第13章 实数复习
实数的复习
二、立方根的概念
1、一般地,如果一个数x的立方等于a,即x³=a, 那么这个数x就叫做a的立方根(也叫做三次方 根).记为:3 a 2、立方根的性质 正数的立方根是正数;负数的 立方根是负数;0的立方根是0.
3、重要公式
( a ) a,
3 3 3
a a,
3
3
a a .
3
三、实数的概念
11.若
(3 x 2) 1
3
,则
1 4
x 等于(
).
1
A、
2 1 C、 4
B、
D、
9 4
巩固练习
12.计算: (1) 2
5 5 1
(2) 1 0 3
2
10 4
(3)
2
3 2 4
3
(4) 32 2 50
1 4
1 2
1 2
1 8
2
5
x y
2
2
(x y )3
2 2
底数a>0这个条件不可少. 若无此条件会引起混乱,
1
2
(-1) 3 和(-1) 6
这就说明分数指数幂在底数小于0时无意义.
在把根式化成分数指数幂时,要注意使底数大于0,同时,负数开 奇数次方根是有意义的,所以当奇数次根式要化成分数指数幂时, 先要把负号移到根号外面去,然后再按规定化成分数指数幂,例如,
实数复习
一、平方根的概念 1、一般地,如果一个数的平方等于a, 那么这个数叫做a的平方根或二次方根. 而把正的平方根叫算术平方根.
若x2=a,那么x叫做a的平方根.记作: a ( a叫做被开方数) 2、求一个数a的平方根的运算,叫做开平方. 平方与开平方互逆运算. 3、平方根的性质 一个正数有两个平方根,它们互为相反数. 0的平 方根是0.负数没有平方根. 4、重要公式 2 2 ( a ) a (a 0), a a
实数(单元复习)标准教案
实数(单元复习)标准教案一、教学目标:1. 理解实数的定义及分类,掌握有理数和无理数的特点。
2. 掌握实数的运算规则,包括加、减、乘、除、乘方和开方等。
3. 能够运用实数解决实际问题,提高运用数学知识解决问题的能力。
二、教学内容:1. 实数的定义及分类2. 有理数和无理数的特点3. 实数的运算规则4. 实数在实际问题中的应用三、教学重点与难点:1. 教学重点:实数的定义及分类,实数的运算规则,实数在实际问题中的应用。
2. 教学难点:实数的运算规则,特别是乘方和开方运算。
四、教学方法:1. 采用讲授法,讲解实数的定义、分类和运算规则。
2. 运用案例分析法,分析实数在实际问题中的应用。
3. 组织学生进行小组讨论,培养学生的合作意识。
4. 利用信息技术手段,如PPT、网络资源等,辅助教学。
五、教学过程:1. 导入新课:回顾实数的定义及分类,引导学生思考实数在生活中的应用。
2. 讲解实数的运算规则,通过例题展示运算过程,让学生熟练掌握。
3. 开展小组讨论:让学生运用实数解决实际问题,分享解题心得。
4. 总结课堂内容:回顾本节课所学,强调实数的重要性。
5. 布置作业:设计适量作业,巩固课堂所学。
6. 课后反思:根据学生作业完成情况,总结教学效果,调整教学策略。
六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 作业评价:检查学生作业的完成质量,评估学生对实数运算规则的掌握程度。
3. 测试评价:组织单元测试,评估学生对实数知识的整体掌握情况。
七、教学资源:1. 教材:实数相关章节教材,用于引导学生学习。
2. PPT:制作精美PPT,辅助讲解实数概念和运算规则。
3. 网络资源:收集相关实数应用案例,供学生课后拓展学习。
4. 练习题库:准备各类实数练习题,巩固学生所学知识。
八、教学进度安排:1. 第1-2课时:讲解实数的定义及分类。
2. 第3-4课时:讲解实数的运算规则。
实数的概念复习题
实数的概念复习题实数是数学中最基础、最广泛使用的数的集合。
它包括有理数和无理数两个部分。
在这篇文章中,我们将复习实数的概念,并做一些相关的练习题。
一、实数的定义与分类实数是数轴上的每一个点所对应的数。
它既包括有理数,又包括无理数。
1. 有理数:有理数是可以表示为两个整数的比值的数,包括整数、分数和小数。
有理数可以是正数、负数或零。
例如,-2,1/2和0.75都是有理数。
2. 无理数:无理数是不能表示为两个整数的比值的数,无理数的十进制表示是无限不循环小数。
例如,π和√2都是无理数。
二、练习题复习完实数的定义与分类后,让我们来做一些练习题,以巩固概念。
1. 判断下列数是否为有理数,若是,将其写成分数形式;若不是,将其写成无理数的近似值:a) 0.3b) 1/7c) -2d) √32. 将下列数按从小到大的顺序排列,并用数轴表示:a) -5,√2,0,-1,4/3b) -√5,1/2,2/3,π/4,03. 计算下列各组数的和:a) -1/3,0.2,√5b) π,1/6,-0.4,⅔4. 解决下列方程:a) |x-2| = 5b) √(x+3) = 75. 判断下列各命题的真假:a) 有理数包括整数、分数和小数。
b) 任意两个相邻整数之间必有一个整数。
三、答案1.a) 0.3是有理数,可以写成3/10。
b) 1/7是有理数,已经是分数形式。
c) -2是有理数,可以写成-2/1。
d) √3是无理数。
2.a) -5,-1,0,4/3,√2。
b) -√5,π/4,1/2,2/3,0。
3.a) -1/3 + 0.2 + √5。
b) π + 1/6 - 0.4 + 2/3。
4.a) x = -3 或 x = 7。
b) x = 48。
5.a) 真。
b) 真。
通过以上复习题的练习,我们可以更加熟悉实数的概念,并巩固相关的知识点。
实数是数学中非常重要的概念,在几乎所有数学学科中都有应用。
因此,掌握实数的概念对于进一步学习数学具有重要意义。
[初二数学]第十三章实数小结与复习教案
�1� �5 习练
小大较比及算估、5 。 是
日 3 月 3 年 2102 学中民业市原开省宁辽 。力能的题问际实决解识知用运活灵高提步一进 �时同的识知础基握掌牢牢在生学使。系联互相的间容内及用运与解 理的念概对重注�式方习复的体主为生学以了取采课节本�思反学教 演板习练生学 根方立 方立开 方开 根方平 方平开 逆互 方乘 数理有 数理无 数实
