华中师范大学1998年数学分析考研试题

合集下载

华中师范大学数学与统计学学院《717数学分析》历年考研真题专业课考试试题

华中师范大学数学与统计学学院《717数学分析》历年考研真题专业课考试试题
目 录
2014年华中师范大学数学分析考研真题 2013年华中师范大学717数学分析考研真题 2012年华中师范大学717数学分析考研真题 2011年华中师范大学617数学分析考研真题 2010年华中师范大学616数学分析考研真题 2009年华中师范大学616数学分析考研真题 2008年华中师范大学618数学分析考研真题 2007年华中师范大学622数学分析考研真题 2006年华中师范大学数学分析考研真题 2005年华中师范大学347数学分析考研真题 2004年华中师范大学344数学分析考研真题 2003年华中师范大学数学分析考研真题 2002年华中师范大学数学分析考研真题
2014年华中师范大学数学分析考研真题
2013年华中师范大学717数学分析ห้องสมุดไป่ตู้研真题
2012年华中师范大学717数学分析考研真题
2011年华中师范大学617数学分析考研真题
2010年华中师范大学616数学分析考研真题
2009年华中师范大学616数学分析考研真题
2008年华中师范大学618数学分析考研真题
2007年华中师范大学622数学分析考研真题
2006年华中师范大学数学分析考研真题
2005年华中师范大学347数学分析考研真题
2004年华中师范大学344数学分析考研真题
2003年华中师范大学数学分析考研真题
2002年华中师范大学数学分析考研真题

数学分析考研试题及答案

数学分析考研试题及答案

数学分析考研试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)在点x=a处可导,则下列说法正确的是:A. f(x)在x=a处连续B. f(x)在x=a处不可导C. f(x)在x=a处不一定连续D. f(x)在x=a处可微答案:A2. 极限lim(x→0)(sinx/x)的值为:A. 0B. 1C. 2D. 3答案:B3. 函数f(x)=x^3-6x^2+11x-6的极值点为:A. 1B. 2C. 3D. 1和2答案:D4. 若函数f(x)在区间(a,b)上连续,则下列说法错误的是:A. f(x)在(a,b)上必有最大值B. f(x)在(a,b)上必有最小值C. f(x)在(a,b)上可以没有最大值D. f(x)在(a,b)上可以没有最小值答案:C二、填空题(每题5分,共20分)1. 设函数f(x)=x^2+3x+2,则f'(x)=_________。

答案:2x+32. 函数y=x^3-3x+1在x=1处的切线斜率为_________。

答案:13. 设函数f(x)=ln(x),则f'(x)=_________。

答案:1/x4. 若函数f(x)=x^2-4x+c在x=2处取得极小值,则c=_________。

答案:4三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-6x^2+11x-6的单调区间。

答案:函数f(x)的导数为f'(x)=3x^2-12x+11。

令f'(x)>0,解得x<1或x>3;令f'(x)<0,解得1<x<3。

因此,函数f(x)在(-∞,1)和(3,+∞)上单调递增,在(1,3)上单调递减。

2. 求极限lim(x→0)(x^2sinx/x^3)。

答案:lim(x→0)(x^2sinx/x^3) = lim(x→0)(sinx/x^2) = 0。

3. 证明函数f(x)=x^3+3x^2-9x+1在x=-3处取得极小值。

华中数学分析历年考研真题

华中数学分析历年考研真题

华中师范大学数学分析考研真题以上是01年数分2003年数学分析(综合卷)1.(16)求下列极限:(1))/1(2)!(lim n n n +∞→. (2))(x f 在]1,1[-上连续,恒不为0,求131sin )(1lim 30--+→x x x x f2.(15)设)(x f 在],[b a 上二阶可导,过点))(,(a f a A 与))(,(b f b B 的直线与曲线)(x f y =相较于))(,(c f c C ,其中b c a <<,证明:在),(b a 中至少存在一点ξ,使0)(=''ξf .3.(15) 证明:x x n n 21ln ∑∞=在]1,0(上一致收敛.4.(15) 设))}({(x f n 是],[b a 上的函数序列,满足对每一个],[b a x ∈导函数)(x f n '存在),2,1( =n 并且满足下列条件:(1)存在某一个],[0b a x ∈,使))}({(0x f n 收敛;(2)导函数列)}({x f n '在],[b a 上一致收敛. 证明: )}({x f n 在],[b a 上一致收敛.5.(14)设)(x f 在],[b a 上可导,其导函数)(x f '在],[b a 可积,对任意的自然数n .记⎰∑---+==ba n i n dx x f n ab n a b i a f )()(1σ , 证明:)]()([2lim a f b f a b n n n --=+∞→σ. 2004年数学分析1.求下列极限(共50分,第1,2小题各10分,第3,4小题各15分)(1)21sin 0lim(cos )x x x → (2)11123n n +++1…+n (3)74444lim 112)x x x x x →∞+-- (4)1lim sin (sin)2n n k k n nππ→∞=∑2.(15)设)(),(x g x f 在],[b a 上连续,在),(b a 内可导,若12,x x 是)(x f 在区间],[b a 上的两个零点,证明:存在[,]a b ξ∈,使得'()()'()0f f g ξξξ+=3.(15)设)(x f 在)0](,[>>a b b a 上连续,在),(b a 内可导,证明:在),(b a 内存在,ξη使b a f f ⋅'⋅=')()(2ηηξ.4.(15)设)(x f 在],[b a 上黎曼可积,证明:()f x e 在],[b a 上也是黎曼可积的.5.(15)'()(1,2,3,n f x n =…)在],[b a 上连续,函数)(x g 在],[b a 上也连续,且对],[b a 中任意的12,x x 和正整数n ,有1212|()()|||n n M f x f x x x n -≤-(0>M ),证明:lim ().'()0b n n a g x f x dx →+∞=⎰. 6.(15)设()n f x ( ,2,1=n )在],[b a 上连续,且{()}n f x 在],[b a 上一致收敛与)(x f .证明:(1)存在0>M ,使对任何自然数n ,有|()|,|()|n f x M f x M ≤≤及. (2)若)(x F 为-∞+∞(,)上连续函数,则(())n F f x 一致收敛于))((x f F .7.(10)设函数)(x f 在闭区间]1,1[-上具有三阶连续导数,且0)0(,1)1(,0)1(='==-f f f ,证明:在)1,1(-内至少存在一点ξ,使得(3)()3f ξ=.8.(15)函数),(y x F 在点00(,)x y 的某个邻域内有连续的二阶偏导数,且00000000(,)0,'(,)0,'(,)0,''(,)0x y xx F x y F x y F x y F x y ==><,证明:由方程),(y x F 确定的隐函数()y f x =在0x 点取得极小值.2005年数学分析1.求下列极限或指定函数的值: (1)1!2!3!!lim !n n n →∞++++(10分) (2)lim 62n n→∞(10分)(3)132lim [().2x x x x x e →+∞-+(10分) (4)设)(x f 在0=x 的邻域二阶可导,且130()lim(1)x x f x x e x→++=,求(0),'(0),''(0)f f f 的值.(15分) 2.(15)设函数)(),(x g x f 在],[b a 上可导,且在),(b a 上'()0g x ≠,证明:存在)()'()(,)()()'()f a f f a bg g b g ξξξξξ-∈=-(使. 3.(15)设函数()f x 在]4,2[上有连续的一阶导函数,且(2)(4)0f f ==,证明:4242max |'()||()|x f x f x dx ≤≤≥⎰.4.(13)设有方程.sin (01)x m q x q =+<<.若0101,.sin ,,sin ,,n n x m x m q x x m q x +==+=+证明:{}n x 收敛; 设lim n n x l →+∞=,再证明l 是方程.sin x m q x =+的唯一解.5.(13)证明:函数项级数11((1))x n n x e nn ∞=-+∑在任何有穷区间[,]a b 上一致收敛. 6.(13)设()f x 在[,]a b 上二阶可导,且''()0f x >,证明:1()()2ba ab f f x dx b a +≤-⎰. 7.(13)设12,,,,n a a a 均为常数,证明:函数项级数101..!x n t n n a t e dt n ∞-=∑⎰在[,]a b 上一致收敛. 8.(13)设()f x 在[,]a b 上黎曼可积,()0,f x c ≥≥用可积准则证明:函数ln ()f x 在[,]a b 上黎曼可积.9.(10)设()f x 在[,]a b 上具有连续的二阶导数,证明:在(,)a b 内存在ξ,使得31()()()().''()224ba ab f x dx b a f b a f ξ+=-+-⎰ 2006年数学分析1.(30) (1)111sin )1(sin lim 121----→x x e x x . (2) 设x x a x y +=,求y '. (3) dx xx ⎰+ln 1ln ln . (4)设y x y x y x f y arcsin)1(),(2-+=,求)1,(x f x '. (5)dxdy e y x y xD 22)(+⎰⎰+,其中}1),{(22≤+=y x y x D . (6) 求⎰-=Lydx ydy x I cos sin ,其中L 是从点)0,0(O 到点)0,(πA 的正弦曲线有x y sin =.2.(20)设)(x f 在(,)a +∞上可导,且'()f x 在(,)a +∞上有界,证明:(1) )(x f 在(,)a +∞上一致连续.(2)()lim ()lim ()x x a f a f x f x ++→∞→=存在,但不一定存在. (3)若)(lim x f x +∞→存在,且)(lim )(lim x f x f ax x +→+∞→=,则)(x f '在(,)a +∞上至少有一个零点。

1998年考研数学试题详解及评分参考

1998年考研数学试题详解及评分参考

解:取沉放在原点 O, OY 轴正向铅直向下,则由牛顿第二定律得
m
d2y dt 2
=
mg
-
Br
-
kv


d2y dt 2
=
v
dy dt
代入以消去 t
,得 v与y
之间的微分方程 mv
=
y - b3 b1 - b2
=
z - c3 与直 线 c1 - c2
x - a1 a2 - a3
=
y - b1 b2 - b3
=
z - c1 c2 - c3
(A) 相交于一点 (B) 重合
(D) 平行但不重合
(D) 异面
【答】 应选 (A) .
éa1 b1 c1 ù
a1 b1 c1
【解】 因 êêa2
则 ( A* ) 2 + E 必有特征值
.
【答】 应填 [ A ]2 +1. l
【解】 因 A 有特征值 l ,故 A-1 必有特征值 1 , 从而 A* = A A-1 必有特征值 | A | ,
l
l
因此 ( A* ) 2 + E 必有特征值 ( A )2 +1. l
(5) 设平面区域 D 由曲线 y = 1 及直线 y = 0, x = 1, x = e2 所围成,二维随机变量 ( X ,Y ) 在
【解】
¶z ¶x
=
-
1 x2
f (xy) +
y x
f ¢(xy) +
yj ¢(x +
y) = yf ¢¢( xy) + j ¢(x +
y) +
yj ¢¢(x +

