1).(1)求椭圆C 的标准方程;(2)若直线l ′:y =-x +b 交C 于A ,B 两点,且PA ⊥PB ,求b 的值.解:(1)联立直线l :y =-x +3与椭圆C :mx 2+ny 2=1(n >m >0), 可得(m +n )x 2-6nx +9n -1=0,由题意可得Δ=36n 2-4(m +n )(9n -1)=0,即为9mn =m +n , 又P 在椭圆上,可得4m +n =1, 解方程可得m =16,n =13,即有椭圆方程为x 26+y 23=1. (2)设A (x 1,y 1),B (x 2,y 2),联立直线y =b -x 和椭圆方程,可得3x 2-4bx +2b 2-6=0, 判别式Δ=16b 2-12(2b 2-6)>0, x 1+x 2=4b 3,x 1x 2=2b 2-63,y 1+y 2=2b -(x 1+x 2)=2b 3,y 1y 2=(b -x 1)·(b -x 2)=b 2-b (x 1+x 2)+x 1x 2=b 2-63,由PA ⊥PB ,即为PA →·PB →=(x 1-2)(x 2-2)+(y 1-1)(y 2-1) =x 1x 2-2(x 1+x 2)+4+y 1y 2-(y 1+y 2)+1 =2b 2-63-2·4b 3+b 2-63-2b 3+5=0,解得b =3或13,代入判别式,则b =13成立.故b 为13.16.(2019·浙江金华十校高考模拟)已知椭圆M :x 2a 2+y 2b2=1(a >b >0)的右焦点F 的坐标为(1,0),P ,Q 为椭圆上位于y 轴右侧的两个动点,使PF ⊥QF ,C 为PQ 中点,线段PQ 的垂直平分线交x 轴,y 轴于点A ,B (线段PQ 不垂直x 轴),当Q 运动到椭圆的右顶点时,|PF |=22. (1)求椭圆M 的标准方程;(2)若S △ABO ∶S △BCF =3∶5,求直线PQ 的方程. 解:(1)当Q 运动到椭圆的右顶点时,PF ⊥x 轴,所以|PF |=b 2a =22,又c =1,a 2=b 2+c 2,所以a =2,b =1. 椭圆M 的标准方程为x 22+y 2=1.(2)设直线PQ 的方程为y =kx +b ′,显然k ≠0, 联立椭圆方程得:(2k 2+1)x 2+4kb ′x +2(b ′2-1)=0, 设P (x 1,y 1),Q (x 2,y 2),由根与系数的关系得:⎩⎪⎨⎪⎧x 1x 2=2(b ′2-1)2k 2+1>0,①x 1+x 2=-4kb ′2k 2+1>0,②Δ=8(2k 2-b ′2+1)>0,③由PF →·QF →=0⇒(x 1-1)(x 2-1)+y 1y 2=0得:3b ′2-1+4kb ′=0,④点C ⎝⎛⎭⎪⎫-2kb ′2k 2+1,b ′2k 2+1,所以线段PQ 的中垂线AB 方程为:y -b ′2k 2+1=-1k ⎝ ⎛⎭⎪⎫x +2kb ′2k 2+1, 令y =0可得:A ⎝⎛⎭⎪⎫-kb ′2k 2+1,0;令x =0可得 B ⎝⎛⎭⎪⎫0,-b ′2k 2+1,则A 为BC 中点, 故S △BCF S △ABO =2S △ABF S △ABO =2|AF ||AO |=2(1-x A )x A =2⎝ ⎛⎭⎪⎫1x A -1, 由④式得:k =1-3b ′24b ′,则x A =-kb ′2k 2+1=6b ′4-2b ′29b ′4+2b ′2+1, S △BCF S △ABO =2⎝ ⎛⎭⎪⎫1x A -1=6b ′4+8b ′2+26b ′4-2b ′2=53,得b ′2=3. 所以b ′=3,k =-233或b ′=-3,k =233.经检验,满足条件①②③,故直线PQ 的方程为:y =233x -3,y =-233x + 3.17.(2019·绍兴市高三教学质量调测)已知点A (-2,0),B (0,1)在椭圆C :x 2a 2+y 2b2=1(a >b >0)上.(1)求椭圆C 的方程;(2)P 是线段AB 上的点,直线y =12x +m (m ≥0)交椭圆C 于M ,N 两点.若△MNP 是斜边长为10的直角三角形,求直线MN 的方程.解:(1)因为点A (-2,0),B (0,1)在椭圆C :x 2a 2+y 2b2=1上,所以a =2,b =1,故椭圆C 的方程为x 24+y 2=1.(2)设M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =12x +m x24+y 2=1消去y ,得12x 2+mx +m 2-1=0,则Δ=2-m 2>0,x 1+x 2=-2m ,x 1x 2=2m 2-2,|MN |=52|x 1-x 2|=10-5m 2. ①当MN 为斜边时, 10-5m 2=10,解得m =0,满足Δ>0, 此时以MN 为直径的圆方程为x 2+y 2=52.点A (-2,0),B (0,1)分别在圆外和圆内, 即在线段AB 上存在点P ,此时直线MN 的方程y =12x ,满足题意.②当MN 为直角边时,两平行直线AB 与MN 的距离d =255|m -1|, 所以d 2+|MN |2=45|m -1|2+(10-5m 2)=10,即21m 2+8m -4=0,解得m =27或m =-23(舍),又Δ>0,所以m =27.过点A 作直线MN :y =12x +27的垂线,可得垂足坐标为⎝ ⎛⎭⎪⎫-127,-47,垂足在椭圆外,即在线段AB 上存在点P ,所以直线MN 的方程y =12x +27,符合题意.综上所述,直线MN 的方程为y =12x 或y =12x +27.18.(2019·杭州市高考数学二模)设抛物线Γ:y 2=2px (p >0)上的点M (x 0,4)到焦点F 的距离|MF |=54x 0.(1)求抛物线Γ的方程;(2)过点F 的直线l 与抛物线Γ相交于A ,B 两点,线段AB 的垂直平分线l ′与抛物线Γ相交于C ,D 两点,若AC →·AD →=0,求直线l 的方程.解:(1)因为|MF |=x 0+p 2=54x 0,所以x 0=2p .即M (2p ,4).把M (2p ,4)代入抛物线方程得4p 2=16,解得p =2. 所以抛物线Γ的方程为y 2=4x .(2)易知直线l 的斜率存在,不妨设直线l 的方程为y =k (x -1),联立方程组⎩⎪⎨⎪⎧y 2=4xy =k (x -1),消元得:k 2x 2-(2k 2+4)x +k 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k 2,y 1+y 2=4k.设AB 的中点为P ⎝ ⎛⎭⎪⎫k 2+2k2,2k ,所以|AB |=x 1+x 2+p =4(k 2+1)k2. 所以直线l ′的方程为y -2k =-1k ⎝ ⎛⎭⎪⎫x -k 2+2k 2,即x =-ky +2k2+3.联立方程组⎩⎪⎨⎪⎧y 2=4x x =-ky +2k 2+3, 消元得:y 2+4ky -4⎝⎛⎭⎪⎫3+2k2=0.设C (x 3,y 3),D (x 4,y 4),则y 3+y 4=-4k ,y 3y 4=-4⎝⎛⎭⎪⎫3+2k 2.所以x 3+x 4=4k 4+6k 2+4k2, 所以CD 的中点Q ⎝ ⎛⎭⎪⎫2k 4+3k 2+2k 2,-2k . 所以|CD |=1+k2(y 3+y 4)2-4y 3y 4=4(k 2+1)k 2+2|k |,|PQ |=2(k 2+1)k 2+1|k |,因为AC →·AD →=0,所以AC ⊥AD .所以|AQ |=12|CD |.因为AB ⊥CD ,所以|AP |2+|PQ |2=|AQ |2, 即14|AB |2+|PQ |2=14|CD |2, 所以16(k 2+1)2k 4+16(k 2+1)3k 2=16(k 2+1)2(k 2+2)k2, 解得k =±1,所以直线l 的方程为x -y -1=0或x +y -1=0.。
高考二轮复习数学课件(新高考新教材)第2讲圆锥曲线的定义方程与性质
答案 A
解析 如图所示,抛物线C:y2=4x的焦点坐标为F(1,0),过C上一点M作其准线
的垂线,垂足为N,若∠NMF=120°,可得|MF|=|MN|,∠NFO=∠FNM=30°.
4 3
又由|DF|=2,所以|NF|= 3 ,在等腰三角形
MNF 中,可
4
得|MF|= .
3
设
4
M(x0,y0),根据抛物线的定义,可得|MF|=x0+1=3,解
解析 设椭圆C的左焦点为F1,如图,连接AF1,BF1,因为|OA|=|OB|,|OF1|=|OF|,
所以四边形AF1BF为平行四边形.
又 AF⊥BF,所以四边形
π
AF1BF 为矩形,所以∠F1AF= ,则
2
|OF1|=|OF|=|OA|=2 3.
由直线 y=
π
3x 可知∠AOF=3,则|AF|=|OF|=|OA|=2
||
p=3.
P 在 x 轴的
突破点二 圆锥曲线的几何性质
命题角度1 圆锥曲线的几何性质
x2 y2
x2 y2
[例 2—1]已知双曲线 C1: 2 − 2 =1(a>0,b>0)以椭圆 C2: + =1 的焦点为顶
4
3
a
b
点,左、右顶点为焦点,则双曲线 C1 的渐近线方程为(
A. 3x±y=0
B.x± 3y=0
.
答案 (1)ACD
(2)4
解析 (1)由题意知,m>0 且 m2-1>0.由已知可得 2 --1=1,解得 m=2 或 m=1(舍去负值),故椭圆
2
C 的方程为 3
2
+ 2 =1.
