第7章稳恒磁场习题(包含答案)
第7章稳恒磁场及答案教学总结
第7 章稳恒磁场及答
案
第七章稳恒电流
1、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S , S 边线所在平面的法
线方向单位矢量n 与B 的夹角为
,则通过半球面 S 的磁通量(取弯面向外为正)
(C) o I /4 . (D) 2 o I/3 .
4、如图,在一固定的载流大平板附近有一载流小线框能自由转 动或平
动.线框平面与大平板垂直.大平板的电流与线框中电流 方向如图所示,
则通电线框的运动情况对着从大平板看是:
(A)靠近大平板.
(B)顺时针转动. (C)逆时针转动. (D)离开大平板向外运动.
(A) r 2B . . (B) 2 r 2B . 2 2
(C) - r Bsin . (D) - r Bcos . 2、磁场由沿空心长圆筒形导体的均匀分布的 \ B 电流产生,圆筒半径为 R , x 坐标轴垂直圆筒 轴线,原点在中心轴线上.图(A)〜(E)哪一条 曲线表示B -x 的关系? AB (A) (D) 『(C) )R x O R x n 3、如图,两根直导线ab 和cd 沿半径方向被 接到一个截面处处相等的铁环上,稳恒电流
I 从a 端流入 而从d 端流出,则磁感强度 B 沿图中闭合路径L 的积分 B dl 等于 L
1 (A) 。
1 .
(B)-。
丨. 3 L。
第7章 (稳恒磁场)习题课
二.载流导线和运动电荷所受磁场力
1. 洛伦兹力: 特征:方向垂直于v和B所构成的平 面;不作功,不改变电荷的速率和动能.
方向沿x方向 (若F为正值,则合力的方向与x轴正向一致)。
例5 半径分别为R1和R2的两个半圆弧与直径的两小段
构成的通电线圈abcda (如图所示),放在磁感强度
为B的均匀磁场中,平行线圈所在平面.则 线圈的磁矩大小为
1 2 I ( R2 R12 ) 2 ___________ ,
R2 a b
2r
0
2
R o r
dr
B
0
2
dr
0
R
0R
2
dr
例4. 均匀带电细直线AB, 电荷线密度为λ, 绕垂直于 直线通过O 点的轴以角速度ω 匀速转动( 线形状不 变, O 点在A B 延长线上) , 求: r dr (1 ) O点的磁感应强度B; O B a A (2 ) 磁矩m ; b (1)解 :在带电细线离O点r处取线元dr,其带 电量 dq dr,旋转时相当于一圆电流
2 r 2 R2 I 1 H 2 2 2r R R 3 2
1.解: 圆电流在O点产生的磁场 0 I 2 B1 方向× 2R 长直导线电流在O点产生的磁场 0 I 2 方向× B2 2R 导体管在O点产生的磁场由安培环路定理求得,
B3
0 I1
2 (d R)
方向×
圆心O点处的磁感应强度
第7章_稳恒磁场集美大学物理答案
班级____________ 姓名______________ 学号_________________ 第7-1 毕奥—萨伐尔定律 一.选择题:1.一根载有电流I 的无限长直导线,在A 处弯成半径为R 的圆形,由于导线外有绝缘层,在A 处两导线靠得很近但不短路,则在圆心处磁感应强度B 的大小为:( C ) (A) (μ0+1)I /(2πR ) (B) μ0I /(2πR ) (C) μ0I (-1+π)/(2πR )(D) μ0I (1+π)/(4πR )2.将半径为R 的无限长导体薄壁管(厚度忽略) 沿轴向割去一宽度为h (h <<R )无限长狭缝后,再沿轴向均匀地流有电流,其面电流密度为i (即沿圆周每单位长度的电流),则管轴线上磁感应强度的大小是:( A )(A) R h i πμ2/0 (B) 0(C) R h i πμ4/0(D) h i 0μ二、计算题:3.载有电流为I 的无限长导线,弯成如图形状,其中一段是半径为R 的半圆,则圆心处的磁感应强度B 的大小为多少? 解: 选为正方向123B B B B →→→→=++1(14IB Rομπ=--2,42I B R ομπ=⋅ 34I B R ομ=∴)12(4-+=ππμοRIB4.用相同的导线组成的一导电回路,由半径为R 的圆周及距圆心为R /2的一直导线组成(如图),若直导线上一电源ε,且通过电流为I ,求圆心O处的磁感应强度。
解 设大圆弧的电流为1I ,小圆弧的电流为2I ,则12I I I +=,选为正方向根据电阻定律有1122l I Sl I S ερερ⎧=⎪⎪⎨⎪=⎪⎩可得:1122I l I l =大圆弧电流在圆心处O 产生的磁感应强度:大小为01114I l B R μπ=,方向为 小圆弧电流在圆心处O 产生的磁感应强度:大小为02224I lB Rμπ=,方向为⊗直导线电流在圆心处O 产生的磁感应强度:大小为0035cos cos 66242I I B R R μππππ⎛⎫=-= ⎪⎝⎭,方向为所以,总电流在圆心处O 产生的磁感应强度:312B B B B =++,大小为:02IB Rπ=,方向为5.如图,两线圈共轴,半径分别为1R 和2R ,电流分别为I 1 和I 2 ,电流方向相同,两圆心相距2 b ,联线的中点为O 。
最新第7章稳恒磁场及答案
第七章稳恒电流1、在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B 的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) πr 2B . . (B) 2 πr 2B . (C) -πr 2B sin α. (D) -πr 2B cos α.2、磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲线表示B -x 的关系?[ ]3、如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分⎰⋅LlB d 等于(A) I 0μ. (B)I 031μ. (C) 4/0I μ. (D) 3/20I μ.4、如图,在一固定的载流大平板附近有一载流小线框能自由转动或平动.线框平面与大平板垂直.大平板的电流与线框中电流方向如图所示,则通电线框的运动情况对着从大平板看是: (A) 靠近大平板. (B) 顺时针转动. (C) 逆时针转动. (D) 离开大平板向外运动.5、在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图所示.在此情形中,线框内的磁通量Φ =______________.n B α SOB x O R (A) BxO R (B)Bx O R (D) Bx O R (C)BxO R (E)x 电流 圆筒II ab c d 120°I 1I 2b baI6、如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳恒电流I ,则圆心O 处的电流元l I d 所受的安培力Fd 的大小为____,方向________.7、有一根质量为m ,长为l 的直导线,放在磁感强度为 B的均匀磁场中B 的方向在水平面内,导线中电流方向如图所示,当导线所受磁力与重力平衡时,导线中电流I =___________________.8、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为δ ,求与平板共面且距平板一边为b 的任意点P 的磁感强度.9、一根同轴线由半径为R 1的长导线和套在它外面的内半径为R 2、外半径为R 3的同轴导体圆筒组成.中间充满磁导率为μ的各向同性均匀非铁磁绝缘材料,如图.传导电流I 沿导线向上流去,由圆筒向下流回,在它们的截面上电流都是均匀分布的.求同轴线内外的磁感强度大小B 的分布.答案: 一 选择题1、D2、A3、D4、B5、2ln 20πIaμ6、a l I 4/d 20μ 垂直电流元背向半圆弧(即向左)7、)/(lB mgIlI dIBI8、解:利用无限长载流直导线的公式求解. (1) 取离P 点为x 宽度为d x 的无限长载流细条,它的电流x i d d δ=(2) 这载流长条在P 点产生的磁感应强度 x i B π=2d d 0μxxπ=2d 0δμ 方向垂直纸面向里. (3) 所有载流长条在P 点产生的磁感强度的方向都相同,所以载流平板在P 点产生的磁感强度==⎰B B d ⎰+πba bxdx x20δμb b a x +π=ln 20δμ 方向垂直纸面向里.9、解:由安培环路定理: ∑⎰⋅=i I l Hd 0< r <R 1区域: 212/2R Ir rH =π 212R Ir H π=, 2102R Ir B π=μR 1< r <R 2区域: I rH =π2r I H π=2, rIB π=2μR 2< r <R 3区域: )()(22223222R R R r I I rH ---=π )1(22223222R R R r r IH ---π= )1(2222322200R R R r r IH B ---π==μμ r >R 3区域: H = 0,B = 0x d x PO x党的十九届四中全会精神解读1.《中共中央关于坚持和完善中国特色社会主义制度、推进国家治理体系和治理能力现代化若干重大问题的决定》提出,到(),各方面制度更加完善,基本实现国家治理体系和治理能力现代化。
