第六讲 平 面 向 量
人教版高数必修四第6讲:平面向量的概念及线性运算(学生版)
平面向量的基本概念与线性运算____________________________________________________________________________________________________________________________________________________________________1、了解向量、向量的相等、共线向量等概念;2、掌握向量、向量的相等、共线向量等概念.3、熟练掌握向量的线性运算法则:加法法则,减法法则,数乘法则.一、平面向量的概念:1、平面向量:________________________________________________________2、向量的模长:________________________________________________________3、零向量:____________________________________________________________4、单位向量:__________________________________________________________5、平行向量:_________________________________________________________6、相等向量:_________________________________________________________7、相反向量:__________________________________________________________二、平面向量的基本运算:一般地,λa+μb叫做a,b的一个线性组合(其中λ,μ均为系数).如果l =λa+μb,则称l 可以用a ,b 线性表示.向量的加法、减法、数乘运算都叫做向量的线性运算.1、三角形法则:位移AC u u u r 叫做位移AB u u u r与位移BC u u u r 的和,记作____________________2、平行四边形法则:如图7-9所示, ABCD 为平行四边形,由于AD u u u r =BC u u ur ,根据三角形法则得AB u u u r +AD u u u r=________________________平行四边形法则不适用于共线向量,可以验证,向量的加法具有以下的性质: (1)a +0 = 0+a = a ; a +(−a )= 0; (2)a +b =b +a ;(3)(a +b )+ c = a +(b +c ). 3、平面向量减法法则:与数的运算相类似,可以将向量a 与向量b 的负向量的和定义为向量a 与向量b 的差.即a −b = a +(−b ).设a =u u u r OA ,b =u u u rOB ,则()= OA OB OA OB OA BO BO OA BA -=+-+=+=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .即(7.2)观察图7-13可以得到:起点相同的两个向量a 、b ,其差a -b 仍然是一个向量,叫做a 与b 的差向量,其起点是减向量b 的终点,终点是被减向量a 的终点.图7-7ACBaba +bab图7-9A一般地,实数λ与向量a的积是一个向量,记作λa,它的模为||||||aaλ=λ(7.3)若||λ≠a0,则当λ>0时,λa的方向与a的方向相同,当λ<0时,λa的方向与a的方向相反.由上面定义可以得到,对于非零向量a、b,当0λ≠时,有λ⇔=a b a b∥(7.4)一般地,有0a= 0, λ0 = 0 .数与向量的乘法运算叫做向量的数乘运算,容易验证,对于任意向量a, b及任意实数λμ、,向量数乘运算满足如下的法则:()()111=-=-a a a a , ;()()()()2a a aλμλμμλ== ;()()3a a aλμλμ+=+ ;()()a b a bλλλ+=+4 .题型1平面向量的基本概念例1给出下列六个命题:①两个向量相等,则它们的起点相同,终点相同;②若|a|=|b|,则a=b;③若AB→=DC→,则A、B、C、D四点构成平行四边形;④在ABCD中,一定有AB→=DC→;⑤若m=n,n=p,则m=p;aAa-bBbO图7-13⑥ 若a ∥b ,b ∥c ,则a ∥c .其中错误的命题有________.(填序号)例2 在平行四边形ABCD 中(图7-5),O 为对角线交点. (1)找出与向量DA u u u r相等的向量; (2)找出向量DC u u u r的负向量;(3)找出与向量AB u u u r平行的向量.练习:1. 如图,∆ABC 中,D 、E 、F 分别是三边的中点,试写出 (1)与EF u u u r 相等的向量;(2)与AD u u u r共线的向量.2.如图,O 点是正六边形ABCDEF 的中心,试写出 (1)与OC u u u r 相等的向量; (2)OC u u u r 的负向量; (3)与OC u u u r题型2 向量的线性表示例3 一艘船以12 km/h 的速度航行,方向垂直于河岸,已知水流速度为5 km/h ,求该船的实际航行速度.*例4 用两条同样的绳子挂一个物体(图7-11).设物体的重力为k ,两条绳子与垂线的夹角为θ,求物体受到沿两条绳子的方向的拉力1F 与2F 的大小.练习:1. 如图,已知a ,b ,求a +b .2.填空(向量如图F AD BE C(练习题第1题图EFAB C DO (图1-8)第2题图 ADCB图7-5Obbaa(1)(2)第1题图所示):(1)a +b =_____________ , (2)b +c =_____________ , (3)a +b +c =_____________ . 3.计算:(1)AB u u u r+BC u u u r +CD u u u r ; (2)OB u u u r +BC u u u r +CA u u u r .例5 已知如图7-14(1)所示向量a 、b ,请画出向量a -b .练习:1.填空:(1)AB u u u r AD -u u u r=_______________,(2)BC u u u r BA -u u u r=______________, (3)OD u u u r OA -u u u r=______________.2.如图,在平行四边形ABCD 中,设AB u u u r = a ,AD u u u r= b ,试用a , b 表示向量AC u u u r 、BD u u u r 、DB u u u r.例6 在平行四边形ABCD 中,O 为两对角线交点如图7-16,AB u u u r =a ,AD u u u r=b ,试用a , b 表示向量AO u u u r 、OD u u u r.练习:1. 计算:(1)3(a −2 b )-2(2 a +b );(2)3 a −2(3 a −4 b )+3(a −b ).BbOaAba(1)(2)图7-142.设a , b 不共线,求作有向线段OA u u u r ,使OA u u u r =12(a +b ).例7 平行四边形OADB 的对角线交点为C ,BM →=13BC →,CN →=13CD →,OA →=a ,OB →=b ,用a 、b 表示OM →、ON →、MN →.练习:练习:在△ABC 中,E 、F 分别为AC 、AB 的中点,BE 与CF 相交于G 点,设AB →=a ,AC →=b ,试用a ,b 表示AG →.题型3 共线向量例8 设两个非零向量a 与b 不共线.(1) 若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A 、B 、D 三点共线; (2) 试确定实数k ,使k a +b 和a +k b 共线. 题型4 向量共线的应用例4 如图所示,设O 是△ABC 内部一点,且OA →+OC →=-2OB →,则△AOB 与△AOC 的面积之比为________.练习:如图,△ABC 中,在AC 上取一点N ,使AN =13AC ;在AB 上取一点M ,使得AM =13AB ;在BN 的延长线上取点P ,使得NP =12BN ;在CM 的延长线上取点Q ,使得MQ →=λCM →时,AP →=QA →,试确定λ的值.一、选择题1.在下列判断中,正确的是( ) ①长度为0的向量都是零向量; ②零向量的方向都是相同的; ③单位向量的长度都相等; ④单位向量都是同方向; ⑤任意向量与零向量都共线. A .①②③ B .②③④ C .①②⑤D .①③⑤2.向量(AB →+MB →)+(BO →+BC →)+OM →等于( ) A .BC → B .AB → C .AC →D .AM →3.若a 、b 为非零向量,则下列说法中不正确的是( )A .若向量a 与b 方向相反,且|a |>|b |,则向量a +b 与a 的方向相同B .若向量a 与b 方向相反,且|a |<|b |,则向量a +b 与a 的方向相同C .若向量a 与b 方向相同,则向量a +b 与a 的方向相同D .若向量a 与b 方向相同,则向量a +b 与b 的方向相同4.已知下列各式:①AM →+MB →+BA →;②AB →+CA →+BD →+DC →;③OA →+OC →+BO →+CO →.其中结果为零向量的个数为( )A .0B .1C .2D .3二、填空题5.等腰梯形ABCD 两腰上的向量AB →与DC →的关系是________. 6.如图所示,已知梯形ABCD ,AD ∥BC ,则OA →+AB →+BC →=________.三、解答题7.如图所示,O 为正方形ABCD 对角线的交点,四边形OAED ,OCFB 都是正方形.在图中所示的向量中:(1)分别写出AO →,BO →相等的向量; (2)写出与AO →共线的向量; (3)写出与AO →的模相等的向量; (4)向量AO →与CO →是否相等?8.梯形ABCD 中,AB ∥CD ,AB =2CD ,M 、N 分别是CD 和AB 的中点,若AB =a ,AD =b ,试用a 、b 表示BC 和MN ,则BC =________,MN =______._________________________________________________________________________________ _________________________________________________________________________________基础巩固一、选择题1.把平面上一切单位向量平移到共同始点,那么这些向量的终点构成的图形是( ) A .一条线段 B .一段圆弧 C .两个孤立的点D .一个圆2.把所有相等的向量平移到同一起点后,这些向量的终点将落在( ) A .同一个圆上 B .同一个点上 C .同一条直线上 D .以上都有可能4.有下列说法:①时间、摩擦力、重力都是向量; ②向量的模是一个正实数; ③相等向量一定是平行向量; ④共线向量一定在同一直线上. 其中,正确说法的个数是( ) A .0 B .1 C .2D .35.下列说法错误的是( )A .作用力与反作用力是一对大小相等、方向相反的向量B .向量可以用有向线段表示,但有向线段并不是向量C .只有零向量的模等于0D .零向量没有方向6.如图所示,圆O 上有三点A 、B 、C ,则向量BO →、OC →、OA →是( ) A .有相同起点的相等向量 B .单位向量 C .模相等的向量 D .相等的向量9.a 、b 、a +b 为非零向量,且a +b 平分a 与b 的夹角,则( ) A .a =b B .a ⊥b C .|a |=|b |D .以上都不对 10.△ABC 中,D 、E 、F 分别是边AB 、BC 、AC 的中点,则下面结论正确的是( )A .AE →=AD →+F A →B .DE →+AF →=0C .AB →+BC →+CA →≠0D .AB →+BC →+AC →≠012.在四边形ABCD 中,AC →=AB →+AD →,则四边形ABCD 一定是( ) A .矩形 B .菱形 C .正方形 D .平行四边形二、填空题12.若D 、E 、F 分别是△ABC 的三边AB 、BC 、AC 的中点,则与向量EF →相等的向量为________. 16.根据右图填空: b +c =________; a +d =________; b +c +d =________; f +e =________; e +g =________.三、解答题17.某人从A 点出发,向东走到B 点,然后,再向正北方向走了60m 到达C 点.已知|AC →|=120m ,求AC →的方向和A 、B 的距离.18.两个力F 1和F 2同时作用在一个物体上,其中F 1=40N ,方向向东,F 2=403N ,方向向北,求它们的合力.能力提升一、选择题1.若a 为任一非零向量,b 为其单位向量,下列各式:①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1;⑤a |a |=b . 其中正确的是( )A .①④⑤B .③C .①②③⑤D .②③⑤2.如图四边形ABCD 、CEFG 、CGHD 都是全等的菱形,则下列关系不一定成立的是( )A .