第七章直线和圆的方程测试
专题07 直线和圆的方程(填空题)(11月)(人教A版2021)(原卷版)
专题07 直线和圆的方程(填空题)一、填空题1.已知直线10x ay +-=和直线420ax y ++=互相平行,则a 的值为__________. 2.过点()2,2M -的直线与x 轴、y 轴分别交于P 、Q 两点,若M 恰为线段PQ 的中点,则直线PQ 的方程为__________.3.点()5,7P -到直线12510x y +-=的距离为__________.4.一束光线从点()2,1A-出发经x 轴反射到圆22:(2)(2)1C x y -+-=上,光线的最短路程是__________.5.直线413=-y x 的单位法向量是__________. 6.若(1,3n =-是直线l 的一个法向量,则l 的倾斜角大小为__________.7.平面直角坐标系中点(1,2)到直线210x y ++=的距离为__________.8.已知直线1l :340x y ++=与直线2l :0x my +=垂直,则m 的值为__________. 9.如果直线ax +2y +2=0与直线3x -y -2=0平行,则a 的值为__________.10.设()00,P x y 为直线1x y +=与圆223x y +=的交点,则00=x y __________. 11.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为__________. 12.过圆225x y +=上一点(2,1)M -作圆的切线, 则该切线的方程为__________. 13.已知直线1l :230ax y +-=和直线2l :(1)10a x y --+=.若12l l ,则1l 与2l 的距离为__________. 14.已知直线l 的倾斜角α满足方程1cos 1sin 2αα-=,则直线l 的斜率为__________. 15.已知实数,x y 满足方程()2221x y -+=,则y x 的取值范围是__________. 16.已知()2,1A -、()1,2B ,点C 为直线13y x =上的一动点,则AC BC +的最小值为__________.17.对任意实数k ,圆C :2268120x y x y +--+=与直线l :430kx y k --+=的位置关系是__________.18.函数()f x =__________.19.在ABC 中,(4,1)A 、(7,5)B 、(4,7)C -,则A ∠的平分线所在直线的一般式方程是__________.20.已知直线(3a +2)x +(1-4a)y +8=0与(5a -2)x +(a +4)y -7=0垂直,则实数a =__________.21.点()2,3-关于直线0x y -=对称的点的坐标为__________.22.经过两条直线220x y ++=和3420x y +-=的交点,且垂直于直线3240x y -+=的直线的一般式方程为__________.23.当点(3,2)P 到直线120mx y m -+-=的距离最大值时,m 的值为__________. 24.已知,,a b c 是两两不等的实数,点(),P b b c +,点(),Q a c a +,则直线PQ 的倾斜角为__________.25.在平面直角坐标系中,直线30x +-=的倾斜角是__________.26.两条平行直线433x y ++=0与869x y +-=0的距离是__________.27.直线x ﹣4y +k =0在两坐轴上截距之和为5,则k =__________.28.已知直线l 的斜率为16且和坐标轴围成的三角形的面积为3,则直线l 的方程为__________.29.直线2mx +y –m –1=0恒过定点__________.30.两条平行直线34120x y +-=与8110ax y ++=间的距离是___________. 31.已知直线1:3l y ax =+与2l 关于直线y x =对称,2l 与3:210l x y +-=垂直,则a =__________.32.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为__________. 33.已知圆C :x 2+y 2﹣2x ﹣2y ﹣6=0.直线l 过点(0,3),且与圆C 交于A 、B 两点,|AB |=4,则直线l 的方程__________.34.若直线3x =与圆2220x y x a +--=相切,则a =__________.35.若直线l 过(0,5)A ,且被圆C :22412240x y x y ++-+=截得的弦长为线l 方程为__________.36.圆心在直线270x y -+=上的圆C 与x 轴交于两点(2,0),(4,0)A B --,则圆C 的方程为__________.37.两圆222220x y x y +-+-=和2245x y x ++=的公共弦长为__________. 38.过点()0,2P 的直线l 与圆O :229x y +=相交于M ,N 两点,且圆上一点Q 到l 的距离的最大值为4,则直线MN 的方程为__________.39.已知过点()2,2P 的直线与圆()2215x y -+=相切,且与直线10ax y -+=垂直,则a =__________.40.若圆C 经过坐标原点和点(4,0),且与直线y =1相切,则圆C 的方程是___________. 41.已知直线l :()20kx y k R +-=∈是圆C :226260x y x y +-++=的一条对称轴,过点()0,A k 作圆C 的一条切线,切点为B ,则线段AB 的长度为__________.42.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB ⋅的最大值是__________.43.已知α,R β∈,直线1sin sin sin cos x y αβαβ+=++与1cos sin cos cos x y αβαβ+=++的交点在直线y x =-上,则sin cos sin cos ααββ+++=__________.44.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线后人称之为三角形的欧拉线,已知ABC 的顶点()2,0A ,()0,4B ,若其欧拉线方程为20x y -+=,则顶点C 的坐标__________.45.已知等腰三角形的底边所在直线过点()2,1P ,两腰所在的直线为20x y +-=与740x y -+=,则底边所在的直线方程是__________.46.已知三条直线1:440l x y +-=,2:0l mx y +=,3:2340l x my --=不能围成三角形,则m =__________.47.过点()10,10-且在x 轴上的截距是在y 轴上截距的4倍的直线的方程为__________.48.直线xcosθy +2=0的倾斜角的范围是__________.49.已知点()()2,3,3,2P Q -,直线20ax y ++=与线段PQ 相交,则实数a 的取值范围是__________.50.一条光线从点()2,3-射出,经x 轴反射,其反射光线所在直线与圆()2231x y -+=相切,则反射光线所在的直线方程为__________.51.已知实数925m ≠,原点到动直线(31)(43)9250m x m y m ++-+-=的距离的取值范围为__________.52.m R ∈,动直线1:10l x my +-=过定点A ,动直线2:230l mx y m --+=过定点B ,若直线1l 与2l 相交于点P (异于点,A B ),则PAB ∆周长的最大值为__________. 53.直线l 过点()1,0,且被两平行直线360x y +-=和330x y ++=所截得的线段长为9,则直线l 的一般式方程是__________.54.过点()2020,2020P 且在两坐标轴上截距相等的直线的一般式方程为__________. 55.已知直线1l :420mx y +-=与2l :250x y n -+=互相垂直,其垂足为()1,p ,则m n p +-的值为__________.56.点P (-1,1)为圆 ()22125x y -+=的弦AB 的中点,则直线AB 的方程为__________. 57.已知l 1的斜率是2,l 2过点A(-1,-2),B(x ,6),且l 1∥l 2,则19log x =__________. 58.已知圆22:(2)1M x y +-=,Q 是x 轴上的动点,QA ,QB 分别切圆M 于A ,B 两点,则动弦AB 的中点P 的轨迹方程为__________.59.已知直线l 过点(2,3),且在x 轴上的截距是在y 轴上截距的两倍,则直线l 的方程为__________.60.如图是一公路隧道截面图,下方ABCD 是矩形,且4m AB =,8m BC =,隧道顶APD 是一圆弧,拱高2m OP =,隧道有两车道EF 和FG ,每车道宽3.5m ,车道两边留有0.5m 人行道BE 和GC ,为了行驶安全,车顶与隧道顶端至少有0.6m 的间隙,则此隧道允许通行车辆的限高是__________m (精确到0.01m 7.141=)61.已知直线:210l x y --=和圆22:210C x y y +--=相交于A 、B 两点,则弦长AB =__________.62.在边长为1的正方形ABCD 中,动点P 在以点C 为圆心且与BD 相切的圆上,若AP AB AD λμ=+,则λμ+的最大值为__________.63.已知直线l 经过点P(-4,-3),且被圆(x +1)2+(y +2)2=25截得的弦长为8,则直线l 的方程是__________.64.已知点P 在圆22:(4)4C x y -+=上,点(6,0)A ,M 为AP 的中点,O 为坐标原点,则tan MOA ∠的最大值为__________.65.圆上的点()2,1关于直线0x y +=的对称点仍在圆上,且圆与直线10x y -+=相交所,则圆的方程为__________.66.已知P 是直线3x +4y -10=0上的动点,P A ,PB 是圆x 2+y 2-2x +4y +4=0的两条切线,A ,B 是切点,C 是圆心,那么四边形P ACB 面积的最小值为__________.67.等腰直角三角形ABC ,2AB AC ==,90BAC ∠=︒.E ,F 分别为边AB ,AC 上的动点,设AE mAB =,AF nAC =,其中,(0,1)m n ∈,且满足221+=m n ,M ,N 分别是EF ,BC 的中点,则||MN 的最小值为__________.68.如图放置的等腰直角ABC 薄片(90ACB ∠=︒,2AC =)沿x 轴滚动,点A 的运动轨迹曲线与x 轴有交点,则在两个相邻交点间点A 的轨迹曲线与x 轴围成图形面积为__________.69.若曲线1:2C y =与曲线2:(2)()0C y y kx k --+=有四个不同的交点,则实数k 的取值范围是__________.70.在平面直角坐标系中,给定两点(1,2),(3,4)M N ,点P 在x 轴的正半轴上移动,当MPN ∠取最大值时,点P 的横坐标为__________.71.圆222410x y x y ++-+= 关于直线()220,ax by a b R -+=∈对称,则ab 的取值范围是__________.72.圆心在x 轴上,且与直线1:l y x =和2:2l y x =-都相切的圆的方程为__________. 73.对任意的实数k ,直线2(1)20k x ky +--=被圆222240x y x y +---=截得的最短弦长为__________.74.已知动点()P m n ,在圆22:1O x y +=上,若点1,02A ⎛⎫- ⎪⎝⎭,点()1,1B ,则2PA PB +的最小值为__________.75.圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为__________.76.已知直线:0l mx y m ++=交圆22:(1)1C x y -+=于()11,A x y ,()22,B x y 两点,则112244x y x y -++-+的取值范围为__________.77.点(3,1)P -在动直线(1)(1)0m x n y -+-=上的投影为点M ,若点()3,3N ,那么MN 的最小值为__________.78.已知实数x 、y 满足()2221x y +-=,则ω=的取值范围__________.79.已知点A(-1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC 分割为面积相等的两部分,则b 的取值范围是__________.80.过点()P 0,3作直线l :()()m n x 2n 4m y 6n 0++--=的垂线,垂足为点Q ,则点Q 到直线x 2y 80--=的距离的最小值为__________.二、双空题81.已知点P (1,1)为圆2260x y x +-=的弦AB 的中点,则弦AB 所在的直线方程为__________,AB =__________.82.已知圆C 的圆心在直线230x y -+=,半径为r ,且与直线:40l x y -+=切于点()2,2P -,则圆C 的圆心坐标为__________;半径r =__________.83.直线142x y +=与x 轴、y 轴分别交于点A ,B ,则AB =__________;以线段AB 为直径的圆的方程为__________.84.已知直线1l 的方程为3420x y --=,直线2l 的方程为6810x y --=,则直线1l 的斜率为__________,直线1l 与2l 的距离为__________.85.直线:1l x =的倾斜角为__________;点()2,5P 到直线l 的距离为__________. 86.已知()2,0A -,()0,2B -,动点P 在圆C :22240x y x y +--=上,若直线//l AB 且与圆C 相切,则直线l 的方程为__________;当PA PB ⋅取得最大值时,直线PC 方程为__________.87.已知A ,(2,1)B ,直线l 过点(0,1)P -,若直线l 与线段AB 总有公共点,则直线l 的斜率取值范围是__________,倾斜角α的取值范围是__________.88.已知a 为实数,直线1:660l ax y +-=,直线2:2350l x y ++=,若12l l //,则a =__________;若12l l ⊥,则a =__________.89.已知点A (0,1),直线l 1:x -y -1=0,直线l 2:x -2y +2=0,则点A 关于直线l 1的对称点B 的坐标为__________,直线l 2关于直线l 1的对称直线方程是__________.90.直线l 10y ++=的倾斜角的大小是__________;直线m :10x ky -+=与直线l 垂直,则实数k =__________.91.经过两点A (2,3),B (1,4)的直线的斜率为__________,倾斜角为__________. 92.如图,过1,0A ,10,2B ⎛⎫ ⎪⎝⎭两点的直线与单位圆221x y +=在第二象限的交点为C ,则弦AC 的长为__________;9sin 4AOC π⎛⎫∠-= ⎪⎝⎭__________.93.已知点()2,3A ,()3,2B ,12,2C ⎛⎫- ⎪⎝⎭,若直线l 过点()1,1P 与线段AB 相交,则直线l 的斜率k 的取值范围是__________;若直线l 过点()1,1P 与线段BC 相交,则直线l 的斜率k的取值范围是__________.94.圆224240x y x y ++-+=上的点到直线1y x =-的最近距离为__________,最远距离为__________.95.已知点(3,1)A -,(5,2)B -,点P 在直线0x y +=上,当点P 的坐标为__________时,能使PA PB +取得最小值__________.96.直线l 过点()4,1且与x 轴、y 轴的正半轴分别交于A 、B 两点,O 为坐标原点,则AOB 面积的最小值为__________,当AOB 面积取最小值时直线l 的一般式方程是__________.97.设圆()()()222:,,0C x a y b r a b r -+-=>与x 轴相切,且与过点()2,0的直线相切于点48,55⎛⎫ ⎪⎝⎭,则圆心坐标为__________,半径r =__________. 98.已知实数x ,y 满足方程22410x y x +-+=,则22x y +的最大值和最小值分别为__________、__________.99.过20x y --=上一点()00,P x y 作直线与221x y +=相切于A ,B 两点.当03x =时,切线长PA 为__________;当PO AB ⋅最小时,0x 的值为__________.。