是别分值对绝的 π—�0� 3 是数倒的 5 3 � 是数反相的 2 �2� 数小限有是能可
也 数 理 无 故 , 数 理 无 是 � .D 数理无是都数的号根带 .B
数 理 无 是 数 小 环 循 不 限 无 .C 数理无是都数小限无 .A ) (是的确正法说列下�1� �3 习练
点的上面平标坐 对数实序有 点的上轴数 数实 应对一一 应对一一 �应对一一个两�3� 。用适样同数实对则法算运、序顺算运、律算运
根方平的
61
�
是根方平 的 3�
2
是 根 方 平 术 算 的 52 � 3 �
121 94
� 52� � ④
4000.0 ③
46
②
11 ①
�根方平的数各列下求 �2� . 41 ④
; 94
③ � 1 ② � 009 ①
�根方平术算的数各列下求�1� �1 习练
。0≥ a 即�数负非是身本 a 根方平术算②
6 � x3 1
② x� ①
�围范值取的 x 母字中式各列下断判、9 �值 的 b�a� a 式数代求�b 为分部数小�a 为分部数整的 3 1 知已、8
2
3 - x � + � x-1 � 求�时 3<x<1 当、7 。值的 � 2
�根方平的 x y 求� 3 � x � 2
实数章节复习(含知识点)
实数章节复习 一、归纳总结 1.平方根 平方根的定义:一般地,如果 ,那么这个数叫作a 的平方根 平方根的性质: ①正数有且有 个平方根,他们互为 ;0的平方根是 ;负数 平方根。
②()2a = (0a ≥) ③2a a ⎧==⎨⎩ a 的平方根的表示: 2.算术平方根 一般地,如果一个 的平方等于a ,即 ,那么这个 叫做a 的算术平方根。
a 的算术平方根记为 ,a 叫作 算术平方根具有 性:即(1)被开方数是 (2)a 0 3.立方根 定义:一般地,如果 ,就说 性质:①正数有一个 的立方根,0的立方根是 ,负数有一个 的立方根。
②33a = ;()33a = ③33a a -=- 表示:a 的立方根是 4.平方根等于其本身的数是 算术平方根等于其本身的数是 立方根等于其本身的数是 5.实数的概念:有理数和无理数的统称。
6.实数的分类:考室号: 座位号: 姓名: 班级:7.无理数:无限不循环小数。
包括:① ② ③ 二、典例精析 例1:16的平方根是 ,16的算术平方根是 16的平方根是 ,16的算术平方根是例2.553y x x =-+-+,则xy =例3:如果一个数的平方根是1a +和27a -,求这个数。
例3.用平方根定义解方程(1)24250x -= (2)216(2)49x +=例4.已知11的小数部分是m ,411-的小数部分是n ,则m n +=例5.已知3 1.732,30 5.477,(1)300≈≈≈ ;(2)0.3≈例6.已知3333 1.442,30 3.107,300 6.694≈≈≈,那么30.3≈ ;33000≈例7. 数在数轴上的位置如图:化简()2a b b c -+-变式:已知 ,,a b c 位置如图所示:化简()22a a b c a b c --+-+-【当堂测评】1.如果一个实数的平方根与它的立方根相等,则这个数是( )A . 0B . 正整数C . 0和1D . 12.能与数轴上的点一一对应的是( )A 整数B 有理数C 无理数D 实数3. 下列各数中,不是无理数的是 ( )A. 7B. 0.5C. 2πD. 0.151151115…(两个5之间依次多一个1) 4.在数轴上表示3-的点离原点的距离是 。
初中数学 第13章 实数 全章预习提纲 13.3实数(1)预习提纲
§13.3实数(1) 预习提纲预习内容:教材82-84页学法提示:一、预习目标:了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算,会用计算器进行实数的运算二、重点:实数的意义和实数的分类;实数的运算法则及运算律三、难点:体会数轴上的点与实数是一一对应的;准确地进行实数范围内的运算四、预习过程1.完成教材82页的探究,发现:⑴任何一个有理数都可以写成___________或_________________的形式。
⑵__________________________________________也都是有理数。
2.通过前面的探讨和学习,我们知道:很多数的平方根和立方根都是无限不循环小数,π=无限不循环小数又叫________________,例如:_____________________, 3.14159265也是__________,发现:无理数有_________个。
3.阅读教材82页,完成下列填空:⑴_________________________统称为实数.⑵试一试把实数分类.⑶观察下列两组数后,试试再给实数分类.π,… ②,π-,…4.阅读教材83页的探究,总结:⑴每一个无理数都可以_____________________表示出来,这就是说,数轴上的点有些表示_________,有些表示__________.⑵当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个______都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个________.⑶判断:①有理数和数轴上的点一一对应._________②无理数和数轴上的点一一对应._________③实数和数轴上的点一一对应.___________④平面直角坐标系中的点与有序实数对一一对应.___________5.阅读教材84页思考上方的内容,完成“思考”并总结:⑴数a的相反数是_____,这里a表示______________;⑵___________的绝对值是本身;______________的绝对值是它的相反数;⑶0的绝对值是_________.6.阅读教材84页例1,完成86页练习2.