|AB →|=|EF →| B .AB →与FH →共线C .BD →=EH → D .DC →与EC →共线3.如图所示,在菱形ABCD 中,∠BAD =120°,则下列说法中错误的是()A .图中所标出的向量中与AB →相等的向量只有1个(不含AB →本身)B .图中所标出的向量中与AB →的模相等的向量有4个(不含AB →本身)C .BD →的长度恰为DA →长度的3倍D .CB →与DA →不共线4.四边形ABCD 中,若AB →与CD →是共线向量,则四边形ABCD 是( )A .平行四边形B .梯形C .平行四边形或梯形D .不是平行四边形也不是梯形1.已知向量a 表示“向东航行1km ”向量b 表示“向南航行1km ”则a +b 表示( )A .向东南航行2kmB .向东南航行2kmC .向东北航行2kmD .向东北航行2km2.在平行四边形ABCD 中,设AB →=a ,AD →=b ,AC →=c ,BD →=d ,则下列各式中不成立的是( )A .a +b =cB .a +d =bC .b +d =aD .|a +b |=|c |3.已知正方形ABCD 的边长为1,AB →=a 、BC →=b 、AC →=c ,则|a +b +c |等于( )A .0B .3C . 2D .2 2 4.下列命题中正确的个数为( )①如果非零向量a 与b 的方向相同或相反,那么a +b 的方向必与a 、b 之一的方向相同;②在△ABC 中,必有AB →+BC →+CA →=0;③若AB →+BC →+CA →=0,则A ,B ,C 为一个三角形的三个顶点;④若a 、b 均为非零向量,则|a +b |与|a |+|b |一定相等.A .0B .1C .2D .3二、填空题5.若|AB →|=|AD →|,且BA →=CD →,则四边形ABCD 的形状为________.6.已知A 、B 、C 是不共线的三点,向量m 与向量AB →是平行向量,与BC →是共线向量,则m =________.已知|OA →|=|a |=3,|OB →|=|b |=3,∠AOB =90°,则|a +b |=________.6.已知在菱形ABCD 中,∠DAB =60°,若|AB →|=2,则|BC →+DC →|=________.三、解答题8.一位模型赛车手摇控一辆赛车,沿直线向正东方向前行1m ,逆时针方向旋转α度,继续沿直线向前行进1m ,再逆时针旋转α度,按此方法继续操作下去.(1)按1100的比例作图说明当α=60°时,操作几次赛车的位移为零.(2)按此法操作使赛车能回到出发点,α应满足什么条件?请写出其中两个.9.如图所示,在△ABC 中,D 、E 、F 分别是AB 、BC 、CA 边上的点,已知AD →=DB →,DF →=BE →,试推断向量DE →与AF →是否为相等向量,说明你的理由.7.如图所示,在△ABC 中,P 、Q 、R 分别为BC 、CA 、AB 边的中点,求证AP →+BQ →+CR →=0.8.轮船从A 港沿东偏北30°方向行驶了40n mile(海里)到达B 处,再由B 处沿正北方向行驶40n mile 到达C 处.求此时轮船关于A 港的相对位置.9.已知下图中电线AO 与天花板的夹角为60°,电线AO 所受拉力F 1=24N ;绳BO 与墙壁垂直,所受拉力F 2=12N.求F 1和F 2的合力.。
暑假提高班讲义……第六讲 平面向量(二)(解析版)
第六讲 平面向量(二)1知识梳理————————————1.向量的夹角已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB 就是向量a 与b 的夹角,向量夹角的范围是:[0,π]. 2.3.设a ,b 都是非零向量,e 是单位向量,θ为a 与b (或e )的夹角.则 (1)e ·a =a ·e =|a |cos θ. (2)a ⊥b ⇔a ·b =0.(3)当a 与b 同向时,a ·b =|a ||b |;当a 与b 反向时,a ·b =-|a ||b |. 特别地,a ·a =|a |2或|a |=a ·a .(4)cos θ=a ·b|a ||b |.(5)|a ·b |≤|a ||b |.4.平面向量数量积满足的运算律 (1)a·b =b·a ; (2)(λa )·b =λ(a·b )=a ·(λb )(λ为实数); (3)(a +b )·c =a·c +b·c .5.平面向量数量积有关性质的坐标表示 设向量a =(x 1,y 1),b =(x 2,y 2),则(1)若a =(x ,y ),则|a |2=x 2+y 2或|a |(2)设A (x 1,y 1),B (x 2,y 2),则A ,B 两点间的距离AB =|AB →|=(x 2-x 1)2+(y 2-y 1)2. (3)设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.(4)若a ,b 都是非零向量,θ是a 与b 的夹角,则cos θ=a ·b|a ||b |=x 1x 21y 2x 21+y 21 x 22+y 22. 6.向量在平面几何中的应用(1)(2)平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题. 7.平面向量在物理中的应用(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的加法和减法相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,是力F 与位移s 的数量积,即W =F·s =|F||s |cos θ(θ为F 与s 的夹角).8.向量与相关知识的交汇平面向量作为一种工具,常与函数(三角函数),解析几何结合,常通过向量的线性运算与数量积,向量的共线与垂直求解相关问题. 【知识拓展】1.两个向量a ,b 的夹角为锐角⇔a·b >0且a ,b 不共线; 两个向量a ,b 的夹角为钝角⇔a·b <0且a ,b 不共线. 2.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2. (2)(a +b )2=a 2+2a·b +b 2. (3)(a -b )2=a 2-2a·b +b 2.3.若G 是△ABC 的重心,则GA →+GB →+GC →=0.4.若直线l 的方程为:Ax +By +C =0,则向量(A ,B )与直线l 垂直,向量(-B ,A )与直线l 平行. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”(1)若AB →∥AC →,则A ,B ,C 三点共线.( √ ) (2)向量b 在向量a 方向上的投影是向量.( × ) (3)若a ·b >0,则a 和b 的夹角为锐角;若a ·b <0,则a 和b 的夹角为钝角.( × )(4)在△ABC 中,若AB →·BC →<0,则△ABC 为钝角三角形.( × )(5)已知平面直角坐标系内有三个定点A (-2,-1),B (0,10),C (8,0),若动点P 满足:OP →=OA →+t (AB →+AC →),t ∈R ,则点P 的轨迹方程是x -y +1=0.( √ )(1)向量在另一个向量方向上的投影为数量,而不是向量.( √ )(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( √ ) (3)由a ·b =0可得a =0或b =0.( × ) (4)(a ·b )c =a (b ·c ).( × )(5)两个向量的夹角的范围是[0,π2].( × )2考点自测————————————1.(教材改编)已知向量a =(2,1),b =(-1,k ),a·(2a -b )=0,则k 等于( ) A .-12 B .6 C .-6 D .12 答案 D解析 ∵2a -b =(4,2)-(-1,k )=(5,2-k ), 由a ·(2a -b )=0,得(2,1)·(5,2-k )=0,∴10+2-k =0,解得k =12. 2.(2017·南宁质检)已知向量a 与b 的夹角为30°,且|a |=1,|2a -b |=1,则|b |等于( ) A. 6 B. 5 C. 3 D. 2 答案 C解析 由题意可得a·b =|b |cos 30°=32|b |,4a 2-4a·b +b 2=1,即4-23|b |+b 2=1,由此求得|b |=3,故选C.3.(2015·广东)在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB →=(1,-2),AD →=(2,1),则AD →·AC →等于( )A .5B .4C .3D .2 答案 A解析 ∵四边形ABCD 为平行四边形,∴AC →=AB →+AD →=(1,-2)+(2,1)=(3,-1). ∴AD →·AC →=2×3+(-1)×1=5. 4.(2016·北京)已知向量a =(1,3),b =(3,1),则a 与b 夹角的大小为________.答案 π6解析 设a 与b 的夹角为θ,则cos θ=a·b|a ||b |=1×3+1×312+(3)2·12+(3)2=234=32, 又因为θ∈[0,π],所以θ=π6.5.(2016·厦门模拟)设x ∈R ,向量a =(x,1),b =(1,-2),且a ⊥b ,则|a +b |=________. 答案 10解析 ∵a ⊥b ,∴a·b =0,即x -2=0,∴x =2,∴a =(2,1),∴a 2=5,b 2=5, ∴|a +b |=(a +b )2=a 2+2a·b +b 2=5+5=10.6.(教材改编)已知△ABC 的三个顶点的坐标分别为A (3,4),B (5,2),C (-1,-4),则该三角形为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形 答案 B解析 AB →=(2,-2),AC →=(-4,-8),BC →=(-6,-6), ∴|AB →|=22+(-2)2=22,|AC →|=16+64=45,|BC →|=36+36=62, ∴|AB →|2+|BC →|2=|AC →|2,∴△ABC 为直角三角形.7.已知在△ABC 中,|BC →|=10,AB →·AC →=-16,D 为边BC 的中点,则|AD →|等于( ) A .6 B .5 C .4 D .3 答案 D解析 在△ABC 中,由余弦定理可得,AB 2+AC 2-2AB ·AC ·cos A =BC 2,又AB →·AC →=|AB →|·|AC →|·cos A =-16,所以AB 2+AC 2+32=100,AB 2+AC 2=68.又D 为边BC 的中点,所以AB →+AC →=2AD →,两边平方得4|AD →|2=68-32=36,解得|AD →|=3,故选D.8.(2017·武汉质检)平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足OP →·OA →=4,则点P 的轨迹方程是____________. 答案 x +2y -4=0解析 由OP →·OA →=4,得(x ,y )·(1,2)=4,即x +2y =4. 9.(2016·银川模拟)已知向量a =(cos θ,sin θ),b =(3,-1),则|2a -b |的最大值为________. 答案 4解析 设a 与b 夹角为α, ∵|2a -b |2=4a 2-4a·b +b 2=8-4|a||b |cos α=8-8cos α,∵α∈[0,π],∴cos α∈[-1,1],∴8-8cos α∈[0,16],即|2a -b |2∈[0,16],∴|2a -b |∈[0,4]. ∴|2a -b |的最大值为4.5.已知一个物体在大小为6 N 的力F 的作用下产生的位移s 的大小为100 m ,且F 与s 的夹角为60°,则力F 所做的功W =________ J. 答案 300解析 W =F ·s =|F ||s |cos 〈F ,s 〉=6×100×cos 60°=300(J).3典型例题————————————例1 (1)(2016·天津)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( )A .-58 B.18 C.14 D.118(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为_______;DE →·DC →的最大值为_____.答案 (1)B (2)1 1解析 (1)如图,由条件可知BC →=AC →-AB →, AF →=AD →+DF →=12AB →+32DE →=12AB →+34AC →,所以BC →·AF →=(AC →-AB →)·(12AB →+34AC →)=34AC →2-14AB →·AC →-12AB →2.因为△ABC 是边长为1的等边三角形,所以|AC →|=|AB →|=1,∠BAC =60°,所以BC →·AF →=34-18-12=18.(2)方法一 以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈[0,1],则DE →=(t ,-1),CB →=(0,-1),所以DE →·CB →=(t ,-1)·(0,-1)=1.