2020新课标高考理科数学二轮复习教师用书:第2部分 专题5 第2讲 圆锥曲线的定义、方程及性质
第2讲 圆锥曲线的定义、方程及性质■做小题·激活思维·1.已知椭圆C 的焦点在y 轴上,焦距等于4,离心率为22,则椭圆C 的标准方程是( )A.x 216+y 212=1 B.x 212+y 216=1 C.x 24+y 28=1D.x 28+y 24=1C [由题意可得2c =4,故c =2,又e =2a =22,解得a =22,故b =(22)2-22=2,因为焦点在y 轴上,故椭圆C 的标准方程是x 24+y28=1.]2.设F 1,F 2是椭圆x 249+y 224=1的两个焦点,P 是椭圆上的点,且|PF 1|∶|PF 2|=4∶3,则△PF 1F 2的面积为( )A .30B .25C .24D .40C [∵|PF 1|+|PF 2|=14, 又|PF 1|∶|PF 2|=4∶3, ∴|PF 1|=8,|PF 2|=6. ∵|F 1F 2|=10,∴PF 1⊥PF 2,∴S △PF 1F 2=12|PF 1|·|PF 2|=12×8×6=24.]3.过点F (0,3)且和直线y +3=0相切的动圆圆心的轨迹方程为( ) A .y 2=12x B .y 2=-12x C .x 2=-12yD .x 2=12yD [由抛物线的定义知,过点F (0,3)且和直线y +3=0相切的动圆圆心的轨迹是以点F (0,3)为焦点,直线y =-3为准线的抛物线,故其方程为x 2=12y .]4.[新题型:多选题]点M (1,1)到抛物线y =ax 2准线的距离为2,则a 的值为( )A.14 B .-112 C.112D .-14AB [抛物线y =ax 2化为x 2=1a y ,它的准线方程为y =-14a ,点M (1,1)到抛物线y =ax 2准线的距离为2,可得⎪⎪⎪⎪⎪⎪1+14a =2,解得a =14或-112.]5.“k <9”是“方程x 225-k +y 2k -9=1表示双曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [因为方程x 225-k +y 2k -9=1表示双曲线,所以(25-k )(k -9)<0,所以k<9或k >25,所以“k <9”是“方程x 225-k +y 2k -9=1表示双曲线”的充分不必要条件,故选A.]6.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A .y =±14x B .y =±13x C .y =±12xD .y =±xC [因双曲线方程C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则e 2=c 2a 2=a 2+b 2a 2=1+b 2a 2=54,即b 2a 2=14,∴b a =12,又因为双曲线的焦点在x 轴上,所以渐近线方程为y =±12x ,故选C.] ■扣要点·查缺补漏·1.椭圆的定义标准方程及几何性质(1)定义:|PF 1|+|PF 2|=2a ;如T 2. (2)焦点三角形的面积:S △PF 1F 2=b 2tan α2. (3)离心率:e =ca =1-b 2a 2;如T 1.(4)焦距:2c .(5)a ,b ,c 的关系:c 2=a 2-b 2.2.双曲线x 2a 2-y 2b 2=1(a ,b ≠0)的几何性质 (1)离心率e =ca =1+b 2a 2; (2)渐近线:y =±ba x .如T 6. 3.抛物线的定义、几何性质 (1)如图,|MF |=|MH |.如T 3,T 4.(2)已知抛物线y 2=2px (p >0),C (x 1,y 1),D (x 2,y 2)为抛物线上的点,F 为焦点.①焦半径|CF |=x 1+p2;②过焦点的弦长|CD |=x 1+x 2+p =2psin 2θ; ③x 1x 2=p 24,y 1y 2=-p 2. ④1|FC |+1|FD |=2p .4.方程Ax 2+By 2=1表示的曲线 (1)表示椭圆:A >0,B >0且A ≠B ; (2)表示圆:A =B >0; (3)表示双曲线AB <0;如T 5.(4)表示直线:A =0且B ≠0或A ≠0且B =0.考点1 圆锥曲线的定义、标准方程■高考串讲·找规律·[高考解读·教师授课资源] 以抛物线、双曲线、椭圆的定义和标准方程为载体,以定义转化为媒介,通过平面几何图形中的几何等量关系、待定系数法、解三角形的有关知识等求得相应曲线的标准方程,体现了等价转化和方程的求解思想.1.(2016·全国卷Ⅰ)已知方程x 2m 2+n -y 23m 2-n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(-1,3)B .(-1,3)C .(0,3)D .(0,3)A [若双曲线的焦点在x 轴上,则⎩⎪⎨⎪⎧m 2+n >0,3m 2-n >0.又∵(m 2+n )+(3m 2-n )=4,∴m 2=1,∴⎩⎪⎨⎪⎧1+n >0,3-n >0,∴-1<n<3.若双曲线的焦点在y轴上,则双曲线的标准方程为y2n-3m2-x2-m2-n=1,即⎩⎪⎨⎪⎧n-3m2>0,-m2-n>0,即n>3m2且n<-m2,此时n不存在.故选A.]2.(2019·全国卷Ⅰ)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.x22+y2=1 B.x23+y22=1C.x24+y23=1 D.x25+y24=1B[由题意设椭圆的方程为x2a2+y2b2=1(a>b>0),连接F1A(图略),令|F2B|=m,则|AF2|=2m,|BF1|=3m.由椭圆的定义知,4m=2a,得m=a2,故|F2A|=a =|F1A|,则点A为椭圆C的上顶点或下顶点.令∠OAF2=θ(O为坐标原点),则sin θ=1a.在等腰三角形ABF1中,cos 2θ=a23a2=13,所以13=1-2⎝⎛⎭⎪⎫1a2,得a2=3.又c2=1,所以b2=a2-c2=2,椭圆C的方程为x23+y22=1.故选B.]3.(2017·全国卷Ⅱ)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM 的延长线交y轴于点N.若M为FN的中点,则|FN|=________.6[如图,不妨设点M位于第一象限内,抛物线C的准线交x轴于点A,过点M作准线的垂线,垂足为点B,交y轴于点P,∴PM∥OF.由题意知,F (2,0),|FO |=|AO |=2. ∵点M 为FN 的中点,PM ∥OF , ∴|MP |=12|FO |=1.又|BP |=|AO |=2, ∴|MB |=|MP |+|BP |=3.由抛物线的定义知|MF |=|MB |=3,故|FN |=2|MF |=6.]上一点,A (0,66).当△APF 周长最小时,该三角形的面积为________.切入点:△APF 的周长最小.关键点:根据双曲线的定义及△APF 周长最小,确定P 点坐标. 126 [由双曲线方程x 2-y 28=1可知,a =1,c =3,故F (3,0),F 1(-3,0).当点P 在双曲线左支上运动时,由双曲线定义知|PF |-|PF 1|=2,所以|PF |=|PF 1|+2,从而△APF 的周长=|AP |+|PF |+|AF |=|AP |+|PF 1|+2+|AF |.因为|AF |=32+(66)2=15为定值,所以当(|AP |+|PF 1|)最小时,△APF 的周长最小,由图象可知,此时点P 在线段AF 1与双曲线的交点处(如图所示).由题意可知直线AF 1的方程为y =26x +66, 由⎩⎪⎨⎪⎧y =26x +66,x 2-y 28=1,得y 2+66y -96=0,解得y =26或y =-86(舍去), 所以S △APF =S △AF 1F -S △PF 1F =12×6×66-12×6×26=12 6.]3.(2019·全国卷Ⅲ)设F 1,F 2为椭圆C :x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限.若△MF 1F 2为等腰三角形,则M 的坐标为____________.(3,15) [设F 1为椭圆的左焦点,分析可知M 在以F 1为圆心、焦距为半径长的圆上,即在圆(x +4)2+y 2=64上.因为点M 在椭圆x 236+y 220=1上,所以联立方程可得⎩⎨⎧(x +4)2+y 2=64,x 236+y 220=1,解得⎩⎪⎨⎪⎧x =3,y =±15.又因为点M 在第一象限,所以点M 的坐标为(3,15).]求解圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a 2,b 2,p 的值.提醒:对于抛物线问题,看到准线想到焦点,看到焦点想到准线. ■考题变迁·提素养·1.(离心率问题)设F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点,O 是坐标原点,点P 在双曲线C 的右支上且|F 1F 2|=2|OP |,△PF 1F 2的面积为a 2,则双曲线的离心率是( )A. 5B. 2 C .4D .2B [由|F 1F 2|=2|OP |可知|OP |=c , 所以△PF 1F 2为直角三角形,且PF 1⊥PF 2. 由S △PF 1F 2=a 2可知|PF 1||PF 2|=2a 2, 又|PF 1|2+|PF 2|2=|F 1F 2|2.∴(|PF 1|-|PF 2|)2=-2|PF 1||PF 2|+|F 1F 2|2, 即4a 2=-4a 2+4c 2, ∴e 2=c 2a 2=84=2,又e >1,∴e =2,故选B.]2.[一题多解](曲线方程问题)如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线方程为( )A .y 2=9xB .y 2=6xC .y 2=3xD .y 2=3xC [法一:如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设||BF =a ,则由已知得||BC =2a ,由抛物线定义,得||BD =a ,故∠BCD =30°,在Rt △ACE 中, ∵||AE =|AF |=3,||AC =3+3a ,∴2||AE =||AC ,即3+3a =6,从而得a =1,||FC =3a =3.∴p =||FG =12||FC =32,因此抛物线方程为y 2=3x ,故选C. 法二:由法一可知∠CBD =60°, 则由|AF |=p 1-cos 60°=3可知p =3⎝ ⎛⎭⎪⎫1-12=32,∴2p =3,∴抛物线的标准方程为y 2=3x .]3.(轨迹问题)△ABC 的两个顶点为A (-4,0),B (4,0),△ABC 的周长为18,则C 点轨迹方程为( )A.x 216+y 29=1(y ≠0) B.y 225+x 29=1(y ≠0)C.y 216+x 29=1(y ≠0) D.x 225+y 29=1(y ≠0)D [∵△ABC 的两顶点A (-4,0),B (4,0),周长为18,∴|AB |=8,|BC |+|AC |=10.∵10>8,∴点C 到两个定点的距离之和等于定值,满足椭圆的定义,∴点C 的轨迹是以A ,B 为焦点的椭圆.∴2a =10,2c =8,即a =5,c =4,∴b =3.∴C 点的轨迹方程为x 225+y 29=1(y ≠0).故选D.]考点2 圆锥曲线的几何性质■高考串讲·找规律·[高考解读·教师授课资源] 该考点是高考的核心热点之一,主要考查考生数形结合思想和化归与转化思想的应用,考查数学运算,直观想象的核心素养.1.(2018·全国卷Ⅱ)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±3xC .y =±22xD .y =±32xA [法一:由题意知,e =ca =3,所以c =3a ,所以b =c 2-a 2=2a ,所以b a =2,所以该双曲线的渐近线方程为y =±b a x =±2x ,故选A.法二:由e =ca =1+⎝ ⎛⎭⎪⎫b a 2=3,得b a =2,所以该双曲线的渐近线方程为y =±b a x =±2x ,故选A.]2.(2018·全国卷Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )A.23B.12C.13D.14D [由题意可得椭圆的焦点在x 轴上,如图所示,设|F 1F 2|=2c ,∵△PF 1F 2为等腰三角形,且∠F 1F 2P =120°,∴|PF 2|=|F 1F 2|=2c .∵|OF 2|=c ,∴点P 坐标为(c +2c cos60°,2c sin 60°),即点P (2c ,3c ).∵点P 在过点A ,且斜率为36的直线上,∴3c 2c +a =36,解得c a =14,∴e =14,故选D.]3.(2016·全国卷Ⅰ)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8B [设抛物线的方程为y 2=2px (p >0),圆的方程为x 2+y 2=r 2. ∵|AB |=42,|DE |=25, 抛物线的准线方程为x =-p 2, ∴不妨设A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5.