【最新】人教版八年级数学上册 14章 整式乘法与因式分解 单元质量检测题
人教版数学八年级上册第14章《整式的乘法与因式分解》单元检测题(含答案解析)
人教版数学八年级上册第14章《整式的乘法与因式分解》单元检测题(含答案解析)《整式的乘法与因式分解》单元检测题一、单选题1.若n满足(n-2011)2+(2012-n)2=1,则(2012-n)(n-2011)等于A.-1B.0C.D.12.下面是一位同学做的四道题①(a+b)2=a2+b2,②(2a2)2=-4a4,③a5÷a3=a2,④a3·a4=a12。
其中做对的一道题的序号是()A.①B.②C.③D.④3.下列计算正确的是()A.(a m)n=a m+n B.2a+a=3a2C.(a2b)3=a6b3D.a2•a3=a64.下列计算正确的是()A.B.C.D.5.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A.①B.②C.③D.④6.下列分解因式正确的是()A.B.C.D.7.已知m+n=2,mn= -2,则(1-m)(1-n)的值为()A.-1 B.1 C.5 D.-38.下列运算正确的是()A.B.C.D.-9.利用乘法公式计算正确的是()A.(2x﹣3)2=4x2+12x﹣9 B.(4x+1)2=16x2+8x+1C.(a+b)(a+b)=a2+b2D.(2m+3)(2m﹣3)=4m2﹣310.下列各题计算结果为2a2的是()A.a6÷a3B.2a•a C.(﹣2a)2D.(a2)211.数学课上,老师讲了单项式与多项式相乘,放学后,小丽回到家拿出课堂笔记,认真地复习老师课上讲的内容,她突然发现一道题:﹣3x2(2x﹣□+1)=﹣6x3+3x2y﹣3x2,那么空格□中的一项是()A.﹣y B.y C.﹣xy D.xy12.已知x3+2x2-3x+k因式分解后,其中有一个因式为(x-2),则k为()A.6B.-6C.10D.-10二、填空题13.若,则的值为_____.14.利用因式分解计算:2012-1992=_________;15.多项式的展开结果中的的一次项系数为3,常数项为2,则的值为_________ . 16.计算:(a+2)(a-2)=______________;三、解答题17.计算:(1)2m(mn)2;(2)(-1)2018-(3.14-x)0+2-118.仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n),则x2﹣4x+m=x2+(n+3)x+3n∴,解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21.问题:(1)若二次三项式x2﹣5x+6可分解为(x﹣2)(x+a),则a= ;(2)若二次三项式2x2+bx﹣5可分解为(2x﹣1)(x+5),则b= ;(3)仿照以上方法解答下面问题:已知二次三项式2x2+5x﹣k有一个因式是(2x﹣3),求另一个因式以及k的值.19.已知x2+x﹣1=0,则x3+x2﹣x+3的值为_____.20.计算:21.(1)已知a+b=7,ab=10,求a2+b2,(a-b)2的值;(2)已知3x+2·5x+2=153x-4,求(2x-1)2-4x2+7的值.人教版数学八年级上册第14章《整式的乘法与因式分解》单元检测题(含答案解析)参考答案1.B【解析】分析:首先设a=n-2011,b=2012-n,然后根据完全平方公式得出ab的值,从而得出答案.详解:设a=n-2011,b=2012-n,∴a+b=1,,∴,∴ab=1,即(n-2011)(2012-n)=1,故选B.点睛:本题主要考查的是完全平方公式的应用,属于中等难度的题型.解决这个问题的关键就是得出两个代数式的和为1,这是一个隐含条件.2.C【解析】分析: 直接利用完全平方公式以及同底数幂的乘除运算法则,积的乘方运算法则分别计算得出答案.详解: :①(a+b)2=a2+2ab+b2,故此选项错误;②(-2a2)2=4a4,故此选项错误;③a5÷a3=a2,正确;④a3•a4=a7,故此选项错误.故选:C.点睛: 此题主要考查了完全平方公式以及同底数幂的乘除运算、积的乘方运算, 正确掌握相关运算法则是解题关键.3.C【解析】分析:直接利用幂的乘方运算法则以及结合合并同类项法则、积的乘方运算法则、同底数幂的乘法运算法则求出答案.详解:A.(a m)n=a mn,故此选项错误;B.2a+a=3a,故此选项错误;C.(a2b)3=a6b3,正确;D.a2•a3=a5,故此选项错误.故选C.点睛:本题主要考查了幂的乘方运算以及合并同类项、积的乘方运算、同底数幂的乘法运算等知识,正确掌握运算法则是解题的关键.4.C【解析】分析:根据完全平方公式求出每个式子的值,再判断即可.详解:A.(),故本选项错误;B.(),故本选项错误;C.(),故本选项正确;D.(),故本选项错误.故选D.点睛:本题考查了对完全平方公式的应用,注意:(a±b)2=a2±2ab+b2.5.C【解析】【分析】根据完全平方公式,同底数幂的乘法,同底数幂的除法以及积的乘方进行选择即可.【解答】①2.故错误.②.故错误.③.正确.④故错误.故选C.【点评】考查完全平方公式,同底数幂的乘法,同底数幂的除法以及积的乘方,熟记它们的运算法则是解题的关键.6.C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. =(x-2)2,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.7.D【解析】【分析】先将(1-m)(1-n)化为1-(m+n)+mn可得.【详解】因为,(1-m)(1-n)=1-(m+n)+mn所以,(1-m)(1-n)=1-2-2=-3.人教版数学八年级上册第14章《整式的乘法与因式分解》单元检测题(含答案解析)故选:D【点睛】本题考核知识点:整式乘法. 解题关键点:熟记整式运算方法.8.C【解析】分析:根据同底数幂的乘法法则、幂的乘方法则、同底数幂的除法法则、合并同类项的法则分别进行计算即可.详解:A.a3•a2=a5,故原题计算错误;B.(﹣a2)3=﹣a6,故原题计算错误;C.a7÷a5=a2,故原题计算正确;D.﹣2mn﹣mn=﹣3mn,故原题计算错误.故选C.点睛:本题主要考查了同底数幂的乘除法、合并同类项、积的乘方,关键是掌握各计算法则.9.B【解析】【分析】根据完全平方公式和平方差公式进行分析对照可得出结论.【详解】A. (2x﹣3)2=4x2+12x+9,故本选项不能选;B. (4x+1)2=16x2+8x+1, 故本选项能选;C. (a+b)(a+b)=a2+2ab+b2,故本选项不能选;D. (2m+3)(2m﹣3)=4m2﹣9,故本选项不能选.故选:B【点睛】本题考核知识点:整式乘法公式. 解题关键点:熟记完全平方公式和平方差公式. 10.B【解析】【分析】运用整式乘除法分别进行计算排除即可.【详解】A. a6÷a3=a3,本选项不能选;B. 2a•a=2a2, 本选项能选;C.(﹣2a)2=4a2, 本选项不能选;D.(a2)2=a4, 本选项不能选.故选:B【点睛】本题考核知识点:整式乘除法.解题关键点:熟记整式乘除法法则.11.B【解析】【分析】先去左边的括号,根据等式的性质可知3x2□=3x2y,故结果易得.【详解】由﹣3x2(2x﹣□+1)=﹣6x3+3x2y﹣3x2,得-6x3+3x2□-3x2=﹣6x3+3x2y﹣3x2,所以,3x2□=3x2y,所以,□=y,故选:B【点睛】本题考核知识点:整式乘法.解题关键点:正确去括号.12.B【解析】分析: 由多项式的一个因式为x-2,可知当x=2时,多项式的值为0,从而可求得k 的值;详解: ∵多项式多项式x3+2x2-3x+k因式分解后有一个因式为(x-2),∴x-2=0时,x3+2x2-3x+k=0,即x=2时,(-2)3+2×(-2)2-3×(-2)+k=0,解得:k=-6.故选B.点睛: 本题主要考查的是因式分解,依据题意得到关于x的方程是解题的关键.13.7【解析】分析:把a+b=3两边平方,利用完全平方公式化简,将ab=1代入计算,即可求出a2+b2的值.详解:把a+b=3两边平方得:(a+b)2=a2+2ab+b2=9,将ab=1代入得:a2+b2=7.故答案为:7.点睛:本题考查了完全平方公式,熟练掌握完全平方公式是解答本题的关键.14.800【解析】分析:先利用平方差公式分解因式,然后计算即可求解.详解:2012-1992=(201+199)(201-199)=800.故答案为:800.点睛:本题考查了因式分解在进行有理数的乘法中的运用,涉及的是平方差公式的运用,使运算简便.15.-6【解析】分析:根据多项式与多项式相乘的法则把原式变形,根据题意求出m+n和mn,把人教版数学八年级上册第14章《整式的乘法与因式分解》单元检测题(含答案解析)所求的代数式因式分解、代入计算即可.详解:(x-m)(x-n)=x2-(m+n)x+mn,由题意得,m+n=-3,mn=2,则m2n+mn2=mn(m+n)=-6,故答案为:-6.点睛:本题考查的是多项式与多项式相乘的法则,掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加是解题的关键.16.【解析】【分析】运用平方差公式:(a+b)(a-b)=a2-b2.【详解】由(a+b)(a-b)=a2-b2,得(a+2)(a-2)=.故答案为:【点睛】本题考核知识点:整式乘法.解题关键点:运用平方差公式.17.(1)(2)【解析】分析:(1)先算积的乘方,再算单项式乘单项式;(2)先算有理数的乘方、零指数幂和负指数幂,再算有理数的加减法.详解:(1)原式=(2)原式点睛:本题考查了积的乘方、负指数幂,以及零指数幂,熟练掌握运算法则是解答本题的关键.18.(1)-3;(2)9;(3)另一个因式为(x+4),k的值为12.【解析】试题分析:(1)将(x-2)(x+a)展开,根据所给出的二次三项式即可求出a的值;(2)(2x-1)(x+5)展开,可得出一次项的系数,继而即可求出b的值;(3)设另一个因式为(x+n),得2x2+5x-k=(2x-3)(x+n)=2x2+(2n-3)x-3n,可知2n-3=5,k=3n,继而求出n和k的值及另一个因式.试题解析:(1)∵(x﹣2)(x+a)=x2+(a﹣2)x﹣2a=x2﹣5x+6,∴a﹣2=﹣5,解得:a=﹣3;(2)∵(2x﹣1)(x+5)=2x2+9x﹣5=2x2+bx﹣5,∴b=9;(3)设另一个因式为(x+n),得2x2+5x﹣k=(2x﹣3)(x+n)=2x2+(2n﹣3)x﹣3n,则2n﹣3=5,k=3n,解得:n=4,k=12,故另一个因式为(x+4),k的值为12.19.3【解析】分析:先将所求的代数式前三项提取公因式x,再把已知条件整体代入法求解即可.详解:∵,∴故答案为:点睛:考查因式分解的应用,将所求的代数式前三项提取公因式x是解题的关键,注意整体代入思想在数学中的应用.20.【解析】【分析】把原式写成(a+b)(a-b)形式,再用平方差公式.【详解】解:原式=(2x+y)2 -1 2=4x 2 +4xy+y 2 -1.【点睛】本题考核知识点:平方差公式. 解题关键点:把原式写成(a+b)(a-b)形式. 21.(1)29;9;(2)-4.【解析】分析:(1)、根据a2+b2=(a+b)2-2ab和(a-b)2=(a+b)2-4ab这两个公式即可得出答案;(2)、根据积的乘方法则得出(3×5)x+2=153x-4,从而求出x的值,将x的值代入代数式即可得出答案.详解:解:(1)、a2+b2=(a+b)2-2ab=72-2×10=49-20=29,(a-b)2=(a+b)2-4ab=72-4×10=49-40=9;(2)、∵3x+2·5x+2=153x-4,∴(3×5)x+2=153x-4,即x+2=3x-4,解得x=3,又∵(2x-1)2-4x2+7=4x2-4x+1-4x2+7=-4x+8,∴当x=3时,原式=-4×3+8=-4.点睛:本题主要考查的是完全平方公式的应用以及幂的计算法则,属于中等难度的题型.熟人教版数学八年级上册第14章《整式的乘法与因式分解》单元检测题(含答案解析)练掌握完全平方公式之间的关系是解决这个问题的关键.。
新人教版八年级数学上册第十四章《整式的乘法与因式分解》单元测试试卷及答案
新人教版八年级数学上册第十四章《整式的乘法与因式分解》单元测试试卷及答案一、选择题(题型注释)1、下列计算正确的是()A.a3•a2=a6 B.(﹣2a2)3=﹣8a6 C.(a+b)2=a2+b2 D.2a+3a=5a22、下列从左边到右边的变形,是因式分解的是( )A.(3-x)(3+x)=9-x2 B.m4-n4=(m2+n2)(m+n)(m -n)C.(y+1)(y-3)=-(3-y)(y+1) D.4yz-2y2z+z=2y(2z-yz)+z3、把分解因式,其结果为( )A.()() B. ()C. D. ()4、如果多项式x2-mx+9是一个完全平方式,那么m的值为( ).A.-3 B.-6 C.±3 D.±65、是一个完全平方式,则m的值为()A.3 B.9 C.-3 D.6、若,,则ab的值为()A.11 B.- 22 C.4 D.不存在7、如果的积中不含x的一次项,则m的值是A.5 B.10 C. D.8、在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图1),把余下的部分拼成一个矩形(如图2),根据两个图形中阴影部分的面积相等,可以验证()A.B.C.D.9、下列因式分解正确的是()A. B.C. D.10、2101×0.5100的计算结果是……………………………………()A.1 B.2 C.0.5 D.10二、填空题(题型注释)11、分解因式:___________.12、a•a5-(2a3)2=__________13、因式分解:___________.14、若,则_____.15、计算:=_______.16、已知,,则____________.17、分解因式:m3-9m=__________.18、若多项式x2+ax﹣2分解因式的结果为(x+1)(x﹣2),则a的值为_____.19、()2013×1.52012×(﹣1)2014=_____.20、已知,则=______.三、计算题(题型注释)21、因式分解:⑴⑵⑶⑷22、(2+3)2﹣(2﹣3)2.23、(1)计算:|1﹣|++(﹣2)0;(2)化简:(a2b﹣2ab2﹣b3)÷b﹣(a﹣b)2.24、计算: .四、解答题(题型注释)25、先化简,再求值:其中a=-1,b=126、长方形的长和宽分别是a厘米、b厘米,如果长方形的长和宽各减少3厘米。
人教版八年级上册第十四章整式乘法与因式分解单元检测(含答案)
人教版八年级上册第十四章整式乘法与因式分解单元检测(含答案)一、单选题 1.计算结果正确的是()A.B.C.D.2.计算12x a a a a ⋅⋅=,则x 等于( ) A.10B.9C.8D.43.下列计算正确的是( ) A .326a a a ∙=B .()239a a = C .5510x x x += D .78y y y ∙=4.若m ,n 是正整数,且2232m n ⋅=,()m n =264,则mn m n ++的值为( ) A.10B.11C.12D.135.20192019532135⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭( )A .1-B .1C .0D .20036.如果(x-2)(x+3)=x 2+px+q ,那么p 、q 的值为( ) A .p=5,q=6B .p=1,q=-6C .p=1,q=6D .p=5,q=-6.7.( 22)221xy x y xy ÷=-+,括号内应填的多项式为( ) A .322324x y x y -B .12x y - C .3223242x y x y xy -+D .112x y -+ 8.下列多项式乘法中可以用平方差公式计算的是( ) A .(﹣a +b )(a ﹣b ) B .(x +2)(2+x )C .(3x +y )(y ﹣3x) D .(x ﹣2)(x +1) 9.用四个完全一样的长方形(长、宽分别设为x 、y )拼成如图所示的大正方形,已知大正方形的面积为36,中间空缺的小正方形的面积为4,则下列关系式中不正确的是( )A .x+y=6B .x ﹣y=2C .x•y=8D .x 2+y 2=3610.下列等式从左往右因式分解正确的是( ) A .()ab ac b a b c d ++=++B .()()23212x x x x -+=--C .()222121m n m mn n +-=++- D .()()2414141x x x -=+-11.下列多项式能分解因式的是( ) A .22xy +B .22x y xy -C .22x xy y ++D .244x x +-12.在多项式①-m 4-n 4,②a 2+b 2,③-16x 2+y 2,④9(a -b )2-4,⑤-4a 2+b 2中,能用平方差公式分解因式的有() A.1个 B.2个 C.3个 D.4个二、填空题13.分解因式:a 2-5a -14=________.14.若7m n +=,11mn =,则22m mn n -+的值是______. 15.()2320x y -++=,则x y 为 .16.如图,边长为a 的正方形中有一个边长为b 的小正方形,若将图1的阴影部分拼成一个长方形,如图2,比较图1和图2的阴影部分的面积,你能得到的公式是______________.三、解答题 17.计算:(13|(2)2342()()n n ⋅(3)23322(3)(4)(6)a b ab ⋅÷18.(1)计算:()1132π-⎛⎫-+ ⎪⎝⎭(2)化简:()()()32223x x y x y x yxy -++÷19.计算:(1)2(2)(1)(1)a b a a +--+(2)()43322223694(3)a b a b a bab -+÷-20.动手操作:如图①是一个长为2a ,宽为2b 的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形. 提出问题:(1)观察图②,请用两种不同的方法表示阴影部分的面积:_____________,_____________;(2)请写出三个代数式(a +b )2,(a -b )2,ab 之间的一个等量关系:___________________________;问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知x +y =8,xy =7,求x -y 的值.21.把下列各式分解因式:(1)481a - (2)223242x y xy y -+22.乘法公式的探究及应用.小题1:如图1,可以求出阴影部分的面积是_______ (写成两数平方差的形式);小题2:如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是_______,长是______,面积是_________ (写成多项式乘法的形式).小题3:比较图 1,图2的阴影部分面积,可以得到乘法公式________ (用式子表达)答案 1.A 2.A 3.D 4.B 5.B 6.B 7.C 8.C 9.D 10.B 11.B 12.C 13.(a-7)(a+2) 14.16. 15.-816.a 2-b 2=(a+b )(a-b ).17.(1) 7-14n ;(3)1244a b18.(1)3;(2)25x ;19.(1)4ab+42b +1;(2)2449a b a -+20.(1) (a -b )2;(a +b )2-4ab;(2) (a +b )2-4ab =(a -b )2,问题解决: x -y =±621.(1)(a 2+9)(a+3)(a-3); (2)2y (x-y )2.22.小题1: 22a b -;小题2: -a b ,+a b ,()()a b a b +-;小题3: 22()()a b a b a b +-=-人教版八年级数学上册单元检测卷:第十四章整式的乘法与因式分解单元测试(word 版,含答案)一、填空题(本大题共4小题,每小题5分,满分20分)1.计算:-x 2·x 3=________;⎝ ⎛⎭⎪⎫12a 2b 3=________;⎝ ⎛⎭⎪⎫-122017×22016=________.2.因式分解:a -ab 2=______________.3.已知2a 2+2b 2=10,a +b =3,则ab =________.4.