《大学物理》课后解答题 第七章稳恒磁场
第7章 稳恒磁场一、思考讨论题1、如图4.1所示的电流元Idl 是否在空间所有点的磁感应强度均不为零?请你指出Idl在a 、b 、c 、d 四点产生的磁感应强度的方向。
解:不是,电流元Idl在自身产生的磁感应强度为零。
a 、垂直纸面向外b 、垂直纸面向外c 、垂直纸面向内d 、垂直纸面向内2、分别求图4.2中的三种情况下,通有电流I 的直线电流在图中点产生磁感应强度B 的大小和方向。
解:a 图,()a I cos cos a I B πμπμ823145304--=-=方向垂直纸面向内 b 图,()aIcos cos a I B πμπμ82345604--=-= 方向垂直纸面向内 c 图() 30041cos cos a I B -=πμ () 1806030402cos cos tan c a I B -=πμ aIB B B πμ41312-=-= 方向垂直纸面向内3、电流分布如图4.3所示,分别求出各图中O 点的磁感应强度O B的大小和方向。
图4.1图4.2a图4.2ba图4.2c1 R 3解:a 图, 321B B B B ++=()30060431cos cos cos R IB B -==πμ23601202a I B μ=方向垂直纸面向内b 图, 01=B ,RIR I B 126122μμ==,()2322180150243-=-⋅=R I cos cos R I B πμπμ所以,⎪⎪⎭⎫⎝⎛-+=R R I B πμ432121 方向垂直纸面向内 c 图,RIR I B 834321μμ==,052==B B R I B B πμ16243==,所以,⎪⎪⎭⎫ ⎝⎛+=πμ238R I B 方向垂直纸面向外 4、若空间中存在两根无限长直载流导线,则磁场的分布就不存在简单的对称性,因此:(A )安培环路定理已不成立,故不能直接用此定理计算磁场分布。
(B )安培环路定理仍然成立,故仍可直接用此定理计算磁场分布。
第7章 稳恒磁场习题解答
第7章 稳恒磁场7-1 如图,一个处在真空中的弓形平面载流线圈acba ,acb 为半径cm 2=R 的圆弧,ab 为圆弧对应的弦,圆心角090aob ∠=,A 40=I ,试求圆心O 点的磁感应强度的大小和方向。
解 由例7-1 线段ba 的磁感应强度 o o 40140(cos45-cos135) =410T4π0.02cos45B μ-=⨯⨯︒方向垂直纸面向外。
由例7-2 圆弧acb 的磁感应强度4002π1402 3.1410T 2π2420.02I μB R μ-==⨯=⨯方向垂直纸面向内。
4120.8610TB B B -=-=⨯方向垂直纸面向外。
7-2 将载流长直导线弯成如图所示的形状,求圆心O 点处磁感应强度。
解 如图,将导线分成1(左侧导线)、2(半圆导线)、3(右侧导线)三部分,设各部分在O 点处产生的磁感应强度分别为1B 、2B 、3B 。
根据叠加原理可知,O 点处磁感应强度321B B B B++=。
01=B024I B Rμ=,方向垂直于纸面向里034πI B Rμ=,方向垂直于纸面向里O 点处磁感应强度大小为习题7-1图0O 23(1π)4πIB B B Rμ=+=+ ,方向垂直于纸面向里。
7-3 一圆形载流导线圆心处的磁感应强度为1B ,若保持导线中的电流强度不变,而将导线变成正方形,此时回路中心处的磁感应强度为2B ,试求21:B B解 设导线长度为l ,为圆环时, 2πl R = 001π2I I B R l μμ==为正方形时,边长为4l,由例7-100024(cos 45cos135)4π8IB lμ=⨯-=⨯212 :πB B =7-4 如图所示,一宽为a 的薄长金属板,均匀地分布电流I ,试求在薄板所在平面、距板的一边为a 的点P 处的磁感应强度。
解 取解用图示电流元,其宽度为d r ,距板下边缘距离为r ,其在P 点处激发的磁感应强度大小为00d d d 2π22π(2)II r B (a r)a r aμμ==--,方向垂直于纸面向外。
第7章稳恒磁场分析
第6章恒定磁场习题6.1 毕奥—萨伐尔定律一.选择题( )1、宽为a ,厚度可以忽略不计的无限长扁平载流金属片,如图6.1.1所示,中心轴线上方一点P 的磁感应强度的方向是(A) 沿y 轴正向. (B )沿z 轴负向.(B) (C) 沿y 轴负向. (D) 沿x 轴正向.( )2、两无限长载流导线,如图6.1.2放置,则坐标原点的磁感应强度的大小和方向分别为:(A)2μ0 I / (2 π a ) ,在yz 面内,与y 成45︒角. (B)2μ0 I / (2 π a ) ,在yz 面内,与y 成135︒角. (C)2μ0 I / (2 π a ) ,在xy 面内,与x 成45︒角.(D)2μ0 I / (2 π a ) ,在zx 面内,与z 成45︒角. ( )3、一无限长载流导线,弯成如图6.1.3所示的形状,其中ABCD 段在x O y平面内,BCD 弧是半径为R 的半圆弧,DE 段平行于O z 轴,则圆心处的磁感应强度为(A) j μ0 I / (4 π R ) + k [μ0 I / (4 π R )-μ0 I / (4R )] .(B) j μ0 I / (4 π R ) -k [μ0 I / (4 π R ) + μ0 I / (4R )] . (C) j μ0 I / (4 π R ) + k [μ0 I / (4 π R )+μ0 I / (4R )] . (D) j μ0 I / (4 π R ) -k [μ0 I / (4 π R )-μ0 I / (4R )] .( )4、一电流元i d l 位于直角坐标系原点,电流沿Z 轴方向,空间点P ( x , y , z )的磁感应强度沿x 轴的分量是:(A) 0.(B) –(μ0 / 4π)i y d l / ( x 2 + y 2 +z 2 )3/2 . (C) –(μ0 / 4π)i x d l / ( x 2 + y 2 +z 2 )3/2 .(D) –(μ0 / 4π)i y d l / ( x 2 + y 2 +z 2 ) .( )5、电流I 由长直导线1 沿垂直bc 边方向经a 点流入一电阻均匀分布的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2 返回电源 (如图6.1.4),若载流直导线1、2和三角形框在框中心O 点产生的磁感应强度分别用B 1 、B 2和B 3 表示,则O 点的磁感应强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0 .(B) B = 0,因为虽然B 1 ≠0,B 2 ≠0,但 B 1 +B 2 = 0 ,B 3 = 0. (C) B ≠ 0,因为虽然B 3 =0,但B 1 +B 2 ≠ 0. (D) B ≠ 0,因为虽然B 1 +B 2 = 0,但B 3 ≠0 . ( )6、如图6.1.5,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω 绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为(A) B 1 = B 2. (B) B 1 = 2B 2. (C) B 1 =21B 2. (D) B 1 = B 2 /4. ( )7、边长为 l 的正方形线圈中通有电流I ,此线圈在A 点(见图6.1.6)产生的磁感强度B 为 (A)l Iπ420μ. (B) l Iπ220μ (C) lIπ02μ. (D) 以上均不对. ( )8、如图6.1.7所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,· ·xyz -aaII O图6.1.2y -R · · xz R I IO A BC DE图6.1.3 12 O a bcI I图6.1.4图6.1.5AII 图6.1.6则在环形分路的环心处的磁感强度(A) 方向垂直环形分路所在平面且指向纸内. (B) 方向垂直环形分路所在平面且指向纸外. (C) 方向在环形分路所在平面,且指向b . (D) 方向在环形分路所在平面内,且指向a . (E) 为零.( )9、在一平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流i 的大小相等,其方向如图6.1.8所示.问哪些区域中有某些点的磁感强度B 可能为零? (A) 仅在象限Ⅰ. (B) 仅在象限Ⅱ. (C) 仅在象限Ⅰ,Ⅲ. (D) 仅在象限Ⅰ,Ⅳ.(E) 仅在象限Ⅱ,Ⅳ.二.