因为DC →=(1,0),所以DE →·DC →=(t ,-1)·(1,0)=t ≤1,故DE →·DC →的最大值为1. 方法二 由图知,无论E 点在哪个位置,DE →在CB →方向上的投影都是CB =1,∴DE →·CB →=|CB →|·1=1,当E 运动到B 点时,DE →在DC →方向上的投影最大,即为DC =1,∴(DE →·DC →)max =|DC →|·1=1. 思维升华 平面向量数量积的三种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a·b =|a ||b |cos 〈a ,b 〉.(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2. (3)利用数量积的几何意义求解.(1)(2016·全国丙卷)已知向量BA →=⎝⎛⎭⎫12,32,BC →=⎝⎛⎭⎫32,12,则∠ABC 等于( )A .30°B .45°C .60°D .120° (2)(2015·天津)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且BE →=23BC →,DF →=16DC →,则AE →·AF →的值为________.答案 (1)A (2)2918解析 (1)∵|BA →|=1,|BC →|=1,cos ∠ABC =BA →·BC →|BA →|·|BC →|=32,又∵0°≤∠ABC ≤180°,∴∠ABC =30°.(2)在等腰梯形ABCD 中,AB ∥DC ,AB =2,BC =1,∠ABC =60°,∴CD =1, AE →=AB →+BE →=AB →+23BC →,AF →=AD →+DF →=AD →+16DC →,∴AE →·AF →=⎝⎛⎭⎫AB →+23BC →·⎝⎛⎭⎫AD →+16DC →=AB →·AD →+AB →·16DC →+23BC →·AD →+23BC →·16DC →=2×1×cos 60°+2×16+23×12×cos 60°+23×16×12×cos 120°=2918.例2 (1)(2016·西安模拟)已知平面向量a ,b 的夹角为π6,且|a|=3,|b |=2,在△ABC 中,AB →=2a +2b ,AC→=2a -6b ,D 为BC 的中点,则|AD →|=________.(2)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________. 答案 (1)2 (2)7+1解析 (1)因为AD →=12(AB →+AC →)=12(2a +2b +2a -6b )=2a -2b ,所以|AD →|2=4(a -b )2=4(a 2-2b·a +b 2)=4×(3-2×2×3×cos π6+4)=4,所以|AD →|=2.(2)设D (x ,y ),由CD →=(x -3,y )及|CD →|=1,知(x -3)2+y 2=1,即动点D 的轨迹为以点C 为圆心的单位圆.又O A →+OB →+OD →=(-1,0)+(0,3)+(x ,y )=(x -1,y +3), ∴|OA →+OB →+OD →|=(x -1)2+(y +3)2.问题转化为圆(x -3)2+y 2=1上的点与点P (1,-3)间距离的最大值.∵圆心C (3,0)与点P (1,-3)之间的距离为(3-1)2+(0+3)2=7,故(x -1)2+(y +3)2的最大值为7+1.即|OA →+OB →+OD →|的最大值是7+1.例3 (1)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=_______.(2)若向量a =(k,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________________.答案 (1)223 (2)⎝⎛⎭⎫-∞,-92∪⎝⎛⎭⎫-92,3 解析 (1)因为a 2=(3e 1-2e 2)2=9-2×3×2×12×cos α+4=9,所以|a |=3, 因为b 2=(3e 1-e 2)2=9-2×3×1×12×cos α+1=8,所以|b |=22,a ·b =(3e 1-2e 2)·(3e 1-e 2)=9e 21-9e 1·e 2+2e 22=9-9×1×1×13+2=8, 所以cos β=a ·b |a ||b |=83×22=223.(2)∵2a -3b 与c 的夹角为钝角,∴(2a -3b )·c <0,即(2k -3,-6)·(2,1)<0, ∴4k -6-6<0,∴k <3.又若(2a -3b )∥c ,则2k -3=-12,即k =-92.当k =-92时,2a -3b =(-12,-6)=-6c ,即2a -3b 与c 反向.综上,k 的取值范围为⎝⎛⎭⎫-∞,-92∪⎝⎛⎭⎫-92,3. 思维升华 平面向量数量积求解问题的策略(1)求两向量的夹角:cos θ=a·b|a||b |,要注意θ∈[0,π].(2)两向量垂直的应用:两非零向量垂直的充要条件是:a ⊥b ⇔a·b =0⇔|a -b |=|a +b |. (3)求向量的模:利用数量积求解长度问题的处理方法有: ①a 2=a·a =|a |2或|a |=a·a . ②|a ±b |=(a ±b )2=a 2±2a·b +b 2. ③若a =(x ,y ),则|a |=x 2+y 2.(1)(2015·湖北)已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=________.(2)在△ABC 中,若A =120°,AB →·AC →=-1,则|BC →|的最小值是( ) A. 2 B .2 C. 6 D .6 答案 (1)9 (2)C解析 (1)因为OA →⊥AB →,所以OA →·AB →=0.所以OA →·OB →=OA →·(OA →+AB →)=OA →2+OA →·AB →=|OA →|2+0=32=9.(2)∵AB →·AC →=-1,∴|AB →|·|AC →|·cos 120°=-1,即|AB →|·|AC →|=2, ∴|BC →|2=|AC →-AB →|2=AC →2-2AB →·AC →+AB →2≥2|AB →|·|AC →|-2AB →·AC →=6,∴|BC →|min = 6.例4 (2015·广东)在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎫0,π2. (1)若m ⊥n ,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值.解 (1)因为m =⎝⎛⎭⎫22,-22,n =(sin x ,cos x ),m ⊥n .所以m ·n =0,即22sin x -22cos x =0,所以sin x =cos x ,所以tan x =1.(2)因为|m |=|n |=1,所以m ·n =cos π3=12,即22sin x -22cos x =12,所以sin ⎝⎛⎭⎫x -π4=12, 因为0<x <π2,所以-π4<x -π4<π4,所以x -π4=π6,即x =5π12.思维升华 平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.(1)已知O 为坐标原点,向量OA →=(3sin α,cos α),OB →=(2sin α,5sin α-4cos α),α∈⎝⎛⎭⎫3π2,2π,且OA →⊥OB →,则tan α的值为( )A .-43B .-45 C.45 D.34(2)已知向量a =(-12,32),OA →=a -b ,OB →=a +b ,若△OAB 是以O 为直角顶点的等腰直角三角形,则△OAB 的面积为________. 答案 (1)A (2)1解析 (1)由题意知6sin 2α+cos α·(5sin α-4cos α)=0,即6sin 2α+5sin αcos α-4cos 2α=0, 上述等式两边同时除以cos 2α,得6tan 2α+5tan α-4=0,由于α∈⎝⎛⎭⎫3π2,2π,则tan α<0,解得tan α=-43,故选A. (2)由题意得,|a |=1,又△OAB 是以O 为直角顶点的等腰直角三角形,所以OA →⊥OB →,|OA →|=|OB →|. 由OA →⊥OB →得(a -b )·(a +b )=|a |2-|b |2=0,所以|a |=|b |, 由|OA →|=|OB →|得|a -b |=|a +b |,所以a·b =0.所以|a +b |2=|a |2+|b |2=2,所以|OB →|=|OA →|=2,故S △OAB =12×2×2=1.例5 (1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB =________.(2)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( ) A .内心 B .外心 C .重心 D .垂心答案 (1)12(2)C解析 (1)在平行四边形ABCD 中,取AB 的中点F ,则BE →=FD →,∴BE →=FD →=AD →-12AB →,又∵AC →=AD →+AB →,∴AC →·BE →=(AD →+AB →)·(AD →-12AB →)=AD →2-12AD →·AB →+AD →·AB →-12AB →2=|AD →|2+12|AD →||AB →|cos 60°-12|AB →|2=1+12×12|AB →|-12|AB →|2=1. ∴⎝⎛⎭⎫12-|AB →||AB →|=0,又|AB →|≠0,∴|AB →|=12. (2)由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心. 引申探究本例(2)中,若动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的________. 答案 内心解析 由条件,得OP →-OA →=λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,即AP →=λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,而AB →|AB →|和AC →|AC →|分别表示平行于AB →,AC →的单位向量,故AB →|AB →|+AC →|AC →|平分∠BAC ,即AP →平分∠BAC ,所以点P 的轨迹必过△ABC 的内心.思维升华 向量与平面几何综合问题的解法 (1)坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决. (2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程进行求解.(1)在△ABC 中,已知向量AB →与AC →满足(AB →|AB →|+AC →|AC →|)·BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为( )A .等边三角形B .直角三角形C .等腰非等边三角形D .三边均不相等的三角形(2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________. 答案 (1)A (2)5解析 (1)AB →|AB →|,AC →|AC →|分别为平行于AB →,AC →的单位向量,由平行四边形法则知AB →|AB →|+AC →|AC →|为∠BAC 的平分线.因为(AB →|AB →|+AC →|AC →|)·BC →=0,所以∠BAC 的平分线垂直于BC ,所以AB =AC .又AB →|AB →|·AC →|AC →|=⎪⎪⎪⎪⎪⎪AB →|AB →|·⎪⎪⎪⎪⎪⎪AC →|AC →|·cos ∠BAC =12,所以cos ∠BAC =12,又0<∠BAC <π,故∠BAC =π3, 所以△ABC 为等边三角形.(2)以D 为原点,分别以DA ,DC 所在直线为x 轴、y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =y .则D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,y ),P A →=(2,-y ),PB →=(1,a -y ), 则P A →+3PB →=(5,3a -4y ),即|P A →+3PB →|2=25+(3a -4y )2, 由点P 是腰DC 上的动点,知0≤y ≤a .因此当y =34a 时,|P A →+3PB →|2的最小值为25.故|P A →+3PB →|的最小值为5.例6 (1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A 、B 、C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________________.(2)设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则y x=___________.