对于实数m ,n 定义如下的一种新运算“☆”:m ☆n =m 2-mn -3,下列说法:①0☆1=-3;②x ☆(x -2)=-2x -3;③方程(x +1) ☆(x -1)=0的解为x =12;④整式3x ☆1可进行因式分解.其中正确的说法是__________(填序号). 二、选择题(本大题共10小题,每小题4分,满分40分)5.计算(-2a )2的结果是( )A .-4a 2B .2a 2C .-2a 2D .4a 26.下列运算正确的是( )A .(x +y )2=x 2+y 2B .x 2·x 5=x 10C .x +y =2xyD .2x 3÷x =2x 27.下列四个多项式中,能因式分解的是( )A .a 2+b 2B .a 2-a +2C .a 2+3bD .(x +y )2-48.若(x -2)(x +3)=x 2-ax +b ,则a 、b 的值是( ) A .a =5,b =6 B .a =1,b =-6 C .a =-1,b =-6 D .a =5,b =-69.如果关于x 的代数式9x 2+kx +25是一个完全平方式,那么k 的值是( ) A .15 B .±5 C .30 D .±3010.已知x +y =-4,xy =2,则x 2+y 2的值为( ) A .10 B .11 C .12 D .1311.已知3a =5,9b =10,则3a +2b的值为( ) A .50 B .-50 C .500 D .-50012.若a 、b 、c 为一个三角形的三边长,则式子(a -c )2-b 2的值( ) A .一定为正数 B .一定为负数C .可能是正数,也可能是负数D .可能为013.图①是一个长为2a 、宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②那样拼成一个正方形,则中间空的部分的面积是( )A .abB .(a +b )2C .(a -b )2D .a 2-b 214.在求1+6+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S =1+6+62+63+64+65+66+67+68+69①,然后在①式的两边都乘以6,得6S =6+62+63+64+65+66+67+68+69+610②,②-①得6S -S =610-1,即5S =610-1,所以S =610-15.得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a ”(a ≠0且a ≠1),能否求出1+a +a 2+a 3+a 4+…+a 2018的值?你的答案是( )A.a 2018-1a -1B.a 2019-1a -1C.a 2018-1aD .a 2018-1三、(本大题共2小题,每小题8分,满分16分) 15.计算:(1)x ·x 7; (2)a 2·a 4+(a 3)2;(3)(-2ab 3c 2)4; (4)(-a 3b )2÷(-3a 5b 2).16.化简:(1)(a +b -c )(a +b +c );(2)(2a +3b )(2a -3b )-(a -3b )2.四、(本大题共2小题,每小题8分,满分16分)17.若关于x的多项式(x2+x-n)(mx-3)的展开式中不含x2和常数项,求m,n的值.18.分解因式:(1)4x3y+xy3-4x2y2; (2)y2-4-2xy+x2.五、(本大题共2小题,每小题10分,满分20分)19.观察下列关于自然数的等式:32-4×12=5; ①52-4×22=9; ②72-4×32=13; ③……根据上述规律解决下列问题:(1)完成第四个等式:92-4×________2=________;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.20.小红家有一块L形菜地,把L形菜地按如图所示分成面积相等的两个梯形种上不同的蔬菜.已知这两个梯形的上底都是a米,下底都是b米,高都是(b-a)米.(1)请你算一算,小红家的菜地面积共有多少平方米?(2)当a=10,b=30时,面积是多少平方米?六、(本题满分12分) 21.先化简,再求值:(1)[(x -y )2+(x +y )(x -y )]÷2x ,其中x =3,y =1;(2)(m -n )(m +n )+(m +n )2-2m 2,其中m 、n 满足方程组⎩⎪⎨⎪⎧m +2n =1,3m -2n =11.七、(本题满分12分)22.(1)已知a -b =1,ab =-2,求(a +1)(b -1)的值;(2)已知(a +b )2=11,(a -b )2=7,求ab 的值;(3)已知x -y =2,y -z =2,x +z =5,求x 2-z 2的值.八、(本题满分14分)23.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x-y)+(x-y)2=__________;(2)因式分解:(a+b)(a+b-4)+4;(3)求证:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.参考答案1.-x 518a 6b 3 -12 2.a (1+b )(1-b ) 3.2 4.①③④5-14:.D .D .D .C .D .C .A .B .C .B15.解:(1)原式=x 8.(2分)(2)原式=a 6+a 6=2a 6.(4分)(3)原式=16a 4b 12c 8.(6分)(4)原式=a 6b 2÷(-3a 5b 2)=-13a .(8分)16.解:(1)原式=(a +b )2-c 2=a 2+2ab +b 2-c 2.(4分)(2)原式=4a 2-9b 2-(a 2-6ab +9b 2)=3a 2+6ab -18b 2.(8分)17.解:原式=mx 3+(m -3)x 2-(3+mn )x +3n .(3分)∵展开式中不含x 2和常数项,得到m -3=0,3n =0,(6分)解得m =3,n =0.(8分)18.解:(1)原式=xy (2x -y )2.(4分)(2)原式=(x -y )2-4=(x -y +2)(x -y -2).(8分) 19.解:(1)4 17(3分)(2)第n 个等式为(2n +1)2-4n 2=4n +1.(5分)左边=(2n +1)2-4n 2=4n 2+4n +1-4n2=4n +1.右边=4n +1.左边=右边,∴(2n +1)2-4n 2=4n +1.(10分)20.解:(1)小红家的菜地面积共有2×12(a +b )(b -a )=(b 2-a 2)(平方米).(5分)(2)当a =10,b =30时,面积为900-100=800(平方米).(10分)21.解:(1)原式=(x 2-2xy +y 2+x 2-y 2)÷2x =(2x 2-2xy )÷2x =x -y .当x =3,y =1时,原式=3-1=2.(6分)(2)⎩⎪⎨⎪⎧m +2n =1①,3m -2n =11②,①+②,得4m =12,解得m =3.将m =3代入①,得3+2n =1,解得n =-1.(8分)原式=m 2-n 2+m 2+2mn +n 2-2m 2=2mn .当m =3,n =-1时,原式=2×3×(-1)=-6.(12分)22.解:(1)∵a -b =1,ab =-2,∴原式=ab -(a -b )-1=-2-1-1=-4.(4分)(2)∵(a +b )2=a 2+2ab +b 2=11①,(a -b )2=a 2-2ab +b 2=7②,∴①-②得4ab =4,∴ab =1.(8分)(3)由x -y =2,y -z =2,得x -z =4.又∵x +z =5,∴原式=(x +z )(x -z )=20.(12分)23.(1)(x -y +1)2(3分)(2)解:令A =a +b ,则原式=A (A -4)+4=A 2-4A +4=(A -2)2,再将A 还原,得原式=(a +b -2)2.(8分)(3)证明:(n +1)(n +2)(n 2+3n )+1=(n 2+3n )[(n +1)(n +2)]+1=(n 2+3n )(n 2+3n+2)+1.令n 2+3n =A ,则原式=A (A +2)+1=A 2+2A +1=(A +1)2,∴原式=(n 2+3n +1)2.∵n 为正整数,∴n 2+3n +1也为正整数,∴式子(n +1)(n +2)(n 2+3n )+1的值一定是某一个整数的平方.(14分)人教版八年级上册第十四章整式的乘法与因式分解单元测试题一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , ) 一、 选择题 (本题共计 10 小题,每题 分,共计30分 , ) 1. 若,则等于( ) A. B.C.D.2. 把多项式分解因式得( )A.B. C. D.3. 多项式的公因式是( ) A.B.C.D.4.,且,则 、 的关系是( )A. B.C. D.5. 下列因式分解中,正确的个数为()①;②;③;④;⑤.A.个B.个C.个D.个6. 下列运算正确的是()A. B.C. D.7. 将下列各式分解因式,正确的是()A.B.C.D.8. 已知,,,则的值为()A. B. C. D.9. 下列计算错误的个数是()①;②;③;④.A. B. C. D.10. 如果的乘积中不含项,则为()A. B. C. D.二、填空题(本题共计6 小题,共计21分,)二、填空题(本题共计6 小题,每题分,共计21分,)11. (3分)已知,,则________.12. (3分)若是完全平方式,则________.13. (3分)若,,则________.14. (4分)已知,,则的值等于________.15. (4分)如图,正方形广场的边长为米,中央有一个正方形的水池,水池四周有一条宽度为的环形小路,那么水池的面积用含、的代数式可表示为________平方米.16. (4分)如图,从边长为的正方形纸片中剪去一个边长为的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是________.三、解答题(本题共计6 小题,共计69分,)三、解答题(本题共计6 小题,每题分,共计69分,)17.(10分) 因式分解(2).18. (11分)已知在中,三边长、、满足,试判断的形状并加以说明.19. (12分)已知,,求代数式的值.20. (12分)当为整数时,能被整除吗?请说明理由.21.(12分) 若已知,,试求的值(2)的值.22. (12分)老师给了一个多项式,甲、乙、丙、丁四位同学分别对这个多项式进行描述,(甲):这是一个三次四项式;(乙):常数项系数为;(丙):这个多项式的前三项有公因式;(丁):这个多项式分解因式时要用到公式法;若这四个同学的描述都正确,请你构造两个同时满足这些描述的多项式,并将它因式分解.答案1. C2. C3. C4. C5. B6. C7. B8. B9. D10. A11.12.13.14.15. 或16.17. 解:原式;原式.18. 解:三角形是等腰三角形.,,,,则,,∴,则三角形是等腰三角形.19. 解:,∵,,∴原式.20. 解:,∵为整数, ∴为的整数倍,所以当为整数时,能被整除.21. 解:∵,;∴;∵,,∴.22. 解:人教版八年级上数学第14章整式的乘法与因式分解单元测试(解析)(3)一、选择题:1、如果(a n•b mb)3=a 9b 15,那么( ) A .m=4,n=3B .m=4,n=4C .m=3,n=4D .m=3,n=32、下列运算正确的是( ) A .x 2+x 2=x 4B .3a 3•2a 2=6a 6C .(﹣a 2)3=﹣a 6D .(a ﹣b )2=a 2﹣b 23、(2018·湖北随州)下列运算正确的是( )A .a 2•a 3=a 6B .a 3÷a ﹣3=1C .(a ﹣b )2=a 2﹣ab+b 2D .(﹣a 2)3=﹣a 64、已知长方形的面积为4a 2-4b 2,如果它的一边长为a+b ,则它的周长为( ) A. 10a-6b B. 10a+6b C. 5a-3b D. 5a+3b5、若k 为任意整数,且993﹣99能被k 整除,则k 不可能是( ) A .50 B .100 C .98 D .976、如图,从边长为(a+1)cm 的正方形纸片中剪去一个边长为(a ﹣1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是( )A.2cm 2B.2acm 2C.4acm 2D.(a 2-1)cm27、下列各式:①(x-2y)(2y+x);②(x-2y)(-x-2y);③(-x-2y)(x+2y);④(x-2y)(-x+2y).其中能用平方差公式计算的是( ) A .①②B .①③C .②③D .②④8、(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( ) A .0B .2/3C .﹣2/3D .﹣3/29、(2018•内蒙古包头市)如果2x a+1y 与x 2y b ﹣1是同类项,那么a/b 的值是()A .1/2B .3/2C .1D .310、观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x+a )(x+b )=x 2﹣7x+12,则a ,b 的值可能分别是( ) A .﹣3,﹣4B .﹣3,4C .3,﹣4D .3,411、若4x 2+kx +25=(2x -5)2,那么k 的值是若4x 2+kx +25=(2x -5)2,那么k 的值是( ) A .﹣4B .﹣30C .﹣20D .012、若(x+m )(x 2-3x+n )的展开式中不含x 2和x 项,则m ,n 的值分别为( ) A.m=3,n=1 B.m=3,n=-9 C.m=3,n=9 D.m=-3,n=9 二、填空题:13、已知x 2+y 2=10,xy=3,则x+y=14、多项式x 2﹣9,x 2+6x+9的公因式是 . 15、若m+n=3,则2m 2+4mn+2n 2﹣6的值为 ;16、(2018•江苏苏州)若a+b=4,a ﹣b=1,则(a+1)2﹣(b ﹣1)2的值为 . 17、已知:a+b=4,则代数式(a+1)(b+1)﹣ab 值为18、若关于x 的式子x +m 与x -4的乘积中一次项是5x ,则常数项为 . 19、(2018•贵州安顺)若x 2+2(m-3)x+16是关于的完全平方式,则m= .20、已知一个圆的半径为Rcm ,若这个圆的半径增加2cm ,则它的面积增加 21、已知关于x 的一元二次方程x 2+7x ﹣a 2+5a+6=0的两个实数根一个大于1,另一个小于6,则a 的取值范围为22、(x 2+ax+8)(x 2﹣3x+b )展开式中不含x 3和x 2项,则a 、b 的值分别为a= ,b= . 三、解答题: 23、因式分解:(1)3a 2-27b 2; (2)x 2-8(x-2).24、(2018•乌鲁木齐)先化简,再求值: (x+1)(x ﹣1)+(2x ﹣1)2﹣2x (2x ﹣1), 其中x=√2+1.25、(2018•临安)阅读下列题目的解题过程:已知A.B.c 为△ABC 的三边,且满足a 2c 2﹣b 2c 2=a 4﹣b 4,试判断△ABC 的形状. 解:∵a 2c 2﹣b 2c 2=a 4﹣b 4(A ) ∴c 2(a 2﹣b 2)=(a 2+b 2)(a 2﹣b 2)(B ) ∴c 2=a 2+b 2(C )∴△ABC 是直角三角形 问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号: ;(2)错误的原因为: ;(3)本题正确的结论为:.26、如图,边长分别为a,b的两个正方形并排放在一起,请计算图中阴影部分面积,并求出当a+b=16,ab=60时阴影部分的面积.27、观察下列计算过程,发现规律,利用规律猜想并计算:1+2==3;1+2+3==6,1+2+3+4==10;1+2+3+4+5==15;…(1)猜想:1+2+3+4+…+n= .(2)利用上述规律计算:1+2+3+4+ (200)(3)尝试计算:3+6+9+12+…3n的结果.参考答案:一、选择题:1、A2、C3、D4、A5、D6、C7、A8、C9、A 10、A 11、C 12、C 二、填空题: 13、±4 14、x+3 15、12 16、12 17、5 18、-36 19、-1或7 20、(4R+4)cm 221、a <﹣2或a >7 22、a=3,b=1三、解答题:23、(1)3a 2-27b 2=3(a 2-9b 2)=3(a+3b)(a-3b);(2)x 2-8(x-2)=x 2-8x+16=(x-4)2. 24、原式=x 2﹣1+4x 2﹣4x+1﹣4x 2+2x =x 2﹣2x ,把x=√2+1代入,得: 原式=(√2+1)2﹣2(√2+1) =3+2√2﹣2√2﹣2 =1.25、C 没有考虑a =b 的情况 △ABC 是等腰三角形或直角三角形 26、=a ²+b ²/2﹣a ×(a +b )/2=(a²+b²﹣ab)/227、(1)1+2+3+4+…+n=;(2)1+2+3+4+…+200==20100.(3)3+6+9+12+…3n=3(1+2+3+4+…+n)=.。
新人教版 八年级数学上册 第14章 整式的乘法与因式分解 单元测试卷 (解析版)
第14章整式的乘法与因式分解单元测试卷一、选择题1.下列各运算中,计算正确的是()A.a2+2a2=3a4B.x8﹣x2=x6C.(x﹣y)2=x2﹣xy+y2D.(﹣3x2)3=﹣27x62.计算(a3)2÷a2的结果是()A.a3B.a4C.a7D.a83.下列计算正确的是()A.x2+x=x3B.(﹣3x)2=6x2C.8x4÷2x2=4x2D.(x﹣2y)(x+2y)=x2﹣2y24.把多项式x2﹣4x+4分解因式,所得结果是()A.x(x﹣4)+4B.(x﹣2)(x+2)C.(x﹣2)2D.(z+2)25.两整式相乘的结果为a2﹣a﹣12的是()A.(a﹣6)(a+2)B.(a﹣3)(a+4)C.(a+6)(a﹣2)D.(a+3)(a﹣4)6.x3y2•(﹣xy3)2的计算结果是()A.x5y10B.x5y8C.﹣x5y8D.x6y127.将一个长方形的长减少1%,宽增加1%,则这个长方形的面积()A.不变B.减少1%C.增大1%D.减少0.01% 8.若(x+3)(2x﹣n)=2x2+mx﹣15,则()A.m=﹣1,n=5B.m=1,n=﹣5C.m=﹣1,n=﹣5D.m=1,n=5 9.下列计算:①3x3•(﹣2x2)=﹣6x5;②(a3)2=a5;③(﹣a)3÷(﹣a)=﹣a2;④4a3b÷(﹣2a2b)=﹣2a:⑤(a﹣b)2=a2﹣b2;⑤(x+2)(x﹣1)=x2﹣x﹣2,其中正确的有()A.1个B.2个C.3个D.4个10.若x2+mx﹣18能分解为(x﹣9)(x+n),那么m、n的值是()A.7、2B.﹣7、2C.﹣7、﹣2D.7、﹣211.如果(2x+m)(x﹣5)展开后的结果中不含有x的一次项,那么m等于()A.5B.﹣10C.﹣5D.1012.如果对于不<8的自然数n,当3n+1是一个完全平方数时,n+1能表示成k个完全平方数的和,那么k的最小值为()A.1B.2C.3D.4二、填空题13.分解因式:axy﹣ay2=.14.若x2+4x+m能用完全平方公式因式分解,则m的值为.15.若a m=9,a n=3,则a m﹣n=.16.已知2m=a,32n=b,则23m+10n=.17.多项式3ma2+12mab的公因式是.18.已知|m﹣3|与(2+n)4互为相反数,则(n+m)2020的值为.三、解答题19.用提公因式法将下列各式因式分解:(1)2x2﹣4xy+x;(2)﹣4m3+8m2﹣24m.20.(1)计算:(19.99+4.99)2﹣4×4.99×19.99.(2)分解因式:x3﹣x2+x.(3)利用乘法公式进行计算:(2x+y﹣3)(2x﹣y+3).21.化简求值:[(x+2y)2﹣(x﹣2y)2﹣(x+2y)(x﹣2y)﹣4y2]÷2x,其中x=﹣2,y=.22.欢欢与乐乐两人共同计算(2x+a)(3x+b),欢欢抄错为(2x﹣a)(3x+b),得到的结果为6x2﹣13x+6;乐乐抄错为(2x+a)(x+b),得到的结果为2x2﹣x﹣6.(1)式子中的a、b的值各是多少?(2)请计算出原题的正确答案.参考答案一、选择题1.下列各运算中,计算正确的是()A.a2+2a2=3a4B.x8﹣x2=x6C.(x﹣y)2=x2﹣xy+y2D.(﹣3x2)3=﹣27x6【分析】根据合并同类项法则,完全平方公式,幂的乘方和积的乘方分别求出每个式子的值,再判断即可.解:A、结果是3a2,故本选项不符合题意;B、x8和﹣x2不能合并,故本选项不符合题意;C、结果是x2﹣2xy+y2,故本选项不符合题意;D、结果是﹣27x6,故本选项符合题意;故选:D.2.