1998年考研数学三真题及全面解析.docx

1998年考研数学三真题及全面解析.docx

1998 年全国硕士研究生入学统一考试数学三试题一、填空题 ( 本题共 5 小题 , 每小题 3 分 , 满分 15 分 . 把答案填在题中横线上 .)(1) 设曲线 f ( x)x n在点 (1,1) 处的切线与 x 轴的交点为 (n ,0) , 则 lim f (n ).n(2)ln x 1dx.x 2(3) 差分方程 2 y t 110 y t 5t0 的通解为.1 0 0(4)设矩阵 A, B 满足 A * BA 2BA8E , 其中 A0 2 0 , E 为单位矩阵 , A *为 A0 01的伴随矩阵 , 则 B.(5) 设 X 1, X 2 , X 3, X 4 是来自正态总体 N 0,22的简单随机样本 ,X a X 1 2 X 2 2b 3X 3 4X 42ab时 , 统计量 X 服从2分布 ,. 则当 ,其自由度为.二、选择题 ( 本题共 5 小题 , 每小题 3 分 , 共 15 分 . 每小题给出的四个选项中, 只有一项符合题目要求 , 把所选项前的字母填在题后的括号内 .)(1)f x,内可导 , 周期为 4.f 1f 1 x1, 则曲线设周期函数在又 lim2xxyf x 在点 5, f 5 处的切线的斜率为( )(A)1 (B)(C)1(D)221 x2n , 讨论函数 f(2) 设函数 fxlim x 的间断点 , 其结论为()n1 x(A)(B)存在间断点 x 1不存在间断点(C) 存在间断点 x 0 (D)存在间断点 x 1x 1 x 22x 3 0,(3) 齐次线性方程组x 1 x 2x 3 0, 的系数矩阵记为 A . 若存在三阶矩阵B 0 使得x 1 x 2x 3AB 0, 则( )(A)2 且 | B | 0 (B)2 且 | B | 0(C)1 且 | B | 0(D)1 且 | B | 0(4) 设 n n 3 阶矩阵1a a L aa1a L aA a a1L a,M M M Ma a a L1若矩阵 A 的秩为 n 1, 则a必为( )(A)1(B)1(C)1(D)1 1 n n 1(5) 设F1( x)与F2( x)分别为随机变量X1与 X2的分布函数.为使F x aF1 (x) bF2 ( x)是某一变量的分布函数, 在下列给定的各组数值中应取()(A)3,b2(B)a22 a5,b3 53(C)a 1,b3(D)a1,b3 2222三、 ( 本题满分 5 分 )设 z (x2y2 )e arctan y2z . x , 求dz与x y四、 ( 本题满分 5 分 )设 D x, y x2y2x ,求xdxdy .D五、 ( 本题满分 6 分 )设某酒厂有一批新酿的好酒, 如果现在 ( 假定t0 )就售出,总收入为R0(元).如果窖藏t 年末总收入为2t起来待来日按陈酒价格出售,R R0e5. 假定银行的年利率为r ,并以连续复利计息 , 试求窖藏多少年售出可使总收入的现值最大. 并求r0.06 时的t值.六、 ( 本题满分 6分 )设函数 f ( x) 在a, b上连续 , 在(a,b)内可导 , 且f( x)0. 试证存在 ,(a, b), 使得f()e b e af()b ae .七、 ( 本题满分 6分 )设有两条抛物线y nx21和 y (n1)x21, 记它们交点的横坐标的绝对值为n n1a n .(1)求这两条抛物线所围成的平面图形的面积S n;(2) 求级数S n的和 .n 1a n八、 ( 本题满分7 分 )设函数 f ( x) 在 [1,) 上连续.若由曲线 y f ( x), 直线 x1, x t(t 1) 与 x 轴所围成的平面图形绕x 轴旋转一周所形成的旋转体体积为V (t)t 2 f (t) f (1) .32试求 y f (x) 所满足的微分方程, 并求该微分方程满足条件y x 2的解 .9九、 ( 本题满分9 分 )设向量T(b1, b2 ,L , b n )T, 且满足条件T0. 记( a1, a2 ,L , a n ) ,都是非零向量n 矩阵 A T . 求:(1)A2;(2)矩阵 A 的特征值和特征向量.十、 ( 本题满分7 分 )101设矩阵A020, 矩阵 B ( kE A)2 , 其中k为实数,E为单位矩阵.求对角矩阵101, 使B与相似 , 并求k为何值时 , B为正定矩阵 .十一、 ( 本题满分 10分 )一商店经销某种商品, 每周进货的数量X 与顾客对该种商品的需求量Y 是相互独立的随机变量 , 且都服从区间[10,20] 上的均匀分布 . 商店每售出一单位商品可得利润1000 元;若需求量超过了进货量, 商店可从其他商店调剂供应, 这时每单位商品获利润为500 元 . 试计算此商店经销该种商品每周所得利润的期望值.十二、 ( 本题满分9 分 )设有来自三个地区的各10 名、 15 名和 25 名考生的报名表 , 其中女生的报名表分别为 3份、 7 份和 5 份 . 随机地取一个地区的报名表, 从中先后抽出两份 .(1) 求先抽到的一份是女生表的概率p ;(2)已知后抽到的一份是男生表 , 求先抽到的一份是女生表的概率q .1998 年全国硕士研究生入学统一考试数学三试题解析一、填空题 ( 本题共 5 小题 , 每小题 3 分 , 满分 15 分 . 把答案填在题中横线上.)(1)【答案】1e【解析】曲线 y x n在点 (1,1)处的切线斜率yx 1x n n x n 1x 1n ,根据点斜x 1式, 切线方程为:y 1n(x 1).令 y 0 ,代入 y1n( x1) ,则x11,即在 x 轴上的截距为n11,n n lim f ( n )lim n n lim(11)n lim(11)x 11.n n n n x x eln x(2) 【答案】Cx,【解析】由分部积分公式ln x 1dx ln x 11dx ln x 1 d1x2x xln x111)ln x11分部x x d(ln x x x2 dxln x 11dx ln x 1 1C ln x C .x x x x x【相关知识点】分部积分公式:假定u u(x) 与v v( x) 均具有连续的导函数, 则uv dx uv u vdx, 或者udv uv vdu.(3) 【答案】y t C (5)t 5(t1)1265t ,其齐次方程对应的特征方程及【解析】首先把差分方程改写成标准形式y t1 5 y t2特征根分别为r50, r5,故齐次方程的通解为Y t C ( 5)t, C 为常数.将方程右边的5t 改写成5t 1t,此处“1”不是特征根,故令非齐次方程的一个特解为22y t At B,从而 y t 1A(t 1) B, 代入原方程,得A(t 1) B5( At B)5t,526A 6B 0,, A2故A 5, B5 .12 72 5(t1).于是通解为y tY t y tC( 5)t126(4) 【答案】20 0 0 4 00 2【解析】由题设 A * BA 2BA 8E ,由于 A20 , 所以 A 可逆 . 上式两边左乘A , 右乘 A 1, 得AA * BAA 1 2 ABAA 1 8AA 1A B 2 AB 8E ( 利用公式: AA * A E, AA 1E )A B 2 AB 8E ( 移项 )A E 2 A B8E ( 矩阵乘法的运算法则 )将A2 代入上式 , 整理得 1E A B E . 4由矩阵可逆的定义 , 知 EA ,B 均可逆 , 且2 0 11 0 02 0 02B 111 0 4 01 04 0 . 4 E A4 00 210 22(5) 【答案】1 , 1, 2 20 100【解析】由于 X 1, X 2 , X 3, X 4 相互独立 , 均服从 N (0, 22 ) , 所以由数学期望和方差的性质 ,得E( X 1 2 X 2 ) 0, D (X 1 2 X 2 ) 1 22 22 22 20 ,所以 (X 1 2 X 2 ) : N (0, 20) , 同理 (3 X 34 X 4 ) : N (0,100) .又因为 ( X 2X ) 与 (3 X 4 X )相互独立 , 且1( X 1 2 X 2 ) : N (0,1) ; 1 (3 X 3 4 X 4 ) : N (0,1) ,20100由2分布的定义 , 当 a1, b1 时,120100 1X( X 1 2X 2 )2 (3X 3 4X 4 )2 :2(2) .20 100即当 a1 , b 1 时 , X 服从2 分布 , 其自由度为 2 . 20 100 1 1 , b严格地说 , 当 a 0,b 时, X : 2 (1) ;当 a0 时 , X : 2 (1)也是正确的 . 100 20【相关知识点】 1、对于随机变量 X 与 Y 均服从正态分布 , 则 X 与 Y 的线性组合亦服从正态分布 .若 X 与 Y 相互独立 , 由数学期望和方差的性质, 有E(aX bY c) aE ( X ) bE (Y) c ,D (aXbY c)a 2 D ( X )b 2 D (Y) ,其中 a, b, c 为常数 .2、定理:若 X : N ( , 2) , 则X: N (0,1) .3、2分布的定义:若Z 1,L , Z n 相互独立 , 且都服从标准正态分布N (0,1) , 则nZ i 2 ~2(n) .i 1二、 选择题 ( 本题共 5 小题 , 每小题 3 分 , 共 15 分 . 每小题给出的四个选项中 , 只有一项符合题目要求 , 把所选项前的字母填在题后的括号内 .)(1) 【答案】 (D)【解析】根据导数定义:f xlim f ( xx) f (x)x 0xlim f (1)f (1 x) 1lim f (1 x) f (1)1f (1)1x 02x 2 x 0x 2所以f (1)f (1 x)f (1) 2.limxx 0因为 f (x) 周期为 4, f (x) 的周期亦是 4, 即 f ( x) f ( x4) ,所以 f (5) f (14) f (1)2 .所以曲线 yf ( x) 在点 5, f (5) 处的切线的斜率为f (5) f (1) 2 . 选(D).(2) 【答案】 (B)【分析】讨论由极限表示的函数的性质, 应分两步走 . 先求出该f ( x) 的 ( 分段 ) 表达式 , 然后再讨论 f ( x) 的性质 . 不能隔着极限号去讨论.【解析】现求 f ( x) 的 ( 分段 ) 表达式:当 x1 时 ,lim 1limx2 n1 2nlimx 2n x 1 2n0 0 ;f ( x) xxn2nn1 2 nnx2 n1lim x11xn当 x1 时 ,f ( x) lim 1 x lim 1 12 1 ;2 n2 nn1 xn1 12当 x1 时 ,f ( x) lim 1 xlim 1 12n0 ;12 n1 1 2nxn当 x1时 ,f ( x)由此 ,f ( x)lim 1 x lim 1 xn2n x 2nn1 2 nlim 1 xxn0, 当x 1, 0,当x1,1 x, 当 x 1, 即 f (x)1, 当x 1, 0,当x1.1x1 x .10, 当x 1或x 1,1 x, 当x 1,1,当x 1.再讨论函数 f (x) 的性质:在 x1 处,lim f xlim1 x 11 0 , lim f xf 1 0 ,x1x1x1所以 ,lim f xlim f x0 , 函数 f ( x) 在 x1 处连续 , 不是间断点 .x1x1在 x1 处 , lim f xlim 00 ; lim f xlim 1 x2 ;x 1x 1x1x 1所以 lim fxlim f x , 函数 f ( x) 在 x1 处不连续 , 是第一类间断点 . 故选 (B).x 1x 1(3) 【答案】 (C)【解析】方法 1: 由 AB0 知 r (A) r ( B)3, 又 A0, B 0 , 于是 1 r ( A) 3,1 r (B) 3 , 故 A 0, B 0 , 即120 1A 110 12 0 ,1 1(1 ) 1111 11得1.应选 (C).方法 2: 由 AB0 知 r (A) r ( B) 3 , 又 A0, B 0 , 于是 1 r ( A) 3, 1 r (B)3 , 故B 0 .1 1 1显然 ,1时 A 1 1 1 , 有 1 r ( A)3, 故应选 (C).1 1 1作为选择题 , 只需在2 与1中选择一个 , 因而可以用特殊值代入法 .评注: 对于条件 AB 0 应当有两个思路: 一是 B 的列向量是齐次方程组 Ax 0 的解;二是秩的信息 , 即 r ( A) r (B) n , 要有这两种思考问题的意识 .(4) 【答案】 (B)【解析】1 aa L a 1 aa L aa 1 a L a a 1 1 a0 L 0 Aa a 1 L a (1) a 1 01 a LM M MM uur M MMMa aaL1a 1 0L1 a1(n 1)a a a L a1 a 0 L 0 (2) 0 0 1 a LuurMM MM0 0L 1 a其中 (1)变换:将 1行乘以 (-1) 再分别加到其余各行;(2) 变换:将其余各列分别加到第1列 .由阶梯形矩阵知 , 当 1 (n 1)a 0 , 即 a1时 , 有 r ( A) n 1 , 故应选 (B).1 n(5) 【答案】 (A)【解析】根据分布函数的性质lim F( x)1 , 即x1 lim F ( x) F () aF 1( ) bF 2 ( ) a b . x在所给的四个选项中只有 (A) 满足 ab 1 , 故应选 (A).【相关知识点】分布函数F x 的性质:(1)F x 单调不减;(2) limF( )( ) 0, limF ( x ) F ( ) 1; xx Fx(3)F x 是右连续的 .三、 ( 本题满分 5 分 )dz earctan yy 2 ) ( x 2arctan y【解析】xd (x 2 y 2 )d (ex )earctan y2 ydy (x2y 2) d ( arctan y)x2xdxxeearctanyxarctanyx2xdx 2 ydy (x2y 2)1 d ( y)y ) 2 x1 (x 2xdx 2 ydy x 2 xdyydxx 2ye arctany)dx (2 y x)dyx(2 x, 其中 dx 的系数就是z , 即 z(2 x y)earctan y由全微分与偏微分的关系可知x. 再对 y 求偏导数 , 得xx2 zey(2 x y)ey11 y2xy x2 yarctan arctanarctanx yy 2 xx 2 y 212x四、 ( 本题满分 5 分 )【解析】 D {( x, y) x2y2x} 表示圆心为1,0 , 半径为y21的圆及其内部 , 画出区域 D , 如右图 .2方法 1: D(x, y) | 0 x 1,xx 2yx x 2Ox1x x 21x 2 dx 21所以 ,xdxdyxdxx x 2dy2 x x 0x 1 xdx ,D令 1 xt , 则 x1 t2 , dx2tdt , t :10 所以1t3t 51上式2t 2 ) t ( 2t )dt 42(1 t 2 )dt(1t 413 5 08 .15方法 2: 引入极坐标系 x r cos , y r sin , 于是D( r ,) |,0 r cos22xdxdycos r cos rdr2 dD24 2 cos 3 d 8 .5 015其中倒数第二步用了华里士公式:,32cos dcosr 2dr22cos ndn 1 n3 L4 2 1 , 其中 n 为大于 1 的正奇数 .nn2 5 3五、 ( 本题满分 6 分 )【分析】根据连续复利公式, 在年利率为 r 的情况下 , 现时的 A ( 元 ) 在 t 时的总收入为2tR( t) Ae rt, 反之 , t 时总收入为 R(t ) 的现值为 A(t ) R(t)e rt, 将 R R 0 e5代入即得到总收入的现值与窖藏时间 t 之间的关系式 , 从而可用微分法求其最大值 .【解析】由连续复利公式知 , 这批酒在窖藏 t 年末售出总收入 R 的现值为 A(t)Re rt , 而由题t2 t设, 年末的总收入 RR 0e 5 , 据此可列出 A( t) :Re rt2 trtA(t)R 0 e 5,dA d221t rtR 0 e5t rt0 ,令dtR 0 e55 rdtt得惟一驻点tt 0125r 2 .d 2 Ad dAd2 t rt1R 0 e5rdt 2dt dtdt5td2 t rt1 r2t rtd 1rdtR 0 e 55 tR 0 e 5dt 5 t2 t rt122 t rt1R 0e5rR 0e55 t 10 t32 t rt121R 0e5r5 10 t 3td 2A1 12.5r 3)R e 25 r ( 0 .dt 2t t 0根据极值的第二充分条件,知:t t0是 A( t) 的极大值点,又因驻点惟一,所以也是最大值1年出售 ,总收入的现值最大 .点. 故窖藏t25r 2当 r0.06 时,t110011(年). 250.0629【相关知识点】极值的第二充分条件:设函数 f ( x) 在 x0处具有二阶导数且 f ( x0 )0 , f ( x0 )0 ,当 f( x0 )0时 , 函数f (x)在x0处取得极大值;当f( x0 ) 0时 , 函数f (x)在x0处取得极小值.六、 ( 本题满分 6分 )【分析】本题要证的结论中出现两个中值点和 , 这种问题一般应将含有和的项分别移到等式两边后再用微分中值定理, 为此本题只要证f ( )(b a) (e b e a ) f ( )e .【解析】方法 1: 函数f (x)在a, b上连续 , 在( a, b)内可导 , 满足拉格朗日中值定理的条件,对函数 f (x) 在a, b上用拉格朗日中值定理,有f (b) f (a)f()(b a), a b.又函数 f ( x) 与 e x满足柯西中值定理的条件, 将函数f ( x)与e x在a,b上用柯西中值定理,有f (b) f (a) f ( ) , a b ,即 f (b) f ( a)( e b e a)f () .e b e a e e从而有f ()(b a)(e b e a)f ( ),即f ()e b e a e , ,(a,b) .e f ()b a方法 2:题中没有限制, 因此取, 即成为要去证存在( a, b) 使ebe a e .b a在 a,b 上对函数e x用拉格朗日中值定理, 存在(a,b) 使e b e a e ,即 e b e a e 1.b a b a再取, 则f()1e b e a e, 原题得证 .【相关知识点】 1. 拉格朗日中值定理:如果函数 f ( x) 满足在闭区间[ a,b] 上连续,在开区间a,b 内可导,那么在a,b 内至少有一点(a b) ,使等式 f (b) f (a) f ( )(b a) 成立.2.柯西中值定理:如果函数 f (x) 及 F (x) 满足(1)在闭区间 [a,b] 上连续;(2)在开区间 (a,b) 内可导;(3)对任一 x (a,b) , F ( x) 0 ,那么在 (a, b) 内至少有一点, 使等式f (b)f (a) f ()成立 .F (b) F (a) F ()七、 ( 本题满分 6 分 )【解析】 (1) 由y nx21与 y( n1)x21得 a n1.n n 1n(n1)因图形关于 y 轴对称,所以,所求图形的面积为S n a n nx21(n1)x21dx20n n1212a n341a n a n2x dx2.0n(n1)n(n1)33n(n 1) n(n 1) (2)由 (1) 的结果知S n41 4 (11) ,a n 3 n(n 1) 3 n n1根据级数和的定义,S nlim n S k4nn 1 a n k 1 a k limn 3 n k 111414k k 1lim 1n 1.3 n3八、 ( 本题满分7 分 )【分析】本题是微分方程的几何应用问题. 在题目中给出了由曲线y f (x) 等围成的平面图形绕 x 轴旋转一周所形成的旋转体体积V (t) 与包含函数 f 的一个恒等式,这正是列方程的依据 .tf 2 ( x) dx ,于是,依题意得【解析】由绕x 轴旋转的旋转体体积公式得 V (t)1t2 ( x)dxt 2f (t) f (1) , 即 3 tf 2( x)dxt 2f (t) f (1).f3 11两边对 t 求导 , 化成微分方程3 f 2 (t) 2tf (t ) t 2 f (t) ,其中 f (t ) 为未知函数 . 按通常以 x 表示自变量 , y 表示未知函数 f (t ) , 于是上述方程可写为x 2 y3 y 2 2xy,即dy3( y) 22( y).dxxx这是一阶齐次微分方程. 令 yux , 有dyu xdu, 则上式化为x( du)dxdxu 3u 2 2u,du dx即3 ( 1).(*)x dxu u2若 u 0 , 则 y ux0, 不满足初始条件 y x 2 , 舍弃;92 若 u 1 , 则 y uxx, 也不满足初始条件 yx 2 , 舍弃; 所以 , u 0 , 且 u1 . 9由 (*) 式分离变量得du 3dx, 两边积分得u1 Cx 3 . 从而方程 (*) 的通解为u(u 1)xuy x Cx 3 y,C 为任意常数 .再代入初值 ,由y x 21 , 从而所求的解为2 , 得 C9xy x3y, 或 y ,( x 1).x 1 x 31. 对积分上限的函数的求导公式:(t )(t) , (t ) 均一【相关知识点】 若F (t)f ( x)dx ,(t )阶可导 , 则F (t )(t ) f (t ) (t ) f (t) .九、 ( 本题满分 9 分 )【解析】 (1) 对等式T0 两边取转置 , 有TTT0 , 即 T0 .T利用0及矩阵乘法的运算法则 , 有A2T2TT T TTT0 ,即 A 2 是 n 阶零矩阵 .(2)设是 A 的任一特征值,(0) 是A属于特征值的特征向量 , 即A.对上式两边左乘 A 得A2A( A )( )2, 由 (1)的结果 A20 ,得2A20 ,因0 ,故0 (n重根),即矩阵的全部特征值为零.下面求 A 的特征向量:先将 A 写成矩阵形式Aa1a1b1a1b2L a1b n Ta2 b , b ,, b a2b1a2 b2L a2b n.M 1 2 L n L L La n a n b1a n b2L a nb n不妨设 a10, b10 ,则有(0 E A)a1b1a1b2a2b1a2b2L a1b n b1b2L b nLa2bn 1行( a1 )a2 b1a2 b2L a2b n L La n b1a n b2行加到行L1a i (i 2, , n) uuuuuuuuuuuuuuuuuuuuuuuuuuuuurL L L LL a n b n a n b1a n b2 L a n b n b1b2L b n00L0L L L00L0于是得方程组 (0 E A) x0同解方程组b1 x1 b2 x2L b n x n0 ,这样基础解系所含向量个数为 n r (0 E A) n1.选 x2 ,L , x n为自由未知量,将它们的组值 (b1,0, L ,0),(0,b1 ,L,0), L (0,0, L , b1) 代入,可解得基础解系为1( b2 ,b1,0, L ,0),2( b3 ,0, b1,L ,0), L,n 1( b n ,0,0, L , b1 )则 A 的属于0 的全部特征向量为k1 1k2 2L k n1n1 , 其中k1, k2,L , k n 1为不全为零的任意常数 .十、 ( 本题满分7 分 )【分析】由于 B 是实对称矩阵, B 必可相似对角化, 而对角矩阵即 B 的特征值,只要求出B 的特征值即知, 又因正定的充分必要条件是特征值全大于零,k的取值亦可求出.【解析】方法 1:由101E A020(2)(2)2 ,1111101可得 A 的特征值是122, 30.那么 ,kE A 的特征值是k 2, k2, k ,而 B(kE A) 2的特征值是 (k2) 2 ,( k2) 2 , k 2.又由题设知 A 是实对称矩阵,则A T A, 故T2B T(kE A)2(kE A)T( kE A)2 B ,即 B 也是实对称矩阵,故 B 必可相似对角化, 且(k2) 200B :0(k2) 20.00k 2当 k2且k0 时, B 的全部特征值大于零, 这时B为正定矩阵 .方法 2:由10111E A020(2)(2)2,11101可得 A 的特征值是122, 30.2因为 A 是实对称矩阵,故存在可逆矩阵P 使P1AP2, 即A P P 1.2那么B(kE A)2(kPP 1P P 1) 2P(kE)P 1P(kE) P 1P(kE)P 1P(kE)2 P 1 .(k2)200即P1BP (kE) 2.故 B :0( k 2) 20.00k2当 k2且k0时 , B的全部特征值大于零, 这时B为正定矩阵 .【相关知识点】 1. 特征值的性质:若 A 有特征值, 则A的特征多项式 f ( A) 有特征值f () .2. 矩阵正定的充要条件是特征值全大于零.十一、 ( 本题满分 10 分 )y【解析】设 Z 表示商店每周所得的利润,20当 Y X 时 , 卖得利润为 Z 1000Y ( 元 ) ; D2D 1当 YX 时 , 调剂了 Y X , 总共得到利润10Z 1000X 500(Y X )500( XY) ( 元 ).1000Y, Y X ,O10 20x所以 , ZYX .500( X Y),由题设 X 与 Y 都服从区间 [10,20] 上的均匀分布 , 联合概率密度为1, 10x 20,10 y 20,0,其他 .由二维连续型随机变量的数学期望定义得E( Z )1000y f (x, y)dxdy500(xy) f ( x, y)dxdyD 1D 21000y1500( x y) 1dxdydxdyD 1 100 D 210020 20 20 yy)dx10 dy ydx 5 dy ( x 10 y 10 1020 y(20 y)dy20 3 210y50)dy105 (y10102200001500元 ).35 14166.67(十二、 ( 本题满分 9 分 )【解析】 记事件 B j“第 j 次抽到的报名表是女生表”( j 1,2) , A i“报名表是第 i 个地区的” (i1,2,3) . 易见 , A 1, A 2 , A 3 构成一个完备事件组 , 且P{ A i }1(i 1,2,3),3P{ B A }3, P{ B A }7, P{ B A }5 .1110 1 215 1 325(1)应用全概率公式 , 知31 ( 37 5 ) 29 .p P{ B 1}P{ A i } P{ B 1 A i }i1 3 10 15 25 90(2)qP{ B 1 B 2 } . 需先计算概率 P{ B 1 B 2} 与 P{ B 2 } . 对事件 B 1 B 2 再次用全概率公式:31 ( 3 7 7 8 5 20)20 ,P{ B 1 B 2}P{ A i } P{ B 1 B 2 A i } i 13 10 9 15 14 25 24 90由“抽签原理”可知 P(B 2 ) P( B 1 )61,90P( B 1 B 2 ) 20 90 20q P{ B 1 B 2 }90 61.P( B 2 )61【相关知识点】 1. 全概率公式: 如果事件 A 1 ,L , A n 构成一个完备事件组 , 即它们是两两互不 相容 , 其和为( 总体的样本空间 ) ;并且 P A i0,i 1,2,L , n , 则对任一事件 B 有nP B P( A i )P(B | A i ) .i 1。

数学分析考研试题及答案

数学分析考研试题及答案

数学分析考研试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪个不是有界函数?A. f(x) = sin(x)B. f(x) = e^xC. f(x) = x^2D. f(x) = 1/x2. 函数f(x) = x^3在区间(-∞, +∞)上是:A. 单调递增B. 单调递减C. 有增有减D. 常数函数3. 如果函数f(x)在点x=a处连续,那么:A. f(a)存在B. f(a) = 0C. lim(x->a) f(x) = f(a)D. lim(x->a) f(x) 不存在4. 定积分∫(0,1) x^2 dx的值是:A. 1/3B. 1/4C. 1/2D. 2/35. 函数序列fn(x) = x^n在[0, 1]上一致收敛的n的取值范围是:A. n = 1B. n > 1C. n < 1D. n = 26. 级数∑(1/n^2)是:A. 收敛的B. 发散的C. 条件收敛的D. 无界序列7. 如果函数f(x)在区间[a, b]上可积,那么:A. f(x)在[a, b]上连续B. f(x)在[a, b]上一定有界C. f(x)在[a, b]上单调递增D. f(x)在[a, b]上无界8. 函数f(x) = |x|在x=0处:A. 连续B. 可导C. 不连续D. 不可导9. 微分方程dy/dx + y = 0的通解是:A. y = Ce^(-x)B. y = Ce^xC. y = Csin(x)D. y = Ccos(x)10. 函数f(x) = e^x在x=0处的泰勒展开式是:A. f(x) = 1 + x + ...B. f(x) = x + ...C. f(x) = 1 + x^2 + ...D. f(x) = 1 + x^3 + ...二、填空题(每题4分,共20分)11. 极限lim(x->0) (sin(x)/x) 的值是 _______。

12. 函数f(x) = x^3 - 6x^2 + 11x - 6的拐点是 _______。

1998考研数一真题答案及详细解析

1998考研数一真题答案及详细解析

A ,
( 0) .
由 A 0 ,知 0 (如果0是 A 的特征值 A 0 ),将上式两端左乘 A ,得
A A A A A ,
从而有
A*
A
,
(即
A
的特征值为
A
).
将此式两端左乘 A ,得
A*
2
A
A*
A
2 .
又 E ,所以
A*
2 E
A
2
1
的条件下与求导次序无关,先求 z 或 z 均可,但不同的选择可能影响计算的繁简. x y
z
方法1:先求 .
x
z x
1 x x
f (xy)
y(x
y)
1 x2
f (xy)
y x
f
(xy)
y (x
y)
,
2z xy
y
1 x2
f (xy)
y x
f (xy)
y(x
y )
1 x2
f (xy)x 1 x
(2)【答案】(B) 【解析】当函数中出现绝对值号时,就有可能出现不可导的“尖点”,因为这时的函数是
分段函数. f (x) (x2 x 2) x x2 1 ,当 x 0, 1 时 f (x) 可导,因而只需在 x 0, 1 处
考察 f (x) 是否可导.在这些点我们分别考察其左、右导数.