____________________________________________________________________________ ______________________________________________________________________________ 五、拓展知识:§13.3实数(1) 一课一练一.基础题1、下列各数中,是无理数的是( )A. 1.732-B. 1.414C. 3D. 3.14 2. 2-的绝对值是_________. 3. 32-的相反数是 __________ ,绝对值是__________.4.把下列各数分别填入相应的集合里:332278,3, 3.141,,,,2,0.1010010001,1.414,0.020202,7378π----- 正有理数{ } 负有理数{ } 正无理数{ } 负无理数{ }二.巩固题5.下列实数中是无理数的为( )A. 0B. 3.5-C.2D.96.已知四个命题,正确的有( )⑴有理数与无理数之和是无理数 ⑵有理数与无理数之积是无理数⑶无理数与无理数之积是无理数 ⑷无理数与无理数之积是无理数A. 1个B. 2个C. 3个D.4个7.⑴1013-= _________________⑵若()223x =-,则x = ____________ 8.若实数a 满足1a a=-,则( ) A. 0a > B. 0a < C. 0a ≥ D. 0a ≤三.提高题9.下列说法正确的有( )⑴不存在绝对值最小的无理数⑵不存在绝对值最小的实数⑶非负实数中最小的数是0 ⑷不存在与本身的算术平方根相等的数⑸比正实数小的数都是负实数A. 2个B. 3个C. 4个D.5个10.()234ππ-+-= 111.已知实数a 、b 、c 在数轴上的位置如图所示:化简 2c a c b a b a c b -+--+---O。
《实数》全章复习与巩固基础知识讲解
可编写可更正《实数》全章复习与牢固(基础)1. 认识算术平方根、平方根、立方根的看法,会用根号表示数的平方根、立方根.2. 认识开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.认识无理数和实数的看法,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;认识数的范围由有理数扩大为实数后,看法、运算等的一致性及其发展变化. 4. 能用有理数预计一个无理数的大体范围.【知识网络】【重点梳理】重点一、平方根和立方根种类平方根立方根项目被开方数非负数任意实数符号表示a 3 a一个正数有两个平方根,且互为一个正数有一个正的立方根;性质相反数;一个负数有一个负的立方根;零的平方根为零;零的立方根是零;数没有平方根;( a ) 2a( a 0)(3 a ) 3a重要a 2a(a0)3a3aaa( a0)3a 3 a重点二、 n 次方根假如一个数的 n 次方( n 是大于1的整数)等于 a ,那么个数叫做 a 的 n 次方根.当 n奇数,个数 a 的奇次方根;当n 偶数,个数 a 的偶次方根.求一个数 a 的n 次方根的运算叫做开n 次方, a 叫做被开方数,n 叫做根指数.数 a 的奇次方根有且只有一个,正数 a 的偶次方根有两个,它互相反数;数的偶次方根不存在. ;零的n次方根等于零 .重点三、数有理数和无理数称数.1.数的分重点:( 1)全部的数分成三:有限小数,无穷循小数,无穷不循小数.其中有限小数和无穷循小数称有理数,无穷不循小数叫做无理数.( 2)无理数分成三:①开方开不尽的数,如5,32等;②有特别意的数,如π;③有特定构的数,如⋯(3)凡能写成无穷不循小数的数都是无理数,而且无理数不可以写成分数形式 .2.数与数上的点一一.数上的任何一个点都一个数,反之任何一个数都能在数上找到一个点与之.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数.我们已经学习过的非负数有以下三种形式:( 1)任何一个实数 a 的绝对值是非负数,即| a | ≥ 0;( 2)任何一个实数 a 的平方是非负数,即a2≥0;3a 0( a 0 ).()任何非负数的算术平方根是非负数,即非负数拥有以下性质:(1)非负数有最小值零;(2)有限个非负数之和还是非负数;(3)几个非负数之和等于 0,则每个非负数都等于 0.4.实数的运算:数 a 的相反数是- a ;一个正实数的绝对值是它自己;一个负实数的绝对值是它的相反数; 0 的绝对值是0.有理数的运算法规和运算律在实数范围内依旧成立. 实数混杂运算的运算序次:先乘方、开方、再乘除,最后算加减. 同级运算按从左到右序次进行,有括号先算括号里.5.实数的大小的比较:有理数大小的比较法规在实数范围内依旧成立.法规 1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右侧的数总比左侧的数大;法规 2.正数大于0, 0 大于负数,正数大于全部负数,两个负数比较,绝对值大的反而小;法规 3.两个数比较大小常有的方法有:求差法,求商法,倒数法,估量法,平方法.重点四、近似数及有效数字1. 近似数:完整吻合实质地表示一个量多少的数叫做正确数;与正确数达到必定凑近程度的数叫做近似数.2. 精确度:近似数与正确数的凑近程度即近似程度. 对近似程度的要求叫做精确度.重点讲解:精确度有两种形式:①精确到哪一位.②保留几个有效数字.可编写可更正3. 有效数字:从一个数的左侧第一个不为零的数字起,往右到末位数字为止的全部的数字都是这个数的有效数字,如的有效数字有三个:2, 0, 8.重点五、分数指数幂n a mm1ma n a 0 , a n a0 ,此中m、n为正整数, n 1 .n a mm m上边规定中的 a n和 a n 叫做分数指数幂, a 是底数.整数指数幂和分数指数幂统称为有理数指数幂.重点讲解:设 a 0, b0, p、 q 为有理数,那么( 1)a p a q a p q, a p a q a p q.