计算(a3)2÷a2的结果是()A.a3B.a4C.a7D.a8【分析】根据幂的乘方、同底数幂的除法的计算法则进行计算即可.解:(a3)2÷a2=a3×2÷a2=a6﹣2=a4,故选:B.3.下列计算正确的是()A.x2+x=x3B.(﹣3x)2=6x2C.8x4÷2x2=4x2D.(x﹣2y)(x+2y)=x2﹣2y2【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.解:x2+x不能合并,故选项A错误;(﹣3x)2=9x2,故选项B错误;8x4÷2x2=4x2,故选项C正确;(x﹣2y)(x+2y)=x2﹣4y2,故选项D错误;故选:C.4.把多项式x2﹣4x+4分解因式,所得结果是()A.x(x﹣4)+4B.(x﹣2)(x+2)C.(x﹣2)2D.(z+2)2【分析】这个多项式可以用完全平方公式分解因式.完全平方公式:a2±2ab+b2=(a±b)2.解:x2﹣4x+4=x2﹣2•2x+22=(x﹣2)2.故选:C.5.两整式相乘的结果为a2﹣a﹣12的是()A.(a﹣6)(a+2)B.(a﹣3)(a+4)C.(a+6)(a﹣2)D.(a+3)(a﹣4)【分析】把各选项根据多项式的乘法法则展开,然后选取答案即可.解:A、(a﹣6)(a+2)=a2﹣4a﹣12,故本选项错误;B、(a﹣3)(a+4)=a2+a﹣12,故本选项错误;C、(a+6)(a﹣2)=a2+4a﹣12,故本选项错误;D、(a+3)(a﹣4)=a2﹣a﹣12,正确.故选:D.6.x3y2•(﹣xy3)2的计算结果是()A.x5y10B.x5y8C.﹣x5y8D.x6y12【分析】先算乘方,再进行单项式乘法运算,然后直接找出答案.解:x3y2•(﹣xy3)2,=x3y2•x2y3×2,=x3+2y2+6,=x5y8.故选:B.7.将一个长方形的长减少1%,宽增加1%,则这个长方形的面积()A.不变B.减少1%C.增大1%D.减少0.01%【分析】设出原长方形的长为a,宽为b,表示出原长方形的面积,然后根据长方形的长减少1%,宽增加1%,表示出变化后长方形的长与宽,进而表示出变化后长方形的面积,可求出减少的面积,即可求出减少的百分比.解:设原长方形的长为a,宽为b,则原长方形的面积为ab,根据题意得:变化后长方形的长为(1﹣1%)a=0.99a,宽为(1+1%)b=1.01b,∴变化后长方形的面积为0.99a• 1.01b=0.9999ab,∴这个长方形的面积减少ab﹣0.9999ab=0.0001ab,则这个长方形的面积减少的百分数为×100%=0.01%.故选:D.8.若(x+3)(2x﹣n)=2x2+mx﹣15,则()A.m=﹣1,n=5B.m=1,n=﹣5C.m=﹣1,n=﹣5D.m=1,n=5【分析】已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件即可求出m与n的值.解:∵(x+3)(2x﹣n)=2x2+(6﹣n)x﹣3n=2x2+mx﹣15,∴6﹣n=m,﹣3n=﹣15,解得:m=1,n=5.故选:D.9.下列计算:①3x3•(﹣2x2)=﹣6x5;②(a3)2=a5;③(﹣a)3÷(﹣a)=﹣a2;④4a3b÷(﹣2a2b)=﹣2a:⑤(a﹣b)2=a2﹣b2;⑤(x+2)(x﹣1)=x2﹣x﹣2,其中正确的有()A.1个B.2个C.3个D.4个【分析】各项计算得到结果,判断即可.解:①3x3•(﹣2x2)=﹣6x5,符合题意;②(a3)2=a6,不符合题意;③(﹣a)3÷(﹣a)=a2,不符合题意;④4a3b÷(﹣2a2b)=﹣2a,符合题意;⑤(a﹣b)2=a2﹣2ab+b2,不符合题意;⑤(x+2)(x﹣1)=x2+x﹣2,不符合题意,故选:B.10.若x2+mx﹣18能分解为(x﹣9)(x+n),那么m、n的值是()A.7、2B.﹣7、2C.﹣7、﹣2D.7、﹣2【分析】将分解因式的结果利用多项式乘以多项式法则计算,合并后根据多项式相等的条件即可求出m与n的值.解:根据题意得:x2+mx﹣18=(x﹣9)(x+n)=x2+(n﹣9)x﹣9n,∴m=n﹣9,﹣18=﹣9n,解得:m=﹣7,n=2.故选:B.11.如果(2x+m)(x﹣5)展开后的结果中不含有x的一次项,那么m等于()A.5B.﹣10C.﹣5D.10【分析】原式利用多项式乘以多项式法则计算,合并后根据结果不含x的一次项,即可确定出m的值.解:(2x+m)(x﹣5)=2x2﹣10x+mx﹣5m=2x2+(m﹣10)x﹣5m,∵结果中不含有x的一次项,∴m﹣10=0,即m=10.故选:D.12.如果对于不<8的自然数n,当3n+1是一个完全平方数时,n+1能表示成k个完全平方数的和,那么k的最小值为()A.1B.2C.3D.4【分析】根据完全平公式计算即可.解:由已知3n+1是一个完全平方数,所以我们就设3n+1=a2,显然a2不是3的倍数,于是a=3x±1,从而3n+1=a2=9x2±6x+1,n=3x2±2x,即n+1=2x2+(x±1)2=x2+x2+(x±1)2,即把n+1写为了x,x,x±1这三个数的平方和,由于当n=8时.8+1=32.所以k的最小值为1,故选:A.二、填空题13.分解因式:axy﹣ay2=ay(x﹣y).【分析】直接提取公因式ay,进而分解因式得出答案.解:axy﹣ay2=ay(x﹣y).故答案为:ay(x﹣y).14.若x2+4x+m能用完全平方公式因式分解,则m的值为4.【分析】利用完全平方公式可得答案.解:x2+4x+4=(x+2)2,故答案为:4.15.若a m=9,a n=3,则a m﹣n=3.【分析】同底数幂的除法法则:同底数幂相除,底数不变,指数相减.解:∵a m=9,a n=3,∴a m﹣n=a m÷a n=9÷3=3.故答案为:3.16.已知2m=a,32n=b,则23m+10n=a3b2.【分析】根据幂的乘方和同底数幂的乘法运算规则进行计算.解:∵32n=b,∴25n=b,∴23m+10n,=23m•210n,=(2m)3•(25n)2,=a3b2.17.多项式3ma2+12mab的公因式是3ma.【分析】根据公因式的定义,即找出两式中公共的因式即可.解:3ma2+12mab中,3与12的公因式是:3,ma2与mab的公因式是:ma,∴多项式3ma2+12mab的公因式是:3ma,故答案为:3ma.18.已知|m﹣3|与(2+n)4互为相反数,则(n+m)2020的值为1.【分析】根据相反数的概念列出算式,根据非负数的性质求出m、n的值,计算即可.解:由题意得,|m﹣3|+(2+n)4=0,则m﹣3=0,2+n=0,解得,m=3,n=﹣2,则(n+m)2020=1,故答案为:1.三、解答题19.用提公因式法将下列各式因式分解:(1)2x2﹣4xy+x;(2)﹣4m3+8m2﹣24m.【分析】(1)直接提取公因式x,进而得出答案;(2)直接提取公因式﹣4m,进而得出答案.解:(1)2x2﹣4xy+x=x(2x﹣4y+1);(2)﹣4m3+8m2﹣24m=﹣4m(m2﹣2m+6).20.(1)计算:(19.99+4.99)2﹣4×4.99×19.99.(2)分解因式:x3﹣x2+x.(3)利用乘法公式进行计算:(2x+y﹣3)(2x﹣y+3).【分析】(1)原式利用完全平方公式化简,合并后再利用完全平方公式变形,计算即可求出值;(2)原式提取公因式,再利用完全平方公式分解即可;(3)原式利用平方差公式,以及完全平方公式分解即可.解:(1)原式=19.992+2×19.99×4.99+4.992﹣4×4.99×19.99=19.992﹣2×19.99×4.99+4.992=(19.99﹣4.99)2=152=225;(2)原式=x(x2﹣x+)=x(x﹣)2;(3)原式=(2x)2﹣(y﹣3)2=4x2﹣y2+6y﹣9.21.化简求值:[(x+2y)2﹣(x﹣2y)2﹣(x+2y)(x﹣2y)﹣4y2]÷2x,其中x=﹣2,y=.【分析】先根据完全平方公式,平方差公式,多项式除单项式的法则去括号,合并同类项,将整式化为最简式,然后把x、y的值代入即可.解:[(x+2y)2﹣(x﹣2y)2﹣(x+2y)(x﹣2y)﹣4y2]÷2x,=[(x2+4xy+4y2)﹣(x2﹣4xy+4y2)﹣(x2﹣4y2)﹣4y2]÷2x,=(x2+4xy+4y2﹣x2+4xy﹣4y2﹣x2+4y2﹣4y2)÷2x,=(﹣x2+8xy)÷2x,=﹣x+4y,当x=﹣2,y=时,原式=﹣×(﹣2)+4×=1+2=3.22.欢欢与乐乐两人共同计算(2x+a)(3x+b),欢欢抄错为(2x﹣a)(3x+b),得到的结果为6x2﹣13x+6;乐乐抄错为(2x+a)(x+b),得到的结果为2x2﹣x﹣6.(1)式子中的a、b的值各是多少?(2)请计算出原题的正确答案.【分析】(1)根据由于欢欢抄错了第一个多项式中的a符号,得出的结果为6x2﹣13x+6,可知(2x﹣a)(3x+b)=6x2+(2b﹣3a)x﹣ab=6x2﹣13x+6,于是2b﹣3a=﹣13①;再根据乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣x﹣6,可知常数项是﹣6,可知(2x+a)(x+b)=2x2﹣x﹣6,可得到2b+a=﹣1②,解关于①②的方程组即可求出a、b的值;(2)把a、b的值代入原式求出整式乘法的正确结果.解:(1)根据题意可知,由于欢欢抄错了第一个多项式中的a的符号,得到的结果为6x2﹣13x+6,那么(2x﹣a)(3x+b)=6x2+(2b﹣3a)x﹣ab=6x2﹣13x+6,可得2b﹣3a=﹣13 ①乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣x﹣6,可知(2x+a)(x+b)=2x2﹣x﹣6即2x2+(2b+a)x+ab=2x2﹣x﹣6,可得2b+a=﹣1 ②,解关于①②的方程组,可得a=3,b=﹣2;(2)正确的式子:(2x+3)(3x﹣2)=6x2+5x﹣6。
第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册
第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1.下列运算正确的是()A.x6•x2=x12B.(﹣3x)2=6x2C.x3+x3=x6D.(x5)2=x102.计算的结果为()A.B.﹣1C.﹣2D.23.下列由左到右的变形,属于因式分解的是()A.x2﹣4=(x+2)(x﹣2)B.x(x+1)=x2+xC.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2+4x﹣2=x(x+4)﹣24.多项式4x3yz2﹣8x2yz4+12x4y2z3的公因式是()A.4x3yz2B.﹣8x2yz4C.12x4y2z3D.4x2yz25.若2x+y﹣3=0,则52x•5y=()A.15B.75C.125D.1506.如果(2x﹣m)与(x+6)的乘积中不含x的一次项,那么m的值为()A.12B.﹣12C.0D.67.如果4a2﹣kab+b2是一个完全平方式,那么k的值是()A.4B.﹣4C.±2D.±48.从边长为a的大正方形纸板正中央挖去一个边长为b的小正方形后,将其裁成四个大小和形状完全相同的四边形(如图1),然后拼成一个平行四边形(如图2),那么通过计算两个图形阴影部分的面积,可以验证成立的等式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)9.如图所示,两个正方形的边长分别为a和b,如果a+b=12,ab=28,那么阴影部分的面积是()A.40B.44C.32D.5010.已知a,b,c是△ABC的三边长,且a2+2ab=c2+2bc,则△ABC是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形二、填空题(每小题3分,满分18分)11.已知x2﹣2x﹣1=0,代数式(x﹣1)2+2024=.12.若m﹣n=﹣2,且m+n=5,则m2﹣n2=.13.若ab=3,a+b=2,则ab2+a2b﹣3ab=.14.3m=4,3n=5,则33m﹣2n的值为.14.如果(x﹣1)x+4=1成立,那么满足它的所有整数x的值是.16.如图,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB =9,两正方形的面积和S1+S2=45,则图中阴影部分面积为.第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.分解因式:(1)3a2﹣6ab+3b2;(2)25(m+n)2﹣(m﹣n)2;18.已知:a﹣b=3,ab=1,试求:(1)a2+3ab+b2的值;(2)(a+b)2的值.19.若关于x的代数式(x2+mx+n)(2x﹣1)的化简结果中不含x2的项和x的项,求m+n的值.20.在计算(2x+a)(x+b)时,甲错把a看成了﹣a,得到结果是:2x2﹣10x+12;乙由于漏抄了第一个多项式中x的系数,得到结果:x2+x﹣12.(1)求出a,b的值;(2)在(1)的条件下,计算(2x+a)(x+b)的结果.21.已知5m=4,5n=6,25p=9.(1)求5m+n的值;(2)求5m﹣2p的值;(3)写出m,n,p之间的数量关系.22.将边长为x的小正方形ABCD和边长为y的大正方形CEFG按如图所示放置,其中点D在边CE上.(1)若x+y=10,y2﹣x2=20,求y﹣x的值;(2)连接AG,EG,若x+y=8,xy=14,求阴影部分的面积.23.对于任意实数m,n,我们规定:F(m,n)=m2+n2,H(m,n)=﹣mn,例如:F(1,2)=12+22=5,H(3,4)=﹣3×4=﹣12.(1)填空:①F(﹣1,3)=;②若H(2,x)=﹣6,则x=;③若F(a,b)=H(a,2b),则a+b0.(填“>”,“<”或“=”)(2)若x+2y=5,且F(2x+3y,2x﹣3y)+H(7,x2+2y2)=13,求xy与(x ﹣2y)2的值;(3)若正整数x,y满足F(x,y)=k2+17,H(x,y)=﹣3k+4,求k的值.24.我们定义:如果两个多项式M与N的和为常数,则称M与N互为“对消多项式”,这个常数称为它们的“对消值”.如MF=2x2﹣x+6与N=﹣2x2+x﹣1互为“对消多项式”,它们的“对消值”为5.(1)下列各组多项式互为“对消多项式”的是(填序号):①3x2+2x与3x2+2;②x﹣6与﹣x+2;③﹣5x2y3+2xy与5x2y3﹣2xy﹣1.(2)多项式A=(x﹣a)2与多项式B=﹣bx2﹣2x+b(a,b为常数)互为“对消多项式”,求它们的“对消值”;(3)关于x的多项式C=mx2+6x+4与D=﹣m(x+1)(x+n)互为“对消多项式”,“对消值”为t.若a﹣b=m,b﹣c=mn,求代数式a2+b2+c2﹣ab﹣bc﹣ac+2t的最小值.25.【阅读理解】对一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如,由图1可以得到完全平方公式:(x+y)2=x2+2xy+y2,这样的方法称为“面积法”.【解决问题】(1)如图2,利用上述“面积法”,可以得到数学等式:(a+b+c)2=.(2)利用(1)中所得到的等式,解决下面的问题:①已知a+b+c=8,ab+bc+ac=17.求a2+b2+c2的值.②若m、n满足如下条件:(n﹣2021)2+(2023﹣2n)2+(n+1)2=m2﹣2m﹣20,(n﹣2021)(2023﹣2n)+(n﹣2021)(n+1)+(2023﹣2n)(n+1)=2+m,求m的值.【应用迁移】如图3,△ABC中,AB=AC,点O为底边BC上任意一点,OM ⊥AB,ON⊥AC,CH⊥AB,垂足分别为M,N,H,连接AO.若OM=1.2,ON=2.5,利用上述“面积法”,求CH的长.。
人教版数学八年级上第十四章《整式的乘法与因式分解》单元检测卷(含答案)
人教版数学八年级上第十四章《整式的乘法与因式分解》单元检测卷(含答案)一、选择题(每题3分,共30分) 1.下列运算正确的是( )A .a 3+a 3=a 6B .2(a +1)=2a +1C .(ab )2=a 2b 2D .a 6÷a 3=a 22.(1+x 2)(x 2-1)的计算结果是( )A .x 2-1B .x 2+1C .x 4-1D .1-x 43.任意给定一个非零数m ,按下列程序计算,最后输出的结果是( )A .mB .m -2C .m +1D .m -14.下列计算正确的是( )A .-3x 2y ·5x 2y =2x 2yB .-2x 2y 3·2x 3y =-2x 5y 4C .35x 3y 2÷5x 2y =7xyD .(-2x -y )(2x +y )=4x 2-y 2 5.下列式子从左到右变形是因式分解的是( )A .a 2+4a -21=a (a +4)-21B .a 2+4a -21=(a -3)(a +7)C .(a -3)(a +7)=a 2+4a -21D .a 2+4a -21=(a +2)2-25 6.下列因式分解正确的是( )A .2x 2-2=2(x +1)(x -1)B .x 2+2x -1=(x -1)2C .x 2+1=(x +1)2D .x 2-x +2=x (x -1)+2 7.若(a +b )2=(a -b )2+A ,则A 为( )A .2abB .-2abC .4abD .-4ab8.计算(x 2-3x +n )(x 2+mx +8)的结果中不含x 2和x 3的项,则m ,n 的值为( )A .m =3,n =1B .m =0,n =0C .m =-3,n =-9D .m =-3,n =89.若a ,b ,c 是三角形的三边长,则代数式(a -b )2-c 2的值( )A .大于0B .小于0C .等于0D .不能确定10.7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示,设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .a =25b B .a =3b C .a =27bD .a =4b二、填空题(每题3分,共18分)11.计算:(m+1)2-m2=____.12.计算:|-3|+(π+1)0-4=____.13.已知x=y+4,则代数式x2-2xy+y2-25的值为____.14.若a=2,a-2b=3,则2a2-4ab的值为____.15.若6a=5,6b=8,则36a-b=____.16.利用1个a ×a 的正方形,1个b ×b 的正方形和2个a ×b 的长方形可拼成一个正方形(如图所示),从而可得到因式分解的公式____.三、解答题(共52分) 17.(16分)计算:(1)5x 2y ÷(-31xy )×(2xy 2)2;(2)9(a -1)2-(3a +2)(3a -2);(3)[(a -2b )2+(a -2b )(2b +a )-2a (2a -b )]÷2a ;(4)[a (a 2b 2-ab )-b (-a 3b -a 2)]÷a 2b .18.(9分)把下列各式因式分解:(1)x (m -x )(m -y )-m (x -m )(y -m );(2)ax 2+8ax +16a ;(3)x 4-81x 2y 2.19.(7分)已知xy =1,求代数式-31x (xy 2+y +x 3y 4)的值.20.(8分)如图,某市有一块长为(3a +b )米,宽为(2a +b )米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.21.(12分)观察下列等式: 12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26, …以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子成为“数字对称等式”: ①52×=×25;②×396=693×.(2)设这类等式左边两位数的十位数字为a ,个位数字为b ,且2≤a +b ≤9,写出表示“数字对称等式”一般规律的式子(含a ,b ),并证明.参考答案1.C2.C3.C4.C5.B6.A7.C8.A9.B10.B11.2m +112.213.-914.122515.6416.a2+2ab+b2=(a+b)217.(1)原式=-60x3y4.(2)原式=-18a+13.(3)原式=-a-b.(4)原式=2ab.18.(1)原式=-(m-x)2(m-y). (2)原式=a(x+4)2. (3)原式=x2(x+9y)(x-9y)19.原式=-1.20.63平方米.21.