初中数学最新-相交线和平行线教案5 精品
七年级下册《相交线与平行线》教案优秀范文五篇
七年级下册《相交线与平行线》教案优秀范文五篇令公桃李满天下,何用堂前更种花。
今天小编为大家带来的是七年级下册《相交线与平行线》教案优秀范文,供大家阅读参考。
七年级下册《相交线与平行线》教案优秀范文一1两条直线的位置关系(第1课时)课时安排说明:《两条直线的位置关系》共分两课时,第一课时,主要内容是探索两条直线的位置关系,了解对顶角、余角、补角的定义及其性质;第二课时,主要内容是垂直的定义、表示方法、性质及其简单应用.一、学生起点分析学生的知识技能基础:学生在小学已经认识了平行线、相交线、角;在七年级上册中,已经对角及其分类有了一定的认识。
这些知识储备为本节课的学习奠定了良好的基础,使学生具备了掌握本节知识的基本技能。
学生活动经验基础:在前面知识的学习过程中,教师为学生提供了广阔的可供探讨和交流的空间,学生已经经历了一些动手操作,探索发现的数学活动,积累了初步的数学活动经验,具备了一定的图形认识能力和借助图形分析问题解决问题的能力;能够将直观与简单推理相结合;在合作探究的过程中,学生在以前的数学学习中学生已经经历了小组合作的学习过程,积累了大量的方法和经验,具备了一定的合作与交流能力。
二、教学任务分析针对七年级学生的学情,本节从学生熟悉的、感兴趣的情境出发,引导学生自主提炼归纳出同一平面内两直线的位置关系,了解补角、余角、对顶角的概念及其性质并能够进行简单的应用;通过“让学生经历观察、操作、推理、想象等探索过程” ,发展学生的空间观念及推理能力;能从实际情境中抽象出数学模型,为后续学习“空间与图形”这一数学领域而打下坚实的基础;激发学生从数学的角度认识现实,能够敏锐的发现问题、提出问题,并运用所掌握的数学知识初步解决问题;引导学生在思考、交流、表达的基础上逐步达成有关情感与态度目标. 本节内容在教材中处于非常重要的地位,起着承前启后的作用。
因此,本节课的目标是:1.知识与技能:在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题。
中学数学教案平行线与相交线
中学数学教案平行线与相交线中学数学教案教学内容:平行线与相交线一、教学目标1. 理解平行线、相交线的基本概念和性质;2. 掌握平行线与相交线间的关系;3. 能够应用平行线与相交线的性质解决相关问题。
二、教学准备1. 教学课件;2. 粉笔、黑板;3. 学生练习册、作业纸。
三、教学过程引入:教师出示一张图片,展示平行线和相交线的示意图,并引导学生进行观察和思考。
主体:1. 平行线的性质教师通过引导学生观察示意图中的平行线,提出平行线的定义,并引导学生总结平行线的性质,如同一平面内不相交、不相交于同一点等。
2. 相交线的性质教师通过示意图展示相交线的情况,引导学生发现相交线有以下性质:a. 相交线之间形成的内角和外角性质;b. 相邻内角互补、相邻外角互补;c. 对顶内角互补、对顶外角互补。
3. 平行线与相交线的关系教师通过示意图和实例,引导学生发现平行线与相交线之间的关系,如同位角、同旁内角、同旁外角等。
4. 应用题解析和练习教师以实际应用题为例,引导学生运用已学知识解决问题。
让学生分组进行小组讨论和解答,加强彼此之间的合作与交流。
5. 深化拓展教师提出一些拓展问题,引导学生进一步思考和探索,拓展数学应用的能力。
四、教学总结教师对本节课进行总结,强调学生应牢记平行线与相交线的定义、性质和应用,并鼓励学生在实际生活中应用所学知识。
五、课后作业1. 完成课堂练习册上的练习题;2. 总结平行线与相交线的性质和应用。
六、教学反思通过本节课的教学,学生能够准确理解和应用平行线与相交线的概念、性质和应用,培养了他们的观察和分析问题的能力。
同时,通过小组讨论和合作解题,也提高了学生的合作能力和交流能力。
相交与平行教案初中
相交与平行教案初中教学目标:1. 理解相交线与平行线的概念;2. 学会判断直线是否平行或相交;3. 能够运用相交与平行的知识解决实际问题。
教学重点:1. 相交线与平行线的定义;2. 判断直线是否平行或相交的方法。
教学难点:1. 理解并掌握相交线与平行线的概念;2. 能够灵活运用判断直线是否平行或相交的方法。
教学准备:1. 教学课件或黑板;2. 直线模型或图片;3. 练习题。
教学过程:一、导入(5分钟)1. 引导学生观察教室里的直线,让学生注意到有些直线是相交的,有些直线是平行的。
2. 提问:什么是相交线?什么是平行线?二、新课(20分钟)1. 讲解相交线的定义:在同一平面内,两条直线相交于一点,叫做相交线。
2. 讲解平行线的定义:在同一平面内,两条直线永不相交,叫做平行线。
3. 演示如何判断直线是否平行或相交:通过观察两条直线的斜率和截距来判断。
4. 举例说明如何判断直线是否平行或相交:给出两条直线的斜率和截距,让学生判断直线的位置关系。
三、练习(15分钟)1. 让学生独立完成练习题,练习判断直线是否平行或相交。
2. 引导学生总结判断直线位置关系的方法。
四、应用(10分钟)1. 让学生运用相交与平行的知识解决实际问题,如设计路线、规划图形等。
2. 引导学生总结解决实际问题的方法。
五、总结(5分钟)1. 回顾本节课所学的内容,让学生总结相交线与平行线的定义及判断方法。
2. 强调相交与平行在实际生活中的应用。
教学反思:本节课通过讲解相交线与平行线的定义,让学生掌握了判断直线位置关系的方法,并通过练习题和实际应用,提高了学生的理解和运用能力。
在教学中,要注意关注学生的学习情况,及时解答学生的疑问,并引导学生将所学知识运用到实际生活中。
相交线平行线教案
相交线平行线教案教案标题:相交线与平行线教学目标:1. 理解相交线和平行线的概念。
2. 能够通过观察和推理判断两条线是否相交或平行。
3. 能够运用相交线和平行线的性质解决相关问题。
教学重点:1. 相交线和平行线的定义和性质。
2. 通过观察和推理判断两条线是否相交或平行。
3. 运用相交线和平行线的性质解决相关问题。
教学准备:1. 教师准备:白板、黑板笔、教学投影仪等。
2. 学生准备:课本、笔记本等。
教学过程:一、导入(5分钟)1. 教师通过举例子或者展示图片引入相交线和平行线的概念,激发学生对这一主题的兴趣。
2. 引导学生思考:你们在生活中遇到过哪些相交线和平行线的例子?二、知识讲解(15分钟)1. 教师简要介绍相交线和平行线的定义,并通过示意图进行解释。
2. 教师讲解相交线和平行线的性质,如相交线的垂直性、平行线的对应角相等等。
三、示例分析(15分钟)1. 教师给出一些示例,让学生观察并判断两条线是否相交或平行。
2. 引导学生通过观察和推理,解释自己的判断依据,并与同桌讨论。
3. 教师随机选择几组学生进行讨论和展示,引导学生共同探讨相交线和平行线的性质。
四、练习与巩固(20分钟)1. 学生个人或小组完成课本上的练习题,运用所学知识判断两条线是否相交或平行。
2. 教师巡回指导,及时纠正学生的错误,解答疑惑。
3. 教师选取几道题目进行讲解,让学生理解解题思路和方法。
五、拓展应用(10分钟)1. 教师提出一些拓展问题,让学生运用所学知识解决更复杂的问题。
2. 学生个人或小组完成拓展问题,并进行讨论和展示。
六、总结与反思(5分钟)1. 教师总结本节课的重点内容,强调相交线和平行线的定义和性质。
2. 学生回顾课堂内容,思考自己对相交线和平行线的理解程度,并提出问题或疑惑。
教学延伸:1. 学生可以通过实际测量角度来验证相交线的性质,如垂直角、对顶角等。
2. 学生可以通过绘制图形来探索平行线的性质,如平行线之间的夹角等。
