七年级数学上册第四章基本平面图形1直线、射线、线段课标要求素材北师大版教案
七年级数学上册(北师版)第四章 基本平面图形 教案
第四章基本平面图形4.1 线段、射线、直线1.在现实情境中进一步理解线段、射线、直线,并会用不同的方式表示.(重点)2.通过操作活动,了解“两点确定一条直线”的几何事实.阅读教材P106~107,完成预习内容.(一)知识探究1图形表示方法端点个数延伸情况线段线段AB或线段a 2个不向任何一方延伸射线射线AB或射线a 1个向一方无限延伸直线直线AB或直线a 0 向两方无限延伸2.直线的几何事实:两点确定一条直线.(1)表示线段、射线、直线的时候,都要在字母前注明“线段”“射线”“直线”.(2)用两个大写字母表示直线或线段时,两个字母可以交换位置,表示射线的两个大写字母不能交换位置,必须把端点字母放在前面.(二)自学反馈1.如图,在直线l上有A、B、C三点,则图中线段共有(C)A.1条B.2条C.3条D.4条2.下列图形中的线段和射线,能够相交的是(D)活动1 小组讨论例1 如图,已知平面上三点A,B,C.(1)画线段AB;(2)画直线BC;(3)画射线CA;(4)如何由线段AB得到射线AB和直线AB呢?(5)直线AB与直线BC有几个公共点?解:(1)(2)(3)题解答如图①所示.(4)将线段AB向AB方向延伸得到射线AB,将线段AB向两个方向延伸得到直线AB,如图②所示.(5)直线AB与直线BC有一个公共点,如图③所示.例2(1)过一点A可以画几条直线?(2)过两点A,B可以画几条直线?(3)如果你想将一根细木条固定在墙上,至少需要几个钉子?解:(1)无数条.(2)1条.(3)2个.活动2 跟踪训练1.用两个钉子把直木条钉在墙上,木条就固定了,这说明(B) A.一条直线上只有两点B.两点确定一条直线C.过一点可画无数条直线D.直线可向两端无限延伸2.如图,在平面内有A、B、C三点.(1)画直线AC,线段BC,射线AB;(2)在线段BC上任取一点D(不同于B、C),连接线段AD;(3)数数看,此时图中线段共有6条.解:(1)(2)如图.(3)图中有线段6条.活动3 课堂小结1.掌握线段、射线、直线的表示方法.2.理解线段、射线、直线的联系和区别.3.经过两点有且只有一条直线.4.2 比较线段的长短1.借助具体情境,了解“两点之间的所有连线中,线段最短”的性质.(重点) 2.能借助直尺、圆规等工具比较两条线段的长短. 3.能用尺规作一条线段等于已知线段.阅读教材P110~111,完成预习内容. (一)知识探究1.两点之间的所有连线中,线段最短.2.我们把两点之间线段的长度,叫做这两点之间的距离.3.如图,点M 把线段AB 分成相等的两条线段AM 与BM ,点M 叫做线段AB 的中点.这时AM =BM =12AB(或AB =2AM=2BM).(二)自学反馈1.把弯曲的河道改直,这样能缩短航程,这样做的道理是(B) A .两点确定一条直线 B .两点之间线段最短 C .线段有两个端点 D .线段可以比较大小2.线段AB =6厘米,点C 在直线AB 上,且BC =3厘米,则线段AC 的长为(C) A .3厘米 B .9厘米 C .3厘米或9厘米 D .6厘米 3.M 是线段AB 上的一点,其中不能判定点M 是线段AB 中点的是(A) A .AM +BM =AB B .AM =BM C .AB =2BM D .AB =2AM活动1 小组讨论例1 如图,已知线段AB ,用尺规作一条线段等于已知线段AB.解:作图步骤如下: (1)作射线A ′C ′;(2)用圆规在射线A ′C ′上截取A ′B ′=AB. 线段A ′B ′就是所求作的线段.例2 在直线l 上顺次取A ,B ,C 三点,使得AB =4 cm ,BC =3 cm.如果点O 是线段AC 的中点,那么线段OB 的长度是多少? 解:如图:∵AB =4 cm ,BC =3 cm ,∴AC =AB +BC =7 cm. ∵O 是线段AC 的中点,∴AO =12AC =12×7=3.5(cm).∴OB =AB -AO =4-3.5=0.5(cm).活动2 跟踪训练1.如图,已知点C 是线段AB 的中点,点D 是线段AC 的中点,完成下列填空.(1)AB =2BC ,BC =2AD ; (2)BD =3AD ,AB =4AD.2.如图是A 、B 两地之间的公路,在公路工程改造计划时,为使A 、B 两地行程最短,应如何设计线路?在图中画出.你的理由是两点之间线段最短.解:图略.3.如图,已知线段a 、b ,求作线段AB ,使AB =2a +b.解:如图,线段AB 为所作.4.如图,点C 是线段AB 上一点,点M 、N 、P 分别是线段AC ,BC ,AB 的中点. (1)若AB =10 cm ,则MN =5cm ;(2)若AC =3 cm ,CP =1 cm ,求线段PN 的长.解:∵AC =3,CP =1, ∴AP =AC +CP =4, ∵P 是线段AB 的中点, ∴AB =2AP =8. ∴CB =AB -AC =5.∵N 是线段CB 的中点,∴CN =12CB =52.∴PN =CN -CP =52-1=32.活动3 课堂小结1.本节课学习了线段的性质和两点之间的距离的定义.2.本节课学会了画一条线段等于已知线段,学会了比较线段的长短.4.3 角1.通过丰富的实例,进一步理解角的有关概念和角的表示方法,能在具体情境中进行角的表示.(重点)2.认识角的常用度量单位:度、分、秒,并会进行简单的计算.(难点)阅读教材P114~115,完成预习内容.(一)知识探究1.角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点.角也可以看成是由一条射线绕它的端点旋转而成的.2.一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角.终边继续旋转,当终边旋转到与始边再次重合时,所成的角叫做周角.3.角的表示方法:角用“∠”表示,读做“角”.(1)用三个大写字母表示.(2)用表示角的顶点的字母表示.(3)用一个数字或一个希腊字母(α、β、γ、θ)表示.3.1平角=180°,1周角=360°.4.1°=60′,1′=60″.(二)自学反馈1.下列图形中,能用∠ABC,∠B,∠1表示同一个角的是(D)2.2 700″=45′=0.75度.活动1 小组讨论例1 计算:(1)1.45°等于多少分?等于多少秒?(2)1 800″等于多少分?等于多少度?解:(1)60′×1.45=87′,60″×87=5 220″即 1.45°=87′=5 220″.