(1)①275572②6336(2)“数字对称等式”一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a).人教版八年级上册第十四章整式的乘法与因式分解单元测试(3)一、选择题(共14 小题,每小题 3 分,共42 分)1.若,,则等于()A. B. C. D.2.把多项式因式分解的结果是()A. B.C. D.3.以下二次三项式在实数范围内一定不能分解因式的是()A. B.C. D.4.代数式与的公因式是()A. B. C. D.5.计算的结果是()A. B. C. D.6.若为整数,则一定能被()整除.A. B. C. D.7.下列多项式中,能运用公式法进行因式分解的是()A. B.C. D.8.下列运算中,正确的是()A. B.C. D.9.分解因式的正确结果是()A. B.C. D.10.如果的展开式中只含有这一项,那么的值为()A. B. C. D.不能确定11.设,如果,,,那么、、的大小关系为()A. B. C. D.不能确定12.若,那么的值是()A. B. C. D.13.下多项式中,在实数范围内能分解因式的是()A. B.C. D..14.若,且,则A. B. C. D.卷II(非选择题)二、填空题(共6 小题,每小题 3 分,共18 分)15.已知,,则________.16.已知,,则①________ ②________.17.若多项式是完全平方展开式,则________.18.要使多项式不含关于的二次项,则与的关系是________.19.如图,是一个长为,宽为的长方形,沿图中虚线用剪刀将其均分成四个完全相同的小长方形,然后按图的形状拼图.图中的图形阴影部分的边长为________;(用含、的代数式表示)请你用两种不同的方法分别求图中阴影部分的面积;方法一:________;方法二:________.观察图,请写出代数式、、之间的关系式:________.20.杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则________.三、解答题(共8 小题,共90 分)21.(11分) 计算:;.22.(11分) 因式分解:(1)(2)(3)23.(11分)关于的多项式分解因式后有一个因式是,试求的值.24.(11分)一个单项式加上多项式后等于一个整式的平方,试求这样的单项式并写出相应的等式(请写个)25.(11分)已知(、为整数)是及的公因式,求、的值.26.(11分)已知展开后的结果中不含、项.求的值.27.(11分)老师给了一个多项式,甲、乙、丙、丁四位同学分别对这个多项式进行描述,(甲):这是一个三次四项式;(乙):常数项系数为;(丙):这个多项式的前三项有公因式;(丁):这个多项式分解因式时要用到公式法;若这四个同学的描述都正确,请你构造两个同时满足这些描述的多项式,并将它因式分解.28.(13分)如图所示,某规划部门计划将一块长为米,宽为米的长方形地块进行改建,其中阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当,时的绿化面积.答案1.C2.D3.D4.A5.B6.A7.C8.D10.A11.A12.C13.D14.D15.16.17.18.相等19.20.21.解:;.22.解:(1);(2);(3).23.解:,.24.解:①加,则;②加,则;③加,则.25.解:∵二次三项式既是的一个因式,也是的一个因式,∴也必定是与差的一个因式,而,∴,∴,.26.解:因为展开后的结果中不含、项所以所以.27.解:28.解:(平方米),当,时,(平方米).人教版八年级上册第十四章整式乘法与因式分解单元检测(含答案)一、单选题1.计算结果正确的是()A.B.C.D.2.计算12x a a a a ⋅⋅=,则x 等于( ) A.10B.9C.8D.43.下列计算正确的是( ) A .326a a a •=B .()239a a = C .5510x x x += D .78y y y •=4.若m ,n 是正整数,且2232m n ⋅=,()m n =264,则mn m n ++的值为( ) A.10B.11C.12D.135.20192019532135⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭( )A .1-B .1C .0D .20036.如果(x-2)(x+3)=x 2+px+q ,那么p 、q 的值为( ) A .p=5,q=6B .p=1,q=-6C .p=1,q=6D .p=5,q=-6.7.( 22)221xy x y xy ÷=-+,括号内应填的多项式为( ) A .322324x y x y -B .12x y - C .3223242x y x y xy -+D .112x y -+ 8.下列多项式乘法中可以用平方差公式计算的是( ) A .(﹣a +b )(a ﹣b ) B .(x +2)(2+x )C .(3x +y )(y ﹣3x) D .(x ﹣2)(x +1) 9.用四个完全一样的长方形(长、宽分别设为x 、y )拼成如图所示的大正方形,已知大正方形的面积为36,中间空缺的小正方形的面积为4,则下列关系式中不正确的是( )A .x+y=6B .x ﹣y=2C .x•y=8D .x 2+y 2=3610.下列等式从左往右因式分解正确的是( ) A .()ab ac b a b c d ++=++ B .()()23212x x x x -+=--C .()222121m n m mn n +-=++-D .()()2414141x x x -=+-11.下列多项式能分解因式的是( ) A .22xy +B .22x y xy -C .22x xy y ++D .244x x +-12.在多项式①-m 4-n 4,②a 2+b 2,③-16x 2+y 2,④9(a -b )2-4,⑤-4a 2+b 2中,能用平方差公式分解因式的有() A.1个 B.2个 C.3个 D.4个二、填空题13.分解因式:a 2-5a -14=________.14.若7m n +=,11mn =,则22m mn n -+的值是______. 15.()2320x y -++=,则x y 为 .16.如图,边长为a 的正方形中有一个边长为b 的小正方形,若将图1的阴影部分拼成一个长方形,如图2,比较图1和图2的阴影部分的面积,你能得到的公式是______________.三、解答题 17.计算:(123(2)853|--(2)2342()()n n ⋅(3)23322(3)(4)(6)a b ab ⋅÷18.(1)计算:()1132π-⎛⎫-+ ⎪⎝⎭(2)化简:()()()32223x x y x y x yxy -++÷19.计算:(1)2(2)(1)(1)a b a a +--+(2)()43322223694(3)a b a b a bab -+÷-20.动手操作:如图①是一个长为2a ,宽为2b 的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形. 提出问题:(1)观察图②,请用两种不同的方法表示阴影部分的面积:_____________,_____________;(2)请写出三个代数式(a +b )2,(a -b )2,ab 之间的一个等量关系:___________________________;问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知x +y =8,xy =7,求x -y 的值.21.把下列各式分解因式:(1)481a - (2)223242x y xy y -+22.乘法公式的探究及应用.小题1:如图1,可以求出阴影部分的面积是_______ (写成两数平方差的形式);小题2:如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是_______,长是______,面积是_________ (写成多项式乘法的形式).小题3:比较图 1,图2的阴影部分面积,可以得到乘法公式________ (用式子表达)答案 1.A 2.A 3.D 4.B 5.B 6.B 7.C 8.C 9.D 10.B 11.B 12.C 13.(a-7)(a+2) 14.16. 15.-816.a 2-b 2=(a+b )(a-b ).17.(1) 7-14n ;(3)1244a b18.(1)3;(2)25x ;19.(1)4ab+42b +1;(2)2449a b a -+20.(1) (a -b )2;(a +b )2-4ab;(2) (a +b )2-4ab =(a -b )2,问题解决: x -y =±6 21.(1)(a 2+9)(a+3)(a-3); (2)2y (x-y )2.22.小题1: 22a b -;小题2: -a b ,+a b ,()()a b a b +-;小题3: 22()()a b a b a b +-=-人教版八年级数学上册第14章整式的乘法与因式分解单元测试题 一、选择题1.下列各式由左边到右边的变形为因式分解的是( ) A.a 2-b 2+1=(a+b)(a-b)+1 B.m 2-4m+4=(m-2)2C.(x+3)(x-3)=x 2-9D.t 2+3t-16=(t+4)(t-4)+3t 2.分解因式:x 3-x,结果为( )(第10题图)A.x(x 2-1)B.x(x-1)2C.x(x+1)2D.x(x+1)(x-1)3.下列因式分解正确的是( )A.16m 2-4=(4m+2)(4m-2)B.m 4-1=(m 2+1)(m 2-1)C.m 2-6m+9=(m-3)2D.1-a 2=(a+1)(a-1) 4.下列多项式能因式分解的是( )A.m 2+n B .m 2-m+1 C .m 2-2m+1 D .m 2-n 5.计算(2x 3y )2的结果是( )A .4x 6y 2B .8x 6y 2C .4x 5y 2D .8x 5y 2 6.已知a+b=3,ab=2,计算:a 2b+ab 2等于( )A .5B .6C .9D .1 7、下列运算中结果正确的是( )A 、633·x x x =;B 、422523x x x =+;C 、532)(x x =;D 、222()x y x y +=+.8、ab 减去22b ab a +-等于 ( )。
人教版八年级上册数学 第十四章整式的乘法与因式分解试卷(含答案)
人教版八年级上册数学第十四章整式的乘法与因式分解一、单选题1.下列各式,能用平方差公式计算的是()A.(a-2b)(-a+2b)B.(a-2b)(-a-2b)C.(a-1)(a+2)D.(a-2b)(2a+b)2.下列各式中,从左到右的变形是因式分解的是( )A.6x7=3x2⋅2x5B.3x+3y−5=3(x+y)−5C.4x2+4x=4x(x+1)D.(x+1)(x−1)=x2−13.下列运算正确的是()A.a2+a3=a5B.(﹣2a3)2=4a6C.a6÷a3=a2D.(a+2b)2=a2+2ab+b24.在多项式16x2+1添加一个单项式,使得到的多项式能运用完全平方公式分解因式,则下列表述正确的是()嘉琪:添加±8x,16x2+1±8x=(4x±1)2陌陌:添加64x4,64x4+16x2+1=(8x2+1)2嘟嘟:添加−1,16x2+1−1=16x2=(4x)2A.嘉琪和陌陌的做法正确B.嘉琪和嘟嘟的做法正确C.陌陌和嘟嘟的做法正确D.三位同学的做法都不正确5.如图1,将一张长方形纸板的四角各剪去一个边长为a的小正方形(阴影部分),制成如图2的无盖纸盒,若该纸盒的容积为2a2b,则图2中纸盒底部长方形的周长为()A.4a+2b B.2ab C.6a+2b D.4ab6.若x2−kxy+9y2是一个完全平方式,则k的值为()A.3B.6C.±81D.±67.已知a m=2,a n=12,a2m+3n的值为( )A.6B.12C.2D.112b2,则m,n的值分别为()8.已知8a3b m÷28a n+1b2=27A.m=4,n=3B.m=4,n=2C.m=2,n=2D.m=2,n=39.下列有四个结论,其中正确的是()①若(x−1)x+1=1,则x只能是2;②若(x−1)(x2+ax+1)的运算结果中不含x2项,则a=1③若a+b=10,ab=16,则a−b=6④若4x=a,8y=b,则22x−3y可表示为abA.①②③④B.②③④C.①③④D.②④10.已知m=2b+2022,n=b2+2023,则m和n的大小关系中正确的是() A.m>n B.m≥n C.m<n D.m≤n二、填空题11.因式分解:xy−3y=.12.计算:(1)x3⋅x5=;(2)a5÷a2=;(3)[−(−a)2]3=;(4)(−3ab3)3=;(5)(−0.125)2021×82022=;(6)(a−b)2⋅(b−a)3=.13.若x m=4,x n=9,则x2m−n=.14.如果a,b是长方形的长和宽,且(a+b)2=16,(a−b)2=4,则长方形面积是.15.若(2x2+mx−8)(x2−3x+n)的展开式中不含x2和x3项,则m=,n=.16.已知2x-3y-2=0,则(10x)2÷(10y)3=.17.如图,两个正方形的边长分别为a和b,已知a+b=10,ab=22,那么阴影部分的面积是.三、解答题18.计算:(1)a2•(﹣a4)+2(a2)3(2)(2x﹣1)(2x+1)﹣(x﹣6)(4x+3)(3)(2x﹣3y)2+2(y+3x)(3x﹣y)(4)(a﹣2b+3)(a+2b+3)(5)(x−3y−2)2(6)(2m+3n)(2m﹣n)﹣2n(2m﹣n)19.先化简,再求值:[(x−2y)2−(x−y)(x+y)−2y2]÷y,其中x=−1,y=−2.20.如图,在某一禁毒基地的建设中,准备在一个长为6a米,宽为5b米的长方形草坪上修建两条宽分别为a和b米的通道.(1)剩余草坪的面积是多少平方米?(2)若a=1,b=3,则剩余草坪的面积是多少平方米?21.观察以下等式:(x+1)(x2−x+1)=x3+1(x+3)(x2−3x+9)=x3+27(x+6)(x2−6x+36)=x3+216(1)按以上等式的规律,填空:(a+b)()=a3+b3(2)利用多项式的乘法法则,证明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y)(x2−xy+y2)−(x−y)(x2+xy+y2)22.如图,甲长方形的两边长分别为m+1、m+7;乙长方形的两边长分别为m+2、m+4(其中m为正整数).(1)设图中的甲长方形的面积为S1,乙长方形的面积为S2,试比较S1与S2的大小;(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S与图中的甲长方形面积S1的差(即S−S1)是一个常数,请求出这个常数.23.阅读材料:若m2−2mn+2n2−8n+16=0,求m、n的值.解:m2−2mn+2n2−8n+16=0,∴(m2−2mn+n2)+(n2−8n+16)=0,∴(m−n)2+(n−4)2=0.∵(m−n)2≥0,(n−4)2≥0,∴(m−n)2=0,(n−4)2=0,∴m=4,n=4.根据你的观察,探究下面的问题:(1)a2+b2−4a+4=0,则a=______;b=______.(2)已知△ABC的三边长a、b、c都是正整数,且a2+b2−2a−6b+10=0,求c的值.24.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)用两种方法表示图②中的阴影部分的面积;(2)观察图②请你写出三个代数式(m+n)2、(m−n)2、4mn之间的等量关系式.(3)请运用(2)中的关系式计算:若x+y=−6,xy=2.75,求(x−y)2的值.参考答案:1.B2.C3.B4.A5.A6.D7.B8.B9.D10.D11.y(x−3)12.x8a3−a6−27a3b9−8(b−a)513.16914.315. 6 1316.10017.1718.(1)a6(2)21x+17(3)22x2−12xy+7y2(4)a2+6a+9−4b2(5)x2−6xy+9y2−4x+12y+4(6)4m2−n219.−4x+3y,−2.20.(1)剩余草坪的面积是20ab平方米;(2)若a=1,b=3,则剩余草坪的面积是60平方米.21.(1)a2−ab+b2(3)2y322.(1)S1>S2(2)S−S1=923.(1)2,0(2)c=324.(1)S阴影=(m−n)2或S阴影=(m+n)2−4mn(2)(m−n)2=(m+n)2−4mn(3)25。
人教版八年级数学上册 第十四章《整式乘法与因式分解》单元测试卷(含解析)
第十四章《整式乘法与因式分解》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)二、填空题(本大题共8小题,每小题4分,共32分)三、解答题(本大题共6小题,共58分)19.(8分)计算:20.(8分)分解因式:21.(10分)(1)若,求的值;(2)已知,求的值.22.(10分)观察下列等式:…(1)根据以上等式写出______;(2)直接写出的结果(n 为正整数)______;2225,()9m n m n -=+=m n -()()2121y y y m +-+=224424y my m y m -+-+()()2111x x x -÷-=+()()32111xx x x -÷-=++()()432111xx x x x -÷-=+++()()511x x -÷-=()()11nx x -÷-(3)计算:.23.(10分)材料:把多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:.(1)分解因式:(2)若a ,都是正整数且满足,求的值;(3)若a ,b为实数且满足 , ,求S 的最小值.24.(12分)我们学习了完全平方公式,把它适当变形,可解决很多数学问题.2342023122222+++++⋅⋅⋅+()()()()()()am an bm bn am an bm bn a m n b m n a b m n +++=+++=+++=++1ab a b +++()b a b >40ab a b ---=a b +50ab a b ---=22235S a ab b a b =+++-()()22222222a b a ab b a b a ab b +=++-=-+,例如:若,求的值.解∶又根据上面的解题思路与方法,解决下列问题:(1)若,求的值;(2)①若,则___________;②若,则________________;(3)如图点C 是线段上的一点,以为边向线段的两侧作正方形,已知,两正方形的面积和20,求图中阴影部分的面积.42a b ab +==,²²a b +4a b += 2()16a b ∴+=22216a ab b ∴++=2ab = 2216216412a b ab ∴+=-=-=22626x y x y +=+=,xy 231m n mn +==,2m n -=()()456m m --=()()2245m m -+-=AB AC BC 、AB 5AB =12S S +=答案解析:一、单选题1.B【分析】先利用多项式与多项式乘法法则,展开后合并同类项,再令含x 、y 的一次项的系数均为零,列方程组求解即可得到答案.【详解】解:==展开后多项式不含x 、y 的一次项,,,,故选B .2.A【分析】本题考查了整式的运算问题,分别利用同底数幂的乘法法则、幂的乘方、积的乘方法则、多项式的除法、乘法法则计算各式进行判断即可.【详解】(1)若,,则; 小明计算正确;(2);小明计算正确;(3);小明计算错误;(4);小明计算错误;(5).小明计算错误;故正确的有2个故答案为:A .3.D【分析】利用面积公式以及面积的和差将阴影面积表示出来即可.【详解】解:∵由图知阴影部分边长分别为(x -1),(x -2),()()2342x y x ay b +-++22422633844x axy bx xy ay by x ay b +++++---224(26)(28)(34)34x a xy b x b a y ay b+++-+-+- 280340b b a -=⎧∴⎨-=⎩34a b =⎧∴⎨=⎩1a b ∴-=-3m a =7n a =3721m n m n a a a +==⨯= ()()2020202020210.12580.125888-⨯=-⨯⨯=()222221a b ab ab a b ab ab ab a -÷=÷-÷=-()3328a a -=-()()22321263253x x x x x x x -+=+--=--连接,则阴影部分的面积,BD ()()1122a a b b a b =+++()212a b =+10=(2)由题意得,故答案为:;(3)由题意得,23.(1);(2)由得,,,,,,,,,解得,,;(3)由得,,,()121(1)1,n n n x x x x x ---÷-=++++ 121n n x x x --++++ ()2342023202412222221++++++=-÷ 2024(21)2 1.-=-1ab a b +++1()()ab a b =+++(1)(1)a b b =+++11()()a b =++40ab a b ---=15ab a b --+=115()()a b b ---=(1)(1)5a b --=a b > 11a b ∴->-551=⨯ 15a ∴-=11b -=6a =2b =8a b ∴+=50ab a b ---=5ab a b =++22235S a ab b a b∴=+++-()222355a a b b a b=+++++-22233155a a b b a b=+++++-2228215a b a b =++++22288216a ab b =++++++()()222216a b =++++,,,当,时,,∴S 的最小值为6.24.(1)解:;(2)①,,,,;②(3)设,则,所以,()2220a +≥ ()210b +≥6S ∴≥2a =-1b =-6S =6x y += 222()236x y x y xy ∴+=++=2226x y += 210xy ∴=5xy ∴=231m n mn +== ,()2222449m n m mn n ∴+=++=2245m n ∴+=()2222441m n m n mn -=+-= 21m n ∴-=±4,5,m a m b -=-= 4(5)45a b m m m ∴-=---=--1m +=-(4)(5)6,m m --= 6,ab ∴=2222(4)(5)m m a b ∴-+-=+2()2a b ab=-+2(1)26=-+⨯112=+13,=,AC m BC n ==2212,S m S n ==221220S S m n +=+=。
