第十三章实数复习课(精)
实数(单元复习)标准教案

实数(单元复习)标准教案一、教学目标:1. 理解实数的定义及分类,掌握有理数和无理数的特点。
2. 掌握实数的运算规则,包括加、减、乘、除、乘方和开方等。
3. 能够运用实数解决实际问题,提高运用数学知识解决问题的能力。
二、教学内容:1. 实数的定义及分类2. 有理数和无理数的特点3. 实数的运算规则4. 实数在实际问题中的应用三、教学重点与难点:1. 教学重点:实数的定义及分类,实数的运算规则,实数在实际问题中的应用。
2. 教学难点:实数的运算规则,特别是乘方和开方运算。
四、教学方法:1. 采用讲授法,讲解实数的定义、分类和运算规则。
2. 运用案例分析法,分析实数在实际问题中的应用。
3. 组织学生进行小组讨论,培养学生的合作意识。
4. 利用信息技术手段,如PPT、网络资源等,辅助教学。
五、教学过程:1. 导入新课:回顾实数的定义及分类,引导学生思考实数在生活中的应用。
2. 讲解实数的运算规则,通过例题展示运算过程,让学生熟练掌握。
3. 开展小组讨论:让学生运用实数解决实际问题,分享解题心得。
4. 总结课堂内容:回顾本节课所学,强调实数的重要性。
5. 布置作业:设计适量作业,巩固课堂所学。
6. 课后反思:根据学生作业完成情况,总结教学效果,调整教学策略。
六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 作业评价:检查学生作业的完成质量,评估学生对实数运算规则的掌握程度。
3. 测试评价:组织单元测试,评估学生对实数知识的整体掌握情况。
七、教学资源:1. 教材:实数相关章节教材,用于引导学生学习。
2. PPT:制作精美PPT,辅助讲解实数概念和运算规则。
3. 网络资源:收集相关实数应用案例,供学生课后拓展学习。
4. 练习题库:准备各类实数练习题,巩固学生所学知识。
八、教学进度安排:1. 第1-2课时:讲解实数的定义及分类。
2. 第3-4课时:讲解实数的运算规则。
实数(复习)

【实践创新】 1、下列说法正确的是( A、 16 的平方根是 4
C、 任何数都有平方根 2、若 3 m 3 5 ,则 m 3、若 x x 0 ,则 x 的取值范围是
) B、 6 表示 6 的算术平方根的相反数 D、 a 2 一定没有平方根 ; 3 4 x 4 x ,则 x 的取值范围是
D.
4个
。设面积为5的正方形的边长为 x , ,
1 的立方根是 27
22.求下列各式中的 x(10 分,每小题 5 分) (1) 4 x 2 121 (2) ( x 2) 3 125
, -
5 2 的相反数是
, 2 3 =
;
长春学校
七年级
学科导学案
课型:复习课
编写人 L
审查人:T 、 P
a
b
0
c
0.064 的立方根表示为
3、已知 5 11 的小数部分为 m , 5 11 的小数部分为 n ,则 m n
长春学校
七年级
学科导学案
课型:复习课
编写人 L
审查人:T 、 P
时间:
课题
实数 复习与小结(二)
知识与能力:进一步巩固实数的相关概念,能熟练求一个数的平方根、立方 根等,会进行实数范围内的相关计算。 过程与方法:通过互为逆运算的方法,理解并类比数学思想方法。 情感态度与价值观:感受平方根在现实世界中的客观存在,增强数学知识的 应用意识。 实数的相关运算。 无理数、实数的相关概念的理解与运用。
长春学校
七年级
学科导学案
课型:复习课
课题
实数 复习与小结(一)
知识与能力:建立起本章知识的框架图,形成这一章的完整知识体系。 过程与方法:利用习题在巩固练习、变式训练,增强度学生分析问题、解决 问题的实践能力,拓展学生的思维。 情感态度与价值观:提高学生的归纳和概括能力,形成反思自己学习过程的 意识。 1、平方根、立方根的概念和求法。2、无理数、实数的概念,实数的分类, 相反思、绝对值的求法,实数的运算及大小比较。3 无理数、实数的相关概念的理解与运用。
(完整版)《实数》复习课教案

《实数》复习课教案一、教学目标1.理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;2.会用计算器进行数的加、减、乘、除、乘方及开方运算;3.了解无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义;4.了解实数与数轴上的点一一对应,了解有理数的运算律适用于实数范围.会按结果所要求的精确度用近似的有限小数代替无理数进行实数的四则运算.二、教学重难点1.平方根和算术平方根的概念、性质,无理数与实数的意义;2.算术平方根的意义及实数的性质.三、教学准备课件、计算器.四、教学过程一、知识疏理,形成体系(课前要求学生对本章知识进行总结)师:本章的主要内容是开方运算.从定义出发解题是解本章有关题目的基本方法,我们注意掌握用计算器进行数的计算的方法的同时,还必须注意区分清楚有理数与无理数的概念,掌握实数的四则运算.下面,我们以组为单位小结一下本章的知识点.生:我们认为这一章主要学习了一种新的运算——开方,开方与乘方是互为逆运算的关系.开方包括开平方与开立方.通过开平方可求一个非负实数的平方根;通过开立方可求一个实数的立方根.依据这一思路,我们画出的知识结构图是:()⎩⎨⎧−−−−−→←立方根开立方算术平方根平方根开平方开方乘方互为逆运算________ 师:好!他们组是以运算为线索总结的,侧重总结了开方运算,还有补充吗? 生:我们认为平方根、算术平方根、立方根的定义、性质也都非常重要.因此我们是这样总结的:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−→←.00;;___00;.;00:,的立方根是方根负数有一个负的立方根正数有一个正的立性质定义立方根开立方的算术平方根是的正的平方根正数性质定义算术平方根负数没有平方根的平方根是们互为相反数根一个正数有两个平方性质定义平方根开平方开方乘方互为逆运算a 师:当求一个非负数的平方根时,可能会出现无理数,使得数的范围从有理数扩大到实数,所以实数的意义、分类以及相关的内容也需总结.