o2
x2
,
从而
原式
lim
1
1 2
x
1 8
x
2
o1
x0
x2
1
1 2
x
1 8
x2
o2
x2

1998年全国硕士研究生入学统一考试数学(一)真题及解析

1998年全国硕士研究生入学统一考试数学(一)真题及解析

1998年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)0x →(2)设1()(),,z f xy y x y f x ϕϕ=++具有二阶连续导数,则2z x y∂∂∂=_____________.(3)设l 为椭圆221,43x y +=其周长记为,a 则22(234)Lxy x y ds ++⎰=_____________. (4)设A 为n 阶矩阵*,0,≠A A 为A 的伴随矩阵,E 为n 阶单位矩阵.若A 有特征值,λ则*2()+A E 必有特征值_____________.(5)设平面区域D 由曲线1y x=及直线20,1,e y x x ===所围成,二维随机变量(,)X Y 在区域D 上服从均匀分布,则(,)X Y 关于X 的边缘概率密度在2x =处的值为_____________. 二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 连续,则220()xd tf x t dt dx -⎰= (A)2()xf x (B)2()xf x - (C)22()xf x(D)22()xf x -(2)函数23()(2)f x x x x x =---不可导点的个数是 (A)3 (B)2 (C)1(D)0(3)已知函数()y y x =在任意点x 处的增量2,1y xy xα∆∆=++且当0x ∆→时,α是x ∆的高阶无穷小,(0)y π=,则(1)y 等于(A)2π (B)π(C)4e π(D)4e ππ(4)设矩阵111222333a b c a b c a b c ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦是满秩的,则直线333121212x a y b z c a a b b c c ---==---与直线111232323x a y b z c a a b b c c ---==---(A)相交于一点 (B)重合 (C)平行但不重合(D)异面(5)设,A B 是两个随机事件,且0()1,()0,(|)(|),P A P B P B A P B A <<>=则必有 (A)(|)(|)P A B P A B = (B)(|)(|)P A B P A B ≠ (C)()()()P AB P A P B =(D)()()()P AB P A P B ≠三、(本题满分5分)求直线11:111x y z l --==-在平面:210x y z π-+-=上的投影直线0l 的方程,并求0l 绕y 轴旋转一周所成曲面的方程.四、(本题满分6分)确定常数,λ使在右半平面0x >上的向量42242(,)2()()x y xy x y x x y λλ=+-+A i j为某二元函数(,)u x y 的梯度,并求(,).u x y 五、(本题满分6分)从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度(y 从海平面算起)与下沉速度v 之间的函数关系.设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为,m 体积为,B 海水密度为,ρ仪器所受的阻力与下沉速度成正比,比例系数为(0).k k >试建立y 与v 所满足的微分方程,并求出函数关系式().y y v =六、(本题满分7分)计算222212(),()axdydz z a dxdy x y z ∑++++⎰⎰其中∑为下半平面z =,a 为大于零的常数.七、(本题满分6分)求2sin sin sin lim .1112x n n n n n n πππ→∞⎡⎤⎢⎥+++⎢⎥+⎢⎥++⎣⎦设正向数列{}n a 单调减少,且1(1)nn n a ∞=-∑发散,试问级数11()1nn n a ∞=+∑是否收敛?并说明理由.九、(本题满分6分)设()y f x =是区间[0,1]上的任一非负连续函数.(1)试证存在0(0,1),x ∈使得在区间0[0,]x 上以0()f x 为高的矩形面积,等于在区间0[,1]x 上以()y f x =为曲边的曲边梯形面积.(2)又设()f x 在区间(0,1)内可导,且2()(),f x f x x'>-证明(1)中的0x 是唯一的. 十、(本题满分6分)已知二次曲面方程2222224x ay z bxy xz yz +++++=可以经过正交变换x y z ξηζ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦P 化为椭圆柱面方程2244,ηξ+=求,a b 的值和正交矩阵.P 十一、(本题满分4分)设A 是n 阶矩阵,若存在正整数,k 使线性方程组k x =A 0有解向量,α且1.k -≠A α0 证明:向量组1,,,k -αA αA α是线性无关的.十二、(本题满分5分)已知方程组(Ⅰ)1111221,222112222,221122,22000n n n n n n n n n a x a x a x a x a x a x a x a x a x +++=+++=+++=的一个基础解析为11121,221222,212,2(,,,),(,,,),,(,,,).T T T n n n n n n b b b b b b b b b 试写出线性方程组(Ⅱ)1111221,222112222,221122,22000n n n n n n n n n b y b y b y b y b y b y b y b y b y +++=+++=+++=的通解,并说明理由.设两个随机变量,X Y 相互独立,且都服从均值为0、方差为12的正态分布,求随机变量X Y -的方差.十四、(本题满分4分)从正态总体2(3.4,6)N 中抽取容量为n 的样本,如果要求其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问样本容量n 至少应取多大? 附:标准正态分布表22()t zx dt -Φ=⎰十五、(本题满分4分)设某次考试的学生成绩服从正态分布,从中随机地抽取36位考生地成绩,算得平均成绩为66.5分,标准差为15分.问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70 分?并给出检验过程.附:t 分布表 {()()}p P t n t n p ≤=1998年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5小题,每小题3分,满分15分.) (1)【答案】14-【解析】方法1:用四则运算将分子化简,再用等价无穷小替换,原式22x →=24x →-=)221lim4x x →=2220112112lim 24x x xx →-- =-.方法2:采用洛必达法则.原式)()022limxx →''洛0x→= 0x →=0x →=0x → 洛 14==-.方法3:将分子按佩亚诺余项泰勒公式展开至2x 项,()22111128x x o x =+-+()22211128x x o x =--+, 从而 原式()()2222122011111122828lim x x x o x x x o x x →+-++--+-= ()()222122014lim x x o x o x x →-++=14=-. (2)【答案】()()()yf xy x y y x y ϕϕ'''''++++ 【分析】因为1()(),,z f xy y x y f xϕϕ=++具有二阶连续导数,利用混合偏导数在连续的条件下与求导次序无关,先求z x ∂∂或z y∂∂均可,但不同的选择可能影响计算的繁简. 方法1:先求z x∂∂. 211()()()()()z y f xy y x y f xy f xy y x y x x x x x ϕϕ∂∂⎡⎤''=++=-+++⎢⎥∂∂⎣⎦,2221()()()11()()()()()11()()()()()()()().z y f xy f xy y x y x y y x x yf xy x f xy f xy x x y y x y x x xf xy f xy yf xy x y y x y x xyf xy x y y x y ϕϕϕϕϕϕϕ∂∂⎛⎫''=-+++ ⎪∂∂∂⎝⎭'''''''=-++++++'''''''=-++++++'''''=++++ 方法2:先求z y∂∂. 11()()()()()()()(),z f xy y x y f xy x x y y x y y y x xf xy x y y x y ϕϕϕϕϕ∂∂⎡⎤''=++=++++⎢⎥∂∂⎣⎦''=++++ []22()()()()()().z z f xy x y y x y x y y x xyf xy x y y x y ϕϕϕϕ∂∂∂''==++++∂∂∂∂∂'''''=++++ 方法3:对两项分别采取不同的顺序更简单些:()[][][]21()()1()()()()()()().z f xy y x y x y x y x y x f xy x y x y x x y f xy y x y x yyf xy x y y x y ϕϕϕϕϕ⎡⎤∂∂∂∂∂⎛⎫⎡⎤=++ ⎪⎢⎥⎢⎥∂∂∂∂∂∂⎝⎭⎣⎦⎣⎦∂∂⎡⎤''=++⎢⎥∂∂⎣⎦∂∂''=++∂∂'''''=++++ 评注:本题中,,f ϕ中的中间变量均为一元,因此本题实质上是一元复合函数的求导,只要注意到对x 求导时,y 视为常数;对y 求导时,x 视为常数就可以了. (3)【答案】12a【解析】L 关于x 轴(y 轴)对称,2xy 关于y (关于x )为奇函数20Lxyds ⇒=⎰.又在L 上,22222213412(34)1212.43L L x y x y x y ds ds a +=⇒+=⇒+==⎰⎰因此, 原式222(34)12LLxyds x y ds a =++=⎰⎰.【相关知识点】对称性:平面第一型曲线积分(),lf x y ds ⎰,设(),f x y 在l 上连续,如果l 关于y 轴对称,1l 为l 上0x ≥的部分,则有结论:()()()()12,,,,0,l lf x y ds f x y x f x y ds f x y x ⎧ ⎪=⎨ ⎪⎩⎰⎰关于为偶函数,,关于为奇函数. 类似地,如果l 关于x 轴对称,2l 为l 上0y ≥的部分,则有结论:()()()()22,,,,0,l lf x y ds f x y y f x y ds f x y y ⎧ ⎪=⎨ ⎪⎩⎰⎰关于为偶函数,,关于为奇函数. (4)【答案】 21A λ⎛⎫+ ⎪⎝⎭【解析】方法1:设A 的对应于特征值λ的特征向量为ξ,由特征向量的定义有,(0)A ξλξξ=≠.由0A ≠,知0λ≠(如果0是A 的特征值0A ⇔=),将上式两端左乘A *,得A A A A A ξξλξλξ***===,从而有 *,AA ξξλ=(即A *的特征值为Aλ).将此式两端左乘A *,得()22**AA A A ξξξλλ⎛⎫== ⎪⎝⎭.又E ξξ=,所以()()22*1A A E ξξλ⎛⎫⎛⎫ ⎪+=+ ⎪ ⎪⎝⎭⎝⎭,故*2()A E +的特征值为21A λ⎛⎫+ ⎪⎝⎭.方法2:由0A ≠,A 的特征值0λ≠(如果0是A 的特征值0A ⇔=),则1A -有特征值1λ,A *的特征值为A λ;*2()A E +的特征值为21A λ⎛⎫+ ⎪⎝⎭.【相关知识点】1.矩阵特征值与特征向量的定义:设A 是n 阶矩阵,若存在数λ及非零的n 维列向量X 使得AX X λ=成立,则称λ是矩阵A 的特征值,称非零向量X 是矩阵A 的特征向量.由λ为A 的特征值可知,存在非零向量α使A αλα=,两端左乘1A -,得1A αλα-=.因为0α≠,故0λ≠,于是有11Aααλ-=.按特征值定义知1λ是1A -的特征值.若AX X λ=,则()()A kE X AX kX k X λ+=+=+.即若λ是A 的特征值,则A kE +的特征值是k λ+.2.矩阵A 可逆的充要条件是0A ≠,且11AA A-*=. (5)【答案】14【解析】首先求(,)X Y 的联合概率密度(,)f x y .21(,)|1,0D x y x e y x ⎧⎫=≤≤≤≤⎨⎬⎩⎭, 区域D 的面积为22111ln 2.e e D S dx x x===⎰1,(,),(,)20, x y D f x y ⎧∈⎪=⎨⎪⎩其他.其次求关于X 的边缘概率密度.当1x <或2x e >时,()0X f x =;当21x e ≤≤时,1011()(,)22x X f x f x y dy dy x+∞-∞===⎰⎰. 故1(2).4X f =二、选择题(本题共5小题,每小题3分,共15分.) (1)【答案】(A)【解析】为变限所定义的函数求导数,作积分变量代换22,u x t =-2:0:0t x u x →⇒→,()222du d x t tdt =-=-12dt du t⇒=-, 222022220001()()211()(),22xx xx tf x t dt u x t tf u dt t f u du f u du ⎛⎫-=-- ⎪⎝⎭=-=⎰⎰⎰⎰()2220022221()()211()()2(),22x x d d tf x t dt f u du dx dx f x x f x x xf x -='=⋅=⋅=⎰⎰选(A).【相关知识点】对积分上限的函数的求导公式:若()()()()t t F t f x dx βα=⎰,()t α,()t β均一阶可导,则[][]()()()()()F t t ft t f t ββαα'''=⋅-⋅.(2)【答案】(B)【解析】当函数中出现绝对值号时,就有可能出现不可导的“尖点”,因为这时的函数是分段函数.22()(2)1f x x x x x =---,当0,1x ≠±时()f x 可导,因而只需在0,1x =±处考察()f x 是否可导.在这些点我们分别考察其左、右导数.由 22222222(2)(1),1,(2)(1),10,()(2)(1),01,(2)(1),1,x x x x x x x x x x f x x x x x x x x x x x ⎧---<-⎪----≤<⎪=⎨---≤<⎪⎪---≤⎩⇒ ()()22111(2)(1)0(1)lim lim 011x x f x f x x x x f x x ---→-→-------'-===++, ()()22111(2)(1)0(1)lim lim 011x x f x f x x x x f x x +++→-→-------'-===++,即()f x 在1x =-处可导.又()()22000(2)(1)0(0)lim lim 2x x f x f x x x x f x x ---→→-----'===, ()()22000(2)(1)0(0)lim lim 2x x f x f x x x x f x x+++→→-----'===-,所以()f x 在0x =处不可导.类似,函数()f x 在1x =处亦不可导.因此()f x 只有2个不可导点,故应选(B). 评注:本题也可利用下列结论进行判断:设函数()()f x x a x ϕ=-,其中()x ϕ在x a =处连续,则()f x 在x a =处可导的充要条件是()0a ϕ=. (3)【答案】(D) 【解析】由2,1y x y x α∆∆=++有2.1y y x x xα∆=+∆+∆ 令0,x ∆→得α是x ∆的高阶无穷小,则0lim0x xα∆→=∆,0limx y x ∆→∆∆20lim 1x yx x α∆→⎛⎫=+ ⎪+∆⎝⎭200lim lim 1x x y x x α∆→∆→=++∆21y x =+ 即21dy y dx x=+. 分离变量,得2,1dy dx y x=+ 两边积分,得 ln arctan y x C =+,即arctan 1.xy C e=代入初始条件(0),y π=得()arctan0110.y C e C π===所以,arctan xy eπ=.故 arctan 1(1)xx y eπ==arctan1eπ=4.e ππ=【相关知识点】无穷小的比较:设在同一个极限过程中,(),()x x αβ为无穷小且存在极限 ()lim ()x l x αβ=, (1) 若0,l ≠称(),()x x αβ在该极限过程中为同阶无穷小; (2) 若1,l =称(),()x x αβ在该极限过程中为等价无穷小,记为()()x x αβ;(3) 若0,l =称在该极限过程中()x α是()x β的高阶无穷小,记为()()()x o x αβ=. 若()lim()x x αβ不存在(不为∞),称(),()x x αβ不可比较. (4)【答案】(A) 【解析】设3331121212:x a y b z c L a a b b c c ---==---,1112232323:x a y b z c L a a b b c c ---==---,题设矩阵111222333a b c a b c a b c ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦是满秩的,则由行列式的性质,可知 11112121222223232333333312230a b c a a b b c c a b c a a b b c c a b c a b c ------≠行减行,行减行, 故向量组121212(,,)a a b b c c ---与232323(,,)a a b b c c ---线性无关,否则由线性相关的定义知,一定存在12,k k ,使得11212122232323(,,)(,,)0k a a b b c c k a a b b c c ---+---=,这样上面行列式经过初等行变换值应为零,产生矛盾.121212(,,)a a b b c c ---与232323(,,)a a b b c c ---分别为12,L L 的方向向量,由方向向量线性相关,两直线平行,可知12,L L 不平行.又由333121212x a y b z c a a b b c c ---==---得333121212111x a y b z c a a b b c c ----=-=----,即()()()312312312121212x a a a y b b b z c c c a a b b c c ---------==---. 同样由111232323x a y b z c a a b b c c ---==---,得111232323111x a y b z c a a b b c c ---+=+=+---,即 ()()()123323323232323x a a a y b b b z c c c a a b b c c -+--+--+-==---, 可见12,L L 均过点()213213213,,a a a b b b c c c ------,故两直线相交于一点,选(A). (5)【答案】C【分析】由题设条件(|)(|)P B A P B A =,知A 发生与A 不发生条件下B 发生的条件概率相等,即A 发生不发生不影响B 的发生概率,故,A B 相互独立.而本题选项(A)和(B)是考虑(|)P A B 与(|)P A B 是否相等,选项(C)和(D)才是事件A 与B 是否独立. 【解析】由条件概率公式及条件(|)(|),P B A P B A =知{}{}{}{}{}{}{}1P AB P AB P B P AB P A P A P A-==-, 于是有 {}{}{}{}{}1P AB P A P A P B P AB -=⋅-⎡⎤⎡⎤⎣⎦⎣⎦, 可见 {}{}{}P AB P A P B =. 应选(C).【相关知识点】条件概率公式:{}{}{}|P AB P B A P A =.三、(本题满分5分)【解析】方法1:求直线L 在平面∏上的投影0L :方法1:先求L 与∏的交点1N .以1,:,1x t L y t z t =+⎧⎪=⎨⎪=-⎩代入平面∏的方程,得(1)2(1)101t t t t +-+--=⇒=.从而交点为1(2,1,0)N ;再过直线L 上点0(1,0,1)M 作平面∏的垂线11:112x y z L --'==-,即1,,12.x t y t z t =+⎧⎪=-⎨⎪=+⎩并求L '与平面∏的交点2N :1(1)()2(12)103t t t t +--++-=⇒=-,交点为2211(,,)333N .1N 与2N 的连接线即为所求021:421x y zL --==-. 方法2:求L 在平面∏上的投影线的最简方法是过L 作垂直于平面∏的平面0∏,所求投影线就是平面∏与0∏的交线.平面0∏过直线L 上的点(1,0,1)与不共线的向量(1,1,1)l =- (直线L 的方向向量)及(1,1,2)n =-(平面∏的法向量)平行,于是0∏的方程是111110112x y z ---=-,即3210x y z --+=. 投影线为 0210,:3210.x y z L x y z -+-=⎧⎨--+=⎩下面求0L 绕y 轴旋转一周所成的旋转曲面S 的方程.为此,将0L 写成参数y 的方程:2,1(1).2x y z y =⎧⎪⎨=--⎪⎩ 按参数式表示的旋转面方程得S 的参数方程为,,.xy yzθθ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩消去θ得S的方程为()222212(1)2x z y y⎡⎤+=+--⎢⎥⎣⎦,即2224174210.x y z y-++-=四、(本题满分6分)【解析】令42(,)2(),P x y xy x yλ=+242(,)(),Q x y x x yλ=-+则(,)((,),(,))A x y P x y Q x y=在单联通区域右半平面0x>上为某二元函数(,)u x y的梯度Pdx Qdy⇔+在0x>上∃原函数(,)u x y⇔,0.Q Pxx y∂∂=>∂∂其中, 42242132()()4Qx x y x x y xxλλλ-∂=-+-+⋅∂,424212()2()2Px x y xy x y yyλλλ-∂=+++⋅∂.由Q Px y∂∂=∂∂,即满足4224213424212()()42()2()2x x y x x y x x x y xy x y yλλλλλλ---+-+⋅=+++⋅,424()(1)01x x yλλλ⇔++=⇔=-.可见,当1λ=-时,所给向量场为某二元函数的梯度场.为求(,)u x y,采用折线法,在0x>半平面内任取一点,比如点(1,0)作为积分路径的起点,则根据积分与路径无关,有2(,)42(1,0)2(,)x yxydx x dyu x y Cx y-=++⎰24421020x yx xdx dy Cx x y⋅-=++++⎰⎰(折线法)242y x dy Cx y-=++⎰2242(1)yx dy C y x x -=+⎛⎫+ ⎪⎝⎭⎰(第一类换元法)222222004221(1)(1)yy x x y y d C d C x x y y x x x ⋅⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰ 2arctan yC x=-+(基本积分公式) 其中C 为任意常数.【相关知识点】1.二元可微函数(,)u x y 的梯度公式:u u gradu i +j x y∂∂=∂∂. 2.