填空题 1、氢原子中的电子,以速度v 在半径r 的圆周上作匀速圆周运动,它等效于一圆电流,其电流I 用v 、r 、e (电子电量)表示的关系式为I = ,此圆电流在中心产生的磁场为B= ,它的磁矩为p m = .2、真空中稳恒电流I 流过两个半径分别为R 1 、R 2的同心半圆形导线,两半圆导线间由沿直径的直导线连接,电流沿直导线流入 (1) 如果两个半圆面共面,如图6. 1.9 (1),圆心O 点磁感应强度B 0 的大小为 ,方向为 ; (2) 如果两个半圆面正交,如图6.1.9(2),则圆心O 点磁感应强度B 0 的大小为 ,B 0的方向与y 轴的夹角为 .3、求图6.1.10中各图P 点的磁感强度B 的大小和方向三.计算题1、 如图,将一导线由内向外密绕成内半径为R 1 ,外半径为R 2 的圆形平面线圈,共有N 匝,设电流为I ,求此园形平面载流线圈在中心O 处产生的磁感应强度的大小.II · O O · I I x yz R 1R 2R 2 R 1 (1)(2)图6.1.91 2a bOI I · ·cI db a图6.1.7图6.1.8I aI2P IP a a图6.1.102.、宽为b的无限长平面导体薄板,通过电流为I,电流沿板宽度方向均匀分布,求:(1)在薄板平面内,离板的一边距离为b的M点处的磁感应强度;(2)通过板的中线并与板面垂直的直线上的一点N处的磁感应强度,N点到板面的距离为x。
稳恒磁场习题(包含答案)
练习八磁感应强度毕奥—萨伐尔定律(黄色阴影表示答案) 一、选择题如图所示,边长为l的正方形线圈中通有电流I,则此线圈在: AlIπμ220.(C)lIπμ2(D) 以上均不对.电流I由长直导线1沿对角线AC方向经A点流入一电阻均匀分布的正方形导线框,再由D点沿对角线BD方向流出,经长直导线2返回电源, 如图所示. 若载流直导线1、2和正方形框在导线框中心O点产生的磁感强度分别用B1、B2和B3表示,则O点磁感强度的大小为:A(A) B = 0. 因为B1 = B2 = B3 = 0 .(B) B = 0. 因为虽然B1 0, B2 0, B1+B2 = 0, B3=0(C) B 0. 因为虽然B3 = 0, 但B1+B2 0(D) B0. 因为虽然B1+B2 = 0, 但B3 03. 如图所示,三条平行的无限长直导线,垂直通过边长为a 的正三角形顶点,每条导线中的电流都是I,这三条导线在正三角形中心O点产生的磁感强度为:B(D) B=30I/(3a) . .如图所示,无限长直导线在P处弯成半径为R的圆,当通以电流I时,则在圆心O 点的磁感强度大小等于:C(A)RIπμ20.(B)Iμ.(D) )11(4πμ+RI.二、填空题如图所示,在真空中,电流由长直导线1沿切向经a点流入一电阻均匀分布的圆环,再由b点沿切向流出,经长直导线2返回电源.已知直导线上的电流强度为I,圆环半径为R,aob=180.则圆心O点处的磁感强度的大小B = .0图图图图图I练习九毕奥—萨伐尔定律(续)一、选择题1. 在磁感强度为B的均匀磁场中作一半径为r的半球面S,S边线所在平面的法线方向单位矢量n与B的夹角为,如图所示. 则通过半球面S的磁通量为:(A) r2B.(B) 2r2B.(C) r2B sin.(D) r2B cos.如图,载流圆线圈(半径为R)与正方形线圈(边长为a)通有相同电流I ,若两线圈中心O1与O2处的磁感应强度大小相同,R: a为(A) 1:1.(B) π2:1.三、计算题1.在无限长直载流导线的右侧有面积为S1和S2的两个矩形回路,回路旋转方向如图所示, 两个回路与长直载流导线在同一平面内, 且矩形回路的一边与长直载流导线平行. 求通过两矩形回路的磁通量及通过S1回路的磁通量与通过S2回路的磁通量之比.(此题作为悬赏题)练习十安培环路定理一、选择题2. 无限长直圆柱体,半径为R,沿轴向均匀流有电流. 设圆柱体内(r< R)的磁感强度为B1,圆柱体外(r >R)的磁感强度为B2,则有:(A) B1、B2均与r成正比.(B) B1、B2均与r成反比.(C) B1与r成正比, B2与r成反比.(D) B1与r成反比, B2与r成正比.在图(a)和(b)中各有一半径相同的圆形回路L1和L2,圆周内有电流I2和I2,其分布相同,且均在真空中,但在图(b)中,L2回路外有电流I3,P1、P2为两圆形回路上的对应点,则:(A) ⎰⋅1dLlB=⎰⋅2dLlB,21PPBB=.(B) ⎰⋅dLlB⎰⋅dLlB,21PPBB=.图图图图P1L(a)3P2(b)图(D)⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B≠.如图所示,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,恒定电流I 从a 端流入而从d 端流 出,则磁感强度B 沿图中闭合路径的积分⎰⋅Ll B d 等于:(A) 0I . (B) 0I /3. (C) 0I /4. (D) 20I /3 . 如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理(B) 0 d =⋅⎰L l B ,且环路上任意点B =0. (C) 0 d ≠⋅⎰Ll B ,且环路上任意点B 0. (D) 0 d ≠⋅⎰Ll B,且环路上任意点B =0.二、填空题两根长直导线通有电流I ,图所示有三种环路,对于环路a ,=⋅⎰a L l B d ;对于环路b , =⋅⎰bL l B d ;对于环路c ,=⋅⎰cL l B d . 0I , 0, 20I .练习十一安培力 洛仑兹力一、选择题如图所示. 匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是:B(A) ab 边转入纸内,cd 边转出纸外. (B) ab 边转出纸外,cd 边转入纸内. (C) ad 边转入纸内,bc 边转出纸外. (D) ad 边转出纸外,cd 边转入纸内.5. 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动的轨道所围的面积内的磁通量是(A) 正比于B ,反比于v 2. (B) 反比于B,正比于v 2.图图图(C) 正比于B ,反比于v. (D) 反比于B ,反比于v练习十三 静磁场习题课一、选择题1. 一质量为m 、电量为q 的粒子,以与均匀磁场B 垂直的速度v 射入磁场中,则粒子运动轨道所包围范围内的磁通量m 与磁场磁感强度B 的大小的关系曲线是图中的哪一条 D边长为l 的正方形线圈,分别用图所示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为:(A) B 1 = 0 . B 2 = 0.(B) B 1 = 0 . lIB πμ0222=lπ01l Iπμ0222.如图, 质量均匀分布的导线框abcd 置于均匀磁场中(B 的方向竖直向上),线框可绕AA 轴转动,导线通电转过 角后达到稳定平衡.如果导线改用密度为原来1/2的材料做,欲保持原来的稳定平衡位置(即 角不变),可以采用哪一种办法(A) 将磁场B 减为原来的1/2或线框中电流减为原来的1/2. (B) 将导线的bc 部分长度减小为原来的1/2. (C) 将导线ab 和cd 部分长度减小为原来的1/2. (D)将磁场B 减少1/4,线框中电流强度减少1/4.图图l (1)d图(A)(D) (C)(B) (E)。
临沂大学物理第七章稳恒磁部分习题P205
0 4
I1l1 R2
• 方向垂直纸面向里。
同理,第二段圆弧在O点所产生的磁感应强度为
B2
l2 0 0 4
I2dl R2
0 4
I2l2 R2
方向垂直纸面向外。 铁环在O点所产生的总磁感应强度为
B B1 B2
0 4
I1l1 R2
0 4
I2l2 R2
0
• 7.在真空中有两根互相平行的截流长直导线 L1和L2,相距0.1m,通有方向相反的电 流 , I1 20A I2 10A 求L1,L2所决定的平面内位 于L2两侧各距为0.05m的a,b两点的磁感应 强度为B。
课本 P205 1,3
• 3. 在一个载流圆线圈的轴线上放置一个方 位平行于线圈平面的载流直导线,在轴线
上P点处它们二者产生的磁感强度的大小分 别为 B1 = 3 T、 B2 = 5 T,方向如本题图 所示,求P点处的磁感强度B。
• 4. 一条无限长直导线在一处弯折成半径为R 的圆弧,如图7.2所示,若已知导线中电流 强度为I,试利用比奥—萨伐尔定律求:(1) 当圆弧为半圆周时,圆心O处的磁感应强度; (2)当圆弧为1/4圆周时,圆心O处的磁感 应强度。
8
• 9.直径d 0.02m的圆形线圈,共10匝,通以 的电流0.1A时,问:(1)它的磁矩是多少 ? (2)若将该线圈置于的1.5T磁场中,它受 到的最大磁力矩是多少?
9
• 10. 螺绕环中心周长10cm,环上均匀密绕 线圈200匝,线圈中通有电流0.1A。若管内 充满相对磁导率的均匀磁介质 r 4200 ,则 管内的B和H的大小各是多少?