相交线与平行线全章教案
相交线与平行线全章教案第一章:相交线与平行线的概念介绍教学目标:1. 了解相交线与平行线的定义及特点。
2. 能够识别和判断直线之间的相交与平行关系。
3. 掌握平行线的性质及推论。
教学内容:1. 相交线的定义及特点。
2. 平行线的定义及特点。
3. 平行线的性质及推论。
教学活动:1. 通过图片和生活实例引导学生认识相交线与平行线。
2. 利用几何工具(直尺、三角板)进行实际操作,让学生观察和体验相交线与平行线的关系。
3. 引导学生通过观察和思考,总结出平行线的性质及推论。
作业布置:1. 请学生运用几何工具,画出两条相交线和两条平行线。
2. 请学生总结平行线的性质及推论,并加以证明。
第二章:相交线的性质与判定教学目标:1. 掌握相交线的性质及判定方法。
2. 能够运用相交线的性质解决实际问题。
教学内容:1. 相交线的性质。
2. 相交线的判定方法。
教学活动:1. 通过几何图形的观察和分析,引导学生掌握相交线的性质。
2. 利用几何工具进行实际操作,让学生体验相交线的判定方法。
作业布置:1. 请学生运用相交线的性质,解决一些实际问题。
2. 请学生总结相交线的判定方法,并加以证明。
第三章:平行线的性质与判定教学目标:1. 掌握平行线的性质及判定方法。
2. 能够运用平行线的性质解决实际问题。
教学内容:1. 平行线的性质。
2. 平行线的判定方法。
教学活动:1. 通过几何图形的观察和分析,引导学生掌握平行线的性质。
2. 利用几何工具进行实际操作,让学生体验平行线的判定方法。
作业布置:1. 请学生运用平行线的性质,解决一些实际问题。
2. 请学生总结平行线的判定方法,并加以证明。
第四章:平行线的应用教学目标:1. 掌握平行线的应用方法。
2. 能够运用平行线的性质解决实际问题。
教学内容:1. 平行线的应用方法。
2. 实际问题解决。
教学活动:1. 通过几何图形的观察和分析,引导学生掌握平行线的应用方法。
2. 提供一些实际问题,让学生运用平行线的性质解决。
数学教案-相交线、平行线
数学教案-相交线、平行线一、教学目标1.了解相交线和平行线的概念;2.能够识别和区分相交线和平行线;3.能够根据已知条件判断两条线是否相交或平行;4.能够应用相交线和平行线的性质解决实际问题。
二、教学内容1.相交线的定义和性质;2.平行线的定义和性质;3.如何判断两条线是否相交或平行;4.相交线和平行线在几何问题中的应用。
三、教学步骤步骤一:引入概念1.讲解相交线的概念:相交线是指两条线在同一平面上相交的线段;2.讲解平行线的概念:平行线是指在同一平面上没有交点的两条线;3.引导学生观察和发现相交线和平行线的特点。
步骤二:相交线和平行线的性质1.讲解相交线的性质:–相交线的交点只有一个;–相交线分割平行线上的线段成比例;–相交线的交点是两条线的垂直平分线;–相交线的交点将两条线分成四个相等的角;2.讲解平行线的性质:–平行线上的任意两个点到另一条平行线的距离相等;–平行线上的对应角相等;–平行线与一个截线之间的内角互补,与外角对等;–平行线与另一条平行线被截线所夹的对应角相等。
步骤三:判断相交线和平行线1.教授判断两条线是否相交的方法:–通过观察两条线的图形关系,判断是否有交点;–判断两条线的斜率是否相等,若相等则平行,否则相交;–利用两条线的方程,解方程组判断是否有解。
2.教授判断两条线是否平行的方法:–通过观察两条线的图形关系,判断是否平行;–判断两条线的斜率是否相等,若相等则平行,否则不平行;–利用两条线的方程,解方程组判断是否平行。
步骤四:应用相交线和平行线解决问题1.提供一些实际问题,要求学生利用相交线和平行线的性质解决问题;2.引导学生分析问题,确定解题思路;3.学生分组讨论并解答问题,老师带领讨论答案并给出评价。
四、教学资源1.相交线和平行线的定义和性质的讲义或教材;2.相交线和平行线的例题及解答;3.相交线和平行线的实际问题。
五、教学评估1.随堂小测:出示几个图形,让学生判断两条线是否相交或平行;2.讨论问题时观察学生的解题思路和表达能力;3.结合平时作业和课堂表现评定学生的学习成绩。
相交线与平行线教案
相交线与平行线教案一、教学目标1. 让学生理解相交线与平行线的概念。
2. 让学生掌握相交线与平行线的性质和判定方法。
3. 培养学生运用几何知识解决实际问题的能力。
二、教学内容1. 相交线与平行线的定义。
2. 相交线与平行线的性质。
3. 相交线与平行线的判定方法。
4. 实际问题中的应用。
三、教学重点与难点1. 教学重点:相交线与平行线的概念、性质和判定方法。
2. 教学难点:相交线与平行线的判定方法及实际问题中的应用。
四、教学方法1. 采用直观演示法,让学生通过观察、操作、思考,自主探索相交线与平行线的性质和判定方法。
2. 运用案例分析法,引导学生将几何知识应用于实际问题,提高解决问题的能力。
3. 采用小组合作学习法,培养学生的团队协作能力和沟通能力。
五、教学过程1. 导入新课:通过展示生活中的相交线与平行线现象,引导学生关注几何知识在生活中的应用。
2. 自主学习:让学生通过观察、操作、思考,自主探索相交线与平行线的性质和判定方法。
3. 案例分析:选取实际问题,引导学生运用几何知识解决问题,巩固所学知识。
4. 课堂练习:设计具有针对性的练习题,检验学生对相交线与平行线的掌握程度。
5. 总结提升:对本节课的内容进行归纳总结,强调相交线与平行线在生活中的应用。
6. 布置作业:设计课后作业,让学生进一步巩固所学知识。
六、教学评价1. 评价目标:检查学生对相交线与平行线的理解程度,以及能否运用所学知识解决实际问题。
2. 评价方法:通过课堂练习、课后作业和小组讨论等方式进行评价。
3. 评价内容:相交线与平行线的概念、性质、判定方法的掌握程度,以及实际问题解决能力。
七、教学拓展1. 相交线与平行线的应用领域:例如,交通规划、建筑设计、工业制造等领域。
2. 相关数学知识:例如,相似三角形、勾股定理等。
3. 实地考察:组织学生观察身边的相交线与平行线现象,加深对知识的理解。
八、教学资源1. 教材:相交线与平行线的相关教材。
华东师大版七年级数学上册第五章《相交线与平行线》教案
华东师大版七年级数学上册第五章《相交线与平行线》教案5.1 相交线第1课时教学目标【知识与能力】1.能准确理解对顶角的概念,会在图形中识别对顶角.2.理解对顶角的性质并能运用对顶角的相关知识进行简单运算.【过程与方法】经历观察、猜想、说理、交流等过程,进一步发展空间观念和有条理的表达能力.【情感态度价值观】在动手实践、自主探索、合作交流中获得成功的体验,建立自信心;感受数学与生活的密切联系,增强用数学的意识.教学重难点【教学重点】对顶角的概念与性质.【教学难点】在复杂图形中找对顶角.课前准备无教学过程一、情境引入同学们,进入七年级学习以来,大家都有这样的感受:“生活中处处有——数学.”现在老师请各位同学看一组生活中的图片,(多媒体展示X型晾衣架、栅栏、剪刀、小孔成像原理等图片)在这些图形中都出现了两条相交直线,每两条相交直线形成几个角?这些角叫什么角?它们有没有特殊关系?(说明:由此引入新课)二、探究新知1.问题导读自学教材第160、161前两个自然段,回答下列问题:(1)什么是对顶角?对顶角满足什么条件?(2)在教材第160页图5.1.1中找出对顶角.(3)举出生活中对顶角的例子.(4)教材第162页练习第1题.设计意图:明确对顶角的概念.2.合作交流(1)互为对顶角的两个角的大小关系是怎样的?