定理:设D 为平面上的单连通区域,函数()P x,y 与(,)Q x y 在D 内连续且有连续的一阶偏导数,则下列六个命题等价:(1),(,)Q Px y D x y∂∂≡∈∂∂; (2) 0,LPdx Qdy L +=⎰为D 内任意一条逐项光滑的封闭曲线;(3)LABPdx Qdy +⎰仅与点,A B 有关,与连接,A B 什么样的分段光滑曲线无关;(4) 存在二元单值可微函数(,)u x y ,使du Pdx Qdy =+(即Pdx Qdy +为某二元单值可微函数(,)u x y 的全微分; (5) 微分方程0Pdx Qdy +=为全微分方程;(6) 向量场P +Q i j 为某二元函数(,)u x y 的梯度u P +Q =grad i j .换言之,其中任一组条件成立时,其它五组条件皆成立.当条件成立时,可用试图法或折线法求函数(,)u x y .五、(本题满分6分)【解析】先建立坐标系,取沉放点为原点O ,铅直向下作为Oy 轴正向,探测器在下沉过程中受重力、浮力和阻力的作用,其中重力大小:mg ,浮力的大小:F B ρ=-浮;阻力:kv -,则由牛顿第二定律得202,0,0.t t d ym mg B g kv y vdtρ===--== (*)由22,dy d y dv dv dy dv dy v v v dv dt dt dt dy dt dy===⋅==,代入(*)得y 与v 之间的微分方程10,0y dy mv mg B kv v dv ρ-=⎛⎫=--= ⎪⎝⎭.分离变量得 mvdy dv mg B kv ρ=--,两边积分得 mvdy dv mg B kv ρ=--⎰⎰,2222()()()Bm m g Bm m g mv k k k k y dv mg B kv m Bm m g mg B kv k k k dv mg B kv m g Bm m k dvk mg B kv m m mg B dv dvk k mg B kv ρρρρρρρρρρ+--+=------+=--⎛⎫- ⎪=-+ ⎪-- ⎪ ⎪⎝⎭-=-+--⎰⎰⎰⎰⎰1()()()()m mg B m k v d mg B kv k k mg B kv ρρρ-⋅-=-+----⎰ (第一类换元法) 2()ln()m m mg B v mg B kv C k kρρ-=----+.再根据初始条件0|0,y v ==即22()()ln()0ln()m mg B m mg B mg B C C mg B k k ρρρρ----+=⇒=-.故所求y 与v 函数关系为()2ln .m mg B m mg B kv y v k k mg B ρρρ-⎛⎫--=-- ⎪-⎝⎭六、(本题满分7分)【解析】方法1:本题属于求第二类区面积分,且不属于封闭区面,则考虑添加一平面使被积区域封闭后用高斯公式进行计算,但由于被积函数分母中包含12222()x y z ++,因此不能立即加、减辅助面2221:0x y a z ⎧+≤∑⎨=⎩,宜先将曲面方程代入被积表达式先化简:2212222()1().()axdydz z a dxdy I axdydz z a dxdy a x y z ∑∑++==++++⎰⎰⎰⎰ 添加辅助面2221:0x y a z ⎧+≤∑⎨=⎩,其侧向下(由于∑为下半球面z =侧,而高斯公式要求是整个边界区面的外侧,这里我们取辅助面的下侧,和∑的上侧组成整个边界区面的内侧,前面取负号即可),由高斯公式,有11222211()()()1()().D I axdydz z a dxdy axdydz z a dxdy a a z a ax dV a dxdy a x z ∑+∑∑Ω=++-++⎛⎫⎡⎤∂+⎛⎫∂⎣⎦ ⎪=-+-- ⎪ ⎪∂∂⎝⎭⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰第一个积分前面加负号是由于我们取边界区面的内侧,第二个积分前面加负号是由于1∑的方向向下;另外由曲面片1∑在yoz 平面投影面积为零,则10axdydz ∑=⎰⎰,而1∑上0z =,则()22z a a +=.21(2())D I a z a dV a dxdy a Ω⎛⎫=-+++ ⎪⎝⎭⎰⎰⎰⎰⎰,其中Ω为∑与1∑所围成的有界闭区域,D 为1∑在xoy 面上的投影222{(,)|}D x y x y a =+≤. 从而,220322001321232.3D a I a dv zdv a dxdy a a a d rdr a a a ππθπΩΩ⎛⎫=--+ ⎪⎝⎭⎛⎫=-⋅-+⋅ ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰第一个积分用球体体积公式;第二个用柱面坐标求三重积分;第三个用圆的面积公式.()2042400242200242300224224440411222112()21()1122242412a a a aI a d r z dr a a a d r a r dr a a d a r r draa r r a a a a a a a a a a ππππθππθπθππππππ⎛⎫⎛=--+ ⎪⎝⎝⎭⎛⎫⎛⎫=---- ⎪ ⎪⎝⎭⎝⎭=-+-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪=-+⋅-=-+⋅- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=-+⋅⎰⎰⎰⎰⎰⎰4342a π⎛⎫=- ⎪⎝⎭ 方法2:逐项计算:2212222212()1()()1().axdydz z a dxdyI axdydz z a dxdy a x y z xdydz z a dxdy I I a ∑∑∑∑++==++++=++=+⎰⎰⎰⎰⎰⎰⎰⎰其中,12,Dyz DyzDyzI xdydz ∑==-+=-⎰⎰⎰⎰⎰⎰⎰⎰第一个负号是由于在x 轴的正半空间区域∑的上侧方向与x 轴反向;第二个负号是由于被积函数在x 取负数.yz D 为∑在yoz 平面上的投影域222{(,)|,0}yz D y z y z a z =+≤≤,用极坐标,得2102203223320212()2222()(0),333aI d a r a r a a ππθππππ=-=-⋅--=-=-=-⎰⎰⎰(222222002302300042230044411()1(22)2(22)2222123422(3Dxya a a a a a a I z a dxdy a dxdya a d a r rdra a r r dr a a rdr a r dr a r a r a a a a a a aπθππππ∑=+=-=-=-⎡⎤=--⎢⎥⎣⎦⎡⎤⎛⎫⎛⎫⎢⎥=-⋅- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰3),46a π=其中yz D 为∑在yoz 平面上的投影域222{(,)|}yz D y z y z a =+≤.故312.2I I I a π=+=-【相关知识点】高斯公式:设空间闭区域Ω是由分片光滑的闭曲面∑所围成,函数(,,)P x y z 、(,,)Q x y z 、(,,)R x y z 在Ω上具有一阶连续偏导数,则有,P Q R dv Pdydz Qdzdx Rdxdy x y z Ω∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰ 或()cos cos cos ,P Q R dv P Q R dS x y z αβγΩ∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰这里∑是Ω的整个边界曲面的外侧,cos α、cos β、cos γ是∑在点(,,)x y z 处的法向量的方向余弦.上述两个公式叫做高斯公式.七、(本题满分6分)【分析】这是n 项和式的极限,和式极限通常的方法就两种:一、把和式放缩,利用夹逼准则求极限;二、把和式转换成定积分的定义形式,利用定积分求极限.这道题,把两种方法结合到一起来求极限.当各项分母均相同是n 时,n 项和式2sin sinsin n n n n n x nnnπππ=+++是函数sin x π在[0,1]区间上的一个积分和.于是可由定积分1sin xdx π⎰求得极限lim nn x→∞.【解析】由于sinsin sin ,1,2,,11i i i n n n i n n n n iπππ≤≤=⋅⋅⋅++,于是,111sinsin sin 11nn ni i i i i i n n n n nn iπππ===≤≤++∑∑∑.由于 1011sin12limlim sin sin nnn n i i i i n xdx n n n ππππ→∞→∞=====∑∑⎰,10111sin112lim lim sin lim sin sin 11nn nn n n i i i i n i i n xdx n n n n n n πππππ→∞→∞→∞===⎡⎤=⋅===⎢⎥++⎣⎦∑∑∑⎰根据夹逼定理知,1sin2lim1nn i i n n iππ→∞==+∑. 【相关知识点】夹逼准则:若存在N ,当n N >时,n n n y x z ≤≤,且有lim lim n n n n y z a →+∞→+∞==,则lim n n x a →+∞=.八、(本题满分5分)【解析】方法1:因正项数列{}n a 单调减少有下界0,知极限lim n n a →∞存在,记为a ,则n a a ≥且0a ≥.又1(1)nn n a ∞=-∑发散,根据莱布尼茨判别法知,必有 0a >(否则级数1(1)n n n a ∞=-∑收敛).又正项级数{}n a 单调减少,有11,11nnn a a ⎛⎫⎛⎫≤ ⎪ ⎪++⎝⎭⎝⎭而1011a <<+,级数11()1n n a ∞=+∑收敛.根据正项级数的比较判别法,知级数11()1nn n a ∞=+∑也收敛. 方法2:同方法1,可证明lim 0n n a a →∞=>.令1,1nn n b a ⎛⎫= ⎪+⎝⎭则11lim1,11n n na a →∞==<++根据根值判别法,知级数11()1nn n a ∞=+∑也收敛. 【相关知识点】1.交错级数的莱布尼茨判别法:设交错级数11(1)n n n u ∞-=-∑满足:(1)1,1,2,;n n u u n +≥= (2)lim 0.n n u →∞=则11(1)n n n u ∞-=-∑收敛,且其和满足1110(1),n n n u u ∞-=<-<∑余项1.n n r u +<反之,若交错级数11(1)n n n u ∞-=-∑发散,只是满足条件(1),则可以反证说明此级数一定不满足条件(2)lim 0n n u →∞=,所以有lim 0.n n u →∞>(否则级数11(1)n n n u ∞-=-∑收敛)2.正项级数的比较判别法:设1n n u ∞=∑和1n n v ∞=∑都是正项级数,且lim,nn nv A u →∞=则(1)当0A <<+∞时,1nn u∞=∑和1nn v∞=∑同时收敛或同时发散;(2)当0A =时,若1nn u∞=∑收敛,则1nn v∞=∑收敛;若1nn v∞=∑发散,则1nn u∞=∑发散;(3)当A =+∞时,若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散.3.根值判别法:设0n u >,则当111, 1, lim 0,1, .n n n n n n n u u u ρ∞=∞→∞=⎧<⎪⎪⎪=>≠⎨⎪⎪=⎪⎩∑∑时收敛,时发散,且时此判别法无效九、(本题满分6分)【解析】(1)要证0(0,1)x ∃∈,使0100()()x x f x f x dx =⎰;令1()()()x x xf x f t dt ϕ=-⎰,要证0(0,1)x ∃∈,使0()0x ϕ=.可以对()x ϕ的原函数0()()x x t dt ϕΦ=⎰使用罗尔定理:(0)0Φ=,11111111000(1)()()(())()()()0,xx x x x dx xf x dx f t dt dxxf x dx x f t dt xf x dx ϕ==Φ==-⎡⎤=-+=⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰分部又由()f x 在[0,1]连续()x ϕ⇒在[0,1]连续,()x Φ在[0,1]连续,在(0,1)可导.根据罗尔定理,0(0,1)x ∃∈,使00()()0x x ϕ'Φ==.(2) 由()()()()()2()0x xf x f x f x xf x f x ϕ'''=++=+>,知()x ϕ在(0,1)内单调增,故(1)中的0x 是唯一的.评注:若直接对()x ϕ使用零点定理,会遇到麻烦:1(0)()0,(1)(1)0f t dt f ϕϕ=-≤=≥⎰.当()0f x ≡时,对任何的0(0,1)x ∈结论都成立;当()f x ≡0时,(0)0,ϕ<但(1)0ϕ≥,若(1)0ϕ=,则难以说明在(0,1)内存在0x .当直接对()x ϕ用零点定理遇到麻烦时,不妨对()x ϕ的原函数使用罗尔定理. 【相关知识点】1.罗尔定理:如果函数()f x 满足 (1) 在闭区间[,]a b 上连续; (2) 在开区间(,)a b 内可导;(3) 在区间端点处的函数值相等,即()()f a f b =, 那么在(,)a b 内至少有一点ξ(a b ξ<<),使得()0f ξ'=.十、(本题满分6分)【解析】经正交变换化二次型为标准形,二次型矩阵与标准形矩阵既合同又相似.由题设知,二次曲面方程左端二次型对应矩阵为111111b A b a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则存在正交矩阵P ,使得 1000010004P AP -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B 记,即A B 与相似.由相似矩阵有相同的特征值,知矩阵A 有特征值0,1,4.从而,211014,3, 1.(1)0.a a b A b B ++=++⎧⎪⇒==⎨=--==⎪⎩从而,111131.111A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦当10λ=时,()1110131111E A ---⎡⎤⎢⎥-=---⎢⎥⎢⎥---⎣⎦1(1)23⨯-行分别加到,行111020000---⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦于是得方程组(0)0E A x -=的同解方程组为12320,20.x x x x ---=⎧⎨-=⎩(0)2r E A -=,可知基础解系的个数为(0)321n r E A --=-=,故有1个自由未知量,选1x 为自由未知量,取11x =,解得基础解系为1(1,0,1).Tα=-当21λ=时,()011121110E A --⎡⎤⎢⎥-=---⎢⎥⎢⎥--⎣⎦3(1)2⨯-加到行011011110--⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦1(1)2⨯-行加到行011000110--⎡⎤⎢⎥⎢⎥⎢⎥--⎣⎦23,行互换011110000--⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦, 于是得方程组()0E A x -=的同解方程组为23120,0.x x x x --=⎧⎨--=⎩()2r E A -=,可知基础解系的个数为()321n r E A --=-=,故有1个自由未知量,选1x 为自由未知量,取11x =,解得基础解系为2(1,1,1).Tα=-当34λ=时,()3114111113E A --⎡⎤⎢⎥-=--⎢⎥⎢⎥--⎣⎦12,行互换111311113--⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦1行的3,(-1)倍分别加到2,3行111024024--⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦23行加到行111024000--⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦,于是得方程组(4)0E A x -=的同解方程组为123230,240.x x x x x -+-=⎧⎨-=⎩(4)2r E A -=,可知基础解系的个数为(4)321n r E A --=-=,故有1个自由未知量,选2x 为自由未知量,取22x =,解得基础解系为3(1,2,1).Tα=由实对称矩阵不同特征值对应的特征向量相互正交,可知123,,ααα相互正交. 将123,,ααα单位化,得111222333,,.TTTαηααηααηα======因此所求正交矩阵为0P ⎡⎢⎢⎢=⎢⎢⎢⎢⎣. 评注:利用相似的必要条件求参数时,iiiia b=∑∑是比较好用的一个关系式.亦可用E A E B λλ-=-比较λ同次方的系数来求参数.【相关知识点】1.特征值的性质:11nni iii i aλ===∑∑2.相似矩阵的性质:若矩阵A B 与相似,则A B =.十一、(本题满分4分)【解析】用线性无关的定义证明.设有常数011,,,,k λλλ-⋅⋅⋅使得10110.()k k A A λαλαλα--++⋅⋅⋅+=*两边左乘1k A -,则有()110110k k k A A A λαλαλα---++⋅⋅⋅+=,即 12(1)0110k k k k A A Aλαλαλα---++⋅⋅⋅+=. 上式中因0kA α=,可知()2110k k A A αα-+===,代入上式可得100.k A λα-=由题设10k Aα-≠,所以00.λ=将00λ=代入()*,有1110k k A A λαλα--+⋅⋅⋅+=.两边左乘2k A -,则有 ()21110k k k A A A λαλα---+⋅⋅⋅+=,即123110k k k A A λαλα---+⋅⋅⋅+=.同样,由0kA α=,()2110k k A A αα-+==,可得110.k A λα-=由题设10k Aα-≠,所以10.λ=类似地可证明210,k λλ-=⋅⋅⋅==因此向量组1,,,k A A ααα-⋅⋅⋅是线性无关的. 【相关知识点】向量组线性相关和线性无关的定义:存在一组不全为零的数12m k ,k ,,k 使11220m m k k k ααα+++=,则称12m ,,,ααα线性相关;否则,称12m ,,,ααα线性无关.十二、(本题满分5分) 【解析】()II 的通解为1122n n k k k ξξξ++⋅⋅⋅+,其中,111121,2(,,,),Tn a a a ξ=⋅⋅⋅221222,2(,,,),,T n a a a ξ=⋅⋅⋅12,2(,,,)T n n n n n a a a ξ=⋅⋅⋅,12,,,n k k k ⋅⋅⋅为任意常数.理由:可记方程组22()0,()0,n n n n I A X II B Y ⨯⨯==()I ,()II 的系数矩阵分别记为,A B ,由于B 的每一行都是20n n A X ⨯=的解,故0T AB =.TB 的列是()I 的基础解系,故由基础解系的定义知,T B 的列向量是线性无关的,因此()r B n =.故基础解系所含向量的个数2()n n r A =-,得()2r A n n n =-=.因此,A 的行向量线性无关.对0TAB =两边取转置,有()0TT T ABBA ==,则有T A 的列向量,即A 的行向量是0BY =的线性无关的解.又()r B n =,故0BY =基础解系所含向量的个数应为2()2n r B n n n -=-=,恰好等于A 的行向量个数.故A 的行向量组是0BY =的基础解系,其通解为1122n n k k k ξξξ++⋅⋅⋅+,其中,111121,2(,,,),Tn a a a ξ=⋅⋅⋅221222,2(,,,),,T n a a a ξ=⋅⋅⋅12,2(,,,)T n n n n n a a a ξ=⋅⋅⋅,12,,,n k k k ⋅⋅⋅为任意常数.十三、(本题满分6分)【分析】把X Y -看成一个随机变量,根据独立正态随机变量的线性组合必然为正态分布的性质,可以知道N(0,1)X Y-,这样可以简化整题的计算.【解析】令Z X Y =-,由于,X Y 相互独立,且都服从正态分布,因此Z 也服从正态分布,且()()()0E Z E X E Y =-=,11()()()122D Z D X D Y =+=+=. 于是,(0,1)Z X Y N =-~.()()()()()()()22222()1.D X Y D ZE ZE Z D Z E Z E ZE Z-==-=+-=-而2222z z E Z z dz ze dz +∞+∞---∞==⎰2222202z z z ed e+∞+∞--⎡⎤⎛⎫==-=⎥ ⎪⎝⎭⎥⎦ 故21.D X Y π-=-【相关知识点】1.对于随机变量X 与Y 均服从正态分布,则X 与Y 的线性组合亦服从正态分布.若X 与Y 相互独立,由数学期望和方差的性质,有()()()E aX bY c aE X bE Y c ++=++,22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数.2.方差的定义:22()DX EX EX =-.3.随机变量函数期望的定义:若()Y g X =,则()()EY g x f x dx +∞-∞=⎰.十四、(本题满分4分) 【解析】由题知:212,,,~(3.4,6)n X X X N ,11nn i i X X n ==∑,各样本相互独立,根据独立正态随机变量的性质,211~(,)n n i i X X N n μσ==∑.其中11n n i i EX E X n μ=⎛⎫== ⎪⎝⎭∑,211n n i i DX D X n σ=⎛⎫== ⎪⎝⎭∑.根据期望和方差的性质,1122222211111 3.4 3.4,11166.n nn i i i i n n nn i i i i i i n EX E X EX n n n n DX D X D X DX n n n n n μσ=====⎛⎫===== ⎪⎝⎭⎛⎫⎛⎫====== ⎪ ⎪⎝⎭⎝⎭∑∑∑∑∑所以,2116~(3.4,)n n i i X X N n n ==∑.把n X 标准化,~(0,1)X U N =. 从而,{}{}{}{}1.4X 5.4 1.4 3.4X 3.4 5.4 3.42X 3.42X 3.42210.95,P P P P P <<=-<-<-=-<-<=-<=<=Φ-≥⎝⎭⎪⎩⎭故0.975,Φ≥⎝⎭查表得到 1.96,3≥即()21.96334.57,n ≥⨯≈所以n 至少应取35. 【相关知识点】1.对于随机变量X 与Y 均服从正态分布,则X 与Y 的线性组合亦服从正态分布.若X 与Y 相互独立,由数学期望和方差的性质,有()()()E aX bY c aE X bE Y c ++=++,22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数. 2.若2~(,)Z N u σ,则~(0,1)Z uN σ-十五、(本题满分4分)【解析】设该次考试的考生成绩为X ,则2~(,)X N μσ,设X 为从总体X 抽取的样本容量为n 的样本均值,S 为样本标准差,则在显著性水平0.05α=下建立检验假设:001:70,:70,H H μμμ==≠由于2σ未知,故用t 检验.选取检验统计量,X T ==在070μμ==时,2~(70,),~(35).X N T t σ 选择拒绝域为{}R T λ=≥,其中λ满足:{}0.05P T λ≥=,即{}0.9750.975,(35) 2.0301.P T t λλ≤===由0 36,66.5,70,15,n x s μ====可算得统计量T 的值:1.42.0301t ==<.所以接受假设0:70H μ=,即在显著性水平0.05下,可以认为这次考试全体考生的平均成绩为70分.。