(2)1 800″×160=30′,30′×160=0.5°.例2 如图所示,OA表示什么方向的一条射线?并画出表示下列方向的射线.(1)北偏西60°;(2)南偏东30°;(3)西南方向.解:OA表示北偏东30°的射线.(1)如图中的射线OB.(2)如图中的射线OC.(3)如图中的射线OD. 活动2 跟踪训练1∠1 ∠3 ∠3 ∠4 ∠5∠BCE ∠BAC ∠BAE、∠BAC∠DAB ∠ABC2.8时30分,时针与分针所成的角是75°.3.计算:180°-(45°17′+52°57′).解:81°46′.活动3 课堂小结1.角的表示方法.2.度、分、秒之间的换算.4.4 角的比较1.会比较角的大小.(重点)3.在操作活动中认识角的平分线,并运算角平分线的定义解决角的计算.(难点)阅读教材P118~119,完成预习内容. (一)知识探究1.比较两个角的大小,我们可以用量角器量出角的度数,然后比较它们的大小,也可以把两个角的顶点及一条边重合,另一条边放在重合边的同侧,然后比较它们的大小,这两种方法分别叫度量法和叠合法.2.角平分线定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线. (二)自学反馈1.将∠1、∠2的顶点和其中一边重合,另一边都落在重合边的同侧,且∠1>∠2,那么∠1的另一边落在∠2的(C) A .另一边上 B .内部 C .外部 D .无法判断 2.细心想一想,看谁做得最快.(1)如图1,若OB 是∠AOC 的平分线,则∠AOC =2∠AOB =2∠BOC ,∠AOB =∠BOC =12∠AOC .(2)如图2,若OB 是∠AOC 的平分线,OC 是∠BOD 的平分线,你能从中找出哪些相等的角? 解:∠AOB =∠BOC =∠COD ,∠AOC =∠BOD.活动1 小组讨论例 如图,已知点O 为直线AB 上一点,OM ,ON 分别是∠AOC ,∠BOC 的平分线,求∠MON 的度数.解:∵点A ,O ,B 在一条直线上, ∴∠AOB =180°.∵∠AOC +∠BOC =∠AOB , ∴∠AOC +∠BOC =180°.又∵OM ,ON 分别是∠AOC 和∠BOC 的平分线, ∴∠MOC =12∠AOC ,∠CON =12∠BOC.∴∠MOC +∠CON =12(∠AOC +∠BOC)=12×180°=90°.又∵∠MON =∠MOC +∠CON ,∴∠MON =90°.活动2 跟踪训练如图,点A 、O 、B 在一直线上,∠AOC =80°,∠COE =50°,OD 是∠AOC 的平分线. (1)试比较∠DOE 与∠AOE ,∠AOC 与∠BOC 的大小;(2)求∠DOE的度数;(3)OE是∠BOC的平分线吗?为什么?解:(1)∠DOE<∠AOE,∠AOC<∠BOC.(2)90°.(3)是,因为∠COE=∠BOE=50°活动3 课堂小结1.会用量角器度量角,并会比较两个角的大小.2.记住角平分线的定义.4.5 多边形和圆的初步认识1.在具体情境中认识多边形、正多边形、圆、扇形.(重点) 2.能根据扇形和圆的关系求扇形的圆心角的度数.(难点)阅读教材P122~124,完成预习内容. (一)知识探究1.三角形、四边形、五边形、六边形等都是多边形.它们都是由若干条不在同一直线上的线段首尾顺次相连组成的封闭平面图形.连接多边形不相邻两个顶点的线段叫做多边形的对角线. 2.各边相等,各角也相等的多边形叫做正多边形.3.平面上,一条线段绕着它固定的一个端点旋转一周,另一个端点形成的图形叫做圆.固定的端点称为圆心.圆上任意两点间的部分叫做圆弧.由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形.顶点在圆心的角叫做圆心角. (二)自学反馈1.如图所示的图形中,属于多边形的有(A)A .3个B .4个C .5个D .6个2.若一个多边形有12个内角,则这个多边形为12边形,若一个多边形有20个顶点,则这个多边形为20边形. 3.画一个半径是2 cm 的圆,并在其中画一个圆心角为90°的扇形,你会计算这个扇形的面积吗?解:半径是2 cm 的圆的面积为4π cm 2,因为一个周角是360°,所以圆心角为90°的扇形面积是圆面积的14.所以这个扇形的面积是π cm 2.活动1 小组讨论例1 如图,从一个多边形的同一个顶点出发,分别连接这个顶点与其不相邻的各顶点,这种线段叫多边形的对角线.多边形的边数 4 5 6 7 … 从一个顶点引 对角线的条数1234…经过n 边形的一个顶点可以画(n -3)条对角线.例2 将一个圆分割成三个扇形,它们的圆心角的度数比为1∶2∶3,求这三个扇形的圆心角的度数. 解:因为一个周角为360°,所以分成的三个扇形的圆心角分别是: 360°×11+2+3=60°,360°×21+2+3=120°,360°×31+2+3=180°.活动2 跟踪训练1.观察如图所示图形,回答下列问题:(1)从八边形ABCDEFGH 的顶点A 出发,可以画出多少条对角线?分别用字母表示出来;(2)这些对角线将八边形分割成多少个三角形?解:(1)5条,它们分别是线段AC ,AD ,AE ,AF ,AG.(2)6个三角形.事实上,经过多边形的一个顶点有(n -3)条对角线,并将多边形分成(n -2)个三角形.2.半径为1的圆中,扇形AOB 的圆心角为120°,请在圆内画出这个扇形并求它的面积. 解:画图略,面积是π3.活动3 课堂小结1.了解多边形、正多边形、圆的相关概念.2.知道多边形的内角、顶点、对角线和边数之间的数量关系. 3.学会根据扇和圆的关系求扇形圆心角的度数.。
北师大版数学七年级上册4.1《线段、射线、直线》教学设计
北师大版数学七年级上册4.1《线段、射线、直线》教学设计一. 教材分析《线段、射线、直线》是北师大版数学七年级上册第4章第1节的内容。
本节课的主要内容是让学生了解线段、射线、直线的定义和特点,掌握它们的性质,并能够区分它们。
教材通过直观的图形和具体的实例,引导学生探究线段、射线、直线的性质,从而让学生更好地理解和掌握这些概念。
二. 学情分析七年级的学生已经具备了一定的几何知识,对一些基本的几何概念有一定的了解。
但线段、射线、直线这三个概念比较抽象,学生可能难以理解。
因此,在教学过程中,教师需要通过生动的实例和直观的图形,帮助学生理解和掌握这些概念。
三. 教学目标1.让学生了解线段、射线、直线的定义和特点,掌握它们的性质。
2.培养学生的观察能力、思考能力和动手操作能力。
3.培养学生合作学习、积极探究的学习习惯。