生:我们是这样总结的:1.分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负有理数正有理数有理数实数02.每一个实数都可以用数轴上的一个点来表示,反之,数轴上的每一个点又都可以表示成一个实数,它们之间是一一对应的.师:有理数都可以表示成有限小数或无限循环小数.无理数是无限不循环小数,它不能表示成分数形式,任何一个无理数,都可以用给定精确度的有理数来近似地表示.二、强化基础,巩固拓展.(也可以由学生提出典型薄弱题型进行讲解) 1.求下列各数的平方根:(1)972;(2)25;(3)252⎪⎭⎫ ⎝⎛-. 师:本题要审清是求哪个实数的平方根,只有非负实数才有平方根. 生:(1)是求925的平方根;(2)是求5的平方根;(3)是求254的平方根. 由学生独立完成.2.x 取何值时,下列各式有意义.(1)x -2; (2)12+x .师:a 在什么情况下有意义?生:对于a ,必须满足a ≥0,它才有意义,所以被开方数必须是非负数. (1)2-x ≥0;(2)x 2+1≥0.师:如何求出x 的范围呢?生:我们讨论后,得出如下结论:(1)x ≤2;(2)不论x 取什么实数,x 2≥0,x 2+1>0,即x 的取值范围是:x 为全体实数.3.求下列各数的值:(1)()23π-;(2)122+-x x (x ≥1).师:如何化简2a 呢?生:我们认为首先应考虑2a 中a 的范围.(1)当a ≥0时,2a =a ;(2)当a <0时,2a =-a .师:求下列各数的值,必须先确定a 的范围.生:因为3-π<0,所以()23π-=-(3-π)=π-3.师:如何化简122+-x x 呢?生:将122+-x x 化为2a 的形式,即()22112-=+-x x x再考虑x -1的范围,由学生独立完成.4.已知:|x -2|+3-y =0,求:x +y 的值.师:认真审题,考虑一下所给的这些数有什么特点.生:|x -2|和3-y 都是非负数.师:两个非负数的和可能是0吗?生:只有当两个非负数都取0时,其和才为0,其他情况下,都大于0. 由学生独立完成.师:哪些数为非负数呢?生:实数a 的绝对值,表示为|a |,|a |是非负数;实数a 的平方,表示为a 2,a 2是非负数;非负实数a 的算术平方根表示为a ,a 是非负数.师:非负数有什么特点?生:(1)几个非负数的和仍为非负数;(2)若几个非负数的和为0,则每一个非负数都必须为0.师:绝对值、平方数、算术平方根都是非负数,解题时要注意这一隐含条件,不可把0漏掉.5.计算:32725-+(精确到0.01). 师:无理数是开方开不尽的数,那么如何计算呢?生:在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.因为精确到0.01,所以在计算过程中可用2.236代替、5,1.732代替3. 由学生独立完成.6.在实数2-、13.0 、3π、71、0.80108中,无理数的个数为_______个. 师:如何判断一个数是无理数?生:一个无理数不能表示成分数形式,或者说成数位无限,且不循环. 7.|x |<2π,x 为整数,求x师:|x |=2π,x 的值是多少?生:当x =2π,x =-2π时,|x |=2π,所以|x |<2π时,x =±2π.师:|x |=2π的含义?生:实数x在数轴上所对应点到原点的距离等于2π.师:|x|<2π的含义呢?生:实数x在数轴上所对应点到原点的距离小于2π.师:结合数轴,你能说出满足|x|<2π这一条件的点在数轴的什么位置上吗?生:→在如图所示的范围内,因为x为整数,所以x=6、5、4、3、2、1、0、-1、-2、-3、-4、-5、-6.师:非常好!三、查缺补漏,归纳提升.1.通过今天的探究学习,你们有哪些收获?2.非负数的和等于零的条件是:当且仅当每个非负数的值都等于零.此性质在解题时经常会被用到.3.对于本章的内容你还有那些疑问?四、作业1.教科书第19页复习题A组五、板书设计第6章实数1.知识疏理2.巩固训练3.归纳提升六、教学反思(略)七、课堂小卷(1)填一填:1.16的平方根记作_______,等于________.16________.3.31-2-3(1)_______.55.两个无理数的和为有理数,这两个无理数可以是______和_______.6.若│x 2-则x=_______,y=_______.7.已知x 的平方根是±8,则x 的立方根是________.(2)选一选:8.4的平方根是( )A.2B.-2C.±29.下列各式中,无意义的是( )B. 10.下列各组数中,互为相反数的一组是( )A.-2与B.-2C.-2与-12D.│-2│与2 11. 下列说法正确的是 ( )A.1的平方根是1;B.1的算术平方根是1;C.-2是2的平方根;D.-1的平方根是-1(3)做一做:12. 求下列各数的平方根:(1)81;(2)1625;(3)1.44;(4)214; (513. 求下列各式中的x:①x 2=1.21; ②27(x+1)3+64=0.14. a≥0a 的算术平方根.由此你会求下列各式有意义时x 的取值范围吗?试试看:(1 (2; (3 (415.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b 的平方根.。
《实数》复习课

多一份睿智 少一份嬉戏 展一份风采
第 2 页 共 2 页
审核人:
复核人:
C. 4 个 D.±5 D. 6 3 D. 3 a ) . D.5 个
A.2 个 B .3 个 2.25 的算术平方根是( ) . A. 5 B.5 C.-5 3. 6 3 的相反数是( ) .