∵点A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5在圆x 2+y 2=r 2上,∴⎩⎪⎨⎪⎧16p 2+8=r 2,p 24+5=r 2,∴16p 2+8=p 24+5,∴p =4(负值舍去).∴C 的焦点到准线的距离为4.]解得0<m ≤1.当m >3时,焦点在y 轴上,要使C 上存在点M 满足∠AMB =120°, 则a b ≥tan 60°=3,即m 3≥3,解得m ≥9.故m 的取值范围为(0,1]∪[9,+∞). 故选A.]1.椭圆、双曲线的离心率(或范围)的求法求椭圆、双曲线的离心率或离心率的范围,关键是根据已知条件确定a ,b ,c 的等量关系或不等关系,然后把b 用a ,c 代换,求ca 的值.2.双曲线的渐近线的求法及用法(1)求法:把双曲线标准方程等号右边的1改为零,分解因式可得. (2)用法:①可得b a 或ab 的值.②利用渐近线方程设所求双曲线的方程. ■考题变迁·提素养·1.(求离心率的取值范围)已知F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右两个焦点,若椭圆上存在点P 使得PF 1⊥PF 2,则该椭圆的离心率的取值范围是( )A.⎣⎢⎡⎭⎪⎫55,1B.⎣⎢⎡⎭⎪⎫22,1 C.⎝⎛⎦⎥⎤0,55D.⎝⎛⎦⎥⎤0,22B [∵F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >0,b >0)的左、右两个焦点, ∴F 1(-c,0),F 2(c,0),c 2=a 2-b 2.设点P (x ,y ),由PF 1⊥PF 2,得(x +c ,y )·(x -c ,y )=0,化简得x 2+y 2=c 2.联立方程组⎩⎨⎧x 2+y 2=c 2,x 2a 2+y 2b 2=1,整理得,x 2=(2c 2-a 2)·a 2c 2≥0, 解得e ≥22.又0<e <1,∴22≤e <1.]2.(求离心率的值)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2-y 2n 2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________;双曲线N 的离心率为________.3-1 2 [如图是一个正六边形,A ,B ,C ,D 是双曲线N 的两条渐近线与椭圆M 的四个交点,F 1,F 2为椭圆M 的两个焦点.∵直线AC 是双曲线N 的一条渐近线,且其方程为y =3x ,∴nm = 3.设m =k ,则n =3k ,则双曲线N 的离心率e 2=k 2+(3k )2k=2. 连接F 1C ,在正六边形ABF 2CDF 1中,可得∠F 1CF 2=90°,∠CF 1F 2=30°. 设椭圆的焦距为2c ,则|CF 2|=c ,|CF 1|=3c ,再由椭圆的定义得|CF 1|+|CF 2|=2a ,即(3+1)c =2a ,∴椭圆M 的离心率e 1=c a =23+1=2(3-1)(3+1)(3-1)=3-1.]3.(圆锥曲线的性质与函数交汇)若点O 和点F (-2,0)分别为双曲线x 2a 2-y2=1(a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为________.[3+23,+∞) [由题意,得22=a 2+1,即a =3, 设P (x ,y ),x ≥3,FP→=(x +2,y ),则OP →·FP →=(x +2)x +y 2=x 2+2x +x 23-1 =43⎝ ⎛⎭⎪⎫x +342-74,因为x ≥3,所以OP →·FP→的取值范围为[3+23,+∞).] 4.(与向量交汇考查几何性质)在椭圆x 24+y 22=1上任意一点P ,Q 与P 关于x 轴对称,若有F 1P →·F 2P →≤1,则F 1P →与F 2Q →的夹角余弦值的范围为________.⎣⎢⎡⎦⎥⎤-1,-13 [设P (x ,y ),则Q 点(x ,-y ), 椭圆x 24+y 22=1的焦点坐标为(-2,0),(2,0), ∵F 1P →·F 2P →≤1,∴x 2-2+y 2≤1, 结合x 24+y 22=1,可得y 2∈[1,2]. 故F 1P →与F 2Q →的夹角θ满足: cos θ=F 1P →·F 2Q→|F 1P →|·|F 2Q →|=x 2-2-y 2(x 2+2+y 2)2-8x 2=2-3y 2y 2+2=-3+8y 2+2∈⎣⎢⎡⎦⎥⎤-1,-13.] 考点3 直线、圆与圆锥曲线的交汇问题■高考串讲·找规律·[高考解读·教师授课资源] 以直线与圆锥曲线或以圆与圆锥曲线的位置关系为载体,考查曲线方程的求解等问题,体现了数形结合的思想和等价转化的能力.1.(2013·全国卷Ⅰ)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1D.x 218+y 29=1D [设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 21a 2+y 21b2=1, ①x 22a 2+y 22b2=1. ②①-②得(x 1+x 2)(x 1-x 2)a 2=-(y 1-y 2)(y 1+y 2)b 2.∴y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2). ∵x 1+x 2=2,y 1+y 2=-2,∴k AB =b 2a 2. 而k AB =0-(-1)3-1=12,∴b 2a 2=12,∴a 2=2b 2,∴c 2=a 2-b 2=b 2=9,∴b =c =3,a =32, ∴E 的方程为x 218+y 29=1.]2.(2019·全国卷Ⅱ)设F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( )A. 2B. 3 C .2D. 5A [令双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F 的坐标为(c,0),则c =a 2+b 2.如图所示,由圆的对称性及条件|PQ |=|OF |可知,PQ 是以OF 为直径的圆的直径,且PQ ⊥OF .设垂足为M ,连接OP ,则|OP |=a ,|OM |=|MP |=c2,由|OM |2+|MP |2=|OP |2,得⎝ ⎛⎭⎪⎫c 22+⎝ ⎛⎭⎪⎫c 22=a 2,∴c a =2,即离心率e = 2. 故选A.]3.(2018·全国卷Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程. [解] (1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x得k 2x 2-(2k 2+4)x +k 2=0.Δ=16k 2+16>0,故x 1+x 2=2k 2+4k 2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1)=4k 2+4k 2.由题设知4k 2+4k 2=8,解得k =-1(舍去),k =1.因此l 的方程为y =x -1. (2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3),即y =-x +5.设所求圆的圆心坐标为(x 0,y 0),则⎩⎪⎨⎪⎧y 0=-x 0+5,(x 0+1)2=(y 0-x 0+1)22+16,解得⎩⎪⎨⎪⎧ x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=11,y 0=-6.因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144.1.在研究直线与圆锥曲线位置关系时,常涉及弦长、中点、面积等问题.一般是先联立方程,再根据根与系数的关系,用设而不求,整体代入的技巧进行求解.2.处理圆与圆锥曲线相结合问题的注意点注意圆心、半径和平面几何知识的应用,如直径所对的圆周角为直角,构成了垂直关系;弦心距、半径、弦长的一半构成直角三角形等.提醒:“点差法”是解决中点弦问题的捷径,但必要时需要检验. ■考题变迁·提素养·1.(面积问题)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )A.334B.938C.6332D.94D [易知直线AB 的方程为y =33⎝ ⎛⎭⎪⎫x -34,与y 2=3x 联立并消去x ,得4y 2-123y -9=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=33,y 1y 2=-94. S △OAB =12|OF |·|y 1-y 2| =12×34(y 1+y 2)2-4y 1y 2=3827+9=94.故选D.]2.(弦长问题)若双曲线y 2a 2-x 2b 2=1(a >0,b >0)的渐近线与抛物线y =x 2+1相切,且被圆x 2+(y -a )2=1截得的弦长为2,则a =( )A.52B.102C. 5D.10B [可以设切点为(x 0,x 20+1),由y ′=2x ,∴切线方程为y -(x 20+1)=2x 0(x-x 0),即y =2x 0x -x 20+1,∵已知双曲线的渐近线为y =±a b x ,∴⎩⎨⎧-x 20+1=0,±ab =2x 0,x 0=±1,ab =2,一条渐近线方程为y =2x ,圆心(0,a )到直线y =2x 的距离是a 5=22⇒a =102.故选B.]3.(最值问题)如图,已知抛物线C1的顶点在坐标原点,焦点在x 轴上,且过点(2,4),圆C 2:x 2+y 2-4x +3=0,过圆心C 2的直线l 与抛物线和圆C 2分别交于点P ,Q 和M ,N ,则|PN |+4|QM |的最小值为( )A .23B .42C .12D .52A [由题意可设抛物线C 1的方程为y 2=2px (p >0),因为抛物线C 1过点(2,4),所以16=2p ×2,解得p =4,所以抛物线C 1的方程为y 2=8x .圆C 2:x 2+y 2-4x +3=0整理得(x -2)2+y 2=1,可知圆心C 2(2,0)恰好是抛物线y 2=8x 的焦点,设P (x 1,y 1),Q (x 2,y 2). ①当直线l 的斜率不存在时,l :x =2,所以P (2,4),Q (2,-4), 于是|PN |+4|QM |=|PC 2|+|C 2N |+4|QC 2|+4|C 2M |=|PC 2|+4|QC 2|+5=4+4×4+5=25.②当直线l 的斜率存在时,易知斜率不为0,可设l 的方程为y =k (x -2)(k ≠0), 由⎩⎪⎨⎪⎧y =k (x -2),y 2=8x ,得k 2x 2-(4k 2+8)x +4k 2=0,则Δ>0,且x 1x 2=4,即x 2=4x 1.所以|PN |+4|QM |=|PC 2|+4|QC 2|+5=x 1+2+4(x 2+2)+5=x 1+4x 2+15=x 1+16x 1+15≥2x 1×16x 1+15=8+15=23,当且仅当x 1=16x 1,即x 1=4时等号成立.因为23<25,所以|PN |+4|QM |的最小值为23.故选A.]。
2020届高考数学大二轮复习冲刺经典专题第二编讲专题专题五解析几何第2讲椭圆、双曲线、抛物线课件文
∴∠F1PF2=60°,由余弦定理可得 4c2=16a2+4a2-2·4a·2a·cos60°, ∴c= 3a,∴b= c2-a2= 2a. ∴ba= 2,∴双曲线 C 的渐近线方程为 y=± 2x.故选 A.
(2)已知 F1,F2 为双曲线ax22-by22=1(a>0,b>0)的左、右焦点,以 F1F2 为直
第二编 讲专题 专题五 解析几何
第2讲 椭圆、双曲线、抛物线
「考情研析」1.考查圆锥曲线的定义、方程及几何性质,特别是椭圆、 双曲线的离心率和双曲线的渐近线. 2.以解答题的形式考查直线与圆锥曲 线的位置关系(弦长、中点等).
1
PART ONE
核心知识回顾
1.圆锥曲线的定义式 (1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|); (2)双曲线:||PF1|-|PF2||=2a(2a<|F1F2|); (3)抛物线:|PF|=|PM|,点 F 不在直线 l 上,PM⊥l 于 M(l 为抛物线的准 线方程).
A.y=± 2x
B.y=±
2 2x
C.y=±2x D.y=±2 2x
答案 A
解析 由题意得,|PF1|=2|PF2|,|PF1|-|PF2|=2a,∴|PF1|=4a,|PF2|= 2a,
由于 P,M 关于原点对称,F1,F2 关于原点对称,∴线段 PM,F1F2 互 相平分,四边形 PF1MF2 为平行四边形,PF1∥MF2,∵∠MF2N=60°,
D. 10
答案 B
解析 设双曲线的右焦点为 F′,取 MN 的中点 P,连接 F′P,F′M, F′N,如图所示,由F→N=3F→M,可知|MF|=|MP|=|NP|.又 O 为 FF′的中点, 可知 OM∥PF′.∵OM⊥FN,∴PF′⊥FN.∴PF′为线段 MN 的垂直平分线.