华中师范大学《高等代数》《数学分析》考研真题(2009-2017汇总)

华中师范大学《高等代数》《数学分析》考研真题(2009-2017汇总)

考试复习重点资料(最新版)资料见第三页封面第1页温馨提示提示:本套资料经过精心编排,前2页是封面和提示部分,后面是资料试题部分。

资料涵盖了考试的重点知识和题型,可以很好的帮助你复习备考。

资料不在多而在精,一套系统的涵盖考试重点的资料,能够帮助你很好的提高成绩,减轻学习负担,再加上自己勤奋练习,肯定能取得理想的成绩。

寄语:无论你是考研、期末考试还是准备其他考试,既然决定了,就要坚持到底,花几个月的时间,精心准备,在加上资料的帮助,必然会得到回报。

1.一份合理科学的学习计划是你备考的领航灯。

要有总体的时间规划,也要有精细到每天的计划,不打无准备的仗。

2.资料需要反复练习,任何一件看似轻而易举的事情,都是经过反复刻意练习的结果。

公众号:第七代师兄,学习也是一样的,手里的资料,一定要反复练习几遍,才能孰能生巧,融汇贯通,考场上才能轻松应对。

3.态度决定一切,不要手稿眼底,从最基础的知识学起,基础扎实了,才能平底起高楼,才能将各类知识点运用自如。

4.坚持到底,无论是考试还是做事情,很多人打败自己的永远是自己。

切记心浮气躁,半途而废。

5.希望这套资料能够很好的帮助你复习备考,祝学习进步,加油。

第2页目录1华中师范大学2009年研究生入学考试试题高等代数4 2华中师范大学2010年研究生入学考试试题高等代数5 3华中师范大学2011年研究生入学考试试题高等代数6 4华中师范大学2012年研究生入学考试试题高等代数7 5华中师范大学2013年研究生入学考试试题高等代数9 6华中师范大学2014年研究生入学考试试题高等代数11 7华中师范大学2015年研究生入学考试试题高等代数12 8华中师范大学2016年研究生入学考试试题高等代数13 9华中师范大学2017年研究生入学考试试题高等代数15 10华中师范大学2009年研究生入学考试试题数学分析17 11华中师范大学2010年研究生入学考试试题数学分析19 12华中师范大学2011年研究生入学考试试题数学分析21 13华中师范大学2012年研究生入学考试试题数学分析23 14华中师范大学2013年研究生入学考试试题数学分析25 15华中师范大学2014年研究生入学考试试题数学分析27 16华中师范大学2015年研究生入学考试试题数学分析29 17华中师范大学2016年研究生入学考试试题数学分析31 18华中师范大学2017年研究生入学考试试题数学分析331.(20分)设a1,¨¨¨,a n是n个复数,x是复变元.求解:x取哪些复数值时下述等式(等式左边是n`1阶行列式)成立:ˇˇˇˇˇˇˇˇˇˇˇˇˇ111¨¨¨1x a1a2¨¨¨a nx2a21a22¨¨¨a2n............x n a n1a n2¨¨¨a n nˇˇˇˇˇˇˇˇˇˇˇˇˇ“0.2.(20分)设f p x q是n次实系数多项式,ną1.设f1p x q是f p x q的导数多项式.证明:(1)如果r是f p x q的m重根,mą0,则r是f1p x q的m´1重根(若r是f p x q的零重根则表示r不是f1p x q的根).(2)如果f p x q的根都是实数,则f1p x q的根也都是实数.3.(20分)设A是秩为r的mˆn阶矩阵,B是非零的mˆ1阶矩阵.考虑线性方程组AX“B,其中X是变元x1,¨¨¨,x n的列向量.证明:(1)线性方程组AX“B的任意有限个解向量X1,¨¨¨,X k的向量组的秩ďn´r`1.(2)若线性方程组AX“B有解,则它有n´r`1个解向量是线性无关的.4.(30分)设A,B,C都是n阶方阵,令˜A BC0¸是分块构成的2n阶方阵,其中右下块0表示n阶零方阵.(1)证明:rank ˜A BC0¸ěrank p B q`rank p C q.这里rank p B q表示矩阵B的秩.(2)举例说明:p1q中的等号和不等号都可能成立.5.(30分)设V是有限维向量空间,设U,W是V的两个子空间.(1)什么是U与W的和子空间U`W?请叙述关于U`W的维数公式.(2)证明关于和子空间的维数公式.6.(30分)设A为n阶实矩阵,λi“r`si是A的特征根,其中r,s是实数,i是虚数单位.(1)证明:12p A`A1q的特征根都是实数,令µ1﨨¨ďµn是12p A`A1q的全部特征根.(2)证明:µ1ďrďµn.(3)你有类似的估计s的办法吗?1.(20分)设F是任意数域,p p x q P F r x s.证明:p p x q是不可约多项式当且仅当p p x q是素多项式.2.(20分)(1)设A是n阶方阵,E是单位矩阵,k‰0.证明:A2“kA当且仅当rank p A q`rank p A´kE q“n.(2)证明:任意方阵可以表示为满秩矩阵和幂等矩阵的乘积.3.(20分)设R表示实数域,V“M3p R q表示所有3ˆ3实矩阵构成的向量空间.对给定的A P M3p R q,定义V上的线性变换A:VÑV为A pB q“AB´BA,对任意的B P M3p R q.设A“¨˚˝000010002˛‹‚.求A的特征值和相应的特征子空间;并求此时A的极小多项式.4.(30分)设有三元实二次型f p x,y,z q“x2`3y2`z2`4xz.并设x,y,z满足x2`y2`z2“1.试求f的最大值和最小值,并求当x,y,z取什么值时,f分别达到最大值和最小值.5.(30分)设R是实数域,V“C1r0,1s是闭区间r0,1s上的实连续可微函数的集合.V在函数的加法和数乘函数的运算下是一个向量空间.(1)证明函数f p x q“cos x,g p x q“2x,h p x q“e x在V中线性无关.(2)任意给定ną0,在V中找出n`1个线性无关的元素,并证明你的结论.(3)对某个m,是否有V和R m同构,如果是,给出证明;如果不是,说明理由.6.(30分)(1)设A和B均为n阶复方阵,证明:A与B相似当且仅当作为λ´矩阵,有λE´A等价于λE´B.(2)设A,B都是3阶幂零矩阵,证明:A相似于B当且仅当A与B有相同的极小多项式.(3)试说明上述结论p2q对4阶幂零矩阵是否成立,为什么?。

(整理)华中数学分析历年考研真题

(整理)华中数学分析历年考研真题

华中师范大学数学分析考研真题以上是01年数分2003年数学分析(综合卷)1.(16)求下列极限:(1))/1(2)!(lim n n n +∞→. (2))(x f 在]1,1[-上连续,恒不为0,求131sin )(1lim 3--+→x x x x f2.(15)设)(x f 在],[b a 上二阶可导,过点))(,(a f a A 与))(,(b f b B 的直线与曲线)(x f y =相较于))(,(c f c C ,其中b c a <<,证明:在),(b a 中至少存在一点ξ,使0)(=''ξf . 3.(15) 证明:x x n n 21ln ∑∞=在]1,0(上一致收敛.4.(15) 设))}({(x f n 是],[b a 上的函数序列,满足对每一个],[b a x ∈导函数)(x f n '存在),2,1( =n 并且满足下列条件:(1)存在某一个],[0b a x ∈,使))}({(0x f n 收敛;(2)导函数列)}({x f n '在],[b a 上一致收敛. 证明:)}({x f n 在],[b a 上一致收敛.5.(14)设)(x f 在],[b a 上可导,其导函数)(x f '在],[b a 可积,对任意的自然数n .记⎰∑---+==bani n dx x f n a b n a b i a f )()(1σ , 证明:)]()([2lim a f b f a b n n n --=+∞→σ.2004年数学分析1.求下列极限(共50分,第1,2小题各10分,第3,4小题各15分)(1)21sin 0lim(cos )xx x → (2)11lim 123n n →∞+++1…+n(3)74444lim (112)x x x x x →∞++-- (4)1lim sin(sin)2nn k k nnππ→∞=∑ 2.(15)设)(),(x g x f 在],[b a 上连续,在),(b a 内可导,若12,x x 是)(x f 在区间],[b a 上的两个零点,证明:存在[,]a b ξ∈,使得'()()'()0f f g ξξξ+=3.(15)设)(x f 在)0](,[>>a b b a 上连续,在),(b a 内可导,证明:在),(b a 内存在,ξη使ba f f ⋅'⋅=')()(2ηηξ.4.(15)设)(x f 在],[b a 上黎曼可积,证明:()f x e在],[b a 上也是黎曼可积的.5.(15)'()(1,2,3,n f x n =…)在],[b a 上连续,函数)(x g 在],[b a 上也连续,且对],[b a 中任意的12,x x 和正整数n ,有1212|()()|||n n Mf x f x x x n -≤-(0>M ),证明:lim ().'()0bn n ag x f x dx →+∞=⎰.6.(15)设()n f x ( ,2,1=n )在],[b a 上连续,且{()}n f x 在],[b a 上一致收敛与)(x f .证明:(1)存在0>M ,使对任何自然数n ,有|()|,|()|n f x M f x M ≤≤及. (2)若)(x F 为-∞+∞(,)上连续函数,则(())n F f x 一致收敛于))((x f F .7.(10)设函数)(x f 在闭区间]1,1[-上具有三阶连续导数,且0)0(,1)1(,0)1(='==-f f f ,证明:在)1,1(-内至少存在一点ξ,使得(3)()3fξ=.8.(15)函数),(y x F 在点00(,)x y 的某个邻域内有连续的二阶偏导数,且00000000(,)0,'(,)0,'(,)0,''(,)0x y xx F x y F x y F x y F x y ==><,证明:由方程),(y x F 确定的隐函数()y f x =在0x 点取得极小值.2005年数学分析1.求下列极限或指定函数的值:(1)1!2!3!!lim !n n n →∞++++(10分) (2)135(21)lim 2462nn n n→∞-(10分)(3)1326lim [().1]2x x x x x e x →+∞-+-+(10分) (4)设)(x f 在0=x 的邻域二阶可导,且130()lim(1)x x f x x e x→++=,求(0),'(0),''(0)f f f 的值.(15分)2.(15)设函数)(),(x g x f 在],[b a 上可导,且在),(b a 上'()0g x ≠,证明:存在)()'()(,)()()'()f a f f a bg g b g ξξξξξ-∈=-(使.3.(15)设函数()f x 在]4,2[上有连续的一阶导函数,且(2)(4)0f f ==,证明:4242max |'()||()|x f x f x dx ≤≤≥⎰.4.(13)设有方程.sin (01)x m q x q =+<<.若0101,.sin ,,sin ,,n n x m x m q x x m q x +==+=+证明:{}n x 收敛; 设lim n n x l →+∞=,再证明l 是方程.sin x m q x =+的唯一解.5.(13)证明:函数项级数11((1))x nn x e nn ∞=-+∑在任何有穷区间[,]a b 上一致收敛. 6.(13)设()f x 在[,]a b 上二阶可导,且''()0f x >,证明:1()()2baa b f f x dx b a +≤-⎰. 7.(13)设12,,,,n a a a 均为常数,证明:函数项级数101..!xn tn n a t e dt n ∞-=∑⎰在[,]a b 上一致收敛. 8.(13)设()f x 在[,]a b 上黎曼可积,()0,f x c ≥≥用可积准则证明:函数ln ()f x 在[,]a b 上黎曼可积.9.(10)设()f x 在[,]a b 上具有连续的二阶导数,证明:在(,)a b 内存在ξ,使得31()()()().''()224baa b f x dx b a f b a f ξ+=-+-⎰2006年数学分析1.(30) (1)111sin)1(sin lim121----→x x e x x . (2) 设x x a x y +=,求y '. (3)dx xx ⎰+ln 1ln ln . (4)设yx y x y x f y arcsin)1(),(2-+=,求)1,(x f x '. (5)dxdy e y x y xD22)(+⎰⎰+,其中}1),{(22≤+=y x y x D . (6) 求⎰-=Lydx ydy x I cos sin ,其中L 是从点)0,0(O 到点)0,(πA 的正弦曲线有x y sin =.2.(20)设)(x f 在(,)a +∞上可导,且'()f x 在(,)a +∞上有界,证明:(1) )(x f 在(,)a +∞上一致连续.(2)()lim ()lim ()x x af a f x f x ++→∞→=存在,但不一定存在. (3)若)(lim x f x +∞→存在,且)(lim )(lim x f x f ax x +→+∞→=,则)(x f '在(,)a +∞上至少有一个零点。

华中师范大学数学分析历年考研真题

华中师范大学数学分析历年考研真题

华中师范大学数学分析考研真题以上是01年数分2003年数学分析(综合卷)1.(16)求下列极限:(1))/1(2)!(lim n n n +∞→. (2))(x f 在]1,1[-上连续,恒不为0,求131sin )(1lim 30--+→x x x x f2.(15)设)(x f 在],[b a 上二阶可导,过点))(,(a f a A 与))(,(b f b B 的直线与曲线)(x f y =相较于))(,(c f c C ,其中b c a <<,证明:在),(b a 中至少存在一点ξ,使0)(=''ξf .3.(15) 证明:x x n n 21ln ∑∞=在]1,0(上一致收敛.4.(15) 设))}({(x f n 是],[b a 上的函数序列,满足对每一个],[b a x ∈导函数)(x f n '存在),2,1( =n 并且满足下列条件:(1)存在某一个],[0b a x ∈,使))}({(0x f n 收敛;(2)导函数列)}({x f n '在],[b a 上一致收敛. 证明: )}({x f n 在],[b a 上一致收敛.5.(14)设)(x f 在],[b a 上可导,其导函数)(x f '在],[b a 可积,对任意的自然数n .记⎰∑---+==b a ni n dx x f n a b n a b i a f )()(1σ , 证明:)]()([2lim a f b f a b n n n --=+∞→σ.2004年数学分析1.求下列极限(共50分,第1,2小题各10分,第3,4小题各15分)(1)21sin 0lim(cos )x x x → (2)11lim 123n n →∞+++1…+n (3)74444lim (112)x x x x x →∞++-- (4)1limsin (sin)2n n k k n nππ→∞=∑ 2.(15)设)(),(x g x f 在],[b a 上连续,在),(b a 内可导,若12,x x 是)(x f 在区间],[b a 上的两个零点,证明:存在[,]a b ξ∈,使得'()()'()0f f g ξξξ+=3.(15)设)(x f 在)0](,[>>a b b a 上连续,在),(b a 内可导,证明:在),(b a 内存在,ξη使b a f f ⋅'⋅=')()(2ηηξ.4.(15)设)(x f 在],[b a 上黎曼可积,证明:()f x e 在],[b a 上也是黎曼可积的.5.(15)'()(1,2,3,n f x n =…)在],[b a 上连续,函数)(x g 在],[b a 上也连续,且对],[b a 中任意的12,x x 和正整数n ,有1212|()()|||n n M f x f x x x n -≤-(0>M ),证明:lim ().'()0b n n a g x f x dx →+∞=⎰. 6.(15)设()n f x ( ,2,1=n )在],[b a 上连续,且{()}n f x 在],[b a 上一致收敛与)(x f .证明:(1)存在0>M ,使对任何自然数n ,有|()|,|()|n f x M f x M ≤≤及. (2)若)(x F 为-∞+∞(,)上连续函数,则(())n F f x 一致收敛于))((x f F .7.(10)设函数)(x f 在闭区间]1,1[-上具有三阶连续导数,且0)0(,1)1(,0)1(='==-f f f ,证明:在)1,1(-内至少存在一点ξ,使得(3)()3fξ=.8.(15)函数),(y x F 在点00(,)x y 的某个邻域内有连续的二阶偏导数,且00000000(,)0,'(,)0,'(,)0,''(,)0x y xx F x y F x y F x y F x y ==><,证明:由方程),(y x F 确定的隐函数()y f x =在0x 点取得极小值. 2005年数学分析1.求下列极限或指定函数的值:(1)1!2!3!!lim !n n n →∞++++ (10分) (2)135(21)lim 2462n n n n →∞- (10分) (3)1326lim[().1]2x x x x x e x →+∞-+-+(10分) (4)设)(x f 在0=x 的邻域二阶可导,且130()lim(1)x x f x x e x →++=,求(0),'(0),''(0)f f f 的值.(15分) 2.(15)设函数)(),(x g x f 在],[b a 上可导,且在),(b a 上'()0g x ≠,证明:存在)()'()(,)()()'()f a f f a bg g b g ξξξξξ-∈=-(使. 3.(15)设函数()f x 在]4,2[上有连续的一阶导函数,且(2)(4)0f f ==,证明:4242max |'()||()|x f x f x dx ≤≤≥⎰. 4.(13)设有方程.sin (01)x m q x q =+<<.若0101,.sin ,,sin ,,n n x m x m q x x m q x +==+=+ 证明:{}n x 收敛; 设lim n n x l →+∞=,再证明l 是方程.sin x m q x =+的唯一解. 5.(13)证明:函数项级数11((1))x n n x e n n ∞=-+∑在任何有穷区间[,]a b 上一致收敛. 6.(13)设()f x 在[,]a b 上二阶可导,且''()0f x >,证明:1()()2ba ab f f x dx b a +≤-⎰. 7.(13)设12,,,,n a a a 均为常数,证明:函数项级数101..!x n t n n a t e dt n ∞-=∑⎰在[,]a b 上一致收敛. 8.(13)设()f x 在[,]a b 上黎曼可积,()0,f x c ≥≥用可积准则证明:函数ln ()f x 在[,]a b 上黎曼可积.9.(10)设()f x 在[,]a b 上具有连续的二阶导数,证明:在(,)a b 内存在ξ,使得31()()()().''()224ba ab f x dx b a f b a f ξ+=-+-⎰ 2006年数学分析 1.(30) (1)111sin )1(sin lim 121----→x x e x x . (2) 设x x a x y +=,求y '. (3) dx x x ⎰+ln 1ln ln . (4)设yx y x y x f y arcsin )1(),(2-+=,求)1,(x f x '.(5)dxdy e y x y xD 22)(+⎰⎰+,其中}1),{(22≤+=y x y x D . (6) 求⎰-=Lydx ydy x I cos sin ,其中L 是从点)0,0(O 到点)0,(πA 的正弦曲线有x y sin =. 2.(20)设)(x f 在(,)a +∞上可导,且'()f x 在(,)a +∞上有界,证明:(1) )(x f 在(,)a +∞上一致连续. (2)()lim ()lim ()x x a f a f x f x ++→∞→=存在,但不一定存在. (3)若)(lim x f x +∞→存在,且)(lim )(lim x f x f ax x +→+∞→=,则)(x f '在(,)a +∞上至少有一个零点。

