高二下学期数学期末考试试卷文科)

合集下载

高二下学期期末考试数学(文)Word版含答案

高二下学期期末考试数学(文)Word版含答案

θ-高二第二学期期末考试文科数学试卷命题人:高三文科数学备课组—、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}1,0,1,2,3A =-,{}230B x x x =-≥,则AB =( )A .{}1- B .{}1,0-C .{}1,3- D .{}1,0,3-2.若复数z 满足()1i 12i z -=+,则z =( )A .52B .32C 10D .63.已知α为锐角,5cos 5α=,则tan 4απ⎛⎫-= ⎪⎝⎭( )A .13B .3C .13-D .3- 4.设命题p :1x ∀< ,21x <,命题q :00x ∃> ,0012x x >( )A .p q ∧B .()p q ⌝∧C .()p q ∧⌝D .()()p q ⌝∧⌝5.已知变量x ,y 满足202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,,,则2z x y =+的最大值为( )A .5B .4C .6D .06.如图所示,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,直角三角形中较小的锐角.若在该大正方形区域内随机地取一点,则该点落在中间小正方形内的概率是( )A .232- B .32C .D .127.下面左图是某学习小组学生数学考试成绩的茎叶图,1号到16号同学的成绩依次为A 1,A 2,…,A 16,右图是统计茎叶图中成绩在一定范围内的学生人数的算法流程图,那么该算法流程图输出的结果是( ) A .6 B .10 C .91 D .928. 已知等比数列{a n },且a 4+a 8=-2,则a 6(a 2+2a 6+a 10)的值为( )A. 4B. 6C. 8D. -99. 设曲线2()1cos ()f x m x m R =+∈上任一点(,)x y 处切线斜率为()g x ,则函数2()y x g x =的部分图象可以为( )10.将函数2sin cos 33y x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭的图象向左平移()0ϕϕ>个单位,所得图象对 应的函数恰为奇函数,则ϕ的为最小值为( )A .12πB .6πC .4πD .3π11.已知正三棱锥P-ABC 的主视图和俯视图如图所示,则此三棱锥的外接球的表面积为( )A .4π B.12πC.316πD.364π12. 已知函数2(1)(0)()2x f f f x e x x e '=⋅+⋅-,若存在实数m 使得不等式 2()2f m n n ≤-成立,则实数n 的取值范围为( )A. [)1-,1,2⎛⎤∞-⋃+∞ ⎥⎝⎦ B. (]1,1,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭C. (]1,0,2⎡⎫-∞⋃+∞⎪⎢⎣⎭D. [)1-,0,2⎛⎤∞-⋃+∞ ⎥⎝⎦二、填空题:本大题共4小题,每小题5分,共20分aEDCAP13.已知向量(1,2),(,1)a b x ==,2,2u a b v a b =+=-,且u ∥v ,则实数x 的值是___.15. 已知点P (x ,y )在直线x+2y=3上移动,当2x+4y取得最小值时,过点P 引圆16.已知12,F F 分别是椭圆22221x y a b+=(0)a b >>的左、右焦点,P 是椭圆上一点(异于左、右顶点),过点P 作12F PF ∠的角平分线交x 轴于点M ,若2122PM PF PF =⋅,则该椭圆的离心率为.三、解答题:本大题共6小 题 ,共70分.解答应写出文字说明,证明过程或演算步骤 17. (本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足(1)求角C 的大小;(2)若bsin (π﹣A )=acosB ,且,求△ABC 的面积.18.(本小题满分12分)如图,已知多面体PABCDE 的底面ABCD 是边长为2的菱形,ABCD PA 底面⊥,ED PA ,且22PA ED ==.(1)证明:平面PAC ⊥平面PCE ;(2) 若 o 60=∠ABC ,求三棱锥P ACE -的体积19.(本小题满分12分)某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料x (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01).(若75.0||>r ,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系:若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了3台光照控制仪,求商家在过去50周总利润的平均值.附:相关系数公式∑∑∑===----=ni ini ini iiy yx x y yx x r 12121)()())((,参考数据55.03.0≈,95.09.0≈.20. (本小题满分12分)已知椭圆()2222:10x y E a b a b+=>>的离心率为2,且过点⎛ ⎝⎭.(1)求E 的方程; (2)是否存在直线:l y kx m =+与E 相交于,P Q 两点,且满足:①OP 与OQ (O 为坐标原点)的斜率之和为2;②直线l 与圆221x y +=相切,若存在,求出l 的方程;若不存在,请说明理由. 21(本小题满分12分)已知函数f (x )=x 2+1,g (x )=2alnx+1(a ∈R ) (1)求函数h (x )=f (x )-g (x )的极值;(2)当a=e 时,是否存在实数k ,m ,使得不等式g (x )≤kx+m ≤f (x )恒成立?若存 在,请求实数k ,m 的值;若不存在,请说明理由.请考生在22〜23三题中任选一题做答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4-4:坐标系与参数方程 在平面直角坐标系xOy 中,已知直线l 的参数方程为1cos ,1sin x t y t αα=+⎧⎨=+⎩(t 为参数,α为倾斜角),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位,曲线C 的极坐标方程为24cos 6sin 40ρρθρθ--+=. (1)求曲线C 的普通方程和参数方程;(2)设l 与曲线C 交于A ,B 两点,求线段||AB 的取值范围. 23. (本小题满分10分)选修4-5:不等式选讲 巳知函数f(x)=|x-2|+2|x-a|(a ∈R). (1)当a=1时,解不等式f(x)>3;(2)不等式1)(≥x f 在区间(-∞,+∞)上恒成立,求实数a 的取值范围.2017-2018学年度高二第二学期期末考试文科数学试卷答案一、选择题1-5 DCABB 6-10 ABADB 11-12 DA 二、填空题13. 14.15. 16 .22三、 解答题17.解:(1)在△ABC 中,由,由余弦定理:a 2+b 2﹣c 2=2abcosC , 可得:2acsinB=2abcosC .由正弦定理:2sinCsinB=sinBcosC∵0<B <π,sinB ≠0, ∴2sinC=cosC ,即tanC=,∵0<C <π, ∴C=. (2)由bsin (π﹣A )=acosB , ∴sinBsinA=sinAcosB , ∵0<A <π,sinA ≠0, ∴sinB=cosB ,∴,根据正弦定理,可得,解得c=118.(1)证明:连接BD,交AC于点O,设PC连接OF,EF.因为O,F分别为AC,PC的中点,所以OF PA,且12OF PA=,因为DE PA,且12DE PA=,所以OF DE,且OF DE=.………………1分所以四边形OFED为平行四边形,所以OD EF,即BD EF.…………2分因为PA⊥平面ABCD,BD⊂平面ABCD,所以PA BD⊥.因为ABCD是菱形,所以BD AC⊥.因为PA AC A=,所以BD⊥平面PAC.……………4分因为BD EF,所以EF⊥平面PAC.………………5分因为FE⊂平面PCE,所以平面PAC⊥平面PCE.……6分(2)解法1:因为60ABC∠=,所以△ABC是等边三角形,所以2AC=.……7分又因为PA⊥平面ABCD,AC⊂平面ABCD,所以PA AC⊥.所以.………8分因为面PAC,所以是三棱锥的高.……9分因为EF DO BO===10分所以13P ACE E PAC PACV V S EF--∆==⨯……11分1233=⨯=.…12分解法2:因为底面ABCD为菱形,且︒=∠60ABC,所以△ACD为等边三角形.………7分取AD的中点M,连CM,则ADCM⊥,且3=CM.…8分因为⊥PA 平面ABCD ,所以CM PA ⊥,又A AD PA = ,所以CM ⊥平面PADE ,所以CM 是三棱锥C PAE -的高.……………9分 因为122PAE S PA AD ∆=⨯=.……10分 所以三棱锥ACE P -的体积13P ACE C PAE PAE V V S CM --∆==⨯…………11分1233=⨯=.………………12分 19.解:(1)由已知数据可得2456855x ++++==,3444545y ++++==. (1)分因为51()()(3)(1)000316iii x x yy =--=-⨯-++++⨯=∑,……2分,52310)1()3()(22222512=+++-+-=-∑=i ix x ……………………3分==…………………4分所以相关系数()()0.95nii xx y y r --===≈∑.………………5分因为0.75r >,所以可用线性回归模型拟合y 与x 的关系.…………6分 (2)记商家周总利润为Y 元,由条件可得在过去50周里:当X >70时,共有10周,此时只有1台光照控制仪运行, 周总利润Y =1×3000-2×1000=1000元.……………………8分 当50≤X ≤70时,共有35周,此时有2台光照控制仪运行, 周总利润Y =2×3000-1×1000=5000元.………………………9分 当X<50时,共有5周,此时3台光照控制仪都运行, 周总利润Y =3×3000=9000元.………………10分 所以过去50周周总利润的平均值10001050003590005460050Y ⨯+⨯+⨯==元,所以商家在过去50周周总利润的平均值为4600元.………12分20. 解:(1)由已知得221314c a a b=+=, 解得224,1a b ==,∴椭圆E 的方程为2214x y +=; (2)把y kx m =+代入E 的方程得:()()222148410k xkmx m +++-=,设()()1122,,,P x y Q x y ,则()2121222418,1414m kmx x x x k k--+==++,① 由已知得()()12211212211212122OF OQ kx m x kx m x y y y x y x k k x x x x x x +++++=+===, ∴()()1212210k x x m x x -++=,②把①代入②得()()2222811801414k m km k k ---=++, 即21m k +=,③又()()2221641164k m k k ∆=-+=+,由224010k k m k ⎧+>⎨=-≥⎩,得14k <-或01k <≤,由直线l 与圆221x y +=1=④③④联立得0k =(舍去)或1k =-,∴22m =, ∴直线l的方程为y x =-21.解:(1)h (x )=f (x )﹣g (x )=x 2﹣2alnx ,x >0所以 h′(x )=当a ≤0,h′(x )>0,此时h (x )在(0,+∞)上单调递增,无极值, 当a >0时,由h′(x )>0,即x 2﹣a >0,解得:a >或x <﹣,(舍去)由h′(x )<0,即x 2﹣a <0,解得:0<x <,∴h (x )在(0,)单调递减,在(,+∞)单调递增, ∴h (x )的极小值为h ()=a ﹣2aln=a ﹣alna ,无极大值;(2)当a=e 时,由(1)知min ()h x =h ()=h ()=e ﹣elne=0∴f (x )﹣g (x )≥0, 也即 f (x )≥g (x ),当且仅当x=时,取等号;以(1)e +为公共切点,f′()=g′()2e =所以y=f (x )与y=g (x )有公切线,切线方程y=2x+1﹣e ,构造函数 2()()1)(h x f x e x =--+=,显然()0h x ≥1()e f x ∴+-≤构造函数 ()1)()2ln k x e g x e x e =+--=--(0)x >()x k x x'=由()0k x '> 解得 x >()0k x '< 解得 0x <<所以()k x 在上递减,在)+∞上递增min ()0k x k ∴==,即有1)()e g x +-≥从而 ()1()g x e f x ≤+-≤,此时1k m e ==-22. 解:(Ⅰ)因为曲线C 的极坐标方程为24cos 6sin 40ρρθρθ--+=, 所以曲线C 的普通方程为224640x y x y +--+=, 即22(2)(3)9x y -+-=,所以曲线C 的参数方程为23cos 33sin x y ϕϕ=+⎧⎨=+⎩(ϕ为参数).(Ⅱ)把代入1cos 1sin x t y t αα=+⎧⎨=+⎩代入22(2)(3)9x y -+-=,并整理得22(cos 2sin )40t t αα-+-=, 设A ,B 对应的参数分别为1t ,2t , 所以122(cos 2sin )t t αα+=+,124t t =-,所以1212||||||||AB t t t t =+=-=====设4cos 5ϕ=,3sin 5ϕ=,∴||AB =,∵1sin(2)1αϕ-≤-≤,∴1610sin(2)263αϕ≤-+≤,∴4||6AB ≤≤, ∴||AB 的取值范围为[]4,6.23. 解:(Ⅰ)解得解得解得…………………3分不等式的解集为………………5分(Ⅱ);;;的最小值为;………………8分则,解得或.………………10分2017-2018学年度高二第二学期期末考试文科数学试卷答案一、选择题1-5 DCABB 6-10 ABADB 11-12 DA二、填空题13. 14.15. 16 .2 2三、解答题17.解:(1)在△ABC中,由,由余弦定理:a2+b2﹣c2=2abcosC,可得:2acsinB=2abcosC.由正弦定理:2sinCsinB=sinBcosC∵0<B<π,sinB≠0,∴2sinC=cosC,即tanC=,∵0<C<π,∴C=.(2)由bsin(π﹣A)=acosB,∴sinBsinA=sinAcosB,∵0<A<π,sinA≠0,∴sinB=cosB,∴,根据正弦定理,可得,解得c=118.(1)证明:连接BD,交AC于点O,设PC连接OF,EF.因为O,F分别为AC,PC的中点,所以OF PA,且12OF PA=,因为DE PA,且12DE PA=,所以OF DE,且OF DE=.………………1分所以四边形OFED为平行四边形,所以OD EF,即BD EF.…………2分因为PA⊥平面ABCD,BD⊂平面ABCD,所以PA BD⊥.因为ABCD是菱形,所以BD AC⊥.因为PA AC A=,所以BD⊥平面PAC.……………4分因为BD EF,所以EF⊥平面PAC.………………5分因为FE⊂平面PCE,所以平面PAC⊥平面PCE.……6分(2)解法1:因为60ABC∠=,所以△ABC是等边三角形,所以2AC=.……7分又因为PA⊥平面ABCD,AC⊂平面ABCD,所以PA AC⊥.所以.………8分因为面PAC,所以是三棱锥的高.……9分因为EF DO BO===10分所以13P ACE E PAC PACV V S EF--∆==⨯……11分123=⨯=.…12分解法2:因为底面ABCD为菱形,且︒=∠60ABC,所以△ACD为等边三角形.………7分取AD的中点M,连CM,则ADCM⊥,且3=CM.…8分因为⊥PA平面ABCD,所以CMPA⊥,又AADPA=,所以CM⊥平面PADE,所以CM是三棱锥C PAE-的高.……………9分因为122PAE S PA AD ∆=⨯=.……10分 所以三棱锥ACE P -的体积13P ACE C PAE PAE V V S CM --∆==⨯…………11分123=⨯=.………………12分 19.解:(1)由已知数据可得2456855x ++++==,3444545y ++++==. (1)分因为51()()(3)(1)000316iii x x yy =--=-⨯-++++⨯=∑,……2分,52310)1()3()(22222512=+++-+-=-∑=i ix x ……………………3分==…………………4分所以相关系数()()0.95nii xx y y r --===≈∑.………………5分因为0.75r >,所以可用线性回归模型拟合y 与x 的关系.…………6分 (2)记商家周总利润为Y 元,由条件可得在过去50周里:当X >70时,共有10周,此时只有1台光照控制仪运行, 周总利润Y =1×3000-2×1000=1000元.……………………8分 当50≤X ≤70时,共有35周,此时有2台光照控制仪运行, 周总利润Y =2×3000-1×1000=5000元.………………………9分 当X<50时,共有5周,此时3台光照控制仪都运行, 周总利润Y =3×3000=9000元.………………10分 所以过去50周周总利润的平均值10001050003590005460050Y ⨯+⨯+⨯==元,所以商家在过去50周周总利润的平均值为4600元.………12分 20. 解:(1)由已知得221314c a a b=+=,解得224,1a b ==,∴椭圆E 的方程为2214x y +=; (2)把y kx m =+代入E 的方程得:()()222148410k xkmx m +++-=,设()()1122,,,P x y Q x y ,则()2121222418,1414m kmx x x x k k--+==++,① 由已知得()()12211212211212122OF OQ kx m x kx m x y y y x y x k k x x x x x x +++++=+===, ∴()()1212210k x x m x x -++=,②把①代入②得()()2222811801414k m km k k---=++, 即21m k +=,③又()()2221641164k m k k ∆=-+=+,由224010k k m k ⎧+>⎨=-≥⎩,得14k <-或01k <≤,由直线l 与圆221x y +=1=④③④联立得0k =(舍去)或1k =-,∴22m =, ∴直线l的方程为y x =-21.解:(1)h (x )=f (x )﹣g (x )=x 2﹣2alnx ,x >0所以 h′(x )=当a ≤0,h′(x )>0,此时h (x )在(0,+∞)上单调递增,无极值, 当a >0时,由h′(x )>0,即x 2﹣a >0,解得:a >或x <﹣,(舍去)由h′(x )<0,即x 2﹣a <0,解得:0<x <,∴h (x )在(0,)单调递减,在(,+∞)单调递增, ∴h (x )的极小值为h ()=a ﹣2aln=a ﹣alna ,无极大值;(2)当a=e 时,由(1)知min ()h x =h ()=h ()=e ﹣elne=0∴f (x )﹣g (x )≥0, 也即 f (x )≥g (x ),当且仅当x=时,取等号;以(1)e +为公共切点,f′()=g′()2e =所以y=f (x )与y=g (x )有公切线,切线方程y=2x+1﹣e ,构造函数 2()()1)(h x f x e x =--+=,显然()0h x ≥1()e f x ∴+-≤构造函数 ()1)()2ln k x e g x e x e =+--=--(0)x >()x k x x'=由()0k x '> 解得 x >()0k x '< 解得 0x <<所以()k x 在上递减,在)+∞上递增min ()0k x k ∴==,即有1)()e g x +-≥从而 ()1()g x e f x ≤+-≤,此时1k m e ==-22. 解:(Ⅰ)因为曲线C 的极坐标方程为24cos 6sin 40ρρθρθ--+=, 所以曲线C 的普通方程为224640x y x y +--+=, 即22(2)(3)9x y -+-=, 所以曲线C 的参数方程为23cos 33sin x y ϕϕ=+⎧⎨=+⎩(ϕ为参数).(Ⅱ)把代入1cos 1sin x t y t αα=+⎧⎨=+⎩代入22(2)(3)9x y -+-=,并整理得22(cos 2sin )40t t αα-+-=, 设A ,B 对应的参数分别为1t ,2t ,所以122(cos 2sin )t t αα+=+,124t t =-,所以1212||||||||AB t t t t =+=-=====设4cos 5ϕ=,3sin 5ϕ=,∴||AB =,∵1sin(2)1αϕ-≤-≤,∴1610sin(2)263αϕ≤-+≤,∴4||6AB ≤≤, ∴||AB 的取值范围为[]4,6.23. 解:(Ⅰ)解得解得解得…………………3分不等式的解集为………………5分(Ⅱ);;;的最小值为;………………8分则,解得或.………………10分。