2020高考数学精讲二轮第二讲圆锥曲线的方程与性质
2020高考数学复习:第二讲 圆锥曲线的方程与性质考点一 圆锥曲线的定义与标准方程圆锥曲线的定义(1)椭圆:|PF 1|+|PF 2|=2a (2a >|F 1F 2|);(2)双曲线:||PF 1|-|PF 2||=2a (2a <|F 1F 2|);(3)抛物线:|PF |=|PM |,点F 不在直线l 上,PM ⊥l 于M .[对点训练]1.(2018·江西九江模拟)F 1,F 2是椭圆x 29+y 27=1的左、右焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为( )A .7 B.74 C.72 D.752[解析] 由题意可得,a =3,b =7,c =2,|AF 1|+|AF 2|=6. ∴|AF 2|=6-|AF 1|.在△AF 1F 2中,|AF 2|2=|AF 1|2+|F 1F 2|2-2|AF 1|·|F 1F 2|·cos45°=|AF 1|2-4|AF 1|+8,∴(6-|AF 1|)2=|AF 1|2-4|AF 1|+8,解得|AF 1|=72,∴△AF 1F 2的面积S =12×72×22×22=72,故选C.[答案] C2.(2018·河南新乡二模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点B 是虚轴的一个端点,线段BF 与双曲线C 的右支交于点A ,若BA→=2AF →,且|BF →|=4,则双曲线C 的方程为( ) A.x 26-y 25=1 B.x 28-y 212=1C.x 28-y 24=1D.x 24-y 26=1[解析] 不妨设B (0,b ),由BA →=2AF →,F (c,0),可得A ⎝ ⎛⎭⎪⎫2c 3,b 3,代入双曲线C 的方程可得49×c 2a 2-19=1,即49·a 2+b 2a 2=109,∴b 2a 2=32,①又|BF→|=b 2+c 2=4,c 2=a 2+b 2, ∴a 2+2b 2=16,②由①②可得,a 2=4,b 2=6,∴双曲线C 的方程为x 24-y 26=1,故选D.[答案] D3.抛物线y 2=2px (p >0)的焦点为F ,O 为坐标原点,M 为抛物线上一点,且|MF |=4|OF |,△MFO 的面积为43,则抛物线的方程为( )A .y 2=6xB .y 2=8xC .y 2=16xD .y 2=152x [解析] 设M (x ,y ),因为|OF |=p 2,|MF |=4|OF |,所以|MF |=2p ,由抛物线定义知x +p 2=2p ,所以x =32p ,所以y =±3p ,又△MFO的面积为43,所以12×p 2×3p =43,解得p =4(p =-4舍去).所以抛物线的方程为y 2=8x ,故选B.[答案] B4.(2018·安徽淮南三校联考)已知双曲线x24-y22=1右焦点为F,P为双曲线左支上一点,点A(0,2),则△APF周长的最小值为() A.4+ 2 B.4(1+2)C.2(2+6) D.6+3 2[解析]由题意知F(6,0),设左焦点为F0,则F0(-6,0),由题可知△APF的周长l为|P A|+|PF|+|AF|,而|PF|=2a+|PF0|,∴l =|P A|+|PF0|+2a+|AF|≥|AF0|+|AF|+2a=(0+6)2+(2-0)2+(6-0)2+(0-2)2+2×2=42+4=4(2+1),当且仅当A、F0、P三点共线时取得“=”,故选B.[答案] B[快速审题]看到求圆锥曲线方程,想到待定系数法、定义法;看到椭圆和双曲线上一点与两焦点构成的三角形,想到定义的应用.求解圆锥曲线标准方程的思路方法(1)定型,就是指定类型,也就是确定圆锥曲线的焦点位置,从而设出标准方程.(2)计算,即利用定义或待定系数法求出方程中的a2,b2或p.考点二圆锥曲线的几何性质1.在椭圆中:a2=b2+c2,离心率为e=ca=1-⎝⎛⎭⎪⎫ba2.2.在双曲线中:c2=a2+b2,离心率为e=ca=1+⎝⎛⎭⎪⎫ba2.3.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±b a x .[解析] (1)解法一:由题意知,e =c a =3,所以c =3a ,所以b =c 2-a 2=2a ,所以b a =2,所以该双曲线的渐近线方程为y =±b a x =±2x ,故选A.解法二:由e =c a = 1+⎝ ⎛⎭⎪⎫b a 2=3,得b a =2,所以该双曲线的渐近线方程为y =±b a x =±2x ,故选A.(2)设|F 1F 2|=2c ,|AF 1|=m ,若△F 1AB 是以A 为直角顶点的等腰直角三角形,所以|AB |=|AF 1|=m ,|BF 1|=2m .由椭圆的定义可知△F 1AB 的周长为4a ,所以4a =2m +2m ,m =2(2-2)a .所以|AF 2|=2a -m =(22-2)a .因为|AF 1|2+|AF 2|2=|F 1F 2|2,所以4(2-2)2a 2+4(2-1)2a 2=4c 2,所以e 2=9-62,e =6-3,故选D.[答案] (1)A (2)D[探究追问1] 本例(2)中若椭圆改为双曲线x 2a 2-y 2b 2=1(a >0,b >0)过F 2的直线与双曲线交于A ,B 两点,其他条件不变,则双曲线离心率e 的值为________.[解析] 如图所示:因为|AF 1|-|AF 2|=2a ,|BF 1|-|BF 2|=2a ,|AF 1|=|AF 2|+|BF 2|, 所以|BF 2|=2a ,|BF 1|=4a .所以|AF 1|=22a ,|AF 2|=22a -2a .因为|F 1F 2|2=|AF 1|2+|AF 2|2,所以(2c )2=(22a )2+(22a -2a )2,所以e 2=5-22,e =5-2 2.[答案] 5-2 2[探究追问2] 在本例(2)中若条件变为“在双曲线x 2a 2-y 2b 2=1(a >0,b >0)中,A 1,A 2是左、右顶点,F 是右焦点,B 是虚轴的上端点,若在线段BF 上存在点P ,使得△P A 1A 2构成以A 1A 2为斜边的直角三角形”,则双曲线离心率e 的取值范围是________.[解析] 由题意知以线段A 1A 2为直径的圆和线段BF 有公共点,则原点到直线BF 的距离小于或等于a , 又直线BF 的方程为x c +y b =1,即bx +cy -bc =0,所以|-bc |b 2+c2≤a ,整理得a 4-3a 2c 2+c 4≤0, 即e 4-3e 2+1≤0,解得3-52≤e 2≤3+52,又e >1,所以1<e ≤5+12.[答案] ⎝ ⎛⎦⎥⎤1,5+12应用圆锥曲线性质的2个要点(1)确定椭圆和双曲线的离心率的值及范围,其关键就是确立一个关于a ,b ,c 的方程(组)或不等式(组),再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式.建立关于a ,b ,c 的方程(组)或不等式(组),要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.(2)求双曲线渐近线方程关键在于求b a 或a b 的值,也可将双曲线等号右边的“1”变为“0”,然后因式分解得到. [对点训练]1.(2018·临汾二模)若直线y =-3x 与椭圆C :x 2a 2+y 2b 2=1(a >b >0)交于A ,B 两点,以线段AB 为直径的圆恰好经过椭圆的右焦点,则椭圆C 的离心率为( )A.32B.3-12C.3-1 D .4-2 3[解析] 设椭圆的左、右焦点分别为F 1,F 2,O 为坐标原点,由题意可得|OF 2|=|OA |=|OB |=|OF 1|=c .由y =-3x 得∠AOF 2=2π3,∠AOF 1=π3,∴|AF 2|=3c ,|AF 1|=c .由椭圆的定义知,|AF 1|+|AF 2|=2a ,∴c +3c =2a ,∴e =c a =3-1,故选C.[答案] C2.(2018·南昌调研)已知F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2最小内角的大小为30°,则双曲线C 的渐近线方程是( ) A.2x ±y =0 B .x ±2y =0C .x ±2y =0D .2x ±y =0[解析] 由题意,不妨设|PF 1|>|PF 2|,则根据双曲线的定义得, |PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,解得|PF 1|=4a ,|PF 2|=2a .在△PF 1F 2中,|F 1F 2|=2c ,而c >a ,所以|PF 2|<|F 1F 2|,所以∠PF 1F 2=30°,所以(2a )2=(2c )2+(4a )2-2×2c ×4a cos30°, 得c =3a ,所以b =c 2-a 2=2a ,所以双曲线的渐近线方程为y =±b a x =±2x ,即2x ±y =0,故选A.[答案] A考点三 抛物线中的最值问题抛物线中的最值问题一般情况下都与抛物线的定义有关,实现由点到点的距离与点到直线的距离的转化.[解题指导]⎦⎥⎤(1)|PQ |≥|PC |-1 |PF |=d ―→|PQ |+d 的最值―→|PC |+|PF |的最值―→利用三角形法则求解 (2)作图形―→|PF |转化为P 到准线的距离―→利用三角形法则求解[解析] (1)由题意得圆x 2+(y -4)2=1的圆心C (0,4),半径r =1,抛物线的焦点F (1,0).由抛物线的几何性质可得:点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是|CF |-r =1+16-1=17-1,故选C.(2)过P 作PM ⊥l 于M ,则由抛物线定义知|PM |=|PF |,故|P A |+|PF |=|P A |+|PM |.当A 、P 、M 三点共线时,|P A |+|PM |最小,此时点P 坐标为(2,2),故选C.[答案] (1)C (2)C与抛物线最值有关问题的两种转化(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解.(2)将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”解决.[对点训练]1.(2018·郑州检测)已知抛物线x 2=4y 上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为( )A.34B.32 C .1 D .2[解析] 由题意知,抛物线的准线l :y =-1,过点A 作AA 1⊥l 交l 于点A 1,过点B 作BB 1⊥l 交l 于点B 1,设弦AB 的中点为M ,过点M 作MM 1⊥l 交l 于点M 1,则|MM 1|=|AA 1|+|BB 1|2.因为|AB |≤|AF |+|BF |(F 为抛物线的焦点),即|AF |+|BF |≥6,所以|AA 1|+|BB 1|≥6,2|MM 1|≥6,|MM 1|≥3,故点M到x 轴的距离d ≥2,故选D.[答案] D2.已知点F 为抛物线y 2=-8x 的焦点,O 为坐标原点,点P 是抛物线准线上一动点,点A 在抛物线上,且|AF |=4,则|P A |+|PO |的最小值为( )A .6B .2+4 2C .213D .4 3[解析] 由已知可得抛物线y 2=-8x 的焦点为F (-2,0),准线方程为x =2.设点A 的坐标为(x 0,y 0),根据抛物线的定义可得2-x 0=4,所以x 0=-2,y 0=±4.O 关于准线的对称点为O ′(4,0),则当点P 为AO ′与准线x =2的交点时,|P A |+|PO |有最小值,且最小值为|AO ′|=213,故选C.[答案] C1.(2018·浙江卷)双曲线x 23-y 2=1的焦点坐标是( )A .(-2,0),(2,0)B .(-2,0),(2,0)C .(0,-2),(0,2)D .(0,-2),(0,2)[解析] ∵a 2=3,b 2=1,∴c =a 2+b 2=2.又∵焦点在x 轴上,∴双曲线的焦点坐标为(-2,0),(2,0),故选B.[答案] B2.(2018·天津卷)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( )A.x 24-y 212=1B.x 212-y 24=1 C.x 23-y 29=1 D.x 29-y 23=1[解析] ∵双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,∴e 2=1+b2a 2=4,∴b 2a 2=3,即b 2=3a 2,∴c 2=a 2+b 2=4a 2,由题意可设A (2a,3a ),B (2a ,-3a ), ∵b 2a 2=3,∴渐近线方程为y =±3x ,则点A 与点B 到直线3x -y =0的距离分别为d 1=|23a -3a |2=23-32a ,d 2=|23a +3a |2=23+32a ,又∵d 1+d 2=6,∴23-32a +23+32a =6,解得a =3,∴b 2=9,∴双曲线的方程为x 23-y 29=1,故选C.[答案] C3.(2018·全国卷Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )A.23B.12C.13D.14[解析] 由题意易知直线AP 的方程为y =36(x +a ),① 直线PF 2的方程为y =3(x -c ).② 联立①②得y =35(a +c ),如图,过P向x轴引垂线,垂足为H,则PH=35(a+c).因为∠PF2H=60°,PF2=F1F2=2c,PH=35(a+c),所以sin60°=PH PF2=35(a+c)2c=3 2,即a+c=5c,即a=4c,所以e=ca=14,故选D. [答案] D4.(2018·江苏卷)在平面直角坐标系xOy中,若双曲线x2a2-y2 b2=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为32c,则其离心率的值是________.[解析]双曲线的一条渐近线方程为bx-ay=0,则F(c,0)到这条渐近线的距离为|bc|b2+(-a)2=32c,∴b=32c,∴b2=34c2,又b2=c2-a2,∴c2=4a2,∴e=ca=2.[答案] 25.(2018·北京卷)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2-y 2n 2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________;双曲线N 的离心率为________.[解析]解法一:如图是一个正六边形,A ,B ,C ,D 是双曲线N 的两条渐近线与椭圆M 的四个交点,F 1,F 2为椭圆M 的两个焦点.∵直线AC 是双曲线N 的一条渐近线,且其方程为y =3x , ∴nm = 3.设m =k ,则n =3k ,则双曲线N 的离心率e 2=k 2+(3k )2k=2. 连接F 1C ,在正六边形ABF 2CDF 1中,可得∠F 1CF 2=90°,∠CF 1F 2=30°.设椭圆的焦距为2c ,则|CF 2|=c ,|CF 1|=3c ,再由椭圆的定义得|CF 1|+|CF 2|=2a ,即(3+1)c =2a ,∴椭圆M 的离心率e 1=ca =23+1=2(3-1)(3+1)(3-1)=3-1. 