人教版八年级数学上册第十四章《整式的乘法与因式分解》单元同步检测试题(含答案)
第十四章《整式的乘法与因式分解》单元检测题题号 一 二三 总分21 22 23 24 25 26 27 28 分数一、选择题:(每小题3分,共30分)1.若3x =15,3y =5,则3x -y 等于( ).A .5B .3C .15D .10 2.若(x -3)(x+4)=x 2+px+q,那么p 、q 的值是( )A .p=1,q=-12B .p=-1,q=12C .p=7,q=12D .p=7,q=-12 3.下列各式从左到右的变形,正确的是( ).A.-x -y=-(x -y)B.-a+b=-(a+b)C.22)()(y x x y -=-D.33)()(a b b a -=- 4.下列多项式能因式分解的是( )A.m 2+n B .m 2-m+1 C .m 2-2m+1 D .m 2-n 5.把多项式x 2+ax+b 分解因式,得(x+1)(x ﹣3)则a ,b 的值分别是( ) A .a=2,b=3B .a=﹣2,b=﹣3C .a=﹣2,b=3D .a=2,b=﹣36.如果x 2+10x+ =(x+5)2,横线处填( )A .5B .10C .25D .±107.下列从左边到右边的变形,因式分解正确的是( ) A .2a 2﹣2=2(a+1)(a ﹣1)B .(a+3)(a ﹣3)=a 2﹣9C.﹣ab 2+2ab ﹣3b=﹣b(ab ﹣2a ﹣3) D .x 2﹣2x ﹣3=x(x ﹣2)﹣3 8.若m 2+m-1=0,则m 3+2m 2+2016的值为( ) A .2020B .2017C .2016D .20159.在边长为a 的正方形中挖去一个边长为b 的小正方形(a>b)(如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b) D.(a+2b)(a-b)=a2+ab-2b210.若m=2200,n=2550,则m,n的大小关系是( )A.m>n B.m<n C.m=n D.无法确定二、填空题:(每小题3分,共30分)11.(1)计算:(2a)3·(-3a2)=____________;(2)若a m=2,a n=3,则a m+n=__________,a m-n=__________.12.已知x+y=5,x-y=1,则式子x2-y2的值是________.13.若(a2-1)0=1,则a的取值范围是________.14.计算:(16x3-8x2+4x)÷(-2x)= .15.已知x2+y2=10,xy=3,则x+y=16.已知长方形的面积为4a2-4b2,如果它的一边长为a+b,则它的周长为 .17.若二次三项式x2+(2m-1)x+4是一个完全平方式,则m= .18.已知2a2+2b2=10,a+b=3,则ab的值为________.19.若3m=2,3n=5,则32m+3n-1的值为________.20.请看杨辉三角①,并观察下列等式②:11 112 1133 11464 1…①(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4②根据前面各式的规律,则(a+b)6=______________________.三、解答题:(共60分)21.计算:(1)x·x7; (2)a2·a4+(a3)2;(3)(-2ab3c2)4; (4)(-a3b)2÷(-3a5b2).22.化简:(1)(a+b-c)(a+b+c);(2)(2a+3b)(2a-3b)-(a-3b)2.23.若关于x的多项式(x2+x-n)(mx-3)的展开式中不含x2和常数项,求m,n的值.24.分解因式:(1)4x3y+xy3-4x2y2; (2)y2-4-2xy+x2.25.观察下列关于自然数的等式:32-4×12=5; ①52-4×22=9; ②72-4×32=13; ③……根据上述规律解决下列问题:(1)完成第四个等式:92-4×________2=________;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.26.(10分)小红家有一块L形菜地,要把L形菜地按如图所示的那样分成面积相等的两个梯形种上不同的蔬菜.已知这两个梯形的上底都是a米,下底都是b 米,高都是(b-a)米.(1)请你算一算,小红家的菜地面积共有多少平方米;(2)当a=10,b=30时,菜地面积是多少?27.(10分)(1)填空:(a-b)(a+b)=____________________;(a-b)(a2+ab+b2)=____________________;(a-b)(a3+a2b+ab2+b3)=____________________.(2)猜想:(a-b)(a n-1+a n-2b+…+ab n-2+b n-1)=____________________(其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:29-28+27-…+23+22+2.参考答案一、选择题:(每小题3分,共30分)二、填空题:(每小题3分,共24分)11.(1)-24a5(2)6;2 312.513.a≠±114.答案为:-8x2+4x-215.答案为:±416.答案为:10a-6b17.答案为:2.5或-1.5.18.219.500320.a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6三、解答题:21.解:(1)原式=x 8.(2分)(2)原式=a 6+a 6=2a 6.(4分) (3)原式=16a 4b 12c 8.(6分)(4)原式=a 6b 2÷(-3a 5b 2)=-13a .(8分)22.解:(1)原式=(a +b )2-c 2=a 2+2ab +b 2-c 2.(4分)(2)原式=4a 2-9b 2-(a 2-6ab +9b 2)=3a 2+6ab -18b 2.(8分)23.解:原式=mx 3+(m -3)x 2-(3+mn )x +3n .(3分)∵展开式中不含x 2和常数项,得到m -3=0,3n =0,(6分)解得m =3,n =0.(8分) 24.解:(1)原式=xy (2x -y )2.(4分)(2)原式=(x -y )2-4=(x -y +2)(x -y -2).(8分) 25.解:(1)4 17(3分)(2)第n 个等式为(2n +1)2-4n 2=4n +1.(5分)左边=(2n +1)2-4n 2=4n 2+4n +1-4n 2=4n +1.右边=4n +1.左边=右边,∴(2n +1)2-4n 2=4n +1.(10分) 26. 解:(1)小红家的菜地面积共有:2×12(a +b)(b -a)=b 2-a 2 (2)当a =10,b=30时,原式=302-102=900-100=800(平方米)27. 解:(1)a 2-b 2,a 3-b 3,a 4-b 4 (2)a n -b n (3)29-28+27-…+23-22+2=13[2-(-1)][29+28×(-1)+27×(-1)2+…+21×(-1)8+(-1)9+1]=13[2-(-1)][29+28×(-1)+27×(-1)2+…+21×(-1)8+(-1)9]+1=13(210-1)+1=342。
人教版八年级数学上册第十四章《整式的乘法与因式分解》单元同步检测试题(含答案)
第十四章《整式的乘法与因式分解》单元检测题题号一二三总分21 22 23 24 25 26 27 28分数一、选择题:1.计算(-x2y)2的结果是()A.x4y2B.-x4y2C.x2y2D.-x2y22.下列运算正确的是()A.x4+x2=x6B.x2·x3=x6C.(x2)3=x6D.x2-y2=(x-y)23.计算(-2)0+9÷(-3)的结果是()A.-1 B.-2 C.-3 D.-44.多项式a(x2-2x+1)与多项式(x-1)(x+1)的公因式是( )A.x-1 B.x+1 C.x2+1 D.x25.计算:a2·a3的结果是( )A.a5 B.a6 C.a8 D.a96.下列运算正确的是( )A.(-a5)2=a10 B.2a·3a2=6a2 C.-2a+a=-3a D.-6a6÷2a2=-3a3 7.把a3-9a因式分解,结果正确的是( )A.a(a2-9) B.a(a+3)(a-3) C.(a+3)(a-3) D.a(a+9)(a-9) 8.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的小正方形(a>0),剩余部分沿虚线剪拼成一个矩形(不重叠且无缝隙),则矩形的面积是( )A.(2a2+5a)cm2 B.(3a2+15)cm2 C.(6a+9)cm2 D.(6a+15)cm2 9.如图,是用4个相同的小长方形与1个小正方形镶嵌而成的正方形图案,已知该图案的面积为49,小正方形的面积为4,若用x,y表示小长方形的两边长(x>y),请观察图案,指出以下关系式中不正确的是( )A.x+y=7 B.x-y=2 C.4xy+4=49 D.x2+y2=2510.定义运算:a b=a(1-b).下面给出了关于这种运算的几个结论:①2(-2)=6;②a b =b a ;③若a +b =0,则(aa)+(bb)=2ab ;④若ab =0,则a =0或b =1.其中正确结论的序号是( )A .①④B .①③C .②③④D .①③④ 二、填空题(共8小题,每小题3分,满分24分) 11.计算:-x 2·x 3=________;⎝ ⎛⎭⎪⎫12a 2b 3=________;⎝ ⎛⎭⎪⎫-122017×22016=________. 12.已知a +b =3,a -b =5,则代数式a 2-b 2的值是________. 13.因式分解:(1)xy 2-9x =____________;(2)4x 2-24x +36=____________. 14.若代数式2a 2+3a+1的值为6,则代数式6a 2+9a+5的值为 . 15.当x 时,(x ﹣4)0等于1.16.若x +5,x -3都是多项式x 2-kx -15的因式,则k =_______. 17.多项式x 2-9,x 2+6x +9的公因式是_______.18.若实数a 、b 满足a +b =5,a 2b +ab 2=-10,则ab 的值是_______. 三、解答题(共5小题,满分46分) 19.计算:(1)(ab 2)2•(﹣a 3b )3÷(﹣5ab ); (2)3a (2a 2﹣9a+3)﹣4a (2a ﹣1) 20.分解因式: (1)m 2﹣6m+9;(2)(x+y )2+2(x+y )+1; (3)3x ﹣12x 3;(4)9a 2(x ﹣y )+4b 2(y ﹣x ).21.(10分)阅读下面求y 2+4y +8的最小值的解答过程.解:y 2+4y +8=y 2+4y +4+4=(y +2)2+4.∵(y +2)2≥0,∴(y +2)2+4≥4.∴y 2+4y+8的最小值为4.仿照上面的解答过程,求x2-2x+3的最小值.22.已知2a=3,2b=6,2c=12,x=355,y=444,z=533.(1)求证:a+c=2b;(2)判断x,y,z的大小关系,并说明理由.23.(12分)【观察】1×49=49,2×48=96,3×47=141,…,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621,…,47×3=141,28×2=96,49×1=49.【发现】根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是.【类比】观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n,…,56×4,57×3,58×2,59×1.猜想mn的最大值为,并用你学过的知识加以证明.24.(12分)右侧练习本上书写的是一个正确的因式分解,但其中部分一次式被墨水污染看不清了.(1)求被墨水污染的一次式;(2)若被墨水污染的一次式的值不小于2,求x的取值范围.25.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x-y)+(x-y)2=__________;(2)因式分解:(a+b)(a+b-4)+4;(3)求证:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.《第14章整式乘法与因式分解》参考答案与试题解析一、选择题:1.A.2.C.3. B.4.A.5. A.6.A7.B.8. D.9.D.10.D.二、填空题(共8小题,每小题3分,满分24分)11.-x518a6b3-1212.1513.(1)x(y+3)(y-3) (2)4(x-3)214. 20.15.≠4.16. -217.x+318. -2三、解答题(共5小题,满分46分)19.计算:(1)(ab2)2•(﹣a3b)3÷(﹣5ab);(2)3a(2a2﹣9a+3)﹣4a(2a﹣1)【考点】整式的混合运算.【专题】计算题.【分析】(1)原式利用积的乘方与幂的乘方运算法则计算,再利用乘除法则计算即可得到结果;(2)原式先利用单项式乘多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=a2b4•(﹣a9b3)÷(﹣5ab)=a10b6;(2)原式=6a3﹣27a2+9a﹣8a+4a=6a3﹣35a2+13a;【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.20.分解因式:(1)m2﹣6m+9;(2)(x+y)2+2(x+y)+1;(3)3x﹣12x3;(4)9a2(x﹣y)+4b2(y﹣x).【考点】提公因式法与公式法的综合运用.【分析】(1)利用完全平方公式即可分解;(2)利用完全平方公式即可分解;(3)首先提公因式3x,然后利用平方差公式分解即可;(4)首先提公因式(x﹣y),然后利用平方差公式分解.【解答】解:(1)m2﹣6m+9=(m﹣3)2;(2)(x+y)2+2(x+y)+1=(x+y+1)2.(3)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(4)9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)•(3a﹣2b).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.21.解:x2-2x+3=x2-2x+1+3-1=(x-1)2+2.(6分)∵(x-1)2≥0,∴(x-1)2+2≥2,(8分)∴x2-2x+3的最小值为2.(10分)22.(1)证明:∵2a=3,2b=6,2c=12,∴2a·2c=3×12=36=(2b)2,(2分)∴2a+c =22b,∴a+c=2b.(4分)(2)解:y>x>z.(5分)理由如下:x=355=(35)11,y=444=(44)11,z=533=(53)11,而35=243,44=256,53=125.(7分)∵256>243>125,∴44>35>53,∴y>x>z.(9分)23.【分析】【发现】(1)观察题目给出的等式即可发现两数相乘,积的最大值为625;(2)观察题目给出的等式即可发现a与b的数量关系是a+b=50;【类比】由于m+n=60,将n=60﹣m代入mn,得mn=﹣m2+60m=﹣(m﹣30)2+900,利用二次函数的性质即可得出m=30时,mn的最大值为900.【解答】解:【发现】(1)上述内容中,两数相乘,积的最大值为625.故答案为625;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是a+b=50.故答案为a+b=50;【类比】由题意,可得m+n=60,将n=60﹣m代入mn,得mn=﹣m2+60m=﹣(m﹣30)2+900,∴m=30时,mn的最大值为900.故答案为900.【点评】本题考查了因式分解的应用,配方法,二次函数的性质,是基础知识,需熟练掌握.24.【分析】(1)根据“加数=和﹣另一个加数”列出算式,再利用整式的混合运算法则计算可得;(2)根据题意列出不等式,解不等式即可得.【解答】解:(1)被墨水污染的一次式为(x﹣2)(2x+5)﹣(2x2+3x﹣6)=2x2+5x﹣4x﹣10﹣2x2﹣3x+6=﹣2x﹣4;(2)根据题意,得:﹣2x﹣4≥2,解得:x≤﹣3.【点评】本题主要考查整式的混合运算与解不等式的能力,解题的关键是掌握多项式乘多项式的运算法则及解一元一次不等式的能力.25.(1)(x-y+1)2(3分)(2)解:令A=a+b,则原式=A(A-4)+4=A2-4A+4=(A-2)2,再将A还原,得原式=(a+b-2)2.(8分)(3)证明:(n+1)(n+2)(n2+3n)+1=(n2+3n)[(n+1)(n+2)]+1=(n2+3n)(n2+3n+2)+1.令n2+3n=A,则原式=A(A+2)+1=A2+2A+1=(A+1)2,∴原式=(n2+3n+1)2.∵n为正整数,∴n2+3n+1也为正整数,∴式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.(14分)。
人教版初中数学八年级上册第十四章《整式的乘法与因式分解》测试题(含答案)
C. a 2 3a 5
D. a 2 8a 5
1 A. 3
6. 若 a b A. 10
2
1 9
53.7 0
) C. 20
1
D. 2 3
1 8
m
n 2
a 8 b 6 ,那么 m 2 2n 的值是(
B. 52
2 2
D. 32 ( ) D. 30 xy
第十四章《整式的乘法与因式分解》
一、选择题(每小题只有一个正确答案)
1.多项式 xy 2 x y 9 xy 8 的次数是
4 3 3
(
) D. 6
A. 3 2.下列计算正确的是
B. 4 ( )
C. 5
A. 2 x 2 6 x 4 12 x 8 B.
y y
4 m
3 m
五、简答题 21、在长为 3a 2 ,宽为 2b 1 的长方形铁片上,挖去长为 2a 4 ,宽为 b 的小长方形铁 片,求剩余部分面积.
22、在如图边长为 7.6 的正方形的角上挖掉一个边长为 2.6 的小正方形,剩余的图形能否
拼成一个矩形?若能,画出这个矩形,并求出这个矩形的面积是多少. (5 分)
个,多项式有 9.单项式 5 x y z 的系数是
2 4
10.多项式 3ab 4 ab 11. ⑴ x 2 x 5 ⑶ 2a b
1 有 5
.
.
y
5
3 4
2 4
.
2
3
⑷ x y
.