可让学生动手画一画,学生两人一组,任取一个角∠2,得出∠2的度数,看这两个角的大小关系有什么特点,得出结论.最后全班汇总,看得出的结论是否相同.(2)这个结论正确吗?学生分组讨论,利用同角的补角相等说明.设计意图:先通过测量感知对顶角相等,然后再从理论上说明.(3)结论:对顶角相等.3.例题如图,直线AB、CD相交于点O,OE平分∠AOC,∠AOE=25°,你能说出图中哪些角的度数?先让学生分组讨论,充分利用已知条件,如对顶角、角平分线、补角等.思考:在本题中,如果已知∠BOD的度数,你能求出哪些角的度数?三、巩固练习1.教材第162页练习第2题2.如图,直线AB、CD、EF相交于点O,OE是∠AOC的平分线,那么OF是∠BOD的平分线吗?为什么?四、课堂小结本节课你学会了什么?请你说出来,还有哪些不明白?五、课后作业1.如图,其中共有对对顶角.【答案】4第1题图第2题图2.如图,AB、CD相交于点O,∠DOE=90°,∠AOC=70°,求∠BOE的度数.【答案】∠BOE的度数为20°.5.1 相交线第2课时教学目标【知识与能力】认识生活中的垂直现象,理解垂直定义,并能用符号表示.掌握垂线的性质,会过一点作已知直线的垂线.【过程与方法】经历垂线画法,垂线的性质以及点到直线的距离的探索过程,尝试从不同角度寻求垂线的画法,用不同方法得到垂线的性质.【情感态度价值观】通过与生活相联系,让学生对数学产生兴趣,认识到数学的实用价值.教学重难点【教学重点】垂线、垂线段、点到直线的距离的概念.【教学难点】垂线的性质和点到直线的距离.课前准备无教学过程一、引入设计意图:通过设置问题,引发学生的思考,激发学生的学习兴趣,在回忆旧知识的同时,自然切入本节课所要学习的内容.教师提问学生:能在生活中找到互相垂直的直线吗?学生观察实例,这时教师可以问学生“是通过什么特征来确定它们是垂线的?”帮助学生回忆垂直的形象(小学已接触过垂直).二、做一做设计意图:通过让学生动手操作,加深对垂线的理解,明确垂线的不同画法,锻炼了学生的实际操作能力,开拓了他们的思维,积累了他们的数学活动经验.1.请学生作出两条互相垂直的直线教师鼓励学生用不同的方法画垂线,学生发现用三角尺、量角器都可以来画互相垂直的直线,然后让两位学生各自采用一种作图工具在黑板上演示作图过程.2.引入垂直符号表示通过以上画图过程,使学生明确两条直线相交只有一个交点,当相交所成的角中有一个角是直角时,则此时两条直线互相垂直,若直线AB与CD垂直,则用符号“⊥”表示,即“AB⊥CD”,从而引出垂直的符号表示及垂足的定义.3.在方格纸上画出互相垂直的两条直线,用量角器验证你画出的两条直线是否垂直,如果是,能试着说明一下原因吗?三、想一想设计意图:让学生自主探究,从而经历垂线的性质得出过程,体会到经过一点,有且只有一条直线与已知直线垂直,通过动手测量,从而让学生了解到“垂线段最短”,这样学生得到的知识印象更深,更符合学生对新知识学习的接受过程.1.过点A作l的垂线,你能作出多少条?教师不仅要引导学生运用三角尺,过直线外一点和直线上一点作已知直线的垂线,还要鼓励学生运用自己的语言描述所得的结论,培养学生有条理的表达能力.2.点到直线的距离让学生量取直线外一点到直线的若干个线段的长,比较这一点到直线的垂线段的长度的大小,从而引出点到直线的距离的概念,其性质“垂线段最短”.四、做一做设计意图:让学生做出三角形的高,从而进一步巩固点到直线的距离是这一点到直线的垂线段的长度.让学生分别画出三个三角形AB边上的高(三个三角形分别是锐角三角形,直角三角形,钝角三角形),教师在学生的画图过程中注意发现问题,进行针对性的指导.五、巩固练习设计意图:通过练习,让学生进一步理解垂直的定义,怎样过一点画已知直线的垂线,加深对本节知识的理解和应用,从而学以致用,从学到的知识解决问题.1.作一条直线l,在直线l上取一点A,在直线l外取一点B,分别经过点A、B,用三角尺或量角器作l的垂线.2.如图所示,在某村庄中有一条街道,在街道的一侧有一公共汽车站,为了方便村民坐车,村委会决定修一条马路直达车站,你能设计一种方案,使得公共汽车站到街道的路程最近吗?六、课堂小结小结:以下几个方面由学生自己总结:①垂线的定义及垂直的符号表示;②垂线的有关性质;③过一点作已知直线的垂线的方法.七、课后作业1.如图,O是直线AB上一点,∠AOD=53°,∠BOE=37°,则OD与OE的位置关系是什么?【答案】∠DOE=180°-∠AOD-∠BOE=90°,所以OD⊥OE.2.点P为直线l外一点,点A、B、C为直线l上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离为( )A.4cmB.2cmC.小于2cmD.不大于2cm【答案】D5.1 相交线第3课时教学目标【知识与能力】能够根据图形判断哪些角是同位角、内错角、同旁内角.【过程与方法】在认识三线八角中的同位角、内错角、同旁内角的过程中,培养学生的识图能力.【情感态度价值观】发展学生应用数学的意识与能力,增强学好数学的愿望和信心.教学重难点【教学重点】从不同图形中找出不同位置关系的角.【教学难点】根据图形特点正确确定位置关系的角.课前准备无教学过程一、创设情境,导入新课设计意图:通过问题情境,引发学生的学习兴趣和探究欲望,使学生参与到教学过程中来,培养学生的自主学习能力.教师提出问题:两条直线相交,只有一个交点,产生四个角,如图:直线AB与CD相交于点O,得到∠1,∠2,∠3,∠4,在这些角中,哪些是相等的?哪些是互补的?学生观察后作出回答,并且指出相等或互补的理由.二、探究新知设计意图:通过学生的观察、比较、归纳、探究,使学生体验两条直线被第三条直线所截产生的八个角的位置关系,能够识别同位角、内错角、同旁内角,去体验“三线八角”的具体特征. 师:两条直线相交产生四个角,若两条直a、b被同一平面内的第三条直线l所截,则又可得到几个角呢?这几个角之间又存在哪些关系呢?教师画出图形,引导学生去观察、思考.(1)同位角教师提出问题,图中的∠1和∠5的位置有什么关系?从直线l来看,∠1与∠5处于哪个位置,从直线a、b来看,∠1与∠5又处于哪个位置?学生先观察、思考,然后讨论交流.师生共同概括:∠1与∠5位于直线l的同一侧,直线a、b的同一方,这样位置的角叫做同位角. 在上图中,你还能发现哪些同位角?学生观察后,教师提问回答.(2)内错角师:除以上几对同位角外,如∠3与∠5不是同位角,∠3与∠5处于直线l的哪个位置?直线a、b 的哪个位置?学生观察后作出回答.由此总结出内错角的特征,认识了内错角的定义,并找出图中的其他内错角.(3)同旁内角师提出问题:除了以上两种位置关系的角之外,你还能发现其他不一样的角吗?学生观察、讨论、交流后进一步指出∠4与∠5,∠3与∠6这种位置关系的角.从而进一步得出同旁内角的特征:位于截线的同侧,且位于被截直线之间.三、巩固练习设计意图:通过学生自主练习,让学生进一步认识同位角、内错角、同旁内角;并且交流各自的学习成果,培养学生的自主学习能力.练习:如图,∠1是直线a、b相交所成的一个角,用量角器量出∠1的度数,画一条直线c,使直线c与直线b相交所成的角中有一个与∠1为一对同位角,并且自行找出一对内错角和同旁内角. 学生完成后,组内交流,展示不同的画法,不同的结果,互相评价.四、课堂小结设计意图:通过小结,让学生回顾一下本节所学的内容,对本节的知识形成一个完整的知识网络,有利于学生对知识的消化与吸收.小结:谈谈你对“三线八角”的认识,本节的收获是什么?五、课后作业(1)如图所示,∠1和∠2是直线和直线被第三条直线所截而成的角;(2)∠2和∠BCE是直线和直线被第三条直线所截而成的角;(3)∠4和∠A是直线和直线被第三条直线所截而成的角.