• 4 解(1)如图7.2所示,圆心O处的磁感应强度可看作由3段载流导线的磁场叠 加而成。因为圆心O位于直线电流AB和DE的延长线上,直线电流上的任一电流 元在O点产生的磁感应强度均为零,所以直线电流AB和DE段在O点不产生磁场。
第7章稳恒磁场习题(包含答案)
练习八 磁感应强度 毕奥—萨伐尔定律(黄色阴影表示答案)一、选择题1. 如图所示,边长为l 的正方形线圈中通有电流I ,则此线圈在A 点(如图)产生的磁感强度为: A(A)l I πμ420.(B) l I πμ220.(C) lIπμ02(D) 以上均不对.2. 电流I 由长直导线1沿对角线AC 方向经A 点流入一电阻均匀分布的正方形导线框,再由D 点沿对角线BD 方向流出,经长直导线2返回电源, 如图所示. 若载流直导线1、2和正方形框在导线框中心O 点产生的磁感强度分别用B 1、B 2和B 3表示,则O 点磁感强度的大小为:A(A) B = 0. 因为 B 1 = B 2 = B 3 = 0 .(B) B = 0. 因为虽然B 1 0, B 2 0, B 1+B 2 = 0, B 3=0 (C) B 0. 因为虽然B 3 = 0, 但 B 1+B 2 0 (D) B0. 因为虽然B 1+B 2 = 0, 但 B 33. 如图所示,三条平行的无限长直导线,垂直通过边长为a 的正三角形顶点,每条导线中的电流都是I ,这三条导线在正三角形中心O 点产生的磁感强度为:B(A) B = 0 . (B) B =30I /(a ) .(C) B =30I /(2a ) . (D) B =3I /(3a ) . .4. 如图所示,无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于:C(A) R I πμ20. (B) RI40μ. (C) )11(20πμ-RI . (D))11(40πμ+RI .二、填空题1.如图所示,在真空中,电流由长直导线1沿切向经a 点流入一电阻均匀分布的圆环,再由b 点沿切向流出,经长直导线2返回电源.已知直导线上的电流强度为I ,圆环半径为R ,aob =180.I图A12ABCO I 图I D aIII图O · R·图I图O12RII则圆心O 点处的磁感强度的大小B = .0练习九 毕奥—萨伐尔定律(续)一、选择题1. 在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为,如图所示. 则通过半球面S 的磁通量为:(A) r 2B .(B) 2r 2B . (C) r 2B sin . (D) r 2B cos .2. 如图,载流圆线圈(半径为R )与正方形线圈(边长为a )通有相同电流I ,若两线圈中心O 1与O 2处的磁感应强度大小相同,则半径R 与边长aR : a 为(A) 1:1. (B) π2:1. (C) π2:4. (D) π2:8 三、计算题1.在无限长直载流导线的右侧有面积为S 1和S 2的两个矩形回路, 回路旋转方向如图所示, 两个回路与长直载流导线在同一平面内, 且矩形回路的一边与长直载流导线平行. 求通过两矩形回路的磁通量及通过S 1回路的磁通量与通过S 2回路的磁通量之比. (此题作为悬赏题)练习十 安培环路定理SBn图O 1O 2RaI I图I 图2aaaS 2S 1 b图a dI ILb c 120一、选择题2. 无限长直圆柱体,半径为R ,沿轴向均匀流有电流. 设圆柱体内(r < R )的磁感强度为B 1,圆柱体外(r>R )的磁感强度为B 2,则有:(A) B 1、B 2均与r 成正比. (B) B 1、B 2均与r 成反比.(C) B 1与r 成正比, B2与r 成反比. (D) B 1与r 成反比, B2与r 成正比.3. 在图(a )和(b )中各有一半径相同的圆形回路L 1和L 2,圆周内有电流I 2和I 2,其分布相同,且均在真空中,但在图(b )中,L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:(A) ⎰⋅1d L l B =⎰⋅2d L l B , 21P P B B =.(B) ⎰⋅1d L lB ⎰⋅2 d L l B , 21P P B B =.(C) ⎰⋅1d L l B =⎰⋅2d L l B , 21P P B B ≠.(D) ⎰⋅1d L lB ⎰⋅2d L l B , 21P P B B≠.4. 如图所示,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,恒定电流I 从a 端流入而从d 端流 出,则磁感强度B 沿图中闭合路径的积分⎰⋅Ll B d 等于:(A) 0I . (B) 0I /3. (C) 0I /4.(D) 2I /3 .5. 如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知(A) 0 d =⋅⎰Ll B ,且环路上任意点B 0.(B) 0 d =⋅⎰Ll B ,且环路上任意点B =0.(C) 0 d ≠⋅⎰L l B ,且环路上任意点B 0.(D) 0 d ≠⋅⎰Ll B ,且环路上任意点B =0.二、填空题图P 1I 1 I 2L 1(aI 3LP 2I 1 I 2(bI LO 图2. 两根长直导线通有电流I ,图所示有三种环路, 对于环路a , =⋅⎰aL l B d ;对于环路b , =⋅⎰bL l B d ;对于环路c , =⋅⎰cL l B d .I , 0, 2I .练习十一 安培力 洛仑兹力一、选择题2. 如图所示. 匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是:B(A) ab 边转入纸内,cd 边转出纸外. (B) ab 边转出纸外,cd 边转入纸内. (C) ad 边转入纸内,bc 边转出纸外. (D) ad 边转出纸外,cd 边转入纸内.5. 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动的轨道所围的面积内的磁通量是(A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v. (D) 反比于B ,反比于v练习十三 静磁场习题课一、选择题1. 一质量为m 、电量为q 的粒子,以与均匀磁场B 垂直的速度v 射入磁场中,则粒子运动轨道所包围范围内的磁通量m与磁场磁感强度B 的大小的关系曲线是图中的哪一条 D2. 边长为l 的正方形线圈,分别用图所示两种方式通以电流I (其中ab 、cd 与正方形baIIc c图图(A)m B OmBO(D)m BO(C)m B O(B)m B O(E)B 21/BBdc ba图共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为:(A) B1 = 0 . B2 = 0.(B) B1 = 0 .l IBπμ22 2 =(C)l IBπμ122=. B2=0 .(D)l IBπμ122=.lIBπμ222=.3. 如图, 质量均匀分布的导线框abcd置于均匀磁场中(B的方向竖直向上),线框可绕AA轴转动,导线通电转过角后达到稳定平衡.如果导线改用密度为原来1/2的材料做,欲保持原来的稳定平衡位置(即角不变),可以采用哪一种办法(A) 将磁场B减为原来的1/2或线框中电流减为原来的1/2.(B) 将导线的bc部分长度减小为原来的1/2.(C) 将导线ab和cd部分长度减小为原来的1/2.(D) 将磁场B减少1/4,线框中电流强度减少1/4.BcbA A a dI图图IB1l(1cd ba IIB2l(2。
大学物理稳恒磁场习题及答案
衡水学院 理工科专业 《大学物理B 》 稳恒磁场 习题解答一、填空题(每空1分)1、电流密度矢量的定义式为:dIj n dS ⊥=,单位是:安培每平方米(A/m 2) 。
2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量? = 0 .若通过S 面上某面元d S 的元磁通为d ?,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d ?',则d ?∶d ?'= 1:2 。
3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=。
4小为πR 2c Wb。
5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于:对环路a :dB l ⋅⎰=____μ0I __; 对环路b :d B l ⋅⎰=___0____; 对环路c :d B l ⋅⎰ =__2μ0I __。
6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。
二、单项选择题(每小题2分)( B )1、均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为A. 2?r 2BB.??r 2BC. 0D. 无法确定的量( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为A. 0.90B. 1.00C. 1.11D. 1.22( D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 方向垂直环形分路所在平面且指向纸内B. 方向垂直环形分路所在平面且指向纸外C .方向在环形分路所在平面内,且指向aD .为零( D )( C )??绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度??绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为A. B 1 = B 2B. B 1 = 2B 2 C .B 1 =21B 2 D .B 1 = B 2 /4 ( B )6、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4. (D) 2倍和1/2. 三、判断题(每小题1分,请在括号里打上√或×)( × )1、电源的电动势是将负电荷从电源的负极通过电源内部移到电源正极时,非静电力作的功。