1 16
⑵ (81) 2 2 3 83 解:原式=
解:原式=
A. 6 3 B. 6 3 C. 6 3 4.如果 a 是实数,则下列各式中一定有意义的是( ) . A. a 2008 B. ( a ) 2 C. b D. 2a b C. a a
仪陇县大罗乡小学校
初中七年级(下)数学
导学案
制作人:吴春伶
组别:初中数学组
制作时间:2014-3-1
课题: 《实数》复习课(1) 第一课时 平方根、立方根、实数 学习目标: 1.归纳和整理本章知识点,形成系统知识 2.强化对平方根、算术平方根、立方根、实数等相关概念的理解 3.能够进行简单的实数相关运算 学习重点: 1、强化对本章所有概念的理解 2、能够熟练地进行相关的实数运算 学习难点:实数大小的比较 一、复习内容 1.平方根: _; 平方根的性质:①________________ ② ; ③ ; 平方根与算术平方根的关系: 2.算术平方根的定义:___________________________________________________________________。 a 的双重非负性的理解: a ≥0 (a≥0) 3.立方根的定义:__________________________________________________________________。 ___; 立方根的性质:①___________________ __ ______________________ ② ; __________; ③__________ 4.无理数:______ _____________________; 实数:_____________________________________________. 实数性质:_____________与数轴上的点是一一对应的,有理数的运算法则、运算律等在实数范围内同样适用。 二、专题复习 【专题一:平方根与算术平方根】 错误!未指定书签。 .(1)16 的平方根是 ,算术平方根是____________________. (2) 16 的平方根是 ,算术平方根是____________________. 2.下列说法正确的是( ) A.1 的平方根是 1 B.1 是 1 的平方根 C. (2) 2 的平方根是 2 D.0 没有算术平方根 3.化简: (2)2
实数(复习课)

常州龙文教育个性化辅导教学案教师:方海欧学生:年级:初二学科:数学日期:星期:时段:一、课题实数(复习课)二、教学目标1、熟练平方根、立方根的概念及其应用。
2、熟练实数有关概念,近似数与有效数字的概念。
3、增强应用意识,提高解决问题的能力,体会数学的应用价值。
三、教学重难点理解平方根、立方根、实数、近似数、有效数字等概念,并能灵活运用。
四、教学课时第10课时五、教学方法讲授法、讨论法、练习法六、教学过程【知识要点】平方根1.平方根如果一个数的平方根等于a,那么这个数叫做a的平方根,也可叙述为:“如果2x a=,那么x就叫做a的平方根.”2.开平方求一个数a的平方根的运算叫做开平方,a叫做被开方数.3.平方根的性质一个正数有两个平方根,它们互为相反数.正数a的两个平方根可以用“a±”表示,其中a表示a的正平方根(又叫算术平方根),读作“根号a”; a-表示a的负平方根,读作“负根号a”.零的平方根记作0,00=.因为任何一个正数、负数或零的平方都不是负数,所以负数没有平方根.4.开平方与平方的关系开平方与平方互为逆运算,根据平方根的意义,“如果2x a=,那么x叫做a的平方根”, x记作a±,我们得到:(1)一个正数的平方根的平方等于这个数,即:当0a>时,()22,();a a a a=-=教学过程(2)一个正数的平方的正平方根等于这个数,即:当0a>时,2.a a=一个负数的平方的正平方根等于这个数的相反数,即:当0a<时,2.a a=-立方根1.立方根与平方根类似,有:如果一个数的立方等于a,那么这个数叫做a的立方根,用“3a”表示,读作“三次根号a”,3a 中的a叫做被开方数,“3”叫做根指数;也可叙述为“如果3x a=,那么x就叫做a的立方根”,x记作3a.2.开立方求一个数a的立方根的运算叫做开立方.开立方与立方互为逆运算.3.立方根的性质我们已学过正数的立方是一个正数,负数的立方是一个负数,零的立方等于零,由立方运算可知正数有一个正立方根,负数有一个负立方根,零的立方根是零,也就是说任意一个数都有立方根,而且只有一个立方根.类似于平方与开平方之间的关系,根据立方根的意义,可以得到()3333,a a a a==.(以上a是实数)注意:一个数的立方根记作“3a”,根指数3不能忽略.实数1. 无理数:无限不循环小数叫做无理数,也就是不能用两整数比表示的数.无理数可分为正无理数和负无理数.只有符号不同的两个无理数是互为相反数.2. 实数:有理数和无理数统称为实数.3.