【答案】(1)AB CE BD 同位 (2)AB EC BD 同旁内 (3)AB CE AC 内错.5.2 平行线第1课时教学目标【知识与能力】感受平行线的概念,理解平行公理,能作出已知直线的平行线.【过程与方法】通过观察、交流、探索等活动获取知识,在具体操作活动中了解平行线的有关性质.【情感态度价值观】丰富和发展自己的数学活动经历和体验,感受数学图形世界的丰富多彩.教学重难点【教学重点】平行线的概念和平行公理.【教学难点】用几何语言描述作图过程.课前准备无教学过程一、创设情境,引入新课设计意图:创设多种有关平行的现实情境,激发学生的学习兴趣,让他们体会数学知识与现实生活的联系,掀起他们探究的欲望.教师课件展示学生熟悉的有关平行线的现实情境,让学生观察:线、线与线的关系.如人行道、高压电线、百米跑道……问题:这些线之间呈现怎样的位置关系?学生积极思考,观察后踊跃发言.二、新知探索设计意图:在让学生动手操作画平行线的过程中加深对平行线的理解,培养学生主动参与合作交流的意识,提高观察、分析、概括和抽象能力,培养学生的动手能力,引导学生探索平行线的性质.1.教师板书课题,并说明本节课继续探讨现实生活中的平行现象,让学生给出平行的定义.一部分学生能回答出“不相交的两直线”而遗漏“在同一平面内”,教师此处应适当放开,让学生结合现实生活中的情景讨论“在同一平面内”的重要性.教师出示问题:在教学中找平行线?学生讨论,组内交流,最后派代表发表见解.师:生活中这么多平行,如何表示它们?如何画平行线?从而引出平行线的表示符号“∥”.2.画平行线教师让学生拿出方格纸,画出平行线,并进行组内交流.总结画平行线的方法:一靠、二落、三推、四画.为了让学生印象深刻,让学生板演,其余学生集中演示,体会.3.平行线的性质师:让学生拿出预制教具.(一块泡沫塑料上一根固定的木条和两根一端固定的木条)问题:何种情形下,活动的木条与固定的木条平行?学生一边活动木条,一边思考,用自己的语言叙述:只有一种情形.教师总结:经过直线外一点,有且只有一条直线与这条直线平行.进一步提问:若两根活动木条都与固定的木条平行,这两根活动木条有什么关系?学生经过讨论思考后,体会平行线的性质并积极发言.得出:如果两条直线都和第三条直线平行,那么这两条直线也互相平行.三、巩固练习设计意图:通过练习,巩固对平行线的认识,熟悉做已知直线的平行线的方法,达到学以致用的目的.1.如图,四边形ABCD和四边形AFCE都是平行四边形,点E、F分别在CD、AB上,则图中平行线的组数是( )A.2组B.3组C.4组D.5组2.如图,你能用学过的方法判断a、b这两条直线的位置关系吗?(1)过直线外一点A画直线l的平行线;(2)找出图中所有的平行线,并用“∥”表示.四、课堂小结设计意图:由练习过渡到小结中,让学生再次体会,知识来自于实践中,反过来又指导实践,初步体验知识的系统性和完整性.小结:本课你从现实情境中了解了什么知识?对你获取的信息说说你的反思.五、课后作业1.如图所示,图中哪些线段是互相平行的?把它们表示出来.【答案】线段a∥e,线段b∥d,线段c∥f.2.已知:D是∠AOB内部一点,如图,过D作DE∥AO,作DF∥BO分别交OA、OB于F、E,画出图形,并说明四边形DEOF是什么图形?【答案】画图如图所示:四边形DEOF是平行四边形.3.如图所示,直线AB、CD是一条河的两岸,并且AB∥CD,点E为直线AB、CD外一点,现想过点E作CD的平行线,则只需过点E作河岸AB的平行线即可,其理由是什么?【答案】理由是(1)过直线外一点有且只有一条直线与已知直线平行.(2)如果两条直线都与第三条直线平行,那么这两条直线也互相平行.5.2 平行线第2课时教学目标【知识与能力】使学生认识平行线的识别法,能灵活地利用平行线的三个识别法解决一些简单的问题. 【过程与方法】经历平行线三种识别方法的发现过程,让学生通过直观感知,操作确认等实践活动,加强对图形的认识和感受.【情感态度价值观】通过实地观测建筑物,让学生体会数学之美,对学生进行美学教育,渗透数学源于实践又作用于实践的辩证唯物主义观点.教学重难点【教学重点】平行线的三种识别方法.【教学难点】运用三种识别方法进行简单的推理.课前准备无教学过程一、提出问题,创设情境设计意图:通过巧妙的设置问题,引导学生思考,既复习旧知识,做好新知识学习的铺垫,也不断激活学生思维,生成新问题,引起认知冲突,从而自然引入新课.1.复习提问:什么叫平行线?引导学生注意在同一平面内这一条件.2.教师出示多媒体(图形显示,教师口述内容)在现实生活中,有不少平行的例子.例如:我们学校建筑物上就有平行线,上图是我们学校的校道对应的几何图形,我们已分组测量了α、β的度数,请几个小组同学说说测量的结果,老师告诉你:根据α=β,可得出校道中两段笔直的部分是平行的,想知道为什么吗?带着这个问题,我们来学习“平行线的识别”.(板书课题)二、动手实验,发现新知设计意图:在实现教学活动的过程中,使实际问题与学生生活密切联系,学生有较好的参与意识和学习兴趣,随着教师问题的提出而不断进行更深入的思考,设计的动手实验以教材为基础,实现了让学生通过动手操作,在变化中感受角的大小变化与直线位置关系的联系,实现了由感性到理性的上升.师生共同操作,经过直线外一点画已知直线的平行线.三角尺沿着直尺的方向由原来的位置移到另一个位置,角在平移前的位置与平移后的位置构成一对同位角,其大小不变,因此,只要保持同位角相等,画出的直线就平行于已知直线.(合作、交流讨论后得出)两条直线被第三条直线所截,如果同位角相等,那么这两直线平行.(同位角相等,两直线平行)例如:如图,直线a、b被直线l所截,如果∠1=∠3,那么a∥b.(交流后得出)因为∠1=∠3(已知),∠2=∠3(对顶角相等),所以∠1=∠2,∴a∥b.(同位角相等,两直线平行)结论:内错角相等,两直线平行.三、运用新知设计意图:及时训练是巩固知识的必要手段,练习题的选择要为教学目标的实现服务,通过学生的练习,通过巩固了上面得出的平行线的两种识别法;又在学生的自主探究中,得出平行线的第三种识别方法,实现了在练中学,在学中练的统一.教师出示例1.如图,直线a、b被直线l所截,已知∠1=115°,∠2=115°,那么a∥b吗?为什么?学生思考后根据所学知识做出解答.变式训练:若在以上问题中,∠1=115°,∠3=65°,那么a∥b吗?为什么?学生交流,讨论得出:同旁内角互补,两直线平行.例2.如图,在四边形ABCD中,已知∠B=60°,∠C=120°,AB与CD平行吗?AD与BC平行吗?教师让学生先独立思考,然后再交流,完成对以上题目的解答.注意引导学生的推理过程,步骤的逻辑性.四、课堂小结设计意图:学生在一节课积极、热烈的探究、合作学习之余,需要有一点时间静下心来默默地反思自己,这是对知识沉淀、吸收的过程,通过生生、师生的交流,形成完整的知识结构.师:平行线识别的几种方法是什么?通过今天的学习,你想进一步探究的问题是什么?五、课后作业1.如图,∠1=∠2,∠3=∠4,试问EF是否与GH平行?【答案】因为∠1=∠2(已知),又因为∠CGE=∠2(对顶角相等),所以∠1=∠CGE(等量代换),又因为∠3=∠4(已知),所以∠3+∠1=∠4+∠CGE,即∠MEF=∠EGH,所以EF∥GH(同位角相等,两直线平行).2.如图,已知∠1=35°,∠B=55°,AB⊥AC,则(1)∠DAB+∠B= ;(2)AD与BC平行吗?AB与CD平行吗?若平行,请说明理由;若不一定,那么再加上什么条件就平行了呢?