大学物理第7章恒定磁场试题及答案.docx
第7章恒定磁场一、选择题1.磁场可以用下述哪一种说法来定义?[](A)只给电荷以作用力的物理量(B)只给运动电荷以作用力的物理量(C)贮存有能量的空间(D)能对运动电荷作功的物理量2.空间某点磁感应强度的方向,在下列所述定义中错误的是[](A)小磁针N极在该点的指向(B)运动正电荷在该点所受最大的力与其速度的矢积的方向(C)电流元在该点不受力的方向(D)载流线圈稳定平稳时,磁矩在该点的指向3.下列叙述中错误的是[](A) 一根给定的磁力线上各点处的B的大小一定相等一(B)一根给定的磁力线上各点处的〃的方向不一定相同(C)均匀磁场的磁力线是一组平行直线(D)载流长直导线周围的磁力线是一组同心圆坏4.下列关于磁力线的描述中正确的是[](A)条形磁铁的磁力线是从N极到S极的(B)条形磁铁的磁力线在磁铁内部是从S极到N极的(C)磁力线是从N极出发终止在S极的曲线(D)磁力线是不封闭的曲线5.下列叙述中不能正确反映磁力线性质的是[](A)磁力线是闭合曲线(B)磁力线上任一点的切线方向为运动电荷的受力方向(C)磁力线与载流回路彖环一样互相套连(D)磁力线与电流的流向互相服从右手定则6.关于磁场之I'可的相互作用有下列说法,其屮正确的是[](A)同性磁极相吸,异性磁极相斥(B)磁场屮小磁针的磁力线方向只有与磁场磁力线方向一致时,才能保证稳定平稳(C) 小磁针在非均匀磁场中一定向强磁场方向运动 (D) 在涡旋电场中,小磁针沿涡旋电场的电场线运动7. 一电荷放置在行驶的列车上,相对于地面来说,电荷产生电场和磁场的情况将是[](A) (B)只只产生产生电场磁场(C)既产生电场,又产生磁场 (D)既不产生电场,又不产生磁场 T7-1-7图8. 通以稳恒电流的长直导线,在其周阖产生电场和磁场的情况将是 [](A)只产生电场 (B) 只产生磁场(C) 既产生电场,又产生磁场 (D) 既不产生电场,乂不产生磁场9. 在电流元I d/激发的磁场中,若在距离电流元为r 处的磁感应强度为d B .则下列叙述中正确的是(C) dB 一的方向垂直于/d 乙与[组成的平面二T7-1-9图 (D) dB 的方向为(-厂)方向10. 决定长直螺线管中磁感应强度大小的因素是 [](A)通入导线中的电流强度 (B)螺线管的体积(C)螺线管的直径(D)与上述各因素均无关一-11. 磁场的高斯定理B-dS= 0,说明S[](A)穿入闭合曲血的磁感应线的条数必然等于穿出的磁感应线的条数(B) 穿入闭合曲面的磁感应线的条数不等于穿出的磁感应线的条数[](A) d B 一的方向与r 方向相同一(B) dB 的方向与/d/方向相同 dl(C) 一根磁感应线可以终止在闭合曲面内 (D) 一根磁感应线不可能完全处于闭合曲面内13. 磁场中的高斯路理JJ BdS= 0说明了磁场的性质之一是[](A)磁场力是保守力(B)磁力线可能闭合 (C)磁场是无源场(D)磁场是无势场14. 若某空间存在两无限长直载流导线,空间的磁场就不存在简单的对称性.此 时该磁场的分布[](A)可以直接用安培环路定理来计算 (B) 只能用安培环路定理来计算 (C) 只能用毕奥-萨伐尔定律来计算(D) 可以用安培环路定理和磁场的叠加原理求出15.对于安培环 路定律I ,在下面说法中正确的是[](A)H 只是穿过闭合环路的电流所激发,与环路外的电流无关(B)是环路内、外电流的代数和(C) 安培环路定律只在具有高度对称的磁场中才成立(D) 只有磁场分布具有高度对称性时,才能用它直接计算磁场强度的人小16. 在圆形电流的平面内取一同心圆形坏路,由于环路内无电流穿过,所以§H・d/[](A)圆形环路上各点的磁场强度为零(B) 圆形环路上各点的磁场强度方向垂直于环路平面 (C) 圆形坏路上各点的磁场强度方向指向圆心 (D) 圆形环路上各点的磁场强度方向为该点的切线方向12.安培环路定 律/说明了磁场的性质之一是[](A)磁力线是闭合曲线(C)磁场是无源场(B)磁场力是保守力 (D)磁场是无势场17.下述情况中能用安培坏路定律求磁感应强度的是[](A) 一段载流直导线 (C) 一个环形电流(B) 无限长直线电流 (D) 任意形状的电流1& 取一闭合积分回路L,使三根载流导线穿过L 所围成的面.现改变三根导线 之间的相互间隔,但不越出积分回路,则[](A)回路厶内的》/不变,厶上各点的8不变(B)回路厶内的工/不变,L 上各点的B 改变变,厶上各点的B 不变 (D)冋路厶内的》/改变,厶上各点的B 改变19.边长为L 的一个正方形线圈屮通有电流/,则线圈中心的磁感应强度的大小将](A)与厶成正比 (B)与厶成反比(C)与厶无关(D)与厶*成正比T7-1-19图 20. 一无限长直圆柱体,半径为沿轴向均匀流有电流. 磁感应强度大小为Bi,圆柱体外(r>R )感应强度大小为B2,则有[1(A) 31、均与厂成正比设圆柱体内(r<R )的 (B) B 、、B 2均与厂成反比(C) B\与F •成反比,与厂 成正比(D) B 1与F •成正比,〃2与r 成反比 T7-1-20图21.如T7-1-21图所示,两根载有相同电流的无限长直导 线,分别通过x 】 = l 和兀2=3的点,且平行于尹轴.由此可 知,磁感一应强度B 为零的地方是 O12 3 x T7-1-21 图[](A) x=2的直线上(B) x>2的区域(C) x<l 的区域 (D)不在平而内22・一个半径为R 的圆形电流厶其圆心处的磁场强度大小为[1(A)4R (B)(C) 0(D)— 2R23. 有一个圆形冋路1及一个正方形冋路2,圆的直径和正方 形回路的边长相等,二者屮通有大小相等的电流,它们在各自屮心产 生的磁感应强度的大小之比BJB.为[](A) 0.90(B) 1.00(C) 1.11 (D) 1.2224. 一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺 线管(R = 2r ),两螺线管单位长度上的匝数相等•两螺线管屮的磁感应强度大小B R 和B r 应满足关系[](A) B R =2 B 丫 r(D) B R = 4 B r25. 两根载有相同电流的通电导线,彼此之间的斥力为F.如果它们的电流均增加一 倍,相互之间的距离也加倍,则彼此之间的斥力将为变为FF[](A)—(B)— (C)F (D) 2F4226. 两束阴极射线(电子流),以不同的速率向同一方向发射,则两束射线间[](A)存在三种力:安培力、库仑力和洛仑兹力 (B) 存在二种力:库仑力和洛仑兹力 (C) 存在二种力:安培力和洛仑兹力 (D) 只存在洛仑兹力27. 可以证明,无限接近长直电流处(r->0)的B 为--有限值.可是从毕一萨定律 得到的长直电流的公式屮得出,当尸一0时B-8.解释这一矛盾的原因是 [](A)毕一萨定律得出的过程不够严密(B) 不可能存在真正的无限长直导线 (C) 当尸一0 口寸,毕一萨定律已不成立 (D) 毕一萨定律是一个近似理论28. 运动电荷受洛仑兹力后,其动能、动量的变化情况是[](A)动能守恒(B)动量守恒(C)动能、动量都守恒(D)动能、动量都不守恒29. 运动电荷垂直进入均匀磁场后,下列各量中不守恒是T7亠23图(B)B R =B 「 (C) 2B R =B[](A)动量(B)关于圆心的角动量(C)动能(D)电荷与质量的比值30. —电量为g 的带电粒子在均匀磁场中运动,下列说法中正确的是 [](A)只要速度大小相同,粒子所受的洛仑兹力就相同(B) 在速度不变的前提下,若电荷q 变为一么则粒子受力反向,数值不变 (C) 粒子进入磁场后,其动能和动量都不改变 (D) 洛仑兹力与速度方向垂直,所以其运动轨迹是圆31. 一个长直螺线管通有交流电,把一个带负电的粒子沿 螺线管的轴线射入管屮,粒子将在管屮作 ](A)圆周运动 (B)沿管轴来回运动(C)螺旋线运动 (D)匀速直线运动T7-1-31图32. 一束正离子垂直射入一个均匀磁场与均匀电场互相平行 且同向的区域.结果表明离子束在一与入射束垂直放置的荧光屏 上产生一条抛物线,则所有粒子有相同的 [](A)动能(B)质量(C)电量(D)荷质比 T7-1-32图33. 质量为〃?、电量为g 的带电粒子,以速度v 沿与均匀磁场E 成g 角方向射入磁场,英轨迹为一螺旋线.若要增大螺距,应34. 在一个由南指向北的匀强磁场中,一束电子垂直地向下通过_B此 (C) [ ] (A)磁场,受到由由磁场对西下指向上指向它东的作用力的力•向耳V® 0 0T7-1-34 图—11 11 111[](A)增大磁场B (C)减小速度v (B)减少磁场B _(D) 增加夹角q(B)(D)由由北东指向指向南西35. 一电子在垂直于一均匀磁场方向作半径为R 的圆周运动,电子的速度为v ,忽略电子产生的磁场,则此轨道内所包圉面积的磁通量为x BxnmvRT7亠35图36. 一带电粒子垂直射入均匀磁场中,如果粒子质量增大到原来的两倍,入射速度增 大到两倍,磁场的磁感应强度增大到4倍,忽略粒子运动产生的磁场,则粒子运动轨迹所包 围范围内的磁通量增大到原来的1 1 [](A)2 倍 (B)4 倍(C)2 倍(D)4倍37. 一电子以速度丿垂直地入射到一磁感应强度为B 的均匀磁场中•忽略其电子产 生的磁场,此时电子在磁场中运动的轨道所圉面积的磁通量 [](A)正比于3,正比于v 2 (B)反比于B,反比于v 2(C) 正比于5正比于v(D)反比于5反比于v38. 图中六根无限长导线相互绝缘,通过的电流均为/,区域I 、II 、均为相等的正方形.问哪个区域垂直指向里的磁通量最大?1(B) II 区/ III IV (C)III 区(D) IV 区T7-1-38 图39. 在某均匀磁场中放置有两个平面线圈,其面积S]二2S2,通有电流人二2/2,它们所受的最大磁力矩之比M 2为[](A)1 (B)2 (C)4 (D) 1/440. 有一由N 匝细导线绕成的平而正三角形线圈,边长为°,通有电流/,置于均匀外 磁场3中.当线圈平面的法向与外磁场同向时,线圈所受到的磁力矩大小为 [](A) 3Na 岳/ 2(B) 3Na 炼 /4[](A)eR 2(B) emR (C)——eR(D)兀u41.一直径为2.0cm、匝数为300匝的圆线圈,放在5xl0'2T的磁场中,当线圈内通过10mA的电流时,磁场作用于线圈的最大磁力矩为[](A) 4.7 N.m (B) 4.7xlO'2N.m(C) 4.7x1 O'5 N.m (D) 4.7x10-4 N.m42.有一直径为8 cm的线圈,共12匝,通以电流5 A.现将此线圈置于磁感应强度为0.6 T的匀强磁场屮,则[](A)作用在线圈上的最大磁力矩为M=18N.m(B)作用在线圈上的最大磁力矩为M=1.8N.m(C)线圈正法线与B成30。