实数分类:⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎨⎩⎭⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正有理数有理数有限小数或无限循环小数负有理数实数正无理数无理数无限不循环小数负无理数n次方根1.n次方根如果一个数的n次方(n是大于1的整数)等于a,那么这个数叫做a的n次方根,也可叙述为“如果n x a=(n是大于1的整数),那么x就叫做a的n次方根”,x记作n a.平方根和立方根是n次方教学过程2.开n次方求一个数a的n次方根的运算叫做开n次方,a叫做被开方数, n叫做根指数.n次方根简称为“方根”;开n次方简称“开方”.3.n次方根的性质由于n次方根包含平方根和立方根在内,而平方根和立方根有不同的性质,这使得研究n次方根的性质时,必然要把指数按奇数或偶数分别进行研究.与立方根类比:实数a的奇次方根有且只有一个,用“n a”表示,其中被开方数a是任意一个实数,根指数n是大于1的奇数.与平方根类比:正数a的偶次方根有两个,它们互为相反数,正n次根用“n a”表示,读作“n次根号a”,负n次根用“n a-”表示,其中被开方数0a>,根指数n是正偶数(当2n=时,在n a±中省略n),负数的偶次方根不存在.因为零的n次方等于零,所以零的n次方根等于零,表示为00n=方法与技能:研究n次方根,必须用分类思想把指数分为奇数和偶数来考虑,学习奇次根式时与立方根类比,学习偶次根式时与平方根类比,这种类比方法是数学思维重要方法之一.综上,无论n为奇数还是偶数,对于正数a的正n次方根都记作n a,称为正数a的n次算术根.(0的n次算术根为零)正数a的n次算术根,有下列重要性质:.nk nmk ma a=(n为大于或等于2的整数)即根指数与被开方数的指数如果有公因数则可以约去,这一公式可以顺用,即将nk mka化为.n ma反过来,也可以将n ma化为nk mka.【典型例题】【例1】求值:(1)32的五次方根(2)-32的五次方根(3)16的四次方根(4)64的六次方根(4)0.000064的六次方根(6)32243-的五次方根【分析】运用乘方运算求方根的值是常用的方法,对于正数的偶次方根有两个,它们互为相反数要充分理解,求n次方根的值必须考虑指数的奇、偶性,增强分类的意识,学会正确的语言表述是很重要的,给书写也带来简便.【解答】(1)5232=∴32的五次方根5322==(2)()5232-=-∴-32的五次方根5322=-=-教学过程(3)()4216±=∴16的四次方根6642=±=±(4)()6264±=∴64的六次方根6642=±=±(5)()60.20.000064±=∴0.000064的六次方根60.0000640.2=±=±(6)52323243⎛⎫-=-⎪⎝⎭∴32243-的五次方根53222433=-=-【例2】选择题:1.下列语句中,正确的是()(A)正数a的n次方根记作n a(B)如果n是偶数,当且仅当a是非负实数时,则n a有意义(C)零的n次方根无意义(D)任何实数都能开方2.5x-在实数范围内能开偶次方根的条件是()(A)x为任意实数(B)5x≥(C)5x≤(D)0x≤【分析】理解立方根和开立方的概念【解答】1.(B)当n是奇数时,正数a的n次方根记作“n a”, 当n是偶数时,正数a的n次方根记作“n a±”,故(A)错.当a为非负实数时,a有偶次方根,所以n a(n是偶数)有意义,故(B)对.零的n次方为零,故(C)错.负数没有偶次方根,任何实数不一定都能开方,故(D)错.2.(C)由被开方数50x-≥解得5x≤,故选(C).【例3】求适合下列等式中的x.(1)3910x-=(2)4810x=【分析】理解开n次方与n次乘方互为逆运算的关系【解答】(1)x是910-的立方根,因为3391010--=(),所以310-是910-的立方根,因此310x-= ,即教学过程0.001x=.(2)由已知可知,x是810的四次方根,由于248(10)10±=,所以210±是810的四次方根,因此210x=±,即100x=±.近似数的精确度近似数与准确数的接近程度即近似程度,近似的程度的要求叫做精确度.近似数的精确度有以下两种表达方式:一种是精确到哪一个数位.例如精确到千分位(即保留3位小数),那么准确数与近似数的误差不大于0.0005(即万分之五),这是因为近似数是经过四舍五入截取得到的.另一种是指定保留几个有效数字.对于一个近似数,从左边第一个不是零的数字起,往右到末尾数字为止的所有数字,叫做这个近似数的有效数字.如果保留五个有效数字,π的近似值为 3.1416.那么π的准确值在 3.14155与 3.14165之间,绝对误差为0.00005.如用π代表圆周率的准确值,则3.14160.00005.π-<利用无理数的近似数作计算时,中间过程中,应比最后要求精确度多保留一位数字,到最后再按四舍五入法,按最后要求取近似值.例题:1.求下列各数的平方根:2.求下列各数的算术平方根:5.