四. 教学重难点1.重点:线段、射线、直线的定义和性质。
2.难点:射线和直线的特点,以及如何区分它们。
五. 教学方法1.采用直观演示法,通过直观的图形和实例,让学生直观地感受线段、射线、直线的特点。
2.采用问题驱动法,引导学生主动思考和探究,从而深入理解线段、射线、直线的性质。
3.采用合作学习法,让学生在小组内讨论和交流,培养学生的合作意识和团队精神。
六. 教学准备1.准备相关的图形和实例,用于直观演示。
2.准备问题卡片,用于引导学生思考和探究。
3.准备小组讨论的模板,用于合作学习。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的直线、射线和线段的实例,如拉链、射箭等,引导学生观察和思考:这些图形有什么共同的特点?它们有什么区别?2.呈现(10分钟)教师通过PPT或黑板,呈现线段、射线、直线的定义和性质,让学生直观地感受它们的特点。
同时,教师通过提问,引导学生思考和探究:线段、射线、直线有什么共同的特点?它们有什么区别?3.操练(10分钟)教师提出一些有关线段、射线、直线的问题,让学生动手操作,如画一条线段、射线或直线,测量线段的长度等。
七年级数学上册第4章基本平面图形4.1线段、射线、直线教案1(新版)北师大版
4.1 线段、射线、直线1.在现实情境中了解线段、射线、直线等简单的平面图形.2.理解直线的性质,感受图形世界的丰富多彩.一、情境导入我们生活在一个丰富多彩的图形世界里,生活中处处都有图形,如笔直的铁轨、手电筒发出的光、一根铅笔等等,你能用图形表示以上现象吗?二、合作探究探究点:线段、射线、直线【类型一】 线段、射线和直线的概念如图所示,下列说法正确的是( )A.直线AB 和直线CD 是不同的直线B.射线AB 和射线BA 是同一条射线C.线段AB 和线段BA 是同一条线段D.直线AD =AB +BC +CD解析:在直线上任意两个大写字母都可以表示这条直线,所以A 错;表示射线时,第一个字母表示射线的端点,端点字母不同,射线必然不同,所以B 错;AB +BC +CD 表示线段AD 的长,而直线AD 无长短,所以D 错.故选C.方法总结:熟练掌握射线、直线、线段的表示方法是解决此类问题的关键.【类型二】 判断直线交点的个数 观察下列图形,并阅读图形下面的相关文字:错误! 错误! 错误!猜想:(1)5条直线相交最多有几个交点?(2)6条直线相交最多有几个交点?(3)n 条直线相交最多有几个交点?解析:先观察图形,找出交点的个数与直线的条数之间的关系,然后进行计算即可.解:(1)5条直线相交最多有5×(5-1)2=10个交点; (2)6条直线相交最多有6×(6-1)2=15个交点;(3)n 条直线相交最多有n (n -1)2个交点.方法总结:关键是观察图形,找出规律,总结出同一平面内n 条直线相交最多有n (n -1)2个交点.【类型三】 线段条数的确定如图所示,图中共有线段( )A.8条B.9条C.10条D.12条解析:可以根据线段的定义写出所有的线段即可得解;也可以先找出端点的个数,然后利用公式n (n -1)2进行计算.方法一:图中线段有:AB 、AC 、AD 、AE 、BC 、BD 、BE 、CD 、CE 、DE ;共4+3+2+1=10条;方法二:共有A 、B 、C 、D 、E 五个端点,则线段的条数为5×(5-1)2=10条.故选C.方法总结:找线段时要按照一定的顺序做到不重不漏,若利用公式计算时则更加简便准确.【类型四】 线段、射线和直线的应用由郑州到北京的某一次往返列车,运行途中停靠的车站依次是:郑州——开封——商丘——菏泽——聊城——任丘——北京,那么要为这次列车制作的火车票有( )A.6种B.12种C.21种D.42种解析:从郑州出发要经过6个车站,所以要制作6种车票;从开封出发要经过5个车站,所以要制作5种车票;从商丘出发要经过4个车站,所以要制作4种车票;从菏泽出发要经过3个车站,所以要制作3种车票;从聊城出发要经过2个车站,所以要制作2种车票;从任丘出发要经过1个车站,所以要制作1种车票.再考虑是往返列车,起点与终点不同,则车票不同,乘以2即可.即共需制作的车票数为:2×(6+5+4+3+2+1)=2×21=42种.故选D.方法总结:可以结合线段条数的确定方法,也可以用公式n (n -1),将n =7代入即可.本节课是学生学习几何图形知识的基础,这堂课需要掌握的知识点多,而且比较抽象.教师在教学时要体现新课程的目标,引导学生观察分析认识直线、射线和线段,掌握它们之间的联系与区别,有效地利用学生已有的旧知来引导学生学习新知,为后面学习新知做好了铺垫.。
2024秋七年级数学上册第4章基本平面图形4.1线段、射线、直线教案(新版)北师大版
目标:培养学生的合作能力和解决问题的能力。
过程:
将学生分成若干小组,每组选择一个与线段、射线、直线相关的主题进行深入讨论。
小组内讨论该主题的现状、挑战以及可能的解决方案。
每组选出一名代表,准备向全班展示讨论成果。
5. 课堂展示与点评(15分钟)
目标:锻炼学生的表达能力,同时加深全班对线段、射线、直线的认识和理解。
① 使用图形和符号:用直观的图形和符号表示线段、射线、直线,如用小圆点表示端点,箭头表示射线的方向等。
② 色彩运用:适当运用色彩,区分线段、射线、直线,增强视觉效果。
③ 创意标题:给板书设计一个有趣、吸引人的标题,如“探索直线、射线的秘密”等。
④ 互动环节:在板书设计中加入互动环节,如让学生上台画线段、射线、直线等。
4. 数学建模:培养学生运用数学知识解决实际问题的能力,能够将线段、射线、直线的基本概念和性质应用到实际问题中,建立数学模型进行分析和解决。
三、学情分析
针对2024秋七年级数学上册第4章“基本平面图形”的第1节“线段、射线、直线”的教学内容,对学生情况进行深入分析如下:
1. 学生层次:根据北师大版教材的安排,本节课适用于七年级学生。在这个阶段,学生已经完成了对实数的初步学习,具备了一定的逻辑推理和空间想象能力。然而,由于学生的个体差异,他们在知识、能力和素质方面存在不同层次的需求和发展水平。
(3)合作学习法:组织学生进行小组讨论和合作,让学生在交流中互相学习,提高学生的团队协作能力和解决问题的能力。
2. 教学手段
为了提高教学效果和效率,本节课将充分利用以下现代化教学手段:
(1)多媒体设备:通过课件、动画等形式展示线段、射线、直线的定义和性质,使抽象的概念更加直观,帮助学生更好地理解和记忆。
北师大版数学七年级上册4.1《线段、射线、直线》教案