解法二:双曲线N 的离心率同解法一.由题意可得C 点坐标为⎝ ⎛⎭⎪⎫c 2,32c ,代入椭圆M 的方程,并结合a ,b ,c 的关系,联立得方程组⎩⎨⎧⎝ ⎛⎭⎪⎫c 22a 2+⎝ ⎛⎭⎪⎫32c 2b 2=1,a 2-b 2=c 2,解得ca =3-1⎝ ⎛⎭⎪⎫c a =3+1舍去. [答案] 3-1 2圆锥曲线的定义、方程与性质是每年高考必考的内容.以选择、填空题的形式考查,常出现在第4~11或15~16题的位置,着重考查圆锥曲线的几何性质与标准方程,难度中等.热点课题15 几何情境下的圆锥曲线问题[感悟体验]1.(2018·福建福州质检)已知双曲线E:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,|F1F2|=6,P是E右支上的一点,PF1与y轴交于点A,△P AF2的内切圆与边AF2的切点为Q.若|AQ|=3,则E的离心率是()A.2 3 B. 5 C. 3 D. 2[解析] 如图所示,设PF 1、PF 2分别与△P AF 2的内切圆切于M 、N ,依题意,有|MA |=|AQ |,|NP |=|MP |,|NF 2|=|QF 2|,|AF 1|=|AF 2|=|QA |+|QF 2|,2a =|PF 1|-|PF 2|=(|AF 1|+|MA |+|MP |)-(|NP |+|NF 2|)=2|QA |=23,故a =3,从而e =c a =33=3,故选C.[答案] C 2.(2018·贵阳监测)已知点P 是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)左支上一点,F 1、F 2分别是双曲线的左、右焦点,且PF 1⊥PF 2,PF 2与两条渐近线相交于M 、N 两点(如图),点N 恰好平分线段PF 2,则双曲线的离心率是________.[解析] 由题意可知,ON 为△PF 1F 2的中位线,∴PF 1∥ON , ∴tan ∠PF 1F 2=tan ∠NOF 2=k ON =b a ,∴⎩⎨⎧|PF 2||PF 1|=b a,|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2,解得⎩⎪⎨⎪⎧|PF 1|=2a ,|PF 2|=2b .又|PF 2|-|PF 1|=2a ,∴2b -2a =2a ,b =2a ,c =a 2+b 2=5a ,e =ca = 5.[答案]5专题跟踪训练(二十五)一、选择题1.(2018·广西三市第一次联合调研)若抛物线y 2=2px (p >0)上的点A (x 0,2)到其焦点的距离是A 到y 轴距离的3倍,则p 等于( )A.12 B .1 C.32 D .2[解析] 由题意3x 0=x 0+p 2,x 0=p 4,则p 22=2,∵p >0,∴p =2,故选D.[答案] D2.(2018·深圳一模)过点(3,2)且与椭圆3x 2+8y 2=24有相同焦点的椭圆方程为( )A.x 25+y 210=1B.x 210+y 215=1 C.x 215+y 210=1 D.x 210+y 25=1[解析] 椭圆3x 2+8y 2=24的焦点为(±5,0),可得c =5,设所求椭圆的方程为x 2a 2+y 2b 2=1,可得9a 2+4b 2=1,又a 2-b 2=5,得b 2=10,a 2=15,所以所求的椭圆方程为x 215+y210=1,故选C.[答案] C3.(2018·福州模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右顶点与抛物线y 2=8x 的焦点重合,且其离心率e =32,则该双曲线的方程为( )A.x 24-y 25=1B.x 25-y 24=1 C.y 24-x 25=1 D.y 25-x 24=1[解析] 易知抛物线y 2=8x 的焦点为(2,0),所以双曲线的右顶点是(2,0),所以a =2.又双曲线的离心率e =32,所以c =3,b 2=c 2-a 2=5,所以双曲线的方程为x 24-y 25=1,故选A.[答案] A4.(2018·合肥二模)若中心在原点,焦点在y 轴上的双曲线离心率为3,则此双曲线的渐近线方程为( )A .y =±xB .y =±22xC .y =±2xD .y =±12x[解析] 根据题意,该双曲线的离心率为3,即e =ca =3,则有c =3a ,进而b =c 2-a 2=2a .又由该双曲线的焦点在y 轴上,则其渐近线方程为y =±b a x =±22x ,故选B.[答案] B5.(2018·郑州一模)已知双曲线y 24-x 2=1的两条渐近线分别与抛物线y 2=2px (p >0)的准线交于A ,B 两点,O 为坐标原点,若△OAB 的面积为1,则p 的值为( )A .1 B. 2 C .2 2 D .4[解析] 双曲线y 24-x 2=1的两条渐近线方程是y =±2x ,抛物线y 2=2px (p >0)的准线方程是x =-p2,故A ,B 两点的纵坐标分别是y=±p .又△AOB 的面积为1,∴12·p2·2p =1.∵p >0,∴得p =2,故选B.[答案] B6.(2018·东北三校联考)已知F 1,F 2是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过点F 1的直线l 与E 的左支交于P ,Q 两点,若|PF 1|=2|F 1Q |,且F 2Q ⊥PQ ,则E 的离心率是( )A.52B.72C.153D.173[解析] 设|F 1Q |=t (t >0),则|PF 1|=2t ,由双曲线的定义有,|F 2Q |=t +2a ,|PF 2|=2t +2a ,又F 2Q ⊥PQ ,所以△F 1F 2Q ,△PQF 2都为直角三角形.由勾股定理有⎩⎪⎨⎪⎧|F 1Q |2+|QF 2|2=|F 1F 2|2,|PQ |2+|QF 2|2=|PF 2|2,即 ⎩⎪⎨⎪⎧t 2+(t +2a )2=4c 2,(3t )2+(t +2a )2=(2t +2a )2,解得⎩⎨⎧t =2a 3,c =173a .故离心率e =c a =173,故选D. [答案] D7.(2018·长沙一模)A 是抛物线y 2=2px (p >0)上一点,F 是抛物线的焦点,O 为坐标原点,当|AF |=4时,∠OF A =120°,则抛物线的准线方程是( )A .x =-1B .y =-1C .x =-2D .y =-2[解析] 过A 向准线作垂线,设垂足为B ,准线与x 轴的交点为D .因为∠OF A =120°,所以△ABF 为等边三角形,∠DBF =30°,从而p =|DF |=2,因此抛物线的准线方程为x =-1,故选A.[答案] A8.(2018·陕西西安三模)已知圆x 2+y 2-4x +3=0与双曲线x 2a 2-y 2b 2=1的渐近线相切,则双曲线的离心率为( )A. 3 B .2 3 C .2 2 D.233[解析] 将圆的一般方程x 2+y 2-4x +3=0化为标准方程(x -2)2+y 2=1.由圆心(2,0)到直线ba x -y =0的距离为1,得⎪⎪⎪⎪⎪⎪2b a 1+⎝ ⎛⎭⎪⎫b a 2=1,解得⎝ ⎛⎭⎪⎫b a 2=13,所以双曲线的离心率为e = 1+⎝ ⎛⎭⎪⎫b a 2=233,故选D. [答案] D9.(2018·宁夏银川一中二模)已知直线y =233x 和椭圆x 2a 2+y 2b 2=1(a >b >0)交于不同的两点M ,N ,若M ,N 在x 轴上的射影恰好为椭圆的两个焦点,则椭圆的离心率为( )A.22B.32C.33D.23[解析] 由题意可知,M ,N 在x 轴上的射影恰好为椭圆的两个焦点,则M 点坐标为⎝ ⎛⎭⎪⎫c ,b 2a ,则b 2a =233c ,则3b 2=23ac ,即3c 2+23ac -3a 2=0.上式两边同除以a 2,整理得3e 2+23e -3=0,解得e =-3或e =33.由0<e <1,得e =33,故选C.[答案] C10.(2018·杭州第一次质检)设双曲线x 24-y 23=1的左、右焦点分别为F 1,F 2,过F 1的直线l 交双曲线左支于A ,B 两点,则|BF 2|+|AF 2|的最小值为( )A.192 B .11 C .12 D .16[解析] 由双曲线定义可得|AF 2|-|AF 1|=2a =4,|BF 2|-|BF 1|=2a =4,两式相加可得|AF 2|+|BF 2|=|AB |+8,由于AB 为经过双曲线的左焦点与左支相交的弦,而|AB |min =2b 2a =3,故|AF 2|+|BF 2|=|AB |+8≥3+8=11,故选B.[答案] B11.(2018·全国卷Ⅰ)已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |=( )A.32 B .3 C .2 3 D .4 [解析]由双曲线C :x 23-y 2=1可知其渐近线方程为y =±33x ,∴∠MOx =30°,∴∠MON =60°,不妨设∠OMN =90°,则易知焦点F 到渐近线的距离为b ,即|MF |=b =1,又知|OF |=c =2,∴|OM |=3,则在Rt △OMN 中,|MN |=|OM |·tan ∠MON =3,故选B.[答案] B12.(2018·济宁模拟)如图,椭圆的中心在坐标原点O ,顶点分别是A 1,A 2,B 1,B 2,焦点分别为F 1,F 2,延长B 1F 2与A 2B 2交于P 点,若∠B 1P A 2为钝角,则此椭圆的离心率的取值范围为( )A.⎝ ⎛⎭⎪⎫0,5+14 B.⎝ ⎛⎭⎪⎫5+14,1 C.⎝ ⎛⎭⎪⎫0,5-12 D.⎝ ⎛⎭⎪⎫5-12,1 [解析] 设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),∠B 1P A 2为钝角可转化为B 2A 2→,F 2B 1→所夹的角为钝角,则(a ,-b )·(-c ,-b )<0,得b 2<ac ,即a 2-c 2<ac ,故⎝ ⎛⎭⎪⎫c a 2+c a -1>0,即e 2+e -1>0,e >5-12或e <-5-12,又0<e <1,∴5-12<e <1,故选D.[答案] D二、填空题13.(2018·成都摸底测试)已知双曲线x2a2-y22=1(a>0)和抛物线y2=8x有相同的焦点,则双曲线的离心率为________.[解析]易知抛物线y2=8x的焦点为(2,0),所以双曲线x2a2-y22=1的焦点为(2,0),则a2+2=22,即a=2,所以双曲线的离心率e=c a=22= 2.[答案] 214.(2018·湖北八校联考)如图所示,已知椭圆C的中心为原点O,F(-5,0)为C的左焦点,P为C上一点,满足|OP|=|OF|且|PF|=6,则椭圆C的方程为________.[解析]由题意可得c=5,设右焦点为F′,连接PF′,由|OP|=|OF|=|OF′|知,∠PFF′=∠FPO,∠OF′P=∠OPF′,∴∠PFF′+∠OF′P=∠FPO+∠OPF′,∴∠FPO+∠OPF′=90°,即PF⊥PF′.在Rt△PFF′中,由勾股定理,得|PF′|=|FF′|2-|PF|2=102-62=8,由椭圆的定义,得|PF|+|PF′|=2a=6+8=14,从而a=7,a2=49,于是b 2=a 2-c 2=49-52=24,∴椭圆C 的方程为x 249+y 224=1.[答案] x 249+y 224=115.(2018·西安四校联考)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,过F 1的直线分别交双曲线的两条渐近线于P 、Q 两点,若P 恰为线段F 1Q 的中点,且QF 1⊥QF 2,则此双曲线的渐近线方程为____________.[解析] 根据题意,P 是线段F 1Q 的中点,QF 1⊥QF 2,且O 是线段F 1F 2的中点,故OP ⊥F 1Q ,而两条渐近线关于y 轴对称,故∠POF 1=∠QOF 2,又∠POF 1=∠POQ ,所以∠QOF 2=60°,渐近线的斜率为±3,故渐近线方程为y =±3x .[答案] y =±3x 16.如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.[解析] 由已知条件易得B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,F (c,0),∴BF→=⎝ ⎛⎭⎪⎫c +32a ,-b 2,CF →=⎝⎛⎭⎪⎫c -32a ,-b 2,由∠BFC =90°,可得BF →·CF→=0, 所以⎝⎛⎭⎪⎫c -32a ⎝ ⎛⎭⎪⎫c +32a +⎝ ⎛⎭⎪⎫-b 22=0,c 2-34a 2+14b 2=0,即4c 2-3a 2+(a 2-c 2)=0, 亦即3c 2=2a 2,所以c 2a 2=23,则e =c a =63. [答案] 63。
2020高考理科数学二轮考前复习方略课件:专题五 第2讲 圆锥曲线的定义、方程与性质
4.(2017·高考全国卷Ⅱ)已知 F 是抛物线 C:y2=8x 的焦点,M 是 C 上一点,FM 的延 长线交 y 轴于点 N.若 M 为 FN 的中点,则|FN|=____________. 解析:法一:依题意,抛物线 C:y2=8x 的焦点 F(2,0),准线 x=-2,因为 M 是 C 上 一点,FM 的延长线交 y 轴于点 N,M 为 FN 的中点,设 M(a,b)(b>0),所以 a=1,b =2 2,所以 N(0,4 2),|FN|= 4+32=6. 法二:依题意,抛物线 C:y2=8x 的焦点 F(2,0),准线 x=-2,因为 M 是 C 上一点, FM 的延长线交 y 轴于点 N,M 为 FN 的中点,则点 M 的横坐标为 1,所以|MF|=1- (-2)=3,|FN|=2|MF|=6. 答案:6
)
A.x82-1y02 =1
B.x42-y52=1
C.x52-y42=1
D.x42-y32=1
解析:选 B.法一:由双曲线的渐近线方程可设双曲线方程为x42-y52=k(k>0),即4xk2-5yk2 =1,因为双曲线与椭圆1x22+y32=1 有公共焦点,所以 4k+5k=12-3,解得 k=1,故双 曲线 C 的方程为x42-y52=1.故选 B. 法二:因为椭圆1x22+y32=1 的焦点为(±3,0),双曲线与椭圆1x22+y32=1 有公共焦点,所以
3.过抛物线 y2=2px(p>0)的焦点 F 作直线交抛物线于 A,B 两点,若|AF|=2|BF|=6, 则 p=________. 解析:设直线 AB 的方程为 x=my+p2,A(x1,y1),B(x2,y2),且 x1>x2,将直线 AB 的 方程代入抛物线方程得 y2-2pmy-p2=0,所以 y1y2=-p2,4x1x2=p2.设抛物线的准线为 l,过 A 作 AC⊥l,垂足为 C,过 B 作 BD⊥l,垂足为 D,因为|AF|=2|BF|=6,根据抛 物线的定义知,|AF|=|AC|=x1+p2=6,|BF|=|BD|=x2+p2=3,所以 x1-x2=3,x1+x2 =9-p,所以(x1+x2)2-(x1-x2)2=4x1x2=p2,即 18p-72=0,解得 p=4. 答案:4
2020江苏高考理科数学二轮讲义:圆锥曲线的标准方程与几何性质含解析
所以MB= AB、
又斜率为 、∠BAE=30°、
所以BE= AB、所以BM=BE、
所以M为抛物线的焦点、所以p=2.