【答案】(1)180°(2)AD∥BC,理由:同旁内角互补,两条直线平行;AB与CD不一定平行,若要使AB∥CD,则须满足AC⊥DC,或∠B+∠BCD=180°.5.2 平行线第3课时教学目标【知识与能力】掌握平行线的三个特征,体会平行线特征与平行线识别的区别,能运用平行线的识别与特征解决问题.【过程与方法】经历观察、操作、推理、交流等活动,进一步发展空间观念,加强推理能力和有条理的表达能力,经历探索平行线的特征的过程,掌握平行线的特征并解决一些问题.【情感态度价值观】通过操作、观察、合作、交流,进一步感受学习数学的意义,培养学生主动探索、合作以及解决问题的能力.教学重难点【教学重点】平行线的特征.【教学难点】平行线的特征与识别法的综合运用.课前准备无教学过程一、复习回顾设计意图:本节课所学知识与前一节课的内容有着密切的联系,两者既有相同之处又有本质的区别.在课的开始以习题化方式复习已学知识,一方面为本节课的学习奠定好基础,另一方面为“对比发现,加深理解”环节作好铺垫.教师出示问题:如图,直线a、b被直线l所截,在横线上填空:(1)因为∠1=∠2(已知),所以a∥b .(2)因为∠3=∠2(已知),所以a∥b .(3)因为∠2+∠4=180°(已知),所以a∥b .学生完成后,组内交流结果.二、情境引入设计意图:通过提出一个极具趣味性的问题,学生可能通过猜测得到答案,但并不理解其中真正的原因所在,从而激发学生强烈的求知欲和好奇心,引入新课的学习.教师出示问题:如图,是举世闻名的三星堆考古中发掘出的一个残缺玉片,工作人员从玉片上已经量得∠A=115°,∠D=100°,已知四边形ABCD的AD∥BC,请你求出另外两个角的度数. 学生经过思考,然后小组进行讨论,在教师的引导下得出结论.三、探究发现设计意图:教师要通过设计问题是,让学生经历观察、操作、推理、想象等探索过程,获得数学活动的经验,要发散学生思维,让学生尽可能用多种方法来说明自己猜测的正确性,培养学生合情说理的能力.问题:已知直线a、b被l所截,a∥b.让学生自己画出符合要求的图形后,提出问题.(1)合作交流一:请找出图中的同位角,并猜测它们有何关系?你能想办法验证你的猜测吗?(2)合作交流二:请找出图中的内错角,并猜测它们有何关系?你能想办法验证你的猜测吗?(3)合作交流三:图中还有其他位置关系的角吗?它们有何关系呢?说一说你是怎样得到结论的.以上问题在经过学生独立思考后,再进行小组讨论,互相补充,并派代表回答.(4)师生共同总结平行线的特征.四、巩固练习设计意图:通过练习,落实基础,特别是学生刚刚接触到新的知识时,往往应用起来会感到生疏,或者说对它的感觉仍旧停留在“雾里看花”的状态,这就需要一个过程,也就是对新知识从熟悉到熟练的过程.教师出示练习:1.完成下列填空:(1)因为AD∥BC(已知),所以∠B=∠1( );(2)因为AB∥CD(已知),所以∠D=∠1( );(3)因为AD∥BC(已知),所以∠C+∠D=180°( ).2.如图所示,AB∥CD,AD∥BC,分别找出与∠ADC相等或互补的角.学生完成后集中评议.五、课堂小结设计意图:课堂小结并不只是课堂知识点的回顾,教师要对教学目标的达成情况进行反馈,对相关知识点进行整合,要能够提出明确的具有反思性的问题,让学生有所思,有所得,达到巩固所学知识的目的.1.平行线的三个特征?2.直线平行的特征与直线平行条件的区别.(1)平行线识别与特征的条件与结论有什么关系?(2)使用平行线识别时是已知,说明;使用平行线特征时是已知,说明.师生共同交流总结以上所学的知识.六、课后作业1.如图,若AB∥CD,则正确的结论是( )A.∠1=∠2+∠3B.∠1=∠2=∠3C.∠1+∠2+∠3=180°D.∠1=∠2+∠3=180°【答案】A2.如图,AB∥CD,AC∥BD,试说明∠1=∠3.【答案】∵AB∥CD(已知),∴∠1=∠2(两直线平等,内错角相等), 又∵AC∥BD(已知),∴∠2=∠3(两直线平行,同位角相等),∴∠1=∠3(等量代换).。
人教版七年级数学下册第五章相交线与平行线(教案)
(3)在解决实际问题时,引导学生运用平行线知识,分析问题,提高解题能力。例如,在建筑设计中,如何运用平行线知识确定建筑物的结构线条。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《相交线与平行线》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线永远不会相交的情况?”(如火车轨道、双杠等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行线的奥秘。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行线的基本概念、判定方法、性质及其在实际生活中的应用。同时,我们也通过实践活动和小组讨论加深了对平行线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-平行线在实际问题中的应用:运用平行线知识解决实际问题,培养学生的数学应用意识。
举例解释:
(1)重点讲解平行线的定义,通过图形直观展示,使学生深刻理解平行线的概念。
(2)强调平行线的性质,结合具体实例进行讲解,让学生掌握平行线之间的夹角关系。
(3)详细讲解判定平行线的方法,并通过典型题目进行巩固。
2.教学难点
此外,关于学生小组讨论环节,我觉得整体效果还不错,学生们能够积极参与,提出自己的观点。但在引导和启发学生思考方面,我觉得自己还有待提高。在今后的教学中,我将更加关注学生的思维过程,通过提问和引导,激发他们的思考。
相交线与平行线教案
相交线与平行线教案一、教学目标1. 知识与技能:了解相交线、平行线的定义与性质,并能应用相关定理解决实际问题。
2. 过程与方法:通过观察、实验等多种方式培养学生的观察、分析和解决问题的能力。
3. 情感态度价值观:培养学生的数学思维和创造力,培养合作学习和探究精神。
二、教学重点了解相交线、平行线的定义和性质,并能应用相关定理解决实际问题。
三、教学难点应用相关定理解决实际问题。
四、教学过程1. 导入通过讨论生活中的实例,引导学生了解相交线与平行线,例如:高速公路的车道、学校的操场等。
2. 引入通过介绍相交线与平行线的定义,让学生了解两者的区别:相交线:两条线交于一点。
平行线:在同一个平面内,永不相交的两条直线。
3. 概念解释让学生观察两条相交线,然后给出相交线的性质:性质1:相交线的交点只有一个。
性质2:相交线的相邻两个角互补,即它们的和为180°。
通过实验,让学生观察两条平行线,然后给出平行线的性质:性质1:平行线在同一平面上,永不相交。
性质2:平行线的对应角相等,即它们的度数相等。
性质3:平行线与一条横截线的任一条对应角互补,即它们的和为180°。
5. 探究活动让学生通过实际操作,观察并总结相交线和平行线的性质。
6. 归纳总结通过讨论和总结,让学生归纳出相交线与平行线的定义和性质。
7. 练习让学生通过练习,巩固所学的内容。
8. 拓展通过拓展的问题,培养学生的数学思维和创造力。
例如:如何证明两条直线平行?给出两条直线的方程,如何判断它们是否平行?9. 小结通过小结,帮助学生对本节课所学的内容进行总结和回顾。
五、课堂作业完成教材上的相关练习。
六、板书设计1. 相交线与平行线的定义2. 相交线的性质3. 平行线的性质七、教学反思通过引入和概念解释,将相交线和平行线的定义和性质引入学生的视野,通过实际操作和练习,培养学生观察、分析和解决问题的能力。
同时,通过拓展问题培养学生的数学思维和创造力,提高他们的探究精神。