北师大版数学七年级上册4.1《线段、射线、直线》教案一. 教材分析《线段、射线、直线》是北师大版数学七年级上册第4章的第一节内容。
本节内容主要让学生了解线段、射线和直线的定义及其性质,掌握它们的表示方法,并为后续学习几何图形打下基础。
教材通过生动的实例和丰富的图形,引导学生观察、思考、探索,从而掌握线段、射线和直线的基本概念。
二. 学情分析七年级的学生已经具备了一定的空间想象能力和逻辑思维能力,他们对平面几何图形有一定的了解。
但对于线段、射线和直线的定义及性质,他们可能还比较陌生。
因此,在教学过程中,教师需要借助图形和实例,让学生直观地理解这些概念,并能够运用它们解决实际问题。
三. 教学目标1.了解线段、射线和直线的定义及其性质。
2.能够正确表示线段、射线和直线。
3.培养学生的空间想象能力和逻辑思维能力。
4.学会运用线段、射线和直线解决实际问题。
四. 教学重难点1.重点:线段、射线和直线的定义及其性质。
2.难点:线段、射线和直线的表示方法。
五. 教学方法1.采用直观演示法,通过展示实物和图形,让学生直观地理解线段、射线和直线的概念。
2.采用引导发现法,引导学生观察、思考、探索,从而发现线段、射线和直线的性质。
3.采用实践操作法,让学生动手画图,巩固所学知识。
4.采用分组合作法,让学生分组讨论,培养团队协作能力。
六. 教学准备1.准备相关的实物和图形,如直尺、射线枪等。
2.准备多媒体教学课件,包括线段、射线、直线的动画演示。
3.准备练习题和课后作业。
七. 教学过程1.导入(5分钟)利用实物和图形,引导学生观察、思考,让学生举例说明生活中常见的线段、射线和直线。
例如,教室里的地板砖可以看作是矩形,而地板砖的边可以看作是线段、射线或直线。
2.呈现(10分钟)通过多媒体课件,展示线段、射线和直线的动画演示,让学生直观地了解它们的定义和性质。
同时,教师引导学生发现线段、射线和直线的共同特点和不同之处。
3.操练(10分钟)让学生分组合作,每组选择一种线段、射线或直线,用直尺和射线枪进行实际操作,画出相应的图形。
4.1线段、射线、直线(教案)北师大版(2024)数学七年级上册
第四章基本平面图形4.1线段、射线、直线第1课时线段、射线、直线1.理解线段、射线和直线的概念,掌握它们的表示方法,并能理解它们之间的区别与联系;2.理解直线的性质,并掌握它的应用.重点理解线段、射线与直线的概念,掌握它们的表示方法,并能理解它们之间的区别与联系.难点直线性质的理解及应用.一、导入新课课件出示一幅对联:加减乘除谋算千秋功业点线面体描绘四化蓝图教师:这幅对联中有关数学方面的词有哪些?学生:加减乘除,点线面体.教师:上联中的加减乘除是我们非常熟悉的数学中的四则运算,下联中的点线面体在第一章《丰富的图形世界》中有了初步的了解.今天我们就来研究平面图形中的线段、射线、直线.二、探究新知1.线段、射线、直线的概念绷紧的琴弦(如图4-1)、黑板的边沿都可以近似地看作线段(segment).线段有两个端点.将线段向一个方向无限延长就形成了射线(ray).手电筒、探照灯所射出的光线(如图4-2)可以近似地看作射线.射线有一个端点.将线段向两个方向无限延长就形成了直线(line).直线没有端点.生活中还有哪些物体可以近似地看作线段、射线、直线?请举例说明,并与同伴进行交流.教师:下面分别是什么图形?有什么特征?引导学生总结:线段、射线、直线的区别和联系.区别:①直线没有端点,射线有一个端点,线段有两个端点;②直线可以向两个方向无限延伸,射线可以向一个方向无限延伸,线段不能延伸;③直线、射线不能测量长度,线段可以测量长度.联系:将线段向一端延长得到射线,向两端延长得到直线,将射线向一方延长得到直线,即线段是射线的一部分,线段、射线是直线的一部分.2.线段、射线、直线的表示方法教师:在几何中,我们怎样表示线段、射线和直线呢?学生思考后举手回答,教师讲评.(1)课件出示教材第111页图4-1,教师讲解线段的表示方法:以C,B为端点的线段,记作线段CB或线段BC.有时一条线段也可以用一个小写字母表示,,记作线段a.由此可知,线段有两种表示方法:①可以用它的两个端点的大写字母表示;②可以用一个小写字母表示.强调:表示线段的两个字母没有顺序性,如线段BA与线段AB 表示的是同一条线段;表示线段时,在字母的前面一定要写上“线段”两字.(2)课件出示教材第111页图4-2,学生用自己的语言描述射线的表示方法.引导学生总结出:一条射线可以用它的端点和射线上的另一点表示,如图中的射线,记作射线OM,其中表示端点的字母必须写在另一个字母的前面,而且在两个字母的前面要写上“射线”两字.强调:①表示射线的两个大写字母中第一个一定是端点.②同一条射线有不同的表示方法,如下图中的射线,可以表示为射线AB,也可表示为射线AC.③端点相同的射线不一定是同一条射线,端点不同的射线一定不是同一条射线.④两条射线为同一条射线必须具备的条件:端点相同;延伸的方向相同.(3)课件出示教材第111页图4-3,教师引导学生总结归纳直线的表示方法:一条直线可以用在这条直线上的两个点来表示,中的直线记作直线AB或直线BA,一条直线也可以用一个小写字母表示,,可以记作直线l.所以直线也有两种表示方法.强调:字母前要注明直线两字;表示直线的两个字母也可交换位置.思考:一个点和一条直线可能会有哪些位置关系?请你画一画.3.直线的性质教师:请同学们按下列要求画出直线,并说说从中发现了什么.(1)过一点A画直线.(2)过两点A,B画直线.(3)如果你想将一根细木条固定在墙上(如图4-7),至少需要几个钉子?学生画图探究,得出结论.教师指名两位同学上黑板画图.教师:过一点可以画出无数条直线.过两点可以画一条直线.即两点确定一条直线.如果将一根木条固定在墙上,至少需几个钉子?教师总结:经过两点有且只有一条直线,即两点确定一条直线.三、课堂练习1.教材第112页“随堂练习”第1,2题.2.如图,已知A,B,C三点,过其中的任意两点画直线,一共可以画几条直线?用字母把这些直线表示出来.【答案】2.一共可以画三条直线,分别为直线AB,直线AC,直线BC四、课堂小结1.如何表示线段、射线、直线?它们的区别和联系是什么?2.直线有什么性质?任举两例说明它在生活中的应用.五、课后作业教材第116页习题4.1第1,2,6题.线段、射线、直线是比较简单的图形,却是非常重要的一项数学基础知识.在教学过程中,通过展示图形,让学生了解线段、射线、直线的概念,通过教师的引导,使学生理解线段、射线、直线的区别及联系.通过让学生动手画直线,让学生理解直线的性质,不仅激发了学生的兴趣,发展学生的思维,而且很好地突破了教学重难点.