答案 (1)2x +y -3=0 (2)±3解析 (1)∵AB →=OB →-OA →=(4-k ,-7),BC →=OC →-OB →=(6,k -5),且AB →∥BC →, ∴(4-k )(k -5)+6×7=0,解得k =-2或k =11.由k <0可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y -3=0.(2)∵OM →·CM →=0,∴OM ⊥CM ,∴OM 是圆的切线,设OM 的方程为y =kx ,由|2k |1+k 2=3,得k =±3,即y x =±3.思维升华 向量在解析几何中的“两个”作用(1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题的关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题.(2)工具作用:利用a ⊥b ⇔a·b =0(a ,b 为非零向量),a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题,特别地,向量垂直、平行的坐标表示对于解决解析几何中的垂直、平行问题是一种比较简捷的方法.(2016·合肥模拟)如图所示,半圆的直径AB =6,O 为圆心,C 为半圆上不同于A 、B 的任意一点,若P 为半径OC 上的动点,则(P A →+PB →)·PC →的最小值为________.答案 -92解析 ∵圆心O 是直径AB 的中点,∴P A →+PB →=2PO →,∴(P A →+PB →)·PC →=2PO →·PC →, ∵PO →与PC →共线且方向相反,∴当大小相等时,乘积最小.由条件知,当PO =PC =32时,最小值为-2×32×32=-92.例7 已知x ,y 满足⎩⎪⎨⎪⎧y ≥x ,x +y ≤2,x ≥a ,若OA →=(x,1),OB →=(2,y ),且OA →·OB →的最大值是最小值的8倍,则实数a 的值是________.答案 18解析 因为OA →=(x,1),OB →=(2,y ),所以OA →·OB →=2x +y ,令z =2x +y ,依题意,不等式组所表示的可行域如图中阴影部分所示(含边界),观察图象可知,当目标函数z =2x +y 过点C (1,1)时,z max =2×1+1=3,目标函数z =2x +y 过点F (a ,a )时,z min =2a +a =3a ,所以3=8×3a ,解得a =18.例8 (2016·合肥模拟)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若20aBC →+15bCA →+12cAB →=0,则△ABC 最小角的正弦值等于( ) A.45 B.34 C.35 D.74 答案 C解析 ∵20aBC →+15bCA →+12cAB →=0,∴20a (AC →-AB →)+15bCA →+12cAB →=0,∴(20a -15b )AC →+(12c -20a )AB →=0,∵AC →与AB →不共线,∴⎩⎪⎨⎪⎧20a -15b =0,12c -20a =0⇒⎩⎨⎧b =43a ,c =53a ,∴△ABC 最小角为角A ,∴cos A =b 2+c 2-a 22bc =169a 2+259a 2-a 22×43a ×53a =45,∴sin A =35,故选C.例8 如图,一质点受到平面上的三个力F 1,F 2,F 3(单位:牛顿)的作用而处于平衡状态.已知F 1,F 2成60°角,且F 1,F 2的大小分别为2和4,则F 3的大小为( )A .27B .2 5C .2D .6 答案 A解析 如题图所示,由已知得F 1+F 2+F 3=0,则F 3=-(F 1+F 2),即F 23=F 21+F 22+2F 1·F 2=F 21+F 22+2|F 1|·|F 2|·cos 60°=28.故|F 3|=27.思维升华 利用向量的载体作用,可以将向量与三角函数、不等式结合起来,解题时通过定义或坐标运算进行转化,使问题的条件结论明晰化.(1)函数y =sin(ωx +φ)在一个周期内的图象如图所示,M 、N 分别是最高点、最低点,O 为坐标原点,且OM →·ON →=0,则函数f (x )的最小正周期是______.(2)已知在平面直角坐标系中,O (0,0),M (1,1),N (0,1),Q (2,3),动点P (x ,y )满足不等式0≤OP →·OM →≤1,0≤OP →·ON →≤1,则z =OQ →·OP →的最大值为________. 答案 (1)3 (2)3解析 (1)由图象可知,M ⎝⎛⎭⎫12,1,N ()x N ,-1,所以OM →·ON →=⎝⎛⎭⎫12,1·(x N ,-1)=12x N-1=0, 解得x N =2,所以函数f (x )的最小正周期是2×⎝⎛⎭⎫2-12=3. (2)∵OP →=(x ,y ),OM →=(1,1),ON →=(0,1),OQ →=(2,3),∴OP →·OM →=x +y ,OP →·ON →=y ,OQ →·OP →=2x +3y ,即在⎩⎪⎨⎪⎧0≤x +y ≤1,0≤y ≤1条件下,求z =2x +3y 的最大值,由线性规划知识得,当x =0,y =1时,z max =3.第五讲 平面向量(二)1.(2016·北师大附中模拟)已知向量a =(x -1,2),b =(2,1),则a ⊥b 的充要条件是( )A .x =-12B .x =-1C .x =5D .x =0答案 D2.若向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则|a +b |等于( )A .22+ 3B .2 3C .4D .12 答案 B解析 |a +b |2=|a |2+|b |2+2|a ||b |cos 60°=4+4+2×2×2×12=12,|a +b |=2 3.3.(2016·山西四校二联)已知平面向量a ,b 满足a ·(a +b )=3,且|a |=2,|b |=1,则向量a 与b 夹角的正弦值为( )A .-12B .-32 C.12 D.32答案 D解析 ∵a ·(a +b )=a 2+a ·b =22+2×1×cos 〈a ,b 〉=4+2cos 〈a ,b 〉=3,∴cos 〈a ,b 〉=-12,又〈a ,b 〉∈[0,π],∴sin 〈a ,b 〉=1-cos 2〈a ,b 〉=32.4.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形C .直角三角形D .等腰直角三角形 答案 C解析 由(BC →+BA →)·AC →=|AC →|2,得AC →·(BC →+BA →-AC →)=0,即AC →·(BC →+BA →+CA →)=0, 2AC →·BA →=0,∴AC →⊥BA →,∴A =90°.又根据已知条件不能得到|AB →|=|AC →|,故△ABC 一定是直角三角形.5.(2016·山东)已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13.若n ⊥(t m +n ),则实数t 的值为( )A .4B .-4 C.94 D .-94答案 B解析 ∵n ⊥(t m +n ),∴n ·(t m +n )=0,即t m ·n +n 2=0,∴t |m ||n |cos 〈m ,n 〉+|n |2=0,由已知得t ×34|n |2×13+|n |2=0,解得t =-4,故选B.6.(2016·南宁模拟)已知向量a =(cos α,-2),b =(sin α,1)且a ∥b ,则sin 2α等于( )A .3B .-3 C.45 D .-45答案 D解析 由a ∥b 得cos α+2sin α=0,∴cos α=-2sin α,又sin 2α+cos 2α=1,∴5sin 2α=1,sin 2α=15,cos 2α=45,sin 2α=2sin αcos α=-cos 2α=-45.7.(2016·武汉模拟)设△ABC 的三个内角为A ,B ,C ,向量m =(3sin A ,sin B ),n =(cos B ,3cos A ),若m·n =1+cos(A +B ),则C 等于( ) A.π6 B.π3 C.2π3 D.5π6 答案 C解析 依题意得3sin A cos B +3cos A sin B =1+cos(A +B ),3sin(A +B )=1+cos(A +B ),3sin C +cos C =1,2sin(C +π6)=1,sin(C +π6)=12.又π6<C +π6<7π6,因此C +π6=5π6,C =2π3.8.如图,在△ABC 中,若|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 边的三等分点,则AE →·AF →等于( ) A.89 B.109 C.259 D.269 答案 B解析 若|AB →+AC →|=|AB →-AC →|,则AB →2+AC →2+2AB →·AC →=AB →2+AC →2-2AB →·AC →,即有AB →·AC →=0.E ,F 为BC 边的三等分点,则AE →·AF →=(AC →+CE →)·(AB →+BF →)=⎝⎛⎭⎫AC →+13CB →·⎝⎛⎭⎫AB →+13BC →=⎝⎛⎭⎫23AC →+13AB →·⎝⎛⎭⎫13AC →+23AB →=29AC →2+29AB →2+59AB →·AC →=29×(1+4)+0=109.故选B. 9.(2017·驻马店质检)若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为( ) A .正三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形 答案 C解析 因为(OB →-OC →)·(OB →+OC →-2OA →)=0,即CB →·(AB →+AC →)=0,因为AB →-AC →=CB →,所以(AB →-AC →)·(AB →+AC →)=0,即|AB →|=|AC →|,所以△ABC 是等腰三角形,故选C.10.若△ABC 外接圆的圆心为O ,半径为4,OA →+2AB →+2AC →=0,则CA →在CB →方向上的投影为( )A .4 B.15 C.7 D .1 答案 C解析 如图所示,取BC 的中点D ,连接AD ,OD ,则由平面向量的加法的几何意义得AB →+AC →=2AD →.又由条件得,AB →+AC →=-12OA →=12AO →,所以2AD →=12AO →,即4AD →=AO →,所以A ,O ,D 共线.所以OA ⊥BC ,所以CD 为CA →在CB →方向上的投影.因为|AO →|=|CO →|=4,所以|OD →|=3,所以|CD →|= |OC →|2-|OD →|2=7.11.在△ABC 中,M 是BC 的中点,AM =3,点P 在AM 上,且满足AP →=2PM →,则P A →·(PB →+PC →)的值为________. 答案 -4解析 由题意得,AP =2,PM =1,所以P A →·(PB →+PC →)=P A →·2PM →=2×2×1×cos 180°=-4.12.在△ABC 中,AB →·BC →=3,△ABC 的面积S ∈[32,32],则AB →与BC →夹角的取值范围是________.答案 [π6,π4]解析 由三角形面积公式及已知条件知32≤S △ABC =12AB ·BC sin B ≤32,所以3≤AB ·BC sin B ≤3,①由AB →·BC →=3,知AB ·BC cos(π-B )=3,所以AB ·BC =-3cos B,代入①得,3≤-3sin B cos B ≤3,所以-1≤tan B ≤-33,所以3π4≤B ≤5π6,而AB →与BC →的夹角为π-B ,其取值范围为[π6,π4].13.在菱形ABCD 中,若AC =4,则CA →·AB →=________. 答案 -8解析 设∠CAB =θ,AB =BC =a ,由余弦定理得:a 2=16+a 2-8a cos θ,∴a cos θ=2, ∴CA →·AB →=4×a ×cos(π-θ)=-4a cos θ=-8.14.已知平面向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为π3.以a ,b 为邻边作平行四边形,则此平行四边形的两条对角线中较短的一条的长度为______. 答案 3解析 ∵|a +b |2-|a -b |2=4a·b =4|a ||b |cos π3=4>0,∴|a +b |>|a -b |,又|a -b |2=a 2+b 2-2a·b =3,∴|a -b |= 3. 15.(2016·江西白鹭洲中学调研)已知在直角三角形ABC 中,∠ACB =90°,AC =BC =2,点P 是斜边AB上的中点,则CP →·CB →+CP →·CA →=________. 答案 4解析 由题意可建立如图所示的坐标系,可得A (2,0),B (0,2),P (1,1),C (0,0),则CP →·CB →+CP →·CA →=CP →·(CB →+CA →)=2CP →2=4.16.(2015·福建改编)已知AB →⊥AC →,|AB →|=1t ,|AC →|=t ,若点P 是△ABC 所在平面内的一点,且AP →=AB →|AB →|+4AC→|AC →|,则PB →·PC →的最大值等于________. 