(完整版)直线与圆的方程测试题(含答案)
直线与圆的方程测试题(本试卷满分150分,考试时间120分钟)一、单项选择题(本大题共18小题,每小题4分,共72分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出,错选、多选或未选均无分.1.点M 1(2,-5)与M 2(5,y)之间的距离是5,则y=( )A.-9B.-1C.-9或-1D. 122. 数轴上点A 的坐标是2,点M 的坐标是-3,则|AM|=( )A.5B. -5C. 1D. -13. 直线的倾斜角是,则斜率是( )32πA. B. C. D.3-3333-34. 以下说法正确的是( )A.任意一条直线都有倾斜角B. 任意一条直线都有斜率C.直线倾斜角的范围是(0,)D. 直线倾斜角的范围是(0,)2ππ5. 经过点(4, -3),斜率为-2的直线方程是( )A. 2x+y+2=0B.2x-y-5=0C. 2x+y+5=0D. 2x+y-5=06. 过点(2,0)且与y 轴平行的直线方程是( )A.x=0B.y=0C.x=2D.y=27. 直线在y 轴上的截距是-2,倾斜角为0°,则直线方程是()A.x+2=0B.x-2=0C.y+2=0D.y-2=08. “B ≠0”是方程“Ax+By+C=0表示直线”的( )A.充分非必要条件B.必要非充分条件C.充分且必要条件D.非充分非必要条件9. 直线3x-y+=0与直线6x-2y+1=0之间的位置关系是( )21A.平行B.重合C.相交不垂直D.相交且垂直10.下列命题错误的是( )A. 斜率互为负倒数的两条直线一定互相垂直B. 互相垂直的两条直线的斜率一定互为负倒数C. 两条平行直线的倾斜角相等D. 倾斜角相等的两条直线平行或重合11. 过点(3,-4)且平行于直线2x+y-5=0的直线方程是( )A. 2x+y+2=0B. 2x-y-2=0C. 2x-y+2=0D.2x+y-2=012. 直线ax+y-3=0与直线y=x-1垂直,则a=( )21A.2B.-2C.D. 2121-13. 直线x=2与直线x-y+2=0的夹角是( )A.30°B. 45°C. 60°D. 90°14. 点P (2,-1)到直线l :4x-3y+4=0的距离是()A.1 B. C. D.35115315. 圆心在( -1,0),半径为5的圆的方程是()A.(x+1)2+y 2= B. (x+1)2+y 2=255C. (x-1)2+y 2= D. (x-1)2+y 2=25516. 直线3x+4y+6=0与圆(x-2)2+(y+3)2=1的位置关系是( )A.相交不过圆心B.相交且过圆心C.相切D.相离17. 方程x 2+y 2-2kx+4y+3k+8=0表示圆,则k 的取值范围是( )A.k<-1或k>4B. k=-1或k=4C. -1<k<4D. -1≤k≤418. 直线y=0与圆C:x 2+y 2-2x-4y=0相交于A 、B 两点,则△ABC 的面积是()A.4B.3C.2D.1二、填空题(本大题共5小题,每小题4分,共20分)请在每小题的空格中填上正确答案。
高中数学第7章 直线和圆的方程(5)
高中数学第7章 直线和圆的方程(5)一、选择题(本大题共20小题,共100.0分)1. 一条光线从点(−2,−3)射出,经y 轴反射后与圆(x +3)2+(y −2)2=1相切,则反射光线所在直线的斜率为( )A. −53或−35B. −32或−23C. −54或−45D. −43或−34 2. 平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( )A. 2x −y +√5=0或2x −y −√5=0B. 2x +y +√5=0或2x +y −√5=0C. 2x −y +5=0或2x −y −5=0D. 2x +y +5=0或2x +y −5=03. 若直线(1+a)x +y +1=0与圆(x −1)2+y 2=1相切,则a 的值为( )A. 1,−1B. 2,−2C. 1D. −14. 已知直线x +ay −1=0是圆C :x 2+y 2−4x −2y +1=0的对称轴,过点A(−4,a)作圆C 的一条切线,切点为B ,则|AB|=( )A. 2B. 6C. 4√2D. 2√105. 圆心为(2,0)的圆C 与圆x 2+y 2+4x −6y +4=0相外切,则C 的方程为( )A. x 2+y 2+4x +2=0B. x 2+y 2−4x +2=0C. x 2+y 2+4x =0D. x 2+y 2−4x =06. 直线y =x +4与圆(x −a)2+(y −3)2=8相切,则a 的值为( )A. 3B. 2√2C. 3或−5D. −3或57. 已知点M 是直线l :3x +4y −2=0上的动点,点N 为圆C :(x +1)2+(y +1)2=1上的动点,则|MN |的最小值是( )A. 45B. 1C. 95D. 135 8. 圆x 2+y 2−4x −2y +4=0上的点到直线x −y =2的距离最大值是( )A. 2B. 1+√2C. 1+√22D. 1+2√29. 已知直线l 过圆(x −1)2+(y −2)2=1的圆心,当原点到直线l 距离最大时,直线l 的方程为( )A. y =2B. x −2y −5=0C. x −2y +3=0D. x +2y −5=010.过点P(3,1)作圆C:(x−1)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为()A. 2x+y−3=0B. 2x−y−3=0C. 4x−y−3=0D. 4x+y−3=011.直线3x+4y=b与圆x2+y2−2x−2y+1=0相切,则b的值是()A. −2或12B. 2或−12C. −2或−12D. 2或1212.已知圆x2+y2+2x−2y+a=0截直线x+y+2=0所得的弦长为4,则实数a的值是()A. −2B. −4C. −6D. −813.已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是()。
直线与圆的方程测试卷(含答案)
直线与圆的方程测试卷(含答案) 单元检测(七) 直线和圆的方程一、选择题 (本大题共 12 小题,每小题 5 分,共 60 分)1.若直线 x+ay-a=0 与直线 ax-(2a-3)y-1=0 垂直,则 a 的值为()A。
2B。
-3 或 1C。
2 或 1D。
解析:当 a=0 时,显然两直线垂直;a≠0 时,则 -1/a=2a-3,解得 a=2.故选 C。
2.集合M={(x,y)|y=1-x^2,x、y∈R},N={(x,y)|x=1,y∈R},则M∩N 等于()A。
{(1,0)}B。
{y|0≤y≤1}C。
{1,0}D。
1/a解析:y=1-x^2 表示单位圆的上半圆,x=1 与之有且仅有一个公共点 (1,0)。
答案:A3.菱形 ABCD 的相对顶点为 A(1,-2),C(-2,-3),则对角线BD 所在直线的方程是…()A。
3x+y+4=0B。
3x+y-4=0C。
3x-y+1=0D。
3x-y-1=0解析:由菱形的几何性质,知直线 BD 为线段 AC 的垂直平分线,AC 中点O(-1/2,-5/2),斜率k=2/3,在BD 上,k=-3,代入点斜式即得所求。
答案:A4.若直线 3x+y=1 经过点M(cosα,sinα),则……()A。
a^2+b^2≤1B。
a^2+b^2≥1C。
a^2+b^2≤1/2D。
a^2+b^2≥1/2解析:直线 3x+y=1 经过点M(cosα,sinα),我们知道点 M在单位圆上,此问题可转化为直线 x/a+y/b=1 和圆 x^2+y^2=1有公共点,圆心坐标为 (0,0),由点到直线的距离公式,有|a/b-cosα/sinα|=|1/b|,即a^2+b^2≤1.答案:A5.当圆 x^2+y^2+2x+ky+k^2=0 的面积最大时,圆心坐标是()A。
(0,-1)B。
(-1,0)C。
(1,-1)D。
(-1,1)解析:将圆的方程化为标准形式(x+1)^2+(y-1)^2=4-k^2/4,由于圆心坐标为 (-1,1),故圆心到直线 y=1 的距离最大,即k=0,此时 r^2=4,面积最大。
《直线和圆的方程》练习与答案
《直线和圆的方程》练习与答案一、单项选择题1.若过两点A (4,y ),B (2,-3)的直线的倾斜角为45°,则y 等于()A.-32B.32C.-1D.1答案C解析由已知,得y +34-2=tan 45°=1.故y =-1.2.直线2x +y +1=0与直线x -y +2=0的交点在()A.第一象限B.第二象限C.第三象限D.第四象限答案B解析x +y +1=0,-y +2=0,=-1,=1.∴交点(-1,1)在第二象限.3.已知直线l 经过第二、四象限,则直线l 的倾斜角α的取值范围是()A.0°≤α<90°B.90°≤α<180°C.90°<α<180°D.0°<α<180°答案C解析直线倾斜角α的取值范围是0°≤α<180°,又直线l 经过第二、四象限,所以直线l 的倾斜角α的取值范围是90°<α<180°.4.设点A 在x 轴上,点B 在y 轴上,AB 的中点是P (2,-1),则|AB |等于()A.5B.42C.25D.210答案C解析设A (x ,0),B (0,y ),由中点公式得x =4,y =-2,则由两点间的距离公式得|AB |=42+-22=20=2 5.5.已知直线2x +my -1=0与直线3x -2y +n =0垂直,垂足为(2,p ),则p +m +n 的值为()A.-6B.6C.4D.10答案A解析因为直线2x +my -1=0与直线3x -2y +n =0垂直,所以2×3+(-2)m =0,解得m =3,又垂足为(2,p ),p-1=0,p+n=0,=-1,=-8,则p+m+n=-1+3+(-8)=-6.6.设P,Q分别是3x+4y-10=0与6x+8y+5=0上的任意一点,则|PQ|的最小值为() A.3B.6C.95D.52答案D解析两条直线的方程分别为3x+4y-10=0与6x+8y+5=0,因为36=48≠-105,直线6x+8y+5=0可化为3x+4y+52=0,所以两平行线的距离即为|PQ|的最小值即d=|-10-52|32+42=52.二、多项选择题7.下列说法正确的是()A.直线x-y-2=0与两坐标轴围成的三角形的面积是2B.点(0,2)关于直线y=x+1的对称点为(1,1)C.过(x1,y1),(x2,y2)两点的直线方程为y-y1y2-y1=x-x1x2-x1D.经过点(1,1)且在x轴和y轴上截距都相等的直线方程为x+y-2=0答案AB解析A选项,直线在横、纵坐标轴上的截距分别为2,-2,所以围成三角形的面积是2,故正确;By=x+1上,且(0,2),(1,1)连线的斜率为-1,故正确;C选项,需要条件y2≠y1,x2≠x1,故错误;D选项,还有一条截距都为0的直线y=x,故错误.8.已知直线l:3x-y+1=0,则下列结论正确的是()A.直线l的倾斜角是π6B.若直线m:x-3y+1=0,则l⊥mC.点(3,0)到直线l的距离是2D.过(23,2)与直线l 平行的直线方程是3x -y -4=0答案CD解析对于A,直线l :3x -y +1=0的斜率k =tan θ=3,故直线l 的倾斜角是π3,故A 错误;对于B,直线l 的斜率k =3,直线m :x -3y +1=0的斜率k ′=33,kk ′=1≠-1,故直线l 与直线m 不垂直,故B 错误;对于C,点(3,0)到直线l 的距离d =|3×3-0+1|32+-12=2,故C 正确;对于D,过(23,2)与直线l 平行的直线方程是y -2=3(x -23),整理得3x -y -4=0,故D 正确.三、填空题9.已知点A (1,2),B (2,1),则线段AB 的长为________,过A ,B 两点直线的倾斜角为________.答案23π4解析根据两点之间的距离公式,得线段AB 的长为1-22+2-12=2,根据斜率公式,得过A ,B 两点直线的斜率为k AB =2-11-2=-1,又因为直线的倾斜角的范围为[0,π),所以过A ,B 两点直线的倾斜角为3π4.10.已知直线l 1经过点A (0,-1)和点-4a ,1l 2经过点M (1,1)和点N (0,-2).若l 1与l 2没有公共点,则实数a 的值为________.答案-6解析直线l 2经过点M (1,1)和点N (0,-2),∴2l k =1+21-0=3,∵直线l 1经过点A (0,-1)和点-4a ,1∴1l k =2-4a=-a 2,∵l 1与l 2没有公共点,则l 1∥l 2,∴-a2=3,解得a =-6.11.已知点O (0,0),A (4,0),B (0,4).若从点P (1,0)射出的光线经直线AB 反射后过点Q (-2,0),则反射光线所在直线的方程为____________;若从点M (m ,0),m ∈(0,4)射出的光线经直线AB 反射,再经直线OB 反射后回到点M ,则光线所经过的路程是________.(结果用m 表示)答案x -2y +2=02m 2+32解析设点P (1,0)关于直线AB 的对称点为P ′(x 0,y 0),直线AB :x +y -4=0,-1=-1,+y 0+02-4=0,解得x 0=4,y 0=3,故P ′(4,3),又Q (-2,0),∴直线P ′Q :y -0=3-04--2(x +2),即反射光线所在直线方程为x -2y +2=0.设点M (m ,0),m ∈(0,4)关于y 轴的对称点为P ″(-m ,0),关于直线AB 的对称点为P(x 1,y 1),-1=-1,+y 1+02-4=0,解得x 1=4,y 1=4-m ,故P (4,4-m ).故|P ″P|=4+m2+4-m2=2m 2+32.12.