课堂上,以学生为主,培养学生的自主学习能力和动手操作能力.为学生提供足够的时间和空间,使学生在轻松愉快的环境下学习.第2课时比较线段的长短1.了解线段的基本事实;能借助直尺、圆规等工具比较两条线段的长短;能用圆规作一条线段等于已知线段;2.理解线段中点的概念,会用数量关系表示中点及进行相应的计算.重点掌握线段长短的两种比较方法;线段中点的概念及表示方法.难点叠合法比较两条线段的长短;会作一条线段等于已知线段.一、导入新课课件出示某市交通地图的一部分(如图),提出问题:(1)请你画出从环岛到茂华中学的线路草图(画出4条即可).(2)从环岛出发,你喜欢走哪条路线到达茂华中学?为什么?(3)比较从环岛到茂华中学所有路线的长短,从中可以得出什么结论?学生小组讨论完毕后,派代表回答,教师点评.二、探究新知1.线段的基本事实课件出示问题:如图,已知从A地到C地共有4条路,第几条路最近?引导学生根据生活经验得出:两点之间的所有连线中,线段最短.教师进一步讲解:两点之间线段的长度,叫作这两点之间的距离.练习:如图,线段AB的长度为3 cm,那么就说A,B两点之间的距离为3 cm.2.比较线段的长短(1)图4-11中哪棵树较高?哪支铅笔较长?窗框相邻的两条边哪条较长?你是怎么比较的?说说你的方法和理由.学生分小组合作探究,指名回答.教师:如果是两条线段,又该如何比较?学生思考后举手回答.教师:请在练习本上画出AB,CD两条线段,思考:如何比较线段AB与线段CD的长短?可以用几种方法比较?请你说出你的方法和理由.学生分小组合作探究后,派代表回答.教师进一步讲解比较线段的两种方法:(1)叠合法:把线段AB移到线段CD上去,将其中一个端点重合在一起加以比较.(2)度量法:用刻度尺量出线段AB与线段CD的长度,再进行比较.强调:①度量线段的实质是将线段与刻度尺进行比较,因此,刻度的单位要统一.②度量的过程总会存在一些误差,但通常忽略不计.③两条不同的线段有三种大小关系.④叠合法比较时必须将其中的一个端点重合,另一个端点在同一方向上进行比较.(用尺规作图的方法可以将一条线段移到另一条线段上)如图4-13,已知线段AB,用尺规作一条线段等于已知线段AB.作法:1.作射线A′C′(如图4-14).2.用圆规在射线A′C′上截取A′B′=AB.线段A′B′就是所要作的线段.3.线段的中点教师在黑板上画一条线段,提出问题:你能把它分成两条相等的线段吗?学生操作探究,指名板演.教师讲解:如图4-15,点M把线段AB分成相等的两条线段AM与BM,点M叫作线段AB的中点.这时AM=BM=12AB或AB=2AM=2BM.教师点评:(1)线段的中点必须在线段上,如果已知AB=BC,那么点B不一定是线段AC的中点;(2)若B,C把线段AD分成相等的三条线段,点B,C叫作线段AD的三等分点,类似地还有四等分点、五等分点;(3)从位置上看,线段的中点在该线段的正中间;(4)线段的中点具有唯一性,即一条线段有且只有一个中点.课件出示练习:如图,已知线段AB=8 cm,C为AB上一点,M为AB的中点,MC=2 cm,N为AC的中点,求MN的长.学生合作探究后,汇报答案.分析:根据M为AB的中点可知:AM=MB=12AB=4 cm.又知MC=2 cm,所以AC=AM+MC=4+2=6(cm),从而求得AN=12AC =3 cm,所以MN=AM-AN=4-3=1(cm).三、课堂练习教材第115页“随堂练习”第1,2,3题.四、课堂小结1.线段的基本事实?2.什么是两点之间的距离?3.怎样比较两条线段的长短?4.什么是线段的中点?五、课后作业教材第116~117页习题4.1第3,4,5题.本节课的内容是比较线段的长短,这涉及线段的度量和比较,是几何中的一个基本问题.在教学过程中,把身边的数学材料引入课堂,从而使原来枯燥无味的讲解转变为生动活泼的学习活动,调动了学生学习的积极性,加深了学生对几何知识的理解,从而达到了很好的教学效果,同时也培养了学生分析问题、解决问题、应用数学知识的能力.在课堂上,始终遵循以学生为主,教师为辅的教学原则,学生动手操作、自主探究,让学生经历数学知识的获得与应用过程来学习几何策略的方法,初步培养学生数学语言的规范性.。
北师大版七年级数学上册《第四章基本平面图形4.1线段、射线、直线》说课稿
北师大版七年级数学上册《第四章基本平面图形4.1线段、射线、直线》说课稿一. 教材分析《北师大版七年级数学上册》第四章主要介绍基本平面图形,而4.1节“线段、射线、直线”是这一章的开篇,起到了引入和基础的作用。
本节内容通过讲解线段、射线、直线的定义和性质,让学生了解和掌握这三种基本几何元素,为后续学习其他平面图形打下基础。
二. 学情分析七年级的学生已经初步掌握了小学数学的基本知识,对几何图形有一定的认识。
但是,对于线段、射线、直线的定义和性质,他们可能还比较陌生。
因此,在教学过程中,需要通过生动的实例和直观的图形,让学生深入理解和掌握这些概念。
三. 说教学目标1.知识与技能目标:让学生理解和掌握线段、射线、直线的定义和性质,能够正确地判断一个图形是线段、射线还是直线。
2.过程与方法目标:通过观察、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们积极思考、勇于探索的精神。
四. 说教学重难点1.教学重点:线段、射线、直线的定义和性质。
2.教学难点:如何让学生理解和区分这三种基本几何元素,并能够运用它们解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法。
2.教学手段:利用多媒体课件、实物模型和黑板进行教学。
六. 说教学过程1.导入新课:通过一个生活中的实例,如“如何在尺子上找到两点之间的最短距离”,引出线段的概念。
2.讲解与示范:讲解线段的定义和性质,并用多媒体课件展示线段的图形。
3.互动与探究:让学生思考和讨论射线和直线的概念,引导学生发现它们与线段的区别和联系。
4.总结与拓展:总结线段、射线、直线的性质,并给出一些实际问题,让学生运用所学知识解决。
5.课堂练习:布置一些有关线段、射线、直线的练习题,让学生巩固所学知识。
七. 说板书设计板书设计如下:1. 定义:两点间的线段是最短的距离。
2. 性质:线段有两个端点,有限长。
北师版初中数学七年级上册精品教案 第4章 基本平面图形 1 线段、射线、直线