高二下学期数学期末考试试卷(文科)第11套真题

高二下学期数学期末考试试卷(文科)第11套真题

高二下学期数学期末考试试卷(文科)一、选择题1. 若复数z的共轭复数,则复数z的模长为()A . 2B . ﹣1C . 5D .2. 下列命题正确的是()A . 命题“∃x∈R,使得x2﹣1<0”的否定是:∀x∈R,均有x2﹣1<0B . 命题“若x=3,则x2﹣2x﹣3=0”的否命题是:若x≠3,则x2﹣2x﹣3≠0C .“ ”是“ ”的必要而不充分条件D . 命题“cosx=cosy,则x=y”的逆否命题是真命题3. 下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,均值与方差都不变;②设有一个回归方程,变量x增加一个单位时,y平均增加3个单位;③线性回归方程必经过点;④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说现有100人吸烟,那么其中有99人患肺病.其中错误的个数是()A . 0B . 1C . 2D . 34. 抛物线的准线方程是()A .B .C . y=2D . y=﹣25. 用反证法证明命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”则假设的内容是()A . a,b都能被5整除B . a,b都不能被5整除C . a,b不能被5整除D . a,b 有1个不能被5整除6. 过双曲线﹣=1的一个焦点F作一条渐近线的垂线,若垂足是恰在线段OF(O为坐标原点)的垂直平分线上,则双曲线的离心率为()A . 2B .C .D .7. 当复数为纯虚数时,则实数m的值为()A . m=2B . m=﹣3C . m=2或m=﹣3D . m=1或m=﹣38. 关于函数极值的判断,正确的是()A . x=1时,y极大值=0B . x=e时,y极大值=C . x=e时,y极小值=D . 时,y极大值=9. 双曲线(mn≠0)离心率为,其中一个焦点与抛物线y2=12x的焦点重合,则mn的值为()A .B .C . 18D . 2710. 如图,AB∩α=B,直线AB与平面α所成的角为75°,点A是直线AB上一定点,动直线AP与平面α交于点P,且满足∠PAB=45°,则点P在平面α内的轨迹是()A . 双曲线的一支B . 抛物线的一部分C . 圆D . 椭圆11. 设矩形ABCD,以A、B为左右焦点,并且过C、D两点的椭圆和双曲线的离心率之积为()A .B . 2C . 1D . 条件不够,不能确定12. 已知函数f(x)=x3+bx2+cx+d的图象如图,则函数的单调递减区间是()A . (﹣∞,﹣2)B . (﹣∞,1)C . (﹣2,4)D . (1,+∞)二、填空题13. 函数y=x3+x的递增区间是________.14. 已知x,y取值如表,画散点图分析可知y与x线性相关,且求得回归方程为,则m的值为________.x1356y12m3﹣m3.89.215. 若;q:x=﹣3,则命题p是命题q的________条件(填“充分而不必要、必要而不充分、充要、既不充分也不必要”).16. 设椭圆的两个焦点F1,F2都在x轴上,P是第一象限内该椭圆上的一点,且,则正数m的值为________.三、解答题17. 解答下面两个问题:(Ⅰ)已知复数,其共轭复数为,求;(Ⅱ)复数z1=2a+1+(1+a2)i,z2=1﹣a+(3﹣a)i,a∈R,若是实数,求a的值.18. 随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大.某电信运营商推出一款新的“流量包”套餐.为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户,按年龄分组进行访谈,统计结果如表.组号年龄访谈人数愿意使用1[18,28)442[28,38)993[38,48)16154[48,58)15125[58,68)62(Ⅰ)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取12人,则各组应分别抽取多少人?(Ⅱ)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.(Ⅲ)按以上统计数据填写下面2×2列联表,并判断以48岁为分界点,能否在犯错误不超过1%的前提下认为,是否愿意选择此款“流量包”套餐与人的年龄有关?年龄不低于48岁的人数年龄低于48岁的人数合计愿意使用的人数不愿意使用的人数合计参考公式:,其中:n=a+b+c+d.P(k2≥k0)0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.82819. 解答题(Ⅰ)某科考试中,从甲、乙两个班级各抽取10名同学的成绩进行统计分析,两班成绩的茎叶图如图所示,成绩不小于90分为及格.设甲、乙两个班所抽取的10名同学成绩方差分别为、,比较、的大小(直接写结果,不必写过程);(Ⅱ)设集合,B={x|m+x2≤1,m<1},命题p:x∈A;命题q:x∈B,若p是q的必要条件,求实数m的取值范围.20. 解答题(Ⅰ)求下列各函数的导数:(i);(ii);21. 设点O为坐标原点,椭圆的右顶点为A,上顶点为B,过点O且斜率为的直线与直线AB相交M,且.(Ⅰ)求证:a=2b;(Ⅱ)PQ是圆C:(x﹣2)2+(y﹣1)2=5的一条直径,若椭圆E经过P,Q两点,求椭圆E的方程.22. 已知函数,.(Ⅰ)当a=2时,求f(x)在x∈[1,e2]时的最值(参考数据:e2≈7.4);(Ⅱ)若∀x∈(0,+∞),有f(x)+g(x)≤0恒成立,求实数a的值.。

高二文科数学第二学期期末考试试题及答案

高二文科数学第二学期期末考试试题及答案

答案一、选择题1-5 DABCB 6-10 DADDC 11-12 BC二、填空题13.丁 14.充分15.(n +1)(n +2) …(n +n)=2n ×1×3×…×(2n -1) 16.2ΔABC ΔBOC ΔBDC S =S S ⋅ 三、解答题17.证明:由(1tan )(1tan )2A B ++= 可得tan tan 21tan 4tan 1tan()1tan 1tan 41tan tan 4A A B A A A A π--π=-===-π+++…………………5分()4B A k k π=-+π∈Z 即()4A B k k π+=+π∈Z因为A,B 都是钝角,即2A B π<+<π, 所以54A B π+=.…………………………10分 18………………6分 (Ⅱ)222()80(4241636)9.6()()()()40402060n ad bc K a b c d a c b d -⨯⨯-⨯===++++⨯⨯⨯由2(7.879)0.005P K ≥≈,所以有99.5%的把握认为“成绩与班级有关系”. …………………12分19.解:(Ⅰ)…………………2分(Ⅱ)()12456855x =++++=,()13040605070505y =++++=,…………4分213805550 6.514555b -⨯⨯==-⨯,50 6.5517.5a y bx =-=-⨯=,…………………8分 ∴回归直线方程为 6.517.5y x =+.…………………10分(Ⅲ)当10x =时,预报y 的值为10 6.517.582.5y =⨯+=.…………………12分20.(1)几何证明选讲解析:(Ⅰ)证明:连接BE ,则△ABE 为直角三角形,因为∠ABE =∠ADC =90,∠AEB =∠ACB ,所以△ABE ∽△ADC ,则=,即ABAC =ADAE.又AB =BC ,所以ACBC =ADAE. …………………6分(Ⅱ)因为FC 是⊙O 的切线,所以FC 2=AFBF.又AF =4,CF =6,则BF =9,AB =BF -AF =5.因为∠ACF =∠CBF ,又∠CFB =∠AFC ,所以△AFC ∽△CFB ,则=,即AC ==.…………………12分20.(2)坐标系与参数方程解析:(Ⅰ)直线参数方程可以化为根据直线参数方程的意义,这是一条经过点,倾斜角为60的直线.…………………6分 (Ⅱ)直线l 的直角坐标方程为y =x +,即x -y +=0,极坐标方程ρ=2cos 的直角坐标方程为2+2=1,所以圆心到直线l 的距离d ==,所以|AB |=2=.…………………12分20.(3)不等式选讲解:(Ⅰ)由()3f x ≤得,||3x a ≤-,解得33a x a ≤≤-+.又已知不等式()3f x ≤的解集为{|15}x x ≤≤-,所以31,35,a a -=-⎧⎨+=⎩解得2a =.…………………6分(Ⅱ)当2a =时,()|2|f x x =-,设()()(5)g x f x f x =++,于是()21,3,|2||3|5,32,21,2,x x g x x x x x x --<-⎧⎪-≤≤⎨⎪+>⎩=-++=所以当3x <-时,()5g x >;当32x ≤≤-时,()5g x =;当2x >时,()5g x >.综上可得,()g x 的最小值为5.从而若()(5)f x f x m ≥++,即()g x m ≥对一切实数x 恒成立,则m 的取值范围为(-∞,5].…………………12分21.(1)几何证明选讲解析:(Ⅰ)证明:由已知条件,可得∠BAE =∠CAD.因为∠AEB 与∠ACB 是同弧上的圆周角,所以∠AEB =∠ACD.故△ABE ∽△ADC. …………………6分(Ⅱ)因为△ABE ∽△ADC ,所以=,即ABAC =ADAE.又S =ABACsin ∠BAC ,且S =ADAE ,故ABACsin ∠BAC =ADAE.则sin ∠BAC =1,又∠BAC 为三角形内角,所以∠BAC =90. …………………12分21.(2)坐标系与参数方程(Ⅰ)2sin ρθ=可得22sin ρρθ=,即222x y y += 所以曲线C 的直角坐标方程为222x y y +=.…………………6分 (Ⅱ)直线l 的普通方程为4(2)3y x =--,令0y =可得2x =,即(2,0)M ,又曲线C 为圆,圆C 的圆心坐标为(0,1),半径1r =,则MC =1MN MC r ∴≤+=+.…………………12分21.(3)不等式选讲解 (Ⅰ)由|21|1x <-得1211x <<--,解得01x <<. 所以{}M |01x x <<=.…………………6分(Ⅱ)由(Ⅰ)和M a b ∈,可知01a <<,01b <<.所以(1)()(1)(1)0ab a b a b >+-+=--. 故1ab a b >++.…………………12分22.(1)几何证明选讲解析:(Ⅰ)延长BE 交圆E 于点M ,连接CM ,则∠BCM =90,又BM =2BE =4,∠EBC =30,∴ BC =2,又∵ AB =AC ,∴ AB =BC =.由切割线定理知AF 2=ABAC =3=9.∴ AF =3. …………………6分(Ⅱ)证明:过点E 作EH ⊥BC 于点H ,则△EDH 与△ADF 相似,从而有==,因此AD =3ED . …………………12分22.(2)坐标系与参数方程(I )由2cos 2sin x y ϕϕ=⎧⎨=⎩可得224x y +=,由4sin()3πρθ=+得24(sin cos cos sin )33ππρρθθ=+,即222x y y +=+,整理得22((1)4x y +-=.…………………6分 (II )圆1C 表示圆心在原点,半径为2的圆,圆2C表示圆心为,半径为2的圆, 又圆2C的圆心在圆1C 上,由几何性质可知,两圆相交.…………………12分22.(3)不等式选讲解:(I )当2a =时,|2||4|4x x -+-≥,当2x ≤时,得264x -+≥,解得1x ≤;当24x <<时,得24≥,无解;当4x ≥时,得264x -≥,解得5x ≥;故不等式的解集为{| 15}x x x ≤≥或.…………………6分(II )2||x a a -≤可解得22{|}x a a x a a -≤≤+, 因为22{|}{|26}x a a x a a x x -≤≤+⊆-≤≤, 所以2226a a a a ⎧-≤-⎪⎨+≤⎪⎩解得1232a a -≤≤⎧⎨-≤≤⎩即12a -≤≤,又因为1a >,所以12a <≤.…………………12分。