若动点A (x 1,y 1),B (x 2,y 2)分别在直线l 1:2x +y -7=0和l 2:2x +y -5=0上移动,则AB 的中点到原点的距离的最小值为________.答案655解析设AB 的中点坐标为(x ,y ),因为A (x 1,y 1),B(x 2,y 2),=x 1+x 22,=y 1+y 22,又A (x 1,y 1),B (x 2,y 2)分别在直线l 1:2x +y -7=0和l 2:2x +y -5=0上移动,x1+y1-7=0,x2+y2-5=0,两式相加得2(x1+x2)+(y1+y2)-12=0,所以4x+2y-12=0,即2x+y-6=0,即为AB中点所在直线方程,因此原点到直线2x+y-6=0的距离,即为AB的中点到原点的距离的最小值,由点到直线的距离公式,可得距离的最小值为|-6|4+1=655.四、解答题13.已知四边形ABCD的顶点A(m,n),B(5,-1),C(4,2),D(2,2),求m和n的值,使四边形ABCD为直角梯形.解(1)如图,当∠A=∠D=90°时,∵四边形ABCD为直角梯形,∴AB∥DC且AD⊥AB.∵kDC=0,∴m=2,n=-1.(2)如图,当∠A=∠B=90°时,∵四边形ABCD为直角梯形,∴AD∥BC,且AB⊥BC,∴kAD=kBC,kAB·kBC=-1.=2--14-5,·2--14-5=-1,解得m=165,n=-85.综上所述,m =2,n =-1或m =165,n =-85.14.已知直线l 过点(1,2),且在两坐标轴上的截距相等.(1)求直线l 的方程;(2)当直线l 的截距不为0时,求A (3,4)关于直线l 的对称点.解(1)当直线l 在两坐标轴上的截距相等且不为零时,可设直线l 的方程为x +y +b =0,将点(1,2)代入直线l 的方程,得1+2+b =0,解得b =-3,此时直线l 的方程为x +y -3=0;当直线l 过原点时,可设直线l 的方程为y =kx ,将点(1,2)代入直线l 的方程,得k =2,此时直线l 的方程为y =2x ,即2x -y =0.综上所述,直线l 的方程为x +y -3=0或2x -y =0.(2)当直线l 的截距不为0时,直线l 的方程为x +y -3=0,设点A 关于直线l 的对称点B 的坐标为(a ,b ),则线段AB 的中点为M 在直线l 上,则a +32+b +42-3=0,整理得a +b +1=0,又直线AB ⊥l ,且直线l 的斜率为-1,所以直线AB 的斜率为k AB =b -4a -3=1,整理得b =a +1,+b +1=0,=a +1,=-1,=0,因此,点A (3,4)关于直线l 的对称点为(-1,0).15.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0.求:(1)顶点C 的坐标;(2)直线BC 的方程.解(1)因为AC 边上的高BH 所在直线方程为x -2y -5=0,所以k AC =-2,又因为点A (5,1),所以AC 边所在直线方程为2x +y -11=0.又因为AB 边上的中线CM 所在直线方程为2x -y -5=0,x +y -11=0,x -y -5=0,=4,=3,所以C (4,3).(2)设B (m ,n ),则AB 的中点MCM 上,所以2×5+m 2-1+n2-5=0,即2m -n -1=0.又点B (m ,n )在高BH 所在直线上,所以m -2n -5=0.-2n -5=0,m -n -1=0,=-1,=-3.所以B (-1,-3).所以直线BC 的方程为y +33+3=x +14+1,即6x -5y -9=0.。
直线与圆测试题
直线与圆测试题一、选择题1. 直线与圆相切时,圆心到直线的距离等于:A. 圆的半径B. 圆的直径C. 圆的周长D. 圆的面积2. 直线与圆相交,交点的个数可能是:A. 0个B. 1个C. 2个D. 3个或更多3. 若直线与圆相切,且圆的半径为r,直线到圆心的距离为d,则d与r的关系是:A. d > rB. d < rC. d = rD. d ≤ r二、填空题4. 若直线方程为 \( y = mx + b \),圆的方程为 \( (x - a)^2 + (y - b)^2 = r^2 \),直线与圆相切,则圆心到直线的距离等于______。
5. 已知圆心在原点(0,0),半径为2的圆,若直线方程为 \( x - y + 3 = 0 \),求直线与圆的位置关系。
三、简答题6. 解释直线与圆的位置关系有哪些,并分别说明每种情况下直线与圆的交点个数。
7. 给定一个圆的方程 \( (x - 1)^2 + (y - 2)^2 = 25 \),求过点(3,4)的直线方程,使得该直线与圆相切。
四、计算题8. 已知直线 \( y = 2x - 6 \) 与圆 \( x^2 + y^2 = 9 \) 相交,求两交点的坐标。
9. 圆心在(2,3),半径为4的圆,求直线 \( 3x + 4y - 20 = 0 \)与该圆相切时的交点坐标。
五、证明题10. 证明:若直线与圆相切,则圆心到直线的垂线段与直线本身重合。
六、应用题11. 在平面直角坐标系中,已知圆C的方程为 \( (x - 5)^2 + (y - 3)^2 = 16 \),点A(-2,4),求过点A的直线方程,使得该直线与圆C相切。
12. 某工厂需要设计一个直径为10米的圆形水池,水池的中心位于(0,0),现在需要在水池的边缘建造一条直线,使得这条直线与水池的边缘相切。
如果直线的斜率为1,求这条直线的方程。
请注意,这些测试题需要结合相应的数学知识进行解答。
高考数学复习 第七章 直线和圆的方程
2008高考数学复习 第七章 直线和圆的方程●考点阐释解析几何是用代数方法来研究几何问题的一门数学学科.在建立坐标系后,平面上的点与有序实数对之间建立起对应关系,从而使平面上某些曲线与某些方程之间建立对应关系;使平面图形的某些性质(形状、位置、大小)可以用相应的数、式表示出来;使平面上某些几何问题可以转化为相应的代数问题来研究.学习解析几何,要特别重视以下几方面:(1)熟练掌握图形、图形性质与方程、数式的相互转化和利用; (2)与代数、三角、平面几何密切联系和灵活运用. ●试题类编 一、选择题1.(2003北京春文12,理10)已知直线ax +by +c =0(abc ≠0)与圆x 2+y 2=1相切,则三条边长分别为|a |,|b |,|c |的三角形( )A.是锐角三角形B.是直角三角形C.是钝角三角形D.不存在2.(2003北京春理,12)在直角坐标系xOy 中,已知△AOB 三边所在直线的方程分别为x =0,y =0,2x +3y =30,则△AOB 内部和边上整点(即横、纵坐标均为整数的点)的总数是( )A.95B.91C.88D.753.(2002京皖春文,8)到两坐标轴距离相等的点的轨迹方程是( ) A.x -y =0 B.x +y =0 C.|x |-y =0D.|x |-|y |=04.(2002京皖春理,8)圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠2+k π,k∈Z )的位置关系是( )A.相交B.相切C.相离D.不确定的 5.(2002全国文)若直线(1+a )x +y +1=0与圆x 2+y 2-2x =0相切,则a 的值为( )A.1,-1B.2,-2C.1D.-16.(2002全国理)圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是( ) A.21B.23 C.1D.37.(2002北京,2)在平面直角坐标系中,已知两点A (co s 80°,sin80°),B (co s 20°,sin20°),则|AB |的值是( )A.21B.22 C.23 D.18.(2002北京文,6)若直线l :y =kx 3-与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( )A.)3,6[ππB.)2,6(ππ C.)2,3(ππD.]2,6[ππ 9.(2002北京理,6)给定四条曲线:①x 2+y 2=25,②4922y x +=1,③x 2+42y =1,④42x +y 2=1.其中与直线x +y -5=0仅有一个交点的曲线是( )A.①②③B.②③④C.①②④D.①③④10.(2001全国文,2)过点A (1,-1)、B (-1,1)且圆心在直线x +y -2=0上的圆的方程是( )A.(x -3)2+(y +1)2=4B.(x +3)2+(y -1)2=4C.(x -1)2+(y -1)2=4D.(x +1)2+(y +1)2=411.(2001上海春,14)若直线x =1的倾斜角为α,则α( ) A.等于0B.等于4πC.等于2π D.不存在12.(2001天津理,6)设A 、B 是x 轴上的两点,点P 的横坐标为2且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A.x +y -5=0B.2x -y -1=0C.2y -x -4=0D.2x +y -7=013.(2001京皖春,6)设动点P 在直线x =1上,O 为坐标原点.以OP 为直角边,点O 为直角顶点作等腰Rt △OP Q ,则动点Q 的轨迹是( )A.圆B.两条平行直线C.抛物线D.双曲线14.(2000京皖春,4)下列方程的曲线关于x =y 对称的是( )A.x 2-x +y 2=1B.x 2y +xy 2=1C.x -y =1D.x 2-y 2=115.(2000京皖春,6)直线(23-)x +y =3和直线x +(32-)y =2的位置关系是( )A.相交不垂直B.垂直C.平行D.重合16.(2000全国,10)过原点的直线与圆x 2+y 2+4x +3=0相切,若切点在第三象限,则该直线的方程是( )A.y =3x B.y =-3x C.y =33x D.y =-33x 17.(2000全国文,8)已知两条直线l 1:y =x ,l 2:ax -y =0,其中a 为实数,当这两条直线的夹角在(0,12π)内变动时,a 的取值范围是( ) A.(0,1)B.(3,33) C.(33,1)∪(1,3) D.(1,3)18.(1999全国文,6)曲线x 2+y 2+22x -22y =0关于( )A.直线x =2轴对称B.直线y =-x 轴对称C.点(-2,2)中心对称D.点(-2,0)中心对称19.(1999上海,13)直线y =33x 绕原点按逆时针方向旋转30°后所得直线与圆 (x -2)2+y 2=3的位置关系是( )A.直线过圆心B.直线与圆相交,但不过圆心C.直线与圆相切D.直线与圆没有公共点20.(1999全国,9)直线3x +y -23=0截圆x 2+y 2=4得的劣弧所对的圆心角为( )A.6π B.4πC .3πD.2π 21.(1998全国,4)两条直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0垂直的充要条件是( ) A.A 1A 2+B 1B 2=0 B.A 1A 2-B 1B 2=0 C.12121-=B B A AD.2121A A B B =1 22.(1998上海)设a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线sin A ·x +ay +c =0与bx -sin B ·y +sin C =0的位置关系是( )A.平行B.重合C.垂直D.相交但不垂直 23.(1998全国文,3)已知直线x =a (a >0)和圆(x -1)2+y 2=4相切,那么a 的值是( )A.5B.4C.3D.224.(1997全国,2)如果直线ax +2y +2=0与直线3x -y -2=0平行,那么系数a 等于( ) A.-3B.-6C.-23D.32 25.(1997全国文,9)如果直线l 将圆x 2+y 2-2x -4y =0平分,且不通过第四象限,那么直线l 的斜率的取值范围是( )A.[0,2]B.[0,1]C.[0,21]D.[0,21) 26.(1995上海,8)下列四个命题中的真命题是( )A.经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示B.经过任意两个不同的点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程(y -y 1)·(x 2-x 1)=(x -x 1)(y 2-y 1)表示C.不经过原点的直线都可以用方程1=+bya x 表示 D.经过定点A (0,b )的直线都可以用方程y =kx +b 表示27.(1995全国文,8)圆x 2+y 2-2x =0和x 2+y 2+4y =0的位置关系是( ) A.相离 B.外切 C.相交D.内切28.(1995全国,5)图7—1中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( )A.k 1<k 2<k 3B.k 3<k 1<k 2C.k 3<k 2<k 1D.k 1<k 3<k 229.(1994全国文,3)点(0,5)到直线y =2x 的距离是( ) A.25B.5 C.23D.25 二、填空题30.(2003上海春,2)直线y =1与直线y =3x +3的夹角为_____.31.(2003上海春,7)若经过两点A (-1,0)、B (0,2)的直线l 与圆(x -1)2+(y -a )2=1相切,则a =_____.32.(2002北京文,16)圆x 2+y 2-2x -2y +1=0上的动点Q 到直线3x +4y +8=0距离的最小值为 .33.(2002北京理,16)已知P 是直线3x +4y +8=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A 、B 是切点,C 是圆心,那么四边形P ACB 面积的最小值为 .34.(2002上海文,6)已知圆x 2+(y -1)2=1的圆外一点P (-2,0),过点P 作圆的切线,则两条切线夹角的正切值是 .35.(2002上海理,6)已知圆(x +1)2+y 2=1和圆外一点P (0,2),过点P 作圆的切线,则两条切线夹角的正切值是 .36.(2002上海春,8)设曲线C 1和C 2的方程分别为F 1(x ,y )=0和F 2(x ,y )=0,则点P (a ,b ) C 1∩C 2的一个充分条件为 .37.(2001上海,11)已知两个圆:x 2+y 2=1①与x 2+(y -3)2=1②,则由①式减去②式可得上述两圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例.推广的命题为:38.(2001上海春,6)圆心在直线y =x 上且与x 轴相切于点(1,0)的圆的方程为 . 39.(2000上海春,11)集合A ={(x ,y )|x 2+y 2=4},B ={(x ,y )|(x -3)2+(y -4)2=r 2},其中r >0,若A ∩B 中有且仅有一个元素,则r 的值是_____.40.(1997上海)设圆x 2+y 2-4x -5=0的弦AB 的中点为P (3,1),则直线AB 的方程是 . 41.(1994上海)以点C (-2,3)为圆心且与y 轴相切的圆的方程是 . 三、解答题42.(2003京春文,20)设A (-c ,0),B (c ,0)(c >0)为两定点,动点P 到A 点的距离与到B 点的距离的比为定值a (a >0),求P 点的轨迹.43.