相交线与平行线教案
相交线与平行线教案一、教学目标知识与技能:1. 学生能够理解相交线与平行线的概念。
2. 学生能够识别和绘制相交线与平行线。
3. 学生能够运用相交线与平行线的性质解决实际问题。
过程与方法:1. 学生通过观察、实验和思考,培养观察能力和逻辑思维能力。
2. 学生通过合作交流,提高沟通能力和团队合作能力。
情感态度价值观:1. 学生培养对几何学的兴趣和好奇心。
2. 学生培养解决问题、勇于尝试的精神。
二、教学重点与难点重点:1. 相交线与平行线的概念及性质。
2. 相交线与平行线的绘制方法。
难点:1. 相交线与平行线的判断与证明。
2. 相交线与平行线在实际问题中的应用。
三、教学准备教师准备:1. 教学PPT或黑板。
2. 相交线与平行线的图片或实物。
3. 练习题和答案。
学生准备:1. 笔记本和笔。
2. 学习几何的基础知识。
四、教学过程1. 导入:教师通过展示相交线与平行线的图片或实物,引导学生观察和思考,激发学生的兴趣。
2. 新课导入:教师简要介绍相交线与平行线的概念,并提出问题,引导学生思考。
3. 知识讲解:教师详细讲解相交线与平行线的性质和绘制方法,并通过示例进行演示。
4. 课堂练习:教师给出练习题,学生独立完成,教师批改并给予反馈。
5. 小组讨论:学生分组讨论相交线与平行线在实际问题中的应用,分享解题思路和方法。
五、作业布置1. 完成课后练习题。
2. 绘制相交线与平行线的图形,并写上对应的性质。
六、教学拓展1. 教师引导学生思考:除了平面上的相交线与平行线,还有哪些情况下的相交线与平行线?例如,在空间中,直线与平面的相交线与平行线。
2. 教师给出一些实际问题,引导学生运用相交线与平行线的知识进行解决,并分享解题过程和答案。
七、课堂小结1. 教师引导学生回顾本节课所学的相交线与平行线的概念、性质和应用。
2. 学生分享自己在课堂上的收获和感受。
八、课后反思1. 教师布置课后反思题目,要求学生思考自己在课堂上的表现、学习效果以及需要改进的地方。
七年级数学相交线与平行线教案
一、教学目标:1.知识目标:理解相交线、平行线的概念;了解相交线与平行线的性质和判定方法。
2.技能目标:能够判断两条线是否相交或平行;能够应用相交线与平行线的性质解决实际问题。
3.情感目标:培养学生合作学习、积极思考问题的兴趣和能力。
二、教学重点:1.相交线的定义、分类和性质。
2.平行线的定义、分类和性质。
3.利用相交线与平行线的性质解决实际问题。
三、教学难点:1.平行线的判定方法。
2.利用相交线与平行线的性质解决实际问题。
四、教学过程:1.导入新知:通过放映相关视频或出示相关图片,引导学生了解相交线与平行线的概念,并与学生一起总结相交线与平行线的特点和性质。
2.概念解释与讲解:(1)相交线的定义:指两条直线在平面内的一个点上交叉或相遇。
(2)相交线的分类:两条直线可以相交于一点、平行或重合。
根据相交线的关系,可以分为相交、垂直和不相交三种情况。
(3)相交线的性质:相交线的交点只有一个,且交点在两条线上均有。
(4)平行线的定义:指在同一个平面内,永不相交的两条直线。
(5)平行线的性质:平行线没有交点,其间的距离是相等的;平行线在同一个平面上,其夹角相等。
3.示例演练:(1)通过几何图形的示例,将相交线与平行线的概念与性质进一步让学生理解与领会,并通过示例引导学生判断图中给出的线是否相交或平行。
(2)出示一些实际生活中的图像,引导学生分析判断图中的线是否相交或平行,并引导学生应用相交线与平行线的性质进行解释和证明。
4.判定方法与实际应用:(1)相交线的判定方法:利用尺规做图法或解线性方程组的方法判断两条直线是否相交,如尺规作图法中的两直线的斜率相等或两直线的方程组有唯一解等条件。
(2)平行线的判定方法:利用尺规做图法或解线性方程组的方法判断两条直线是否平行,如尺规作图法中两直线的斜率相等但不相交或两直线的方程组无解等条件。
(3)实际应用:通过一些与生活相关的问题,引导学生运用相交线与平行线的性质解决问题,如平行线的交点无穷远处、平行线的夹角等。
相交线与平行线教案
相交线与平行线教案课程背景本教案是一节初中数学课,主要内容涉及相交线和平行线的概念、性质及应用。
在学习本课程前,学生需要掌握基本的几何图形的属性和计算方法。
教学目标•了解相交线和平行线的概念及相应符号•掌握相交线和平行线的性质及应用•能够通过相交线和平行线的性质,解决相关几何问题教学内容相交线和平行线的概念教师可以通过黑板或幻灯片出示相交线和平行线的图形,并介绍相应的符号。
相交线指两条线段在同一平面内相交的情况,而平行线指两条线段在同一平面内没有任何交点的情况。
并且,平行线符号与相交线符号的不同作用也需要解释清楚。
相交线和平行线的性质相交线性质•交错角相等定理:若两条直线AB和CD相交于点O,则∠AOC=∠BOD。
•邻补角补角定理:若两条直线AB和CD相交于点O,且∠AOD=90°,则∠AOC与∠BOD是一对补角,即∠AOC+∠BOD=180°。
•同旁内角互补定理:若两条直线根据箭头符号所示方向相交于点O,∠AOC与∠DOE是同旁内角,则∠AOC+∠DOE=180°。
•交角等于对顶角定理:若两条直线AB和CD相交于点O,且∠AOC 与∠BOD是对顶角,那么∠AOC=∠BOD。
平行线性质•平行线夹角定理:若两条直线L1和L2平行,则L1和L2之间所有的角是对应相等的。
•平行线上的四边形性质:若两条平行线L1和L2被一些线段分为若干小段,在L1上取一点A,在L2上取一点B,连结AB,再连结被分成若干小段端点构成的四边形的对角线,则AB所在线段的长度之比等于对角线上同侧线段长度之比。
相交线、平行线性质应用•利用交错角相等定理证明两条平行直线。
•利用同旁内角互补定理和邻补角补角定理求解三角形内角问题。
•利用平行线夹角定理求解夹角问题。
•利用平行线四边形性质证明某个四边形是平行四边形。
教学方法•讲解法:教师先介绍相交线和平行线的概念及符号,并通过实例演示相交线和平行线的性质,让学生理解这些概念和性质。
平行线与相交线教案
平行线与相交线教案第一章:平行线的概念与特征教学目标:1. 理解平行线的定义及其特征。
2. 学会使用直尺和圆规画出平行线。
3. 能够识别和判断图形中的平行线。
教学内容:1. 平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。
2. 平行线的特征:平行线永不相交,同一平面内,通过一点可以画出无数条平行线。
教学活动:1. 教师通过实物演示和图片引导学生观察和思考,提出平行线的概念。
3. 教师示范使用直尺和圆规画出平行线的步骤,学生跟随操作。
4. 学生进行练习,画出给定条件的平行线。
第二章:相交线的概念与特征教学目标:1. 理解相交线的定义及其特征。
2. 学会使用直尺和圆规画出相交线。
3. 能够识别和判断图形中的相交线。
教学内容:1. 相交线的定义:在同一平面内,相交于一点的两条直线叫做相交线。
2. 相交线的特征:相交线在交点处形成四个角,且四个角的和为360度。
教学活动:1. 教师通过实物演示和图片引导学生观察和思考,提出相交线的概念。
3. 教师示范使用直尺和圆规画出相交线的步骤,学生跟随操作。
4. 学生进行练习,画出给定条件的相交线。
第三章:平行线与相交线的性质与判定教学目标:1. 理解平行线与相交线的性质与判定方法。
2. 学会使用直尺和圆规判定平行线与相交线。
3. 能够应用性质与判定方法解决实际问题。
教学内容:1. 平行线的性质:平行线之间的对应角相等,同位角相等,内错角相等。