高二文科数学第二学期期末考试试题及答案

高二文科数学第二学期期末考试试题及答案

复习试卷答案一、选择题1-5 6-10 11-12二、填空题13.丁 14.充分15.(n +1)(n +2) …(n +n)=2n ×1×3×…×(2n -1)16.2ΔABC ΔBOC ΔBDC S =S S ⋅三、解答题17.证明:由(1tan )(1tan )2A B ++= 可得tantan 21tan 4tan 1tan()1tan 1tan 41tan tan 4A A B A A A A π--π=-===-π+++…………………5分 ()4B A k k π=-+π∈Z 即()4A B k k π+=+π∈Z因为都是钝角,即2A B π<+<π, 所以54A B π+=.…………………………10分 18.解:(Ⅰ)22列联表如下:………………6分(Ⅱ)222()80(4241636)9.6()()()()40402060n ad bc K a b c d a c b d -⨯⨯-⨯===++++⨯⨯⨯ 由2(7.879)0.005P K ≥≈,所以有99.5%的把握认为“成绩与班级有关系”. …………………12分19.解:(Ⅰ)…………………2分(Ⅱ)()12456855x =++++=,()13040605070505y =++++=,…………4分213805550 6.514555b -⨯⨯==-⨯,50 6.5517.5a y bx =-=-⨯=,…………………8分 ∴回归直线方程为 6.517.5y x =+.…………………10分(Ⅲ)当10x =时,预报y 的值为10 6.517.582.5y =⨯+=.…………………12分20.(1)几何证明选讲解析:(Ⅰ)证明:连接,则△为直角三角形,因为∠=∠=90,∠=∠,所以△∽△,则=,即=.又=,所以=. …………………6分(Ⅱ)因为是⊙O 的切线,所以2=.又=4,=6,则=9,=-=5.因为∠=∠,又∠=∠,所以△∽△,则=,即==.…………………12分20.(2)坐标系与参数方程解析:(Ⅰ)直线参数方程可以化为根据直线参数方程的意义,这是一条经过点,倾斜角为60的直线.…………………6分(Ⅱ)直线l 的直角坐标方程为y =x +,即x -y +=0,极坐标方程ρ=2的直角坐标方程为2+2=1,所以圆心到直线l 的距离d ==,所以=2=.…………………12分20.(3)不等式选讲解:(Ⅰ)由()3f x ≤得,||3x a ≤-,解得33a x a ≤≤-+.又已知不等式()3f x ≤的解集为{|15}x x ≤≤-,所以31,35,a a -=-⎧⎨+=⎩解得2a =.…………………6分(Ⅱ)当2a =时,()|2|f x x =-,设()()(5)g x f x f x =++,于是()21,3,|2||3|5,32,21,2,x x g x x x x x x --<-⎧⎪-≤≤⎨⎪+>⎩=-++=所以当3x <-时,()5g x >;当32x ≤≤-时,()5g x =;当2x >时,()5g x >. 综上可得,()g x 的最小值为5.从而若()(5)f x f x m ≥++,即()g x m ≥对一切实数x 恒成立,则m 的取值范围为(-∞,5].…………………12分21.(1)几何证明选讲解析:(Ⅰ)证明:由已知条件,可得∠=∠.因为∠与∠是同弧上的圆周角,所以∠=∠.故△∽△. …………………6分(Ⅱ)因为△∽△,所以=,即=.又S = ∠,且S =,故 ∠=.则 ∠=1,又∠为三角形内角,所以∠=90. …………………12分21.(2)坐标系与参数方程(Ⅰ)2sin ρθ=可得22sin ρρθ=,即222x y y +=所以曲线C 的直角坐标方程为222x y y +=.…………………6分 (Ⅱ)直线l 的普通方程为4(2)3y x =--, 令0y =可得2x =,即(2,0)M ,又曲线C 为圆,圆C 的圆心坐标为(0,1), 半径1r =,则5MC =.51MN MC r ∴≤+=+.…………………12分21.(3)不等式选讲解 (Ⅰ)由|21|1x <-得1211x <<--,解得01x <<. 所以{}M |01x x <<=.…………………6分 (Ⅱ)由(Ⅰ)和M a b ∈,可知01a <<,01b <<. 所以(1)()(1)(1)0ab a b a b >+-+=--.故1ab a b >++.…………………12分22.(1)几何证明选讲解析:(Ⅰ)延长交圆E 于点M ,连接,则∠=90,又=2=4,∠=30,∴ =2,又∵ =,∴ ==.由切割线定理知2==3=9.∴ =3. …………………6分(Ⅱ)证明:过点E 作⊥于点H ,则△与△相似, 从而有==,因此=3. …………………12分22.(2)坐标系与参数方程(I )由2cos 2sin x y ϕϕ=⎧⎨=⎩可得224x y +=, 由4sin()3πρθ=+得24(sin cos cos sin )33ππρρθθ=+, 即22223x y y x +=+,整理得22(3)(1)4x y -+-=.…………………6分 ()圆1C 表示圆心在原点,半径为2的圆,圆2C 表示圆心为(3,1),半径为2的圆, 又圆2C 的圆心(3,1)在圆1C 上,由几何性质可知,两圆相交.…………………12分22.(3)不等式选讲解:(I )当2a =时,|2||4|4x x -+-≥,当2x ≤时,得264x -+≥,解得1x ≤;高二文科数学第二学期期末考试试题与答案11 / 11 当24x <<时,得24≥,无解;当4x ≥时,得264x -≥,解得5x ≥;故不等式的解集为{| 15}x x x ≤≥或.…………………6分()2||x a a -≤可解得22{|}x a a x a a -≤≤+, 因为22{|}{|26}x a a x a a x x -≤≤+⊆-≤≤, 所以2226a a a a ⎧-≤-⎪⎨+≤⎪⎩解得1232a a -≤≤⎧⎨-≤≤⎩即12a -≤≤,又因为1a >,所以12a <≤.…………………12分。

高二下学期期末考试数学(文)试卷 Word版含答案

高二下学期期末考试数学(文)试卷 Word版含答案

高二数学试题(文科)试卷说明:(1)命题范围:人教版选修1-2,必修1 (2)试卷共两卷(3)时间:120分钟 总分:150分第Ⅰ卷一.选择题:本大题共12小题,每小题5分,共60分.在每小题的四个选项中,只有一项是符合题目要求的.1.如果{}5,4,3,2,1=S ,{}3,2,1=M ,{}5,3,2=N ,那么()()N C M C S S 等于( ). A.φ B.{}3,1 C.{}4 D.{}5,2 2.下列函数中,是奇函数,又在定义域内为减函数的是( ).A.xy ⎪⎭⎫⎝⎛=21 B.x y 1= C.)(log 3x y -= D.3x y -=3. 若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则A .a=2,b=2B .a = 2 ,b=2C .a=2,b=1D .a= 2 ,b= 2 4. 对于10<<a ,给出下列四个不等式 ①)11(log )1(log aa a a +<+ ②)11(log )1(log aa a a +>+ ③aaaa111++<④aaaa111++>其中成立的是A .①与③B .①与④C .②与③D .②与④5、若函数的图象经过第二且)10(1)(≠>-+=a a b a x f x、三、四象限,则一定有 A .010><<b a 且 B .01>>b a 且C .010<<<b a 且D .01<>b a 且6、已知函数=-=+-=)(,21)(,11lg )(a f a f x x x f 则若A .21 B .-21 C .2D .-27.若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a=A.42 B.22 C.41 D.218、函数1(1)y x =≥的反函数是A .)1(222<+-=x x x y B .)1(222≥+-=x x x yC .)1(22<-=x x x yD .)1(22≥-=x x x y9.在映射:f A B →中,(){},|,A B x y x y R ==∈,且()():,,f x y x y x y →-+,则与A 中的元素()1,2-对应的B 中的元素为()A .()3.1-B .()1,3C .()1,3--D .()3,110.设复数2121),(2,1z z R b bi z i z 若∈+=+=为实数,则b = ( )A.2B.1C.-1D.-211.函数34x y =的图象是( )A .B .C .D .12、在复平面内,复数1i i++(1+3i )2对应的点位于 ( ) A. 第一象限 B. 第二象限 C. 第三象限 D.第四象限第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题纸中对应横线上. 13.已知复数122,13z i z i =-=-,则复数215z i z + =14.lg25+32lg8+lg5·lg20+lg 22= 15.若关于x 的方程04)73(32=+-+x t tx 的两实根21,x x ,满足21021<<<<x x ,则实数t 的取值范围是16.函数2()ln()f x x x =-的单调递增区间为三、解答题:本大题共6小题,共74分.前五题各12分,最后一题14分. 17.(本小题12分)计算 ()20251002i 1i 1i 1i i 21⎪⎭⎫⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-++18.(本小题12分) 在数列{a n }中,)(22,111++∈+==N n a a a a nnn ,试猜想这个数列的通项公式。

高二下学期数学期末试卷及答案(文科)

高二下学期数学期末试卷及答案(文科)

下期高中二年级教学质量监测数学试卷(文科)(考试时间120分 满分150分)第Ⅰ卷 选择题(满分60分)一、选择题:本大题共12小题;每小题5分;满分60分;每小题只有一个选项符合题目要求;请将正确答案填在答题栏内。

1. 设集合M ={长方体};N ={正方体};则M ∩N =:A .MB .NC .∅D .以上都不是 2. “sinx =siny ”是“x =y ”的:A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 3. 下列函数是偶函数的是:A .)0()(2≥=x x x fB . )2cos()(π-=x x f C . x e x f =)(D . ||lg )(x x f =4. 从单词“equation ”中选取5个不同的字母排成一排;含有“qu ”(其中“qu ”相连且顺序不变)的不同排法共有()个: A .480 B . 840 C . 120 D . 7205. 72)12(xx +的展开式中倒数第三项的系数是:A .267CB . 6672CC . 2572CD . 5572C 6. 直线a ⊥平面α;直线b ∥平面α;则直线a 、b 的关系是:A .可能平行B . 一定垂直C . 一定异面D . 相交时才垂直7. 已知54cos ),0,2(=-∈x x π;则=x 2tan : A .274B . 274-C .724 D . 724-8. 抛物线的顶点在原点;焦点与椭圆14822=+x y 的一个焦点重合;则抛物线方程是:A .y x 82±=B . x y 82±=C . y x 42±=D . x y 42±=9. 公差不为0的等差数列}{n a 中;632,,a a a 成等比数列;则该等比数列的公比q 等于: A . 4 B . 3 C . 2 D . 110. 正四面体的内切球(与正四面体的四个面都相切的球)与外接球(过正四面体四个顶点的球)的体积比为: A .1:3 B . 1:9 C . 1:27 D . 与正四面体的棱长无关11. 从1;2;3;…;9这九个数中;随机抽取3个不同的数;这3个数的和为偶数的概率是:A .95 B . 94 C . 2111 D . 2110 12. 如图:四边形BECF 、AFED 都是矩形;且平面AFED ⊥平面BCDEF ;∠ACF =α;∠ABF =β;∠BAC =θ;则下列式子中正确的是: A .θβαcos cos cos •= B .θβαcos sin sin •=C .θαβcos cos cos •=D .θαβcos sin sin •=。