大学-物理学-第五版-马文蔚-答案上下册第七章
第七章 稳恒磁场一、毕奥—萨伐尔定律1、如图所示,几种载流导线在平面内分布,电流均为I ,它们在O 点的磁感应强度各为多少?7-1 图解 (a )RIB 800μ=方向垂直纸面向外(b )RI RIB πμμ22000-=方向垂直纸面向里(c )RIR I B 42000μπμ+=方向垂直纸面向外7-2 如图7-2,一根无限长直导线,通有电流I ,中部一段弯成圆弧形。
求图中P 点磁感应强度的大小。
7-2图解 如图,直线AB 中电流在P 点产生的磁感应强度112cos cos4πIB d式中12,0,302a d)231(2)30cos 0(cos 200001-=-=πμπμa I a IB方向垂直纸面向内。
同理,直线DE 中电流在P 点产生的磁感应强度)231(202-=πμa I B方向与1B 方向相同。
圆弧BCD 中电流在P 点产生的磁感应强度aIaIB 6360361202003μμ=⨯=方向与1B 方向相同。
P 点总的磁感应强度123BB B B=aIaI a I a I 000021.06)231(2)231(2μμπμπμ=+-+-方向垂直纸面向内。
7-3、如右图所示,两根导线沿半径方向引到铁环上的A 、B 两点。
并在很远处与电源相连。
秋环中心的磁感应强度。
解:环中心O 位于直线电流的延长线上,电流的直线部分在该点不产生磁场。
设铁环的优弧长l 1,其中电流强度I 1,劣弧长l 2,电流 7-3图强度为I 2.因为优弧与劣弧连端的电压相等,可得I 1R 1 = I 2R 2 铁环的截面积和电阻率是一定的,因此电阻与长度成正比,于是有 I 1l 1 = I 2l 2 (1) 优弧上任一电流元在O 点产生磁感应强度0112d d 4I B l Rμπ=方向垂直纸面向外。
优弧在O 点产生的磁感应强度100111122B d 44l I I l B d l R R μμππ===⎰⎰方向垂直于纸面向内。
第七章恒定磁场-习题解答
7-3 如图所示,一无限长载流绝缘直导线弯成如附图所示的
形状。求使o点的磁感应强度为零的半径a和b的比值。
解 该载流系统由三部分组成,o点的磁感
应强度为载有相同电流的无限长直导线
及两个半径分别为a和b的圆环分别在该
处激发的磁感应强度的矢量和。设磁场 方向以垂直纸面向内为正,向外为负。
方向垂直纸面向里。 (2)由磁矩定义
方向垂直纸面向里。
第七章、稳恒磁场
7-20 质谱仪的构造原理如图所示。离子源S提供质量为M、
电荷为q的离子。离子初速很小,可以看作是静止的,然后经
过电压U的加速,进入磁感应强度为B的均匀磁场,沿着半圆
周运动,最后到达记录底片P上。测得离子在P上的位置到入
口处A的距离为x。试证明该离子的质量为:M ? qB 2 x 2 。
或由磁感应线是闭合曲线,也可推知
??
Φaefd
?
? Φabcd
?
0.24Wb
? Φ ? ?B?dS ? 0
第七章、稳恒磁场
7-9 一个非均匀磁场磁感应强度的变化规律为B=ky(k为常 量),方向垂直纸面向外。磁场中有一边长为a的正方形线 框,其位置如图所示。求通过线框的磁通量。
解 在线框内坐标为y处取一长为a宽为 dy的矩形面积元dS,在dS中磁场可认 为是均匀的,则通过dS的磁通量
? I2l
? 0 I1
2πx1
I2l
? ?7.2?
F2 10?4
? B2I2l N
?
? 0 I1
2πx2
I2l
负号表示合力方向水平向左。
第七章、稳恒磁场
习题7-16 一长直导线通有电流I =20A,另一导线ab通 有电流I?=10A,两者互相垂直且共面,如图所示。求导 线ab所受的作用力和对o点的力矩。
大学物理第七章稳恒磁场习题答案
第七章 稳恒磁场习题7-1 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为多少?解:取平面S ’与半球面S 构成闭合曲面,根据高斯定理有 0m mS mS ΦΦΦ'=+=2cos mS mS r E ΦΦπα'=-=-球面外法线方向为其正方向7-2 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感应强度各为多少?08IR μ垂直画面向外0022II RR μμπ-垂直画面向里 00+42I IR Rμμπ垂直画面向外 7-3 如图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连。
已知圆环的粗细均匀,求环中心O 的磁感应强度。
解: 如图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
且θ-πθ==21221R R I I 电阻电阻 1I 产生1B 方向⊥纸面向外πθπμ2)2(2101-=R I B2I 产生2B 方向⊥纸面向里πθμ22202R I B =∴1)2(2121=-=θθπI I B B 有0210=+=B B B7-4 如图所示,已知地球北极地磁场磁感强度B 的大小为6.0×10-5T 。
如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大?流向如何?(已知圆电流轴线上北极点的磁感强度()R IRR IR B 24202/32220μμ=+=)解:9042 1.7310A RBI μ==⨯方向如图所示7-5 有一同轴电缆,其尺寸如题图所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑。
试计算以下各处的磁感应强度:(1)r<R 1;(2)R 1<r<R 2;(3)R 2<r<R 3;(4)r>R 3。
解:同轴电缆的电流分布具有轴对称性在电缆各区域中磁感应线是以电缆轴线为对称轴的同心圆。
稳恒磁场习题答案
稳恒磁场习题答案稳恒磁场习题答案磁场是物理学中一个重要的概念,它在我们日常生活中扮演着重要的角色。
稳恒磁场习题是物理学中常见的练习题,通过解答这些习题,我们可以更好地理解磁场的性质和应用。
下面是一些常见的稳恒磁场习题及其答案,希望对大家的学习有所帮助。
1. 一根长直导线产生的磁场强度与距离的关系是怎样的?答:根据安培定律,长直导线产生的磁场强度与距离成反比关系。
即磁场强度随着距离的增加而减小。
2. 一根长直导线中心点的磁场强度为B,如果将导线弯成一个半径为r的圆环,中心点的磁场强度会发生怎样的变化?答:当将导线弯成一个半径为r的圆环后,中心点的磁场强度会变为零。
这是因为在圆环的中心点,由于对称性的原因,导线上的每一段磁场强度都会相互抵消,最终导致中心点的磁场强度为零。
3. 一个平面线圈中心的磁场强度与电流的关系是怎样的?答:根据比奥-萨伐尔定律,平面线圈中心的磁场强度与电流成正比关系。
即磁场强度随着电流的增加而增加。
4. 一个平面线圈中心的磁场强度与线圈的面积的关系是怎样的?答:一个平面线圈中心的磁场强度与线圈的面积成正比关系。
即磁场强度随着线圈的面积的增加而增加。
5. 一个平面线圈中心的磁场强度与距离的关系是怎样的?答:一个平面线圈中心的磁场强度与距离成反比关系。
即磁场强度随着距离的增加而减小。
6. 一个匀强磁场中,一个带电粒子的运动轨迹是怎样的?答:在一个匀强磁场中,一个带电粒子的运动轨迹是一个半径为r的圆。
这是因为带电粒子在匀强磁场中受到洛伦兹力的作用,该力垂直于带电粒子的速度和磁场方向,导致粒子做圆周运动。
7. 在一个匀强磁场中,一个带电粒子的运动速度对轨道半径的影响是怎样的?答:在一个匀强磁场中,一个带电粒子的运动速度对轨道半径没有影响。
这是因为带电粒子的运动速度只会影响圆周运动的周期,而不会影响圆周运动的半径。
8. 一个匀强磁场中,一个带电粒子的运动轨迹会受到哪些因素的影响?答:一个匀强磁场中,一个带电粒子的运动轨迹受到带电粒子的电荷量、质量、速度以及磁场的强度和方向的影响。
(完整word版)大学物理A(一)课件第七章 稳恒磁场习题及答案
第七章 练习题1、在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B 的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为(A) πr 2B .. (B) 2 πr 2B . (C) -πr 2B sin α. (D) -πr 2B cos α.2、如图所示,电流I 由长直导线1经a 点流入由电阻均匀的导线构成的正方形线框,由b 点流出,经长直导线2返回电源(导线1、2的延长线均通过O 点).设载流导线1、2和正方形线框中的电流在框中心O 点产生的磁感强度分别用 1B、2B 、3B 表示,则O点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0、B 3≠ 0,但0321=++B B B.(C) B ≠ 0,因为虽然021=+B B,但B 3≠ 0.(D) B ≠ 0,因为虽然B 3= 0,但021≠+B B.3、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O .(C) B Q > B O > B P . (D) B O > B Q > B P . 4、磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲线表示B -x 的关系?