[答案]2
1.(20xx·南京模拟)椭圆 + =1的离心率是________.
[解析]由椭圆方程可得a=5、b=3、c=4、e= .
【解析】(1)因为双曲线x2- =1(b>0)经过点(3、4)、所以9- =1、得b= 、所以该双曲线的渐近线方程是y=±bx=± x.
(2)设直线FA的倾斜角为α、因为焦点F(0、1)、定点A(2 、0)、
所以tanα= =- 、sinα= 、
如图、作MB⊥l、垂足为点B、由抛物线的定义可得:FM=MB、
[解析]设F、B、C的坐标分别为(-c、0)、(0、b)、(1、0)、则FC、BC的中垂线分别为
x= 、y- = .
联立方程组 解出
m+n= + >0、即b-bc+b2-c>0、即(1+b)·(b-c)>0、所以b>c.从而b2>c2、
即有a2>2c2、
[解析]设点A(x1、y1)、C(x2、y2)、因为四边形OABC为矩形、所以点B(x1+x2、y1+y2)、则问题转化为方程组
存在实数解的问题.
展开第三个方程、整理得x1x2= .易知直线OA和OC的斜率均存在、分别设为k、- 、由 得x = 、同理x = 、因此 · = 、即关于k2的二次方程(k2)2- ·k2+1=0有正解、即 -4≥0、且3 -8>0、又a>b、所以a2≥3b2、所以 ≤e<1、故椭圆的离心率的最小值为 、此时矩形OABC为正方形.
2020版名师讲坛高三数学二轮专题复习课件:专题五 第2讲 圆锥曲线
【解答】 设椭圆的半焦距为 c,由题意知 4a=4 5,所以 a= 5. 设点 C290,y0,由题意知 y0<0,代入椭圆方程得29502+by202=1,所以 y0=-19b. 因为直线 BC 的方程为xc+by=1, 代入点 C290,-b9,得 c=2,
两边同时除以 a2,得 1-ac2=ac,即 e2+e-1=0,解得 e=-1+2 5或-1-2 5.又 0<e<1,
所以椭圆的离心率为 e=-1+2
5 .
举题固法
目标 1 圆锥曲线的定义及标准方程 如图,在平面直角坐标系 xOy 中,椭圆 E:ax22+by22
=1(a>b>0)的左、右焦点分别为 F 1,F 2,上顶点为 B,直线 BF 2 交椭圆于点 C,△BF 1C 的周长为 4 5.
【解析】设点 B 的坐标为(x0,y0).
因为 x2+by22=1,
所以 F 1(- 1-b2,0),F 2( 1-b2,0).
因为 AF 2⊥x 轴,所以可取 A( 1-b2,b2).
因为 AF 1=3F 1B,所以A→F1=3F→1B, 所以(-2 1-b2,-b2)=3(x0+ 1-b2,y0),
目标 2 圆锥曲线的离心率问题
(1) (2019·广州二模)若过双曲线ax22-by22=1(a>0,b>0)的左焦点 F 作圆 x2+y2
=a92的切线,切点为 E,延长 F E 交双曲线右支于点 P,且F→P=2E→P,则双曲线的离心 17
率为____3____.
【解析】 如图,设 F 2 为双曲线的右焦点,F 2(c,0). 由F→P=2E→P知 E 是 F P 的中点,且 OE⊥F P.又 O 为 F F 2 的 中点,则 PF 2=2OE=23a,且 PF 2⊥F P.由勾股定理知 PF 2+ PF22=F F22,因为 PF -PF 2=2a,所以 PF =83a,所以23a2+ 83a2=(2c)2,解得 e= 317(负值舍去).
2020版高考数学二轮复习第2部分专题5解析几何第2讲圆锥曲线的定义、方程及性质教案文
第2讲 圆锥曲线的定义、方程及性质[做小题——激活思维]1.椭圆C :x 225+y 216=1的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆C 于A ,B 两点,则△F 1AB 的周长为( )A .12B .16C .20D .24 C [△F 1AB 的周长为 |F 1A |+|F 1B |+|AB |=|F 1A |+|F 2A |+|F 1B |+|F 2B | =2a +2a =4a .在椭圆x 225+y 216=1中,a 2=25,a =5,∴△F 1AB 的周长为4a =20,故选C.]2.已知点F ⎝ ⎛⎭⎪⎫14,0,直线l :x =-14,点B 是l 上的动点.若过点B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( )A .双曲线B .椭圆C .圆D .抛物线D [由已知得|MF |=|MB |,根据抛物线的定义知,点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线.]3.设P 是双曲线x 216-y 220=1上一点,F 1,F 2分别是双曲线左、右两个焦点,若|PF 1|=9,则|PF 2|=________.17 [由题意知|PF 1|=9<a +c =10,所以P 点在双曲线的左支,则有|PF 2|-|PF 1|=2a =8,故|PF 2|=|PF 1|+8=17.]4.设e 是椭圆x 24+y 2k =1的离心率,且e =23,则实数k 的值是________.209或365[当k >4时,有e =1-4k =23,解得k =365;当0<k <4时,有e =1-k4=23,解得k =209.故实数k 的值为209或365.]5.双曲线x 2a 2-y 29=1(a >0)的一条渐近线方程为y =35x ,则a =________.5 [∵双曲线的标准方程为x 2a 2-y 29=1(a >0),∴双曲线的渐近线方程为y =±3ax .又双曲线的一条渐近线方程为y =35x ,∴a =5.]6.抛物线8x 2+y =0的焦点坐标为________.⎝ ⎛⎭⎪⎫0,-132 [由8x 2+y =0,得x 2=-18y . ∴2p =18,p =116,∴焦点为⎝⎛⎭⎪⎫0,-132.][扣要点——查缺补漏]1.圆锥曲线的定义及标准方程(1)应用圆锥曲线的定义解题时,一定不要忽视定义中的隐含条件,如T 3.(2)凡涉及椭圆或双曲线上的点到焦点的距离、抛物线上的点到焦点距离,一般可以利用定义进行转化.如T 1,T 2.(3)求解圆锥曲线的标准方程的方法是“先定型,后计算”. 2.圆锥曲线的几何性质(1)确定椭圆和双曲线的离心率的值及范围,就是确立一个关于a ,b ,c 的方程(组)或不等式(组),再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,如T 4.(2)要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.圆锥曲线的定义与标准方程(5年4考)[高考解读] 高考对圆锥曲线的定义及标准方程的直接考查较少,多对于圆锥曲线的性质进行综合考查.1.(2019·全国卷Ⅰ)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( )A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=1 切入点:|AF 2|=2|F 2B |,|AB |=|BF 1|.关键点:挖掘隐含条件,确定点A 的位置,求a ,b 的值.B [设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),由椭圆定义可得|AF 1|+|AB |+|BF 1|=4a .∵|AB |=|BF1|, ∴|AF 1|+2|AB |=4a .又|AF 2|=2|F 2B |,∴|AB |=32|AF 2|,∴|AF 1|+3|AF 2|=4a .又∵|AF 1|+|AF 2|=2a ,∴|AF 2|=a ,∴A 为椭圆的短轴端点.如图,不妨设A (0,b ),又F 2(1,0),AF 2→=2F 2B →,∴B ⎝ ⎛⎭⎪⎫32,-b 2.将B 点坐标代入椭圆方程x 2a 2+y 2b 2=1,得94a 2+b 24b2=1,∴a 2=3,b 2=a 2-c 2=2.∴椭圆C 的方程为x 23+y 22=1.故选B.]2.(2015·全国卷Ⅰ)已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 周长最小时,该三角形的面积为________.切入点:△APF 的周长最小.关键点:根据双曲线的定义及△APF 周长最小,确定P 点坐标.126 [由双曲线方程x 2-y 28=1可知,a =1,c =3,故F (3,0),F 1(-3,0).当点P 在双曲线左支上运动时,由双曲线定义知|PF |-|PF 1|=2,所以|PF |=|PF 1|+2,从而△APF 的周长=|AP |+|PF |+|AF |=|AP |+|PF 1|+2+|AF |.因为|AF |=32+62=15为定值,所以当(|AP |+|PF 1|)最小时,△APF 的周长最小,由图象可知,此时点P 在线段AF 1与双曲线的交点处(如图所示).由题意可知直线AF 1的方程为y =26x +66,由⎩⎪⎨⎪⎧y =26x +66,x 2-y 28=1,得y 2+66y -96=0,解得y =26或y =-86(舍去), 所以S △APF =S △AF 1F -S △PF 1F=12×6×66-12×6×26=12 6.] [教师备选题]1.[一题多解](2015·全国卷Ⅱ)已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________.x 24-y 2=1 [法一:∵双曲线的渐近线方程为y =±12x , ∴可设双曲线的方程为x 2-4y 2=λ(λ≠0). ∵双曲线过点(4,3), ∴λ=16-4×(3)2=4, ∴双曲线的标准方程为x 24-y 2=1.法二:∵渐近线y =12x 过点(4,2),而3<2,∴点(4,3)在渐近线y =12x 的下方,在y =-12x 的上方(如图).∴双曲线的焦点在x 轴上,故可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0). 由已知条件可得⎩⎪⎨⎪⎧b a =12,16a 2-3b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1,∴双曲线的标准方程为x 24-y 2=1.]2.(2018·天津高考)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( )A.x 23-y 29=1B.x 29-y 23=1C.x 24-y 212=1 D.x 212-y 24=1 A [设双曲线的右焦点为F (c,0).将x =c 代入x 2a 2-y 2b 2=1,得c 2a 2-y 2b 2=1,∴ y =±b 2a.不妨设A ⎝ ⎛⎭⎪⎫c ,b 2a ,B ⎝⎛⎭⎪⎫c ,-b 2a . 双曲线的一条渐近线方程为y =bax ,即bx -ay =0,则d 1=⎪⎪⎪⎪⎪⎪b ·c -a ·b 2a b 2+-a2=|bc -b 2|c=bc(c -b ),d 2=⎪⎪⎪⎪⎪⎪b ·c +a ·b 2a b 2+-a2=|bc +b 2|c=bc(c +b ),∴ d 1+d 2=bc·2c =2b =6,∴ b =3. ∵ c a=2,c 2=a 2+b 2,∴ a 2=3, ∴ 双曲线的方程为x 23-y 29=1.故选A.]1.圆锥曲线的定义(1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|); (2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|); (3)抛物线:|MF |=d (d 为M 点到准线的距离).易错提醒:应用圆锥曲线定义解题时,易忽视定义中隐含条件导致错误. 2.求解圆锥曲线标准方程的方法是“先定型,后计算”(1)定型:就是指定类型,也就是确定圆锥曲线的焦点位置,从而设出标准方程; (2)计算:即利用待定系数法求出方程中的a 2,b 2或p .另外,当焦点位置无法确定时,抛物线方程常设为y 2=2ax 或x 2=2ay (a ≠0),椭圆方程常设为mx 2+ny 2=1(m >0,n >0,且m ≠n ),双曲线方程常设为mx 2-ny 2=1(mn >0).1.(椭圆的定义)设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( )A.514 B.59 C.49 D.513D [如图,设线段PF1的中点为M ,因为O 是F 1F 2的中点,所以OM ∥PF 2,可得PF 2⊥x 轴,|PF 2|=b 2a =53,|PF 1|=2a -|PF 2|=133,所以|PF 2||PF 1|=513.