解答题:6、比较两个数大小的方法很多,最常见的方法是:(1)类比法;(2)“作差”比较法.下面先学习用类比法比较两个数的大小.解:169,3723,21,0,65,36,12149,81225,1625,1632,196,36125,0,49324,289,521,49,81121,25;11-132=-+-+xxx计算:、.5323554=-+计算:、)32)(32()1(-+2)525()2(-(1)6 2.5;比较与的大小22.5 2.5 6.25==6 6.25<6 2.5∴<练习:比较下列两数的大小.思考:比较215- 和 21的大小;你是怎么比较的?用“作差”比较两数的大小,其步骤是:第一步:求差 第二步:判断值的正负 第三步:做出结论 解:练习:比较解:8、判断下列说法是否正确:(1)无限小数都是无理数; (2)无理数都是无限小数; (3)带根号的数都是无理数; (4)实数都是无理数;(5)无理数都是实数; (6)没有根号的数都是有理数. (7)一个数的立方根不一定是无理数 (8)任何实数都有唯一的立方根(9)只有正实数才有算术平方根 (10)任何数的平方根有两个,它们互为相反数 (11)两个无理数的和一定是无理数 (12)两个无理数的积一定是无理数 (13)若正数a 的一个平方根是b ,那么a 的另一个平方根是-b. (14)若a 为有理数,b 为无理数,则 ab 必为无理数 ()123,4.5()231,5.6515(2)..28-比较与的大小=--85215 =-8954224598⨯-=165818⨯-=88180-0<85215<-∴2323,55-. )( , 32 7的值求代数式部分为,小数的整数部分为记、b a b b a ++(第5题)七、课后练习 1.下列实数722,3,38,4,3π,0.1, 010010001.0-,其中无理数有( ) A.2个 B.3个 C.4个 D.5个2. 对0.000009进行开平方运算,对所得结果的绝对值再进行开平方运算……随着开方次数的增加,其运算结果( )A.越来越接近1B.越来越接近0C.越来越接近0.1D.越来越接近0.33.地球七大洲的总面积约是1494800002km ,如对这个数据保留3个有效数字可表示为( ) A .1492km B .1.5×1082km C .1.49×1082km D .1.50×1082km4、对于10.08与0.1008这两个近似数,它们的( )A .有效数字与精确位数都不相同B .有效数字与精确位数相同C .精确位数不同,有效数字相同D .有效数字不同,精确位数相同5. 右图是2002年8月在北京召开的国际数学家大会的会标,它取材于我国古代数学家赵爽的《勾股圆方图》,由四个全等的直角三角形和一个小正方形的拼成的大正方形,如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短边为a ,较长边为b ,那么(a +b )2的值是( )A .13B .19C .25D .169第6题6.如图,阴影部分是以直角三角形的三边为直径的半圆,两个小半圆的直径之比是3∶4,面积和为100,则大的半圆面积是___________.7.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形(涂上阴影).⑴在图1中,画一个三角形,使它的三边长都是有理数;图2图3图18、如图,是4个完全相同的直角三角形适当拼接后形成的图形,这些直角三角形的两直角边分别为a 、b,斜边为c 。
《实数》复习课教案

第2章实数回顾与思考一、学生起点分析本章学习至此,学生已经认识了无理数,学习了实数概念及相关运算,从而将原有有理数扩充到了实数范围,使得对数的认识更进一步深入,让学生感受到了数系扩充的必要性与作用.在前面的探究活动中,学生已经掌握了相关数学知识,并具备了一定的数学能力,掌握了类比、数形结合等数学思想方法,也具备了一定的合作学习经验,为学习本节“知识回顾与思考”奠定了基础.二、教学任务分析本章是在学习了勾股定理及有理数等知识的基础上,进行的数系第二次扩张,使学生对数的认识进一步深入.本课是对整章内容的复习与归纳,在教学过程中不必多过地追求概念,只要学生能够结合具体情境,从意义上理解主要概念即可.作为复习归纳课,学生虽对相关知识基本掌握,但是知识间的联系还不够清楚,对于一些综合性较强的题在方法上还有所欠缺,因此本节的教学中应将整章知识点进行梳理整合,并以典型题作为载体让学生从题中悟知识点,从题中悟数学思想与方法.因此,本节课的教学目标是:①复习无理数、算术平方根、平方根、立方根、实数、二次根式及相关概念,会用根号表示,并会求数的平方根、立方根并进行相关运算;②在实数的有关概念和运算律、运算法则的教学中,让学生体会类比的思想;③通过复习提高学生归纳整理的能力,并在师生互动、生生互动的过程中让学生学会倾听学会交流;本章概念较多,学生容易混淆,因此本节的重点应帮助学生理清无理数、算术平方根、平方根、立方根、实数、二次根式的概念.