[ ]5、如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分⎰⋅Ll B d(A) I 0μ. (B)I 031μ. (C) 4/0I μ. (D) 3/20I μ.B x OR(D) B x OR(C) B xOR(E)6、如图,在一固定的载流大平板附近有一载流小线框能自由转动或平动.线框平面与大平板垂直.大平板的电流与线框中电流方向如图所示,则通电线框的运动情况对着从大平板看是:(A) 靠近大平板. (B) 顺时针转动.(C) 逆时针转动.(D) 离开大平板向外运动.7、在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图所示.在此情形中,线框内的磁通量Φ =______________.8、如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳恒电流I ,则圆心O 处的电流元l Id 所受的安培力Fd 的大小为____,方向________.9、有一根质量为m ,长为l 的直导线,放在磁感强度为 B的均匀磁场中B 的方向在水平面内,导线中电流方向如图所示,当导 线所受磁力与重力平衡时,导线中电流I =___________________.10、图示为三种不同的磁介质的B ~H 关系曲线,其中虚线表示的是B = μ0H 的关系.说明a 、b 、c 各代表哪一类磁介质的B ~H 关系曲线:a 代表____________________的B ~H 关系曲线.b 代表____________________的B ~H 关系曲线.c 代表____________________的B ~H 关系曲线.11、AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)12、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为δ ,求与平板共面且距平板一边为b 的任意点P 的磁感强度.I 1I 2 IlI dIB13、螺绕环中心周长l = 10 cm ,环上均匀密绕线圈N = 200匝,线圈中通有电流I = 0.1 A .管内充满相对磁导率μr = 4200的磁介质.求管内磁场强度和磁感强度的大小.14、一根同轴线由半径为R 1的长导线和套在它外面的内半径为R 2、外半径为R 3的同轴导体圆筒组成.中间充满磁导率为μ的各向同性均匀非铁磁绝缘材料,如图.传导电流I 沿导线向上流去,由圆筒向下流回,在它们的截面上电流都是均匀分布的.求同轴线内外的磁感强度大小B 的分布. 答案: 一 选择题1、D2、A3、D4、B5、D6、B7、2ln 20πIaμ8、a l I 4/d 20μ 垂直电流元背向半圆弧(即向左) 9、)/(lB mg10、铁磁质、 顺磁质、 抗磁质 11、解:AA '线圈在O 点所产生的磁感强度002502μμ==A A A A r IN B (方向垂直AA '平面)CC '线圈在O 点所产生的磁感强度 005002μμ==CC C C r IN B (方向垂直CC '平面)O 点的合磁感强度 42/1221002.7)(-⨯=+=C AB B B T B 的方向在和AA '、CC '都垂直的平面内,和CC '平面的夹角︒==-4.63tg 1AC B BθA12、解:利用无限长载流直导线的公式求解.(1) 取离P 点为x 宽度为d x 的无限长载流细条,它的电流 x i d d δ=(2) 这载流长条在P 点产生的磁感应强度x i B π=2d d 0μxxπ=2d 0δμ 方向垂直纸面向里.(3) 所有载流长条在P 点产生的磁感强度的方向都相同,所以载流平板在P点产生的磁感强度==⎰B B d ⎰+πba bxdx x20δμb b a x +π=ln 20δμ 方向垂直纸面向里.13、解: ===l NI nI H /200 A/m===H H B r μμμ0 1.06 T14、解:由安培环路定理: ∑⎰⋅=i I l Hd0< r <R 1区域: 212/2R Ir rH =π 212R Ir H π=, 2102R Ir B π=μR 1< r <R 2区域: I rH =π2r I H π=2, rIB π=2μR 2< r <R 3区域: )()(22223222R R R r I I rH ---=π )1(22223222R R R r r IH ---π= )1(2222322200R R R r r IH B ---π==μμ r >R 3区域: H = 0,B = 0。
稳恒磁场练习题及答案
稳恒磁场练习题及答案一、 选择题1、在一个平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流相等,方向如图所示。
问哪个区域中有些点的磁感应强度可能为零 ( D ) (A )仅在象限1 (B )仅在象限2(C )仅在象限1、3 (D )仅在象限2、42、关于洛仑兹力,下列说法错误的是:( D ) (A )带电粒子在磁场中运动,不一定受洛仑兹力 (B )洛仑兹力不做功(C )洛仑兹力只改变粒子运动方向(D )当磁场方向与粒子运动方向一致时,洛仑兹力对粒子作正功 3、一电量为q 的粒子在匀强磁场中运动,下面哪种说法是正确的:( B ) (A )只要速度大小相同,粒子所受的洛仑兹力就相同(B )在速度不变的前提下,若电荷电量q 变为-q ,则粒子受力方向相反,数值不变 (C )粒子进入磁场后,其动量和动能都不改变(D )洛仑兹力与速度方向垂直,所以带电粒子运动的轨迹一定是圆4、由磁场的高斯定理可知 (D )(A )穿入闭合曲面的磁感应线条数必然多于穿出的磁感应线条数; (B )穿入闭合曲面的磁感应线条数必然少于穿出的磁感应线条数; (C )一根磁感应线可以始于闭合曲面外,终止在闭合曲面内; (D )一根磁感应线可以完全处于闭合曲面内。
5、对于某一回路L ,安培环路积分等于零,则可以断定(D )(A) 回路L 内一定有电流。
(B) 回路L 内可能有电流,且代数和不为零。
(C) 回路L 内一定无电流。
(D) 回路L 内可能有电流,但代数和为零。
6、电流I 1穿过一回路L ,而电流I 2则在回路的外面,于是有 ( C )(A) L 上各点的磁感应强度及积分⎰⋅Ll d B都只与I 1有关。
(B) L 上各点的磁感应强度B 只与I 1有关,积分⎰⋅Ll d B与I 1、I 2有关。
(C) L 上各点的磁感应强度B 与I 1、I 2有关,积分⎰⋅L l d B只与I 1有关。
(D) L 上各点的磁感应强度B 及积分⎰⋅Ll d B都与I 1、I 2有关。
第七章习题
1.一磁场的磁感应强度为k c j b i a B(T ),则通过一半径为R ,开口向z 正方向的半球壳表面的磁通量的大小是:(A) Wb 2a R(B) Wb 2b R (C)Wb 2c R(D)Wb 2abc R[ C ]解:如图所示,半径为R 的半球面1S 和半径为R 的圆平面2S 组成一个封闭曲面S 。
由磁场的高斯定律0d s B知:c S k s k c j b i a s B s B s s s 2221d )(d dc R 2故选C2.边长l 为的正方形线圈,分别用图示的两种方式通以电流I (其中ab ,cd 与正方形共面),在这两种情况下,线圈在其中产生的磁感应强度大小分别为:(A) 0,021 B B(B) lIB B 02122,0(C) 0,22201B l IB(D) lIB l I B 020122,22 [C ]解:根据直电流产生的磁场的公式有:l Il I l Iu B 00210122)2222(2)cos (cos 244对于第二种情况,电流I 流入b 后分流,两支路电流相等,在中心处产生的磁感应强度大小相等,方向相反,所以:02 B故选C3.下列哪一幅曲线能确切描述载流圆线圈在其轴线上任意点所产生的B随x 的变化关系?(x 坐标轴垂直于圆线圈平面,原点在圆线圈中心O )[ C ]解:由圆电流轴线上任一点磁感应强度公式:232220)(2x R IR B可知,0 x 时,0 B ,可排除(A ),(B ),(E)三个答案,且B 也不是常量,排除(D )。
故选C4.载流的圆形线圈(半径1a )与正方形线圈(边长2a )通有相同电流I ,若两个线圈的中心O 1,O 2处的磁感应强度大小相同,则半径1a 与边长2a 之比21:a a 为:(A) 1:1 (B)1:2(C)4:2 (D)8:2[ D ]解:圆电流在其中心产生的磁感应强度1012a I B正方形线圈在其中心产生的磁感应强度2020222)135cos 45(cos 244a IaIB由题意21B B ,即 2010222a Ia I8221a a 故选D5.有一无限长通有电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布,在铜片外与铜片共面,离铜片右边缘b 处的P 点(如图)的磁感应强度B的大小为:B( B )BBB B(A))(20b a I(B)bba a I ln 20 (C)bb a b I ln 20 (D))21(20b a I解:建立如图ox 坐标轴,在坐标x 处取宽度为x d 的窄条电流x aII d d,它在p 点产生的磁感应强度为: 方向)(d 2)(2d d 00xb a xaI x b a IB P 点的磁感应强度大小为:b b a a I x b a xa I B B aln 2)(d 2d 006.如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感应强度B沿图中闭合路径L 的积分 Ll B d 等于(A)I 0(B)I 031(C)I 041(D)I 032[ D ]解:电流I 从b 点分流,I =I 1+I 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习八 磁感应强度 毕奥—萨伐尔定律(黄色阴影表示答案)
一、选择题
1. 如图所示,边长为l 的正方形线圈中通有电流I ,则此线圈在
A 点(如图)产生的磁感强度为: A
(A) l I πμ420.(B) l I πμ220.(C) l
I πμ02(D) 以上均不对.