( 2)a p qa pq.pp p( 3)ab a p b p,aa .b b p【典型例题】种类一、有关方根的问题1、以下命题:①负数没有立方根;②一个实数的算术平方根必定是正数;③一个正数或负数的立方根与这个数同号;④假如一个数的算术平方根是这个数自己,那么这个数是1或 0;⑤假如一个数的立方根是这个数自己,那么这个数是 1 或 0 ,此中错误的有()个个个个【答案】 B;【分析】①负数有立方根;②0 的平方根是0;⑤立方根是自己的数有0,± 1.【总结升华】掌握平方根和立方根的定义是解题重点.贯穿交融:【变式 1】以下运算正确的选项是()A.42B.235C.382D.| 2|2【答案】 C;可编写可更正【变式 2】243的 5 次方根是= _________. 10243【答案】;42、若102.01 10.1 ,则± 1.0201 =若30.7160 ,3 1.542 ,则3367 _____________【答案】±;;【分析】向左挪动 2 位变为,它的平方根向左挪动 1 位,变为,注意符号;向右挪动 3 位变成 367,它的立方根向右挪动 1 位,变为【总结升华】一个数向左挪动 2 位,它的平方根向左挪动 1 位;一个数向右挪动 3 位,它的立方根向右挪动 1 位.种类二、与实数有关的问题3、把以下各数填入相应的会集:-1、3、π、-、9 、 6 2 、2、.2( 1)有理数会集{};( 2)无理数会集{};( 3)正实数会集{};( 4)负实数会集{}.【思路点拨】第一把能化简的数都化简,而后比较看法填到对应的括号里.【答案与分析】( 1)有理数会集{-1、-、9、};( 2)无理数会集{ 3 、π、6 2 、2};2( 3)正实数会集{ 3 、π、9、62、};( 4)负实数会集{- 1、-、2}.2【总结升华】有理数是有限小数和无穷循环小数,无理数是无穷不循环小数. 总结常有的无理数形式 .贯穿交融:【变式】( 2015? 绥化)在实数 0、π、、 、﹣ 中,无理数的个数有( )A .1个B .2个C .3个D .4个【答案】 B ;34、计算( 1) 3 216 3 1000( 2 ) 2 ( 2)3 (3) (1)235)( 1(11)39 3261 (1 5)2274【思路点拨】 先逐一化简后,再依据计算法规进行计算.【答案与分析】解:( 1) 3 21631000( 2)2=6 10 2162333326 1(15)2=32( 2)1 1 1 1 127427 4 3 4 121 2 35 1 1 42 18 1 2 13(3)()(1 )(1) =3333 273 3.39 39 3【总结升华】 依据开立方和立方, 开平方和平方互逆运算的关系,可以经过立方、平方的方法去求一个数的立方根、平方根.贯穿交融:【变式】计算 (1) 326 13327(2)2 3(4)2 3( 4)3 ( 1 )2( 3)22【答案】解: (1)26 1 33327312729 1501(2)2 3( 4) 23( 4)3 ( )2 ( 3)2128 44 3432 1 3 36 .225、( 2015? 资阳)已知:( a+6) +=0,则 2b ﹣ 4b ﹣ a 的值为.【答案】 12.【分析】解:∵( a+6) 2+=0,∴ a +6=0, b 2﹣ 2b ﹣ 3=0,2解得, a=﹣6, b ﹣ 2b=3,可得 2b 2﹣ 4b=6,则 2b 2﹣ 4b ﹣ a=6﹣(﹣ 6) =12,故答案为: 12.【总结升华】 本题主要观察了非负数的性质,初中阶段有三各种类的非负数:绝对值、偶次方、二次根式(算术平方根) .当它们相加和为 0 时,一定满足此中的每一项都等于0.贯穿交融:【变式 1】实数 a 、 b 在数轴上所对应的点的地点以以下图:化简 a 2 +∣ a - b ∣=.【答案】解:∵ a < 0< b ,∴ a - b < 0∴ a 2 +∣ a - b ∣=- a - ( a - b ) = b - 2 a .【变式 2】实数 a 在数轴上的地点以以下图, 则 a, a, 1, a 2的大小关系是:;a-1 a 0可编写可更正【答案】1a a2 a ;a6、用四舍五入法,按括号中的要求把以下各数取近似数.(1)( 精确到;(2)( 精确到千分位) ;(3)( 精确到个位 ) ;【答案与分析】解:( 1)≈;(2)(2)≈;(3)≈ 64.【总结升华】从一个数的左侧第一个不为零的数字起,往右到末位数字为止的全部的数字都是这个数的有效数字.近似数末位的0 不可以随意去掉,去掉了就会改变它的精确度.7、把以下方根化为幂的形式:(1)315;(2)473;(3)1;(4)51. 83【答案与分析】1解:( 1)31515 3;4 733( 2)74;11( 3)8 2;8111153 5.(4)533n a m m【总结升华】 a n a 0 ,此中m、n为正整数, n 1 .种类三、实数综合应用8、现有一面积为150 平方米的正方形鱼池,为了增添养鱼量,欲把鱼池的边长增添6米,那么扩建鱼池的面积为多少(最后结果保留 4 个有效数字)可编写可更正【答案与分析】解:由于原正方形鱼池的面积为150 平方米,依据面积公式,它的边长为(米).由题意可得扩建后的正方形鱼池的边长为(+6)米,因此扩建后鱼池的面积为18.247 2≈(平方米).答:扩建后的鱼池的面积约为(平方米).【总结升华】要求扩建后的鱼池的面积,应先求出其边长,而原鱼池的面积为150 平方米,由此可得原鱼池的边长,再加上增添的 6 米,故新鱼池面积可求.贯穿交融:【变式】一个底为正方形的水池的容积是486 m3,池深m,求这个水池的底边长.【答案】解:设水池的底边长为x ,由题意得x2486x2324x18答:这个水池的底边长为18 m .。
八年级数学上册 第十三章 13.3 实数复习教案 新人教版
课题:中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。
书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。
早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。
1、教学目标:使学生了解书法的发展史概况和特点及书法的总体情况,通过分析代表作品,获得如何欣赏书法作品的知识,并能作简单的书法练习。