高二下期期末考试文科数学

高二下期期末考试文科数学

高二学年下学期期末考试数学(文)试题试题说明:1、本试题满分 150分,答题时间 120分钟。

2、请将答案填写在答题卡上,考试结束后只交答题卡。

第Ⅰ卷 选择题部分(共60分)一、选择题(每小题只有一个选项正确,每小题5分,共60分)1.已知集合{}52≤∈=x N x P ,{}1ln ->∈=x R x Q ,则Q P 的真子集个数为 ( )A 2B 3C 4D 72.在ABC ∆中,“B A >”是“B A sin sin >”的 ( )A 充分不必要条件B 必要不充分条件C 充要条件D 非充分也非必要条件 3.已知命题p :()1-=xx f 在其定义域内是减函数;命题q :()x x g tan =的图象关于2π=x 对称。

则下列命题中真命题是( )A q p ∨B q p ∧C ()q p ∧⌝D ()q p ∨⌝4.设方程022=-+x x的根为1x ,方程021log 2=+-x x的根为2x ,则1x +2x = ( )A 1B 2C 3D 45.设23ln =a ,()523ln =b ,075sin =c 则( )A c b a <<B c a b <<C b c a <<D b a c << 6.已知函数()()⎩⎨⎧≥<-=-0,20,1log 122x x x x f x ,则()()()()=+-03f f f f ( )A 7B 3ln 7+C 8D 97.欲得到函数()x x f 2sin 2=的图象,只需将函数()⎪⎭⎫⎝⎛-=42cos 2πx x g 的图象 ( ) A 向右平移8π个单位 B 向右平移4π个单位 C 向左平移8π个单位 D 向左平移4π个单位8.函数()xx xx x f cos sin 2++=在[]ππ,-的图象大致是( )9. 命题“R x ∈∃0,使02≤x ”的否定是( )A 不存在R x ∈0,02>x B 存在R x ∈0,020≥xC R x ∈∀,02≤xD R x ∈∀,02>x10.设b a ,为正数,且bab a2log 142=+--- ,则( )A b a 2<B b a 2>C b a 2=D 12=+b a11.定义在R 上的函数()x f y =是奇函数,()x f y -=2为偶函数,若()11=f ,则()()()=++202120202019f f f ( )A 2-B 0C 2D 312. 函数()x f 是定义在R 上的函数,其导函数记为()x f ',()()b a x f x g +-=的图象关于()b a P ,对称,当0>x 时,()()x x f x f <'恒成立,若()02=f ,则不等式()01>-x x f 的解集为( )A ()()2,10,2 -B ()()2,10,2 -C ()()2,2,1-∞-D ()()+∞-,20,2第II 卷 非选择题部分(共90分)二、填空题(每小题5分,共20分)13.若函数()a ax x x x f ++-=2331在()1,0上不单调,则实数a 的取值范围是______. 14.已知钝角ABC ∆的三边都是正整数,且成等差,公差为偶数,则满足条件的ABC ∆的外接圆的面积的最小值为______.15.设0>a ,()ax x f 22=,()23-=x e x g (e 是自然对数的底),若对⎥⎦⎤⎢⎣⎡∈∀2,211x ,⎥⎦⎤⎢⎣⎡∈∃2,212x ,使得()()()()2121x g x g x f x f =成立,则正数=a ______.16.关于函数xx x f sin 1sin )(+=有如下四个命题: ①)(x f 的图像关于y 轴对称;②)(x f 的图像关于原点对称; ③)(x f 在)2,0(π上单调递减;④)(x f 的最小值为2;⑤)(x f 的最小正周期为π.其中所有真命题的序号是__________.三、解答题(共70分)17.(本题满分10分)已知()x x x f 2sin -=,(1)求()x f y =在0=x 处的切线方程;(2)求()x f y =在⎥⎦⎤⎢⎣⎡2,0π上的最值.18.(本题满分12分)已知βα,为锐角,34tan =α,()55cos -=+βα,(1)求αα2sin 2cos +的值; (2)求()αβ-tan 的值.19.(本题满分12分)已知()()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-=4cos 4cos 22sin sin 2ππππx x x x x f(1)求()x f 的最小正周期;(2)若()()a x f x g -=(a 为常数)在⎥⎦⎤⎢⎣⎡2,0π上有两个不同的零点1x 和2x ,求1x +2x .20.(本题满分12分)ABC ∆的三个内角C B A ,,所对的边分别为c b a ,,,三个内角C B A ,,满足1sin sin sin sin sin sin sin 2=-+C B AB C C B , (1)求A ;(2)若2=a ,ABC ∆的内角平分线935=AE ,求ABC ∆的周长.21. (本题满分12分)已知椭圆C :()012222>>=+b a b y a x 的离心率为22,且经过点()2,2.(1)求椭圆C 的方程;(2)不过坐标原点也不平行于坐标轴的直线l 与椭圆C 交于A 、B 两点,设线段AB 的中点为M ,求证:直线OM 的斜率与直线l 的斜率之积为定值.22.(本题满分12分)已知函数1()e ln ln x f x a x a -=-+(e 是自然对数的底). (1)当1=a 时,求函数)(x f y =的单调区间;(2)若1)(≥x f 在),0(+∞上恒成立,求正数a 的取值范围.高二学年下学期期末考试数学(文)试题答案一、1-5 :BCDBC 6-10:DAADC 11-12:BA二、填空题(每小题5分,共20分。

高二文科数学下学期期末考试卷

高二文科数学下学期期末考试卷

高二文科数学下学期期末考试卷Prepared on 22 November 2020第二学期高二期末联考数学(文科)测试卷(本试卷满分:150分 完卷时间:120分钟)第I 卷(选择题 共50分)一、选择题1、函数12y x =-的定义域为集合A ,函数()ln 21y x =+的定义域为集合B ,则A .11,22⎛⎤- ⎥⎝⎦B .11,22⎛⎫- ⎪⎝⎭C .1,2⎛⎫-∞- ⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭2、已知向量()1,2a =,(),4x b =,若2=b a ,则x 的值为( )A .2B .4C .2±D .4± 3、已知i 为虚数单位, 若复数11z =-i ,22z =+i ,则12z z =( )A .3-i B. 22-i C. 1+i D .22+i4、已知椭圆()222109x y a a+=>与双曲线22143x y -=有相同的焦点, 则a 的值为( )A .2 B. 10 C. 4 D .105.按照程序框图(如右图)执行,第3个输出的数是( ) A .7 B .6C .5D .46.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( )A. 2B. 1+2C. 221+D. 1+227、某所学校计划招聘男教师x 名,女教师y 名, x 和y 须满足约束条件25,2,6.x y x y x -≥⎧⎪-≤⎨⎪<⎩则该校招聘的教师人数最多是( )A .6B .8C .10D .128、已知ABC ∆的面积2224a b c S +-=,则角C 的大小为( )A. 030 B .045 C. 060 D. 0759.如图是某电视台综艺节目举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( ) A . 84,B . 84,C . 85,4D . 85,10.已知,)(为偶函数x f x x f x x f x f 2)(,02),2()2(=≤≤--=+时当, 若*,(),n n N a f n ∈=则2011a =( )A .1B .21 C .14 D .18第II 卷(非选择题 共100分)二、填空题:(本大题共5小题,每小题5分,共25分,把答案填在答题的相应位置) 11、已知x 与y 之间的一组数据:x 0 1 2 3 y1357则 12.已知向量a 和b 的夹角为60°,| a | = 3,| b | = 4,则(2a – b )•a 等于________ 13. 已知,x y R +∈,且41x y +=,则x y ⋅的最大值为_____ 14. 函数()ln (0)f x x x x =>的单调递增区间是____ 15.对于函数()2(sin cos )f x x x =+, 给出下列四个命题:① 存在(,0)2πα∈-, 使()f α=;② 存在)2,0(πα∈, 使()()f x f x αα-=+恒成立;③ 存在R ϕ∈, 使函数)(ϕ+x f 的图象关于坐标原点成中心对称; ④ 函数f (x )的图象关于直线34x π=-对称; ⑤ 函数f (x )的图象向左平移4π就能得到2cos y x =-的图象 其中正确命题的序号是 .三.解答题16.(本小题满分12分)有两个不透明的箱子,每个箱子都装有4个完全相同的小球,球上分别标有数字1、2、3、4.(Ⅰ)甲从其中一个箱子中摸出一个球,乙从另一个箱子摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),求甲获胜的概率;(Ⅱ)摸球方法与(Ⅰ)同,若规定:两人摸到的球上所标数字相同甲获胜,所标数字不相同则乙获胜,这样规定公平吗请说明理由。

高二数学(文科)第二学期期末考试试题(含参考答案)

高二数学(文科)第二学期期末考试试题(含参考答案)

A.

B.

C.

D.

【答案】 C 【解析】设 A(x 1,y1),B(x 2,y2), 又 F(1,0), 则 =(1-x 1,-y1), =(x 2-1,y 2), 由题意知 =3 ,
因此

又由 A 、B 均在抛物线上知
解得
直线 l 的斜率为
=± ,
因此直线 l 的方程为 y= (x-1) 或 y=- (x-1). 故选 C.
【答案】 D
【解析】因为特称命题的否定是全称命题,
为奇函数 不为偶函数
所以 , 命题 p: ? a∈R,f(x) 为偶函数 , 则¬ p 为: ? a∈R,f(x) 不为偶函数
故选: D
7. 某种产品的广告费支出与校舍(单位元)之间有下表关系(

2
4
5
6
) 8
30
40
60
50
70
与 的线性回归方程为
2016-2017 学年第二学期期末检测
高二数学(文科)试题
第Ⅰ卷(共 60 分) 一、选择题:本大题共 12 个小题 , 每小题 5 分, 共 60 分 . 在每小题给出的四个选项中,只有一 项是符合题目要求的 .
1. 若复数
,则
()
A.
B.
C.
D.
【答案】 C
【解析】由题意得,
,故选 C.
2. 点 极坐标为
区分

.
5. 已知双曲线
的离心率为 2,则双曲线 的渐近线的方程为(

A.
B.
C.
D.
【答案】 B
【解析】根据题意 , 双曲线的方程为:

高二下学期期末(文科)数学试卷 (解析版)

高二下学期期末(文科)数学试卷 (解析版)