(2003京春理,22)已知动圆过定点P (1,0),且与定直线l :x =-1相切,点C 在l 上.(Ⅰ)求动圆圆心的轨迹M 的方程;(Ⅱ)设过点P ,且斜率为-3的直线与曲线M 相交于A 、B 两点.(i )问:△ABC 能否为正三角形?若能,求点C 的坐标;若不能,说明理由; (ii )当△ABC 为钝角三角形时,求这种点C 的纵坐标的取值范围.44.(2002全国文,21)已知点P 到两个定点M (-1,0)、N (1,0)距离的比为2,点N 到直线PM 的距离为1.求直线PN 的方程.45.(1997全国文,25)已知圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l :x -2y =0的距离为55,求该圆的方程. 46.(1997全国理,25)设圆满足: (1)截y 轴所得弦长为2;(2)被x 轴分成两段圆弧,其弧长的比为3∶1.在满足条件(1)、(2)的所有圆中,求圆心到直线l :x -2y =0的距离最小的圆的方程. 47.(1997全国文,24)已知过原点O 的一条直线与函数y =lo g 8x 的图象交于A 、B 两点,分别过点A 、B 作y 轴的平行线与函数y =lo g 2x 的图象交于C 、D 两点.(1)证明点C 、D 和原点O 在同一条直线上. (2)当BC 平行于x 轴时,求点A 的坐标.48.(1994上海,25)在直角坐标系中,设矩形OPQR 的顶点按逆时针顺序依次为O (0,0),P (1,t ),Q (1-2t ,2+t ),R (-2t ,2),其中t ∈(0,+∞).(1)求矩形OPQR 在第一象限部分的面积S (t ). (2)确定函数S (t )的单调区间,并加以证明.49.(1994全国文,24)已知直角坐标平面上点Q (2,0)和圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0).求动点M 的轨迹方程,说明它表示什么曲线.●答案解析 1.答案:B解析:圆心坐标为(0,0),半径为 1.因为直线和圆相切.利用点到直线距离公式得:d =22||b a c =1,即a 2+b 2=c 2.所以,以|a |,|b |,|c |为边的三角形是直角三角形.评述:要求利用直线与圆的基本知识,迅速找到a 、b 、c 之间的关系,以确定三角形形状. 2.答案:B 解析一:由y =10-32x (0≤x ≤15,x ∈N )转化为求满足不等式y ≤10-32x (0≤x ≤15,x ∈N )所有整数y 的值.然后再求其总数.令x =0,y 有11个整数,x =1,y 有10个,x =2或x =3时,y 分别有9个,x =4时,y 有8个,x =5或6时,y 分别有7个,类推:x =13时y 有2个,x =14或15时,y 分别有1个,共91个整点.故选B.解析二:将x =0,y =0和2x +3y =30所围成的三角形补成一个矩形.如图7—2所示.对角线上共有6个整点,矩形中(包括边界)共有16×11=176.因此所求△AOB 内部和边上的整点共有26176+=91(个) 评述:本题较好地考查了考生的数学素质,尤其是考查了思维的敏捷性与清晰的头脑,通过不等式解等知识探索解题途径.3.答案:D解析:设到坐标轴距离相等的点为(x ,y ) ∴|x |=|y | ∴|x |-|y |=0 4.答案:C解析:圆2x 2+2y 2=1的圆心为原点(0,0)半径r 为22,圆心到直线x sin θ+y -1=0的距离为:1sin 11sin |1|22+=+=θθd∵θ∈R ,θ≠2π+k π,k ∈Z∴0≤sin 2θ<1 ∴d >22∴d >r ∴圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠2π+k π,k ∈Z )的位置关系是相离.5.答案:D解析:将圆x 2+y 2-2x =0的方程化为标准式:(x -1)2+y 2=1∴其圆心为(1,0),半径为1,若直线(1+a )x +y +1=0与该圆相切,则圆心到直线的距离d 等于圆的半径r∴11)1(|11|2=++++a a ∴a =-16.答案:A解析:先解得圆心的坐标(1,0),再依据点到直线距离的公式求得A 答案.解析:如图7—3所示,∠AOB =60°,又|OA |=|OB |=1 ∴|AB |=1 8.答案:B方法一:求出交点坐标,再由交点在第一象限求得倾斜角的范围⎪⎪⎩⎪⎪⎨⎧+-=++=⇒⎩⎨⎧=-+-=k k y k x y x kx y 3232632)32(306323 ∵交点在第一象限,∴⎩⎨⎧>>00y x∴⎪⎪⎩⎪⎪⎨⎧>+->++032326032)32(3kk k∴k ∈(33,+∞)∴倾斜角范围为(2,6ππ)方法二:如图7—4,直线2x +3y -6=0过点A (3,0),B (0,2),直线l 必过点(0,-3),当直线过A 点时,两直线的交点在x 轴,当直线l 绕C 点逆时针旋转时,交点进入第一象限,从而得出结果.评述:解法一利用曲线与方程的思想,利用点在象限的特征求得,而解法二利用数形结合的思想,结合平面几何中角的求法,可迅速、准确求得结果.9.答案:D解析:联立方程组,依次考查判别式,确定D. 10.答案:C解析一:由圆心在直线x +y -2=0上可以得到A 、C 满足条件,再把A 点坐标(1,-1)代入圆方程.A 不满足条件.∴选C.解析二:设圆心C 的坐标为(a ,b ),半径为r ,因为圆心C 在直线x +y -2=0上,∴b =2-a . 由|CA |=|CB |,得(a -1)2+(b +1)2=(a +1)2+(b -1)2,解得a =1,b =1 因此所求圆的方程为(x -1)2+(y -1)2=4评述:本题考查圆的方程的概念,解法一在解选择题中有广泛的应用,应引起重视. 11.答案:C解析:直线x =1垂直于x 轴,其倾斜角为90°.解析:由已知得点A (-1,0)、P (2,3)、B (5,0),可得直线PB 的方程是x +y -5=0. 评述:本题考查直线方程的概念及直线的几何特征. 13.答案:B解析一:设P =1+bi ,则Q =P (±i ), ∴Q =(1+bi )(±i )=±b i ,∴y =±1解析二:设P 、Q 点坐标分别为(1,t ),(x ,y ), ∵OP ⊥OQ ,∴1t·xy=-1,得x +ty =0 ①∵|OP |=|OQ |,∴2221y x t +=+,得x 2+y 2=t 2+1②由①得t =-y x ,将其代入②,得x 2+y 2=22yx +1,(x 2+y 2)(1-21y )=0.∵x 2+y 2≠0,∴1-21y=0,得y =±1. ∴动点Q 的轨迹为y =±1,为两条平行线. 评述:本题考查动点轨迹的基本求法. 14.答案:B解析:∵点(x ,y )关于x =y 对称的点为(y ,x ),可知x 2y +xy 2=1的曲线关于x =y 对称. 15.答案:B 解析:直线(23-)x +y =3的斜率k 1=32-,直线x +(32-)y =2的斜率k 2=23+,∴k 1·k 2=)23)(32(+-=-1.16.答案:C解析一:圆x 2+y 2+4x +3=0化为标准式(x +2)2+y 2=1,圆心C (-2,0).设过原点的直线方程为y =kx ,即kx -y =0.由1|2|2+-k k =1,解得k =±33,∵切点在第三象限, ∴k >0,所求直线方程为y =33x . 解析二:设T 为切点,因为圆心C (-2,0),因此CT =1,OC =2,△OCT 为Rt △.如图7—5,∴∠CO T=30°,∴直线OT 的方程为y =33x . 评述:本题考查直线与圆的位置关系,解法二利用数与形的完美结合,可迅速、准确得到结果.17.答案:C解析:直线l 1的倾斜角为4π,依题意l 2的倾斜角的取值范围为(4π-12π,4π)∪(4π,4π+12π)即:(6π,4π)∪(4π,3π),从而l 2的斜率k 2的取值范围为:(33,1)∪(1,3). 评述:本题考查直线的斜率和倾斜角,两直线的夹角的概念,以及分析问题、解决问题的能力.18.答案:B解析:由方程(x +2)2+(y -2)2=4如图7—6所示,故圆关于y =-x 对称 故选B.评述:本题考查了圆方程,以及数形结合思想.应注意任何一条直径都是圆的对称轴.19.答案:C 解析:直线y =33x 绕原点逆时针旋转30°所得的直线方程为:y =3x .已知圆的圆心(2,0)到y =3x 的距离d =3,又因圆的半径r =3,故直线y =3x 与已知圆相切.评述:本题考查直线的斜率和倾斜角以及直线与圆的位置关系. 20.答案:C解析:如图7—7所示,由⎪⎩⎪⎨⎧=+=-+4032322y x y x消y 得:x 2-3x +2=0 ∴x 1=2,x 2=1 ∴A (2,0),B (1,3)∴|AB |=22)30()12(-+-=2又|OB |=|OA |=2∴△AOB 是等边三角形,∴∠AOB =3π,故选C. 评述:本题考查直线与圆相交的基本知识,及正三角形的性质以及逻辑思维能力和数形结合思想,同时也体现了数形结合思想的简捷性.如果注意到直线AB 的倾斜角为120°.则等腰△OAB 的底角为60°.因此∠AOB =60°.更加体现出平面几何的意义.21.答案:A解法一:当两直线的斜率都存在时,-11B A ·(22B A-)=-1,A 1A 2+B 1B 2=0. 当一直线的斜率不存在,一直线的斜率为0时,⎩⎨⎧==⎩⎨⎧==00001221B A B A 或,同样适合A 1A 2+B 1B 2=0,故选A. 解法二:取特例验证排除.如直线x +y =0与x -y =0垂直,A 1A 2=1,B 1B 2=-1,可排除B 、D. 直线x =1与y =1垂直,A 1A 2=0,B 1B 2=0,可排除C ,故选A.评述:本题重点考查两直线垂直的判定、直线方程的一般式等基本知识点,重点考查分类讨论的思想及逻辑思维能力.22.答案:C解析:由题意知a ≠0,s i n B ≠0,两直线的斜率分别是k 1=-a A sin ,k 2=Bbsin . 由正弦定理知k 1·k 2=-a A sin ·Bbsin =-1,故两直线垂直. 评述:本题考查两直线垂直的条件及正弦定理. 23.答案:C解析:方程(x -1)2+y 2=4表示以点(1,0)为圆心,2为半径的圆,x =a 表示与x 轴垂直且与圆相切的直线,而此时的切线方程分别为x =-1和x =3,由于a >0,取a =3.故选C.评述:本题考查圆的方程、圆的切线方程及图象.利用数形结合较快完成此题. 24.答案:B解析一:若两直线平行,则22123-≠-=a , 解得a =-6,故选B.解析二:利用代入法检验,也可判断B 正确.评述:本题重点考查两条直线平行的条件,考查计算能力. 25.答案:A解析:圆的标准方程为:(x -1)2+(y -2)2=5.圆过坐标原点.直线l 将圆平分,也就是直线l 过圆心C (1,2),从图7—8看到:当直线过圆心与x 轴平行时,或者直线同时过圆心与坐标原点时都不通过第四象限,并且当直线l 在这两条直线之间变化时都不通过第四象限.当直线l 过圆心与x 轴平行时,k =0, 当直线l 过圆心与原点时,k =2. ∴当k ∈[0,2]时,满足题意.评述:本题考查圆的方程,直线的斜率以及逻辑推理能力,数形结合的思想方法. 26.答案:B解析:A 中过点P 0(x 0,y 0)与x 轴垂直的直线x =x 0不能用y -y 0=k (x -x 0)表示,因为其斜率k 不存在;C 中不过原点但在x 轴或y 轴无截距的直线y =b (b ≠0)或x =a (a ≠0)不能用方程bya x +=1表示;D 中过A (0,b )的直线x =0不能用方程y =kx +b 表示. 评述:本题考查直线方程的知识,应熟练掌握直线方程的各种形式的适用范围. 27.答案:C解析:将两圆方程分别配方得(x -1)2+y 2=1和x 2+(y -2)2=4,两圆圆心分别为O 1(1,0),O 2(0,2),r 1=1,r 2=2,|O 1O 2|=52122=+,又1=r 2-r 1<5<r 1+r 2=3,故两圆相交,所以应选C.评述:本题考查了圆的一般方程、标准方程及圆的关系以及配方法. 28.答案:D解析:直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2、α3均为锐角,且α2>α3,所以k 2>k 3>0,因此k 2>k 3>k 1,故应选D.评述:本题重点考查直线的倾斜角、斜率的关系,考查数形结合的能力. 29.答案:B解析:直线方程可化为2x -y =0,d =55|5|=-. 评述:本题重点考查直线方程的一般式及点到直线的距离公式等基本知识点,考查运算能力.30.答案:60° 解析:因为直线y =3x +3的倾斜角为60°,而y =1与x 轴平行,所以y =1与y =3x +3的夹角为60°.评述:考查直线方程的基本知识及几何知识,考查数形结合的数学思想. 31.答案:a =4±5解析:因过A (-1,0)、B (0,2)的直线方程为:2x -y +2=0.圆的圆心坐标为C (1,a ),半径r =1.又圆和直线相切,因此,有:d =5|22|+-a =1,解得a =4±5. 评述:本题考查直线方程、直线和圆的位置关系及点到直线的距离公式等知识. 32.答案:2解析:圆心到直线的距离d =5|843|++=3∴动点Q 到直线距离的最小值为d -r =3-1=2 33.答案:22解法一:∵点P 在直线3x +4y +8=0上.如图7—9. ∴设P (x ,432-- x ),C 点坐标为(1,1), S 四边形P ACB =2S △P AC=2·21·|AP |·|AC |=|AP |·|AC |=|AP |∵|AP |2=|PC |2-|AC |2=|PC |2-1∴当|PC |最小时,|AP |最小,四边形P ACB 的面积最小. ∴|PC |2=(1-x )2+(1+2+43x )2=9)145(1025162522++=++x x x ∴|PC |min =3 ∴四边形P ACB 面积的最小值为22.解法二:由法一知需求|PC |最小值,即求C 到直线3x +4y +8=0的距离,∵C (1,1),∴|PC |=5|843|++=3,S P ACD =22.34.答案:34 解法一:圆的圆心为(0,1)设切线的方程为y =k (x +2).如图7—10. ∴kx +2k -y =0 ∴圆心到直线的距离为1|12|2+-k k =1∴解得k =34或k =0,∴两切线交角的正切值为34. 解法二:设两切线的交角为α∵tan212=α,∴tan α=3441112tan 12tan22=-=-αα. 35.答案:34解析:圆的圆心为(-1,0),如图7—11. 当斜率存在时,设切线方程为y =kx +2 ∴kx -y +2=0 ∴圆心到切线的距离为1|2|2++-k k =1 ∴k =43, 即tan α=43 当斜率不存在时,直线x =0是圆的切线 又∵两切线的夹角为∠α的余角 ∴两切线夹角的正切值为34 36.答案:F 1(a ,b )≠0,或F 2(a ,b )≠0,或F 1(a ,b )≠0且F 2(a ,b )≠0或C 1∩C 2=∅或P ∉C 1等解析:点P (a ,b )∉C 1∩C 2,则 可能点P 不在曲线C 1上; 可能点P 不在曲线C 2上;可能点P 既不在曲线C 1上也不在曲线C 2上; 可能曲线C 1与曲线C 2不存在交点.37.