答案 13解析 建立如图所示坐标系,则B ⎝⎛⎭⎫1t ,0,C (0,t ),AB →=⎝⎛⎭⎫1t ,0,AC →=(0,t ),AP →=AB →|AB →|+4AC →|AC →|=t ⎝⎛⎭⎫1t ,0+4t (0,t )=(1,4), ∴P (1,4),PB →·PC →=⎝⎛⎭⎫1t -1,-4·(-1,t -4)=17-⎝⎛⎭⎫1t +4t ≤17-21t·4t =13. 17.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61.(1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积. 解 (1)因为(2a -3b )·(2a +b )=61,所以4|a |2-4a·b -3|b |2=61. 又|a |=4,|b |=3,所以64-4a·b -27=61,所以a·b =-6,所以cos θ=a·b|a||b |=-64×3=-12.又0≤θ≤π,所以θ=23π.(2)|a +b |2=(a +b )2=|a |2+2a·b +|b |2=42+2×(-6)+32=13, 所以|a +b |=13.(3)因为AB →与BC →的夹角θ=23π,所以∠ABC =π-2π3=π3.又|AB →|=|a |=4,|BC →|=|b |=3,所以S △ABC =12|AB →||BC →|·sin ∠ABC =12×4×3×32=3 3.18.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n =(cos B ,-sinB ),且m ·n =-35.(1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影.解 (1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35,所以cos A =-35.因为0<A <π,所以sin A =1-cos 2A = 1-⎝⎛⎭⎫-352=45. (2)由正弦定理,得a sin A =b sin B ,则sin B =b sin A a =5×4542=22,因为a >b ,所以A >B ,则B =π4.由余弦定理得(42)2=52+c 2-2×5c ×⎝⎛⎭⎫-35,解得c =1, 故向量BA →在BC →方向上的投影为|BA →|cos B =c cos B =1×22=22.19.已知点P (0,-3),点A 在x 轴上,点Q 在y 轴的正半轴上,点M 满足P A →·AM →=0,AM →=-32MQ →,当点A 在x 轴上移动时,求动点M 的轨迹方程.解 设M (x ,y )为所求轨迹上任一点,设A (a,0),Q (0,b )(b >0), 则P A →=(a,3),AM →=(x -a ,y ),MQ →=(-x ,b -y ), 由P A →·AM →=0,得a (x -a )+3y =0.①由AM →=-32MQ →,得(x -a ,y )=-32(-x ,b -y )=⎝⎛⎭⎫32x ,32(y -b ), ∴⎩⎨⎧x -a =32x ,y =32y -32b ,∴⎩⎨⎧a =-x 2,b =y3.∴b >0,y >0,把a =-x 2代入①,得-x 2⎝⎛⎭⎫x +x 2+3y =0,整理得y =14x 2(x ≠0).∴动点M 的轨迹方程为y =14x 2(x ≠0).20.已知角A ,B ,C 是△ABC 的内角,a ,b ,c 分别是其所对边长,向量m =(23sin A 2,cos 2A2),n =(cosA2,-2),m ⊥n . (1)求角A 的大小;(2)若a =2,cos B =33,求b 的长.解 (1)已知m ⊥n ,所以m·n =(23sin A 2,cos 2A 2)·(cos A2,-2)=3sin A -(cos A +1)=0,即3sin A -cos A =1,即sin(A -π6)=12,因为0<A <π,所以-π6<A -π6<5π6.所以A -π6=π6,所以A =π3.(2)在△ABC 中,A =π3,a =2,cos B =33,sin B =1-cos 2B = 1-13=63.由正弦定理知a sin A =b sin B ,所以b =a ·sin Bsin A =2×6332=423.*21.(2016·青岛模拟)在平面直角坐标系中,O 为坐标原点,已知向量a =(-1,2),又点A (8,0),B (n ,t ),C (k sin θ,t )(0≤θ≤π2).(1)若AB →⊥a ,且|AB →|=5|OA →|,求向量OB →;(2)若向量AC →与向量a 共线,当k >4,且t sin θ取最大值4时,求OA →·OC →.解 (1)由题设知AB →=(n -8,t ),∵AB →⊥a ,∴8-n +2t =0.又∵5|OA →|=|AB →|,∴5×64=(n -8)2+t 2=5t 2,得t =±8.当t =8时,n =24;当t =-8时,n =-8,∴OB →=(24,8)或OB →=(-8,-8).(2)由题设知AC →=(k sin θ-8,t ),∵AC →与a 共线,∴t =-2k sin θ+16,t sin θ=(-2k sin θ+16)sin θ=-2k (sin θ-4k )2+32k.∵k >4,∴0<4k <1,∴当sin θ=4k 时,t sin θ取得最大值32k.由32k =4,得k =8,此时θ=π6,OC →=(4,8),∴OA →·OC →=(8,0)·(4,8)=32. *22.已知平面上一定点C (2,0)和直线l :x =8,P 为该平面上一动点,作PQ ⊥l ,垂足为Q ,且(PC →+12PQ →)·(PC→-12PQ →)=0. (1)求动点P 的轨迹方程;(2)若EF 为圆N :x 2+(y -1)2=1的任意一条直径,求PE →·PF →的最值. 解 (1)设P (x ,y ),则Q (8,y ).由(PC →+12PQ →)·(PC →-12PQ →)=0,得|PC →|2-14|PQ →|2=0,即(2-x )2+(-y )2-14(8-x )2=0,化简得x 216+y 212=1.∴动点P 在椭圆上,其轨迹方程为x 216+y212=1.(2)∵PE →=PN →+NE →,PF →=PN →+NF →,且NE →+NF →=0.∴PE →·PF →=PN →2-NE →2=(-x )2+(1-y )2-1=16(1-y 212)+(y -1)2-1=-13y 2-2y +16=-13(y +3)2+19.∵-23≤y ≤2 3.∴当y =-3时,PE →·PF →的最大值为19,当y =23时,PE →·PF →的最小值为12-4 3.综上,PE →·PF →的最大值为19,最小值为12-4 3.。
测量与地图学 第六讲 地形图基本知识
河流的表示
时令河
干河床
消失河段
单线实形
湖泊的表示
井泉的表示
泉 温泉
常年湖
时令湖
水库的表示
井
运河、沟渠
2、土质植被
土质是地表覆盖层表面性质的泛称,如山区的裸岩 、冰川,平原上的沙地、沼泽地和盐碱地等 地形图表示的土质类型:沼泽地、沙地、沙砾及戈 壁、石块地、盐碱地、小草丘地、龟裂地等。 分布特点:一般呈面状分布,范围界线不很确定, 地形图上表现形式:在其分布范围内配置散列的各 种符号加上说明注记表示其类别。
2. 非比例符号
面积小但重要的地物,依比例尺缩小无法实形 表示,则用规定尺寸的符号描绘在图上。非比例符 号只表示地物的位置。
非比例符号上表示地物中心位置的点叫做 定位点。 各种非比例符号的定位点不尽相同,根据 符号不同的形状来确定。在测绘、读图 及用图时应注意区分。
非比例符号定位
①规则的几何图形符号,如圆形、正方形、三角形 等,以图形几何中心点为实地地物的中心位置; ②底部为直角形的符号,如独立树、路标等,以符 号的直角顶点为实地地物的中心位置; ③宽底符号,如烟囱、岗亭等,以符号底部中心为 实地地物的中心位置; ④几种图形组合符号,如路灯、消火栓等,以符号 下方图形的几何中心为实地地物的中心位置; ⑤下方无底线的符号,如山洞、窑洞等,以符号下 方两端点连线的中心为实地地物的中心位置。
植被是指植被覆盖的总称,分天然植被与人 工植被两大类。 地形图上表示的植被类型:森林、矮林、幼 林、灌木林、竹林、果园、芦苇及其他高 草地、草地、稻田、旱地等。 分布特点及表示方法:也呈面状分布,地形 图用黑色点线表示其类型界线,界线内普 染淡绿色,并配置说明符号和简单的文字 数字注记。
林地中有灌木及草类植物
高中数学平面向量基本定理
解得λ =±1.
1 N在线段BD上,且有BN= BD,求证:M、N、C三点共线。 3
如图,在平行四边形ABCD中,点M是AB中点,点
D
C
N A M B
1.如果两个向量的基线互相垂直,则称这两
个向量互相垂直 ; 2. 如果两个基向量e1、e2互相垂直,则称
{e1,e2} 为正交基底 3. 若向量e1、e2为单位正交基底,且a xe1 ye2 则称(x,y)为向量a的坐标.N来自Ae2 O e1
M
我们把不共线向量e1,e2叫做这一平面内 所有向量的一组基底,记为{e1,e2}, a1e1+a2e2叫做向量a关于基底{e1,e2}的
分解式。
例1
ABCD中,E、F分别是DC和AB
的中点,试判断AE,CF是否平行?
D E C
A
F
B
例2、 如图,已知梯形ABCD, AB//CD,且AB= 2DC,M,N分别是DC,AB 的中点. 请大家动手, D 在图中确定一组 基底,将其他向 量用这组基底表 A 示出来。
问题:(1)向量a是否可以用含有e1、e2的式
子来表示呢?怎样表示? (2)若向量a能够用e1、e2表示,这种表示
是否唯一?请说明理由.
平面向量基本定理
如果e1、e2是平面内的两个不共线向量,那 么对于这一平面内的任一向量a,有且只有一 对实数a1、a2,使 a a1e1 a2e2 说明:① e1、e2是两个不共线的向量; ② a是平面内的任一向量; ③ a1,a2实数,唯一确定.
2.2.1平面向量基本定理
如图,设e1、e2是同一平面内两个不共线的向量,
试用e1、e2表示向量
AB, CD, EF , GH
专题平面向量常见题型与解题指导
平面向量常见题型与解题指导一、考点回顾1、本章框图2、高考要求1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。
2、掌握向量的加法和减法的运算法则及运算律。
3、掌握实数与向量的积的运算法则及运算律,理解两个向量共线的充要条件。
4、了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。
5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。
6、掌握线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式。
7、掌握正、余弦定理,并能初步运用它们解斜三角形。
8、通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力。
3、热点分析对本章内容的考查主要分以下三类:1.以选择、填空题型考查本章的基本概念和性质.此类题一般难度不大,用以解决有关长度、夹角、垂直、判断多边形形状等问题.2.以解答题考查圆锥曲线中的典型问题.此类题综合性比较强,难度大,以解析几何中的常规题为主.3.向量在空间中的应用(在B类教材中).在空间坐标系下,通过向量的坐标的表示,运用计算的方法研究三维空间几何图形的性质.在复习过程中,抓住源于课本,高于课本的指导方针.本章考题大多数是课本的变式题,即源于课本.因此,掌握双基、精通课本是本章关键.分析近几年来的高考试题,有关平面向量部分突出考查了向量的基本运算。
对于和解析几何相关的线段的定比分点和平移等交叉内容,作为学习解析几何的基本工具,在相关内容中会进行考查。
本章的另一部分是解斜三角形,它是考查的重点。
总而言之,平面向量这一章的学习应立足基础,强化运算,重视应用。
考查的重点是基础知识和基本技能。
4、复习建议由于本章知识分向量与解斜三角形两部分,所以应用本章知识解决的问题也分为两类:一类是根据向量的概念、定理、法则、公式对向量进行运算,并能运用向量知识解决平面几何中的一些计算和证明问题;另一类是运用正、余弦定理正确地解斜三角形,并能应用解斜三角形知识解决测量不可到达的两点间的距离问题。
平面的法向量
y
则可得各点坐标,从而有
B
M
x
C
NM NA AB BM (2a,0,c)
又平面CDE的一个法向量是 AD (0,3b,0) 由NM AD 0 得到NM AD
因为MN不在平面CDE内 所以MN//平面CDE
三、垂直关系:
设直线 l1 , l2 的方向向量分别为 e1 , e2 ,平面
z
D1
C1
2 设平面ADE的一个法向量
A1
B1
为n=(x,y,z) 则由n DA 0,n DE 0得
D Ax
E
C
F
y
B
x 0 0 0 则x=0,不妨取y 1,得z 2
x
y
1 2
z
0
所以n=(0,1,- 2)
又因为D1F
(0,
1 2
, 1)
所以D1F//n
所以 D1F 平面ADE
(1,- 2,2)
3 33
问题:如何求平面的法向量?