⑸ a9 a3 12.⑴ mn 2 ⑶ ( 2a b( 13. ⑴ a
新人教版八年级数学上册 14章 整式乘法与因式分解 单元质量检测题
新人教版八年级数学上册第十四章整式的乘法与因式分解单元质量检测题1.2下列计算中正确的是( ). A .a 2+b 3=2a 5 B .a 4÷a =a 4 C .a 2·a 4=a 8 D .(-a 2)3=-a 62.下面是某同学在一次测验中的计算摘录,其中正确的个数有( ). ①3x 3·(-2x 2)=-6x 5;②4a 3b ÷(-2a 2b )=-2a ;③(a 3)2=a 5;④(-a )3÷(-a )=-a 2. A .1个 B .2个 C .3个 D .4个 3.下列各式是完全平方式的是( ). A .x 2-x +14B .1+x 2C .x +xy +1D .x 2+2x -14.如(x +m )与(x +3)的乘积中不含x 的一次项,则m 的值为( ). A . 3 B .-3 C .0 D .15.下列多项式乘法中可以用平方差公式计算的是( ) A.))((b a b a -+- B.)2)(2(x x ++ C.)31)(31(x y y x -+ D.)1)(2(+-x x 6.若分解因式x 2+px+q =(x -3)(x+4),那么p 、q 的值是( ) A .p=1,q=-12 B . p=7,q=-12 C .p=7,q=12 D .p=-1,q=12 7.下列各式从左到右的变形,正确的是( ).A.-x -y=-(x -y)B.-a+b=-(a+b)C.22)()(y x x y -=-D.33)()(a b b a -=-8.计算(32)2003×1.52002×(-1)2001的结果是( ) A .32 B 。
-32 C 。
23 D 。
-239.把ax ²- 4ax+4a 分解因式,下列结果中正确的是( )A . a(x-2) ²B 。
a(x+2) ²C 。
人教版八年级数学上册《第十四章-整式乘法与因式分解》单元测试卷-附带有答案
人教版八年级数学上册《第十四章整式乘法与因式分解》单元测试卷-附带有答案学校:班级:姓名:考号:一、单选题1.下列计算正确的是()A.2a•3a=6a B.(﹣a3)2=a6C.6a÷2a=3a D.(﹣2a)3=﹣6a32.下列因式分解错误的是()A.a2+4a−4=(a+2)2B.2a−2b=2(a−b)C.x2−9=(x+3)(x−3)D.x2−x−2=(x+1)(x−2)3.将-12a2b-ab2提公因式-12ab后,另一个因式是()A.a+2b B.-a+2b C.-a-b D.a-2b4.已知x2+y2=4,xy=2那么(x+y)2的值为()A.6B.8C.10D.125.一个大正方形内放入两个同样大小的小正方形纸片,按如图1放置,两个小正方形纸片的重叠部分面积为4;按如图2放置(其中一小张正方形居大正方形的正中),大正方形中没有被小正方形覆盖的部分(阴影部分)的面积为44,则把两张小正方形按如图3放置时,两个小正方形重叠部分的面积为()A.10B.12C.14D.166.某公司有如图所示的甲、乙、丙、丁四个生产基地.现决定在其中一个基地修建总仓库,以方便公司对各基地生产的产品进行集中存储.已知甲、乙、丙、丁各基地的产量之比等于4:5:4:2,各基地之间的距离之比a:b:c:d:e=2:3:4:3:3(因条件限制,只有图示中的五条运输渠道),当产品的运输数量和运输路程均相等时,所需的运费相等.若要使总运费最低,则修建总仓库的最佳位置为()A.甲B.乙C.丙D.丁二、填空题7.若a=b+2,则代数式a2−2ab+b2的值为.8.若a+b=5,ab=6,则(a+2)(b+2)的值是。
9.若(2x﹣3)x+5=1,则x的值为.10.观察下列各式的规律:1×3=22−1:3×5=42−1:5×7=62−1:7×9=82−1…请将发现的规律用含n的式子表示为.11.若m2=n+2023,n2=m+2023,且m≠n,则代数式m3−2mn+n3的值为.三、计算题12.计算:(1)(−12ab)(23ab2−2ab+43b)(2)(2x+y)(2x-y)+(x+y)2-2(2x2-xy)13.把下列各式分解因式:(1)6ab3-24a3b;(2)x4-8x2+16;(3)a2(x+y)-b2(y+x)(4)4m2n2-(m2+n2)214.先化简,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣12.四、解答题15.木星是太阳系九大行星中最大的一颗,木星可以近似地看作球体,已知木星的半径大约是7×104km,木星的体积大约是多少km3(取3.14)?16.说明代数式[(x﹣y)2﹣(x+y)(x﹣y)]÷(﹣2y)+y的值,与y的值无关.17.甲乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x−10;由于乙漏抄了第二个多项式中的x的系数,得到的结果为2x2−9x+ 10.请你计算出a、b的值各是多少,并写出这道整式乘法的符合题意结果.18.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2-4y2-2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2-4y2-2x+4y=(x+2y)(x-2y)-2(x-2y)=(x-2y)(x+2y-2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2-2xy+y2-16;(2)△ABC三边a,b,c 满足a2-ab-ac+bc=0,判断△ABC的形状.19.阅读材料,解决后面的问题:若m2+2mn+2n2−6n+9=0,求m−n的值.解:∵m2+2mn+2n2−6n+9=0∴(m2+2mn+n2)+(n2−6n+9)=0即:(m+n)2+(n−3)2=0,∴m+n=0,n−3=0解得:m=−3,n=3∴m−n=−3−3=−6.(1)若x2+y2+6x−8y+25=0,求x+2y的值;(2)已知等腰△ABC的两边长a,b,满足a2+b2=10a+12b−61,求该△ABC的周长;(3)已知正整数a,b,c满足不等式a2+b2+c2+36<ab+6b+10c,求a+b−c的值.参考答案和解析1.【答案】B【解析】【解答】解:∵2a•3a=6a2∴选项A不正确;∵(﹣a3)2=a6∴选项B正确;∵6a÷2a=3∴选项C不正确;∵(﹣2a)3=﹣8a3∴选项D不正确.故选:B.【分析】A:根据单项式乘单项式的方法判断即可.B:根据积的乘方的运算方法判断即可.C:根据整式除法的运算方法判断即可.D:根据积的乘方的运算方法判断即可.2.【答案】A【解析】【解答】A、原式不能分解,故答案为:A错误,符合题意;B、2a−2b=2(a−b)故答案为:B正确,不符合题意;C、x2−9=(x+3)(x−3)故答案为:C正确,不符合题意;D、x2−x−2=(x+1)(x−2)故答案为:D正确,不符合题意.故答案为:A.【分析】A、a2+4a-4不是完全平方式,不能用完全平方公式进行因式分解,即可判断A错误;B、利用提公因式法进行因式分解,即可判断B正确;C、利用平方差公式进行因式分解,即可判断C正确;D、利用十字相乘法进行因式分解,即可判断D正确.3.【答案】A【解析】【解答】解:∵−12a2b−ab2=−12ab(a+2b),∴将−12a2b−ab2提公因式−12ab后,另一个因式是a+2b.故答案为:A.【分析】利用提公因式的方法对−12a2b−ab2进行因式分解即可.4.【答案】B【解析】【解答】∵x2+y2=4∴(x+y)2=x2+2xy+y2=4+2×2=8故答案为:B.【分析】将x2+y2=4,xy=2代入(x+y)2=x2+2xy+y2计算即可.5.【答案】B【解析】【解答】图1中重叠部分的为正方形且其面积为4,∴重叠部分的边长为2设大正方形边长为a,小正方形的边长为b,∴a-b+2=b如图2,阴影部分面积=a2-2b2+(b-a−b2)2=44,解得b=6,∴a=10如图3,两个小正方形重叠部分的面积=b[(a-b)]=12.故答案为:B.【分析】根据图1重叠图形及已知条件,可得重叠部分的边长为2,设大正方形边长为a,小正方形的边长为b,可得a-b+2=b,根据图2阴影部分面积为44建立方程,从而求出b值,即得a值,根据图3两个小正方形重叠部分的面积=b[(a-b)]即可求出结论.6.【答案】A【解析】【解答】∵甲、乙、丙、丁各基地的产量之比等于4:5:4:2设甲基地的产量为4x吨,则乙、丙、丁基地的产量分别为5x吨、4x吨、2x吨∵各基地之间的距离之比a:b:c:d:e=2:3:4:3:3设a=2y千米,则b、c、d、e分别为3y千米、4y千米、3y千米、3y千米设运输的运费每吨为z元/千米①设在甲处建总仓库则运费最少为:(5x×2y+4x×3y+2x×3y)z=28xyz;②设在乙处建总仓库∵a+d=5y,b+c=7y∴a+d<b+c则运费最少为:(4x×2y+4x×3y+2x×5y)z=30xyz;③设在丙处建总仓库则运费最少为:(4x×3y+5x×3y+2x×4y)z=35xyz;④设在丁处建总仓库则运费最少为:(4x×3y+5x×5y+4x×4y)z=53xyz;由以上可得建在甲处最合适故答案为:A.【分析】根据比例分别设甲基地的产量为4x吨,可得乙、丙、丁基地的产量分别为5x吨、4x吨、2x 吨;设a=2y千米,可得b、c、d、e分别为3y千米、4y千米、3y千米、3y千米.接着设设运输的运费每吨为z元/千米,然后分别求出设在甲处、乙处、丙处、丁处的总费用,最后比较即可.7.【答案】4【解析】【解答】解:∵a=b+2∴a−b=2∴a2−2ab+b2=(a−b)2=22=4。
人教版八年级数学上册 第十四章 整式的乘法与因式分解 单元测试卷(2024年秋)
人教版八年级数学上册第十四章整式的乘法与因式分解单元测试卷(2024年秋)一、选择题(每小题3分,共30分)1.计算:8xy3·-1432=()A.2x4y5B.-2x4y5C.2x3yh6D.-2x3y5 2.[母题教材P118例5]多项式x2-4x+4因式分解的结果是() A.x(x-4)+4B.(x+2)(x-2)C.(x-2)2D.(x+2)2 3.[2024西安灞桥区模拟]计算(12x3-18x2-6x)÷(-6x)的结果为()A.-2x2+3x B.-2x2-3xC.-2x2-3x-1D.-2x2+3x+14.要使多项式(x+p)(x-q)不含x的一次项,则p与q的关系是() A.相等B.互为相反数C.互为倒数D.乘积为-15.[母题教材P104习题T1]下列各式计算正确的是() A.a2·a3=a6B.a6÷a3=a2C.(-2ab2)3=-8a3b6D.2a2+3a3=5a5 6.[2024泰安期末]当x=1时,ax+b+1的值为-2,则(a+b-1)(1-a-b)的值为()A.16B.8C.-8D.-16 7.若10a×100b=10000,则a+2b=()A.1B.2C.3D.48.若式子(x+2)(x-1)-(x+2)能因式分解成(x+m)(x+n),则mn的值是()A.2B.-2C.-4D.49.某同学在计算-3x加上一个多项式时错将加法做成了乘法,得到的答案是3x3-3x2+3x,由此可以推断出正确的计算结果是() A.x2+2x-1B.-x2-2x-1C.-x2+4x-1D.x2-4x+110.224-1可以被60和70之间某两个数整除,这两个数是() A.63,64B.63,65C.61,67B.61,65二、填空题(每小题3分,共15分)11.计算:(-1)2=.12.若x2-3mx+36是一个完全平方式,则m的值是.13.一个正方体的棱长是2×103cm,则这个正方体的体积为.14.[2024温州期中]已知(a+3)2=82,则(a+11)(a-5)的值为.15.3(22+1)(24+1)(28+1)…(232+1)+1计算结果的个位数字是.三、解答题(本大题共8个小题,满分75分)16.(8分)[2024盐城期中]因式分解:(1)m2-16n2;(2)xy4-6xy3+9xy2.17.(9分)[母题教材P112习题T4]先化简,再求值:[(2x-y)2-(3x +y)(3x-y)+5x2]÷(-2y),其中x=-12,y=1.18.(9分)若x3-5x2+10x-6=(x-1)(x2+mx+n)恒成立,试确定m,n的值.19.(9分)[2024扬州邗江区期中](1)已知a m=2,a n=5,求a2m+n的值;(2)如果2x+2+2x+1=24,求x的值.20.(9分)[情境题生活应用]某种植基地有一块长方形实验田和一块正方形实验田,长方形实验田每排种植(3a-b)株豌豆幼苗,种植了(3a+b)排,正方形实验田每排种植(a+b)株豌豆幼苗,种植了(a +b)排,其中a>b>0.(1)长方形实验田比正方形实验田多种植多少株豌豆幼苗?(2)当a=4,b=3时,长方形实验田比正方形实验田多种植多少株豌豆幼苗?21.(9分)[新视角新定义题]如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:4=22-02,12=42-22,20=62-42,因此4,12,20都是“神秘数”.(1)试说明“神秘数”能被4整除;(2)两个连续奇数的平方差是“神秘数”吗?试说明理由.22.(11分)[新考法阅读类比题]先阅读下面的内容,再解决问题.例题:若m2+2mn+2n2-6n+9=0,求m和n的值.解:∵m2+2mn+2n2-6n+9=0,∴m2+2mn+n2+n2-6n+9=0.∴(m+n)2+(n-3)2=0.∴m+n=0,n-3=0,解得m=-3,n=3.(1)若x2+2y2-2xy-4y+4=0,求x y的值;(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b-41,且c是△ABC中最长的边,求c的取值范围.23.(11分)知识生成:我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如:由图①可以得到(a+b)2=a2+2ab +b2,基于此,请解答下列问题:直接应用:(1)若xy=5,x+y=7,直接写出x2+y2的值为;类比应用:(2)填空:①若x(4-x)=2,则x2+(x-4)2=;②若(x-3)(x-5)=2,则(x-3)2+(x-5)2=;知识迁移:(3)如图②,一农家乐准备在原有长方形用地(即长方形ABCD)上进行装修和扩建,先用长为120m的装饰性篱笆围起该长方形用地,再以AD,CD为边分别向外扩建正方形ADGH、正方形DCEF两块空地,并在这两块正方形空地上建造功能性花园,该功能性花园面积和为2000m2,求原有长方形用地ABCD的面积.答案1.B2.C3.D4.A5.C6.D7.D8.C9.B 10.B【点拨】224-1=(212-1)(212+1)=(26-1)(26+1)(212+1)=63×65×(212+1),则这两个数是63与65.二、11.212.±413.8×109cm314.1815.6三、16.【解】(1)m2-16n2=m2-(4n)2=(m+4n)(m-4n).(2)xy4-6xy3+9xy2=xy2(y2-6y+9)=xy2(y-3)2.17.【解】原式=(4x2-4xy+y2-9x2+y2+5x2)÷(-2y)=(2y2-4xy)÷(-2y)=-y+2x.当x=-12,y=1时,原式=-1+2×1-1=-2.18.【解】(x-1)(x2+mx+n)=x3+mx2+nx-x2-mx-n=x3+(m-1)x2+(n-m)x-n.∵x3-5x2+10x-6=(x-1)(x2+mx+n)恒成立,即x3-5x2+10x -6=x3+(m-1)x2+(n-m)x-n恒成立,∴n=6,m-1=-5,解得m=-4.∴m=-4,n=6.19.【解】(1)∵a m=2,a n=5,∴a2m+n=a2m·a n=(a m)2·a n=22×5=20.(2)∵2x+2+2x+1=2x·22+2x·2=4×2x+2×2x=6×2x,∴6×2x=24.∴2x=4=22.∴x=2.20.【解】(1)由题意,得(3a-b)(3a+b)-(a+b)2=9a2-b2-a2-2ab-b2=(8a2-2ab-2b2)(株).答:长方形实验田比正方形实验田多种植(8a2-2ab-2b2)株豌豆幼苗.(2)当a=4,b=3时,8a2-2ab-2b2=8×42-2×4×3-2×32=128-24-18=86.答:长方形实验田比正方形实验田多种植86株豌豆幼苗.21.【解】(1)设两个连续的偶数分别为2k,2k+2(k为整数),则由题意得(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=2(4k+2)=4(2k+1),∴“神秘数”能被4整除.(2)两个连续奇数的平方差不是“神秘数”.理由如下:设两个连续的奇数分别为2k-1,2k+1(k为整数),则(2k+1)2-(2k-1)2=8k,而由(1)知“神秘数”是4的奇数倍,不是偶数倍,但8k是4的偶数倍,∴两个连续奇数的平方差不是“神秘数”.22.【解】(1)∵x2+2y2-2xy-4y+4=x2-2xy+y2+y2-4y+4=(x-y)2+(y-2)2=0,∴x-y=0,y-2=0,解得x=2,y=2.∴x y =22=4.(2)∵a2+b2=10a+8b-41,∴a2-10a+25+b2-8b+16=0.∴(a-5)2+(b-4)2=0.∴a-5=0,b-4=0,解得a=5,b=4.∵c 是△ABC中最长的边,∴5≤c<9.23.【解】(1)39(2)①12②8(3)设AB=x m,BC=y m,则2(x+y)=120,∴x+y=60.由题意,得x2+y2=2000,∴xy=(+)2−(2+2)2=3600-20002=800.∴原有长方形用地ABCD的面积为800m2.。
新人教版 八年级数学上册 第14章 整式的乘法与因式分解 单元测试卷 (解析版)
第14章整式的乘法与因式分解单元测试卷一、选择题(共10小题).1.(3分)下列各式运算正确的是()A.a2+a3=a5B.a2•a3=a5C.(ab2)3=ab6D.a10÷a2=a5 2.(3分)计算2x2•(﹣3x3)的结果是()A.6x5B.2x6C.﹣2x6D.﹣6x5 3.(3分)计算的结果正确的是()A.B.C.D.4.(3分)(﹣5a2+4b2)()=25a4﹣16b4,括号内应填()A.5a2+4b2B.5a2﹣4b2C.﹣5a2﹣4b2D.﹣5a2+4b2 5.(3分)如图,阴影部分的面积是()A.xy B.xy C.4xy D.2xy 6.(3分)计算(x﹣a)(x2+ax+a2)的结果是()A.x3+2ax2﹣a3B.x3﹣a3C.x3+2a2x﹣a3D.x3+2ax2+2a2x﹣a37.(3分)下面是某同学在一次作业中的计算摘录:①3a+2b=5ab②4m3n﹣5mn3=﹣m3n③4x3•(﹣2x2)=﹣6x5④4a3b÷(﹣2a2b)=﹣2a⑤(a3)2=a5⑥(a)3÷(﹣a)=﹣a2其中正确的个数有()A.1 个B.2 个C.3 个D.4 个8.(3分)下列分解因式正确的是()A.x3﹣x=x(x2﹣1)B.(a+3)(a﹣3)=a2﹣9C.a2﹣9=(a+3)(a﹣3)D.x2+y2=(x+y)(x﹣y)9.(3分)如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.110.(3分)若3x=15,3y=5,则3x﹣y等于()A.5 B.3 C.15 D.10二、填空题(本大题共有7小题,每空2分,共16分)11.(2分)计算:(﹣3x2y)•(xy2)=.12.(2分)计算:(﹣m+n)(﹣m﹣n)=.13.(2分)()2+π0=.14.(2分)当x时,(x﹣3)0=1.15.(4分)若|a﹣2|+b2﹣2b+1=0,则a=,b=.16.(2分)如果4x2+mx+9是完全平方式,则m的值是.17.(2分)已知a+b=5,ab=3,则a2+b2=.18.(2分)定义:a*b=a2﹣b,则(1*2)*3=.三、解答题(本大题共有7小题,共54分)19.(9分)计算或化简:(1)(a3b4)2÷(ab2)3(2)(x+y)2﹣(x+y)(x﹣y)(3)(﹣2x3y2﹣3x2y2+2xy)÷2xy.20.(12分)分解因式:(1)12abc﹣2bc2;(2)2a3﹣12a2+18a;(3)9a(x﹣y)+3b(x﹣y);(4)(x+y)2+2(x+y)+1.21.(5分)先化简,再求值:[(x﹣y)2+(x+y)(x﹣y)]÷2x,其中x=3,y=1.22.(5分)请你从下列各式中,任选两式作差,并将得到的式子进行因式分解.4a2,(x+y)2,1,9b2.23.(8分)解下列方程与不等式(1)3x(7﹣x)=18﹣x(3x﹣15);(2)(x+3)(x﹣7)+8>(x+5)(x﹣1).24.(7分)数学课上老师出了一道题:计算2962的值,喜欢数学的小亮举手做出这道题,他的解题过程如下:2962=(300﹣4)2=3002﹣2×300×(﹣4)+42=90000+2400+16=92416老师表扬小亮积极发言的同时,也指出了解题中的错误,你认为小亮的解题过程错在哪儿,并给出正确的答案.25.(6分)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的.A、提取公因式B.平方差公式C、两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.参考答案一、选择题(本大题共有10小题,每小题3分,共30分)1.(3分)下列各式运算正确的是()A.a2+a3=a5B.a2•a3=a5C.