2. 相交线的性质:相交线之间的对顶角相等,相邻角互补。
3. 平行线与相交线的判定方法:同位角相等则两直线平行,对顶角相等则两直线相交。
教学活动:1. 教师通过示例和讲解,引导学生理解和掌握平行线与相交线的性质与判定方法。
2. 学生进行练习,运用性质与判定方法判断给定直线的平行或相交关系。
3. 教师提出实际问题,学生应用性质与判定方法解决。
第四章:平行线与相交线在实际应用中的举例教学目标:1. 理解平行线与相交线在实际应用中的重要性。
新课标人教版初中数学七年级下册第五章《相交线与平行线》精品教案
新课标人教版初中数学七年级下册第五章《相交线与平行线》精品教案一. 教学内容:相交线与平行线二. 主要概念:1. 邻补角有一条公共边,另一边互为反向延长线的两个角,叫做互为邻补角。
2. 对顶角一个角的两边分别为另一个角两边的反向延长线,这样的两个角叫做对顶角。
3. 垂线两条直线相交所成四个角中,如果有一个角是直角,我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线。
4. 垂线段过直线外一点,作已知直线的垂线,这点和垂足之间的线段。
5. 点到直线的距离直线外一点到这条直线的垂线段的长度。
6. 平行线在同一平面内,不相交的两条直线叫做平行线。
7. 命题判断一件事情的语句叫做命题。
8. 平移把一个图形整体沿着某一方向平行移动,这种移动叫做平移变换,简称平移。
三. 主要性质:1. 对顶角的性质对顶角相等。
2. 邻补角的性质互为邻补角的两个角和为180°。
3. 垂线的基本性质(1)经过一点有且只有一条直线垂直于已知直线;(2)垂线段最短。
4. 平行线的判定与性质【典型例题】一. 选择题1. 如图,下列条件中,能判断直线∥的是()A. =B. =C. =D. +=2. 如图,直线a、b都与直线c相交,给出下列条件:(1)=;(2)=;(3)+=;(4)+=,其中能判断a∥b的是()A.(1)(3)B.(2)(4)C.(1)(3)(4)D.(1)(2)(3)(4)3. 如图,AB∥EF∥DC,EG∥DB;则图中与相等的角(除外)共有()A. 6个B. 5个C. 4个D. 3个4. 如图,若AB∥CD,则()A. =+B. =-C. ++ =D. -+=5. 如图,AB∥EF∥DC,EH⊥CD于H,BAC+ACE+CEH=()A. 180°B. 270°C. 360°D. 450°6. 已知两个角的两边分别垂直,其中一个角比另一个角的3倍少8,那么这个角的度数是()A. 47°或4°B. 133°或4°C. 47°或133°D. 以上都不对7. 下列条件中,能得到互相垂直的是()(1)对顶角的平分线(2)邻补角的平分线(3)内错角的平分线(4)同旁内角的平分线(5)同位角的平分线A. 0个B. 1个C. 2个D. 3个8. 如图,AB∥EF,C=90,则1、2和3的关系是()A. =1+ 3B. +1+ 3 =C. +1- 3 =90D. +3- 1 =909. 若直线a、b分别与直线c、d相交,且+=,-=,=115,那么=()A. 55°B. 65°C. 75°D. 85°10. 如图,已知a∥b,且AB⊥a,ABC=130,则1=()A. 30°B. 40°C. 50°D. 60°11. 下列命题不正确的是()A. 两条不相交的直线是平行线B. 在同一平面内不平行的两条直线必相交C. 在同一平面内不相交的两条直线必平行D. 在同一平面内两条直线的位置关系只有两种:相交、平行12. 一条道路经过两次转弯后,与原来的方向平行,若第一次拐弯为150°,那么第二次转弯度数应为()A. 150°B. 30°C. 150°或30°D. 以上都不对答案:1—5 CDBAB 6—10 ABCBB 11—12 AC二. 解答题:1. 如图所示,图中有几对同旁内角?分析:我们知道两条直线被第三条直线所截共形成八个角,其中有两对同旁内角。
七年级数学下册《相交线与平行线》教案
七年级数学下册《相交线与平行线》教案教案:相交线与平行线教学目标:1. 掌握相交线、平行线的概念和判断方法。
2. 熟练应用相交线与平行线的性质解决实际问题。
3. 培养学生的逻辑思维和分析能力。
教学重点:1. 掌握相交线与平行线的性质和判断方法。
2. 能够灵活运用相关知识解决实际问题。
教学难点:1. 准确判断相交线与平行线的方法。
2. 能够利用相交线与平行线的性质解决实际问题。
教学准备:1. 教材:七年级数学下册《相交线与平行线》。
2. 多媒体课件和相关教学工具。
教学步骤:步骤一:导入新知识(10分钟)1. 利用多媒体课件或实际物件引导学生观察相交线和平行线的例子,帮助学生理解相交线与平行线的概念。
2. 提问学生:如何判断两条线是否相交?如何判断两条线是否平行?步骤二:讲解相交线与平行线的性质(15分钟)1. 通过多媒体课件或示意图,讲解相交线与平行线的性质,包括相交线的特点、平行线的特点以及相交线和平行线之间的关系。
2. 强调重要概念:对顶角、同位角、内错角。
步骤三:例题讲解(25分钟)1. 请学生打开教材,找到相关知识点的例题。
2. 逐步讲解例题的解题思路和方法,引导学生掌握判断相交线与平行线的具体性质和运用方法。
步骤四:练习与讨论(20分钟)1. 让学生独立完成教材中的练习题,然后与同桌讨论答案。
2. 引导学生在讨论中互相纠错,解决疑惑,提高对概念的理解和应用能力。
步骤五:巩固与拓展(10分钟)1. 提供一些拓展问题,让学生运用所学知识解答,鼓励学生灵活运用。
2. 强调相交线与平行线的重要性和实际应用。
步骤六:小结与作业布置(5分钟)1. 小结相交线与平行线的性质和判断方法。
2. 布置课后作业,巩固所学知识。
教学反思:本节课通过观察、讲解和练习等多种方式,帮助学生掌握相交线与平行线的概念和性质,并能够灵活运用所学知识解决实际问题。
在教学过程中,可以采用多媒体课件和实物示例等方式,增加趣味性和直观性,提高学生的学习兴趣和积极性。
最新-初中数学平行线教案优秀6篇
初中数学平行线教案优秀6篇在日复一日的学习、工作或生活中,大家都写过作文吧,作文是经过人的思想考虑和语言组织,通过文字来表达一个主题意义的记叙方法。
你知道作文怎样写才规范吗?学而不思则罔,思而不学则殆,下面是勤劳的小编帮助大家收集整理的初中数学平行线教案优秀6篇。
初中数学平行线教案篇一教学目标:1、学会平行线的识别的方法,能在实际生活和数学图形中识别平行线;能根据图形中的已知条件,通过简单的说理,得出欲求结果。
2、通过说理渗透合情推理的思想,培养学生逻辑推理能力。
3、通过探索平行线的三个识别方法,让学生在学习活动中获得成功的体验,锻炼克服困难的意志,培养科学的学习态度。
教学重难点:重点:学会平行线识别的。
方法,能在实际生活和数学图形中识别平行线。
难点:能根据图形中的已知条件,学会用数学语言简单的说理。
教学准备:三角板、直尺、硬纸片(角的形状)教学过程:一、创设问题情景1、组织学生进行如下活动:(1)用硬纸片制作一个角;(2)这个角放在白纸上,描出∠AOB;(如图)(3)再把角的两边反向延长得OD、OC,把角的一边靠在延长线OD上,再把这个角画出来得∠OPE;(4)探索这个过程,你能得到什么结论?为什么?2、在上述操作过程中,角的位置移到了另一个位置,这样的移动称为平移。
在平移前后的相同位置构成了一对同位角,其大小始终不变,因此,只要保持同位角相等,画出的直线就平行于已知直线。
请同学们根据这样的一个事实用一句话来叙述。
3、学生分组交流二、探索结论1、同位角相等,两直线平行。