2、教学重点与难点:(一)教学重点了解中国书法的基础知识,掌握其基本特点,进行大量的书法练习。
(二)教学难点:如何感受、认识书法作品中的线条美、结构美、气韵美。
3、教具准备:粉笔,钢笔,书写纸等。
4、课时:一课时二、教学方法:要让学生在教学过程中有所收获,并达到一定的教学目标,在本节课的教学中,我将采用欣赏法、讲授法、练习法来设计本节课。
(1)欣赏法:通过幻灯片让学生欣赏大量优秀的书法作品,使学生对书法产生浓厚的兴趣。
(2)讲授法:讲解书法文字的发展简史,和形式特征,让学生对书法作进一步的了解和认识,通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!(3)练习法:为了使学生充分了解、认识书法名家名作的书法功底和技巧,请学生进行局部临摹练习。
三、教学过程:(一)组织教学让学生准备好上课用的工具,如钢笔,书与纸等;做好上课准备,以便在以下的教学过程中有一个良好的学习气氛。
(二)引入新课,通过对上节课所学知识的总结,让学生认识到学习书法的意义和重要性!(三)讲授新课1、在讲授新课之前,通过大量幻灯片让学生欣赏一些优秀的书法作品,使学生对书法产生浓厚的兴趣。
2、讲解书法文字的发展简史和形式特征,让学生对书法作品进一步的了解和认识通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!A书法文字发展简史:①古文字系统甲古文——钟鼎文——篆书早在5000年以前我们中华民族的祖先就在龟甲、兽骨上刻出了许多用于记载占卜、天文历法、医术的原始文字“甲骨文”;到了夏商周时期,由于生产力的发展,人们掌握了金属的治炼技术,便在金属器皿上铸上当时的一些天文,历法等情况,这就是“钟鼎文”(又名金文);秦统一全国以后为了方便政治、经济、文化的交流,便将各国纷杂的文字统一为“秦篆”,为了有别于以前的大篆又称小篆。
实数全章复习与巩固基础知识讲解
《实数》全章复习与巩固(基础)1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围.【知识网络】【要点梳理】要点一、平方根和立方根要点二、次方根如果一个数的n次方(n是大于1的整数)等于a,那么这个数叫做a的n次方根.当n 为奇数时,这个数为a的奇次方根;当n为偶数时,这个数为a的偶次方根.求一个数a的n次方根的运算叫做开n次方,a叫做被开方数,n叫做根指数.实数a的奇次方根有且只有一个,正数a的偶次方根有两个,它们互为相反数;负数的偶次方根不存在.;零的n 次方根等于零. 要点三、实数有理数和无理数统称为实数. 1.实数的分类要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数.我们已经学习过的非负数有如下三种形式: (1)任何一个实数a 的绝对值是非负数,即|a |≥0; (2)任何一个实数a 的平方是非负数,即2a ≥0;(30≥ (0a ≥).非负数具有以下性质: (1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0. 4.实数的运算:数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里. 5.实数的大小的比较:有理数大小的比较法则在实数范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法. 要点四、近似数及有效数字1.近似数:完全符合实际地表示一个量多少的数叫做准确数;与准确数达到一定接近程度的数叫做近似数.2.精确度:近似数与准确数的接近程度即近似程度.对近似程度的要求叫做精确度. 要点诠释:精确度有两种形式:①精确到哪一位.②保留几个有效数字.3.有效数字:从一个数的左边第一个不为零的数字起,往右到末位数字为止的所有的数字都是这个数的有效数字,如0.208的有效数字有三个:2,0,8. 要点五、分数指数幂()0m naa =≥()0m naa -=>,其中m n 、为正整数,1n >.上面规定中的m na 和m na-叫做分数指数幂,a 是底数.整数指数幂和分数指数幂统称为有理数指数幂. 要点诠释:设00a b p q >>,,、为有理数,那么(1)pqp qp q p q a a a a a a +-=÷=,.(2)()qp pq aa =.(3)()pp pp p p a a ab a b b b ⎛⎫== ⎪⎝⎭,. 【典型例题】类型一、有关方根的问题1、下列命题:①负数没有立方根;②一个实数的算术平方根一定是正数;③一个正数或负数的立方根与这个数同号;④如果一个数的算术平方根是这个数本身,那么这个数是1或0;⑤如果一个数的立方根是这个数本身,那么这个数是1或0 ,其中错误的有( ) A.2个 B.3 个 C.4 个 D.5个 【答案】B ;【解析】①负数有立方根;②0的平方根是0;⑤立方根是本身的数有0,±1. 【总结升华】把握平方根和立方根的定义是解题关键. 举一反三:【变式1】下列运算正确的是( )A 2=±B =2=- D .|2|2--=【答案】C ; 【变式2】2431024-的5次方根是=_________. 【答案】34-;210.1== 若7160.03670.03=,542.1670.33=,则_____________3673= 【答案】±1.01;7.16;【解析】102.01向左移动2位变成1.0201,它的平方根向左移动1位,变成1.01,注意符号;0.3670向右移动3位变成367,它的立方根向右移动1位,变成7.16【总结升华】一个数向左移动2位,它的平方根向左移动1位;一个数向右移动3位,它的立方根向右移动1位. 类型二、与实数有关的问题3、把下列各数填入相应的集合: -1、3、π、-3.14、9、26-、22-、7.0 . (1)有理数集合{ }; (2)无理数集合{ }; (3)正实数集合{ }; (4)负实数集合{ }.【思路点拨】首先把能化简的数都化简,然后对照概念填到对应的括号里. 