(ab2)3=ab6D.a10÷a2=a5解:A、a2与a3不是同类项,不能直接合并,故本选项错误;B、a2•a3=a5,计算正确,故本选项正确;C、(ab2)3=a3b6,原式计算错误,故本选项错误;D、a10÷a2=a8,原式计算错误,故本选项错误;故选:B.2.(3分)计算2x2•(﹣3x3)的结果是()A.6x5B.2x6C.﹣2x6D.﹣6x5解:原式=2×(﹣3)x2+3=﹣6x5,故选:D.3.(3分)计算的结果正确的是()A.B.C.D.解:=﹣a6b3.故选:C.4.(3分)(﹣5a2+4b2)()=25a4﹣16b4,括号内应填()A.5a2+4b2B.5a2﹣4b2C.﹣5a2﹣4b2D.﹣5a2+4b2解:∵(﹣5a2+4b2)(﹣5a2﹣4b2)=25a4﹣16b4,∴应填:﹣5a2﹣4b2.故选:C.5.(3分)如图,阴影部分的面积是()A.xy B.xy C.4xy D.2xy 解:阴影部分面积为:2x×2y﹣0.5x(2y﹣y),=4xy﹣xy,=xy.故选:A.6.(3分)计算(x﹣a)(x2+ax+a2)的结果是()A.x3+2ax2﹣a3B.x3﹣a3C.x3+2a2x﹣a3D.x3+2ax2+2a2x﹣a3解:(x﹣a)(x2+ax+a2)=x3+ax2+a2x﹣ax2﹣a2x﹣a3=x3﹣a3.故选:B.7.(3分)下面是某同学在一次作业中的计算摘录:①3a+2b=5ab②4m3n﹣5mn3=﹣m3n③4x3•(﹣2x2)=﹣6x5④4a3b÷(﹣2a2b)=﹣2a⑤(a3)2=a5⑥(a)3÷(﹣a)=﹣a2其中正确的个数有()A.1 个B.2 个C.3 个D.4 个解:①3a+2b不能合并,不正确;②4m3n﹣5mn3不能合并,不正确;③4x3•(﹣2x2)=﹣8x5,不正确;④4a3b÷(﹣2a2b)=﹣2a,正确;⑤(a3)2=a6,不正确;⑥(a)3÷(﹣a)=﹣a2,正确,其中正确的个数有2个,故选:B.8.(3分)下列分解因式正确的是()A.x3﹣x=x(x2﹣1)B.(a+3)(a﹣3)=a2﹣9 C.a2﹣9=(a+3)(a﹣3)D.x2+y2=(x+y)(x﹣y)解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),故此选项错误;B、(a+3)(a﹣3)=a2﹣9,是整式乘法运算,故此选项错误;C、a2﹣9=(a+3)(a﹣3),符合题意;D、x2+y2无法因式分解,故此选项错误;故选:C.9.(3分)如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.1解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵(x+m)与(x+3)的乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故选:A.10.(3分)若3x=15,3y=5,则3x﹣y等于()A.5 B.3 C.15 D.10 解:3x﹣y=3x÷3y=15÷5=3,故选:B.二、填空题(本大题共有7小题,每空2分,共16分)11.(2分)计算:(﹣3x2y)•(xy2)=﹣x3y3.解:(﹣3x2y)•(xy2),=(﹣3)××x2•x•y•y2,=﹣x2+1•y1+2,=﹣x3y3.12.(2分)计算:(﹣m+n)(﹣m﹣n)=m2﹣n2.解:原式=(﹣m)2﹣n2=(m)2﹣n2,=m2﹣n2故答案为:m2﹣n2.13.(2分)()2+π0=1.解:原式=+1=1.故答案为:1.14.(2分)当x≠3时,(x﹣3)0=1.解:由题意得:x﹣3≠0,解得:x≠3,故答案为:≠3.15.(4分)若|a﹣2|+b2﹣2b+1=0,则a=2,b=1.解:原方程变形为:|a﹣2|+(b﹣1)2=0,∴a﹣2=0或b﹣1=0,∴a=2,b=1.16.(2分)如果4x2+mx+9是完全平方式,则m的值是±12.解:∵4x2+mx+9是完全平方式,∴m=±12,故答案为:±1217.(2分)已知a+b=5,ab=3,则a2+b2=19.解:把知a+b=5两边平方,可得:a2+2ab+b2=25,把ab=3代入得:a2+b2=25﹣6=19,故答案为:19.18.(2分)定义:a*b=a2﹣b,则(1*2)*3=﹣2.解:∵a*b=a2﹣b,∴(1*2)*3=(12﹣2)*3=(﹣1)*3=(﹣1)2﹣3=﹣2,故答案为﹣2.三、解答题(本大题共有7小题,共54分)19.(9分)计算或化简:(1)(a3b4)2÷(ab2)3(2)(x+y)2﹣(x+y)(x﹣y)(3)(﹣2x3y2﹣3x2y2+2xy)÷2xy.解:(1)原式=a6b8÷(a3b6)=a3b2(2)原式=(x+y)(x+y﹣x+y)=2xy+2y2(3)原式=﹣x2y﹣xy+120.(12分)分解因式:(1)12abc﹣2bc2;(2)2a3﹣12a2+18a;(3)9a(x﹣y)+3b(x﹣y);(4)(x+y)2+2(x+y)+1.解:(1)12abc﹣2bc2=2bc(6a﹣c);(2)2a3﹣12a2+18a=2a(a2﹣6a+9)2a(a﹣3)2;(3)9a(x﹣y)+3b(x﹣y)=3(x﹣y)(3a+b);(4)(x+y)2+2(x+y)+1=(x+y+1)2.21.(5分)先化简,再求值:[(x﹣y)2+(x+y)(x﹣y)]÷2x,其中x=3,y=1.解:原式=(x2﹣2xy+y2+x2﹣y2)÷2x=(2x2﹣2xy)÷2x=x﹣y,则当x=3,y=1时,原式=3﹣1=2.22.(5分)请你从下列各式中,任选两式作差,并将得到的式子进行因式分解.4a2,(x+y)2,1,9b2.解:4a2﹣9b2=(2a+3b)(2a﹣3b);(x+y)2﹣1=(x+y+1)(x+y﹣1);(x+y)2﹣4a2=(x+y+2a)(x+y﹣2a);(x+y)2﹣9b2=(x+y+3b)(x+y﹣3b);4a2﹣(x+y)2=[2a+(x+y)][2a﹣(x+y)]=(2a+x+y)(2a﹣x﹣y);9b2﹣(x+y)2=[3b+(x+y)][3b﹣(x+y)]=(3b+x+y)(3b﹣x﹣y);1﹣(x+y)2=[1+(x+y)][1﹣(x+y)]=(1+x+y)(1﹣x﹣y)等等.23.(8分)解下列方程与不等式(1)3x(7﹣x)=18﹣x(3x﹣15);(2)(x+3)(x﹣7)+8>(x+5)(x﹣1).解:(1)去括号得:21x﹣3x2=18﹣3x2+15x,移项合并得:6x=18,解得:x=3;(2)去括号得:x2﹣4x﹣21+8>x2+4x﹣5,移项合并得:﹣8x>8,解得:x<﹣1.24.(7分)数学课上老师出了一道题:计算2962的值,喜欢数学的小亮举手做出这道题,他的解题过程如下:2962=(300﹣4)2=3002﹣2×300×(﹣4)+42=90000+2400+16=92416老师表扬小亮积极发言的同时,也指出了解题中的错误,你认为小亮的解题过程错在哪儿,并给出正确的答案.解:答案:错在“﹣2×300×(﹣4)”,应为“﹣2×300×4”,公式用错.∴2962=(300﹣4)2=3002﹣2×300×4+42=90000﹣2400+16=87616.25.(6分)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的C.A、提取公因式B.平方差公式C、两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底不彻底.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果(x﹣2)4.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.解:(1)运用了C,两数和的完全平方公式;(2)x2﹣4x+4还可以分解,分解不彻底;(x2﹣4x+4)2=(x﹣2)4.(3)设x2﹣2x=y.(x2﹣2x)(x2﹣2x+2)+1,=y(y+2)+1,=y2+2y+1,=(y+1)2,=(x2﹣2x+1)2,=(x﹣1)4.。
八年级数学上册第十四章《整式的乘法与因式分解》单元测试卷-人教版(含答案)
八年级数学上册第十四章《整式的乘法与因式分解》单元测试-人教版(含答案)一.选择题(共10小题)1.多项式12ab3+8a3b的各项公因式是()A.ab B.2ab C.4ab D.4ab22.若(x+3y)(ax﹣y)的展开式不含xy项,则a的值为()A.0B.1C.3D.3.若x m÷x2n+1=x,则m与n的关系是()A.m=2n+1B.m=﹣2n﹣1C.m﹣2n=2D.m﹣2n=﹣24.若x2﹣axy+9y2是一个整式完全平方后的结果,则a值为()A.3B.6C.±6D.±35.下列多项式中,不能进行因式分解的是()A.3x2+6B.x2+4C.x2﹣x+D.x(x﹣1)﹣2(x﹣1)6.计算(a﹣2)(﹣a+2),结果是()A.a2+4a+4B.a2﹣4a+4C.﹣a2+4a﹣4D.﹣a2﹣4a﹣47.下列运算正确的是()A.a2•a3=a6B.a2•b2=(ab)4C.(a4)3=a7D.(﹣m)7÷(﹣m2)=m58.如果x2+kxy+36y2是完全平方式,则k的值是()A.6B.6或﹣6C.12D.12或﹣129.若(x+3)(2x﹣a)展开后不含x的一次项,则a的值等于()A.6B.﹣6C.0D.﹣210.用四个完全一样的长方形(长、宽分别设为a、b,a>b)拼成如图所示的大正方形,已知大正方形的面积为64,中间空缺的小正方形的面积为16,则下列关系式中不正确的是()A.a+b=8B.a﹣b=4C.a•b=12D.a2+b2=64二.填空题(共8小题)11.分解因式:xy﹣2y2=.12.计算:(4x2y3+8x2y2﹣2xy2)÷2xy2=.13.若a m=5,a n=6,则a m+2n的值为.14.计算:(﹣x﹣2y2)2=.15.计算:=.16.若x+y=5,xy=6,则(x+1)(y+1)的值为.17.多项式a2+(m+2)ab+25b2能用完全平方式分解因式,则m的值为.18.已知:x2+4y2+z2=9,x﹣2y+z=2,则2xy+2yz﹣xz=.三.解答题(共4小题)19.已知22•22m﹣1•23﹣m=128,求m的值.20.(1)试说明代数式(s﹣2t)(s+2t+1)+4t(t+)的值与s、t的值取值有无关系;(2)已知多项式ax﹣b与2x2﹣x+2的乘积展开式中不含x的一次项,且常数项为﹣4,试求a b 的值;(3)已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.21.计算:(1)(a+b+3)(a+b﹣3);(2)(a﹣b)3.22.如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中各项的系数1,2,1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数1,3,3,1恰好对应图中第四行的数字.请认真观察此图,写出(a+b)4的展开式.参考答案一.选择题(共10小题)1.多项式12ab3+8a3b的各项公因式是()A.ab B.2ab C.4ab D.4ab2【解答】解:系数的最大公约数是4,相同字母的最低指数幂是ab,所以多项式12ab3+8a3b的各项公因式是4ab,故选:C.2.若(x+3y)(ax﹣y)的展开式不含xy项,则a的值为()A.0B.1C.3D.【解答】解:(x+3y)(ax﹣y)=ax2﹣xy+3axy﹣3y2=ax2+(3a﹣1)xy﹣3y2由题意得,3a﹣1=0,解得,a=,故选:D.3.若x m÷x2n+1=x,则m与n的关系是()A.m=2n+1B.m=﹣2n﹣1C.m﹣2n=2D.m﹣2n=﹣2【解答】解:∵x m÷x2n+1=x,∴m﹣2n﹣1=1,则m﹣2n=2.故选:C.4.若x2﹣axy+9y2是一个整式完全平方后的结果,则a值为()A.3B.6C.±6D.±3【解答】解:∵x2﹣axy+9y2是完全平方式,∴﹣axy=±2×3y•x,解得k=±6.故选:C.5.下列多项式中,不能进行因式分解的是()A.3x2+6B.x2+4C.x2﹣x+D.x(x﹣1)﹣2(x﹣1)【解答】解:A、3x2+6=3(x2+2),故此选项不合题意;B、x2+4,无法分解因式,符合题意;C、x2﹣x+=(x﹣)2,故此选项不合题意;D、x(x﹣1)﹣2(x﹣1)=(x﹣1)(x﹣2),故此选项不合题意;故选:B.6.计算(a﹣2)(﹣a+2),结果是()A.a2+4a+4B.a2﹣4a+4C.﹣a2+4a﹣4D.﹣a2﹣4a﹣4【解答】解:(a﹣2)(﹣a+2)=﹣(a﹣2)(a﹣2)=﹣(a2﹣4a+4)=﹣a2+4a﹣4.故选:C.7.下列运算正确的是()A.a2•a3=a6B.a2•b2=(ab)4C.(a4)3=a7D.(﹣m)7÷(﹣m2)=m5【解答】解:A.a2•a3=a5,故此选项不合题意;B.a2•b2=(ab)2,故此选项不合题意;C.(a4)3=a12,故此选项不合题意;D.(﹣m)7÷(﹣m2)=m5,故此选项符合题意;故选:D.8.如果x2+kxy+36y2是完全平方式,则k的值是()A.6B.6或﹣6C.12D.12或﹣12【解答】解:∵x2+kxy+36y2是一个完全平方式,∴k=±2×6,即k=±12,故选:D.9.若(x+3)(2x﹣a)展开后不含x的一次项,则a的值等于()A.6B.﹣6C.0D.﹣2【解答】解:(x+3)(2x﹣a)=2x2﹣ax+6x﹣3a=2x2+(6﹣a)x﹣3a,∵展开后不含x的一次项,∴6﹣a=0.解得a=6.故选:A.10.用四个完全一样的长方形(长、宽分别设为a、b,a>b)拼成如图所示的大正方形,已知大正方形的面积为64,中间空缺的小正方形的面积为16,则下列关系式中不正确的是()A.a+b=8B.a﹣b=4C.a•b=12D.a2+b2=64【解答】解:∵大正方形的面积为64,中间空缺的小正方形的面积为16,∴大正方形的边长为8,小正方形的边长为4,即:a+b=8,a﹣b=4,因此a=6,b=2,∴a2+b2=36+4=40,ab=6×2=12,故选:D.二.填空题(共8小题)11.分解因式:xy﹣2y2=y(x﹣2y).【解答】解:xy﹣2y2=y(x﹣2y),故答案为:y(x﹣2y).12.计算:(4x2y3+8x2y2﹣2xy2)÷2xy2=2xy+4x﹣1.【解答】解:原式=2xy+4x﹣1,故答案为:2xy+4x﹣1.13.若a m=5,a n=6,则a m+2n的值为180.【解答】解:∵a n=6,∴(a n)2=a2n=36∴a m+2n=a m•a2n=5×36=180.故单位:18014.计算:(﹣x﹣2y2)2=x2﹣4xy2+4y4.【解答】解:(﹣x﹣2y2)2=x2﹣4xy2+4y4.故答案为:x2﹣4xy2+4y4.15.计算:=1.【解答】解:原式==a0=1.16.若x+y=5,xy=6,则(x+1)(y+1)的值为12.【解答】解:当x+y=5、xy=6时,原式=xy+x+y+1=6+5+1=12,故答案为:12.17.多项式a2+(m+2)ab+25b2能用完全平方式分解因式,则m的值为8或﹣12..【解答】解:由题意得:a2+(m+2)ab+25b2=(a±5b)2,∴a2+(m+2)ab+25b2=a2±10ab+25b2,∴m+2=±10,∴m+2=10或m+2=﹣10,∴m=8或m=﹣12,故答案为:8或﹣12.18.已知:x2+4y2+z2=9,x﹣2y+z=2,则2xy+2yz﹣xz=.【解答】解:∵x﹣2y+z=2x+z=2+2y(x+z)2=(2+2y)2x2+z2+2xz=4y2+4y+4x2+z2=4y2+8y﹣2xz+4…①x2+4y2+z2=9x2+z2=9﹣4y2…②∴由①、②两式得:4y2+8y﹣2xz+4=9﹣4y2化简得:4y2+4y﹣xz=,所求代数式为:2xy+2yz﹣xz=2y(x+z)﹣xz=2y(2y+2)﹣xz=,故答案为.三.解答题(共4小题)19.已知22•22m﹣1•23﹣m=128,求m的值.【解答】解:∵22•22m﹣1•23﹣m=128=27,∴2+2m﹣1+3﹣m=7,解得:m=3.20.(1)试说明代数式(s﹣2t)(s+2t+1)+4t(t+)的值与s、t的值取值有无关系;(2)已知多项式ax﹣b与2x2﹣x+2的乘积展开式中不含x的一次项,且常数项为﹣4,试求a b 的值;(3)已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.【解答】解:(1)代数式的值与t的值取值无关系,与s的值取值有关系.∵(s﹣2t)(s+2t+1)+4t(t+)=s2+2st+s﹣2ts﹣4t2﹣2t+4t2+2t=s2+s,∴代数式的值与t的值取值无关系,与s的值取值有关系.(2)(ax﹣b)(2x2﹣x+2)=2ax3﹣ax2+2ax﹣2bx2+bx﹣2b=2ax3﹣(a+2b)x2+(2a+b)x﹣2b,∵积展开式中不含x的一次项,且常数项为﹣4,∴2a+b=0,﹣2b=﹣4,∴a=﹣1,b=2.a b=1.(3)设另一个因式为(x+m).根据题意得,(x+m)(2x﹣5)=2x2+3x﹣k,x2﹣5x+2mx﹣5m=2x2+3x﹣k,x2+(2m﹣5)x﹣5m=2x2+3x﹣k,∴2m﹣5=3,﹣k=﹣5m,∴m=4,k=20,∴另一个因式:(x+4),k是20.21.计算:(1)(a+b+3)(a+b﹣3);(2)(a﹣b)3.【解答】解:(1)原式=(a+b)2﹣32=a2+2ab+b2﹣9;(2)原式=(a﹣b)2(a﹣b)=(a2﹣2ab+b2)(a﹣b)=a3﹣2a2b+ab2﹣a2b+2ab2﹣b3=a3﹣3a2b+3ab2﹣b3.22.如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中各项的系数1,2,1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数1,3,3,1恰好对应图中第四行的数字.请认真观察此图,写出(a+b)4的展开式.【解答】解:根据题意可知图中第五行的数字依次为1、﹣4、6、﹣4、1,因为它的每一行的数字正好对应了(a﹣b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数,所以(a﹣b)4=a4﹣4a3b+6a2b2﹣4ab3+b4.。
人教版数学八年级上册第十四章《整式的乘法与因式分解》单元检测题(含答案解析)