本章的难点体现在以下几处:①算术平方根的双重非负性有着重要的作用,常与平方、绝对值等具有非负性的知识结合在一起应用;②实数的混合运算也一向是学生计算的难点,学生往往在运算顺序、运算法则上出错;③本章对学生数形结合的能力有较高要求,如实数与几何知识勾股定理结合在一起就是学生掌握的难点.本章的知识结构框图222333(0)x a x a x a x a x ax a a x x a x a x a x a x a a a ⎧⎧⎨⎪⎪⎩⎨⎧⎪⎨⎪⎩⎩⎧=⎪⎪==±⎨⎪=⎪⎩⎧=⎪⎨==⎪⎩≥整数有理数分数实数分类正无理数无理数负无理数定义:如果一个数的平方等于,即,那么这个数叫做的平方根平方根表示:若,则算术平方根:若,则的算术平方根为定义:如果一个数的立方等于,即,那么这个数叫做的立方根立方根表示:若,则实数定义:式子叫做二次根式二次根式最简二次223333()(0)()(0,0)(0,0)a a a a a a a a a a b ab a b a a a b b b ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎨⎪⎨⎪⎪⎩⎪⎪⎧=≥⎪⎪⎪⎪=⎪⎪⎪=⎪⎪⎪⎪⎨=⎪⎪⎪⎪⋅=≥≥⎪⎪⎪⎪=≥≥⎪⎪⎩⎪⎪⎩根式:被开方数不含分母,也不含能开得尽方的因数或因式重要性质实数的性质应用三、教学过程设计本节课设计了五个教学环节:第一环节:知识回顾;第二环节:典例精析;第三环节:运用巩固;第四环节:课堂小结;第五环节:布置作业.第一环节 知识回顾知识点填空:(1) 无限不循环小数 叫做无理数.(2) 有理数和无理数 统称为实数.⎧⎧⎪⎪⎨⎪⎪⎩⎨⎧⎪⎪⎨⎪⎪⎩⎩整数有理数分数实数分类正无理数无理数负无理数. (3) 实数 和数轴上的点是一一对应的.(4)=2a a ;)0()(2≥=a a a ;a a =33)(;a a =33;)0,0(≥≥=⋅b a ab b a ;)0,0(≥≥=b a ba b a. (5)把分母中的根号化去,叫做 分母有理化 .(6)最简二次根式应满足的条件是被开方数不含分母,也不含能开得尽方的因数或因式 .(7)同类二次根式:几个二次根式化成 最简二次根式 后,如果被开方数相同,这几个二次根式就叫做同类二次根式;化简时,有同类二次根式要合并,可以约分的分式要约分.设计说明:以上7个填空题老师可带着学生共同完成,通过填空让学生清晰本章的几个重要概念,特别是(4)中的几个易混点可通过此环节帮助学生理清楚.这样也为解决下一环节中的经典例题做好知识点的扎实铺垫.第二环节 典例精析(一)实数的相关概念例1、下列各数中,哪些是有理数,哪些是无理数?23,35,3.14159265,9,π-,31-,2(5)-,3.1010010001…(相邻两个1之间0的各数逐次加1)设计说明:此题考查概念.整数和分数统称为有理数,这是有理数的判断方法.无理数是无限不循环的小数,这是无理数的判断方法.而无限不循环小数主要有以下几种:①开方开不尽的方根;②含π的数;③是无限小数且不循环.在判断时还应注意,一定要抓住概念的本质而不是根据数的形式,如此题中的9,2(5)-虽然都含有根号,但它们都是有理数.所以此题中的有理数有:3.14159265,9,2(5)-;无理数有:23,35,π-,31-,3.1010010001…(相邻两个1之间0的各数逐次加1)(二)实数的相关性质及运算例2、实数a 、b 在数轴上的位置如图所示,化简2()a b b a ++-.设计说明:此题考查算术平方根的意义,也培养学生的读图能力,体现数学中的数形结合思想方法.由数轴上a 、b 的位置可知0a b +<,0b a ->,从而根据算术平方根与绝对值的意义有:2()()2a b b a a b b a a b b a a ++-=-++-=--+-=-例3、计算:(1)14010- (2) 4821319125+- 设计说明:意在复习实数的运算法则及二次根式的化简.111019104041021010101010-=-=-=- 11113512948543916310392310333239332233-+=-+=-⋅+=-+=例4、(1)已知a 、b 满足230a b -++=,求2013()a b +的值(2)已知242423y x x =---+,求y x 的值.设计说明:运用算术平方根的双重非负性解决此题,这也是本章的难点之一.解:(1)20,30a b -≥+≥ 又230a b -++=20,30a b ∴-=+=2,3a b ∴==-201320132013()(23)(1)1a b ∴+=-=-=-(2)240,420x x -≥-≥24420x x ∴-=-=2x ∴=0033y ∴=-+=328y x ∴==(三)实数中的数形结合例5、已知△ABC 中,AB =17,AC =10,BC 边上的高AD =8,则边BC 的长为多少?