第四章基本平面图形1 线段、射线、直线教师备课素材示例●情景导入我们生活在一个丰富多彩的图形世界里,生活中处处都有图形,如笔直的铁轨、手电筒发出的光、一根铅笔等等,你能用图形表示以上事物吗?【教学与建议】教学:通过学生熟悉的场景和事物导入新课,使学生感受到数学就在我们身边.建议:让学生明白铅笔、光线、铁轨之间的相同点与不同点,为本节课的学习做铺垫.●悬念激趣下面我们一起来欣赏《西游记》中的精彩片段.(学生看视频)通过刚才的视频短片,我们感受到了金箍棒的神奇.孙悟空手中的金箍棒在没有发生变化时,给我们以什么图形的近似形象?当金箍棒向一个方向无限延长时,又给我们什么图形的近似形象?当金箍棒向两个方向无限延长时,又能给我们什么图形的近似形象?其实在我们的日常生活中,很多物体都给我们这样的近似形象,今天我们就一起学习——线段、射线、直线.【教学与建议】教学:利用《西游记》中的精彩视频抽象成线段、射线、直线的近似形象,使学生感受数学在生活中的应用.建议:学生感受从实际问题中抽象出图形的过程,同时在解答问题过程中形成认知冲突.直线和线段的命名与表示两点的字母的书写顺序无关,表示射线时,第一个字母表示射线的端点,端点字母不同,射线必然不同.【例1】给出下列图形,其表示方法不正确的是(B)A.直线ABB.射线OPC.直线lD.线段a【例2】如图,A,B,C,D为直线上的四个点,则图中以C为端点的射线有__2__条,它们是__射线CD、射线CB__.直线上一点将直线分成两条射线,数射线条数时,抓住端点和方向.【例3】如图,图中有线段__6__条,分别是线段__AD,AE,AB,DE,DB,EB__;图中有射线__5__条,分别是射线__BC、AC、DF、EF、BF__.在平面内,利用两个点确定一条直线这个事实可以找到符合条件的直线.【例4】要把木条固定在墙上至少需要钉__两__颗钉子,根据是__经过两点有且只有一条直线__.在同一平面内,任意三点均不共线的n个点最多可以确定n(n-1)2条线段.利用这个结论解决车票、足球小组循环赛、握手等问题.【例5】如图是广深港高铁线路图,往返于广州南站和深圳北站的高铁列车中途停靠庆盛站、虎门站和光明城站,则有__10__种不同的票价,要准备__20__种车票.高效课堂教学设计在现实情境中了解线段、射线、直线等简单的平面图形.线段、射线与直线的概念及表示方法.直线的性质的理解.活动一:创设情境导入新课线段、射线、直线对大家而言并不陌生,在小学里我们对它已有了了解.现在我们继续学习线段、射线、直线的相关知识.(课件图片:手电筒、探照灯射出的光、紧绷的琴弦)活动二:实践探究交流新知【探究1】线段、射线、直线的概念问题:生活中,有哪些物体可以近似地看做线段、射线、直线?学生很容易从生活中找到线段、射线、直线的例子,通过观察,加深对线段、射线、直线概念的理解.绷紧的琴弦、黑板的边沿可以近似地看做__线段__,线段有两个端点.手电筒、探照灯的光线可以近似地看做__射线__,射线只有一个端点.__直线__没有端点,将线段向两个方向无限延长就形成__直线__.【归纳】线段、射线都是直线的一部分,射线、直线不可度量,线段可以度量.【探究2】线段、射线、直线的表示方法问题:线段、射线、直线该怎样表示呢?学生通过观察,了解并掌握线段、射线、直线的表示方法.我们可以用以下方式分别表示线段、射线、直线:【归纳】线段、射线、直线都可以用两个大写字母表示,也可以用一个小写字母表示.注意:表示射线时,端点字母必须写在前面.活动三:开放训练应用举例【例1】教材P107“做一做”【方法指导】经过两点有且只有一条直线.这一事实可以简述为:两点确定一条直线.解:(1)过一点A可以画__无数__条直线;(2)过两点A,B可以画__1__条直线;(3)至少需要__2__个钉子.【例2】按下列语句画图:(1)点P不在直线l上;(2)线段a、b相交于点P;(3)直线a经过点A,而不经过点B;(4)直线l和线段a、b分别交于A,B两点.【方法指导】规范画图是学好几何的基础,要养成规范画图,画图完毕即标上表示点或线的字母的良好习惯.解:(1)(2)(3)(4)活动四:随堂练习1.下列语句错误的是(B)A.延长线段ABB.延长射线ABC.直线m和直线n相交于P点D.直线AB向两方无限延伸,所以不能延长直线AB2.如图所示的四幅图中,符合“射线PA与射线PB是同一条射线”的图为(C)A B C D3.指出下图中的直线、射线、线段,并一一表示出来.解:直线AB(或直线AC,直线BC);射线AB,射线BC,射线CB,射线BA;线段AB,线段AC,线段BC.4.作图题:已知平面上四点A,B,C,D.(1)画直线AB;(2)画射线AD;(3)直线AB,CD相交于E;(4)连接AC,BD相交于点F.解:活动五:课堂小结与作业学生活动:通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?教学说明:教师引导学生回顾直线、射线、线段的有关知识,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.作业:课本P108习题4.1中的T1、T2、T4本节课是学生学习几何图形知识的基础,这堂课需要掌握的知识点多,而且比较抽象.教师在教学时要体现新课程的目标,引导学生观察、分析、认识直线、射线和线段,掌握它们之间的联系与区别,有效地利用学生已有的旧知来引导学生学习新知,为后面学习新知做好了铺垫.。
七年级数学上册第四章基本平面图形4.1线段、射线、直线教案(新版)北师大版
下联中的点线面体在第一章《丰富的图形世界》中有了初步的了解,知道它们有一定的规
律。(展示图片)
生:点动成线、线动成面、面动成体。
学 师:观察一幅图片。在这幅图片上不难发现也是有点线面构成的,那它们有什么特点和规
律呢?通过第四章“平面图形及其位置关系”我们将对பைடு நூலகம்进一步的认识。今天我们就来研
究平面图形中的线段、射线、直线。(板书)
4.1 线段、射线、直线
课题
4.1 线段、射线、直线
知识目标:在现实情景中理解并能表示线段、射线、直线等简单的平面图形,感 受图形界的丰富多彩。
教学
能力目标:通过操作活动了解两点确定一条直线等事实,积累操作活动经验,培
养学生的观察能力和发现个体差异的能力及能够运用辩证发展的眼光看待问题。
目标
情感目标:能使学生积极参与数学活动中来,感受图形世界的丰富多彩,激发学
三.课堂活动
师:布置小组活动(每小组在一张给出定点的纸中完成)
(1) 过一点 A 画直线;
(2) 过两点 A、 B 画直线。
生:小组活动。
师:巡视,辅导。
生:小组一名代表汇报结果,并展示小组活动记录。
师:你可以从你的活动中发现什么结论吗?