(1)设出平面的法向量为n (x, y, z)
(2)找出(求出)平面内的两个不共线的
向量的坐标a (a1,b1,c1),b (a2,b2, c2 )平面的法向
(3)根据法向量的定义建立关于x,
y,
z的量不惟一, 合理取值即
可。
方程组
n n
2023年2月17日星期五
为了用向量来研究空间的线面位置关系,首先我 们要用向量来表示直线和平面的“方向”。那么 如何用向量来刻画直线和平面的“方向”呢?
直线的方向向量
空间中任意一条直线 l 的位置可以由 l 上一 个定点 A 以及一个定方向确定.
l
v
vB
直线l上的向量v 以及与v 共线
高等数学:第六讲 空间平面点法式方程
目录
01
点法式方程
02
例题讲解
03
内容小结
空间平面的点法式方程
※法向量: 垂直于平面的非零向量称为该平面的法向量。
记作: n A, B,C
n
※平面法向量的基本特征:
1.一个平面有多无少穷个多法个向法量向?量。
2.一个平面法的向法量向的量方的向方有向几有个两?个。
3.平面的法向量与垂平直面于上平的面向上量任位意置向关量系。如何?
即
x - 4 y + 9 z+1 = 0 .
a
b
例题讲解
例3. 求过三点M1(2,-1,4), M2(-1,3,-2), M3(0,2,3)的平面 的方程。
解
取该平面 的法向量为
n M1M 2 M1M3
i jk
3 4 6 14, 9, 1
n
M1
2 3 1
又M1 , 利用点法式方程公式得平面 的方程
a( n )
例题讲解
例2. 求过点M0(2,3,1)且平行于向量 a 1, 2, 1 和 b 3, 3,1 的平面方程。
解
所求平面的法向量可取 n a b
n
ijk
1 2 1 1, 4,9
33 1
又因为平面过M0 ( 2, 3, 1 ),所以由点法式方程公式可得
该平面方程为 (x 2) 4( y 3) 9(z 1) 0,
——平面 的点法式方程
例题讲解
例1. 求过点M0(2,1,1)且垂直于向量a {1,2,3} 的平面方程。
解 所求平面的法向量 n a {1,2,3}
又因为平面过M0 (2,1,1),所以由点法式方程公式可得
《平面向量》优秀说课稿(通用3篇)
《平面向量》优秀说课稿(通用3篇)作为一位不辞辛劳的人民教师,就不得不需要编写说课稿,通过说课稿可以很好地改正讲课缺点。
那么什么样的说课稿才是好的呢?下面是小编为大家整理的《平面向量》优秀说课稿(通用3篇),希望对大家有所帮助。
《平面向量》说课稿1一、说教材平面向量的数量积是两向量之间的乘法,而平面向量的坐标表示把向量之间的运算转化为数之间的运算。
本节内容是在平面向量的坐标表示以及平面向量的数量积及其运算律的基础上,介绍了平面向量数量积的坐标表示,平面两点间的距离公式,和向量垂直的坐标表示的充要条件。
为解决直线垂直问题,三角形边角的有关问题提供了很好的办法。
本节内容也是全章重要内容之一。
二、说学习目标和要求通过本节的学习,要让学生掌握(1):平面向量数量积的坐标表示。
(2):平面两点间的距离公式。
(3):向量垂直的坐标表示的充要条件。
以及它们的一些简单应用,以上三点也是本节课的重点,本节课的难点是向量垂直的坐标表示的充要条件以及它的灵活应用。
三、说教法在教学过程中,我主要采用了以下几种教学方法:(1)启发式教学法因为本节课重点的坐标表示公式的推导相对比较容易,所以这节课我准备让学生自行推导出两个向量数量积的坐标表示公式,然后引导学生发现几个重要的结论:如模的计算公式,平面两点间的距离公式,向量垂直的坐标表示的充要条件。
(2)讲解式教学法主要是讲清概念,解除学生在概念理解上的疑惑感;例题讲解时,演示解题过程!主要辅助教学的手段(powerpoint)(3)讨论式教学法主要是通过学生之间的相互交流来加深对较难问题的理解,提高学生的自学能力和发现、分析、解决问题以及创新能力。
四、说学法学生是课堂的主体,一切教学活动都要围绕学生展开,借以诱发学生的学习兴趣,增强课堂上和学生的交流,从而达到及时发现问题,解决问题的目的。
通过精讲多练,充分调动学生自主学习的积极性。
如让学生自己动手推导两个向量数量积的坐标公式,引导学生推导4个重要的结论!并在具体的问题中,让学生建立方程的思想,更好的解决问题!五、说教学过程这节课我准备这样进行:首先提出问题:要算出两个非零向量的数量积,我们需要知道哪些量?继续提出问题:假如知道两个非零向量的坐标,是不是可以用这两个向量的坐标来表示这两个向量的数量积呢?引导学生自己推导平面向量数量积的坐标表示公式,在此公式基础上还可以引导学生得到以下几个重要结论:(1)模的计算公式(2)平面两点间的距离公式。
2020高中数学 第六章 平面向量及其应用 .1 平面向量的概念学案 第二册
6.1 平面向量的概念考点学习目标核心素养平面向量的相关概念了解平面向量的实际背景,理解平面向量的相关概念数学抽象平面向量的几何表示掌握向量的表示方法,理解向量的模的概念数学抽象相等向量与共线向量理解两个向量相等的含义以及共线向量的概念数学抽象、逻辑推理问题导学预习教材P2-P4的内容,思考以下问题:1.向量是如何定义的?向量与数量有什么区别?2.怎样表示向量?向量的相关概念有哪些?3.两个向量(向量的模)能否比较大小?4.如何判断相等向量或共线向量?向量错误!与向量错误!是相等向量吗?1.向量的概念及表示(1)概念:既有大小又有方向的量.(2)有向线段①定义:具有方向的线段.②三个要素:起点、方向、长度.③表示:在有向线段的终点处画上箭头表示它的方向.以A为起点、B为终点的有向线段记作错误!.④长度:线段AB的长度也叫做有向线段错误!的长度,记作|错误!|。
(3)向量的表示■名师点拨(1)判断一个量是否为向量,就要看它是否具备大小和方向两个因素.(2)用有向线段表示向量时,要注意错误!的方向是由点A指向点B,点A是向量的起点,点B是向量的终点.2.向量的有关概念(1)向量的模(长度):向量错误!的大小,称为向量错误!的长度(或称模),记作|错误!|.(2)零向量:长度为0的向量,记作0。
(3)单位向量:长度等于1个单位长度的向量.3.两个向量间的关系(1)平行向量:方向相同或相反的非零向量,也叫做共线向量.若a,b是平行向量,记作a∥b.规定:零向量与任意向量平行,即对任意向量a,都有0∥a.(2)相等向量:长度相等且方向相同的向量,若a,b是相等向量,记作a=b。
■名师点拨(1)平行向量也称为共线向量,两个概念没有区别.(2)共线向量所在直线可以平行,与平面几何中的共线不同.(3)平行向量可以共线,与平面几何中的直线平行不同.判断(正确的打“√”,错误的打“×”)(1)两个向量,长度大的向量较大.()(2)如果两个向量共线,那么其方向相同.()(3)向量的模是一个正实数.( )(4)向量就是有向线段.( )(5)向量AB,→与向量错误!是相等向量.()(6)两个向量平行时,表示向量的有向线段所在的直线一定平行.( )(7)零向量是最小的向量.()答案:(1)×(2)×(3)×(4)×(5)×(6)×(7)×已知向量a如图所示,下列说法不正确的是( )A.也可以用错误!表示B.方向是由M指向NC.起点是M D.终点是M答案:D已知点O固定,且|错误!|=2,则A点构成的图形是( )A.一个点B.一条直线C.一个圆D.不能确定答案:C如图,四边形ABCD和ABDE都是平行四边形,则与错误!相等的向量有________.答案:错误!,错误!向量的相关概念给出下列命题:①若错误!=错误!,则A,B,C,D四点是平行四边形的四个顶点;②在▱ABCD中,一定有错误!=错误!;③若a=b,b=c,则a=c。
暑假六年级 复习 第六讲 确定位置 基础版
第6讲确定位置【知识点归纳】一.根据方向和距离确定物体的位置1.确定一个物体的位置,需要方向和距离两个条件。
2.根据方向和距离确定物体具体位置的方法:(1)看观测点与被观测点的连线与图中表示方向的线之间的夹角是多少度;(2)看图中线段表示的实际长度是多少;(3)将方向和距离结合起来描述物体的具体位置。
二.根据方向和距离描述行走路线描述路线图时,要先按行走路线确定每一个观测点,再依次描述到下一个目标行走的方向和距离。
三.在平面图上确定两个物体的相对位置1. 确定两个物体的相对位置的方法方法一:先确定观测点,画出以观测点为中心的正北、正南、正东、正西四个方向的射线。
再确定方向,看目标点在观测点的哪个方向上,并在平面图上量出这个角度。
最后确定距离,在平面图上测出观测点与目标点的距离,并根据图例计算出实际距离。
方法二:用数对表示物体的具体位置。
数对中第一个数表示物体在第几列,第二个数表示物体在第几行。
2. 绘制路线图的方法(1)确定方向标和单位长度。
(2)确定起点的位置。
(3)根据描述,从起点出发,找好方向和距离,一段一段地画。
第一段以起点为观测点,其余每段都要以前一段的终点为观测点。
(4)以谁为观测点,就以谁为中心画“十”字方向标,然后判断下一地点的方向和距离。
典例精讲【典例1】(郓城县期末)小红从家到学校,先向北偏西30°方向步行了300m,到达超市,接着,又向西偏南45°方向步行了200m,到达学校。
正确表示小红行走路线的是()A.B.C.D.【典例2】(海东市期末)如图,下面说法正确的是()A.小红家在广场东偏北60°300米处B.广场在学校南偏东35°200米处C.广场在小红家东偏北30°300米处【典例3】(新沂市期中)在横线上填上正确的方向。
(1)商场在花坛的面,游乐园在花坛的面。
(2)花坛的西面是,东南面是。
(3)从小学去幼儿园,可以先向,再向走到幼儿园;也可先向,再向走到幼儿园。
第六讲 切削用量的选择
Pf=FfυfX10-3
(6-8)
Fc和Ff的单位为N,υc和υf的单位为m/s。
12
三、影响切削力的因素
影响切削力Fc的因素很多,现将切削用量对其的影响因 素分述如下。
1.进给量f的影响
式(6—3)表示了进给量f对切削力的影响关系。、f 越大,切削力Fc越大。但f增大一倍,切削力Fc增大 不到一倍。这是因为f的增大使切屑变形减小,单位 切削力Kc减小的缘故。但需指出,上述规律只适用 于hD>0.05mm(hD切削层厚度)的情况。当 hD<0.05mm时,由于切削刃钝圆半径rn的影响,切屑 不易形成,反会出现hD越小Fc越大的现象。 13
工件材料的导热系数高,由切屑和工件传导出去 的热量较多,切削区温度就较低,但整个工件的 温度升高较快。例如,切削导热系数好的铝和铜, 切削区温度较低,所以刀具的耐用度就较高;但 工件的温度升较快,由于热胀冷缩的结果,在室 温下检验的尺寸往往与切削时测量的温度不符, 这是必须引起重视的。
18
工件材料的导热系数低,则切削热不易从切屑和 工件传导出去,削区温度较高,使刀具的磨损加 快。例如,切削不锈钢、钛合金以及高温合金时, 由于它们的导热系数低,切削区温度很高,一般 的刀具材料磨损较快,必须采用耐热性好的刀具 材料.并且加注充分的切削液冷却。
因此,为有效地控制切削温度以提高刀具耐用 度,在机床条件允许下,选用大的切削深度和 进给量,比选用大的切削速度有利。
28
第三节
刀具寿命及切削用量对寿命的影响
一、刀具寿命 刃磨好的刀具,从开始切削到达到磨钝标准换刀所经历 的总切削时间称为刀具寿命。 有时为了方便也用总切削距离、加工零件数量等来表示。
25
由式 (6-9) 及表6-2可以看出,切削速度对切削温 度的影响最大,进给量的影响次之,;背吃刀量 的影响最小。
高一数学平面向量的概念及线性运算PPT优秀课件
a+b=λLeabharlann a-b),即(λ-1)a=(1+λ)b,
∴ λ-1=0 1+λ=0
,λ 无解,故假设不成立,即 a+b 与 a-b 不平行,故选 D.