设计说明:此题是关于运用实数相关知识解决三角形中线段长度的问题.其易错点是△ABC 的形状有两种情况,学生容易忽略钝角三角形的情况.通过此题意在提高学生运用分类讨论的思想解决数学问题的能力.分析:(1)当△ABC 为锐角三角形时,易求BD =15,DC =6,从而求得BC =15+6=21.(2)当△ABC 为钝角三角形时,易求BD =15,DC =6,从而求得BC =15-6=9. 第三环节 运用巩固1.下列说法错误的是( )A .4的算术平方根是2B .2是2的平方根C .-1的立方根是-1D .-3是2(3)-的平方根2.当32<<x 时,求代数式21616426x x x -++-的值.3.若12x x +-有意义,求x 的取值范围. 4.一等腰三角形的腰长与底边之比为5:6,它底边上的高为68,求这个等腰三角形的周长与面积.设计说明:通过这几道题意在巩固第二环节的学习效果,让学生自己动笔练习,并在独立完成后通过小组合作来进行交流订正.答案:1.D 2.2 3.2x > 4.817ABC C ∆=,51ABC S ∆=BC AD B C AD第四环节 课堂小结请同学们认真思考下列问题:1、通过本堂课的学习我收获了什么?2、我还有哪些没有解决的困惑?设计说明:用2分钟左后时间让学生思考这两个问题,并请学生回答,及时肯定学生的收获并加以归纳,同时发现学生的困惑及时答疑.第五环节 布置作业完成课本4951P 复习题知识技能1题、4题、10题;数学理解14题;问题解决21题.设计说明:1题是关于有理数与无理数概念的题;4题为实数的运算题;10题考查的是“实数与数轴上的点一一对应”这一知识点,巩固数形结合的思想方法;14题看似简单,其实考查了本章的众多概念,特别适合用于检验学生对基础知识的掌握情况;21题为实数的应用,在考查计算的同时也锻炼了学生作图、读图、数形结合的综合能力.四、教学设计反思1.选择性的使用例题在此教学设计中,例题数量并不少,针对不同的学生群体,老师可适当删减,做到有的放矢,但是建议概念例题保留.2.给予学生充分的表达和交流的机会老师可以在前四个环节中根据具体情况采用不同的教学方法,可以师生互动也可以生生互动,通过交流讨论让学生学会表达、学会倾听、学会归纳.其实教学活动最主要的意图就是让学生主动起来,应多给予学生交流的时间与机会.3.注意收集学生生成性的学习资源在师生的问答活动中、在学生的独立思考中、在生生之间的互动交流中都会迸发出许多我们难以预料的惊喜或困惑,也许是一些精彩的发言、也许是一个精妙的方法、也许是一个典型的错误、也许一个重要的经历、也许是一串宝贵的收获…这些在课堂中新生成的资源是学生学习过程中的宝贵财富,因此我们应鼓励学生多收集这些闪光点用以形成自己可以学习借鉴的学习资源.。
[初二数学]第十三章实数小结与复习教案
![[初二数学]第十三章实数小结与复习教案](https://img.taocdn.com/s3/m/60a1a8ed0242a8956bece4a4.png)
�1� �5 习练
小大较比及算估、5 。 是
日 3 月 3 年 2102 学中民业市原开省宁辽 。力能的题问际实决解识知用运活灵高提步一进 �时同的识知础基握掌牢牢在生学使。系联互相的间容内及用运与解 理的念概对重注�式方习复的体主为生学以了取采课节本�思反学教 演板习练生学 根方立 方立开 方开 根方平 方平开 逆互 方乘 数理有 数理无 数实
是别分值对绝的 π—�0� 3 是数倒的 5 3 � 是数反相的 2 �2� 数小限有是能可
也 数 理 无 故 , 数 理 无 是 � .D 数理无是都数的号根带 .B
数 理 无 是 数 小 环 循 不 限 无 .C 数理无是都数小限无 .A ) (是的确正法说列下�1� �3 习练
点的上面平标坐 对数实序有 点的上轴数 数实 应对一一 应对一一 �应对一一个两�3� 。用适样同数实对则法算运、序顺算运、律算运
根方平的
61
�
是根方平 的 3�
2
是 根 方 平 术 算 的 52 � 3 �
121 94
� 52� � ④
4000.0 ③
46
②
11 ①
�根方平的数各列下求 �2� . 41 ④
; 94
③ � 1 ② � 009 ①
�根方平术算的数各列下求�1� �1 习练
。0≥ a 即�数负非是身本 a 根方平术算②
6 � x3 1
② x� ①
�围范值取的 x 母字中式各列下断判、9 �值 的 b�a� a 式数代求�b 为分部数小�a 为分部数整的 3 1 知已、8
2
3 - x � + � x-1 � 求�时 3<x<1 当、7 。值的 � 2
�根方平的 x y 求� 3 � x � 2
实数的基本概念 复习课

3 无理数的个数有 ___ 个。
无限不循环小数叫做无理数 ( 强调: 无限 、 不循环.) 无理数常见的4种典型:
2 1、带根号的(指开方开不尽的数):2,
3 3+1,9
(3)、无限不循环小)
(4)、三角函数型:tan60°,sin45 °...