高二第二学期期末数学试卷(文科)一、选择题(共12小题).1.已知复数z满足iz=1﹣i(i是虚数单位),则z=()A.﹣1﹣i B.1﹣i C.﹣1+i D.1+i2.根据如下样本数据,得到回归方程=bx+a,则()x345678y 4.0 2.5﹣0.50.5﹣2.0﹣3.0 A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0 3.已知复数z=(i是虚数单位),则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限4.已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.45.执行如图所示的程序框图,若输出S的值为0.99,则判断框内可填入的条件是()A.i<100B.i≤100C.i<99D.i≤986.甲、乙、丙三人中,一人是工人,一人是农民,一人是知识分子.已知:丙的年龄比知识分子大;甲的年龄和农民不同;农民的年龄比乙小.根据以上情况,下列判断正确的是()A.甲是工人,乙是知识分子,丙是农民B.甲是知识分子,乙是农民,丙是工人C.甲是知识分子,乙是工人,丙是农民D.甲是知识分子,乙是农民,丙是工人7.为了判定两个分类变量X和Y是否有关系,应用k2独立性检验法算得k2的观测值为5,又已知P(k2≥3.841)=0.05,P(k2≥6.635)=0.01,则下列说法正确的是()A.有99%以上的把握认为“X和Y有关系”B.有99%以上的把握认为“X和Y没有关系”C.有95%以上的把握认为“X和Y有关系”D.有95%以上的把握认为“X和Y没有关系”8.某工厂某产品产量x(千件)与单位成本y(元)满足回归直线方程=77.36﹣1.82x,则以下说法中正确的是()A.产量每增加1000件,单位成本约下降1.82元B.产量每减少1000件,单位成本约下降1.82元C.当产量为1千件时,单位成本为75.54元D.当产量为2千件时,单位成本为73.72元9.已知i为虚数单位,复数z=,则以下命题为真命题的是()A.z的共轭复数为B.z的虚部为C.|z|=3D.z在复平面内对应的点在第一象限10.为了规定工时定额,需要确定加工某种零件所需的时间,为此进行了5次试验,得到5组数据:(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5),由最小二乘法求得回归直线方程为.若已知x1+x2+x3+x4+x5=250,则y1+y2+y3+y4+y5=()A.75B.155.4C.375D.44211.幻方,是中国古代一种填数游戏.n(n∈N*,n≥3)阶幻方是指将连续n2个正整数排成的正方形数阵,使之同一行、同一列和同一对角线上的n个数的和都相等.中国古籍《周易本义》中的《洛书》记载了一个三阶幻方(如图1),即现在的图2.若某3阶幻方正中间的数是2018,则该幻方中的最小数为()A.2013B.2014C.2015D.201612.对任意复数z=x+yi(x,y∈R),i为虚数单位,则下列结论正确的是()A.|z|≤|x|+|y|B.|z ﹣|≥2x C.z2=x2+y2D.|z ﹣|=2y二、填空题:本大题共5个小题,每小题5分,共25分.13.已知,若(a,b均为实数),请推测a =,b=.14.某次国际会议为了搞好对外宣传工作,会务组选聘了50名记者担任对外翻译工作,在如表“性别与会外语”的2×2列联表中,a+b+d=.会外语不会外语总计男a b20女6d总计185015.已知复数z满足(1+i)z=|+i|,i为虚数单位,则z等于.16.某设备的使用年数x与所支出的维修总费用y的统计数据如下表:使用年数x(单位:米)23456维修总费用y(单位:万1.5 4.5 5.5 6.57.5元)根据上表可得回归直线方程为=1.3x+.若该设备维修总费用超过12万元就报废,据此模型预测该设备最多可使用年.17.给出下列关于回归分析的说法:①残差图中残差点所在的水平带状区域越宽,则回归方程的预报精确度越高;②回归直线一定过样本中心点(,);③两个模型中残差平方和越小的模型拟合的效果越好;④甲、乙两个模型的相关指数R2分别约为0.88和0.80,则模型乙的拟合效果更好.其中错误的序号是.三、解答题:本大题共5小题,共65分,解答题应根据要求写出必要的文字说明,证明过程或演算步骤.18.已知复数(i是虚数单位)(1)复数z是实数,求实数m的值;(2)复数z是虚数,求实数m的取值范围;(3)复数z是纯虚数,求实数m的值.19.某医院治疗白血病有甲、乙两套方案,现就70名患者治疗后复发的情况进行了统计,得到其等高条形图如图所示(其中采用甲、乙两种治疗方案的患者人数之比为5:2)(1)补充完整2×2列联表中的数据,(2)判断是否有95%的把握认为甲、乙两套治疗方案对患者白血病复发有影响.复发未复发总计甲方案乙方案总计附:.P(K2≥k0)0.100.050.0250.0100.0050.001 k0 2.706 3.841 5.024 6.6357.87910.82820.某企业坚持以市场需求为导向,合理配置生产资源,不断改革、探索销售模式.下表是该企业每月生产的一种核心产品的产量x(件)与相应的生产总成本y(万元)的五组对照数据:产量x(件)12345生产总成本y(万元)3781012(1)试求y与x的相关系数r,并利用相关系数r说明y与x是否具有较强的线性相关关系(若|r|>0.75,则线性相关程度很高,可用线性回归模型拟合);(2)建立y关于x的回归方程,并预测:当x为6时,生产总成本的估计值.参考公式:r=,=,=﹣.参考数据:.21.2020年寒假是特殊的寒假,因为疫情全体学生只能在家进行网上在线学习,为研究学生网上学习的情况,某校社团对男女各10名学生进行了网上在线学习的问卷调查,每名学生给出评分(满分100分),得到如图所示的茎叶图.(1)根据茎叶图判断男生组和女生组哪个组对网课的评价更高?并说明理由;(2)求该20名学生评分的中位数m,并将评分超过m和不超过m的学生数填入下面的列联表中,并根据列联表,判断能否有90%的把握认为男生和女生的评分有差异?超过m不超过m总计男生女生总计附:.P(K2≥k0)0.100.050.0250.0100.0050.001 k0 2.706 3.841 5.024 6.6357.87910.82822.当前,短视频行业异军突起,抖音、快手、秒拍等短视频平台吸引了大量流量和网络博主的加入.红人榜的数据推出是体现各平台KOL网络博主商业价值的榜单,每周一期,红人榜能反应最近一周KOL网络的综合价值,以粉丝数、集均评论、集均赞,以及集均分享来进行综合衡量,红人榜单在统计时发现某平台一网络博主的累计粉丝数y(百万)与入驻平台周次x(周)之间的关系如图所示:设ω=lnx,数据经过初步处理得:=258,=160,=9.(其中x i,y i分别为观测数据中的周次和累计粉丝数)(1)求出y关于x的线性回归模型=x+的相关指数R12,若用非线性回归模型求得的相关指数R22=0.9998,试用相关指数R2判断哪种模型的拟合效果较好(相关指数越接近于1,拟合效果越好)(2)根据(1)中拟合效果较好的模型求出y关于x的回归方程,并由此预测入驻平台8周后,对应的累计粉丝数y为多少?附参考公式:相关指数R2=1﹣,=,=﹣.参考数据:ln2≈0.70.参考答案一、选择题(共12小题).1.已知复数z满足iz=1﹣i(i是虚数单位),则z=()A.﹣1﹣i B.1﹣i C.﹣1+i D.1+i解:由iz=1﹣i,得z=.故选:A.2.根据如下样本数据,得到回归方程=bx+a,则()x345678y 4.0 2.5﹣0.50.5﹣2.0﹣3.0 A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0解:由题意可知:回归方程经过的样本数据对应的点附近,是减函数,所以b<0,且回归方程经过(3,4)与(4,2.5)附近,所以a>0.故选:B.3.已知复数z=(i是虚数单位),则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限解:∵z==,∴z在复平面内对应的点的坐标为(﹣1,﹣1),位于第三象限.故选:C.4.已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.4解:∵变量x与y正相关,∴可以排除C,D;样本平均数=3,=3.5,代入A符合,B不符合,故选:A.5.执行如图所示的程序框图,若输出S的值为0.99,则判断框内可填入的条件是()A.i<100B.i≤100C.i<99D.i≤98解:由程序框图知:算法的功能是求S=++…+=1﹣的值,∵输出的结果为0.99,即S=1﹣=0.99,∴跳出循环的i=100,∴判断框内应填i≤99或i<100.故选:A.6.甲、乙、丙三人中,一人是工人,一人是农民,一人是知识分子.已知:丙的年龄比知识分子大;甲的年龄和农民不同;农民的年龄比乙小.根据以上情况,下列判断正确的是()A.甲是工人,乙是知识分子,丙是农民B.甲是知识分子,乙是农民,丙是工人C.甲是知识分子,乙是工人,丙是农民D.甲是知识分子,乙是农民,丙是工人解:“甲的年龄和农民不同”和“农民的年龄比乙小”可以推得丙是农民,所以丙的年龄比乙小;再由“丙的年龄比知识分子大”,可知甲是知识分子,故乙是工人.故选:C.7.为了判定两个分类变量X和Y是否有关系,应用k2独立性检验法算得k2的观测值为5,又已知P(k2≥3.841)=0.05,P(k2≥6.635)=0.01,则下列说法正确的是()A.有99%以上的把握认为“X和Y有关系”B.有99%以上的把握认为“X和Y没有关系”C.有95%以上的把握认为“X和Y有关系”D.有95%以上的把握认为“X和Y没有关系”解:∵3.481<K2=5<6.635,而在观测值表中对应于3.841的是0.05,对应于6.635的是0.01,∴有1﹣0.05=95%以上的把握认为“X和Y有关系”.故选:C.8.某工厂某产品产量x(千件)与单位成本y(元)满足回归直线方程=77.36﹣1.82x,则以下说法中正确的是()A.产量每增加1000件,单位成本约下降1.82元B.产量每减少1000件,单位成本约下降1.82元C.当产量为1千件时,单位成本为75.54元D.当产量为2千件时,单位成本为73.72元解:由题意,该方程在R上为单调递减,函数模型是一个递减的函数模型,产量每增加1000件,单位成本下降1.82元.故选:A.9.已知i为虚数单位,复数z=,则以下命题为真命题的是()A.z的共轭复数为B.z的虚部为C.|z|=3D.z在复平面内对应的点在第一象限解:z==,z的共轭复数为,故A错误;z的虚部为,故B错误;,故C错误;z在复平面内对应的点的坐标为(),在第一象限,故D正确.故选:D.10.为了规定工时定额,需要确定加工某种零件所需的时间,为此进行了5次试验,得到5组数据:(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5),由最小二乘法求得回归直线方程为.若已知x1+x2+x3+x4+x5=250,则y1+y2+y3+y4+y5=()A.75B.155.4C.375D.442解:由x1+x2+x3+x4+x5=250,得,又,∴,∴y1+y2+y3+y4+y5=.故选:D.11.幻方,是中国古代一种填数游戏.n(n∈N*,n≥3)阶幻方是指将连续n2个正整数排成的正方形数阵,使之同一行、同一列和同一对角线上的n个数的和都相等.中国古籍《周易本义》中的《洛书》记载了一个三阶幻方(如图1),即现在的图2.若某3阶幻方正中间的数是2018,则该幻方中的最小数为()A.2013B.2014C.2015D.2016解:根据题意,3阶幻方是将9个连续的正整数排成的正方形数阵,则这9个数成等差数列,设这个数列为{a n},且其公差为1,其同一行、同一列和同一对角线上的3个数的和都相等,则幻方中最中间的数是这9个数中的最中间的1个,若3阶幻方正中间的数是2018,即a5=2018,则其最小的数a1=a5﹣4d=2014;故选:B.12.对任意复数z=x+yi(x,y∈R),i为虚数单位,则下列结论正确的是()A.|z|≤|x|+|y|B.|z﹣|≥2x C.z2=x2+y2D.|z﹣|=2y解:∵z=x+yi(x,y∈R),∴|z|2=x2+y2≤x2+y2+2|x||y|=(|x|+|y|)2,∴|z|≤|x|+|y|,即A正确,C错误;又|z﹣|=2|y|,可排除B与D,故选:A.二、填空题:本大题共5个小题,每小题5分,共25分.13.已知,若(a,b均为实数),请推测a=6,b=35.解:观察各个等式可得,各个等式左边的分数的分子与前面的整数相同、分母是分子平方减1,等式右边的分数与左边的分数相同,前面的整数与左边的整数相同,∴等式中的a=6、b=36﹣1=35,故答案为:6;35.14.某次国际会议为了搞好对外宣传工作,会务组选聘了50名记者担任对外翻译工作,在如表“性别与会外语”的2×2列联表中,a+b+d=44.会外语不会外语总计男a b20女6d总计1850解:由题意填写列联表如下,会外语不会外语总计男12820女62430总计183250所以a=12,b=8,d=24,a+b+d=12+8+24=44.故答案为:44.15.已知复数z满足(1+i)z=|+i|,i为虚数单位,则z 等于1﹣i.解:∵(1+i)z=|+i|=,∴z =.故答案为:1﹣i.16.某设备的使用年数x与所支出的维修总费用y 的统计数据如下表:使用年数x(单位:米)23456维修总费用y(单位:万1.5 4.5 5.5 6.57.5元)根据上表可得回归直线方程为=1.3x+.若该设备维修总费用超过12万元就报废,据此模型预测该设备最多可使用10年.解:根据表中数据,计算=×(2+3+4+5+6)=4,=×(1.5+4.5+5.5+6.5+7.5)=5.1,且回归直线方程=1.3x+过样本中心点(,),∴5.1=1.3×4+,解得=﹣0.1;∴回归直线方程为=1.3x﹣0.1;令=1.3x﹣0.1≥12,解得x≥9.308,据此模型预测该设备最多可使用10年,其维修总费用超过12万元,就应报废.故答案为:10.17.给出下列关于回归分析的说法:①残差图中残差点所在的水平带状区域越宽,则回归方程的预报精确度越高;②回归直线一定过样本中心点(,);③两个模型中残差平方和越小的模型拟合的效果越好;④甲、乙两个模型的相关指数R2分别约为0.88和0.80,则模型乙的拟合效果更好.其中错误的序号是①④.解:①残差图中残差点所在的水平带状区域越宽,则回归方程的预报精确度越高,不正确.②线性回归直线必过样本数据的中心点(,),正确;③如果两个变量的相关性越强,则相关性系数r就越接近于1,正确,应为相关性系数r的绝对值就越接近于1;④甲、乙两个模型的R2分别约为0.88和0.80,则模型乙的拟合效果更好,不正确,应为模型甲的拟合效果更好.故答案为:①④.三、解答题:本大题共5小题,共65分,解答题应根据要求写出必要的文字说明,证明过程或演算步骤.18.已知复数(i是虚数单位)(1)复数z是实数,求实数m的值;(2)复数z是虚数,求实数m的取值范围;(3)复数z是纯虚数,求实数m的值.解:(1)若复数z是实数,则,得,即m=5;(2)复数z是虚数,则,即,即m≠5且m≠﹣3;(3)复数z是纯虚数,则,得,即m=3,或﹣219.某医院治疗白血病有甲、乙两套方案,现就70名患者治疗后复发的情况进行了统计,得到其等高条形图如图所示(其中采用甲、乙两种治疗方案的患者人数之比为5:2)(1)补充完整2×2列联表中的数据,(2)判断是否有95%的把握认为甲、乙两套治疗方案对患者白血病复发有影响.复发未复发总计甲方案乙方案总计附:.P(K2≥k0)0.100.050.0250.0100.0050.001 k0 2.706 3.841 5.024 6.6357.87910.828解:(1)根据题意知,70名患者中采用甲种治疗方案的患者为50人,采用乙种治疗方案的患者有20人,填写2×2列联表如下;复发未复发总计甲方案203050乙方案21820总计224870(2)由列联表中数据,计算K2=≈5.966>3.841,所以有95%的把握认为甲、乙两套治疗方案对患者白血病复发有影响.20.某企业坚持以市场需求为导向,合理配置生产资源,不断改革、探索销售模式.下表是该企业每月生产的一种核心产品的产量x(件)与相应的生产总成本y(万元)的五组对照数据:产量x(件)12345生产总成本y(万元)3781012(1)试求y与x的相关系数r,并利用相关系数r说明y与x是否具有较强的线性相关关系(若|r|>0.75,则线性相关程度很高,可用线性回归模型拟合);(2)建立y关于x的回归方程,并预测:当x为6时,生产总成本的估计值.参考公式:r=,=,=﹣.参考数据:.解:(1),,,,.∴相关系数r=≈0.98.∵|r|>0.75,∴y与x具有较强的线性相关关系,可用线性回归方程拟合y与x的关系;(2),.∴y关于x的线性回归方程为.取x=6,求得.∴预测当x为6时,生产总成本的估计值为14.3万元.21.2020年寒假是特殊的寒假,因为疫情全体学生只能在家进行网上在线学习,为研究学生网上学习的情况,某校社团对男女各10名学生进行了网上在线学习的问卷调查,每名学生给出评分(满分100分),得到如图所示的茎叶图.(1)根据茎叶图判断男生组和女生组哪个组对网课的评价更高?并说明理由;(2)求该20名学生评分的中位数m,并将评分超过m和不超过m的学生数填入下面的列联表中,并根据列联表,判断能否有90%的把握认为男生和女生的评分有差异?超过m不超过m总计男生女生总计附:.P(K2≥k0)0.100.050.0250.0100.0050.001 k0 2.706 3.841 5.024 6.6357.87910.828解:(1)男生对问题的评价更高,理由如下:①由茎叶图知,评价分数不低于70分的男生比女生多2人(33.3%),因此男生对网课的评价更高;②由茎叶图知,男生评分的中位数是77,女生评分的中位数是72,因此男生对网课的评价更高;③由茎叶图知,男生评分的平均数为×(68+69+70+74+77+78+79+83+86+96)=78,女生评分的平均数为×(55+58+63+64+71+73+75+76+81+86)=70.2,因此男生对网课的评价更高;(以上三条理由给出一条理由,即可得到满分)(2)由茎叶图知,该20名学生评分的中位数是m==74.5,由此填写列联表如下;超过m不超过m总计男生6410女生4610总计101020计算K2==0.8<2.706,所以没有90%的把握认为男生和女生的评分有差异.22.当前,短视频行业异军突起,抖音、快手、秒拍等短视频平台吸引了大量流量和网络博主的加入.红人榜的数据推出是体现各平台KOL网络博主商业价值的榜单,每周一期,红人榜能反应最近一周KOL网络的综合价值,以粉丝数、集均评论、集均赞,以及集均分享来进行综合衡量,红人榜单在统计时发现某平台一网络博主的累计粉丝数y(百万)与入驻平台周次x(周)之间的关系如图所示:设ω=lnx,数据经过初步处理得:=258,=160,=9.(其中x i,y i分别为观测数据中的周次和累计粉丝数)(1)求出y关于x的线性回归模型=x+的相关指数R12,若用非线性回归模型求得的相关指数R22=0.9998,试用相关指数R2判断哪种模型的拟合效果较好(相关指数越接近于1,拟合效果越好)(2)根据(1)中拟合效果较好的模型求出y关于x的回归方程,并由此预测入驻平台8周后,对应的累计粉丝数y为多少?附参考公式:相关指数R2=1﹣,=,=﹣.参考数据:ln2≈0.70.解:(1)由已知可得R12=1﹣,R22=0.9998,∵R12<R22,∴的拟合效果较好;(2)由题意,=1,.=,.∴回归方程为y=10lnx+4.6.当x=8时,y=10ln8+4.6=30ln2+4.6≈25.6.∴预测入驻平台8周后,对应的累计粉丝数y为25.6百万=2560万.。