答案:可得两圆对称轴的方程2(c -a )x +2(d -b )y +a 2+b 2-c 2-d 2=0 解析:设圆方程(x -a )2+(y -b )2=r 2 ① (x -c )2+(y -d )2=r 2 ②(a ≠c 或b ≠d ),则由①-②,得两圆的对称轴方程为: (x -a )2-(x -c )2+(y -b )2-(y -d )2=0, 即2(c -a )x +2(d -b )y +a 2+b 2-c 2-d 2=0.评述:本题考查圆的方程、圆的公共弦方程的概念,考查抽象思维能力和推广数学命题的能力.38.答案:(x -1)2+(y -1)2=1解析一:设所求圆心为(a ,b ),半径为r . 由已知,得a =b ,r =|b |=|a |.∴所求方程为(x -a )2+(y -a )2=a 2又知点(1,0)在所求圆上,∴有(1-a )2+a 2=a 2,∴a =b =r =1. 故所求圆的方程为:(x -1)2+(y -1)2=1. 解析二:因为直线y =x 与x 轴夹角为45°.又圆与x 轴切于(1,0),因此圆心横坐标为1,纵坐标为1,r =1.评述:本题考查圆的方程等基础知识,要注意利用几何图形的性质,迅速得到结果. 39.答案:3或7解析:当两圆外切时,r =3,两圆内切时r =7,所以r 的值是3或7.评述:本题考查集合的知识和两圆的位置关系,要特别注意集合代表元素的意义. 40.答案:x +y -4=0解析一:已知圆的方程为(x -2)2+y 2=9,可知圆心C 的坐标是(2,0),又知AB 弦的中点是P (3,1),所以k CP =2301--=1,而AB 垂直CP ,所以k AB =-1.故直线AB 的方程是x +y -4=0.解析二:设所求直线方程为y -1=k (x -3).代入圆的方程,得关于x 的二次方程:(1+k 2)x 2-(6k 2-2k +4)x +9k 2-6k -4=0,由韦达定理:x 1+x 2=221426kk k ++-=6,解得k =1.A 、B 两点,其坐标分别为A (x 1,y 1)、B (x 2,y 2),则有⎪⎩⎪⎨⎧=+-=+-9)2(9)2(22222121y x y x ②-①得(x 2+x 1-4)(x 2-x 1)+(y 2-y 1)(y 2+y 1)=0 又AB 的中点坐标为(3,1),∴x 1+x 2=6,y 1+y 2=2. ∴1212x x y y --=-1,即AB 的斜率为-1,故所求方程为x +y -4=0.评述:本题考查直线的方程与圆的有关知识.要特别注意圆所特有的几何性质. 41.答案:(x +2)2+(y -3)2=4解析:因为圆心为(-2,3),且圆与y 轴相切,所以圆的半径为2.故所求圆的方程为(x +2)2+(y -3)2=4.42.解:设动点P 的坐标为P (x ,y )由||||PB PA =a (a >0),得2222)()(yc x y c x +-++=a ,化简,得:(1-a 2)x 2+2c (1+a 2)x +c 2(1-a 2)+(1-a 2)y 2=0.当a ≠1时,得x 2+221)1(2aa c -+x +c 2+y 2=0.整理, 得:(x -1122-+a a c )2+y 2=(122-a ac )2当a =1时,化简得x =0.所以当a ≠1时,P 点的轨迹是以(1122-+a a c ,0)为圆心,|122-a ac |为半径的圆;当a =1时,P 点的轨迹为y 轴.评述:本题考查直线、圆、曲线和方程等基本知识,考查运用解析几何的方法解决问题的能力.43.(Ⅰ)解法一,依题意,曲线M 是以点P 为焦点,直线l 为准线的抛物线,所以曲线M 的方程为y 2=4x .解法二:设M (x ,y ),依题意有|MP |=|MN |, 所以|x +1|=22)1(y x +-.化简得:y 2=4x .(Ⅱ)(i )由题意得,直线AB 的方程为y =-3(x -1).由⎪⎩⎪⎨⎧=--=.4),1(32x y x y 消y 得3x 2-10x +3=0,解得x 1=31,x 2=3. 所以A 点坐标为(332,31),B 点坐标为(3,-23), |AB |=x 1+x 2+2=316. 假设存在点C (-1,y ),使△ABC 为正三角形,则|BC |=|AB |且|AC |=|AB |,即⎪⎪⎩⎪⎪⎨⎧=-++=+++.)316()32()131()316()32()13(222222y y 由①-②得42+(y +23)2=(34)2+(y -332)2, 解得y =-9314. 但y =-9314不符合①, 所以由①,②组成的方程组无解.因此,直线l 上不存在点C ,使得△ABC 是正三角形.(ii )解法一:设C (-1,y )使△ABC 成钝角三角形,由⎩⎨⎧-=--=.1),1(3x x y 得y =23,即当点C 的坐标为(-1,23)时,A 、B 、C 三点共线,故y ≠23.又|AC |2=(-1-31)2+(y -332)2=334928y -+y 2,|BC |2=(3+1)2+(y +23)2=28+43y +y 2,|AB |2=(316)2=9256. 当∠CAB 为钝角时,co sA =||||2||||||222AC AB BC AC AB ⋅-+<0.即|BC |2 >|AC |2+|AB |2,即9256334928342822++->++y y y y ,即 y >392时,∠CAB 为钝角. 当|AC |2>|BC |2+|AB |2,即9256342833492822+++>+-y y y y ,即y <-3310时,∠CBA 为钝角. 又|AB |2>|AC |2+|BC |2,即2234283349289256y y y y++++->, 即0)32(,03433422<+<++y y y. 该不等式无解,所以∠ACB 不可能为钝角.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是)32(9323310≠>-<y y y 或. 解法二:以AB 为直径的圆的方程为(x -35)2+(y +332)2=(38)2. 圆心(332,35-)到直线l :x =-1的距离为38,所以,以AB 为直径的圆与直线l 相切于点G (-1,-332). 当直线l 上的C 点与G 重合时,∠ACB 为直角,当C 与G 点不重合,且A 、B 、C 三点不共线时,∠ACB 为锐角,即△ABC 中,∠ACB 不可能是钝角.因此,要使△ABC 为钝角三角形,只可能是∠CAB 或∠CBA 为钝角. 过点A 且与AB 垂直的直线方程为)31(33332-=-x y . 令x =-1得y =932. 过点B 且与AB 垂直的直线方程为y +2333=(x -3). 令x =-1得y =-3310. 又由⎩⎨⎧-=--=.1),1(3x x y 解得y =23,所以,当点C 的坐标为(-1,23)时,A 、B 、C 三点共线,不构成三角形.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是y <-3310或y >932(y ≠23).评述:该题全面综合了解析几何、平面几何、代数的相关知识,充分体现了“注重学科知识的内在联系”.题目的设计新颖脱俗,能较好地考查考生综合运用数学知识解决问题的能力.比较深刻地考查了解析法的原理和应用,以及分类讨论的思想、方程的思想.该题对思维的目的性、逻辑性、周密性、灵活性都进行了不同程度的考查.对运算、化简能力要求也较高,有较好的区分度.44.解:设点P 的坐标为(x ,y ),由题设有2||||=PN PM ,即2222)1(2)1(y x y x +-⋅=++.整理得 x 2+y 2-6x +1=0.①因为点N 到PM 的距离为1,|M N|=2, 所以∠PMN =30°,直线PM 的斜率为±33, 直线PM 的方程为y =±33(x +1).② 将②式代入①式整理得x 2-4x +1=0. 解得x =2+3,x =2-3.代入②式得点P 的坐标为(2+3,1+3)或(2-3,-1+3);(2+3,-1-3)或(2-3,1-3). 直线PN 的方程为y =x -1或y =-x +1. 45.解:设圆的方程为(x -a )2+(y -b )2=r 2. 令x =0,得y 2-2by +b 2+a 2-r 2=0. |y 1-y 2|=222122124)(a r y y y y -=-+=2,得r 2=a 2+1①令y =0,得x 2-2ax +a 2+b 2-r 2=0, |x 1-x 2|=r b r x x x x 224)(2221221=-=-+,得r 2=2b 2②由①、②,得2b 2-a 2=1又因为P (a ,b )到直线x -2y =0的距离为55, 得d =555|2|=-b a ,即a -2b =±1. 综上可得⎩⎨⎧=-=-;12,1222b a a b 或⎩⎨⎧-=-=-121222b a a b 解得⎩⎨⎧-=-=11b a 或⎩⎨⎧==11b a于是r 2=2b 2=2.所求圆的方程为(x +1)2+(y +1)2=2或(x -1)2+(y -1)2=2.46.解:设所求圆的圆心为P (a ,b ),半径为r ,则P 到x 轴、y 轴的距离分别为|b |、|a |. 由题设圆P 截x 轴所得劣弧所对圆心角为90°,圆P 截x 轴所得弦长为2r ,故r 2=2b 2,又圆P 截y 轴所得弦长为2,所以有r 2=a 2+1, 从而有2b 2-a 2=1又点P (a ,b )到直线x -2y =0距离为d =5|2|b a -, 所以5d 2=|a -2b |2=a 2+4b 2-4ab ≥a 2+4b 2-2(a 2+b 2)=2b 2-a 2=1 当且仅当a =b 时上式等号成立,此时5d 2=1,从而d 取得最小值,由此有⎩⎨⎧=-=1222a b b a 解方程得⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 由于r 2=2b 2,知r =2,于是所求圆的方程为(x -1)2+(y -1)2=2或(x +1)2+(y +1)2=2评述:本题考查了圆的方程,函数与方程,求最小值问题,进一步考查了待定系数法、函数与方程思想.题中求圆的方程给出的三个条件比较新颖脱俗,灵活运用几何知识和代数知识将条件恰当转化,推演,即合乎逻辑、说理充分、陈述严谨.47.(1)证明:设A 、B 的横坐标分别为x 1,x 2,由题设知x 1>1,x 2>1,点A (x 1,lo g 8x 1),B (x 2,lo g 8x 2).因为A 、B 在过点O 的直线上,所以228118log log x x x x =, 又点C 、D 的坐标分别为(x 1,lo g 2x 1),(x 2,lo g 2x 2) 由于lo g 2x 1=2log log 818x =3lo g 8x 1,lo g 2x 2=2log log 828x =3lo g 8x 2,所以OC 的斜率和OD 的斜率分别为228222118112log 3log ,log 3log x x x x k x x x x k OD OC ====. 由此得k OC =k OD ,即O 、C 、D 在同一条直线上.(2)解:由BC 平行于x 轴,有lo g 2x 1=lo g 8x 2,解得 x 2=x 13将其代入228118log log x x x x =,得x 13lo g 8x 1=3x 1lo g 8x 1. 由于x 1>1,知lo g 8x 1≠0,故x 13=3x 1,x 1=3,于是点A 的坐标为(3,lo g 83).评述:本小题主要考查对数函数图象、对数换底公式、对数方程、指数方程等基础知识,考查运算能力和分析问题的能力.48.解:(1)当1-2t >0即0<t <21时,如图7—13,点Q 在第一象限时,此时S (t )为四边形OPQK 的面积,直线QR 的方程为y -2= t (x +2t ).令x =0,得y =2t 2+2,点K 的坐标为(P ,2t 2+2).t t t S S S OKR OPQR OPQK 2)22(21)1(2222⋅+-+=-=)1(232t t t -+-=当-2t +1≤0,即t ≥21时,如图7—14,点Q 在y 轴上或第二象限,S (t )为△OP L的面积,直线PQ 的方程为y -t =-t1(x -1),令x =0得y =t +t 1,点L 的坐标为(0,t +t 1),S △OPL =1)1(21⋅+tt)1(21tt += 所以S (t )=⎪⎪⎩⎪⎪⎨⎧≥+<<-+-21 )1(21210 )1(232t t t t t t t(2)当0<t <21时,对于任何0<t 1<t 2<21,有S (t 1)-S (t 2)=2(t 2-t 1)[1-(t 1+t 2)+(t 12+t 1t 2+t 22)]>0,即S (t 1)> S (t 2),所以S (t )在区间(0,21)内是减函数.当t ≥21时,对于任何21≤t 1≤t 2,有S (t 1)-S (t 2)=21(t 1-t 2)(1-211t t ), 所以若21≤t 1≤t 2≤1时,S (t 1)>S (t 2);若1≤t 1≤t 2时,S (t 1)<S (t 2),所以S (t )在区间[21,1]上是减函数,在区间[1,+∞)内是增函数,由2[121+(21)2-(21)3]=45=S (21)以及上面的证明过程可得,对于任何0<t 1<21≤t 2<1,S (t 2)<45≤S (t 1),于是S (t )的单调区间分别为(0,1]及[1,+∞),且S (t )在(0,1]内是减函数,在[1,+∞)内是增函数.49.解:如图7—15,设直线MN 切圆于N ,则动点M 组成的集合是:P ={M ||MN |=λ|MQ |},(λ>0为常数)因为圆的半径|ON |=1,所以|MN |2=|MO |2-|ON |2=|MO |2-1. 设点M 的坐标为(x ,y ),则2222)2(1y x y x +-=-+λ整理得(λ2-1)(x 2+y 2)-4λ2x +(1+4λ2)=0当λ=1时,方程化为x =45,它表示一条直线,该直线与x 轴垂直,交x 轴于点(45,0);当λ≠1时,方程化为(x -1222-λλ)2+y 2=)1(3122-+λλ它表示圆心在(1222-λλ,0),半径为|1|3122-+λλ的圆.评述:本题考查曲线与方程的关系、轨迹的概念等解析几何的基本思想以及综合运用知识的能力.●命题趋向与应试策略在近十年的高考中,对本章内容的考查主要分两部分:(1)以选择题题型考查本章的基本概念和性质,此类题一般难度不大,但每年必考,考查内容主要有以下几类:①与本章概念(倾斜角、斜率、夹角、距离、平行与垂直、线性规划等)有关的问题; ②对称问题(包括关于点对称,关于直线对称)要熟记解法;③与圆的位置有关的问题,其常规方法是研究圆心到直线的距离.(2)以解答题考查直线与圆锥曲线的位置关系,此类题综合性比较强,难度也较大. 预计在今后一、二年内,高考对本章的考查会保持相对稳定,即在题型、题量、难度、重点考查内容等方面不会有太大的变化.本章内容在高考中处于比较稳定状态,复习时应注意以下几点:1.抓好“三基”,把握重点,重视低、中档题的复习,确保选择题的成功率本章所涉及到的知识都是平面解析几何中最基础的内容.它们渗透到平面解析几何的各个部分,正是它们构成了解析几何问题的基础,又是解决这些问题的重要工具之一.这就要求我们必须重视对“三基”的学习和掌握,重视基础知识之间的内在联系,注意基本方法的相互配合,注意平面几何知识在解析几何中的应用,注重挖掘基础知识的能力因素,提高通性通法的熟练程度,着眼于低、中档题的顺利解决.2.