错源二:向量有关概念理解不当
【例2】 如图,由一个正方体的12条棱构成的向量组成了一个集合M,则集合M的元 素个数为________.
错解:正方体共有12条棱,每条棱可以表示两个向量,一共有24个向量.答案是24. 错解分析:方向相同长度相等的向量是相等向量,故AA1―→=BB1―→=CC1―→ = DD1―→ , AB―→ = DC―→ = D1C1―→ = A1B1―→ , AD―→ = BC―→ = B1C1―→=A1D1―→.错解的原因是把相等的向量都当成不同的向量了. 正解:12条棱可以分为三组,共可组成6个不同的向量,答案是6. 答案:6
错解分析:错解一,忽视了 a≠0 这一条件.错解二,忽视了 0 与 0 的区别,AB―→+
BC―→+CA―→=0;错解三,忽视了零向量的特殊性,当 a=0 或 b=0 时,两个等号同时
成立.
正解:∵向量 a 与 b 不共线,
∴a,b,a+b 与 a-b 均不为零向量.
若 a+b 与 a-b 平行,则存在实数 λ,使
∴|AM―→|=12|AD―→|=12|BC―→|=2.故选 C.
【例2】 (2010年安徽师大附中二模)设O在△ABC的内部,且OA―→+OB―→+ 2OC―→=0,则△ABC的面积与△AOC的面积之比为( ) (A)3 (B)4 (C)5 (D)6
解析:由 OC―→=-12(OA―→+OB―→),设 D 为 AB 的中点, 则 OD―→=12(OA―→+OB―→), ∴OD―→=-OC―→,∴O 为 CD 的中点, ∴S△AOC=12S△ADC=14S△ABC,∴SS△△AAOBCC=4.故选 B.
第六讲 平整度检测
确至0.2mm。
④施工结束后检测时,每1处续检测10尺,按上述步骤测记10 个最大间隙。
3m直尺法现场测试平整度
4、数据处理与评定
计算
单杆检测:以3m直尺与路面的最大间隙为测定结果。
连续测定10尺:根据要求计算合格百分率,并计算10个最大间 隙的平均值。 合格率=(合格尺数/总测尺数)×100% 报告
本方法需要下列仪具与材料:
⑴三米直尺:测量基准面长度为3m长,基准面应平直,用硬
木或铝合金钢等材料制成。
⑵最大间隙测量器具:
①楔形塞尺:硬木或金属制的三角形塞尺,有手柄。塞尺 的长度与高度之比不小于10,宽度不大于15mm,边部有高度标 记,刻度读数分辨率小于或等于0.2mm。
②深度尺:金属制的深度测量尺,有手柄。深度尺 测量杆端头直径不小于10mm,刻度读数分辨率小于或等 于0.2mm。
3)对旧路已形成车辙的路面,应取车辙中间位置为测定位置,
用粉笔在路面上作好标记。
⑶清扫路面测定位置处的污物。
3.2 测试步骤
①在施工过程中检测时,按根据需要确定的方向,将3m直尺摆在
测试地点的路面上。
②目测3m直尺底面与路面之间的间隙情况,确定间隙为最大的位 置。
③用有高度标线的塞尺塞进间隙处,量记最大间隙的高度,精
单杆检测的结果应随时记录测试位置及检测结果。连续测定
10尺,应报告平均值、合格尺数、合格率。
2 连续式平整度仪测定平整度
用于测定路表面的平整度,评定路面的施工质量和使用质
量。 不适用于在已有较多坑槽、破损严重的路面上测定。
1、仪具与材料
(1)连续式平整度仪:
前后各有4个行走轮,前后
两组轮的轴间距离为3m。 (2)牵引车:小面包车或其他小型
平面法向量
时,
平面方程为
分析:利用三点式
按第一行展开得
即
二、平面的一般方程
设有三元一次方程
以上两式相减 , 得平面的点法式方程
此方程称为平面的一般
任取一组满足上述方程的数
则
显然方程②与此点法式方程等价,
②
的平面,
因此方程②的图形是
法向量为
方程.
特殊情形
• 当 D = 0 时, A x + B y + C z = 0 表示
一般式
点法式
截距式
三点式
2.平面与平面之间的关系
平面
平面
垂直:
平行:
夹角公式:
思考与练习
P330 题4 , 5, 8
作业 P330 2 , 6 , 7 , 9
备用题
求过点
且垂直于二平面
和
的平面方程.
解: 已知二平面的法向量为
取所求平面的法向量
则所求平面方程为
化简得
通过原点的平面;
• 当 A = 0 时, B y + C z + D = 0 的法向量
平面平行于 x 轴;
• A x+C z+D = 0 表示
• A x+B y+D = 0 表示
• C z + D = 0 表示
• A x + D =0 表示
• B y + D =0 表示
平行于 y 轴的平面;
平行于 z 轴的平面;
三、两平面的夹角
设平面∏1的法向量为
平面∏2的法向量为
则两平面夹角 的余弦为
即
ቤተ መጻሕፍቲ ባይዱ
第6讲 平面向量
自
测
题
32
A. ,
77
( D )
23
B. ,
77
34
C. ,
77
24
D. ,
77
[解析] 如图,过点D作DF∥BC,交AE于点F,由题知
2
4
4
6
= = = .又 =2,所以 = ,可得 = = ,则 = .
3
3
3
向量a,b的夹角为θ,则cos2θ的最小值是
28
29
.
[解析] 设e1=(1,0),e2=(cos α,sin α),则|2e1-e2|=|(2-cos α,-sin α)|= (cos−2) 2 + sin2 ≤
2,即 5−4cos≤
3
2,则 ≤cos
4
α≤1.由a=(cos α+1,sin α),b=(cos α+3,sin α),得cos
2
2
2
2
2
方向上的投影z=
=
,故x +y +z =x +y +
= [6y +(4x5
5
||
5||
2
4)y+9x2-8x+4],可将上式看作是关于y的二次函数,其图像开口向上,
真知真题扫描
5. [2021·浙江卷] 已知平面向量a,b,c(c≠0)满足|a|=1,|b|=2,a·b=0,(a-b)·c=0.
选A.