【答案与解析】(1)有理数集合{-1、-3.14、9、7.0 };(2)无理数集合{ 3、π、26-、22-}; (3)正实数集合{ 3、π、9、26-、7.0 };(4)负实数集合{ -1、-3.14、22-}. 【总结升华】有理数是有限小数和无限循环小数,无理数是无限不循环小数.总结常见的无理数形式. 举一反三:【变式】(2015•绥化)在实数0、π、、、﹣中,无理数的个数有( )A .1个B .2个C .3个D .4个 【答案】B ;4、计算(1)233)32(1000216-++ (2)23)451(12726-+- (3)32)131)(951()31(--+【思路点拨】先逐个化简后,再按照计算法则进行计算.【答案与解析】解:(1)233)32(1000216-++=226101633++=(2)23)451(12726-+-1113412=-+=-(3)32)131)(951()31(--+=1112133333+=+=-=-.【总结升华】根据开立方和立方,开平方和平方互逆运算的关系,可以通过立方、平方的方法去求一个数的立方根、平方根. 举一反三: 【变式】计算(1) 333000216.0008.012726---- (2) ()223323)3()21()4()4(2--⨯-+-⨯-【答案】 解:(1) 333000216.0008.012726----()0.20.06=-- 29150=-(2) ()223323)3()21()4()4(2--⨯-+-⨯-()184434=-⨯+-⨯- 321336=---=-.5、(2015•资阳)已知:(a+6)2+=0,则2b 2﹣4b ﹣a 的值为 .【答案】12. 【解析】 解:∵(a+6)2+=0,∴a+6=0,b 2﹣2b ﹣3=0,解得,a=﹣6,b 2﹣2b=3,可得2b 2﹣4b=6,则2b 2﹣4b ﹣a=6﹣(﹣6)=12, 故答案为:12.【总结升华】本题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0. 举一反三:【变式1】实数a 、b 在数轴上所对应的点的位置如图所示:化简2a +∣a -b ∣= .【答案】解:∵a <0<b ,∴a -b <0∴2a +∣a -b ∣=-a -(a -b )=b -2a . 【变式2】实数a 在数轴上的位置如图所示,则2,1,,a aa a -的大小关系是:; -1a【答案】21a a a a<<<-;6、用四舍五入法,按括号中的要求把下列各数取近似数. (1)0.0198 (精确到0.001); (2)0.34082(精确到千分位); (3)64.49 (精确到个位);【答案与解析】解:(1)0.0198≈0.020; (2)(2)0.34082≈0.341; (3)64.49≈64.【总结升华】从一个数的左边第一个不为零的数字起,往右到末位数字为止的所有的数字都是这个数的有效数字. 近似数末位的0不能随便去掉,去掉了就会改变它的精确度.7、把下列方根化为幂的形式:(1 (2 (3)(4【答案与解析】解:(11315=;(2347=;(3)128-=-;(41155133-⎛⎫==⎪⎝⎭.()0mna a=≥,其中m n、为正整数,1n>.类型三、实数综合应用8、现有一面积为150平方米的正方形鱼池,为了增加养鱼量,欲把鱼池的边长增加6米,那么扩建鱼池的面积为多少(最后结果保留4个有效数字)?【答案与解析】解:因为原正方形鱼池的面积为150平方米,根据面积公式,12.247≈(米).由题意可得扩建后的正方形鱼池的边长为(12.247+6)米,所以扩建后鱼池的面积为218.247≈333.0(平方米).答:扩建后的鱼池的面积约为333.0(平方米).【总结升华】要求扩建后的鱼池的面积,应先求出其边长,而原鱼池的面积为150平方米,由此可得原鱼池的边长,再加上增加的6米,故新鱼池面积可求.举一反三:【变式】一个底为正方形的水池的容积是4863m,池深1.5m,求这个水池的底边长.【答案】解:设水池的底边长为x,由题意得2 1.5486x⨯=2324x=18x=答:这个水池的底边长为18m.。
实数复习ppt课件
金融中的利率与利息计算
利率计算
在金融领域中,利率的计算是必不可 少的。利率通常用百分数表示,但实 际上是实数。通过利率的计算,我们 可以确定借款或储蓄的回报率。
利息计算
利息的计算是基于本金和利率的乘积 。通过利息的计算,我们可以确定资 金在使用一定时间后所获得的回报或 损失。
物理学中的速度与加速度
数学运算的基础
实数是数学运算的基础,几乎所有数学分支 都离不开实数。实数的四则运算、函数、极 限、导数等概念是数学分析、代数、几何等 领域的基础。
物理世界中的数学模型
实数在描述物理世界的现象和规律时具有重 要作用。例如,长度、时间、质量等物理量 都可以用实数表示,而物理定律往往可以通 过实数的数学表达式来描述和推导。
实数的性质
实数是封闭的,即任意两个实数的和 、差、积、商(分母不为零)仍然是 实数。
实数具有完备性,即实数集在加法、 减法、乘法和乘方下是封闭的。
实数的分类
有理数
可以表示为两个整数之比的数, 包括整数和分数。
无理数
无法表示为两个整数之比的数, 如圆周率π和自然对数的底数e。
02
实数的运算
加法与减法
详细描述
实数的指数运算通过幂的性质进行,例如$a^m times a^n = a^{m+n}$和$(a^m)^n = a^{mn}$等 。根号运算则是求一个数的平方等于给定值的数,需要注意根号的定义域。在进行指数和根号运算时 ,需要注意处理负指数和根号下的表达式,以及在解决实际问题时考虑单位的换算。
极限理论。
现代数学中的实数研究与应用
实数在现代数学中的地位
实数已成为现代数学的基础,许多数学分支都建立在实数理论之 上。
实数在物理学中的应用
实数复习指导
期 末特 训
一
、
明 确 课 标 要 求
1 了解 数轴 的概 念 和数轴 的 画法 , . 掌握 数轴 的j 要素; 会用 数 轴上 的点 表示 有 理 数 , 利 用数 轴 比较 会
有理 数 的大 小.