2008-2010年华中师范大学研究生数学分析考试试题

2008-2010年华中师范大学研究生数学分析考试试题

1.(36)计算题: (1) n n n n n n)12()1(1lim -+∞→ (2)dxdydz z y x t t z y x t ⎰⎰⎰≤++→+++22222224sin 1lim (3) 求曲线积分⎰+-Ly x ydxxdy 229,其中L 为平面内任意一条不经过原点的正向光滑封闭简单曲线.2.(15)设函数)(x f 在),0[+∞上具有连续的导函数,且)(lim x f x '∞→存在有限,10<<α,是一个常数,证明:)(αx f 在),0[+∞上一致连续.3.(15)设)(x f 和)(x g 在],[b a 上连续且在),(b a 内可导,试证:在),(b a 内存在点ξ,使得)()]()([)()]()([ξξf a g b g g a f b f '-='-.4.(20)证明:函数项级数∑∞=-=1)(n nx ne x f 在),0(+∞上收敛,但不一致收敛,而和函数)(x f 在),0(+∞上可以任意次求导.5.(20)证明:方程)sin(2xy y x =+在原点的某个邻域内可以唯一确定隐函数)(x f y =,并)0(y '计算的值.6.(14)证明:若函数)(x f 在],[b a 上无界,则必存在],[b a 上的某点,使得)(x f 在该点的任何邻域内无界.7.(12)设函数u 在),0[+∞上连续可微且+∞<'+⎰dx x u x u ))()((22,试证:(1)存在),0[+∞中的子列∞=1}{n n x 使得当∞→n 时, +∞→n x 且0)(→n x u(2)存在某常数0>C ,使得2122},0[)))()((()(sup dx x u x u C x u x ⎰∞++∞∈'+≤8.(18)设3R ⊂Ω为有界闭区域,且具有光滑边界+∞<<Ω∂T 0,.(1)设v u ,是Ω上具有连续二阶偏导数的函数,试证:dS n u v dxdydz v u dxdydz u v ⎰⎰⎰⎰⎰⎰⎰⎰Ω∂ΩΩ∂∂+∇∇-=∆,其中222222z u y u x u u ∂∂+∂∂+∂∂=∆,u ∇为u 的梯度, n u∂∂为u 沿区域的边界的外法向n的方向导数;(2)设),,,(t z y x u 在),0[T ⨯Ω上具有连续一阶偏导数,试证:),0[,),,,(),,,(T t dxdydz t z y x t udxdydz t z y x u dt d ∈∀∂∂=⎰⎰⎰⎰⎰⎰ΩΩ;(3)设),,,(t z y x u 在),0[T ⨯Ω上具有连续二阶偏导数且满足3u u tu+∆=∂∂若u 在 ),0[T ⨯Ω上恒为零记2222)()()(z u y u x u u ∂∂+∂∂+∂∂=∇,试证dxdydz u u t E ⎰⎰⎰Ω-∇=)4121()(42在),0[T 上是减函数.1.(30)计算题: (1)1)1()]ln 1cos[sin()sin(lim 0-++→βαx x x x (2) 计算二重积分dxdy y yD⎰⎰sin ,其中D 是由0,1,===x y x y 围成的区域.(3) 求曲线积分⎰-+----C y x dxy dy x 22)2()1(4)2()1(其中C 为平面内任意一条不经过点)2,1(得正向光滑封闭简单曲线2.(12)设函数)(x f 定义在开区间),(b a 内,若对任意的),(b a c ∈,都有)(lim x f cx →存在,且)(lim x f ax +→和)(lim x f bx +→也存在,则)(x f 在开区间),(b a 内有界.3.(12)证明:含参量反常积分dy xe xy ⎰+∞-0在),[+∞δ上一致收敛)0(>δ,但在),0(+∞内不一致收敛.4.(20)设函数)(x f 在]1,0[上连续,在)1,0(内可微,且存在0>M ,使得M x x f x f x x 2)()(),1,0(<-'∈∀,证明: (1)xx f )(在]1,0[内一致连续. (2))(lim 0x f x +→存在.5.(20)证明下面结论: (1)若)(x f 在]1,0[上连续,则⎰=∞→10)(lim dx x f x n x . (2)若)(x f 在]1,0[上连续可微,则⎰=∞→1)1()(lim f dx x f x n n n .6.(18)设⎪⎩⎪⎨⎧=+≠+++=0 , 00,sin ),(222222222y x y x y x y x y x y x f ,讨论),(y x f 在原点)0,0(处的连续性,偏导的存在性以及可微性.7.(20)设函数列)}({x f n 中的每一项函数)(x f n 都是],[b a 上的单调函数,试证明:(1)若∑∞=1)(n n a f 和∑∞=1)(n n b f 都绝对收敛,则∑∞=1)(n n x f 在],[b a 上一致收敛.(2)若每一项函数)(x f n 的单调性相同,且∑∞=1)(n n a f 和∑∞=1)(n n b f 都收敛,则在上一致收敛.8.(18)设f 连续,证明:(1)证明:⎰⎰⎰⎰--=Vdx x x f dxdydz z f 112)1)(()(π,其中1:222≤++z y x V .(2)记函数dxdydz cz by ax f c b a F V⎰⎰⎰++=)(),,(,其中1:222≤++z y x V ,证明:球面1222=++c b a 为函数),,(c b a F 的等值面,即),,(c b a F 在球面1222=++c b a 上恒为常数,并求出此常数.2010年数学分析1.(30)计算题: (1)设函数)(x f 定义在),(+∞-∞上,满足:1)0()(lim ,cos )()2(0===→f x f x x f x f x ,求)(x f . (2)设⎰=40tan πxdx a nn ,求)(121+∞=+∑n n n a a n的值.(3) 求曲线积分dz y x dy x z dx z y L)()()(-+-+-⎰,其中L 为平面0=++z y x 与球面1222=++z y x 相交的交线,方向从z 轴正向看是逆时针的.2.(12)设0,)(>=ααx x f ,证明:当10≤<α时, )(x f 在),0(+∞上一致连续; 当1>α时, )(x f 在),0(+∞上不一致连续.3.(12)证明:含参量x 反常积分dy xe xy ⎰+∞-0在),[+∞δ上一致收敛)0(>δ,但在),0(+∞内不一致收敛.4.(20)函数)(x f 在],[b a 上连续,在),(b a 内二阶可导,且过点))(,(a f a 和))(,(b f b 的直线与曲线)(x f y =相交于点))(,(c f c (b c a <<),证明:存在),(b a ∈ξ,使得0)(=''x f .5.(20)设可微函数列)}({x f n 在],[b a 上逐点收敛,且对任意],[b a x ∈存在x 的邻域)(x U ,使得)}({x f n '在],[)(b a x U ⋂上一致有界,证明:(1))}({x f n '在]1,0[上一致有界. (2))}({x f n 在]1,0[上一致收敛.6.(20)设⎪⎩⎪⎨⎧=+≠++=0, 00),ln(),(222222y x y x y x xy y x f ,讨论),(y x f 在原点)0,0(处的连续性,偏导的存在性以及可微性. 7.(20)已知)(x f 是),0[+∞上的正值连续函数,且+∞<⎰+∞dx x f 0)(1,证明: (1)存在数列),2,1)(,0[ =+∞∈n x n 满足:}{n x 严格单调递增,+∞=+∞=∞→∞→)(lim ,lim n n n n x f x . (2)+∞=⎰+∞→dt t f xxx 02)(1lim .8.(16)已知),,(z y x f 和),,(z y x g 在1:222≤++z y x V 上具有二阶连续的偏导数,记z y x zy x ∂∂+∂∂+∂∂=∇∂∂+∂∂+∂∂=∆,222222(1)证明:⎰⎰⎰⎰⎰⎰⎰⎰∇⋅-∂∂=∇⋅∇VVSdxdydz f g dS n fgdxdydz f g )()(,其中n 表示S 的外法线方向,S 为球面1222=++z y x .(2)若222z y x f ++=∆,试计算:dxdydz z fzy x z y f z y x y x f z y x xI V)(222222222∂∂+++∂∂+++∂∂++=⎰⎰⎰.。

华中师范大学文学理论考研真题98-13

华中师范大学文学理论考研真题98-13

华中师范大学文学理论考研真题98-13《文学理论》98—13年真题华中师范大学1998年研究生考试试题文学理论一、解释概念(每个3分,共12分)1.文本2.题材3.意境4.艺术构思二、简答题(每题10分,共30分)1.典型形象具有怎样的基本特征?2.作为文学创作原则的现实主义和浪漫主义有哪些不同3.简述现代主义文学的主要特征。

三、阐释以下几段文字中所包含的文学理论思想(每题8分,共24分)1、唐代诗人杜牧写了一首题为《江南春》的七绝:“千里莺啼绿映红,水村山郭酒旗风。

南朝四百八十寺,多少楼台烟雨中。

”对这首诗,明代的杨慎说:“千里莺啼,谁人听得?千里绿映红,谁人见得?若作十里,则莺啼绿红之景,村郭,楼台,僧寺,酒旗,皆在其中矣。

”评述杨慎的这一看法。

2、鲁迅在《论“旧形式的采用”》中说:“这些采用,并非断片的古董的杂陈,必须溶化于新作品中,那是不必赘说的事,恰如吃用牛羊,弃去蹄毛,留其精粹,以滋养及发达新的生体,决不因此就会类乎牛羊的。

”3、黑格尔在《美学》第一卷中说:“我们无须把风格这个名词只限于感谢材料这一方面。

还可以把它推广,用它来指艺术表现的一些定律和规律,既对象借以表现的那门艺术特征所产生的定性和规律。

根据这个意义,人们在音乐中区分教堂音乐风格和歌剧音乐风格,在绘画中区分历史画风格和风俗画风格。

依这样看,风格就是服从所用材料的各种条件的一种表现方式,而且它还要适应一定艺术种类的要求和从主题概念生出的规律。

”四、论述题(共24分)1.举例说明语言艺术的基本特征2.文学语言的深层义是怎样生成的?华中师范大学1999年研究生考试试题一、术语解释(每个3分,共15分)1. 游戏说2.文学流派3.(诗歌的)扩展式结构4.叙述角度5.典型性二、阅读下面的文字,并按照要求回答问题(共15分)诗可以兴,可以观,可以群,可以怨。

迩之事父,远之事君,多识于鸟兽草木之名。

1.这段文字出自何处?为何人所说?(2分)2.将这段文字译为现代汉语,并解释带点的字(兴、观、.群、怨)。

华中师范大学数学分析历年考研真题卷珍藏版

华中师范大学数学分析历年考研真题卷珍藏版

华中师范大学数学分析考研真题以上是01年数分2003年数学分析(综合卷)1.(16)求下列极限:(1))/1(2)!(lim n n n +∞→. (2))(x f 在]1,1[-上连续,恒不为0,求131sin )(1lim 30--+→x x x x f2.(15)设)(x f 在],[b a 上二阶可导,过点))(,(a f a A 与))(,(b f b B 的直线与曲线)(x f y =相较于))(,(c f c C ,其中b c a <<,证明:在),(b a 中至少存在一点ξ,使0)(=''ξf .3.(15) 证明:x x n n 21ln ∑∞=在]1,0(上一致收敛.4.(15) 设))}({(x f n 是],[b a 上的函数序列,满足对每一个],[b a x ∈导函数)(x f n '存在),2,1( =n 并且满足下列条件:(1)存在某一个],[0b a x ∈,使))}({(0x f n 收敛;(2)导函数列)}({x f n '在],[b a 上一致收敛. 证明: )}({x f n 在],[b a 上一致收敛.5.(14)设)(x f 在],[b a 上可导,其导函数)(x f '在],[b a 可积,对任意的自然数n .记⎰∑---+==ba n i n dx x f n ab n a b i a f )()(1σ , 证明:)]()([2lim a f b f a b n n n --=+∞→σ.2004年数学分析1.求下列极限(共50分,第1,2小题各10分,第3,4小题各15分)(1)21sin 0lim(cos )x x x →(2)n(3)74lim x x →∞- (4)1lim sin (sin)2n n k k n nππ→∞=∑ 2.(15)设)(),(x g x f 在],[b a 上连续,在),(b a 内可导,若12,x x 是)(x f 在区间],[b a 上的两个零点,证明:存在[,]a b ξ∈,使得'()()'()0f f g ξξξ+=3.(15)设)(x f 在)0](,[>>a b b a 上连续,在),(b a 内可导,证明:在),(b a 内存在,ξη使b a f f ⋅'⋅=')()(2ηηξ.4.(15)设)(x f 在],[b a 上黎曼可积,证明:()f x e 在],[b a 上也是黎曼可积的.5.(15)'()(1,2,3,n f x n =…)在],[b a 上连续,函数)(x g 在],[b a 上也连续,且对],[b a 中任意的12,x x 和正整数n ,有1212|()()|||n n M f x f x x x n -≤-(0>M ),证明:lim ().'()0b n n a g x f x dx →+∞=⎰. 6.(15)设()n f x ( ,2,1=n )在],[b a 上连续,且{()}n f x 在],[b a 上一致收敛与)(x f .证明:(1)存在0>M ,使对任何自然数n ,有|()|,|()|n f x M f x M ≤≤及. (2)若)(x F 为-∞+∞(,)上连续函数,则(())n F f x 一致收敛于))((x f F . 7.(10)设函数)(x f 在闭区间]1,1[-上具有三阶连续导数,且0)0(,1)1(,0)1(='==-f f f ,证明:在)1,1(-内至少存在一点ξ,使得(3)()3fξ=.8.(15)函数),(y x F 在点00(,)x y 的某个邻域内有连续的二阶偏导数,且00000000(,)0,'(,)0,'(,)0,''(,)0x y xx F x y F x y F x y F x y ==><,证明:由方程),(y x F 确定的隐函数()y f x =在0x 点取得极小值. 2005年数学分析1.求下列极限或指定函数的值:(1)1!2!3!!lim !n n n →∞++++(10分) (2)5(21)lim 62n n n→∞-分) (3)132lim [().2x x x x x e →+∞-+(10分) (4)设)(x f 在0=x 的邻域二阶可导,且130()lim(1)x x f x x e x →++=,求(0),'(0),''(0)f f f 的值.(15分) 2.(15)设函数)(),(x g x f 在],[b a 上可导,且在),(b a 上'()0g x ≠,证明:存在)()'()(,)()()'()f a f f a bg g b g ξξξξξ-∈=-(使. 3.(15)设函数()f x 在]4,2[上有连续的一阶导函数,且(2)(4)0f f ==,证明:4242max |'()||()|x f x f x dx ≤≤≥⎰. 4.(13)设有方程.sin (01)x m q x q =+<<.若0101,.sin ,,sin ,,n n x m x m q x x m q x +==+=+证明:{}n x 收敛; 设lim n n x l →+∞=,再证明l 是方程.sin x m q x =+的唯一解.5.(13)证明:函数项级数11((1))x n n x e n n ∞=-+∑在任何有穷区间[,]a b 上一致收敛. 6.(13)设()f x 在[,]a b 上二阶可导,且''()0f x >,证明:1()()2ba ab f f x dx b a +≤-⎰. 7.(13)设12,,,,n a a a 均为常数,证明:函数项级数101..!x n t n n a t e dt n ∞-=∑⎰在[,]a b 上一致收敛. 8.(13)设()f x 在[,]a b 上黎曼可积,()0,f x c ≥≥用可积准则证明:函数ln ()f x 在[,]a b 上黎曼可积.9.(10)设()f x 在[,]a b 上具有连续的二阶导数,证明:在(,)a b 内存在ξ,使得31()()()().''()224ba ab f x dx b a f b a f ξ+=-+-⎰ 2006年数学分析1.(30) (1)111sin )1(sin lim 121----→x x e x x . (2) 设x x a x y +=,求y '. (3) dx x x ⎰+ln 1ln ln . (4)设yx y x y x f y arcsin )1(),(2-+=,求)1,(x f x '.(5)dxdy e y x y xD 22)(+⎰⎰+,其中}1),{(22≤+=y x y x D . (6) 求⎰-=Lydx ydy x I cos sin ,其中L 是从点)0,0(O 到点)0,(πA 的正弦曲线有x y sin =. 2.(20)设)(x f 在(,)a +∞上可导,且'()f x 在(,)a +∞上有界,证明:(1) )(x f 在(,)a +∞上一致连续. (2)()lim ()lim ()x x a f a f x f x ++→∞→=存在,但不一定存在. (3)若)(lim x f x +∞→存在,且)(lim )(lim x f x f ax x +→+∞→=,则)(x f '在(,)a +∞上至少有一个零点。

数学分析1998答案

数学分析1998答案

98年数学分析一.解:收敛,证明如下:设{}{}nnn k a a a a kk2,lim =∞→及{}{}12+n n aa k均有无穷个元,故分别存在由{}n a 的偶数下标项组成的{}kn a 的子序列{}lk na 及由奇数下标项组成的{}kn a 的子序列{}skn a ,显然,lim lim a a a sk lk n s n l ==∞→∞→即{}n a 2及{}12+n a 分别存在子序列收敛于同一极限a 。

{}n a 2及{}12+n a 均为单调数列,而单调数列必有广义极限,且与其任一子序列的广义极限相等。

因此a a a n n n n ==+∞→∞→122lim lim 。

对,0>∀ε由a a n n =∞→2lim 知,1N ∃使1N n >时有,2ε<-a a n 由a a n n =+∞→12lim 知2N ∃,使2N n >时有ε<-+a a n 12,令{},122max 2,1+=N N N 则当N n >时有a a a a n n n =∴<-∞→lim ε。

二.证明:由不等式)0,,1(,)(≥<<+≥+b a o b a b a αααα知对[)+∞∈∀,02,1x x 且12x x >有10()(,)(12122121<<-≤-∴≥-+αααααααx x x x x x x x 。

由题设条件,对[)+∞∈∀,02,1x x 有ααα1212)()(x x m x f x f -≤-,对,0>∀ε取,21εδ=则当δ<-21x x 时,有)10)((.)()(12<<∴<-αεαααx f m x f x f 在[)+∞,0上一致连续。

三.证明:因对,0>∀εxxn+1在[]ε-1,0一致收敛到0,故对上述N ∃>,0ε,使当n N >时有[]εε-∈<+1,0(,21x xxn,又[]),1,1(,211ε-∈≤+x xxn于是当n N >时εεεεεεε=+<+++≤+++=+⎰⎰⎰⎰⎰----2211111111011101dx xxdx xxdx xxdx xxdx xxnnnnn因此01lim1=+⎰∞→dx xxnn 。

1998年全国硕士研究生招生考试数学(二)真题(含解析)

1998年全国硕士研究生招生考试数学(二)真题(含解析)

0
JC
x-*0
X
x-*o JC
/^(0) = 2,/;(0) = — 2,因为/^(O) H /;(0),所以无=0为/(工)的不可导点;
/(J7 ) — /(I) lim ------------ :------ =
]h. m(/ H +|11、)(/ 工一2c、)・
II
\t \ •
I | 1 I I工一1I | j: + 1 | • --------- ---
x-*0
x2
=
, 1,6
0 ,c
1_
x
(13)【解]y =沖斗込£
COS X
代入并化简得u" + 4% = e°
〃 (/ + %) cosG + 2z/sin jc cos x + 2usm x y =--------------------- cos3 JC
特征方程为A2 +4 = 0,特征根为右,2 = ±2i,
1
3

2
1/
-2
-
=—+ ln(2 + V3~).
方法二
=arcsm 2工 f =弓
o
2
• 45
:
In C+ J/_ + ) L = h(l + V3 —In = ln(2 + V3~), 2
故 ~2
dj
=——ln( 2 + .
7 V \ x — x2
(15)【解】 取沉放点为原点O,Oy轴正向为铅直向下,则由牛顿第二定律得
dj:
dx
■i d(7T)
i
=2
■ — x2