返回
1 4 3+ 2 、含有的数: ,,
二、实数的基本概念
一.负数:在正数前面加“—”的数; 0既不是正数,也不是负数。 1、判断: 1)a一定是正数; (× 2)-a一定是负数; (× 3)-(-a)一定大于0; ( × 4)0是正整数。 (×
) ) ) )
2、(1)如果零上5℃记作5℃,则零下2℃记作_____ (2) 如果上升10m记作10m,那么-5m表示____
已知 x a(a 0), 求x时,注意x a。 即绝对值的原数是双值性。
1、已知数轴上的A点所表示的数是2,那么在数 B 轴上到A点的距离是3的点所表示的数有() A.1个 B.2个 C.3个 D.4个 2、若x的相反数是3,∣y∣=5,则x+y的值为 -8或2 . 3、若3,m,5为三角形三边,化简: 2m-10 •绝对值的性质——要注意正确区分数的三种情 况,尤其是负数去掉绝对值应变为其相反数。
1、下列各组数中,互为相反数的是( c ) 1 2 2 A.2与 B. 1 与1 C. 1与 1 D.2与 2 2
2、若|a-3|-3+a=0,则a的取值范围是( ) c A.a≥3 B.a<3 C.a≤3 D.a>3
3、 3 的相反数是 A.-3 B. -1/3 ( A ) C. 3 D. 3 (2004广东)
要点、考点聚焦 一、实数的分类:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无理数集合
2 3 (x ) 125 0 (1). (3 y) 2 4 (2). 27 9 32 3 4 2 解: 解: 27 ( x ) 125
(3 y ) 9
2.解方程:
不 要 遗 漏
4 3 y 9
1 2 y 2 或y 3 3 3
3 2 3 125 (x ) 3 27
本章知识结 构图 开平方
算术平方根
乘 方
互为逆运算
开 方
平方根
开立方
立方根
负的平方根
有理数
实数
无理数
1.算术平方根的定义:
一般地,如果一个正数x的平方等于 a,即 x =a,那么这个正数x叫做a的 算术平方根。a的算术平方根记为 , a 读作“根号a”,a叫做被开方数。 特殊:0的算术平方根是0。
一般地,如果一个数的立方等于a,那 么这个数就叫做a的立方根,也叫做a的 三次方根.记作 3 . 其中a是被开方数,3是根指数,符号 3 ”读做“三次根号”. “
5.立方根的性质:
a
一个正数有一个正的立方根; 一个负数有一个负的立方根, 零的立方根是零。
区别
算术平方根 表示方法
你知道算术平方根、平方根、立方根联 系和区别吗?
3
2,
,
0,
4 , 9
5 , 2
2,
1 , 4
20 , 3
5, 3 8 ,
7,
0.3737737773
5 1 , , 4 2
4 , 9
(相邻两个3之间的7的个数逐次加1)
3 8,
3
2,
7,
,
2,
20 , 3
0,
5,
0.3737737773
有理数集合
实数的分类
有限小数及无限循环小数整数
有理数
实 数
分数
正整数 0 负整数 正分数 负分数
自然数
无理数
无限不循环小数
一般有三种情况
正无理数 负无理数
(1)、
2、 “
”, “
3
”开不尽的数
(3)、 类似于0.0100100010 0001
练习:
1、判断下列说法是否正确:
)
1.实数不是有理数就是无理数。 (
5、已知 5 11 的小数部分为m, 5 11 1 的小数部分为n 则m n _____ 3 3 6、计算: (1)1.44 0.16 1 8 解:原式=1.2+0.4+1-2 =0.6
,
(2) | 3 | 25 (38
解:原式=3+5-1+4 =11
0
5)
2
记作:0 0
2. 平方根的定义:
一般地,如果一个数的平方等于a ,那 么这个数就叫做a 的平方根(或二次方 根).
这就是说,如果x = a ,那么 x 就叫做 a 的平方根.a的平方根记为± a
3.平方根的性质: 正数有2个平方根,它们互为相反数; 0的平方根是0; 负数没有平方根。
2
4.立方根的定义:
a a =
2
a
0
a
3
2
a
a 0
a
a 0 a 0
(a 0)
a
3
a a
3
3
a为任何数
a a为任何数
a a为任何数
3
a =
-
3
无限不循环的小数 叫做无理数. 有理数和无理数统称实数.
实数与 数轴 上的点是一一对应的 在实数范围内,相反数、倒数、绝对值的意义 和有理数范围内的相反数、倒数、绝对值的意 义完全一样 在进行实数的运算时,有理数的运算法则及 运算性质同样适用。
平方根
立方根
3
a
≠
0
a的取值
性 质
正数 0 负数
a≥
0 没有
a a≥ 0
0 没有
a
a 是任何数
0 负数(一个)
正数(一个) 互为相反数(两个) 正数(一个)
开
方 是本身
0,1
求一个数的平方根 求一个数的立方根 的运算叫开平方 的运算叫开立方 0 0,1,-1
练习:1、—8是64 的平方根, 64的平方根是±8; 8 64 _____ -4 3 -64的立方根是_____ 9 ____
3 64
2
a
b
0
(1) a a b c a
b c
c
2
解:原式=-a-(b-a)+(c-a)-(c-b)
(2) a b c b 2c
=-a-b+a+c-a-c+b=-a
b a
2
解:原式=-(a+b-c)+(-b+2c)+(b-a) =-a-b+c-b+2c+b-a=-2a-b+3c
2 3 125 x 3 27
2 y 3 3
x 1
2 5 x 3 3
当方程中出现平方时,若有解,一般都有 两个解
当方程中出现立方时,一般都有一个解
3、计算: 3 2 2
2 3
2 3
3、若
x 2
2
___ 2 x ,则 x的取值范围是x≤2
4、已知 a、b、c 位置如图所示, 试化简
2.无限小数都是无理数。
3.无理数都是无限小数。
(
(
)
)
4.带根号的数都是无理数。
(
)
)
5.两个无理数之和一定是无理数。(
6.所有的有理数都可以在数轴上表示,反过来,中的点与有序实数对之间是 一一对应的。( √)
2.把下列各数分别填入相应的集合内:
9
2、
的平方根是
。3
64 的立方根是( 2 ),
3 的平方根是 (
3)
<0.5 3.当x ______ 时,2x-1没有平方根
X=7 4.若 x 7 7 x, 则x的值是______ ( )
3 3
5.一个正数x的两个平方根分别是a+1和a-3,则 4 a= 1 , x=
几个基本公式:(注意字母的取值范围)