真知真题扫描
9
2
2. [2021·新高考全国Ⅱ卷] 已知向量a+b+c=0,|a|=1,|b|=|c|=2,则
平面向量的坐标与点的坐标的关系
点
难
点
1、重点:平面向量的坐标运算;
2、难点:向量的坐标表示的理解及运算的准确性。
时量
90分钟
教
学
方
式ห้องสมุดไป่ตู้
设
计
1、课前复习(10分钟)
2、平面向量的坐标及运算(30分钟);
3、平面向量的坐标运算(35分钟);
4、课堂练习及布置作业(15分钟)。
教学过程
一、复习引入
1.向量的表示方法:
①用有向线段表示;②用字母a、b等表示; 平面向量的坐标表示
…………
我们把 叫做向量 的(直角)坐标,记作
…………
其中 叫做 在 轴上的坐标, 叫做 在 轴上的坐标, 式叫做向量的坐标表示
与 相等的向量的坐标也为
特别地, , ,
如图,在直角坐标平面内,以原点O为起点作 ,则点 的位置由 唯一确定
设 ,则向量 的坐标 就是点 的坐标;反过来,点 的坐标 也就是向量 的坐标 因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示
第六讲
课题:7-4平面向量的直角坐标系用坐标作向量的运算
7-5平面向量的坐标与点的坐标的关系
知
识
目
标
1.掌握平面向量的坐标运算,会用坐标表示平面向量的加、减、数乘运算;
2.会求向量的和与差的坐标,会求数乘向量的坐标;
3.理解相等向量的坐标表示。
能
力
目
标
通过平面向量坐标表示及坐标运算法则的推导培养学生演绎、归纳、猜想的能力。
(1)实数λ与向量 的积是一个向量,记作:λ
①|λ |=|λ|| |;
②λ>0时λ 与 方向相同;λ<0时λ 与 方向相反;λ=0时λ =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六讲 平 面 向 量【命题角度聚焦】(1)以客观题形式命制考查向量的概念、线性运算、数量积及几何意义的题目,解答这类题目只需熟悉基本概念、运算、公式即可获解,一般为容易题,这是主要考查方式.(2)向量与三角函数、函数、数列、解析几何等的综合.其中对向量的考查仍然是基本运算,通过向量运算,把题目从向量中“脱”出来,转化为其他知识解答.客观题、主观题都可能出,一般为容易题或中等题. 【核心知识整合 】 1.向量的基本概念(1)既有大小又有方向的量叫做向量.(2)零向量的模为0,方向是任意的,记作0. (3)长度等于1的向量叫单位向量.(4)长度相等且方向相同的向量叫相等向量.(5)方向相同或相反的非零向量叫平行向量,也叫共线向量.零向量和任一向量平行. 2.共线向量定理向量a (a ≠0)与b 共线,当且仅当存在唯一一个实数λ,使b =λa . 3.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2. 4.两向量的夹角已知两个非零向量a 和b ,在平面上任取一点O ,作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫作a 与b 的夹角. 5.向量的坐标表示及运算(1)设a =(x1,y1),b =(x2,y2),则 a±b =(x1±x2,y1±y2),λa =(λx1,λy1).(2)若A(x1,y1),B(x2,y2),则AB →=(x2-x1,y2-y1). 6.平面向量共线的坐标表示 已知a =(x1,y1),b =(x2,y2),当且仅当x1y2-x2y1=0时,向量a 与b 共线. 7.平面向量的数量积 设θ为a 与b 的夹角. (1)定义:a·b =|a||b|cosθ.(2)投影:a·b|b|=|a|cosθ叫做向量a 在b 方向上的投影. 8.数量积的性质 (1)a ⊥b ⇔a·b =0; (2)当a 与b 同向时,a·b =|a|·|b|;当a 与b 反向时,a·b =-|a|·|b|;特别地,a·a =|a|2; (3)|a·b|≤|a|·|b|;(4)cosθ=a·b|a|·|b|.9.数量积的坐标表示、模、夹角已知非零向量a =(x1,y1),b =(x2,y2) (1)a·b =x1x2+y1y2; (2)|a|=x21+y21;(3)a ⊥b ⇔x1x2+y1y2=0; (4)cosθ=x1x2+y1y2x21+y21·x22+y22.1.两向量夹角的范围是[0,π],a·b>0与〈a ,b 〉为锐角不等价;a·b<0与〈a ,b 〉为钝角不等价. 2.点共线和向量共线,直线平行与向量平行既有联系又有区别.3.a 在b 方向上的投影为a·b |b|,而不是a·b|a|.4.若a 与b 都是非零向量,则λa +μb =0⇔a 与b 共线,若a 与b 不共线,则λa +μb =0⇔λ=μ=0. 【命题热点突破】考点1:平面向量的概念、线性运算及平面向量基本定理例1、正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个三等分点,那么EF →=( )A.12AB →-13AD →B.14AB →+12AD → C.13AB →+12DA → D.12AB →-23AD → 变式1、(理)在边长为1的正三角形ABC 中,设BC →=2BD →,CA →=3CE →,则AD →·BE →=________.变式2、(2014·哈三中二模)在平行四边形ABCD 中,AE →=EB →,CF →=2FB →,连接CE 、DF 相交于点M ,若AM →=λAB →+μAD →,则实数λ与μ的乘积为________. [方法规律总结]1.解答向量的线性表示的题目,要抓住向量的起点、终点,按照“首尾相接,首指向尾”的加法运算法则和“同始连终,指向被减”的减法运算法则进行,运用平行四边形法则时,两向量起点必须重合,运用三角形法则时,两向量必须首尾相接,否则就要把向量平移.2.在两直线相交(或三点共线)问题中,常应用待定系数法,将共线的向量中一个用另一个表示,再通过运算确定待定系数.经常依据平面向量基本定理,某向量用同一组基向量的表示式唯一来求待定系数. 考点2:向量的平行与垂直 例2、 (2013·新课标Ⅰ文,13)已知两个单位向量a 、b 的夹角为60°,c =ta +(1-t )b ,若b ·c =0,则t =________. 变式3、(2014·辽宁理,5)设a 、b 、c 是非零向量,已知命题p :若a ·b =0,b ·c =0,则a ·c =0;命题q :若a ∥b ,b ∥c ,则a ∥c ,则下列命题中真命题是( ) A.p ∨q B .p ∧q变式4、(理)(2013·青岛二中模拟)已知△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,3sinCcosC -cos2C =12,且c =3. (1)求角C ;(2)若向量m =(1,sinA)与n =(2,sinB)共线,求a 、b 的值.[方法规律总结]平面向量的平行与垂直是高考命题的主要方向之一,此类题常见命题形式是:①考查坐标表示;②与三角函数、三角形、数列、解析几何等结合,解题时直接运用向量有关知识列出表达式,再依据相关知识及运用相关方法加以解决.考点3:平面向量的数量积、夹角、模例3、 (2013·安徽文,13)若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a 与b 夹角的余弦值为________变式5、(理)设n 和m 是两个单位向量,其夹角是60°,则向量a =2m +n 和b =-3m +2n 的夹角为________.变式6、(2014·天津理,8)已知菱形ABCD 的边长为2,∠BAD =120°,点E 、F 分别在边BC 、DC 上,BE →=λBC →,DF→=μDC →.若AE →·AF →=1,CE →·CF →=-23,则λ+μ=( )A.12B.23C.56D.712【命题角度1】三角函数与平面向量交汇例4、(2014·乌鲁木齐地区5月诊断)已知a =(cosx,23cosx),b =(2cosx ,sinx),且f(x)=a ·b. (1)求f(x)的最小正周期及单调递增区间;(2)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,若(a +2c)cosB =-bcosA 成立,求f(A)的取值范围.变式7、(2014·辽宁理,17)在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,且a>c ,已知BA →·BC →=2,cosB =13,b =3,求: (1)a 和c 的值; (2)cos(B -C)的值.变式8、(理)(2013·保定市一模)已知向量a =(sin ωx 2,12),b =(cos ωx 2,-12)(ω>0,x ≥0),函数f(x)=a ·b 的第n(n ∈N*)个零点记作xn(从左向右依次计数),则所有xn 组成数列{xn}.(1)若ω=12,求x2;(2)若函数f(x)的最小正周期为π,求数列{xn}的前100项和S100.[方法规律总结]1.不含坐标的向量综合问题,解答时,按向量有关概念、性质、法则等通过运算解决,若条件方便建立坐标系,用坐标表示时,建立坐标系用坐标运算解决,给出坐标的向量综合问题,直接按向量各概念、法则的坐标表示将向量问题转化为代数问题处理.2.向量与其他知识交汇的题目,先按向量的概念、性质、法则脱去向量外衣,转化为相应的三角、数列、不等式、函数、解析几何等问题,再按相应的知识选取解答方法. 【命题角度1】构造法解题例5、设x ,y ∈R ,且满足⎩⎪⎨⎪⎧x -2 3+2x +sin x -2 =2,y -2 3+2y +sin y -2 =6,则x +y =( ) A .1 B .2 C .3 D .4例6、(2014·郑州市质检)已知x 、y ∈(-12,12), m ∈R 且m ≠0, 若⎩⎪⎨⎪⎧ln2-x2+x=tanx +2m ln 1-y 1+y =2tany 1-tan2y -2m,则y x=________.第六讲 平 面 向 量课堂检测一、选择题1.(2014·新课标Ⅱ理,3)设向量a 、b 满足|a +b |=10,|a -b |=6,则a ·b =( )A .1B .2C .3D .52.设x ∈R ,向量a =(x,1),b =(1,-2),且a ⊥b ,则|a +b |=( )A. 5B.10 C .2 5D .103.(2014·福建理,8)在下列向量组中,可以把向量a =(3,2)表示出来的是( )A .e 1=(0,0),e 2=(1,2)B .e 1=(-1,2),e 2=(5,-2)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=(-2,3) 4.如果不共线向量a 、b 满足2|a |=|b |,那么向量2a +b 与2a -b 的夹角为( )A.π6B.π3C.π2D.2π35.(理)若两个非零向量a 、b 满足|a +b |=|a -b |=2|a |,则向量a +b 与a -b 的夹角是( )A.π6B.π3C.2π3D.5π66.若a 、b 、c 均为单位向量,且a ·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为( )A.2-1 B .1 C. 2 D .2二、填空题7.(理)(2014·江西理,14)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.8.(2013·重庆)若OA 为边,OB 为对角线的矩形中,OA →=(-3,1),OB →=(-2,k ),则实数k =________. 9.已知向量a =(1,0),b =(1,1),则(1)与2a +b 同向的单位向量的坐标表示为________; (2)向量b -3a 与向量a 夹角的余弦值为________.10.如图所示,A 、B 、C 是圆O 上的三点,线段CO 的延长线与线段BA 的延长线交于圆O 外的点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.一、选择题11.设向量a ,b 满足|a |=2,a ·b =32,|a +b |=22,则|b |等于( )A.12 B .1 C.32D .212.(理)(2014·新课标Ⅰ理,10)已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |=( )A.72B.52C .3D .213.(理)(2014·湖南文,10)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的取值范围是( )A .[4,6]B .[19-1,19+1]C .[23,27]D .[7-1,7+1]14.(2014·浙江理,8)记max{x ,y }=⎩⎪⎨⎪⎧ x ,x ≥y y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥yx ,x <y ,设a ,b 为平面向量,则( )A .min{|a +b |,|a -b |}≤min{|a |,|b |}B .min{|a +b |,|a -b |}≥min{|a |,|b |}C .max{|a +b |2,|a -b |2}≤|a |2+|b |2D .max{|a +b |2,|a -b |2}≥|a |2+|b |2 二、填空题15.(2014·山东理,12)在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC 的面积为________.16. (理)(2013·南昌高三调研)已知O 为坐标原点,点M (3,2),若N (x ,y )满足不等式组⎩⎪⎨⎪⎧x ≥1,y ≥0,x +y ≤4.则OM →·ON →的最大值为________. 三、解答题17.已知向量a =(cos θ,sin θ),θ∈[0,π],向量b =(3,-1).(1)若a ⊥b ,求θ的值;(2)若|2a -b |<m 恒成立,求实数m 的取值范围.18.在△ABC 中,角A 、B 、C 所对的对边长分别为a 、b 、c .(1)设向量x =(sin B ,sin C ),向量y =(cos B ,cos C ),向量z =(cos B ,-cos C ),若z ∥(x +y ),求tan B +tan C 的值;(2)若sin A cos C +3cos A sin C =0,证明:a 2-c 2=2b 2.。