1998考研数学真题+答案

1998考研数学真题+答案

1998年全国硕士研究生入学统一考试数学试题参考解答及评分标准数 学(试卷一)一、填空题:(本题共5小题,每小题3分,满分15分)(1) 41211lim20-=--++→xx x x . (2) 设1()()z f xy y x y xϕ=++,其中ϕ,f 具有二阶连续导数,则)('')(')(''2y x y y x xy yf yx z ++++=∂∂∂ϕϕ.(3) 设L 为椭圆13422=+y x ,其周长记为a ,则a ds y x xy L 12)432(22=++⎰.(4) 设A 为n 阶矩阵,*0,A A ≠为A 的伴随矩阵,E 为n 阶单位矩阵,若A 有特征值λ,则E A +2*)(必有特征值2()1Aλ+.(5) 设平面区域D 由曲线y =1x及直线20,1,y x x e ===所围成,二维随机变量(X,Y)在区域D 上服从均匀分布,则(X,Y)关于X 的边缘概率密度在2x =处的值为14.二、选择题:(本题共5小题,每小题3分,满分15分) (1) 设)(x f 连续,则=-⎰dt t x f t dxd x )(220 (A) (A) 2()x f x (B) 2()x f x - (C) 22()x f x (D) 2()x f x -(2) 函数23()(2)f x x x x x =---的不可导点的个数是 (B)(A) 3 (B) 2 (C) 1 (D) 0 (3) 已知函数()y f x =在任意点x 处的增量α,0,12时且当→∆++∆=∆x a xxy y 是x ∆的高阶无穷小量,(0)y π=,则(1)y 等于 (D)(A) 2π (B)π (C) 4e π(D) 4e ππ(4) 设矩阵 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333222111c b a c b a c b a 是满秩的,则直线 213a a a x -- = 213b b b y --= 213c c c z --与直线321a a a x -- = 321b b b y --= 321c c c z -- (A)(A) 相交于一点 (B) 重合 (D) 平行但不重合 (D) 异面(5) 设A 、B 是随机事件,且0<P (A )<1,P (B )>0,)()(A B P A B P =,则必有 (C)(A) ()()P A B P A B = (B) ()()P A B P A B ≠ (C) ()()()P AB P A P B = (D) ()()()P AB P A P B ≠ 三、(本题满分5分) 求直线 11111:--==-z y x l 在平面012:=-+-z y x π上的投影直线0l 的方程,并0l 求绕y 轴旋转一周所成的方程.解一:设经过l 且垂直于平面π的平面方程为1:(1)(1)0A x By C z π-++-=, 则由条件可知20,0A B C A B C -+=+-=,由此解得::1:3:2A B C =-. 于是1π的方程为3210x y z --+=.……2分 从而0l 的方程为0l 210:3210x y z x y z -+-=⎧⎨--+=⎩,……3分即02:1(1)2x y l z y =⎧⎪⎨=--⎪⎩. 于是0l 绕y 轴旋转一周所成曲面的方程为222214(1)4x z y y +=+-,即2224174210x y z y -++-=.……5分解二:由于直线l 的方程可写为1010x y y z --=⎧⎨+-=⎩,所以过l 的平面方程可设为1(1)0x y y z λ--++-=,即(1)(1)0x y z λλλ+-+-+=.由它与平面π垂直,得1(1)20λλ--+=,解得2λ=-. 于是经过l 且垂直与π的平面方程为3210x y z --+=. ……2分 从而0l 的方程为0l 210:3210x y z x y z -+-=⎧⎨--+=⎩.……3分(下同解法一)四、(本题满分6分)确定常数λ,使在右半平面0x >上的向量42242(,)2()()A x y xy x y i x x y jλλ=+-+ 为某二元函数(,)u x y 的梯度,并求(,)u x y .解:令422422(),()P xy x y Q x x y λλ=+=-+. 则(,)A x y在右半平面0x >上为某二元函数(,)u x y 的梯度的充要条件是Q Px y∂∂≡∂∂. ……1分 此即444()(1)0x x y λλ++=,解之得1λ=-. ……3分于是,在右半平面内任取一点,例如(1,0)作为积分路径的起点,则得(,)242(1,0)2(,)x y xydx x dy u x y C x y -=++⎛⎜⎠ ……4分242421020yxx dx x dyC x y x y⋅=-+++⎛⎛⎜⎜⎠⎠2arctan y C x =-+. ……6分(注:不加C 不扣分.)五、(本题满分6分)从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y (从海平面算起)与下沉速度v 之间的函数关系.设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为m ,体积为B ,海水比重为ρ,仪器所受的阻力与下沉速度成正比,比例系数为k(k>0).试建立y 与v 所满足的微分方程,并求出函数关系式y=y(v),解:取沉放在原点O ,OY 轴正向铅直向下,则由牛顿第二定律得22d ym mg B kv dt ρ=--,……1分 将22d y dy v dt dt =代入以消去t ,得v y 与之间的微分方程dy mv mg B kv dtρ=--, ……2分 即mv dy dv mg B kv ρ=--,积分得2()ln()m m mg B y v mg B kv C k kρρ-=----+. ……4分 由初始条件0|0y v ==定出2()ln()m mg B C mg B kρρ-=-,故所求的函数关系式为2()lnm m mg B mg B kvy v k k mg B ρρρ---=---. ……6分 六、(本题满分7分) 计算⎰⎰∑++++212222)()(z y x dxdy a z axdydz ,其中∑为下半球面222y x a z ---=的上侧,a 为大于零的常数.解一:212222()()axdydz z a dxdy x y z ∑++++⎛⎛⎜⎜⎠⎠21()axdydz z a dxdy a ∑=++⎰⎰. ……1分补一块有向曲面2220:,x y a z S -+≤=⎧⎨⎩,其法向量与z 轴正向相反,从而得到221[()()]S S I axdydz z a dxdy axdydz z a dxdy a --∑+=++-++⎰⎰⎰⎰ ……2分 21(32)D a z dv a dxdy a Ω⎡⎤=-++⎢⎥⎣⎦⎰⎰⎰⎰⎰ ……4分其中Ω为S -∑+围成的空间区域,D 为0z =上的平面区域222x y a +≤. 于是22204440011222a a r I a zdv a a d rdr a a ππππθ-Ω⎡⎤⎡⎤=--+=--⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰⎰⎰32a π=-. ……7分 解二:21()I axdydz z a dxdy a ∑=++⎰⎰. ……1分记222112()yzD I axdydz a y z dydz a ∑==--+⎰⎰,其中yz D 为YOZ 平面上的半圆222,0y z a z +≤≤. 利用极坐标计算,得222310223I d a r rdr a ππθπ=--=-⎰⎰,……4分22222211()[()]xyD I z a dxdy a a x y dxdy a a ∑=+=-+⎰⎰⎰⎰222223001(22)6a d a a a r r rdr a a ππθ=--=⎰⎰,其中xy D 为XOY 平面上的圆域222x y a +≤. 因此3122I I I a π=+=-.……7分七、(本题满分6分)求2sin sin sin lim 1112n n n n n n n πππ→∞⎡⎤⎢⎥+++⎢⎥+⎢⎥++⎣⎦ . 解:2sinsinsin12sin sin sin 1112n n n n n n n n n n n n nππππππ⎛⎫+++<+++ ⎪+⎝⎭++11sinni i n nπ==∑ ……2分而10112lim sin sin n n i i xdx n n πππ→∞===∑⎰.……3分又2sinsinsin 12sin sin sin 11112n n n n n n n n n ππππππ⎛⎫+++>+++ ⎪++⎝⎭++11sin1ni n i n n nπ==⋅+∑ ……5分 而10112lim sin sin 1n n i n i xdx n n n πππ→∞=⋅==+∑⎰.故由夹逼定理知2sin sin sin 2lim 1112n n n n n n n ππππ→∞⎛⎫ ⎪+++= ⎪+ ⎪++⎝⎭ . ……6分八、(本题满分5分)设正项数列}{n a 单减,且级数∑∞=-1)1(n n na 发散,试问级数nn n a ∑∞=+1)11(是否收敛?并说明理由.解: 级数111nn n a ∞=⎛⎫⎪+⎝⎭∑收敛.……1分理由:由于正项数列{}n a 单调减少有下界,故lim n n a →∞存在,记这个极限值为a ,则0a ≥. ……2分若0a =,则由莱布尼兹定理知1(1)nn n a ∞=-∑收敛,与题设矛盾,故0a >.……3分于是11111n a a <<++,从而1111nnn a a ⎛⎫⎛⎫< ⎪ ⎪++⎝⎭⎝⎭.而111nn n a ∞=⎛⎫ ⎪+⎝⎭∑是公比为111a <+的几 何级数,故收敛.因此由比较判别法知原级数收敛.……5分(注:(1) 若未说明0a >,本题至多给2分,(2) 本题也可用根植判别法)九、(本题满分6分)设()y f x =是区间[0,1]上的任一非负连续函数(1) 试证:存在0(0,1)x ∈,使得在区间0[0,]x 上以0()f x 为高的矩形面积,等于在区间0[,1]x 上以()y f x =为曲边的曲边梯形面积;(2) 又设)(x f 在区间(0,1)内可导,且2()()f x f x x '>-,证明(1)中的0x 是唯一的.证一:(1) 设1()()xF x xf t dt =⎰,……2分则(0)(1)0F F ==,且1()()()x F x f td t x f x '=-⎰. 对()F x 在区间[0,1]上应用罗尔定理知,存在一点0(0,1)x ∈使0()0F x '=,因而0100()()0x f t dt x f x -=⎰. 即矩形面积00()x f x 等于曲边梯形面积1()x f x dx ⎰.……4分 (2) 设1()()()xx f t dt xf x ϕ=-⎰,……5分则当(0,1)x ∈时,有()()()()0x f x f x xf x ϕ''=---<.所以()x ϕ在区间(0,1)内单调减 少,故此时(1)中的0x 是唯一的.……6分(注:在证明(1)时,若对所设辅助函数利用闭区间上连续函数的介值定理仅得出0[0,1]x ∈,但未排除端点,或者排除端点的理由不充分,则只给1分.)十、(本题满分6分) 已知二次曲面方程2222224x ay zbxy xz yz +++++=可以经过正交变换⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛ζηξP z y x 化为椭圆柱面方程4422=+ζη,求,a b 的值和正交矩阵P .解:由111111b b a ⎛⎫ ⎪ ⎪ ⎪⎝⎭与014⎛⎫ ⎪ ⎪⎪⎝⎭相似得11111114b b a λλλλλλ------=-----……1分 解之得到3,1a b ==.……2分对应于特征值10λ=的单位特征向量为122Tx =;对应于特征值21λ=的单位特征向量为2333Tx =;对应于特征值34λ=的单位特征向量为3666T x =; ……5分因此P =236036236⎛⎝. ……6分十一、(本题满分4分)设A 是n 阶矩阵,若存在正整数k ,使线性方程组0k A x =有解向量α,且10k A α-≠, 证明:向量组1,,,k A A ααα- 是线性无关的.解:设有常数12,,,k λλλ ,使得1120k k AA λαλαλα-+++= ,则有1112()0k k k A AA λαλαλα--+++= , ……2分 从而有110k A λα-=.由于10k A α-≠,所以10λ=. 类似可证得230k λλλ==== ,因此向量组1,,,k A A ααα- 线性无关.……4分十二、(本题满分5分)已知线性方程组()I 1111221,222112222,221122,2200n n n n n n n n n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 的一个基础解系为 11121,2(,,,)T n b b b ,21222,2(,,,)T n b b b ,…,12,2(,,,)T n n n n b b b试写出线性方程组 1111221,222112222,221122,2200()0n n n n n n n n n b y b y b y b y b y b y b y b y b y +++=⎧⎪+++=⎪II ⎨⎪⎪+++=⎩的通解,并说明理由.解:(II )的通解为11112122212222122(,,,,(,,,,(,,,,T T Tn n n n n n n y c a a a c a a a c a a a =+++)))其中12,,,n c c c 为任意常数.……2分理由:方程组(I )、(II )的系数矩阵分别记为,A B ,则由(I )的已知基础解系可知0T AB =,于是()0T T T BA AB ==,因此可知A 的n 个行向量的转置向量为(II )的n 个解向量.……3分由于B 的秩为n ,故(II )的解空间维数为2n n n -=.又A 的秩为2n 与(I )的解空间 维数之差,即为n ,故A 的n 个行向量线性无关,从而它们的转置向量构成(II )的一个基 础解系,于是得到(II)的上述通解.……5分十三、(本题满分6分)设两个随机变量X ,Y 相互独立,且都服从均值为0、方差为21的正态分布,求随机变量Y X -的方差.解:令Z X Y =-.由于22(0,(),(0,(),22X N Y N ~~且X Y 和相互独立,故(0,1)Z N ~.……2分 因为2222(||)()(||)[(||)]()[(||)]D X Y D Z E Z E Z E Z E Z -==-=-, ……3分而22()()()101E Z D Z EZ =+=+=,22222(||)||22z z E Z z dz zedz πππ+∞+∞---∞===⎛⎜⎠,所以2(||)1D X Y π-=-.……6分十四、(本题满分4分)从正态总体)6,4.3(2N 中抽取容量为n 的样本,如果要求其样本均值位于区间(1.4,5.4 ) 内的概率不小于0.95,问样本容量n 至少应取多大?附表:标准正态分布表 dt e z t z2221)(-∞-⎰=Φπ解:以X 3.4(0,1)6X n N -~, ……1分从而有{1.4 5.4}{2 3.42}{| 3.4|2}P X P X P X <<=-<-<=-<| 3.4|2{}6X n P n -=<2(10.95n=Φ-≥.……2分故(0.975n Φ≥ 1.96n ≥,即2(1.963)34.57n ≥⨯≈,所以n 至少应取35.……4分十五、(本题满分4分)设某次考试的考生成绩服从正态分布,从中随机抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程.附表:t 分布表 p n t n t P p =≤})()({z1.28 1.645 1.962.33 )(z Φ0.9000.9500.9750.990解:设该次考试的考生成绩为X ,则2(,)X N μσ~. 把从X 中抽取的容量为n 的样本 均值记为X ,样本标准差记为S .本题是在显著性水平0.05α=下检验假设01:70;:70H H μμ=≠,……1分 拒绝域为12||70||-1)x t n t n s α--=≥(. 由0.97536,66.5,15,(361) 2.0301n x s t ===-=,算得|66.570|36|| 1.4 2.030115t -==<,……3分 所以接受假设0:70H μ=,即在显著性水平0.05下,可以认为这次考试全体考生的平均成绩为70分. ……4分数 学(试卷二)一、填空题:(本题共5小题,每小题3分,满分15分) (1) 【 同数学一 第一、(1)题 】(2) 曲线322y x x x =-++与x 轴所围成的图形的面积A=3712(3)2lnsin cot lnsin cot sin xdx x x x x C x =---+⎰.(4) 设)(x f 连续,则=-⎰dt t x f t dxd x )(2202()x f x . (5) 曲线)1ln(xe x y +=(0)x >的渐近线方程为1y x e -=+.二、选择题:(本题共5小题,每小题3分,满分15分)(1) 设数列n x 与n y 满足0lim =∞→n n n y x ,则下类断言正确的是 (A )(A) 若n x 发散,则n y 必发散 (B) 若n x 无界,则n y 必有界 (C) 若n x 有界,则n y 必为无穷小(D) 若nx 1为无穷小,则n y 必为无穷小 (2) 【 同数学一 第二、(2)题 】 (选项的排列顺序不同) (3) 【 同数学一 第二、(3)题 】 (选项的排列顺序不同)(4) 设函数()f x 在x a =的某个领域内连续,且()f a 为极大值,则存在0δ>,当(,)x a a δδ∈-+时,必有 (A )(A) 0)]()()[(≥--a f x f a x . (B) 0)]()()[(≤--a f x f a x .(C) )(0)()()(lim 2a x x t x f t f a t ≠≥--→. (D) )(0)()()(lim 2a x x t x f t f a t ≠≤--→. (5) 设A 是任一)3(≥n n 阶方阵,A *是其伴随矩阵,又k 为常数,且1,0±≠k ,则必有(kA)*= (B) (A) kA * (B) k n-1A * (C) k n A * (D) k -1A 三、(本题满分5分)求函数)4tan()1()(π-+=x xx x f 在区间)2,0(π内的间断点,并判断其类型.解:()f x 在(0,2)π内的间断点为357,,,4444x ππππ=. ……1分在4x π=处,(0)4f π+=+∞,在54x π=处,5(0)4f π+=+∞, 故5,44x ππ=为第二类(或无穷)间断点; ……3分在34x π=处,34lim ()1x f x π→=,在74x π=处,74lim ()1x f x π→=,故37,44x ππ=为第一类(或可去)间断点; ……5分四、(本题满分5分)确定常数c b a ,,的值,使)0()1ln(sin lim20≠=+-⎰→c c dt tt xax x b x . 解:由于0x →时,sin 0ax x -→,且极限c 不为0,所以当0x →时,3ln(1)0xbt dt t +→⎛⎜⎠,故必有0b =.……1分又因为3330000sin cos (cos )lim lim lim ln(1)ln(1)ln(1)x x x x ax x a x x a x x x t dtx t →→→---==+++⎛⎜⎠ 3200(cos )cos lim lim (0)x x x a x a x c c x x →→--===≠. ……3分 故必有1a =,从而12c =.……5分五、(本题满分6分) 利用代换x e x y x y x y xuy =+-''=cos 3sin '2cos cos 将方程化简,并求出原方程的通解.解一:由cos u y x =两端对x 求导,得cos sin u y x y x ''=-,cos 2sin cos u y x y x y x '''''=--.……2分 于是原方程化为4xu u e ''+=,……3分其通解为12cos 2sin 25xe u C x C x =++,从而原方程的通解为12cos 22sin cos 5cos xx e y C C x x x=++. ……5分解二:sec y u x =,sec sec tan y u x u x x ''=+,23sec 2sec tan sec tan sec y u x u x x u x x u x '''''=+++,……2分代入原方程得4xu u e ''+=. ……3分以下同解法一.六、(本题满分6分) 计算积分⎰-232121dx x x .解:注意到被积函数内有绝对值且1x =是其无穷间断点,故31222112x x x x=--⎛⎜⎜⎠⎠原式 ……1分而1121212211()42x xx =---⎛⎛⎜⎜⎜⎠⎠112arcsin(21)arcsin12x π=-==, ……3分3322221111()24x xx =---⎛⎛⎜⎜⎜⎠⎠3221111ln ()()ln(23)224x x ⎡⎤=-+--=+⎢⎥⎣⎦.……5分因此3221ln(23)2x xπ=++-⎛⎜⎠. ……6分七、(本题满分6分)【 同数学一 第五题 】 八、(本题满分6分)【 同数学一 第九题 】 九、(本题满分8分) 设有曲线1-=x y ,过原点作其切线,求由此曲线、切线及x 轴围成的平面图形绕x轴旋转一周所得到的旋转体的表面积.解:设切点为00(1)x x -,则过原点的切线方程为021y x x =-. 再以点00(1)x x -代入,解得0002,11x y x ==-=,则切线方程为12y x =. ……3分 由曲线1(12)y x x =-≤≤绕x 轴一周所得到的旋转面的面积221112143(551)6S y dx x dx πππ'=+=-=⎰⎰;……6分由直线段1(12)2y x x =≤≤绕x 轴一周所得到的旋转面的面积 22015252S ππ=⋅=⎰.因此,所求旋转体的表面积为12(1151)6S S S π=+=.……8分十、(本题满分8分)设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为211y '+,且此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线的方程,并求函数y=y(x)的极值.解:因曲线向上凸,故0y ''<()32211y y ''='+'+, ……2分即211y y ''=-'+. 令,p y p y ''''==则,从而上述方程化为211p p '=-+,分离变量得21dpdx p =-+,解之得1arctan p C x =-.……4分因为()y y x =在点(0,1)处切线方程为1y x =+,所以00||1x x p y =='==,代入上式得14C π=,故tan()4y x π'=-.积分得2ln |cos()|4y x C π=-+.……6分因为曲线过点(0,1),所以0|1x y ==,代入上式得211ln 22C =+,故所求曲线的方程为13ln |cos()|1ln 2,(,)4244y x x πππ=-++∈-.……7分因为cos()14x π-≤且当4x π=时,cos()14x π-=,所以当4x π=时函数取得极大值11ln 22y =+.……8分十一、(本题满分8分) 设(0,1)x ∈,证明:(1) 22)1(ln )1(x x x <++; (2)211)1ln(112ln 1<-+<-x x . 证:(1) 令22()(1)ln (1)x x x x ϕ=++-,则有(0)0ϕ=,……1分22()ln (1)2ln(1)2,(0)0x x x x ϕϕ''=+++-=.因为当(0,1)x ∈时,2()[ln(1)]01x x x xϕ''=+-<+, 所以()0x ϕ'<,从而()0x ϕ<,即22(1)ln (1)x x x ++<.……3分 (2) 令11(),(0,1]ln(1)f x x x x=-∈+,则有2222(1)ln (1)()(1)ln (1)x x x f x x x x ++-'=++. ……4分由(1)知,()0f x '<(当(0,1)x ∈).于是在(0,1)内()f x 单调减少.又()f x 在区间(0,1]上连续,且1(1)1ln 2f =-, 故当(0,1)x ∈时,111()1ln(1)ln 2f x x x =->-+.……6分又20000ln(1)ln(1)1lim ()lim lim lim ln(1)2(1)2x x x x x x x x x f x x x x x x ++++→→→→-+-+====++, 故当(0,1)x ∈时,111()ln(1)2f x x x =-<+.……8分十二、(本题满分5分)设11(2)T E C B A C ---=,其中E 是4阶单位矩阵,TA 是4阶矩阵A 的转置矩阵,B =1232012300120001--⎛⎫⎪- ⎪ ⎪⎪⎝⎭,C =1201012000120001⎛⎫⎪⎪⎪⎪⎝⎭,求A .解: 由题设得1(2)T C E C B A E --=,即(2)T C B A E -=.……1分由于12340123001200012C B ⎛⎫⎪⎪= ⎪⎪⎝⎭-,|2|10C B -=≠,故2C B -可逆. 