故选D.]2.(双曲线的标准方程)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为45,渐近线方程为2x ±y =0,则双曲线的方程为( )A.x 24-y 216=1 B.x 216-y 24=1 C.x 216-y 264=1 D.x 264-y 216=1 A [易知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦点在x 轴上,所以由渐近线方程为2x ±y =0,得b a=2,因为双曲线的焦距为45,所以c =2 5.结合c 2=a 2+b 2,可得a =2,b =4,所以双曲线的方程为x 24-y 216=1.]3.(抛物线的定义)过抛物线y 2=2px (p >0)的焦点F 作直线交抛物线于A ,B 两点,若|AF |=2|BF |=6,则p =________.4 [设直线AB 的方程为x =my +p2,A (x 1,y 1),B (x 2,y 2),且x 1>x 2,将直线AB 的方程代入抛物线方程得y 2-2pmy -p 2=0,所以y 1y 2=-p 2,4x 1x 2=p 2.设抛物线的准线为l ,过A 作AC ⊥l ,垂足为C (图略),过B 作BD ⊥l ,垂足为D ,因为|AF |=2|BF |=6,根据抛物线的定义知,|AF |=|AC |=x 1+p 2=6,|BF |=|BD |=x 2+p2=3,所以x 1-x 2=3,x 1+x 2=9-p ,所以(x 1+x 2)2-(x 1-x 2)2=4x 1x 2=p 2,即18p -72=0,解得p =4.]圆锥曲线的性质(5年17考)[高考解读] 高考对圆锥曲线性质的考查主要涉及椭圆和双曲线的离心率、双曲线的渐近线,难度适中.1.(2019·全国卷Ⅱ)若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p=( )A .2B .3C .4D .8 切入点:抛物线的焦点是椭圆的焦点. 关键点:正确用p 表示抛物线和椭圆的焦点.D [抛物线y 2=2px (p >0)的焦点坐标为⎝ ⎛⎭⎪⎫p2,0,椭圆x 23p +y 2p=1的焦点坐标为(±2p ,0).由题意得p2=2p ,∴p =0(舍去)或p =8.故选D.]2.(2019·全国卷Ⅱ)设F 为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( )A. 2B. 3 C .2 D. 5切入点:以OF 为直径的圆与圆x 2+y 2=a 2相交且|PQ |=|OF |.关键点:正确确定以OF 为直径的圆的方程.A [令双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 的坐标为(c,0),则c =a 2+b 2.如图所示,由圆的对称性及条件|PQ |=|OF |可知,PQ 是以OF 为直径的圆的直径,且PQ ⊥OF .设垂足为M ,连接OP ,则|OP |=a ,|OM |=|MP |=c2,由|OM |2+|MP |2=|OP |2,得⎝ ⎛⎭⎪⎫c 22+⎝ ⎛⎭⎪⎫c 22=a 2,∴c a =2,即离心率e = 2.故选A.]3.[一题多解](2017·全国卷Ⅰ)设A ,B 是椭圆C :x 23+y 2m=1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A .(0,1]∪[9,+∞)B .(0,3]∪[9,+∞)C .(0,1]∪[4,+∞)D .(0,3]∪[4,+∞)切入点:C 上存在点M 满足∠AMB =120°.关键点:求椭圆上的点与椭圆两端点连线构成角的范围建立关于m 的不等式. A [法一:设焦点在x 轴上,点M (x ,y ). 过点M 作x 轴的垂线,交x 轴于点N , 则N (x,0).故tan∠AMB =tan(∠AMN +∠BMN ) =3+x |y |+3-x |y |1-3+x |y |·3-x|y |=23|y |x 2+y 2-3. 又tan∠AMB =tan 120°=-3,且由x 23+y 2m =1可得x 2=3-3y 2m,则23|y |3-3y 2m+y 2-3=23|y |⎝ ⎛⎭⎪⎫1-3m y2=- 3. 解得|y |=2m3-m. 又0<|y |≤m ,即0<2m3-m ≤m ,结合0<m <3解得0<m ≤1.对于焦点在y 轴上的情况,同理亦可得m ≥9. 则m 的取值范围是(0,1]∪[9,+∞).故选A.法二:当0<m <3时,焦点在x 轴上, 要使C 上存在点M 满足∠AMB =120°, 则a b≥tan 60°=3,即3m≥3,解得0<m ≤1.当m >3时,焦点在y 轴上,要使C 上存在点M 满足∠AMB =120°, 则a b≥tan 60°=3,即m3≥3,解得m ≥9.故m 的取值范围为(0,1]∪[9,+∞). 故选A.] [教师备选题]1.(2018·全国卷Ⅱ)双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±3xC .y =±22x D .y =±32x A [因为双曲线的离心率为3,所以c a=3,即c =3a .又c 2=a 2+b 2,所以(3a )2=a 2+b 2,化简得2a 2=b 2,所以b a = 2.因为双曲线的渐近线方程为y =±bax ,所以y =±2x .故选A.]2.(2017·全国卷Ⅰ)已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF 与x轴垂直,点A 的坐标是(1,3),则△APF 的面积为( )A.13B.12C.23D.32D [因为F 是双曲线C :x 2-y 23=1的右焦点,所以F (2,0).因为PF ⊥x 轴,所以可设P 的坐标为(2,y P ). 因为P 是C 上一点,所以4-y 2P3=1,解得y P =±3,所以P (2,±3),|PF |=3.又因为A (1,3),所以点A 到直线PF 的距离为1, 所以S △APF =12×|PF |×1=12×3×1=32.故选D.]3.(2017·全国卷Ⅲ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A.63B.33C.23D.13A [由题意知以A 1A 2为直径的圆的圆心坐标为(0,0),半径为a . 又直线bx -ay +2ab =0与圆相切, ∴圆心到直线的距离d =2aba 2+b2=a ,解得a =3b ,∴b a=13,∴e =c a =a 2-b 2a=1-⎝ ⎛⎭⎪⎫b a 2=1-⎝ ⎛⎭⎪⎫132=63. 故选A.]1.椭圆、双曲线的离心率(或范围)的求法求椭圆、双曲线的离心率或离心率的范围,关键是根据已知条件确定a ,b ,c 的等量关系或不等关系,然后把b 用a ,c 代换,求ca的值.2.双曲线的渐近线的求法及用法(1)求法:把双曲线标准方程等号右边的1改为零,分解因式可得. (2)用法:①可得b a 或a b的值.②利用渐近线方程设所求双曲线的方程.1.(椭圆的离心率)[一题多解]直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13B.12C.23D.34B [法一:如图,|OB |为椭圆中心到l 的距离,则|OA |·|OF |=|AF |·|OB |,即bc =a ·b 2,所以e =c a =12.故选B.法二:设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),由题意可取直线l 的方程为y =ba 2-b 2x +b ,椭圆中心到l 的距离为b a 2-b 2a ,由题意知b a 2-b 2a =14×2b ,即a 2-b 2a =12,故离心率e =12.] 2.(双曲线的离心率)设F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,M为双曲线右支上一点,N 是MF 2的中点,O 为坐标原点,且ON ⊥MF 2,3|ON |=2|MF 2|,则C 的离心率为( )A .6B .5C .4D .3B [连接MF 1(图略),由双曲线的定义得|MF 1|-|MF 2|=2a ,因为N 为MF 2的中点,O 为F 1F 2的中点,所以ON ∥MF 1,所以|ON |=12|MF 1|,因为3|ON |=2|MF 2|,所以|MF 1|=8a ,|MF 2|=6a ,因为ON ⊥MF 2,所以MF 1⊥MF 2,在Rt△MF 1F 2中,由勾股定理得(8a )2+(6a )2=(2c )2,即5a =c ,因为e =c a,所以e =5,故选B.]3.(椭圆与抛物线的综合)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( )A .3B .6C .9D .12B [抛物线C :y 2=8x 的焦点坐标为(2,0),准线方程为x =-2.从而椭圆E 的半焦距c=2.可设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),因为离心率e =c a =12,所以a =4,所以b 2=a2-c 2=12.由题意知|AB |=2b 2a =2×124=6.故选B.]直线与圆锥曲线的综合问题(5年5考)[高考解读] 直线与圆锥曲线的位置关系是每年高考的亮点,主要涉及直线与抛物线、直线与椭圆的综合问题,突出考查研究直线与圆锥曲线位置关系的基本方法,注意通性通法的应用,考查考生的逻辑推理和数学运算核心素养.角度一:直线与圆锥曲线的位置关系1.(2018·全国卷Ⅰ)设抛物线C :y 2=2x ,点A (2,0),B (-2,0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:∠ABM =∠ABN .切入点:①直线l 过点A ;②l 与C 交于M ,N 两点;③l 与x 轴垂直. 关键点:将问题转化为证明k BM 与k BN 具有某种关系.[解] (1)当l 与x 轴垂直时,l 的方程为x =2,可得点M 的坐标为(2,2)或(2,-2).所以直线BM 的方程为y =12x +1或y =-12x -1.(2)证明:当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为y =k (x -2)(k ≠0),M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由⎩⎪⎨⎪⎧y =k x -,y 2=2x 得ky 2-2y -4k =0,可知y 1+y 2=2k,y 1y 2=-4.直线BM ,BN 的斜率之和为k BM +k BN =y 1x 1+2+y 2x 2+2=x 2y 1+x 1y 2+y 1+y 2x 1+x 2+.①将x 1=y 1k +2,x 2=y 2k+2及y 1+y 2,y 1y 2的表达式代入①式分子,可得x 2y 1+x 1y 2+2(y 1+y 2)=2y 1y 2+4k y 1+y 2k=-8+8k=0.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM =∠ABN . 综上,∠ABM =∠ABN .角度二:直线与圆锥曲线的相交弦问题2.(2018·全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0).(1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0.证明:2|FP →|=|FA →|+|FB →|. 切入点:①直线l 与椭圆C 相交;②AB 的中点M (1,m ).关键点:根据FP →+FA →+FB →=0及点P 在C 上确定m ,并进一步得出|FP →|,|FA →|,|FB →|的关系.[证明] (1)设A (x 1,y 1),B (x 2,y 2),则x 214+y 213=1,x 224+y 223=1.两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0. 由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m.由题设得0<m <32,故k <-12.(2)由题意得F (1,0).