本章 重点 I
1 实 数 的 分类 . ,
1 f 有理数 1 正
2实数的运算. .
解 析 由两个无 理 数 的和 为有 理数 l可知 , 两 这 个 无理 数分 别为 有理 数 与无 理数 的和 . 无 理数 部分 且
在 实 数 范 围 内 , 、 、 、 ( 数 不 能 加 减 乘 除 除 为 0 、 方 五种 运 算 都 可 以进 行 . 种 运 算 律 )乘 各
、 <、 <、 , / / /
即 2<x 5 <3. /
I 读 知识要 点 l 精
2. 数 的 大小 比较 . 实
3 理解 一个 数平 方根 和算术 平 方根 的 意义 , . 会用
根号表 示一个 数 的平 方根 和算术 平方根 . 4 了解立 方 根和开 立方 的概 念 : . 会用 根 号表示 一
两 实 数 的大 小 关 系 如 下 : 正 实 数 都 大 于 O 负 实数 都 小 于 O 正 数 大 于一 切 负 数 ; , , 两个 正 实 数 , 对 值 大 的 实数 较 大 ; 个 负实 数 , 对 绝 两 绝 值大 的实 数 反 而较 小 . 实 数 和 数 轴 上 的 点 一一 对 应 , 在数 轴 上 表 示 的两 个 实 数 , 边 的数 总 大 于 左 边 的数 . 右 3 实数 的绝 对 值 . . 正 实 数 的 绝对 值 等 于它 本身 : 负实 数 的 绝
例 1 请 你 写 出一 个 比 01小 的 有理 数 . 。
江西省南昌八一中学八年级数学上册 第13章《实数》单元复习巩固(2) 人教新课标版
第十三章 实数单元复习巩固(2)班级某某座号月日主要内容:掌握实数的有关概念及实数的综合运用 一、课堂练习: ;3个无理数.2.下列说法正确的是( )3.(1)的相反数是;1.4.(课本91页)计算下列各式的值:)25.(课本91页)已知2πx ||<,x 是整数,求x .6.(课本92页)一个圆与一个正方形的面积都是2π2cm ,它们中哪一个的周长比较大?你能从中得到什么启示?二、课后作业:1.下列说法正确的是( )A.每一个整数都可以用数轴上的点表示;反过来,数轴上的每一个点表示一个整数B.每一个有理数都可以用数轴上的点表示;反过来,数轴上的每一个点都表示一个有理数C.每一个无理数都可以用数轴上的点表示;反过来,数轴上的每一个点都表示一个无理数D.每一个实数都可以用数轴上的点表示;反过来,数轴上的每一个点都表示一个实数2.计算(1)532363-+= (2)25(5)5⨯+=(3)2632π++-39≈(精确到0.01)3.求下列各数的相反数与绝对值:5-的相反数是,绝对值是;0的相反数是,绝对值是. 22-的相反数是,绝对值是.4.(课本91页)0,1,2,3,4,5,6,7,8,9,10这11个数的平方根及立方根中, 有理数的有. 无理数的有.5.(课本91页)天气晴朗时,一个人能看到大海的最远距离s (单位:km )可用公式216.88s h = 来估计,其中h (单位:m )是眼睛离海平面的高度.如果一个人站在岸边观察,当眼睛离海平面的高度是1.5m 时,能看到多远(精确到0.01km )?如果登上一个观望台,当眼睛离海平面的高度是35m 时,能看到多远(精确到0.01km )?6.(课本92页)要生产一种容积为500升的球形容器,这种球形窗口的半径是多少分米(结果保留小数点后两位)?(球的体积公式是343V R π=,其中R 是球的半径).7.(课本92页)在平行四边形OABC 中,已知,A C 两点的坐标分别为(3,3)A ,(23,0)C . (1)求B 点的坐标.(2)将平行四边形OABC 向左平移3个单位长度,求所得四边形的四个顶点的坐标. (3)求平行四边形OABC 的面积.参考答案一、课堂练习:1,2,3 ;3.2.下列说法正确的是( C )3.(1);14.(课本91页)计算下列各式的值:)2解:原式2= 解:原式=2=+31=+4=5.(课本91页)已知2πx ||<,x 是整数,求x . 解:∵||2π6.28x <≈x 是整数∴x 的整数值是6,5,4,3,2,1,0,1,2,3,4,5,6------6.(课本92页)一个圆与一个正方形的面积都是2π2cm ,它们中哪一个的周长比较大?你能从中得到什么启示?解:设圆的半径为rcm ,则2π2πr =,解得r = 此时圆的周长为2π2π8.88r =设正方形的边长为acm ,则22πa =2.506a =≈∴正方形的周长是410.028.88a ≈> ∴正方形的周长较大.启示:当圆和正方形面积相等时,正方形的周长较大.二、课后作业:1.下列说法正确的是( D )A.每一个整数都可以用数轴上的点表示;反过来,数轴上的每一个点表示一个整数B.每一个有理数都可以用数轴上的点表示;反过来,数轴上的每一个点都表示一个有理数C.每一个无理数都可以用数轴上的点表示;反过来,数轴上的每一个点都表示一个无理数D.每一个实数都可以用数轴上的点表示;反过来,数轴上的每一个点都表示一个实数2.计算(1)=7(3)π-39≈10.20 (精确到0.01)3.求下列各数的相反数与绝对值:;0的相反数是0 ,绝对值是0 .2,.4.