在解答有关直线的问题时,应特别注意的几个方面(1)在确定直线的斜率、倾斜角时,首先要注意斜率存在的条件,其次要注意倾角的范围.(2)在利用直线的截距式解题时,要注意防止由于“零截距”造成丢解的情况.如题目条件中出现直线在两坐标轴上的“截距相等”“截距互为相反数”“在一坐标轴上的截距是另一坐标轴上的截距的m 倍(m >0)”等时,采用截距式就会出现“零截距”,从而丢解.此时最好采用点斜式或斜截式求解.(3)在利用直线的点斜式、斜截式解题时,要注意防止由于“无斜率”,从而造成丢解.如在求过圆外一点的圆的切线方程时或讨论直线与圆锥曲线的位置关系时,或讨论两直线的平行、垂直的位置关系时,一般要分直线有无斜率两种情况进行讨论.(4)要学会变形使用两点间的距离公式求直线l 上两点(x 1,y 1),(x 2,y 2)的距离时,一般使用d =212212)()(y y x x -+-;当已知直线l 的斜率k 时,可以将上述公式变形为|csc ||||sec |||||11||1))(1(12121222122212ααy y x x y y kx x k x x k d -=-=-+=-+=-+= (其中α为直线l 的倾斜角)特别地,当求直线l 被圆锥曲线所截得的弦长时,把直线的方程代入圆锥曲线的方程,整理成关于x 或y 的一元二次方程时,一是要充分考虑到“Δ≥0”的限制条件,二要注意运用韦达定理的转化作用,充分体现“设而不求法”的妙用.(5)灵活运用定比分点公式、中点坐标公式,在解决有关分割问题、对称问题时可以简化运算.掌握对称问题的四种基本类型的解法.即①点关于点对称②直线关于点对称③点关于直线对称④直线关于直线对称.(6)在由两直线的位置关系确定有关字母的值,或讨论直线Ax +By +C =0中各系数间的关系和直线所在直角坐标系中的象限等问题时,要充分利用分类讨论、数形结合、特殊值检验等基本的数学方法和思想.(7)理解用二元一次不等式表示平面区域,掌握求线性目标函数在线性约束下的最值问题,即线性规划问题,会求最优解,并注意在代数问题中的应用.3.加强思想方法训练,培养综合能力平面解析几何的核心是坐标法,它需要运用运动变化的观点,运用代数的方法研究几何问题,因此解析几何问题无论从知识上还是研究方法上都要与函数、方程、不等式、三角及平面几何内容相联系.在对本章复习中,应注意培养用坐标法分析问题观点,养成自觉运用运动变化的观点解决问题的能力.加强与正比例函数、一次函数等知识的联系,善于运用函数的观点方法处理直线方程问题.对本章知识的综合上,重点掌握直线方程的四种特殊形式与斜率、截距、已知点等特征量之间的关系,知道了特征量就能准确地写出方程,反之亦然.在平时要经常做这方面的训练.。
(完整版)高二数学-直线和圆的方程-单元测试(含答案)
高二直线和圆的方程单元测试卷班级:姓名:一、选择题:本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四 个选项中,只有一项是符合题目要求的.1.直线 l 经过 A(2,1)、B(1,m2)(m∈R)两点,那么直线 l 的倾斜角的取 值范围是A.[0, )B.[0, ] [ 3 , ) 44C.[0, ] 4D.[0, ] ( , ) 422. 如果直线(2a+5)x+(a-2)y+4=0与直线(2-a)x+(a+3)y-1=0互相垂直,则a 的值等于A. 2B.-2C.2,-2D.2,0,-23.已知圆 O 的方程为 x2+y2=r2,点 P(a,b)(ab≠0)是圆 O 内一点,以 P为中点的弦所在的直线为 m,直线 n 的方程为 ax+by=r2,则A.m∥n,且 n 与圆 O 相交 离B.m∥n,且 n 与圆 O 相C.m 与 n 重合,且 n 与圆 O 相离D.m⊥n,且 n 与圆 O 相离4. 若直线 ax 2by 2 0(a,b 0) 始终平分圆 x2 y2 4x 2 y 8 0 的周长,则 1 2 ab的最小值为A.1B.5C.42D. 3 2 25. M (x0 , y0 ) 为 圆 x2 y2 a2 (a 0) 内 异 于 圆 心 的 一 点 , 则 直 线x0 x y0 y a 2 与该圆的位置关系为A.相切B.相交C.相离D.相切或相交6. 已知两点 M(2,-3),N(-3,-2),直线 L 过点 P(1,1)且与线段MN 相交,则直线 L 的斜率 k 的取值范围是A. 3 ≤k≤4 4B.k≥ 3 或 k≤-4 4C. 3 ≤k≤4 4D.-4≤k≤ 3 47. 过直线 y x 上的一点作圆 (x 5)2 ( y 1)2 2 的两条切线 l1,l2 ,当直线 l1,l2 关于 y x 对称时,它们之间的夹角为A. 30B. 45C. 60D. 90x y 1 08.如果实数x、y满足条件 y 1 0x y 1 0,那么 4x (1)y 的最大值为 2A. 2B.1C. 1 2D. 1 49.设直线过点 (0, a), 其斜率为 1,且与圆 x2 y2 2 相切,则 a 的值为15 . 集 合 P (x, y) | x y 5 0 , x N* , y N* } ,Q (x, y) | 2x y m 0,M x, y) | z x y , (x, y) (P Q) , 若 z 取 最 大 值 时 ,M (3,1),则实数 m 的取值范围是;三、解答题:本大题共 6 小题,共 75 分.解答应写出文字说明,证明过程或 演算步骤.16.(本小题满分 12 分)已知 ABC 的顶点 A 为(3,-1),AB 边上的中线所在直线方程为 6x 10y 59 0 , B 的平分线所在直线方程为 x 4y 10 0 ,求BC 边所在直线的方程.17.(本小题满分 12 分) 某厂准备生产甲、乙两种适销产品,每件销售收入分别为 3 千元,2 千 元。
直线和圆的方程练习题
直线和圆的方程练习题一一、选择题1.直线)(03R m m y x ∈=++的倾斜角为( )A .︒30B .︒60C .︒150D .︒1202.(2014年阜阳模拟)方程03222=+-++y mx y x 表示圆,则m 的范围是( )A .),2()2,(+∞--∞B .),22()22,(+∞--∞ )C .),3()3,(+∞--∞D .),32()32,(+∞--∞3.若圆0146622=++-+y x y x 关于直线064:=-+y ax l 对称,则直线l 的斜率是( )A .6 B. 32 C .32- D . 23- 4.已知圆C 的圆心在直线03=-y x 上,半径为1且与直线034=-y x 相切,则圆C 的标准方程是( )A .1)37()3(22=-+-y x B .1)1()2(22=-+-y x 或1)1()2(22=+++y x C .1)3()1(22=-+-y x 或1)3()1(22=+++y x D 。
1)1()23(22=-+-y x 5.(2014年昆明一模)方程2)1(11||--=-y x 所表示的曲线是( )A .一个圆B .两个圆C .半个圆D .两个半圆6.已知圆014222=+-++y x y x 关于直线),(022R b a by ax ∈=+-对称,则ab 的取值范围是( )A 。
)41,(-∞B 。
)41,0(C 。
)0,41(-D 。
),41[+∞- 7. 已知点M 是直线0243=-+y x 上的动点,点N 为圆1)1()1(22=+++y x 上的动点,则||MN 的最小值是( ) A. 59 B .1 C. 54 D. 513 8.已知两点)0,4()3,0(B A 、-,若点P 是圆0222=-+y y x 上的动点,则ABP ∆面积的最小值为( )A .6 B. 211 C .8 D 。
2219.设0>m ,则直线01)(2:=+++m y x l 与圆m y x O =+22:的位置关系为( )A .相切B .相交C .相切或相离D .相交或相切10. (2013年高考安徽卷)直线0552=+-+y x 被圆04222=--+y x y x 截得的弦长 为( )A .1B .2C .4D .6411.(2014年黄山一模)已知),(00y x M 为圆)0(222>=+a a y x 内异于圆心的一点,则直线200a y y x x =+与该圆的位置关系是( )A .相切B .相交C .相离D .相切或相交12.(2013年高考山东卷)过点)1,3(作圆1)1(22=+-y x 的两条切线,切点分别为B A ,,则直线AB 的方程为( )A .032=-+y xB .032=--y xC .034=--y xD .034=-+y x13. 在平面直角坐标系xOy 中,直线0543=-+y x 与圆422=+y x 相交于B A ,两点,则弦AB 的长等于( )A .33B .32C 。
直线和圆的方程测试题
直线和圆的方程测试题题目一:直线的方程1. 给定两个点A(2, 3)和B(4, 1),求过这两个点的直线方程。
解析:首先计算两点的斜率k\[k = \frac{y_2-y_1}{x_2-x_1} = \frac{1-3}{4-2} = -1\]进一步,我们可以使用点斜式方程:\[y-y_1 = k(x-x_1)\]\[y-3 = -1(x-2)\]\[y-3 = -x+2\]\[x+y = 5\]所以,过点A(2, 3)和B(4, 1)的直线方程为 \(x+y = 5\)。
题目二:圆的方程2. 以点C(5, 3)为圆心,半径为r = 2的圆,求圆的方程。
解析:对于以点C(x, y)为圆心,半径为r的圆,圆的方程可以表示为:\[(x-x_0)^2 + (y-y_0)^2 = r^2\]将圆心C(5, 3)和半径r=2代入,得到:\[(x-5)^2 + (y-3)^2 = 4\]所以,以点C(5, 3)为圆心,半径为r = 2的圆的方程为 \((x-5)^2 + (y-3)^2 = 4\)。
题目三:直线和圆的交点3. 已知直线方程为 \(3x-y = 2\),以点D(1, 0)为圆心,半径为r = 1的圆。
求直线和圆的交点坐标。
解析:我们可以使用联立方程的方法来求解直线和圆的交点。
首先,将直线方程转换为一般式方程:\[3x-y-2 = 0\]然后,将直线方程带入圆的方程:\[(x-1)^2 + (y-0)^2 = 1\]通过联立这两个方程,我们可以得到交点的坐标。
将直线方程改写为 \(y = 3x-2\),然后代入圆的方程:\[(x-1)^2 + (3x-2-0)^2 = 1\]展开并整理方程,得到二次方程:\[10x^2 - 22x + 11 = 0\]解这个二次方程,可以得到两个解x1和x2:\[x_1 = \frac{11}{10}, \quad x_2 = 1\]将x值代入直线方程,可以得到对应的y值:\[y_1 = 3\left(\frac{11}{10}\right)-2 = \frac{13}{10}, \quad y_2 = 3(1)-2 = 1\]所以,直线 \(3x-y = 2\) 和圆 \((x-1)^2 + (y-0)^2 = 1\) 的交点坐标为\(\left(\frac{11}{10}, \frac{13}{10}\right)\) 和 (1, 1)。
直线和圆的方程测试题
直线和圆的方程测试题1. 直线方程部分1.1 点斜式方程直线L通过已知点P(x₁, y₁)且斜率为k,求直线L的方程。
解析:直线L的点斜式方程为:y - y₁ = k(x - x₁)1.2 斜截式方程直线L的斜截式方程为y = kx + b,已知直线L经过点P(x₁, y₁),求直线L的方程。
解析:直线L的斜率k可通过已知点P(x₁, y₁)和直线方程的斜率形式得到。
将已知点P(x₁, y₁)代入直线方程中,得到方程:y₁ = kx₁ + b从而求解得到斜截式方程y = kx + b。
2. 圆方程部分2.1 标准方程圆C的圆心为点O(h, k),半径为r,求圆C的方程。
解析:圆C的标准方程为:(x - h)² + (y - k)² = r²2.2 一般方程圆C的圆心为点O(h, k),半径为r,求圆C的一般方程。
解析:一般方程形式为:x² + y² + Dx + Ey + F = 0带入圆心坐标O(h, k),得到方程:(x - h)² + (y - k)² = r²展开并整理,可得一般方程。
3. 测试题部分测试题一:已知圆C的圆心为O(-2, 3),半径为5,请写出圆C的标准方程和一般方程。
解析:圆C的标准方程为:(x - (-2))² + (y - 3)² = 5²展开并整理得到:x² + y² + 4x - 6y - 12 = 0因此,圆C的一般方程为:x² + y² + 4x - 6y - 12 = 0测试题二:已知直线L通过点P(3, 4)且斜率为 -2,请写出直线L的点斜式方程和斜截式方程。
解析:直线L的点斜式方程为:y - 4 = -2(x - 3)直线L的斜截式方程为:y = -2x + b为了求解斜截式方程中的截距b,将已知点P(3, 4)代入斜截式方程中得:4 = -2(3) + b求解得到b = 10因此,直线L的斜截式方程为:y = -2x + 10通过以上题目和解析,我们掌握了直线和圆的方程及其不同形式的表示方法。
直线和圆的方程综合能力测试及答案