设P (x 3,y 3),则(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0).由(1)及题设得x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0. 又点P 在C 上,所以m =34,从而P 1,-32,|FP →|=32.于是|FA →|=x 1-2+y 21=x 1-2+31-x 214=2-x 12.同理|FB →|=2-x 22.所以|FA →|+|FB →|=4-12(x 1+x 2)=3.故2|FP →|=|FA →|+|FB →|. [教师备选题](2018·北京高考)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,焦距为2 2.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B .(1)求椭圆M 的方程;(2)若k =1,求|AB |的最大值;(3)设P (-2,0),直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D ,若C ,D 和点Q ⎝⎛⎭⎪⎫-74,14共线,求k .[解] (1)由题意得⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =63,2c =22,解得a =3,b =1.所以椭圆M 的方程为x 23+y 2=1. (2)设直线l 的方程为y =x +m ,A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =x +m ,x 23+y 2=1,得4x 2+6mx +3m 2-3=0,所以x 1+x 2=-3m 2,x 1x 2=3m 2-34.所以|AB |= x 2-x 12+y 2-y 12= x 2-x 12= x 1+x 22-4x 1x 2]=12-3m 22. 当m =0,即直线l 过原点时,|AB |最大,最大值为 6. (3)设A (x 1,y 1),B (x 2,y 2), 由题意得x 21+3y 21=3,x 22+3y 22=3. 直线PA 的方程为y =y 1x 1+2(x +2).由⎩⎪⎨⎪⎧y =y 1x 1+2x +2,x 2+3y 2=3,得[(x 1+2)2+3y 21]x 2+12y 21x +12y 21-3(x 1+2)2=0. 设C (x C ,y C ),所以x C +x 1=-12y 21x 1+22+3y 21=4x 21-124x 1+7. 所以x C =4x 21-124x 1+7-x 1=-12-7x 14x 1+7.所以y C =y 1x 1+2(x C +2)=y 14x 1+7. 设D (x D ,y D ),同理得x D =-12-7x 24x 2+7,y D =y 24x 2+7.记直线CQ ,DQ 的斜率分别为k CQ ,k DQ ,则k CQ -k DQ =y 14x 1+7-14-12-7x 14x 1+7+74-y 24x 2+7-14-12-7x 24x 2+7+74=4(y 1-y 2-x 1+x 2). 因为C ,D ,Q 三点共线,所以k CQ -k DQ =0. 故y 1-y 2=x 1-x 2. 所以直线l 的斜率k =y 1-y 2x 1-x 2=1.1.判断直线与圆锥曲线公共点的个数或求交点问题的两种常用方法(1)代数法:联立直线与圆锥曲线方程可得到一个关于x ,y 的方程组,消去y (或x )得到一个一元二次方程,此方程根的个数即为交点个数,方程组的解即为交点坐标;(2)几何法:画出直线与圆锥曲线,根据图形判断公共点个数. 2.弦长公式设斜率为k 的直线l 与圆锥曲线C 的两交点为P (x 1,y 1),Q (x 2,y 2). 则|PQ |=|x 1-x 2|1+k 2=x 1+x 22-4x 1x 2+k2.或|PQ |=|y 1-y 2|1+1k2=y 1+y 22-4y 1y 2]⎝⎛⎭⎪⎫1+1k 2(k ≠0).3.弦的中点圆锥曲线C :f (x ,y )=0的弦为PQ .若P (x 1,y 1),Q (x 2,y 2),中点M (x 0,y 0),则x 1+x 2=2x 0,y 1+y 2=2y 0.1.(直线与椭圆的综合)已知离心率为12的椭圆x 2a 2+y2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,上顶点为B ,且BA 1→·BA 2→=-1.(1)求椭圆的标准方程;(2)过椭圆左焦点F 的直线l 与椭圆交于M ,N 两点,且直线l 与x 轴不垂直,若D 为x 轴上一点,|DM →|=|DN →|,求|MN ||DF |的值.[解] (1)A 1,A 2,B 的坐标分别为(-a,0),(a,0),(0,b ),BA 1→·BA 2→=(-a ,-b )·(a ,-b )=b 2-a 2=-1,∴c 2=1. 又e =c a =12,∴a 2=4,b 2=3.∴椭圆的标准方程为x 24+y 23=1.(2)由(1)知F (-1,0),设M (x 1,y 1),N (x 2,y 2), ∵直线l 与x 轴不垂直,∴可设其方程为y =k (x +1). 当k =0时,易得|MN |=4,|DF |=1,|MN ||DF |=4.当k ≠0时,联立⎩⎪⎨⎪⎧x 24+y 23=1,y =k x +,得(3+4k 2)x 2+8k 2x +4k 2-12=0,∴x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2, ∴|MN |=x 1-x 22+y 1-y 22=1+k 2|x 1-x 2|=1+k2x 1+x 22-4x 1x 2=12+12k 23+4k2. 又y 1+y 2=k (x 1+x 2+2)=6k3+4k2, ∴MN 的中点坐标为⎝ ⎛⎭⎪⎫-4k 23+4k 2,3k 3+4k 2,∴MN 的垂直平分线方程为y -3k 3+4k 2=-1k ⎝ ⎛⎭⎪⎫x +4k 23+4k 2(k ≠0), 令y =0得,1k x +k 3+4k 2=0,解得x =-k23+4k2.|DF |=⎪⎪⎪⎪⎪⎪-k 23+4k 2+1=3+3k 23+4k 2,∴|MN ||DF |=4.综上所述,|MN ||DF |=4.2.(直线与抛物线的综合)过抛物线E :x 2=4y 的焦点F 的直线交抛物线于M ,N 两点,抛物线在M ,N 两点处的切线交于点P .(1)证明点P 落在抛物线E 的准线上; (2)设MF →=2FN →,求△PMN 的面积.[解] (1)抛物线x 2=4y 的焦点坐标为(0,1),准线方程为y =-1.设直线MN 的方程为y =kx +1,代入抛物线方程x 2=4y ,整理得x 2-4kx -4=0. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4. 对y =14x 2求导,得y ′=12x ,所以直线PM 的方程为y -y 1=12x 1(x -x 1).①直线PN 的方程为y -y 2=12x 2(x -x 2).②联立方程①②,消去x ,得y =-1. 所以点P 落在抛物线E 的准线上.(2)因为MF →=(-x 1,1-y 1),FN →=(x 2,y 2-1),且MF →=2FN →.所以⎩⎪⎨⎪⎧-x 1=2x 2,1-y 1=y 2-,得x 21=8,x 22=2.不妨取M (22,2),N (-2,12),由①②得P ⎝ ⎛⎭⎪⎫22,-1.易得|MN |=92,点P 到直线MN 的距离d =322,所以△PMN 的面积S =12×92×322=2728.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上一点 ,FM 的延长线交 y 轴于点 N,M 为 FN 的中点 ,设 M (a,b)(b>0),所以 a= 1,b= 2 2,
所以 N(0, 4 2), |FN|= 4+ 32= 6. 法二: 依题意 , 抛物线 C: y2=8x 的焦点 F (2,0) ,准线 x=- 2, 因为 M 是 C 上一点 ,
x 4
-
y 5
=1.
y=
5
b
2 x, 所以 a=
Ⅱ )已知 F 是抛物线 C: y2= 8x 的焦点, M 是 C 上一点, FM 的延长
线交 y 轴于点 N.若 M 为 FN 的中点,则 |FN|= ____________.
详细分析:法一: 依题意 ,抛物线 C:y2= 8x 的焦点 F (2,0),准线 x=- 2,因为 M 是 C
( ± 2p,0),
p 所以 2= 2p ,解得 p= 8, 故选 D .
22
xy 3.(一题多解 )(2017 高·考全国卷 Ⅲ )已知双曲线 C: a2- b2= 1 (a>0, b> 0)的一条渐近线
方程为
y=
5 2 x,且与椭圆
x2 + y2= 1 有公共焦点,则 12 3
C 的方程为 (
A . x82- 1y02 =1
m=
a 2
,
故
|F
2A
|=
a
=
|F
1A
|,
则点
A
为椭圆
C
的上顶点或下顶点.令 ∠ OAF 2=θ(O 为坐标原点 ),则 sin θ= 1a.在等腰三角形 ABF 1 中 , cos 2θ
a
=
2 3a=
13,所以
13=
1-
2
1 a
2
,得 a2= 3.又
c2= 1, 所以
b2= a2- c2= 2,椭圆
FM 的延长线交 y 轴于点 N,M 为 FN 的中点 ,则点 M 的横坐标为 1,所以 |MF |= 1- (- 2)= 3,
|FN |= 2|MF |= 6.
答案: 6
题型二 圆锥曲线的几何性质
1.(2018 ·高考全国卷 Ⅱ )已知
F1, F 2 是椭圆
C
:
x2 a2+
y2 b2=
1(
a
>
b>0)
x2 y2 C 的方程为 4 - 5 = 1.故选 B .
法二: 因为椭圆
x2 y2 12+ 3 = 1
的焦点为
(
±3, 0), 双曲线与椭圆
x2 y2 12+ 3 = 1 有公共焦点
, 所以
a2+ b2= ( ±3)2= 9①, 因为双曲线的一条渐近线为
22
= 4, b2= 5, 所以双曲线
C
的方程为
3, 6
解得
c a=
1, 4
所以
e= 1, 故选 4
D.
-2-
第 2 讲 圆锥曲线的定义、方程与性质
题型一 圆锥曲线的定义与方程
[做真题 ]
1.(2019 ·高考全国卷 Ⅰ )已知椭圆 C 的焦点为 F 1(- 1,0),F 2(1, 0),过 F 2 的直线与 C 交
于 A, B 两点,若 |AF2|= 2|F 2B|, |AB|= |BF 1|,则 C 的方程为 ( )
A
.
x2+ 2
y2=
1
B .x2 +y2 =1 32
C. x42+ y32= 1
D
.
x2 5
+
y2 4
=
1
详细分析: 选 B .由题意设椭圆的方程为
x2 y2 a2+ b2= 1(a>b>0) ,连接 F 1A,令 |F 2B|= m,则 |AF 2|
= 2m, |BF1|=3m.由椭圆的定义知
, 4m= 2a, 得
C 的方程为
x32+ y22=
2
1.故选 B . 2.(2019 ·高考全国卷 Ⅱ )若抛物线 y2= 2px(p>0)的焦点是椭圆 3xp2+ yp2= 1 的一个焦点,则 p
=( )
A.2 C. 4
B.3 D .8
详细分析: 选 D .由题意 ,知抛物线的焦点坐标为
p, 0 2
,椭圆的焦点坐标为
为等腰三角形 ,且 ∠ F 1F 2P= 120 °, 所以 |PF 2|= |F 1F 2|= 2c,所以 |OF2|= c, 所以点 P 坐标为 (c
+ 2ccos 60 ,2°csin 60 ),°即点 P(2c, 3c).因为点 P 在过点 A,且斜率为
63的直线上
,所以 3c 2c+ a
=
的左、右焦点,
A是C
的左顶点,点 P 在过 A 且斜率为 63的直线上,△ PF 1F 2 为等腰三角形,∠ F1F2P= 120 °,则 C
的离心率为 ( )
2 A.3
1 B.2
1 C. 3
1 D .4
详细分析: 选 D.由题意可得椭圆的焦点在 x 轴上 ,如图所示 ,设 |F1F2|= 2c,因为 △ PF 1F 2
B
.
x2 4
-
y2 5
=
1
C.
x2- 5
y2= 4
1
D .x2 -y2 =1 43
详细分析: 选 B .法一: 由双曲线的渐近线方程可设双曲线方程为
) x42- y52= k(k>0) ,即 4x2k-
-1-
y2
x2 y2
5k= 1,因为双曲线与椭圆 12+ 3 = 1 有公共焦点 ,所以 4k+ 5k= 12-3,解得 k= 1,故双曲线