生:尽可能用自己的话准确描述结论。
教
师:动态演示经过一点可画无数条直线,经过两点只可画一条直线。
二.新课讲解
师:线段射线直线对大家并不陌生,在小学里我们对它已有了了解。现
过 在请大家观察下面图片(绷紧的琴弦、人行横道)。它们可以近似的看作什么?
生:线段
师:它们有什么共同点?
生:小组讨论,归纳:都是笔直的、有起始点和终点(即两个端点);可以度量。
师:屏幕打出线段的概念。(展示手电筒),它又可以近似看作什么?
2023-2024学年北师大版七年级数学上册《第四章基本平面图形4.1线段、射线、直线》教学设计
2023-2024学年北师大版七年级数学上册《第四章基本平面图形4.1线段、射线、直线》教学设计一. 教材分析《第四章基本平面图形4.1线段、射线、直线》是北师大版七年级数学上册第四章的第一节内容。
本节内容主要介绍线段、射线和直线的定义、性质和表示方法。
通过本节内容的学习,学生能够理解线段、射线和直线的概念,掌握它们的性质,并能够运用它们解决实际问题。
二. 学情分析七年级的学生已经学习了平面几何的基本概念,对图形的认识有一定的基础。
但是,对于线段、射线和直线的定义和性质,他们可能还比较陌生。
因此,在教学过程中,需要通过具体的实例和操作,让学生直观地感受和理解这些概念。
三. 教学目标1.知识与技能:理解线段、射线和直线的定义,掌握它们的性质,能够运用它们解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和创新精神。
四. 教学重难点1.重点:线段、射线和直线的定义及其性质。
2.难点:对线段、射线和直线的理解和运用。
五. 教学方法采用问题驱动法、直观演示法、合作学习法等教学方法。
通过具体实例和操作,引导学生观察、思考、交流,从而达到理解线段、射线和直线的目的。
六. 教学准备1.准备相关教学素材,如图片、模型等。
2.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)通过展示一些生活中的线段、射线和直线的实例,如道路、射线等,引导学生关注这些几何图形,激发学生的学习兴趣。
2.呈现(10分钟)介绍线段、射线和直线的定义,并用课件展示它们的性质。
通过讲解和演示,让学生初步理解这些概念。
3.操练(10分钟)让学生分组讨论,观察和分析一些线段、射线和直线的实例,总结它们的性质。
然后,让学生进行一些相关的练习题,巩固所学知识。
4.巩固(10分钟)通过一些实际问题,让学生运用线段、射线和直线的知识解决问题。
北师大版七年级数学上册第四章基本平面图形4.1线段、射线、直线(教案)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《线段、射线、直线》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要量度距离或画直线的情况?”(如用尺子量书本的长度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索线段、射线、直线的奥秘。
4.培养学生的数学抽象素养,掌握线段的表示方法及其度量,提高对数学符号和几何图形的理解,形成数学抽象思维。
5.培养学生的团队合作意识,通过小组讨论、互助解答习题,提高沟通协作能力,培养合作共赢的价值观。
三、教学难点与重点
1.教学重点
-线段、射线、直线的定义及其性质:这是本节课的核心内容,需要学生掌握三种几何概念的基本属性,理解其无限性和有限性,以及端点个数的不同。
1.对于抽象的概念,如无限延伸,需要寻找更多生活中的实例,帮助学生形象地理解。
2.在实践活动和小组讨论中,关注每个学生的参与情况,鼓励他们积极表达自己的观点。
3.加强学生动手能力的培养,提高他们在ห้องสมุดไป่ตู้验操作中的准确性。
4.注重培养学生的表达能力和逻辑思维,让他们在分享成果时更有条理。
五、教学反思
今天在教授《线段、射线、直线》这一章节时,我发现学生们对几何概念的理解有着不同的接受程度。在导入新课阶段,通过提问日常生活中的实例,我发现大部分学生能够迅速联系到所学内容,这为后续的教学打下了良好的基础。
在新课讲授过程中,我尝试用简单的语言解释线段、射线、直线的概念,并通过案例分析和比较,让学生们更直观地理解它们的性质。我发现,对于线段、射线、直线的定义,大部分学生能够掌握,但在理解无限延伸的概念时,部分学生还是显得有些困惑。这可能是因为无限这个概念本身就比较抽象,需要更多的实例和形象的解释来帮助学生理解。
北师大版初中数学七年级上册《第四章 基本平面图形 1 线段、射线、直线》 公开课教案_5
4.1线段、射线和直线【教材分析】本节是以现实背景为素材,在以往学习线段、射线和直线的基础上,给出了它们的表示方法,并让学生通过探究,体验两点确定一条直线的性质。
同时在情感上激发学生兴趣,培养学生数学感情。
【教学目标】知识目标:在现实情境中了解线段、射线、直线等简单的平面图形;通过操作活动,理解两点确定一条直线等事实,积累操作活动经验。
能力目标:让学生经历观察、思考、讨论、操作的过程,培养学生抽象化、符号化的数学思维能力,建立从数学中欣赏美,用数学创造美的思想观念。
情感目标:感受图形世界的丰富多彩,能够主动参与教师组织的数学活动。
【教学重点】线段、射线、直线的符号表示方法。
【教学难点】培养学生学会一些几何语言,培养学生的空间观念。
【教学方法】引导发现、尝试指导以及学生的互动合作相结合。
【教学准备】教师:图片,三角板,窄木条。
学生:直尺,几枚图钉,薄窄木条或硬纸板条。
【教学过程】一、认识图形1、通过拟人的方式设置了直线、射线、线段三个角色,通过三个角色的对话,让学生体会三者的联系与区别2、议一议:在我们的现实生活中,还有那些物体可以近似做线段、射线和直线?(让同学们积极发言,尽量让他们举出尽可能多的例子。
)之后教师板书课题《4.1线段、射线和直线》绷紧的琴弦、人行横道线都可以近似地看做线段。
线段有两个端点。
将线段向一个方向无限延长就形成了射线。
射线有一个端点。
将线段向两个方向无限延长就形成了直线。
直线没有端点。