直线和圆的方程综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(每小题只有一个选项是正确的,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(2009·湖北荆州质检二)过点P (1,2),且方向向量v =(-1,1)的直线的方程为( )A .x -y -3=0B .x +y +3=0C .x +y -3=0D .x -y +3=0 答案:C解析:方向向量为v =(-1,1),则直线的斜率为-1,直线方程为y -2=-(x -1)即x +y -3=0,故选C.2.(2009·重庆市高三联合诊断性考试)将直线l 1:y =2x 绕原点逆时针旋转60°得直线l 2,则直线l 2到直线l 3:x +2y -3=0的角为 ( )A .30°B .60°C .120°D .150° 答案:A解析:记直线l 1的斜率为k 1,直线l 3的斜率为k 3,注意到k 1k 3=-1,l 1⊥l 3,依题意画出示意图,结合图形分析可知,直线l 2到直线l 3的角是30°,选A.3.(2009·东城3月)设A 、B 为x 轴上两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程x -y +1=0,则直线PB 的方程为 ( )A .2x +y -7=0B .2x -y -1=0C .x -2y +4=0D .x +y -5=0 答案:D解析:因k P A =1,则k PB =-1,又A (-1,0),点P 的横坐标为2,则B (5,0),直线PB 的方程为x +y -5=0,故选D.4.过两点(-1,1)和(0,3)的直线在x 轴上的截距为 ( )A .-32 B.32 C .3 D .-3答案:A解析:由两点式,得y -31-3=x -0-1-0,即2x -y +3=0,令y =0,得x =-32,即在x 轴上的截距为-32.5.直线x +a 2y +6=0和(a -2)x +3ay +2a =0无公共点,则a 的值是 ( ) A .3 B .0 C .-1 D .0或-1 答案:D解析:当a =0时,两直线方程分别为x +6=0和x =0,显然无公共点;当a ≠0时,-1a 2=-a -23a,∴a =-1或a =3.而当a =3时,两直线重合,∴a =0或-1.6.两直线2x -my +4=0和2mx +3y -6=0的交点在第二象限,则m 的取值范围是( )A .-32≤m ≤2B .-32<m <2C .-32≤m <2D .-32<m ≤2答案:B解析:由⎩⎪⎨⎪⎧2x -my +4=0,2mx +3y -6=0,解得两直线的交点坐标为(3m -6m 2+3,4m +6m 2+3),由交点在第二象限知横坐标为负、纵坐标为正,故3m -6m 2+3<0且4m +6m 2+3>0⇒-32<m <2.7.(2009·福建,9)在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0,(a 为常数)所表示的平面区域的面积等于2,则a 的值为( ) A .-5 B .1C .2D .3答案:D解析:不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0所围成的区域如图所示.∵其面积为2,∴|AC |=4,∴C 的坐标为(1,4),代入ax -y +1=0, 得a =3.故选D. 8.(2009·陕西,4)过原点且倾斜角为60°的直线被圆x 2+y 2-4y =0所截得的弦长为( )A. 3 B .2 C. 6 D .2 3 答案:D解析:∵直线的方程为y =3x ,圆心为(0,2),半径r =2.由点到直线的距离公式得弦心距等于1,从而所求弦长等于222-12=2 3.故选D. 9.(2009·西城4月,6)与直线x -y -4=0和圆x 2+y 2+2x -2y =0都相切的半径最小的圆的方程是 ( )A .(x +1)2+(y +1)2=2B .(x +1)2+(y +1)2=4 C .(x -1)2+(y +1)2=2 D .(x -1)2+(y +1)=4 答案:C解析:圆x 2+y 2+2x -2y =0的圆心为(-1,1),半径为2,过圆心(-1,1)与直线x -y -4=0垂直的直线方程为x +y =0,所求的圆的圆心在此直线上,排除A 、B ,圆心(-1,1)到直线x -y -4=0的距离为62=32,则所求的圆的半径为2,故选C.10.(2009·安阳,6)已知直线x +y =a 与圆x 2+y 2=4交于A 、B 两点,且|OA →+OB →|=|OA →-OB →|,其中O 为原点,则实数a 的值为 ( )A .2B .-2C .2或-2 D.6或- 6 答案:C解析:由|OA →+OB →|=|OA →-OB →|得|OA →+OB →|2=|OA →-OB →|2,OA →·OB →=0,OA →⊥OB →,三角形AOB 为等腰直角三角形,圆心到直线的距离为2,即|a |2=2,a =±2,故选C.11.(2009·河南实验中学3月)若直线l :ax +by =1与圆C :x 2+y 2=1有两个不同交点,则点P (a ,b )与圆C 的位置关系是 ( )A .点在圆上B .点在圆内C .点在圆外D .不能确定 答案:C解析:直线l :ax +by =1与圆C :x 2+y 2=1有两个不同交点,则1a 2+b 2<1,a 2+b 2>1,点P (a ,b )在圆C 外部,故选C.12.(2010·保定市高三摸底考试)从原点向圆x 2+(y -6)2=4作两条切线,则这两条切线夹角的大小为 ( )A.π6B.π2 C .arccos 79 D .arcsin 229 答案:C解析:如图,sin ∠AOB =26=13,cos ∠BOC =cos2∠AOB =1-2sin 2∠AOB =1-29=79,∴∠BOC =arccos 79,故选C.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,请将答案填在题中的横线上。
直线与圆的方程单元测试卷含答案
直线与圆的方程单元测试卷一。
选择题1.方程x 2+y 2+2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值 依次为( B )(A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-4 2.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( A )(A) 11<<-a (B) 10<<a (C) 11>-<a a 或 (D)1±=a3.自点 1)3()2()4,1(22=-+--y x A 作圆的切线,则切线长为( B )(A)5 (B) 3 (C)10 (D) 54.已知M (-2,0), N (2,0), 则以MN 为斜边的直角三角形直角顶点P 的轨迹方程是( D )(A) 222=+y x (B) 422=+y x (C) )2(222±≠=+x y x (D) )2(422±≠=+x y x 5. 若圆22(1)20x y x y λλλ++-++=的圆心在直线12x =左边区域,则λ的取值范围是( C ) A.(0+)∞,B.()1+∞, C.1(0)(1)5⋃+,,∞D.R6. .对于圆()2211x y +-=上任意一点(,)P x y ,不等式0x y m ++≥恒成立,则m 的取值范围是BA .(21+)-∞,B .)21+⎡-∞⎣, C .(1+)-∞, D .[)1+-∞,7.如下图,在同一直角坐标系中表示直线y =ax 与y =x +a ,正确的是(C )8.一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短路径是( A )A .4B .5C .321-D .269.直线0323=-+y x 截圆x 2+y 2=4得的劣弧所对的圆心角是 ( C )A 、6π B 、4π C 、3π D 、2π 10.对任意的a ∈[]-1,1,函数f (x )=x 2+(a -4)x +4-2a 的值总大于0,则x 的取值范围为( )A .(1,3)B .(-∞,1)∪(3,+∞)C .(-∞,1)D .(3,+∞)解析 y =φ(a )=(x -2)a +(x 2-4x +4), x =2时,y =0,所以x ≠2.只需⎩⎨⎧φ-1>0,φ1>0.答案 B11.设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b的最小值为( )A .8B .4C .1D.14解析 ∵a >0,b >0,3a ·3b =3,∴a +b =1,∴1a +1b =a +b a +a +b b =1+b a +ab +1≥2+2 b a ·ab=4. 答案 B(12)已知实数,x y 满足221x y +=,则()()11xy xy -+有( )(A )最小值21和最大值1 (B )最小值43和最大值1 (C )最小值21和最大值43(D )最小值1,无最大值二、填空题13.在平面直角坐标系xoy 中,已知圆224x y +=上有且仅有四个点到直线1250x y c -+=的距离为1,则实数c 的取值范围是 (13,13)- .14.圆:06422=+-+y x y x 和圆:0622=-+x y x 交于,A B 两点,则AB 的垂直平分线的方程是 390x y --=15.已知点A(4,1),B(0,4),在直线L :y=3x-1上找一点P ,求使|PA|-|PB|最大时P 的坐标是 (2,5)16函数21()x x f x x++=的值域为 .三.解答题17.求与x 轴切于点)0,5(,并且在y 轴上截得弦长为10的圆的方程.17.答案:50)25()5(22=±+-y x .18.已知圆4)4()3(:22=-+-y x C 和直线034:=+--k y kx l (1)求证:不论k 取什么值,直线和圆总相交;(2)求k 取何值时,圆被直线截得的弦最短,并求最短弦的长. 18.解:(1)证明:由直线l 的方程可得,)4(3-=-x k y ,则直线l 恒通过点)3,4(,把)3,4(代入圆C 的方程,得42)43()34(22<=-+-,所以点)3,4( 在圆的内部,又因为直线l 恒过点)3,4(, 所以直线l 与圆C 总相交. (2)设圆心到直线l 的距离为d ,则 5|1|43|3443|22+=++--=k k k d 又设弦长为L ,则222)2(r d L =+,即25)1(4)2(22+-=k L .∴当1-=k 时, 44)2(min min 2=⇒=L L所以圆被直线截得最短的弦长为4.19(本小题满分12分)已知直线l 过点)1,4(C , (Ⅰ)若直线l 过点D ()1,4,求直线l 的方程;(Ⅱ)若直线l 在两坐标轴上截距相等,求直线l 的方程.19 解:(Ⅰ)50.xy(Ⅱ)若直线l 过原点,设其方程为:kx y =,又直线l 过点)1,4(C ,即40x y -=.若直线l 不过原点,设其方程为:, 直线l 过点)1,4(C , 直线l 的方程为05=-+y x ; 综上,l 的方程为04=-y x 或05=-+y x . 20.(本小题满分12分)已知不等式210x x m --+>. (Ⅰ)当3m =时解此不等式;(Ⅱ)若对于任意的实数x ,此不等式210x x m --+>恒成立,求实数m 的取值范围. 20.(Ⅰ)(,1)(2,)-∞-+∞;(Ⅱ) 3(,)4-∞.21.设圆C 满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长之比为3:1;③圆心到直线:20l x y -=C 的方程. 21解.设圆心为(,)a b ,半径为r ,由条件①:221r a =+,由条件②:222r b =,从而有:2221b a -=.|2|15a b =⇒-=,解方程组2221|2|1b a a b ⎧-=⎨-=⎩可得:11a b =⎧⎨=⎩或11a b =-⎧⎨=-⎩,所以2222r b ==.故所求圆的方程是22(1)(1)2x y -+-=或22(1)(1)2x y +++=.22.已知过点()3,3M --的直线l 与圆224210x y y ++-=相交于,A B 两点,(1)若弦AB 的长为l 的方程; (2)设弦AB 的中点为P ,求动点P 的轨迹方程.22解:(1)若直线l 的斜率不存在,则l 的方程为3x =-,此时有24120y y +-=,弦()||||268A B AB y y =-=--=,所以不合题意.故设直线l 的方程为()33y k x +=+,即330kx y k -+-=.将圆的方程写成标准式得()22225x y ++=,所以圆心()0,2-,半径5r =. 圆心()0,2-到直线l 的距离d =,因为弦心距、半径、弦长的一半构成直角三角形,所以()22231251k k -+=+,即()230k +=,所以3k =-.所求直线l 的方程为3120x y ++=.(2)设(),P x y ,圆心()10,2O -,连接1O P ,则1O P ⊥AB .当0x ≠且3x ≠-时,11O P ABk k ⋅=-,又(3)(3)AB MP y k k x --==--,则有()()()23103y y x x ----⋅=----,化简得22355222x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭......(1)当0x =或3x =-时,P 点的坐标为()()()()0,2,0,3,3,2,3,3------都是方程(1)的解,所以弦AB 中点P 的轨迹方程为22355222x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭.。
直线和圆的方程测试卷
直线和圆的方程测试卷第一题已知直线L上有两个确定的点A(-2, 3)和B(4, 1),求直线L的斜率和截距,并写出直线L的方程。
第二题求过点P(2, -5)的垂直于直线L: 2x + 3y - 5 = 0 的直线的方程。
第三题已知直线L1过点A(1, 2)且与直线L2: 3x + 4y + 7 = 0 平行,求直线L1的方程。
第四题求过点Q(-3, 4)且与直线L1: 5x - 2y + 1 = 0 相切的圆的方程。
第五题已知圆C1的圆心为点O(2, 1),半径为r1 = 4,求圆C1的方程。
第六题求圆C2过圆C1的圆心O且切于点T(-2, 6)的圆的方程。
第七题已知圆C2的圆心为点P(3, -2),与直线L1: 2x - 3y + 4 = 0 相切于点Q(-1, 2),求圆C2的方程。
解答第一题根据两点求直线的斜率公式:\[k = \frac{y_2 - y_1}{x_2 - x_1} = \frac{1 - 3}{4 - (-2)} = \frac{-2}{6} = -\frac{1}{3}\]直线的截距可以通过代入点A或B的坐标求得,取点A代入:\[b = y - kx = 3 - (-\frac{1}{3}) \cdot (-2) = 2\]所以直线L的方程为:\[y = -\frac{1}{3}x + 2\]第二题垂直于直线L的直线的斜率为直线L的斜率的负倒数,即:\(-\frac{1}{k}\)。
所以垂直于直线L的直线的斜率为:\(-\frac{1}{-\frac{1}{3}} = 3\)。
过点P(2, -5)且斜率为3的直线的方程为:\[y - y_1 = k(x - x_1) = 3(x - 2) + (-5) = 3x - 6 - 5 = 3x - 11\]所以方程为:\[y = 3x - 11\]第三题由于直线L1与直线L2平行,所以它们的斜率相同。
直线L2的斜率可以通过将L2的方程转化为斜截式的形式得到,即:\[y = -\frac{3}{4}x - \frac{7}{4}\]。
《直线和圆的方程》测试卷与答案