于是11[(2)][(2)]T T A C B C B --=-=-……3分110001000210021003210121043210121-⎛⎫⎛⎫⎪⎪- ⎪⎪= ⎪ ⎪- ⎪⎪-⎝⎭⎝⎭=. ……5分十三、(本题满分8分)[],]4,,10,3[,],1,1,0[,]3,1,7,2[,2,0,4,1321T T T T b a a a a =-===β问:(1) b a ,取何值时, β不能由321,,ααα 线性表示?(2) b a ,取何值时, β可由321,,ααα线性表示? 并写出此表示式.解: 因120312031203471100112011201101100102340120002b b a a a b ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪----⎪ ⎪ ⎪→→⎪ ⎪ ⎪--- ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭, ……2分故 (1) 当2b ≠时,线性方程组123(,,)x αααβ=无解,此时β不能由123,,ααα线性表出;……4分(2) 当2,1b a =≠时,线性方程组123(,,)x αααβ=有唯一解:123(,,)(1,2,0)T T x x x x ==-,于是β可唯一表示为122βαα=-+;……6分当2,1b a ==时,线性方程组123(,,)x αααβ=有无穷多个解:123(,,)(2,1,1)(1,2,0)T T T x x x x k ==-+-,其中k 为任意常数,这时β可由123,,ααα线性表示为123(21)(2)k k k βααα=-++++. ……8分数 学(试卷三)一、填空题:(本题共5小题,每小题3分,满分15分)(1) 设曲线()nf x x =在点(1,1)处的切线与x 轴的交点为,0n ξ(),则1lim ()n n f e ξ-→∞=.(2)⎰=-dx x x 21ln 1ln x c x-+.(3) 差分方程121050t t y y t ++-=的通解为51(5)()126t t y C t =-+-.(4) 设矩阵,A B 满足*28A BA BA E =-,其中A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100020001,E 为单位矩阵,*A 为A 的伴随矩阵,A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-10020001,则B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-20040002. (5) 设4321,,,X X X X 是来自正态总体2(0,2)N 的简单随机样本,243221)43()2(X X b X X a X -+-=,则当11,20100a b ==时,统计量X 服从2χ分布,其自由度为 2二、选择题:(本题共5小题,每小题3分,满分15分) (1) 设()f x 为可导函数,且满足条件12)1()1(lim-=--→xx f f x ,则曲线()y f x =在点(1,(1))f 处的切线斜率为 (D) (A)21 (B) 0(C) 1-(D) 2-(2) 设函数nn x xx f 211lim)(++=∞→,讨论函数f (x) 的间断点,其结论为 (B)(A) 不存在间断点. (B) 存在间断点x = 1 (C) 存在间断点x = 0 (D) 存在间断点x = -1(3) 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0003213213221x x x x x x x x x λλλλ 的系数矩阵记为A ,若存在三阶矩阵B ≠0,使得AB = 0,则 (C) (A) 02=-=B 且λ (B) 02≠-=B 且λ (C) 01==B 且λ (D) 01≠=B 且λ (4) 设(3)n n ≥阶矩阵A=1111aaa a a a a a a a a a ⎛⎫⎪⎪⎪⎪⎪ ⎪⎝⎭ ,若矩阵A 的秩为1n -,则a 必为 (B)(A) 1 (B)n-11(C) 1- (D) 11-n(5) 设1()F x 与2()F x 分别为随机变量1X 与2X 的分布函数,为使)()(21x bF x aF x F -=)( 是某一随机变量的分布函数,在下列给定的各组数值中应取 (A ) (A )52,53-==b a ;(B )32,32==b a ;(C )23,21=-=b a ;(D ) 23,21-==b a三、(本题满分5分)设arctan22yxz x y e -=+(),dz 与2.zx y ∂∂∂解:arctan arctan arctan 2222212()()()(2)1y y yx x xz y xe x y e x y e y x x x---∂=-+-=+∂+,……1分arctan arctan arctan 2222112()()()(2)1y y yx x xz ye x y e y x e y y x x---∂=-+=-∂+. ……2分所以arctan[(2)(2)]y xdz ex y dx y x dy -=++-.……3分 222arctan arctan arctan 222211(2)()()1y y y x x x z y xy x e x y e e y x y x x y x---∂-+=-+=∂∂++. ……5分四、(本题满分5分)设22{(,)}D x y x y x =+≤,求.Dxdxdy解一:22{(,)|01,}D x y x x x y x x =≤≤-≤-,所以220x x x x Dxdxdy xdx --=⎰……2分 121x xdx =-⎰……3分1351220081(1)43515t t x t t t dt ⎛⎫-=-=-= ⎪⎝⎭⎰.……5分解二:cos 202cos Dxdxdy d r rdr πθπθθ-=⎰⎰……2分 13cos 2222cos d r dr πθπθθ-=⎰⎰……3分 3204cos 5d πθθ=⎰ ……4分 815=. ……5分五、(本题满分6分)设某酒厂有一批新酿的好酒,如果现在(假定0t =)就售出,总收入为0R (元),如果窖藏起来,待来日按陈酒价格出售,t 年末总收入为250t R R e=.假定银行的年利率为r ,并以连续复利计息,试求窖藏多少年售出可使总收入的现值最大,并求0.06r =时的t 值..解:根据连续复利公式,这批酒在窖藏t 年未售出总收入R 的现值为()Re rt A t -=, 而250t R R e=,所以250()t rt A t R e=. ……2分令25005t rtdA R e r dtt ⎫=-=⎪⎭,得唯一驻点02125t r =. ……3分 又2225023510t rt d A R r dt t t -⎡⎤⎫=-⎢⎪⎭⎢⎣,则有0123250212.50r t t d A R e r dt =⎡⎤=-<⎣⎦. 于是,02125t r =是极大值点即最大值点, 故窖藏2125t r =(年)售出,总收入的现值最大. ……5分当0.06r =时,100119t =≈(年).……6分 六、(本题满分6分)设函数)(x f 在[b a ,]上连续,在(b a ,)内可导, 且0)('≠x f ,试证: 存在,(,),a b ξη∈使得'()'()b a f e e e f b aηξη--=-.证:令()x g x e =,则()()g x f x 与在[,]a b 上满足柯西中值定理条件,故由柯西中值定理, 存在(,)a b η∈,使得()()()b af b f a f e e eηη'-=-, ……2分 即()()()()b a f b f a e e e f b a b aηη---'=⋅--.……3分 又()f x 在[,]a b 上满足拉格朗日中值定理条件,故由拉格朗日中值定理,存在(,)a b ξ∈,使得()()()f b f a f b aξ-'=-.……5分 由题设()0f x '≠知()0f η'≠,从而()()()b a f e e e f b aηξη-'-=⋅'-.……6分七、(本题满分6分)设有两条抛物线11)1(122+++=+=n x n y n nx y 和, 记它们交点的横坐标的绝对值为n a . (1)求这两条抛物线所围成的平面图形的面积n S ;(2)求级数∑∞=1n nn a S 的和.解:由2211(1)1y nx y n x n n =+=+++与得(1)n a n n =+. ……2分因图形关于y 轴对称,所以220112[(1)]1n a n S nx n x dx n n =+-+-+⎰2012[](1)3(1)(1)n a x dx n n n n n n =-=+++⎰.……4分 因此414113(1)31n n S a n n n n ⎛⎫==- ⎪++⎝⎭,……5分 从而11414lim lim 1313nn k n n n k n k S S a a n ∞→∞→∞==⎡⎤⎛⎫==-= ⎪⎢⎥+⎝⎭⎣⎦∑∑. ……6分八、(本题满分7分)设函数)(x f 在 [)+∞,1上连续,若由曲线)(x f y =),直线)1(,1>==t t x x 与x 轴所围成的平面图形绕x 轴旋转一周所成的旋转体体积为)]1()([3)(2f t f t t v -=π,试求)(x f y =所满足的微分方程,并求该微分方程满足条件 922==x y 的解.解:依题意得221()()[()(1)]3tV t f x dx t f t f ππ==-⎰,即2213()()(1)tf x dx t f t f =-⎰.……2分 两边对t 求导,得223()2()()f t tf t t f t '=+.……3分将上式改写为2232x y y xy '=-,即232dy y y dx x x ⎛⎫=-⋅ ⎪⎝⎭(*)令y u x =,则有3(1)du x u u dx=-, ……4分 当0u ≠时,1u ≠时,由3(1)du dx u u x =-两边积分得31u cx u-=.……5分 从而(*)式的通解为3()y x cx y C -=为任意常数.……6分 由已知条件,求得1c =-,从而所求的解为33()1x y x x yy x-=-=+或. ……7分九、(本题满分9分)设向量1212(,,,),(,,,)T T n n a a a b b b αβ== 都是非零向量,且满足条件0=βT a ,记n 阶矩阵T a A β=,求:(1) 2A ; (2) 矩阵A 的特征值和特征向量. 解:(1) 由T a A β=和0=βT a ,有2()()()()T T T T T T A AA αβαβαβαββααβ====……1分 即2A 为n 阶零矩阵.……3分(2) 设λ为A 的任一特征值,A 的属于特征值λ的特征向量为(0)x x ≠,则λ=Ax x ,于是22λλ==A x Ax x .……4分 因为2=A x O ,所以2λ=x O .而≠x O ,故0λ=,即矩阵A 的特征值全为零.……5分不妨设向量,αβ中分量110,0a b ≠≠,对齐次线性方程组(0)-=E A O 的系数矩阵施以初等行变换:11121122122212000000n n n n n n n a b a b a b b b b a b a b a b a b a b a b ---⎛⎫⎛⎫⎪⎪--- ⎪⎪-=→ ⎪ ⎪⎪⎪---⎝⎭⎝⎭A……6分由此可得该方程组的基础解系为:32121111,1,0,,0,,0,1,,0,,,0,0,,1T T Tn n b b b b b b ααα-⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ , ……8分于是,A 的属于特征值0λ=的全部特征向量为112211n n c c c ααα--+++ ,(121,,,n cc c - 是不全为0的任意常数.)……9分十、(本题满分7分)设矩阵A =101020101⎛⎫⎪ ⎪ ⎪⎝⎭,矩阵2)(A kE B +=,其中k 为实数,E 为单位阵,求对角矩Λ,使B 与Λ相似,并求k 为何值时,B 为正定矩阵.解:由2||(2)E A λλλ-=-,可得A 的特征值为1232,0λλλ===. ……2分记对角矩阵200020000D ⎛⎫ ⎪= ⎪ ⎪⎝⎭. 因为A 是实对称矩阵,故存在正交矩阵P ,使得TP AP D =. ……4分所以11()T T A P DP PDP --==.于是22()()[()][()]T T T T B kE A kPP PDP P kE D P P kE D P =+=+=++2()T P kE D P =+222(2)(2)Tk P k P k ⎛⎫+⎪=+⎪ ⎪⎝⎭, ……5分可见222(2)(2)k k k ⎛⎫+ ⎪Λ=+ ⎪ ⎪⎝⎭, ……6分因此,当2k ≠-,且0k ≠时B 的全部特征值均为正数,这时B 为正定矩阵.……7分注:考生也可直接由A 的特征值得到矩阵kE A +的特征值为2k +(二重)和k (4分). 进而得到B 的特征值为2(2)k +(二重)和2k (5分),并得到实对称矩阵B ~Λ(6分).十一、(本题满分10分)一商店经销某种商品,每周进货的数量X 与顾客对该种商品的需求量Y 是相互独立的随机变量,且都服从区间[10,20]上的均匀分布.商店每售出一单位商品可得利润1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品获利润为500元.试计算此商店经销该种商品每周所得利润的期望值.解:设Z 表示商品每周所得的利润,则1000,,1000500()500(),Y Y X Z X Y X X Y Y X≤⎧=⎨+-=+>⎩ ……3分 由于X 与Y 的联合概率密度为:1,1020,1020,(,)1000,x y x y ϕ⎧≤≤≤≤⎪=⎨⎪⎩其它.……5分所以12111000500()100100D D EZ y dxdy x y dxdy =⨯++⨯⎰⎰⎰⎰ ……7分 202020101010105()yydy ydx dy x y dx =++⎰⎰⎰⎰……8分 202021010310(20)5(1050)2y y dy y y dy =-+--⎰⎰……9分 200005150014166.673=+⨯≈(元).……10分十二、(本题满分9分)设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份.随机地取一个地区的报名表,从中先后抽出两份.(1) 求先抽到的一份是女生表的概率p ;(2) 已知后抽到的一份是男生表,求先抽到的一份是女生表的概率q . 解:设i H ={报名表是第i 区考生的}(1,2,3,i =)j A ={第j 次抽到的报名表是男生的}(1,2j =), 则1231()()()3P H P H P H ===;1112137820(|),(|),(|)101525P A H P A H P A H ===; ……1分(1) 3111137529()()(|)()310152590i i i P P A P H P A H ====++=∑.……3分 (2) 由全概率公式得2122237820(|),(|),(|)101525P A H P A H P A H ===. ……4分 121122123785(|),(|),(|)303030P A A H P A A H P A A H ===.……5分32211782061()()(|)()310152590i i i P A P H P A H ===++=∑. ……6分 31212117852()()(|)()33030309i i i P A A P H P A A H ===++=∑.……7分 因此,12122()20(|)()61P A A q P A A P A ===.……9分数 学(试卷四)一、填空题:(本题共5小题,每小题3分,满分15分) (1) 【 同数学三 第一、(1)题 】 (2) 【 同数学三 第一、(2)题 】 (3) 【 同数学三 第一、(4)题 】(4) 设A ,B 均为n 阶矩阵,21*122,3,23n A B A B--==-=-则.(5) 设一次试验成功的概率为p ,进行100次独立重复试验,当p =12时,成功次数的标准差的值最大;其最大值为 5 .二、选择题:(本题共5小题,每小题3分,满分15分) (1) 【 同数学三 第二、(1)题 】 (2) 【 同数学三 第二、(2)题 】(3) 若向量组 γβα,,线性无关;δβα,,线性相关,则 (C)(A)α 必可由δγβ,,线性表示 (B) β 必不可由δγα,,线性表示(C) δ 必可由γβα,,线性表示 (D) δ 必不可由γβα,,线性表示(4) 设A ,B ,C 是三个相互独立的随机事件,且0 < P (C )<1,则在下列给定的四对事件 中不相互独立的是 (B) (A) C B A 与+ (B) C AC 与 (C) C B A 与- (D) C AB 与. (5) 【 同数学三 第二、(5)题 】三、(本题满分6分) 求21lim(tan )n n n n→∞(n 为自然数).解:因为32tan 1tan 00tan tan lim lim 1x xxx x xx x x x x x x x ++--→→⎡⎤-⎛⎫⎛⎫⎢⎥=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ……2分其中23200tan sec 11lim lim 33x x x x x x x ++→→--==,……4分故21130tan lim x x x e x +→⎛⎫= ⎪⎝⎭. ……5分取1x n=,则原式13e =.……6分(注:对数列极限直接用洛必达法则,扣2分.)四、(本题满分6分)【 同数学三 第三题 分值不同】 五、(本题满分5分)【 同数学三 第四题 】 六、(本题满分6分)【 同数学三 第五题 】 七、(本题满分6分)设函数()f x 在[,]a b 上连续,在(b a ,)内可导,且()()1f a f b ==,试证存在,(,)a b ξη∈,使得[]1)()(='+-ηηξηf f e .证:令()()x F x e f x =,则()F x 在[,]a b 上满足拉格朗日中值定理条件,故存在(,)a b η∈,使得()()[()()]b a e f b e f a e f f b aηηη-'=+-.……3分 由条件()()1f a f b ==,得[()()]b ae e ef f b aηηη-'=+-. (1)……4分 再令()xx e ϕ=,则()x ϕ在[,]a b 上满足拉格朗日中值定理条件,故存在(,)a b ξ∈,使得b ae e e b a ξ-=-. (2) ……5分 综合(1)、(2)两式,有[()()]1ef f ηξηη-'+=.……6分八、(本题满分9分)设直线y ax =与抛物线2y x =所围成图形的面积为1S ,它们与直线1X =所围成的图形面积为2S ,并且1a <.(1) 试确定a 的值,使12S S +达到最小,并求出最小值;(2) 求该最小值所对应的平面图形绕x 轴旋转一周所得旋转体的体积. 解:(1) 当01a <<时,(如图一)122120()()a aS S S ax x dx x ax dx =+=-+-⎰⎰123323012332323aa ax x x ax a a ⎛⎫⎛⎫=-+-=-+ ⎪ ⎪⎝⎭⎝⎭. ……2分令2102S a '=-=,得2a =.又(202S ''=>,则(2S 是极小值,即最小值.其值为122(326222S -=+=. ……4分当0a ≤时,(如图二)122120()()aS S S ax x dx x ax dx =+=-+-⎰⎰31623a a =--+.因2211(1)0222a S a '=--=-+<,S 单调减少,故0a =时,S 取得最小值,此时13S =.综上所述,当2a =,(2S 为所求最小值,最小值为226-. ……6分(2) 1244220211())22x V x x dx x x dx ππ=-+-⎰11552331021121655630x x x x πππ⎛⎛=-+-=⎝⎝. ……9分九、(本题满分9分)【 同数学三 第九题 】 十、(本题满分9分)已知下列非齐次线性方程组 )(I 和)(II124123412326():4133x x x x x x x x x x +-=-⎧⎪I ---=⎨⎪--=⎩ , 1234234345():21121x mx x x nx x x x x t +--=-⎧⎪II --=-⎨⎪-=-+⎩(1) 求解方程组()I ,用其导出组的基础解系表示通解.(2) 当方程组()II 中的参数,,m n t 为何值时,方程组()I 与()II 同解.解:(1) 设方程组()I 的系数矩阵为1A ,增广矩阵为1A ,对1A 作初等行变换,得1110261001241111010143110300125A ⎛--⎫⎛--⎫⎪ ⎪=---→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭.由于秩(1A )=秩(1A )34=<,所以方程组有无穷多解,其通解为21415201X k -⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭(k 为任意常数). ……3分(2) 将通解X 代入()II 的第一个方程,得(2)(4)(52)5k m k k k -++-+--+-=-,解得2m =.将通解X 代入()II 的第二个方程,得(4)(52)211n k k k -+--+-=-,解得4n =. 将通解X 代入()II 的第三个方程,得(52)21k k t -+-=-+,解得6t =. 因此,方程组()II 的参数为2m =,4n =,6t =.……5分即当2m =,4n =,6t =时,方程组()I 的全部解都是方程组()II 的解.这时,方程组()II 化为()II 12342343425,4211,25,x x x x x x x x x +--=-⎧⎪--=-⎨⎪-=-⎩.又设方程组()II 的系数矩阵为2A ,增广矩阵为2A ,对2A 施以初等行变换,得21211510012041211010140012500125A ⎛---⎫⎛--⎫⎪ ⎪=---→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭……6分于是方程组()II 的通解为21415201X k -⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭(k 为任意常数).显然,方程组()I 与()II 的解完全相同. 即方程组()I 与()II 同解.……7分十一、(本题满分7分)求某种商品每周的需求量X 是服从区间[10,30]上均匀分布的随机变量,而经销商进货数量为区间[10,30]中的某一整数,商店每销售一单位商品可获利500元;若供大于求则削价处理,每处理1单位商品亏损100元;若供不应求,则可从外部调剂供应,此时每1单位商品仅获利300元,为使商品所获利润期望值不小于9280元,试确定最少进货量.解:设进货数量为α,则利润为500()300,30,500()100,10X a a X M X a X X a αα+-<≤⎧=⎨--≤≤⎩300200,30,600100,10X a a X X a X a +<≤⎧=⎨-≤≤⎩……3分期望利润30301010111(600100)(300200)202020a aEM M dx x a dx x a dx αα=⋅=-++⎰⎰⎰ 3022210116001003002007.53505250202202aax x ax ax a a ⎛⎫⎛⎫=⋅-+⋅+=-++ ⎪ ⎪⎝⎭⎝⎭,……6分 依题意,有27.535052509280a a -++≥,……7分 即27.535040300a a -+≤,解得220263a ≤≤. ……8分 故期望利润不少于9280元的最少进货量为21单位.……9分十二、(本题满分7分)某箱装有100件产品,其中一、二、三等品分别为80件、10件和10件,现在从中随机抽取一件,记)3,2,1(01=⎩⎨⎧=i i X i 他其等品若抽到,试求:(1) 随机变量X 1与X 2的联合分布; (2) 随机变量X 1与X 2的相关系数ρ.解:(1) 设事件i A =“抽到i 等品”123i (=,,). 由题意知123,,A A A 两两互不相容.123()0.8,()()0.1P A P A P A ===.……1分易见123{0,0}()0.1P X X P A ====,122{0,1}()0.1P X X P A ====;121{1,0}()0.8P X X P A ====,12{1,1}()0P X X P φ====.……3分故随机变量X 1与X 2的联合分布为2X1X0 1 0 0.1 0.8 10.1(2) 120.8,0.1EX EX ==.120.80.20.16,0.10.90.09DX DX =⨯==⨯=. ……4分 12000.1010.1100.81100EX X =⨯⨯+⨯⨯+⨯⨯+⨯⨯=. ……5分 121212(,)00.80.10.08Cov X X EX X EX EX =-⋅=-⨯=-.……6分 1212230.160.09DX DX ρ===-⋅⨯.……7分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档