二、图形的表示法通过小组合作的方式,让学生通过自学的方式了解直线、射线、线段的表示方式三、合作探究(四人一组)通过设计一个场景,让学生了解“经过两点有且只有一条直线与已知直线”四、小组合作通过设计一个晚会情景,让学生以游戏的方式,加强这节课学习内容的理解与应用五、小结(1)本节课你掌握了几个几何概念?(2)直线、射线和线段三者之间的关系是什么?(3) 在表示直线、射线和线段时应注意什么?(4) 学生小结后教师整理成表六、布置作业1.复习课本135页至P136页2.完成创新练习册第四章第一节线段、射线、直线部分习题3.预习4。
北师大版七年级数学上册教案-第四章第一节 线段、射线、直线
北师大版七年级数学上册教案第四章基本平面图形第一节线段、射线、直线【教学目标】在现实情境中理解线段、射线、直线等简单的平面图形,通过操作活动,了解两点确定一条直线等几何事实.【教学重难点】重点:线段、射线与直线的概念及表示方法.难点:直线性质的发现、理解及在数学和实际中的应用.【教学过程】一、创设情境,导入新课图片展示,探究生活中的平面图形:(1)绷紧的琴弦;(2)探照灯射出的光线;(3)笔直的铁轨等生活中常见的与线段、射线、直线有关的图形.说明:通过展示这些图形,让学生观察,使学生感受到图形世界的丰富多彩,生活离不开数学,数学来源于生活.二、师生互动,探究新知1.自主探究:线段、射线、直线的概念.通过上面的图形展示,你能观察出它们分别可以近似地看作什么吗?学生结合以前所学知识,容易得出可近似地看作线段、射线、直线.2.合作探究:线段、射线、直线的特征.结合上面的事例,你们能说一下线段、射线、直线的特征吗?给学生充分的时间,让学生分组讨论,然后每组选一代表,汇总本组的探讨结果与其他组交流,最后师生总结得到:(1)线段有两个端点,射线有一个端点,直线没有端点;(2)线段、射线可以看作是直线的一部分.说明:给学生一个平台,使学生充分发表自己的见解,相互评价,相互完善.教师作为参与者,应对学生的认识起到促进和调节作用.3.自主探究:线段、射线、直线的表示方法.学生自主学习教材第106页,独立完成下表:说明:旨在让学生掌握线段、射线、直线的数学表示符号并进行归纳、整理,通过比较概念之间的区别和联系,形成新的知识结构.4.活动探究:直线的性质.问题:将一根木条固定在墙上,至少需几个钉子?学生拿出事先准备好的小木条和钉子、锤子(可一小组一套)动手操作,然后同组交流讨论,教师适时点拨,最后一起归纳得到:(1)过一点可以画无数条直线;(2)过两点只能画一条直线.说明:让学生经历在操作活动中探索图形性质的过程,目的是使学生通过操作,发现直线的某些性质,培养空间观念,并能自己归纳出从操作活动中发现的结论.这样不仅可以丰富数学学习的成功体验,积累操作活动经验,也可以提高学生概括能力和有条理地思考与表达能力.教师总结出直线的性质并板书:经过两点有且只有一条直线,即两点确定一条直线.三、运用新知,解决问题举出一个“两点确定一条直线”在生活中的实物.(联系生活实际,体现数学与生活的联系,达到学以致用的目的) 练习:问题:平面上有三点A,B,C,过任意两点能否画出线段?直线?射线?如能,把它们表示出来.(让学生小组内讨论、合作探究后阐述自己的观点)可能学生只想到一种情况:即三点不在同一直线上的情况,这时教师应点拨:不要忽略三点共线的情况.四、课堂小结,提炼观点1.线段、射线、直线的定义.两点确定一条直线.2.总结本节你的收获,与同伴交流你的体会.五、布置作业,巩固提升教材第108页习题4.1.【板书设计】线段、射线、直线1.线段有两个端点,射线有一个端点,直线没有端点.2.线段、射线可以看作是直线的一部分.3.两点确定一条直线.。
北师大版初中数学七年级上册《第四章 基本平面图形 1 线段、射线、直线》 公开课教案_1
第四章平面图形及其位置关系1.线段、射线、直线第一环节情境导入,适时点题内容:(1)、老师用多媒体出示一组生活中的图片,有筷子图、手电光束、笔直铁轨、人行横道、绷紧的琴弦。
让学生观察,问:你们能在其中发现我们所熟知的几何图形吗?学生自由发言(2)、教师点明课题。
(板书课题:线段、射线、直线)讲明线段、射线、直线的描述性概念,并指明端点。
(3)、学生讨论交流:(a)、生活中,有哪些物体可以近似的地看作线段、射线、直线。
(b)、线段、射线、直线的区别和联系。
(教师用多媒体演示)目的:利用生活中熟知的情境,激发兴趣,使学生感受生活中所蕴含的图形。
让学生感受从实际问题中抽象出所要了解的图形的过程,同时在解答问题中形成认知冲突,激发学生的学习热情。
第二环节对比观察,辨析理解内容:(1)、教师借助图形,讲明线段、射线、直线的表示方法。
(2)、一组小练习,加深理解:(3)、请表示出下图中的线段、射线、和直线:目的:练习有助于学生理解线段、射线、直线的联系和区别。
同时可以巩固对表示方法的掌握。
教师应充分调动他们的积极性,让他们广泛参与、积极主动的学习。
第三环节动手操作,探索新知:内容:(1)、教师拿出一根木条和几颗钉子和相关工具,要求用尽可能少的钉子把木条固定在木板上,问至少要几颗?要求:先猜想,再让学生发言说出道理,并让学生到前面动手操作,并让其他学生验证是否固定。
如此反复。
教师适时鼓励学生自己描述从操作中得到的结论。
(板书:经过两点又且只有一条直线。
)教师强调“又且只有”。
(2)、学生交流:生活中关于这一条性质的运用的例子。
目的:让学生自己在动手操作中去真实的感受“两点确定一条直线”的事实,并在探索中发现结论、说出发现,鼓励学生的相互协作、猜想验证、反思生活。
第四环节快速反馈自我检测:内容:多媒体投影一组练习题:(1)、如图,平面上有点A、B、C,做出直线AB,线段BC,射线C A.;BAC(2)、过一点可作多少条直线,过两点可作多少条直线,过三个点中的任意两个点可作多少条直线;(3)、下列说法正确的是()A. 线段AB和线段BA是同一条线段B. 射线AB和射线BA是同一条射线C .直线AB和直线BA是同一条直线D. 射线AB和线段AB对应同一图形;(4)、木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两个点探出一条墨线。