2020-2021学年高二数学文科下册期末考试试题(含解析)

2020-2021学年高二数学文科下册期末考试试题(含解析)

第二学期高二级期末试题(卷)数学(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数(1)(2)i i +-=( ) A. 3i + B. 1i +C. 3i -D. 1i -【答案】A 【解析】 【分析】直接利用复数代数形式的乘法运算化简得答案. 【详解】(1+i )(2﹣i )=2﹣i+2i ﹣i 2=3+i . 故选:A .【点睛】本题考查复数代数形式的乘除运算,是基础题.2.设集合{0U =,1,2,3,4},{0A =,2,4},{2B =,3,4},则()U A B =I ð( ) A. {2,4}B. {0,4}C. {0,1,3}D. {1,2,3}【答案】C 【解析】 【分析】先得到A B I ,再计算()U A B ⋂ð,得到答案【详解】集合{0U =,1,2,3,4},{0A =,2,4},{2B =,3,4}, 则{2A B ⋂=,4},(){0U A B ⋂=ð,1,3}.故选:C .【点睛】本题考查集合的交集运算与补集运算,属于简单题.3.已知平面向量a r ,b r 的夹角为23π,||1a =r ,||2b =r ,则()a a b ⋅+=r r r ( )A. 3B. 2C. 0D. 1【答案】C 【解析】 【分析】由1a =v ,2b =r ,a v ,b r的夹角为23π,先得到a b ⋅v v 的值,再计算()a ab ⋅+r v v ,得到结果.【详解】Q 向量a r ,b r的夹角为23π,1a =r ,2b =r ,∴ 1·1212a b r r ⎛⎫=⨯⨯-=- ⎪⎝⎭, 则()2··110a a b a a b +=+=-=r rr r r r , 故选:C .【点睛】本题考查向量数量积的基本运算,属于简单题.4.已知函数()sin cos f x x x =,则( ) A. ()f x 的最小正周期是2π,最大值是1B. ()f x 的最小正周期是π,最大值是12 C. ()f x 的最小正周期是2π,最大值是12D. ()f x 的最小正周期是π,最大值是1【答案】B 【解析】 【分析】对()f x 进行化简,得到()f x 解析式,再求出其最小正周期和最大值. 【详解】函数()1sin cos sin22f x x x x ==, 故函数的周期为22T ππ==, 当222x k ππ=+,即:()4x k k Z ππ=+∈时,函数取最大值为12. 故选:B .【点睛】本题考查二倍角正弦的逆用,三角函数求周期和最值,属于简单题.5.若a b >,0ab ≠则下列不等式恒成立的是( ) A. 22a b >B. lg()0a b ->C.11a b< D.a b 22>【答案】D 【解析】 【分析】利用不等式的性质、对数、指数函数的图像和性质,对每一个选项逐一分析判断得解. 【详解】对于选项A, 22a b >不一定成立,如a=1>b=-2,但是22a b <,所以该选项是错误的;对于选项B, 1111,,,lg 0,2366a b a b ==-=<所以该选项是错误的; 对于选项C,11,0,b a b a a b ab--=-<Q ab 符号不确定,所以11a b <不一定成立,所以该选项是错误的;对于选项D, 因为a>b,所以a b 22>,所以该选项是正确的. 故选:D【点睛】本题主要考查不等式的性质,考查对数、指数函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.某程序框图如图所示,该程序运行后输出的值是( )A. 55B. 45C. 66D. 36【答案】A 【解析】 【分析】根据程度框图的要求,按输入值进行循环,根据判断语句,计算循环停止时的S 值,得到答案.【详解】模拟程序的运行,可得该程序的功能是利用循环结构计算并输出变量12310S =+++⋯+的值由于1231055S =+++⋯+=. 故选:A .【点睛】本题考查根据流程框图求输入值,属于简单题.7.抛物线28y x =的焦点到双曲线2214y x -=的渐近线的距离是( )5 25455【答案】C 【解析】 【分析】求得抛物线的焦点,双曲线的渐近线,再由点到直线的距离公式求出结果.【详解】依题意,抛物线的焦点为()2,0,双曲线的渐近线为2y x =±,其中一条为20x y -=,由点到直线的距离公式得455d ==.故选C. 【点睛】本小题主要考查抛物线的焦点坐标,考查双曲线的渐近线方程,考查点到直线的距离公式,属于基础题.8.函数()()2ln 1f x x 的图像大致是=+( )A. B.C.D.【答案】A 【解析】由于函数为偶函数又过(0,0)所以直接选A.【考点定位】对图像的考查其实是对性质的考查,注意函数的特征即可,属于简单题.9.在ABC ∆中,120A =︒,14BC =,10AB =,则ABC ∆的面积为( ) A. 15 B. 153 C. 40D. 3【答案】B 【解析】 【分析】先利用余弦定理求得b ,然后利用三角形面积公式求得三角形的面积.【详解】由余弦定理得2221410210cos120b b =+-⨯⨯⨯o ,解得6b =,由三角形面积得1106sin1201532S =⨯⨯⨯=o B.【点睛】本小题主要考查余弦定理解三角形,考查三角形面积公式,属于基础题.10.函数()3213f x x x =-在[]1,3上的最小值为( ) A. -2 B. 0C. 23-D. 43-【答案】D 【解析】 【分析】求得函数的导数()22f x x x '=-,得到函数()f x 在区间[]1,3上的单调性,即可求解函数的最小值,得到答案. 【详解】由题意,函数()3213f x x x =-,则()22f x x x '=-, 当[1,2)x ∈时,()0f x '<,函数()f x 单调递减; 当(2,3]x ∈时,()0f x '>,函数()f x 单调递增, 所以函数()f x 在区间[]1,3上的最小值为()321224323f =⨯-=-, 故选D .【点睛】本题主要考查了利用导数求解函数的最值问题,其中解答中熟练应用导数求得函数的单调性,进而求解函数的最值是解答的关键,着重考查了推理与运算能力,属于基础题.11.法国机械学家莱洛(F. Reuleaux 1829-1905)发现了最简单的等宽曲线莱洛三角形,它是分别以正三角形ABC 的顶点为圆心,以正三角形边长为半径作三段圆弧组成的一条封闭曲线,在封闭曲线内随机取一点,则此点取自正三角形ABC 之内(如图阴影部分)的概率是( )D.【答案】B【解析】【分析】先算出封闭曲线的面积,在算出正三角形ABC的面积,由几何概型的计算公式得到答案. 【详解】设正三角形的边长为a,由扇形面积公式可得封闭曲线的面积为(2221322342aS a aππ=⨯⨯⨯-⨯=,由几何概型中的面积型可得:此点取自正三角形ABC之内(如图阴影部分)∴概率是22SPS阴封闭曲线===故选:B.【点睛】本题考查几何概型求概率,属于简单题.12.定义域为R的可导函数()y f x=的导函数为()f x',满足()()f x f x'>,且()02f=,则不等式()2xf x e<的解集为()A. (),0-∞ B. (),2-∞ C. ()0,∞+ D. ()2,+∞【答案】C【解析】【详解】构造函数()()xf xg xe=,根据()()f x f x'>可知()0g x'<,得到()g x在R上单调递减;根据()()02fge==,可将所求不等式转化为()()0g x g<,根据函数单调性可得到解集.【解答】令()()x f x g x e =,则()()()()()20x x x x f x e f x e f x f x g x e e''--'==< ()g x ∴在R 上单调递减 ()02f =Q ()()002f g e ∴== 则不等式()2xf x e >可化为()2xf x e< 等价于()2g x <,即()()0g x g < 0x ∴> 即所求不等式的解集为:()0,∞+ 本题正确选项:C【点睛】本题考查利用导数研究函数的单调性求解不等式,关键是能够构造函数()()x f x g x e=,将所求不等式转变为函数值的比较,从而利用其单调性得到自变量的关系.二、填空题。

高二下学期数学期末考试试卷(文科)

高二下学期数学期末考试试卷(文科)

高二下学期数学期末考试试卷(文科)(时间:120分钟,分值:150分) 一.单选题(每小题5分,共60分)1.把十进制的23化成二进制数是( ) A. 00 110(2) B. 10 111(2) C. 10 110(2) D. 11 101(2)2.从数字1,2,3,4,5中任取2个,组成一个没有重复数字的两位数,则这个两位数大于30的概率是( )A. 15B. 25C. 35D. 453.已知命题p :“1a ∃<-,有260a a +≥成立”,则命题p ⌝为( )A. 1a ∀<-,有260a a +<成立 B. 1a ∀≥-,有260a a +<成立 C. 1a ∃<-,有260a a +≤成立D. 1a ∃<-,有260a a +<成立4.如果数据x 1,x 2,…,x n 的平均数为x ,方差为s 2, 则5x 1+2,5x 2+2,…,5x n +2的平均数和方差分别为( )A. x ,s 2B. 5x +2,s 2C. 5x +2,25s 2D. x ,25s 25.某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样法,抽取4个班进行调查,若抽到的最小编号为3,则抽取的最大编号为( )A. 15B. 18C. 21D. 226.按右图所示的程序框图,若输入81a =,则输出的i =( )A. 14B. 17C. 19D. 217.若双曲线22221(,0)y x a b a b -=>的一条渐近线方程为34y x=,则该双曲线的离心率为( )A. 43B. 53C. 169D. 2598.已知()01,0,a a x >≠∈+∞且,命题P :若11a x >>且,则log 0a x >,在命题P .P 的逆命题.P 的否命题.P 的逆否命题.P ⌝这5个命题中,真命题的个数为( )A. 1B. 2C. 3D. 49.函数f(x)=ln 2x x x -在点(1,-2)处的切线方程为( )A. 2x -y -4=0B. 2x +y =0C. x -y -3=0D. x +y +1=010.椭圆221x my +=的离心率是32,则它的长轴长是( )A. 1B. 1或2C. 4D. 2或411.已知点P 在抛物线24x y =上,则当点P 到点()1,2Q 的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A.()2,1B.()2,1-C. 11,4⎛⎫- ⎪⎝⎭D. 11,4⎛⎫⎪⎝⎭12.已知函数()x xx f ln 1+=在区间()032,>⎪⎭⎫ ⎝⎛+a a a 上存在极值,则实数的取值范围是( )A. ⎪⎭⎫ ⎝⎛32,21B. ⎪⎭⎫ ⎝⎛1,32C. ⎪⎭⎫ ⎝⎛21,31D. ⎪⎭⎫ ⎝⎛1,31二.填空题(每小题5分,共20分)13.如图,正方形ABCD 内的图形来自宝马汽车车标的里面部分,正方形内切圆中的黑色部分和白色部分关于正方形对边中点连线成轴对称,在正方形内随机取一点,则此点取自黑色部分的概率是__________.14.已知某校随机抽取了100名学生,将他们某次体育测试3000名学生,则成绩制成如图所示的频率分布直方图.若该校有在本次体育测试中,成绩不低于70分的学生人数约为__________.15.设经过点()2,1M 的等轴双曲线的焦点为12,F F ,此双曲线上一点N 满足12NF NF ⊥,则12NF F ∆的面积___________16.已知函数()ln mf x x x =+,若()()2,1f b f a b a b a ->><-时恒成立,则实数m 的取值范围是____________。