2、如图,直线a、b被直线c所截,如果∠1=∠2,那么a∠b。
如果∠1=∠3,可得a∠b吗?同样,你能用语言来叙述吗?得出结论:内错角相等,两直线平行。
3、如果∠1+∠4=,能识别两直线a∠b吗?让学生分组交流得出结论:同旁内角互补,两直线平行。
4、组织学生分组讨论,归纳总结平行线的识别方法。
(略)三、识别方法的应用例1、按课本讲,但注意书写格式:∠∠1=∠2,根据“内错角相等,两直线平行”,∠a∠b。
相交线与平行线教案人教版(教案)
相交线与平行线教案人教版(优秀教案)第一章:相交线与平行线的概念介绍1.1 相交线的定义:讲解两条直线在平面内相交的概念。
展示实例,让学生理解相交线的特征。
1.2 平行线的定义:讲解两条直线在平面内不相交的概念。
展示实例,让学生理解平行线的特征。
第二章:相交线与平行线的性质2.1 相交线的性质:讲解相交线的交点特征,即交点将相交线分为两对对应角。
展示实例,让学生理解相交线的性质。
2.2 平行线的性质:讲解平行线的对应角特征,即同位角相等、内错角相等、同旁内角互补。
展示实例,让学生理解平行线的性质。
第三章:相交线与平行线的判定3.1 相交线的判定:讲解如何判断两条直线是否相交。
展示实例,让学生学会判断相交线。
3.2 平行线的判定:讲解如何判断两条直线是否平行。
展示实例,让学生学会判断平行线。
第四章:相交线与平行线在实际问题中的应用4.1 相交线的应用:通过实例讲解相交线在实际问题中的应用,如测量角度、确定位置等。
4.2 平行线的应用:通过实例讲解平行线在实际问题中的应用,如建筑设计、道路规划等。
第五章:相交线与平行线的练习题5.1 相交线的练习题:提供一些关于相交线的练习题,让学生巩固相交线的概念和性质。
5.2 平行线的练习题:提供一些关于平行线的练习题,让学生巩固平行线的概念和性质。
第六章:同位角与内错角的性质6.1 同位角的性质:讲解同位角的定义及特点,即两条直线被第三条直线所截,位于两条直线同一侧且相对位置相同的两对角。
展示实例,让学生理解同位角的性质。
6.2 内错角的性质:讲解内错角的定义及特点,即两条直线被第三条直线所截,位于两条直线之间且相对位置相同的两对角。
展示实例,让学生理解内错角的性质。
第七章:同位角与内错角的判定7.1 同位角的判定:讲解如何判断两对角是否为同位角。
展示实例,让学生学会判断同位角。
7.2 内错角的判定:讲解如何判断两对角是否为内错角。
展示实例,让学生学会判断内错角。
《相交与平行》教学设计(精选4篇)
《相交与平行》教学设计(精选4篇)《相交与平行》篇1黑小王继星一、指导思想与理论依据:新的《数学课程标准》对数学教学活动提出的基本理念之一是:“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。
教学应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
”基于以上理念,我们必须改革课堂教学中教师始终“讲”、学生被动“听”的局面,充分相信学生,把学习的主动权交给学生,充分调动学生的学习积极性。
为此,我在小学数学课堂教学中构建了探索性学习的纵向结构,即“设疑激情———引导探索———应用提高———交流评价”的基本教学模式。
二、教材分析:本节课的教学内容是北京市义务教育课程改革实验教材2第五单元“空间与图形”的《相交与平行》。
在学生初步认识直线以后,本单元教学直线与直线的位置关系。
在同一平面内的两条直线可能相交,也可能不相交。
不相交的两条直线互相平行。
相交成直角的两条直线互相垂直,垂直是特殊位置的相交。
教材按上述的线索,组织教学内容,把两条直线的平行和垂直作为本单元的主要内容。
先教学平行,再教学垂直。
以理解这两种位置关系为重点,平面内两直线的平行与相交(包括垂直)的位置关系在数学学科中具有重要意义。
它是画垂线、平行线和学习点到直线的距离的基础。
在理解的基础上,用各种方法画出互相平行、互相垂直的直线,并通过这些活动,体会平行线和垂线的一些特性。
对于理解掌握初中几何知识也起着很重要的作用。
三、学情分析:在我们的日常生活中,平行与相交的现象无处不在,但由于四年级学生的知识积累与生活经验少,学生只对与本节有密切关系的“角”“直线、射线、线段”的知识熟练的掌握,但对平行与相交的现象还只是有初步模糊的认识,尤其是对于一些几何术语可能理解不透,如:“同一平面”“两直线的位置关系”“互相垂直”等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年级
七年级
学科
数学
第一备课
李景婷
审核
李景婷
第二备课
刘洪梅
课题
第五章相交线与平行线复习5
课型
授新
章节
第五章
备课时间
授课时间
学习目标
经历对本章所学知识回顾与思考的过程,将本章内容条理化,系统化,梳理本章的知识结构.通过对知识的疏理,进一步加深对所学概念的理解,进一步熟悉和掌握几何语言,能用语言说明几何图形.使学生认识平面内两条直线的位置关系,在研究平行线时,能通过有关的角来判断直线平行和反映平行线的性质,理解平移的性质,能利用平移设计图案.
重点
复习正面内两条直线的相交和平行的位置关系,以及相交平行的综合应用.
难点
垂直、平行的性质和判定的综合应用
学
习
过
程
19.(6分)(读句画图)
如图,直线CD与直线AB相交于C,根据下列语句画图
(1)过点P作PQ∥CD,交AB于点Q
(2)过点P作PR⊥CD,垂足为R
(3)若∠DCB=1200,猜想∠PQC是多少度?并说明理由
即∠_____ =∠_____()
∴∠3=∠_____
∴AD∥BE()
22.(5分)已知:如图,AB⊥CD,垂足为O,EF经过点O,∠2=4∠1,求∠2,∠3,∠BOE的度数.
23.(5分)如图:已知;AB∥CD,AD∥BC,∠B与∠D相等吗?试说明理由.
24.(6分)如图,AB⊥BD,CD⊥MN,垂足分别是B、D点,∠FDC=∠EBA.
(1)判断CD与AB的位置关系;
(2)BE与DE平行吗?为什么?
25.(6分)如图,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.
(1)AE与FC会平行吗?说明理由.
(2)AD与BC的位置关系如何?为什么?
(3)BC平分∠DBE吗?为什么.
26.(6分)在方格纸上,利用平移画出长方形ABCD的立体图,其中点D′是D的对应点.(要求在立体图中,看不到的线条用虚线表示)
20.(6分)如图,是一条河,C河边AB外一点:
(1)过点C要修一条与河平行的绿化带,请作出正确的示意图.
(2)现欲用水管从河边AB,将水引到C处,请在图上测量并计算出水管至少要多少?(本图比例尺为1:2000)
21:如图,D、E、F分别是BC、CA、AB上的点,D∥AB,DF∥AC,试说明∠FDE=∠A.
解:∵DE∥AB()
∴∠A+∠AED=1800()
∵DF∥AC()
∴∠AED+∠FED=1800()
∴∠A=∠FDE()
(2)如图AB∥CD∠1=∠2,∠3=∠4,试说明AD∥BE
解:∵AB∥CD(已知)
∴∠4=∠_____()
∵∠3=∠4(已知)
∴∠3=∠_____()
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF()
课堂后测
(读句画图)
如图,直线CD与直线AB相交于C,根据下列语句画图
(1)过点P作PQ∥CD,交AB于点Q
(2)过点P作PR⊥CD,垂足为R
(3)若∠DCB=1200,猜想∠PQC是多少度?并说明理由
学习反思