?整式的乘法与因式分解?单元检测题一、单项选择题1.以下计算中,结果是a7的是〔〕A.a3﹣a4B.a3•a4C.a3+a4D.a3÷a42.计算(a−3)(−a+1)的结果是()A.−a2−2a+3B.−a2+4a−3C.−a2+4a+3D.a2−2a−33.以下运算中,正确的选项是〔〕A.a2•a3=a6B.﹣a﹣b﹣﹣b﹣a﹣=a2﹣b2C.﹣ab2﹣3=ab6D.﹣﹣2a2﹣2=4a44.以下计算正确的选项是〔〕A.3a2﹣4a2=a2B.a2•a3=a6C.a10÷a5=a2D.﹣a2﹣3=a65.以下各式中,运算正确的选项是〔〕A.2√2+3√3=5√5B.√6÷√3=√2C.a6÷a3=a2D.(a3)2=a56.以下运算错误的选项是〔〕A.﹣m2﹣3=m6B.a10÷a9=a C.x3•x5=x8D.a4+a3=a77.化简(-a2 ) a3 所得的结果是〔﹣A.a5B.−a5C.a6D.-a68.如〔x+a〕与〔x+3〕的乘积中不含x的一次项,那么a的值为〔〕A.3 B.﹣3 C.1 D.﹣19.以下算式能用平方差公式计算的是()A.(2a+b)(2b−a)B.(x2−1)(−x2+1)C.(3x−y)(−3x+y)D.(−m−n)(−m+n) 10.以下从左到右的变形,是因式分解的是()A.(3−x)(3+x)=9−x2B.(y+1)(y−3)=(3−y)(y+1)C.4yz−2y2z+z=2y(2z−zy)+z D.−8x2+8x−2=−2(2x−1)211.以下运算正确的选项是〔﹣A.x3·x3=x9B.x8÷x4=x2C.(ab3)2=ab6D.(2x)3=8x312.要使式子x2+y2成为一个完全平方式,那么需加上〔〕A.xy B.±xy C.2xy D.±2xy二、填空题13.计算:a(x−4)2=______﹣14.对于实数a,b,定义运算“※〞如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.假设〔x+1〕※〔x﹣2〕第 1 页=6,那么x 的值为_____.15.假设2x =5﹣2y =3,那么22x+y =_____﹣16.假设a﹣b 互为相反数,那么a 2﹣b 2=_____﹣17.x﹣y 满足方程组{x +2y =−3x−2y=5,那么x 2−4y 2的值为______﹣18.假设x 2+mx+n 分解因式的结果是〔x+2﹣﹣x﹣1〕,那么m+n 的值为_____﹣三、解答题19.a ,b ,c 是△ABC 的三边长,且满足a 2+b 2﹣4a ﹣8b +20=0,c=3cm ,求△ABC 的周长.20.:x 2﹣y 2=12﹣x+y=3,求2x 2﹣2xy 的值.21.图1是一个长为2a ,宽为2b 的长方形,沿图中虚线剪开分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2的阴影局部的正方形的边长是______.(2)用两种不同的方法求图中阴影局部的面积.〔方法1〕S 阴影= ____________;〔方法2〕S 阴影= ____________;(3) 观察图2,写出(a+b)2,(a-b)2,ab 这三个代数式之间的等量关系;(4)根据(3)题中的等量关系,解决问题:假设m+n=10,m-n=6,求mn 的值.22.把以下各式因式分解:(1)4x 2−12xy ;(2)4a 2−4a +1;(3)(a +1)2−(b −2)2.参考答案1.B【解析】分析:根据同底数幂的乘、除法法那么、合并同类项法那么计算,判断即可.详解:A﹣a3与a4不能合并;B﹣a3•a4=a7﹣C﹣a3与a4不能合并;.D﹣a3÷a4=1a应选:B﹣点睛:此题考察的是同底数幂的乘、除法、合并同类项,掌握它们的运算法那么是解题的关键.2.B【解析】【分析】根据多项式乘多项式法那么计算可得.【详解】解:原式=−a2+a+3a−3=−a2+4a−3﹣应选:B﹣【点睛】此题主要考察多项式乘多项式,解题的关键是掌握多项式与多项式相乘的法那么:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.3.D【解析】【分析】根据整式的运算法那么,分别计算各项,即可作出判断.【详解】选项A,原式=a5,选项A 错误;选项B,原式=﹣a2+2ab﹣b2,选项B错误;选项C,原式=a3b6,选项C错误;选项D,原式=4a4,选项D正确.应选D.【点睛】此题考察了同底数幂的乘法,完全平方公式,以及幂的乘方与积的乘方,纯熟掌握公式及法第 1 页那么是解此题的关键.4.D【解析】【分析】根据合并同类项法那么,同底数幂相乘的运算法那么,同底数幂除法的运算法那么,积的乘方的运算法那么对各选项分析判断后利用排除法求解.【详解】A﹣3a2﹣4a2=﹣a2,错误;B﹣a2•a3=a5,错误;C﹣a10÷a5=a5,错误;D﹣﹣a2﹣3=a6,正确,应选D﹣【点睛】此题考察了合并同类项、同底数幂的乘除法、积的乘方等运算,熟记各运算的运算法那么是解题的关键.5.B【解析】【分析】分别根据二次根式的加法、除法、同底数幂的除法及幂的乘方法那么进展逐一计算即可.【详解】A﹣错误,2√2与3√3不是同类二次根式,不能合并;B﹣正确,符合二次根式的除法法那么;C﹣错误,a6÷a3=a6﹣3=a3;D﹣错误,〔a3〕2=a6.应选B.【点睛】此题考察了二次根式的加法、除法、同底数幂的除法及幂的乘方法那么,纯熟掌握运算法那么是解题的关键.6.D【解析】【分析】利用合并同类项法那么,单项式乘以单项式法那么,同底数幂的乘法、除法的运算法那么逐项进展计算即可得.【详解】A﹣﹣m2﹣3=m6,正确;B﹣a10÷a9=a,正确;C﹣x3•x5=x8,正确;D﹣a4+a3=a4+a3,错误,应选D﹣【点睛】此题考察了合并同类项、单项式乘以单项式、同底数幂的乘除法,纯熟掌握各运算的运算法那么是解题的关键.7.B【解析】【分析】同底数幂相乘,底数不变,指数相加.【详解】(-a2 ) a3=-a5应选:B【点睛】此题考核知识点:同底数幂相乘.解题关键点:熟记同底数幂相乘法那么.8.B【解析】【分析】先根据多项式乘以多项式的乘法法那么,将﹣x+a﹣﹣x+3﹣展开可得:x2+(3+a)x+3a,再根据积中不含x项,即一次项系数为0,可得(3+a)=0,即可求解.【详解】﹣x+a﹣﹣x+3﹣展开可得:x2+(3+a)x+3a,因为积中不含x项,所以(3+a)=0,解得a=-3,应选B.【点睛】此题主要考察多项式乘以多项式的乘法和不含某一项的解法,解决此题的关键是要纯熟掌握多项式乘以多项式的乘法.9.D【解析】第 3 页根据平方差公式〔a+b〕〔a-b〕=a2-b2对各选项分别进展判断即可.【详解】能用平方差公式计算的是(−m−n)(−m+n)=m2−n2﹣应选D﹣【点睛】此题考察了平方差公式,纯熟掌握平方差公式〔a+b〕〔a-b〕=a2-b2是解此题的关键.10.D【解析】【分析】把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解〔也叫作分解因式〕.据此逐个分析即可.【详解】选项A,右边不是几个整式的乘积的形式,不是因式分解;选项B,左边不是多项式,不是因式分解;选项C, 右边不是几个整式的乘积的形式,不是因式分解;选项D,符合因式分解要求.应选:D【点睛】此题考察的是因式分解的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.11.D【解析】【分析】根据同底数幂的乘除法法那么,幂的乘方,积的乘方一一判断即可.【详解】A、错误.应该是x3•x3=x6﹣B、错误.应该是x8÷x4=x4﹣C、错误.〔ab3﹣2=a2b6﹣D、正确.【点睛】此题考察同底数幂的乘除法法那么,幂的乘方,积的乘方等知识,解题的关键是纯熟掌握根本知识.12.D【解析】【分析】根据完全平方式的定义结合条件进展分析解答即可.【详解】将式子x2+y2加上2xy或−2xy所得的式子x2+2xy+y2和x2−2xy+y2都是完全平方式.应选D.【点睛】熟知“完全平方式的定义:形如a2±2ab+b2的式子叫做完全平方式〞是解答此题的关键. 13.ax2−8ax+16a【解析】【分析】先根据完全平方公式计算,再根据单项式乘多项式法那么计算可得.【详解】解:原式=a(x2−8x+16)=ax2−8ax+16a﹣故答案为:ax2−8ax+16a﹣【点睛】此题主要考察单项式乘多项式,解题的关键是掌握完全平方公式与单项式与多项式相乘的运算法那么:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.14.1【解析】【分析】根据新定义运算对式子进展变形得到关于x的方程,解方程即可得解.【详解】由题意得,〔x+1﹣2﹣﹣x+1﹣﹣x﹣2﹣=6﹣整理得,3x+3=6﹣解得,x=1﹣故答案为:1﹣第 5 页【点睛】此题考察理解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键.15.75【解析】【分析】直接利用同底数幂的乘法运算法那么以及幂的乘方运算法那么将原式变形进而得出答案即可.【详解】∵2x =5﹣2y =3﹣∴22x+y =﹣2x ﹣2×2y =52×3=75﹣故答案为:75﹣【点睛】此题考察了同底数幂的乘法以及幂的乘方,纯熟掌握运算法那么是解题的关键. 16.0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a﹣b 互为相反数,∴a+b=0﹣∴a 2﹣b 2=﹣a+b﹣﹣a﹣b﹣=0﹣故答案为:0﹣【点睛】此题考察了公式法分解因式以及相反数的定义,正确分解因式是解题关键.17.-15【解析】【分析】观察所求的式子以及所给的方程组,可知利用平方差公式进展求解即可得.【详解】∵{x +2y =−3x−2y=5 ﹣∴x 2−4y 2=﹣x+2y﹣﹣x -2y﹣=-3×5=-15﹣故答案为:-15.【点睛】此题考察代数式求值,涉及到二元一次方程组、平方差公式因式分解,根据代数式的构造特征选用恰当的方法进展解题是关键.18.﹣1【解析】【分析】先把〔x+2〕〔x-1〕展开,求得m ,n 的值,再求m+n 的值即可.【详解】∵x 2+mx+n 分解因式的结果是〔x+2〕〔x-1〕,∴x2+mx+n=x2+x-2,∴m=1,n=-2,∴m+n=1-2=-1,故答案为-1.【点睛】此题考察了形如x2+(p+q)x+pq的多项式的因式分解,求得m,n的值是解题的关键.19.△ABC的周长为9.【解析】【分析】由a2+b2﹣4a﹣8b+20=0﹣利用非负数的性质可求得a﹣b的值,然后根据三角形的周长公式进展求解即可得.【详解】∵a2+b2﹣4a﹣8b+20=0﹣∴a2﹣4a+4+b2﹣8b+16=0﹣∴﹣a﹣2﹣2+﹣b﹣4﹣2=0﹣又∵﹣a﹣2﹣2≥0﹣﹣b﹣4﹣2≥0﹣∴a﹣2=0﹣b﹣4=0﹣∴a=2﹣b=4﹣∴△ABC的周长为a+b+c=2+4+3=9﹣答:△ABC的周长为9﹣【点睛】此题考察了因式分解的应用、非负数的性质等,解题的关键是利用因式分解将所给式子的左边转化成非负数的和的形式.20.2x2﹣2xy=28﹣【解析】【分析】先求出x﹣y=4,进而求出2x=7,而2x2﹣2xy=2x﹣x﹣y〕,代入即可得出结论.【详解】∵x2﹣y2=12﹣∴﹣x+y﹣﹣x﹣y﹣=12﹣∵x+y=3①﹣∴x﹣y=4②﹣第 7 页①+②得,2x=7﹣∴2x2﹣2xy=2x﹣x﹣y﹣=7×4=28﹣【点睛】此题考察了因式分解的应用,代数值求值,二元一次方程组的特殊解法等,求出x-y=4是解此题的关键.21.a-b 〔a-b〕2〔a+b〕2-4ab【解析】分析:〔1〕观察图形的特征可得结果;〔2〕可分别利用边长的平方和大正方形的面积减去小正方形的面积两种方法得到中间小正方形的面积;〔3〕根据两幅图的空白处面积相等即可得到它们之间的关系.〔4〕根据〔3〕中的结论直接整体代入即可求出mn的值.详解:的1〕式或地次因式人方相等,数写厉线的定底色〔1〕a-b;〔2〕方法1:S阴影=〔a-b〕2,方法2:S阴影=〔a+b〕2-4ab;〔3〕(a+b)2,(a-b)2,ab这三个代数式之间的等量关系为:〔a-b〕2=〔a+b〕2-4ab;(4)根据(3)题中的结论得〔m-n〕2=〔m+n〕2-4mn,∵ m+n=10,m-n=6,∵ 36=100-4mn,∵ mn=16.点睛:仔细观察图形,明确两幅图中空白区域面积的计算方法及它们面积相等是解题的关键. 22.〔1〕4x(x−3y),〔2〕(2a−1)2,〔3〕(a+b−1)(a−b+3)【解析】【分析】〔1〕直接利用提取公因式法分解因式得出答案;〔2〕直接利用完全平方公式分解因式得出答案;〔3〕直接利用平方差公式分解因式得出答案.【详解】解:(1)4x2−12xy=4x(x−3y);(2)4a2−4a+1=(2a−1)2;(3)(a+1)2−(b−2)2.=(a+1+b−2)(a+1−b+2)=(a+b−1)(a−b+3).【点睛】此题主要考察了公式法以及提取公因式法分解因式,正确应用公式是解题关键.第 9 页。
人教版八年级上册第十四章整式乘法与因式分解单元检测(含答案)
人教版八年级上册第十四章整式乘法与因式分解单元检测(含答案)一、单选题 1.计算结果正确的是()A.B.C.D.2.计算12x a a a a ⋅⋅=,则x 等于( ) A.10B.9C.8D.43.下列计算正确的是( ) A .326a a a ∙=B .()239a a = C .5510x x x += D .78y y y ∙=4.若m ,n 是正整数,且2232m n ⋅=,()m n =264,则mn m n ++的值为( ) A.10B.11C.12D.135.20192019532135⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭( )A .1-B .1C .0D .20036.如果(x-2)(x+3)=x 2+px+q ,那么p 、q 的值为( ) A .p=5,q=6B .p=1,q=-6C .p=1,q=6D .p=5,q=-6.7.( 22)221xy x y xy ÷=-+,括号内应填的多项式为( ) A .322324x y x y -B .12x y - C .3223242x y x y xy -+D .112x y -+ 8.下列多项式乘法中可以用平方差公式计算的是( ) A .(﹣a +b )(a ﹣b ) B .(x +2)(2+x )C .(3x +y )(y ﹣3x) D .(x ﹣2)(x +1) 9.用四个完全一样的长方形(长、宽分别设为x 、y )拼成如图所示的大正方形,已知大正方形的面积为36,中间空缺的小正方形的面积为4,则下列关系式中不正确的是( )A .x+y=6B .x ﹣y=2C .x•y=8D .x 2+y 2=3610.下列等式从左往右因式分解正确的是( ) A .()ab ac b a b c d ++=++B .()()23212x x x x -+=--C .()222121m n m mn n +-=++- D .()()2414141x x x -=+-11.下列多项式能分解因式的是( ) A .22xy +B .22x y xy -C .22x xy y ++D .244x x +-12.在多项式①-m 4-n 4,②a 2+b 2,③-16x 2+y 2,④9(a -b )2-4,⑤-4a 2+b 2中,能用平方差公式分解因式的有() A.1个 B.2个 C.3个 D.4个二、填空题13.分解因式:a 2-5a -14=________.14.若7m n +=,11mn =,则22m mn n -+的值是______. 15.()2320x y -++=,则x y 为 .16.如图,边长为a 的正方形中有一个边长为b 的小正方形,若将图1的阴影部分拼成一个长方形,如图2,比较图1和图2的阴影部分的面积,你能得到的公式是______________.三、解答题 17.计算:(13|(2)2342()()n n ⋅(3)23322(3)(4)(6)a b ab ⋅÷18.(1)计算:()1132π-⎛⎫-+ ⎪⎝⎭(2)化简:()()()32223x x y x y x yxy -++÷19.计算:(1)2(2)(1)(1)a b a a +--+(2)()43322223694(3)a b a b a bab -+÷-20.动手操作:如图①是一个长为2a ,宽为2b 的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形. 提出问题:(1)观察图②,请用两种不同的方法表示阴影部分的面积:_____________,_____________;(2)请写出三个代数式(a +b )2,(a -b )2,ab 之间的一个等量关系:___________________________;问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知x +y =8,xy =7,求x -y 的值.21.把下列各式分解因式:(1)481a - (2)223242x y xy y -+22.乘法公式的探究及应用.小题1:如图1,可以求出阴影部分的面积是_______ (写成两数平方差的形式);小题2:如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是_______,长是______,面积是_________ (写成多项式乘法的形式).小题3:比较图 1,图2的阴影部分面积,可以得到乘法公式________ (用式子表达)答案 1.A 2.A 3.D 4.B 5.B 6.B 7.C 8.C 9.D 10.B 11.B 12.C 13.(a-7)(a+2) 14.16. 15.-816.a 2-b 2=(a+b )(a-b ).17.(1) 7-14n ;(3)1244a b18.(1)3;(2)25x ;19.(1)4ab+42b +1;(2)2449a b a -+20.(1) (a -b )2;(a +b )2-4ab;(2) (a +b )2-4ab =(a -b )2,问题解决: x -y =±621.(1)(a 2+9)(a+3)(a-3); (2)2y (x-y )2.22.小题1: 22a b -;小题2: -a b ,+a b ,()()a b a b +-;小题3: 22()()a b a b a b +-=-人教版八年级数学上册第14章整式的乘法与因式分解单元测试题 一、选择题1.下列各式由左边到右边的变形为因式分解的是( ) A.a 2-b 2+1=(a+b)(a-b)+1 B.m 2-4m+4=(m-2)2(第10题图)C.(x+3)(x-3)=x 2-9D.t 2+3t-16=(t+4)(t-4)+3t 2.分解因式:x 3-x,结果为( ) A.x(x 2-1)B.x(x-1)2C.x(x+1)2D.x(x+1)(x-1)3.下列因式分解正确的是( )A.16m 2-4=(4m+2)(4m-2)B.m 4-1=(m 2+1)(m 2-1)C.m 2-6m+9=(m-3)2D.1-a 2=(a+1)(a-1) 4.下列多项式能因式分解的是( )A.m 2+n B .m 2-m+1 C .m 2-2m+1 D .m 2-n 5.计算(2x 3y )2的结果是( )A .4x 6y 2B .8x 6y 2C .4x 5y 2D .8x 5y 2 6.已知a+b=3,ab=2,计算:a 2b+ab 2等于( )A .5B .6C .9D .1 7、下列运算中结果正确的是( )A 、633·x x x =;B 、422523x x x =+;C 、532)(x x =;D 、222()x y x y +=+.8、ab 减去22b ab a +-等于 ( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版八年级数学上册第十四章整式的乘法与因式分解单元质量
检测题
1.2下列计算中正确的是( ). A .a 2+b 3=2a 5 B .a 4÷a =a 4 C .a 2·a 4=a 8 D .(-a 2)3=-a 6
2.下面是某同学在一次测验中的计算摘录,其中正确的个数有( ). ①3x 3·(-2x 2)=-6x 5;②4a 3b ÷(-2a 2b )=-2a ;③(a 3)2=a 5;④(-a )3÷(-a )=-a 2. A .1个 B .2个 C .3个 D .4个 3.下列各式是完全平方式的是( ). A .x 2-x +
14
B .1+x 2
C .x +xy +1
D .x 2
+2x -1
4.如(x +m )与(x +3)的乘积中不含x 的一次项,则m 的值为( ). A . 3 B .-3 C .0 D .1
5.下列多项式乘法中可以用平方差公式计算的是( ) A.))((b a b a -+- B.)2)(2(x x ++ C.)3
1
)(31(x y y x -
+ D.)1)(2(+-x x 6.若分解因式x 2+px+q =(x -3)(x+4),那么p 、q 的值是( ) A .p=1,q=-12 B . p=7,q=-12 C .p=7,q=12 D .p=-1,q=12 7.下列各式从左到右的变形,正确的是( ).
A.-x -y=-(x -y)
B.-a+b=-(a+b)
C.2
2
)()(y x x y -=-
D.3
3)()(a b b a -=-
8.计算(
32)2003×1.52002×(-1)2001的结果是( ) A .32 B 。
-32 C 。
23 D 。
-2
3
9.把ax ²- 4ax+4a 分解因式,下列结果中正确的是( )
A . a(x-2) ²
B 。
a(x+2) ²
C 。
a(x-4)²
D 。
a(x-2)(x+2)
10.在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b ),再沿虚线剪开,如图①,然后拼成一个梯形,如图②,根据这两个图形的面积关系,表明下列式子成立的是( )。
A .a 2-b 2=(a -b)2 B.(a +b)2=a 2+2ab +b 2
C.(a -b)2
=a 2
-2ab +b 2
D.a 2
-b 2
=(a +b)(a -b)
二、填空题:(每小题3分,共24分) 11.当x _________ _时,(x -4)0=1. 12.计算:57×99+44×99-99=_________.
13.小亮与小明在做游戏,两人各报一个整式,小明报的被除式是4x ³y-2xy ²,商式必须是2xy ,则小亮报一个除式是 .
14.若代数式2a 2+3a+1的值是6,则代数式6a 2
+9a+5的值为 .
15.在多项式4x ²+1中添加一个单项式,使其成为完全平方式,则添加的单项式(只写出一个即可)为 16.若3x =15,3y =5,则3x -
y = .
17.若|a -2|+b 2-2b +1=0,则a -b =_________. 18.若a+b=1,a-b=2013,则a ²-b ²=
三、细心做一做:(共46分) 19.计算:(每小题5分,共10分)
(1).2x(2x -y)-(2x -y)(2x+y). (2).( a +b -1)( a -b +1).
20.分解因式:(每小题5分,共10分)
(1). m (a -3)+2(3-a). (2). 3 x 3
-12 x ;
21.(5分)先化简后求值:()()()2
2x y x y x y x ⎡⎤-++-÷⎣⎦
,其中x =3,y=1.5。
22. (5分)解方程: (x-2) 2= 2x(x-1)-(x+2)(x-1).
23.(5分) 研究下列算式,完成填空:
1×3+1=22
2×4+1=32
3×5+1=42
4×6+1=52
……
第n项的算式是_______________________,并写出你的推理过程24.(5分)已知a+b=4,ab=3,求a-b的值.
25.(6分)灵活计算
(1)。
10
31×93
2
(2)。
2.1252-1.125 2
八年级数学·14章·整式乘法与因式分解(详细答案)
一、选择题:(每小题3分,共30分)
第Ⅱ卷(非选择题 共70分) 二、填空题:(每小题3分,共24分)
11. x ≠4 12. 9900 13。
2x 2
-y 14. 20 15. 4x(-4x) 16. 3 17. 1 18. 2013 三、解答题:(共46分)
19.(1) -2x + y 2; (2) b a 2
-b 2+2b -1; 20.(1) (a -3) (m -2) (2 ) 3x (x +2)( x -2); 21. x -y, 当x =3,y =1.5时,原式=1.5 22. x =2;
23.n (n +2)+1=(n +1)2
24. ±2
25(1) 99 9
8
(2 ) 3.25。