高二文科下学期期末考试数学试题(含答案)

高二文科下学期期末考试数学试题(含答案)

高二文科下学期期末考试数学试题一、单选题1.设集合U={-1,0,1,2,3,4,5}, A={1,2,3}, B={-1,0,1,2},则A∩(C U B)=A. {1,2,3}B. {3}C.D. {2}2.已知iA. 1+iB. 1-iC.D. 3.设:12,:21x p x q <><,则p 是q 成立的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件4.已知抛物线24x y =上一点A 纵坐标为4,则点A 到抛物线焦点的距离为( )A. B. 4 C. 5 D. 5.正项数列{a n }成等比数列,a 1+a 2=3,a 3+a 4=12,则a 4+a 5的值是A. -24B. 21C. 48D. 246 cos (等于A. B. C. D. 7.设f′(x )是函数f (x )的导函数,y=f′(x )的图象如图所示,则y=f (x )的图象最有可能的是( )A. B.C. D.8 A. 有最大值3,最小值-1 B. 有最大值2,最小值-2C. 有最大值2,最小值0D. 有最大值3,最小值029.执行如图程序框图,输出的 为( )A. B. C. D. 10.若函数f(x) = x 3-ax-2在区间(1,+∞)内是增函数,则实数a 的取值范围是 A. (],3-∞ B. (],9-∞ C. (-1, +∞) D. (-∞,3)11.如图,三棱柱A 1B 1C 1 - ABC 中,侧棱AA 1丄底面A 1B 1C 1,底面三角形A 1B 1C 1是正三角形,E 是BC 中点,则下列叙述正确的是A. CC 1与B 1E 是异面直线B. AC 丄平面ABB 1A 1C. A 1C 1∥平面AB 1ED. AE 与B 1C 1为异面直线,且AE 丄B 1C 112.过椭圆A 且斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰好为右焦点F 2C 的离心率的取值范围是A.B.C.D.二、填空题13.已知向量a =(1,-1) , b =(6,-4).若a 丄(t a +b ),则实数t 的值为____________.14.若x , y∈ R,且满足1{230 x x y y x≥-+≥≥,则z=2x+3y 的最大值等于_____________.15.已知ABC ∆三内角,,A B C 对应的边长分别为,,a b c,又边长3b c =,那么sin C = __________.16.已知函数()()3,0{ 1,0x x f x ln x x ≤=+>,若()()22f x f x ->,则实数x 的取值范围是____________.三、解答题17.选修44-:坐标系与参数方程选讲 在直角坐标系xoy 中,直线l 的参数方程为(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为 (Ⅰ)求圆C 的圆心到直线l 的距离;(Ⅱ)设圆C 与直线l 交于点A B 、,若点P 的坐标为18.在等差数列{a n }中,a 1 =-2,a 12 =20.(1)求数列{a n }的通项a n ;(2)若b n a n ++,求数列{3n b}的前n 项和.419.如图所示,已知AB 丄平面BCD ,M 、N 分别是AC 、AD 的中点,BC 丄 CD.(1)求证:MN//平面BCD ;(2)若AB=1,AC 与平面BCD 所成的角.20.已知椭圆C 1: ,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率.(1)求椭圆Q 的方程;(2)设0为坐标原点,点A ,B 分别在椭圆C 1和C 2上,,求直线AB 的方程.21.已知函数()()3x f x a bx e =-,()f x 的图象在点()1,e 处的切线与直线210ex y +-=平行.(1)求,a b ;(2)求证:当()0,1x ∈时, ()()2f x g x ->.1参考答案1.B2.B3.A4.C5.D6.D7.C8.D9.A10.A11.D12.B13.-514.151516.(-2,1)17.(1(218.(1)24n a n =-;(219.(1)见解析;(2)30°.20.(1) ;(2) 或 .21.(1)a 2,b 1==;(2)见解析.。

高二下学期(文科)数学期末考试试卷(含答案)

高二下学期(文科)数学期末考试试卷(含答案)

江西省南昌市2021学年高二下学期(文科)数学期末考试试卷一、选择题(本大题共12小题,共60.0分)1.设复数z满足,则A. 1B.C.D. 22.为研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图两坐标轴单位长度相同,用回归直线近似地刻画其相关关系,根据图形,以下结论最有可能成立的是A. 线性相关关系较强,b的值为B. 线性相关关系较强,b的值为C. 线性相关关系较强,b的值为D. 线性相关关系太弱,无研究价值3.若m,n是两条不同的直线,,,是三个不同的平面,则下列命题中的真命题是A. 若,,则B. 若,,则C. 若,,则D. 若,,,则4.在正方体中,如图,M,N分别是正方形ABCD,的中心.则过点,M,N的截面是()5. A. 正三角形 B. 正方形 C. 梯形 D. 直角三角形6.九章算术是中国古代张苍,耿寿昌所撰写的一部数学专著,成书于公元一世纪左右,内容十分丰富.书中有如下问题:“今有圆堢瑽,周四丈八尺,高一丈一尺,问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一.”这里所说的圆堢瑽就是圆柱体,它的体积底面的圆周长的平方高,则该问题中的体积为估算值,其实际体积单位:立方尺,一丈=10尺应为A. B. C. D.7.从11,12,13,14,15中任取2个不同的数,事件“取到的2个数之和为偶数”,事件“取到的2个数均为偶数”,则等于A. B. C. D.8. 函数的图象大致为A. B.C. D.9. 如图,在正方体中,P ,Q ,M ,N ,H ,R 是各条棱的中点.直线平面MNP ;;,Q ,H ,R 四点共面;平面其中正确的个数为10.A. 1B. 2C. 3D. 411. 已知正三棱锥的四个顶点都在球O 的球面上,且球心O 在三棱锥的内部.若该三棱锥的侧面积为,,则球O 的表面积为 A.B.C.D.10. 如图,四棱锥P ABCD -中,PAB ∆与PBC ∆是正三角形,平面PAB ⊥平面PBC ,AC BD ⊥,则下列结论不一定成立的是A .PB AC ⊥ B .PD ⊥平面ABCD C . AC PD ⊥ D .平面PBD ⊥平面ABCD 11.如图,四棱锥中,底面为直角梯形,,,E 为PC 上靠近点C 的三等分点,则三棱锥与四棱锥的体积比为A. B. C. D.12.已知P为双曲线C:左支上一点,,分别为C的左、右焦点,M为虚轴的一个端点,若的最小值为,则C的离心率为A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.已知x,y取值如表:x0 1 3 5 6y 1 m3m画散点图分析可知:y与x线性相关,且求得回归方程为,则__________.14.若一个圆台的母线长为l,上、下底面半径,满足,且圆台的侧面积为,则.15.甲乙两人练习射击,命中目标的概率分别为1/2和1/3,甲乙两人各射击一次,目标被命中的概率是__________.16.在平面上,我们如果用一条直线去截正方形的一个角,那么截下一个直角三角形,由勾股定理有:设想将正方形换成正方体,把截线换成截面.这时从正方体上截下一个角,那么截下一个三棱锥如果该三棱锥的三个侧面面积分别为1,2,4,则该三棱锥的底面EFG的面积是________.三、解答题(本大题共6小题,共70.0分)17在直角坐标系xOy中,曲线的参数方程为:为参数,曲线:.Ⅰ在以O为极点,x轴的正半轴为极轴的极坐标系中,求,的极坐标方程;Ⅱ射线与的异于极点的交点为A,与的交点为B,求.18.在直三棱柱中,,,D是AB的中点.求证:平面;若点P在线段上,且,求证:平面.19.BMI指数身体质量指数,英文为BodyMassIndex,简称是衡量人体胖瘦程度的一个标准,体重身高的平方.根据中国肥胖问题工作组标准,当时为肥胖.某地区随机调查了1200名35岁以上成人的身体健康状况,其中有200名高血压患者,被调查者的频率分布直方图如图:Ⅰ求被调查者中肥胖人群的BMI平均值;Ⅱ填写下面列联表,并判断是否有的把握认为35岁以上成人患高血压与肥胖有关.肥胖不肥胖合计高血压非高血压合计k附:,其中.20.四棱锥如图所示,其中四边形ABCD是直角梯形,,,平面ABCD,,AC与BD交于点G,COS,点M线段SA上.若直线平面MBD,求的值;若,求点A到平面SCD的距离.21.如图所示的几何体中,四边形是正方形,四边形是梯形,,且,平面平面ABC.Ⅰ求证:平面平面;Ⅱ若,,求几何体的体积.22.已知函数,.若,恒成立,求实数m的取值范围;设函数,若在上有零点,求实数a的取值范围.参考答案一选择题1-12、ABBAB BDCDB BC二填空题(13)3/2 (14)2 (15)(16)三解答题17.解:Ⅰ曲线为参数可化为普通方程:,由可得曲线的极坐标方程为,曲线的极坐标方程为.Ⅱ射线与曲线的交点A的极径为,射线与曲线的交点B的极径满足,解得,所以.18.证明:连结,设交于点O,连结OD.四边形是矩形是的中点.在中,OD分别是,AB的中点,又平面,平面,平面;,D是AB的中点,又在直三棱柱中,底面侧面,交线为AB,平面ABC,平面平面,.,,,又,∽,从而,所以,.又,平面,平面平面.19.解:Ⅰ被调查者中肥胖人群的BMI平均值;Ⅱ高血压人群中肥胖的人数为:人,不肥胖的人数为:人,非高血压人群中肥胖的人数为:,不肥胖的人数为:人,所以列联表如下:肥胖不肥胖合计高血压70 130 200非高血压230 770 1000合计300 900 1200则K 的观测值:,有的把握认为35岁以上成人患高血压与肥胖有关.20.【答案】解:连接MG.,,且AB,CD在同一平面内,,设,,得,平面MBD,平面平面,平面SAC,,故;在平面SAD内作于点N 平面ABCD ,又,,得平面SAD.平面SAD,.又,平面SCD.角SCA的余弦值为,即,又,,则,而,,求得,,即点A到平面SCD的距离为.21.证明:取BC的中点D,连接AD,D.四边形是正方形,,又平面平面ABC,平面平面.平面ABC,平面ABC .中,,,,又,平面.四边形是梯形,,且.,四边形是平行四边形,,又,,四边形是平行四边形.,平面.又平面,平面平面.Ⅱ解:由可得:三棱柱是直三棱柱,四边形是矩形,底面.直三棱柱的体积,四棱锥的体积.几何体的体积.22.解:由题意得的定义域为,.,、随x的变化情况如下表:x 3单调递减极小值单调递增由表格可知:.在上恒成立,.函数在上有零点,等价于方程在上有解.化简,得.设.则,,、随x的变化情况如下表:x 1 30 0单调递增单调递减单调递增且,,,.作出在上的大致图象如图所示当时,在上有解.故实数a的取值范围是.。

下学期高二期末考试文科数学试卷-(考试版)

下学期高二期末考试文科数学试卷-(考试版)

下学期高二期末考试文科数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试范围:4-4、4-5、一轮总复习(集合与常用逻辑用语、基本初等函数、导数及其应用、三角函数、解三角形)。