(课本91页)0,1,2,3,4,5,6,7,8,9,10这11个数的平方根及立方根中, 有理数的有 0、1、4、9的平方根与0、1、8的立方根 .无理数的有 2、3、5、6、7、8、10的平方根与2、3、4、5、6、7、9、10的立方根 . 5.(课本91页)天气晴朗时,一个人能看到大海的最远距离s (单位:km )可用公式216.88s h = 来估计,其中h (单位:m )是眼睛离海平面的高度.如果一个人站在岸边观察,当眼睛离海平面的高度是1.5m 时,能看到多远(精确到0.01km )?如果登上一个观望台,当眼睛离海平面的高度是35m 时,能看到多远(精确到0.01km )?解:把 1.5h =代入216.88s h =得216.88 1.525.32s =⨯=,所以 5.03s ≈.即当眼睛离开海平面的高度是1.5m 时,能看到5.03km .把35h =代入216.88s h =得216.8835590.8s =⨯=,所以24.31s ≈.即当眼睛离开海平面的高度是35m 时,能看到24.31km .6.(课本92页)要生产一种容积为500升的球形容器,这种球形窗口的半径是多少分米(结果保留小数点后两位)?(球的体积公式是34π3V R =,其中R 是球的半径).解:当500V =升时,有34π5003=R∴350034πR ⨯=∴ 4.92R ≈ 答:这种球形容器的半径是4.92dm .7.(课本92页)在平行四边形OABC 中,已知,A C 两点的坐标分别为(3,3)A ,(23,0)C . (1)求B 点的坐标.(2)将平行四边形OABC 向左平移3个单位长度,求所得四边形的四个顶点的坐标. (3)求平行四边形OABC 的面积.解:(1)如图,作AD OC ⊥于点D ,BE OC ⊥于E .∵()3,3A,()23,0C∴3BE AD ==,3CE OD == ∴23333OE OC CE =+=+= ∴B 点的坐标是()33,3(2)将平行四边形ABCO 向左平移3个单位长度 四个顶点的坐标分别变为:()'0,3A ,()'23,3B ,()'3,0C ,()'3,0O -(3)∵23OC =,3AD =∴平行四边形ABCO 的面积2336OC AD =⨯=⨯=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第13章《实数》复习导学案(2课时)
编写人:慕长芬 班级: 学生姓名:
【学习目标】
1、 梳理本章知识结构图及知识点,对本章的知识脉络有一个清晰的认识
2、 能利用实数的有关性质熟练的解决一些实际问题
【前置学习】
一、我来归纳(课本90页 本章知识结构图)
1.
2.
【学习探究】
一、基础训练: 1. -8是____的平方根, 64的平方根是_____,
64的值是_____,
64的平方根是_____, 64的立方根是____.
(3)
(4)
3.解方程:
4.求值:
(1) (2)
二、自主小结(这节课我有哪些收获和困惑,与你的同伴说说)
我的收获:我的困惑:
【自我检测】
一、选择题
1.有下列说法:
(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;
(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示。
其中正确的说法的个数是()A.1 B.2 C.3 D.4
2.()2
0.7
-的平方根是()
A.0.7
-B.0.7
±C.0.7D.0.49
3.若=a的值是()
A.
7
8
B.
7
8
-C.
7
8
±D.
343
512
-
4.若225
a=,3
b=,则a b
+=()
A.-8 B.±8 C.±2 D.±8或±2
2
9
3
2)1
(2007--
+
+-
的值
求
已知33
2
,a
a
o
a+
<的值
)
(
)
(
求
已知33
2
,m
n
n
m
n
m-
+
-
<
3
2
3
2
2
2
3-
-
+
+
-
128
23=
x0
125
3
2
273=
+
-)
(x
25
42=
x3
22=
-)
(x
二、填空题
5.在-52,3π, 3.14,01,21-中,其中:
整数有 ;无理数有 ;有理数有
62的相反数是 ;绝对值是 。
7.在数轴上表示的点离原点的距离是 。
8= 。
910.1= 。
10.若一个数的立方根就是它本身,则这个数是 。
三、解答题
11.计算(每小题5分,共20分)
(1) (2)-0. 01);
(3 (4))
11(保留三位有效数字)。
12.求下列各式中的x
(1)x 2 = 17; (2)x 2 -
12149 = 0。
13.比较大小,并说理
(16; (2)1与。
14.写出所有适合下列条件的数
(1)大于 (2
15.
13 +--
16.一个正数x的平方根是2a-3与5-a,则a是多少?
17.观察:
=
==
=
=
==
=
【应用拓展】
.
,1 0
3
10
的相反数求
是整数,且,其中
已知
y
x
y
x
y
x
-
<
<
+
=
+。