《直线和圆的方程》测试卷与答案(时间:120分钟满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分)1.直线x +y =0的倾斜角为()A .45°B .60°C .90°D .135°答案D解析因为直线的斜率为-1,所以tan α=-1,即倾斜角为135°.2.过点(0,-2)且与直线x +2y -3=0垂直的直线方程为()A .2x -y +2=0B .x +2y +2=0C .2x -y -2=0D .2x +y -2=0答案C解析设该直线方程为2x -y +m =0,由于点(0,-2)在该直线上,则2×0+2+m =0,即m =-2,即该直线方程为2x -y -2=0.3.直线3x -4y +5=0关于x 轴对称的直线方程为()A .3x +4y +5=0B .3x +4y -5=0C .-3x +4y -5=0D .-3x +4y +5=0答案A解析设所求直线上任意一点(x ,y ),则此点关于x 轴对称的点的坐标为(x ,-y ),因为点(x ,-y )在直线3x -4y +5=0上,所以3x +4y +5=0.4.直线x +y -1=0被圆(x +1)2+y 2=3截得的弦长等于()A.2B .2C .22D .4答案B 解析由题意,得圆心为(-1,0),半径r =3,弦心距d =|-1+0-1|12+12=2,所以所求的弦长为2r 2-d 2=2.5.若点P (1,1)为圆x 2+y 2-6x =0的弦MN 的中点,则弦MN 所在直线的方程为()A .2x +y -3=0B .x -2y +1=0C .x +2y -3=0D .2x -y -1=0答案D解析由题意,知圆的标准方程为(x -3)2+y 2=9,圆心A (3,0).因为点P (1,1)为弦MN 的中点,所以AP ⊥MN .又AP 的斜率k =1-01-3=-12,所以直线MN 的斜率为2,所以弦MN 所在直线的方程为y -1=2(x -1),即2x -y -1=0.6.已知直线x -2y +m =0(m >0)与直线x +ny -3=0互相平行,且它们间的距离是5,则m +n 等于()A .0B .1C .-1D .2答案A解析由题意,所给两条直线平行,所以n =-2.由两条平行直线间的距离公式,得d =|m +3|12+(-2)2=|m +3|5=5,解得m =2或m =-8(舍去),则m +n =0.7.若动点A (x 1,y 1),B (x 2,y 2)分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则线段AB 的中点M 到原点的距离的最小值为()A .23B .33C .32D .42答案C解析由题意,知M 点的轨迹为平行于直线l 1,l 2且到l 1,l 2距离相等的直线l ,故其方程为x +y -6=0,所以M 到原点的距离的最小值为d =62=3 2.8.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为()A .52-4 B.17-1C .6-22 D.17答案A解析由题意知,圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9的圆心分别为C 1(2,3),C 2(3,4),且|PM |+|PN |≥|PC 1|+|PC 2|-4,点C 1(2,3)关于x 轴的对称点为C (2,-3),所以|PC 1|+|PC 2|=|PC |+|PC 2|≥|CC 2|=52,即|PM |+|PN |≥|PC 1|+|PC 2|-4≥52-4.二、多项选择题(本大题共4小题,每小题5分,共20分,全部选对的得5分,部分选对的得2分,有选错的得0分)9.等腰直角三角形ABC 的直角顶点为C (3,3),若点A (0,4),则点B 的坐标可能是()A .(2,0)B .(6,4)C .(4,6)D .(0,2)答案AC解析设B 点坐标为(x ,y ),AC ·k BC =-1,|=|AC |,=(0-3)2+(4-3)2,=2,=0=4,=6.10.由点A (-3,3)发出的光线l 经x 轴反射,反射光线与圆x 2+y 2-4x -4y +7=0相切,则l 的方程为()A .4x -3y -3=0B .4x +3y +3=0C .3x +4y -3=0D .3x -4y +3=0答案BC 解析已知圆的标准方程是(x -2)2+(y -2)2=1,它关于x 轴对称的圆的方程是(x -2)2+(y +2)2=1,设光线l 所在直线的方程是y -3=k (x +3)(其中斜率k 待定),即kx -y +3k +3=0,由题设知对称圆的圆心C ′(2,-2)到这条直线的距离等于1,即d =|5k +5|1+k 2=1.整理得12k 2+25k +12=0,解得k =-34或k =-43.故所求的直线方程是y -3=-34(x +3)或y -3=-43(x +3),即3x +4y -3=0或4x +3y +3=0.11.半径长为6的圆与x 轴相切,且与圆x 2+(y -3)2=1内切,则此圆的方程为()A .(x -4)2+(y -6)2=6B .(x +4)2+(y -6)2=6C .(x -4)2+(y -6)2=36D .(x +4)2+(y -6)2=36答案CD 解析∵半径长为6的圆与x 轴相切,设圆心坐标为(a ,b ),则b =6.再由a 2+32=5,可以解得a =±4,故所求圆的方程为(x ±4)2+(y -6)2=36.12.已知点P 在圆(x -5)2+(y -5)2=16上,点A (4,0),B (0,2),则()A .点P 到直线AB 的距离小于10B .点P 到直线AB 的距离大于2C .当∠PBA 最小时,|PB |=32D .当∠PBA 最大时,|PB |=32答案ACD 解析∵A (4,0),B (0,2),∴过A ,B 的直线方程为x 4+y 2=1,即x +2y -4=0,圆(x -5)2+(y -5)2=16的圆心坐标为(5,5),圆心到直线x +2y -4=0的距离d =|1×5+2×5-4|12+22=115=1155>4,∴点P 到直线AB 的距离的范围为1155-4,1155+4,∵1155<5,∴1155-4<1,1155+4<10,∴点P 到直线AB 的距离小于10,但不一定大于2,故A 正确,B 错误;如图,当过B 的直线与圆相切时,满足∠PBA 最小或最大(P 点位于P 1时∠PBA 最小,位于P 2时∠PBA 最大),此时|BC |=(5-0)2+(5-2)2=25+9=34,∴|PB |=|BC |2-42=18=32,故C ,D 正确.三、填空题(本大题共4小题,每小题5分,共20分)13.已知A (0,-1),点B 在直线x -y +2=0上,若直线AB 平行于直线x +2y -3=0,则B 点坐标为________.答案(-2,0)解析因为直线AB平行于直线x+2y-3=0(m≠-3),所以设直线AB的方程为x+2y+m=0(m≠-3),又点A(0,-1)在直线AB上,所以0+2×(-1)+m=0,解得m=2,所以直线AB的方程为x+2y+2=0,-y+2=0,+2y+2=0,=-2,=0,故B点坐标为(-2,0).14.过点(1,2)可作圆x2+y2+2x-4y+k-2=0的两条切线,则实数k的取值范围是________.答案(3,7)解析把圆的方程化为标准方程得(x+1)2+(y-2)2=7-k,∴圆心坐标为(-1,2),半径r=7-k,则点(1,2)到圆心的距离d=2.由题意,可知点(1,2)在圆外,∴d>r,即7-k<2,且7-k>0,解得3<k<7,则实数k的取值范围是(3,7).15.已知P(a,b)为圆C:x2+y2-2x-4y+4=0上任意一点,则b-1a+1的最大值为__________.答案43解析圆的方程即(x-1)2+(y-2)2=1,圆心坐标为(1,2),半径为1,代数式b-1a+1表示圆上的点(a,b)与定点(-1,1)连线的斜率,设过点(-1,1)的直线方程为y-1=k(x+1),与圆的方程联立,可得(k2+1)x2+(2k2-2k-2)x+(k-1)2=0,考虑临界条件,令Δ=(2k2-2k-2)2-4(k2+1)(k-1)2=0,可得k1=0,k2=43,则b-1a+1的最大值为43.16.集合A={(x,y)|x2+y2=4},B={(x,y)|(x-3)2+(y-4)2=r2},其中r>0,若A∩B中有且仅有一个元素,则r的值是__________.答案3或7解析∵A∩B中有且仅有一个元素,∴圆x2+y2=4与圆(x-3)2+(y-4)2=r2相切.当两圆内切时,由32+42=|2-r|,解得r=7(负值舍去);当两圆外切时,由32+42=2+r,解得r=3.∴r =3或r =7.四、解答题(本大题共6小题,共70分)17.(10分)已知圆C 的圆心为(2,1),若圆C 与圆O :x 2+y 2-3x =0的公共弦所在直线过点(5,-2),求圆C 的方程.解设圆C 的半径长为r ,则圆C 的方程为(x -2)2+(y -1)2=r 2,即x 2+y 2-4x -2y +5=r 2,圆C 与圆O 的方程相减得公共弦所在直线的方程为x +2y -5+r 2=0,因为该直线过点(5,-2),所以r 2=4,则圆C 的方程为(x -2)2+(y -1)2=4.18.(12分)在x 轴的正半轴上求一点P ,使以A (1,2),B (3,3)及点P 为顶点的△ABP 的面积为5.解设点P 的坐标为(a ,0)(a >0),点P 到直线AB 的距离为d ,由已知,得S △ABP =12|AB |·d =12(3-1)2+(3-2)2·d =5,解得d =25.由已知易得,直线AB 的方程为x -2y +3=0,所以d =|a +3|1+(-2)2=25,解得a =7或a =-13(舍去),所以点P 的坐标为(7,0).19.(12分)已知直线l 经过点P (-2,5),且斜率为-34.(1)求直线l 的方程;(2)若直线m 与l 平行,且点P 到直线m 的距离为3,求直线m 的方程.解(1)由直线方程的点斜式,得y -5=-34(x +2),整理得所求直线方程为3x +4y -14=0.(2)由直线m 与直线l 平行,可设直线m 的方程为3x +4y +C =0(C ≠-14),由点到直线的距离公式得|3×(-2)+4×5+C |32+42=3,即|14+C |5=3,解得C =1或C =-29,故所求直线方程为3x +4y +1=0或3x +4y -29=0.20.(12分)红谷隧道是江西南昌穿越赣江的一条过江行车通道,总长2997m ,在南昌大桥和新八一大桥之间,也是国内最大的水下立交系统.如图,已知隧道截面是一圆拱形(圆拱形是取某一圆周的一部分构成巷道拱部的形状),路面宽为45m ,高4m .车辆只能在道路中心线一侧行驶,一辆宽为2.5m ,高为3.5m 的货车能否驶入这个隧道?请说明理由.(参考数据:14≈3.74)解如图,建立平面直角坐标系,设圆心M (0,m ),A (25,0),B (0,4),由|MA |=|MB |得,m =-12,则圆的方程为x 2,所以当x =2.5时,y =14-12≈3.24<3.5(y 的负值舍去).即一辆宽为2.5m ,高为3.5m 的货车不能驶入这个隧道.21.(12分)已知圆M 过C (1,-1),D (-1,1)两点,且圆心M 在x +y -2=0上.(1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,PA ,PB 是圆M 的两条切线,A ,B 为切点,求四边形PAMB 面积的最小值.解(1)设圆M 的方程为(x -a )2+(y -b )2=r 2(r >0),-a )2+(-1-b )2=r 2,1-a )2+(1-b )2=r 2,+b -2=0,=1,=1,=2,故所求圆M 的方程为(x -1)2+(y -1)2=4.(2)如图,四边形PAMB 的面积为S =S △P AM +S △PBM ,即S =12(|AM ||PA |+|BM ||PB |),又|AM |=|BM |=2,|PA |=|PB |,所以S =2|PA |,而|PA |=|PM |2-4,即S =2|PM |2-4.因此要求S 的最小值,只需求|PM |的最小值即可,|PM |的最小值即为点M 到直线3x +4y +8=0的距离,所以|PM |min =3+4+85=3,四边形PAMB 面积的最小值为2|PM |2-4=2 5.22.(12分)在直角坐标系Oxy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.(1)解不能出现AC ⊥BC 的情况.理由如下:设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0,所以x 1x 2=-2.又点C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12≠-1,所以不能出现AC ⊥BC 的情况.(2)证明BCBC 的中垂线方程为y -12=x由(1)可得x 1+x 2=-m ,所以AB 的中垂线方程为x =-m 2.=-m 2,-12=x又x 22+mx 2-2=0,=-m 2,=-12.所以过A ,B ,C -m2,-r =m 2+92.故圆在y轴上截得的弦长为3,即过A,B,C三点的圆在y轴上截得的弦长为定值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20——2005学年度第一学期第七章考试
高 二 数 学
时间:120分钟 分值:150分
第Ⅰ卷
一、选择题(每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案填在本大题后的表格中.) 1、三点A(3,2),B (a ,4),C (6,1)共线,则a 的值为( )
A .-3
B .3
C .9
D .15
2、已知直线l 的倾斜角为,5
4
cos ,-=αα则l 的斜率为( )
A 、43
B 、34
C 、 43-
D 、3
4-
3、若图中直线则斜率分别为,,,,,321321k k k l l l 是( )
A. 321k k k <<
B. 213k k k <<
C. 123k k k <<
D. 231k k k <<
4、若直线2x+(m+1)y+4=0与直线mx+3y -2=0平行, 则m 的最小值是( )
A.2
B. -3
C. 2或-3
D.-2或-3
5、将直线x -3y+2-3=0绕着它上面的一点M(3,2
3
3),顺时针转060,则旋转
后所得的直线的倾斜角是( )
A. 0120
B. 0150
C. 00
D. 030-
6、表示的曲线是方程342-+-=x x y ( )
(A )在x 轴及上方的一个圆 (B )在 y 轴及右侧的一个圆 (C )在x 轴及上方的一个半圆 (D )在y 轴及右侧的一个半圆
7、和直线3x -4y+5=0关于原点对称的直线的方程为( ) A. 3x+4y -5=0 B. 3x+4y+5=0 C. -3x+4y -5=0 D.-3x+4y+5=0
8、若直线y=x+k 与曲线x=21y -恰有一个公共点,则k 的取值范围是( )
(A ) (]1,1-∈k (B ) (]1,12-∈-=k k 或
(C ) 2-=k (D ) 2±=k
9
A 、
B 、
C 、
D 、
10、若实数x,y 满足等式3)2(22=+-y x ,则x
y
的最大值是( )
A. 21
B. 33
C.2
3 D. 3
11、在由不等式组⎪⎩
⎪
⎨⎧≥≥-+≥+-002052y y x y x 表示的平面区域内,目标函数z=2x -y -1( )
A 、有最大值,没有最小值
B 、有最大值,也有最小值
C 、没有最大值,也没有最小值
D 、没有最大值,但有最小值
12、 已知圆0218622=++-+y x y x 和直线y=kx 相交于A 、B 两点,则|OA|∙|OB|
的值为( )
A. 4
B.21
C.21k +
D. 2
121
k +
18、当a 为何值时,直线0:=++a y x l 与圆:8)2()1(22=+++y x (1)相交 (2)相切 (3)相离
19、已知△ABC 顶点的坐标是A (2,3),B (5,3),C (2,7) 求∠A 的平分线长及所在的直线方程。
20、甲、乙两地生产某种产品,它们可调出的数量分别为300t 和750t ,A 、B 、C
三地需要该种产品的数量分别200t,450t 和400t 。
甲地运往A ,B ,C 三地的运费分别是6元/t ,3元/t ,5元/t ,乙地运往A ,B ,C 三地的运费分别是5元/t ,9元/t ,6元/t ,问怎样的调运方案才能使总运费最省?
21、若抛物线k x x y +--=22与直线y=2x 相交于不同的两点),(),,(222111y x P y x P (1)求k 取值范围(2)求||21P P (3)求线段||21P P 的中点坐标。
22、点),(y x M 与两定点21,M M 的距离的比是一个正数m(a M M 2||21 ), 求点M 的轨迹方程,并说明是什么曲线?。