第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知集合2560|}{A x x x =-+<,e {|}xB y y ==,则A B =IA .()1,3-B .()1,0-C .(0,2)D .(2,3)2.设命题p :x ∀∈R ,221121x x ++>+,则⌝p 为 A .x ∀∈R ,221121x x ++<+B .0x ∃∈R ,20201121x x ++≤+ C .x ∀∈R ,221121x x ++≤+D .0x ∃∈R ,20201121x x ++>+ 3.已知点(3,4)--在角α的终边上,则cos2sin 2αα+= A .3125-B .1725C .1725-D .31254.若曲线()ln f x b x =在点(1,0)处的切线与直线:1l y ax =+垂直,则ab = A .2-B .1-C .1D .25.已知a ,b 均为实数,则“ln ln a b >”是“ln 0ab>”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若A ,B ,C 成等差数列,且75C =︒,2a =,则ABC△的面积等于 A .332- B .332+ C .334- D .334+ 7.已知函数()2cos()(0,)f x x ωϕωϕ=->-π<<π的部分图象如下图所示,则ϕ=A .56π-B .6π-C .6π D .56π 8.已知函数12,2log (21),)2(x a x x x f x -<-≥⎧=⎨⎩,若对任意的实数1x ,2x 12()x x ≠,1212()()0f x f x x x ->-恒成立,则实数a 的取值范围为 A .(1,3)B .(1,3]C .(3,)+∞D .[3,)+∞9.已知函数()f x 的导函数的图象如下图所示,①函数()f x 在(0,1)上单调递增;②函数()f x 在(1,)+∞上单调递增;③当1x =时,函数()f x 取得极小值;④当1x =时,函数()f x 取得极大值.则上述结论中,正确结论的序号为A .①③B .②④C .①④D .②③10.已知ln3x =,lg 2y =,131()ez =,则A .x y z >>B .x z y >>C .z y x >>D .z x y >>11.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,向量),(a b =m 与cos () ,sin A B =n 平行.若5a =,2b =,则c =A .1B .2C .22D .312.已知函数()f x 的定义域为(,0)(0,)-∞+∞U ,函数()f x 的导函数为()f x ',当0x >时,()xf x '-2()0f x >,若函数()f x 是偶函数,2(e)e f a =,(2)4f b =,(3)9f c -=,则a ,b ,c 的大小关系为 A .b a c <<B .b c a <<C .a b c <<D .c a b <<第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分) 13.函数1ln1()xf x x +-=的定义域为________________(用区间表示). 14.已知定义在R 上的函数()f x ,满足()2()f x f x +=-,当24x <<时,函数()f x x =,则(2019)f -=________________.15.函数2()sin(2)sin 23f x x x π=++,(0,)2x π∈的值域为________________. 16.某网络作家为推广一部长篇小说,与网站A 进行合作,由网站A 发布阅读链接进行推广,规定:网友每阅读一次该小说,网站A 付给作者2元稿费,根据网站的统计数据,该小说每月的阅读量y (万次)与定价x (25x <≤,单位:元)满足242(4)2y x x =+--,若网站A 每月要利用这篇小说获得最大利润,则每次阅读的定价x 应为________________元.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知函数2()2cos o 1c s f x x x x --=. (1)求函数()f x 的最小正周期; (2)将函数()f x 的图象向右平移12π个长度单位,再将所得图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()g x 的图象,求函数()g x 的单调递减区间. 18.(本小题满分12分)已知命题p :函数2()f x x ax =-+在[1,2]上单调递减;命题q :函数2()ln g x x a x =+在[2,)+∞上单调递增.(1)若p 是假命题,求实数a 的取值范围;(2)若p q ∨是真命题,p q ∧是假命题,求实数a 的取值范围.19.(本小题满分12分)已知函数3()131xx a f x ⋅=-++,x ∈R ,且函数()f x 是奇函数.(1)求实数a 的值,并判断函数()f x 的单调性;(2)若对任意的x ∈R ,不等式22(30())f x x f x k -+->恒成立,求实数k 的取值范围. 20.(本小题满分12分)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c,已知2)cos cos 0c B A -+=.(1)求B 的大小; (2)若b =ABC △的面积的最大值.21.(本小题满分12分)已知函数21()102()ln ()f x x m x m m x =-++≥-. (1)当2m =时,求函数()f x 的单调区间; (2)求证:函数()f x 有且仅有一个零点.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分. 22.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的参数方程为2cos (sin x y ϕϕϕ=⎧⎨=⎩为参数),直线lcos sin 30θρθ--=. (1)求曲线C 的普通方程及直线l 的直角坐标方程;(2)已知点F的直角坐标为0),若直线l 与曲线C 交于A ,B 两点,求||||FA FB ⋅. 23.(本小题满分10分)选修4-5:不等式选讲已知函数|(|)||f x m x x m =-++,m ∈R . (1)当1m =时,求不等式()3f x >的解集;(2)若对任意的x ∈R ,不等式()4f x ≥恒成立,求实数m 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二下学期数学期末考试试卷(文科)(时间:120分钟,分值:150分)一、单选题(每小题5分,共60分)1.把十进制的23化成二进制数是( ) A. 00 110(2)B. 10 111(2)C. 10 110(2)D. 11 101(2)2.从数字,,,,中任取个,组成一个没有重复数字的两位数,则这个两位数大于的概率是( )A.B.C.D.3.已知命题p :“1a ∃<-,有260a a +≥成立”,则命题p ⌝为( )A. 1a ∀<-,有260a a +<成立B. 1a ∀≥-,有260a a +<成立C. 1a ∃<-,有260a a +≤成立D. 1a ∃<-,有260a a +<成立4.如果数据x 1,x 2,…,x n 的平均数为x ,方差为s 2, 则5x 1+2,5x 2+2,…,5x n +2的平均数和方差分别为( )A. x ,s 2B. 5x +2,s2C. 5x +2,25s 2D. x ,25s 25.某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样法,抽取4个班进行调查,若抽到的最小编号为3,则抽取的最大编号为( )A. 15B. 18C. 21D. 226.按右图所示的程序框图,若输入81a =,则输出的i =( ) A. 14 B. 17 C. 19D. 217.若双曲线22221(,0)y x a b a b -=>的一条渐近线方程为34y x =,则该双曲线的离心率为( )A.43B.53C.169D.2598.已知()01,0,a a x >≠∈+∞且,命题P :若11a x >>且,则log 0a x >,在命题P 、P 的逆命题、P 的否命题、P 的逆否命题、P ⌝这5个命题中,真命题的个数为( )A. 1B. 2C. 3D. 49.函数f(x)=ln 2x xx-在点(1,-2)处的切线方程为( ) A. 2x -y -4=0B. 2x +y =0C. x -y -3=0D. x +y +1=010.椭圆221x my +=( ) A. 1B. 1或2C. 4D. 2或411.已知点P 在抛物线24x y =上,则当点P 到点()1,2Q 的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A. ()2,1B. ()2,1-C. 11,4⎛⎫- ⎪⎝⎭D. 11,4⎛⎫⎪⎝⎭12.已知函数()x x x f ln 1+=在区间()032,>⎪⎭⎫ ⎝⎛+a a a 上存在极值,则实数的取值范围是( )A. ⎪⎭⎫⎝⎛32,21 B. ⎪⎭⎫⎝⎛1,32 C. ⎪⎭⎫⎝⎛21,31 D. ⎪⎭⎫ ⎝⎛1,31二、填空题(每小题5分,共20分)13.如图,正方形ABCD 内的图形来自宝马汽车车标的里面部分,正方形内切圆中的黑色部分和白色部分关于正方形对边中点连线成轴对称,在正方形内随机取一点,则此点取自黑色部分的概率是__________.14.已知某校随机抽取了100名学生,将他们某次体育测试成绩制成如图所示的频率分布直方图.若该校有3000名学生,则在本次体育测试中,成绩不低于70分的学生人数约为__________.15.设经过点()2,1M 的等轴双曲线的焦点为12,F F ,此双曲线上一点N 满足12NF NF ⊥,则12NF F ∆的面积___________16.已知函数()ln mf x x x=+,若()()2,1f b f a b a b a ->><-时恒成立,则实数m 的取值范围是____________。

三、解答题17.(本小题10分)设实数满足,其中;实数满足.(1)若,且为真,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.18.(本小题12分)据统计,目前微信用户已达10亿,2016年,诸多传统企业大佬纷纷尝试进入微商渠道,让这个行业不断地走向正规化、规范化.2017年3月25日,第五届中国微商博览会在山东济南舜耕国际会展中心召开,力争为中国微商产业转型升级,某品牌饮料公司对微商销售情况进行中期调研,从某地区随机抽取6家微商一周的销售金额(单位:百元)的茎叶图如图所示,其中茎为十位数,叶为个位数.(1)若销售金额(单位:万元)不低于平均值的微商定义为优秀微商,其余为非优秀微商,根据茎叶图推断该地区110家微商中有几家优秀?(2)从随机抽取的6家微商中再任取2家举行消费者回访调查活动,求恰有1家是优秀微商的概率.19.(本小题12分)某公司近年来科研费用支出x 万元与公司所获利润y 万元之间有如表的统计数据:参考公式:用最小二乘法求出y 关于x 的线性回归方程为: ˆˆˆybx a =+, 其中: 1221ˆni i i n i i x y nx y bx nx==-⋅=-∑∑, ˆˆa y bx=-, 参考数值: 218327432535420⨯+⨯+⨯+⨯=。

(Ⅰ)求出,x y ;(Ⅱ)根据上表提供的数据可知公司所获利润y 万元与科研费用支出x 万元线性相关,请用最小二乘法求出y 关于x 的线性回归方程ˆˆˆybx a =+; (Ⅲ)试根据(Ⅱ)求出的线性回归方程,预测该公司科研费用支出为10万元时公司所获得的利润。

20.(本小题12分)椭圆13422=+y x 的左、右焦点分别为F 1,F 2,一条直线l 经过点F 1与椭圆交于A ,B 两点.(1)求△ABF 2的周长; (2)若l 的倾斜角为4π,求弦长|AB|.21.(本小题12分)已知抛物线2:2C y x =和直线:1l y kx =+,O 为坐标原点. (1)求证: l 与C 必有两交点;(2)设l 与C 交于,A B 两点,且直线OA 和OB 斜率之和为1,求k 的值.22.(本小题12分)已知函数()()()336x f x e ax x a R =-+∈(e 为自然对数的底数)(Ⅰ)若函数()f x 的图像在1x =处的切线与直线0x y +=垂直,求a 的值; (Ⅱ)对(]0,4x ∈总有()f x ≥0成立,求实数a 的取值范围.参考答案1.B【解析】23÷2=11...1 11÷2=5...1 5÷2=2...1 2÷2=1...0 1÷2=0 (1)故23(10)=10111(2). 故选:B .点睛:利用“除k 取余法”是将十进制数除以2,然后将商继续除以2,直到商为0,然后将依次所得的余数倒序排列即可得到答案. 2.C【解析】从数字1,2,3,4,5中任取2个,组成一个没有重复数字的两位数共有=20个,其中这个两位数小于30的个数为=8个(十位1,2中任选1个,个位其余4个数选1个), 故所求概率P=1﹣= 故选:C 3.A【解析】根据特称命题的否定为全称命题所以命题p :“1a ∃<-,有260a a +≥成立”,则命题p ⌝为1a ∀<-,有260a a +<成立 故选A 4.C【解析】∵数据x 1,x 2,…x n 的平均数为x ,方差为s 2, ∴5x 1+2,5x 2+2,…5x n +2的平均数为5x +2, 方差为25s 2.故选:C . 5.C【解析】由已知得间隔数2446k =÷=,则抽取的最大编号为()364121+⨯-=;故选C. 6.A【解析】执行程序,可得程序框图的功能是计算S=1+2+3+ i +的值,当S >81时,输出i+1的值. 由于S=1+2+3+ (i)()12ii +,当i=12时,S=12132⨯=78<81, 当i=13时,S=13142⨯=91>81,满足退出循环的条件,故输出i 的值为13+1=14. 故选:A .点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括顺序结构、条件结构、循环结构,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项. 7.B【解析】∵双曲线22221(,0)y x a b a b -=>(焦点在y 轴)的一条渐近线方程为34y x =,故可将双曲线方程写为:22916y x λ-=,即得离心率53e =, 故选:B点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等. 8.B【解析】由对数的单调性可知:当11a x >>且时, log 0a x >,故命题p 是真命题;由命题与逆否命题的等价性可知命题p 的逆否命题也是真命题。

其它三个命题中,逆命题不真,否命题也是错误的,命题p ⌝也是不正确的,应选答案B 。

9.C【解析】f ′(x )=21lnxx-,则f ′(1)=1, 故函数f (x )在点(1,-2)处的切线方程为y -(-2)=x -1,即x -y -3=0. 故选:C 10.D【解析】椭圆方程为2211y x m+=。

当1m >时, 101m<<,=解得4m =,此时长轴长为4=; 当01m <<时,11m >=14m =,此时长轴长为2。

综上椭圆的长轴长为2或4。

选D 。

11.D【解析】根据抛物线的定义P 到焦点的距离等于P 到准线的距离,所以点P 到点()1,2Q 的距离与点P 到抛物线焦点距离之和最小,只需点P 到点()1,2Q 的距离与点P 到准线的距离之和最小,过点()1,2Q 作准线的垂线,交抛物线于点P ,此时距离之和最小,点P 的坐标为11,4⎛⎫⎪⎝⎭. 12.D 【解析】,令,得x=1,当,,当,,所以2x =是函数的极大值点,又因为函数在区间上存在极值,所以,解得,故选D .考点:导数的应用,极值. 13.8π 【解析】设正方形的边长为()20a a >,则黑色部分的面积为: 212S a π=⨯⨯阴, 结合几何概型的计算公式可得,满足题意的概率值为: 22248a p aππ==.14.2100【解析】依题意,所求人数为()30000.0300.0250.015102100⨯++⨯=,故答案为2100.15.3【解析】设双曲线的方程为22x y λ-= ,代入点21M (,),可得3λ= , ∴双曲线的方程为223x y -= ,即22133x y -=, 设12,NF m NF n ==,则22{24m n m n -+==6mn ∴= ,12NF F ∴的面积为132mn =.即答案为3 16.2m ≥-【解析】对任意b >a >2,()()f b f a b a--<1恒成立,等价于f(b)﹣b <f(a)﹣a 恒成立; 设h(x)=f(x)﹣x=lnx+mx﹣x(x >2), 则h(b)<h(a).∴h(x)在(2,+∞)上单调递减; ∵h′(x)=2110mx x--≤在(2,+∞)上恒成立, ∴m≥﹣x 2+x(x >2), ∴m≥2-;∴m 的取值范围是[-2,+∞). 故答案为: 2m ≥-。

相关文档
最新文档