2. 电流I 由长直导线1沿对角线AC 方向经A
点流入一电阻均匀分布的正方形导线框,再由D 点沿对角线BD 方向流出,经长直导线2返回电源, 如图所示. 若载流直导线1、2和正方形框在导线框中心O 点产生的磁感强度分别用B 1、B 2和B 3表示,则O 点磁感强度的大小为:A
(A) B = 0. 因为 B 1 = B 2 = B 3 = 0 . (B) B = 0. 因为虽然B 1 0, B 2 0, B 1+B 2 = 0, B 3=0
(C) B 0. 因为虽然B 3 = 0, 但 B 1+B 2 0 (D) B
0. 因为虽然B 1+B 2 = 0, 但 B 3
3. 如图所示,三条平行的无限长直导线,垂直通过边长为a 的正三角形顶点,每条导线中的电流都是I ,这三条导线在正三角形中心O 点产生的磁感强度为:B
(A) B = 0 . (B) B =30I /(a ) . (C) B =30I /(2a ) . (D) B =3
I /(3a ) . .
4. 如图所示,无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于:C (A) R I πμ20.
(B) R I 40μ.
(C) )11(20π
μ-R I .
(D)
)1
1(40π
μ+
R
I .
二、填空题
1.如图所示,在真空中,电流由长直导线1沿切向经a 点流入一电阻均匀分布的圆环,再由b 点沿切向流出,经长直导线2返回电源.已知直导线上的电流强度为I ,圆环半径为R ,aob =180.
则圆心O 点处的磁感强度的大小B = .0
I
图
A
1
2
A
B
C
O I
图
I D a I
I
I
图
O R
·
P
图
I
图
O
a
b 1
2
R
I
I
练习九 毕奥—萨伐尔定律(续)
一、选择题
1. 在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为,如图所示. 则通过半球面S 的磁通量
为:
(A) r 2
B .
(B) 2r 2
B
.
(C) r 2B sin . (D) r 2B cos .
2. 如图,载流圆线圈(半径为R )与正方形线圈(边长为a )通有相同电流I ,若两线圈中心1与O 2处的磁感应强度大小相同,则半径R 与边长a 之比R : a 为
(A) 1:1. (B) π2:1. (C) π2:4. (D) π2:8 三、计算题
1.在无限长直载流导线的右侧有面积为S 1和S 2的两个矩形回路, 回路旋转方向如图所示, 两个回路与长直载流导线在同一平面内, 且矩形回路的一边与长直载流导线平行. 求通过两矩形回路的磁通量及通过S 1回路的磁通量与通过S 2回路的磁通量之比. (此题作为悬
赏题)
练习十 安培环路定理
一、选择题
2. 无限长直圆柱体,半径为R ,沿轴向均匀流有电流. 设圆柱体内(r < R )的磁感强度为B 1,圆柱体外(r >R )的磁感强度为B 2,则有:
(A) B 1、B 2均与r 成正比. (B) B 1、B 2均与r 成反比.
(C) B 1与r 成正比, B 2与r 成反比. (D) B 1与r 成反比, B 2与r 成正比.
3. 在图(a )和(b )中各有一半径相同的圆形回路L 1和L 2,圆周内有电流I 2和I 2,其分布相同,且均在真空中,但在图(b )中,L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:
(A) ⎰⋅1
d L l B =⎰
⋅2
d L l B , 21P P B B =.
(B) ⎰⋅1
d L l B ⎰⋅2
d L l B , 21
P P B B
=.
S
B
n 图
O 1
O 2
R
a
I
I
图
I 图
2a
a
a
S 2
S 1 b
图
P 1
I 1 I 2
L 1
(a
I 3
L
P 2
I 1 I 2
(b
图
a
d
I I
L
b c 120
(C) ⎰⋅1 d L l B =⎰
⋅2 d L l B , 21P P B B ≠.
(D) ⎰⋅1
d L l B ⎰⋅2
d L l B , 21
P P B B
≠.
4. 如图所示,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,恒定电流I 从a 端流入而从d 端流 出,则磁感强度B 沿图中闭合路径的积分⎰
⋅L
l B d 等于:
(A) 0I . (B) 0I /3. (C) 0
I /4.
(D) 20
I /3 .
5. 如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知
(A) 0 d =⋅⎰
L l B ,且环路上任意点B 0.
(B) 0 d =⋅⎰L
l B ,且环路上任意点B =0. (C) 0 d ≠⋅⎰L l B ,且环路上任意点B 0. (D) 0 d ≠⋅⎰L
l B ,且环路上任意点B =0.
二、填空题
2. 两根长直导线通有电流I ,图所示有三种环路, 对于环路a , =⋅⎰
a
L l B d ;
对于环路b , =⋅⎰
b
L l B d ;
对于环路c , =⋅⎰
c
L l B d .
I , 0,
2
I .
练习十一 安培力 洛仑兹力
一、选择题
2. 如图所示. 匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是:B
(A) ab 边转入纸内,cd 边转出纸外. (B) ab 边转出纸外,cd 边转入纸内. (C) ad 边转入纸内,bc 边转出纸外. (D) ad 边转出纸外,cd 边转入纸内.
5. 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动的轨道所围的面积内的磁通量是
b
a
I
I
c c
图
I L
O 图
B d
c
b
a
图
(A) 正比于B ,反比于v 2
. (B) 反比于B ,正比于v 2
. (C) 正比于B ,反比于v. (D) 反比于B ,反比于v
练习十三 静磁场习题课
一、选择题
1. 一质量为m 、电量为q 的粒子,以与均匀磁场B 垂直的速度v 射入磁场中,则粒子运动轨道所包围范围内的磁通量
m
与磁场磁感强度B 的大小的关系曲线是图中的哪一条 D
2. 边长为l 的正方形线圈,分别用图所示两种方式通以电流I (其中ab 、cd 与正方形
共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为:
(A) B 1 = 0 . B 2 = 0.
(B) B 1 = 0 . l
I
B πμ0222=
(C) l
I
B πμ0122=. B 2=0 .
(D) l
I B πμ0122=. l I
B πμ0222=.
3. 如图, 质量均匀分布的导线框abcd 置于均匀磁场中(B 的方向竖直向上),线框可绕AA
轴转动,导线通电转过
角
后达到稳定平衡.如果导线改用密度为原来1/2的材料做,欲保持原来的稳定平衡位置(即 角不变),可以采用哪一种办法
(A) 将磁场B 减为原来的1/2或线框中电流减为原来的1/2.
(B) 将导线的bc 部分长度减小为原来的1/2. (C) 将导线ab 和cd 部分长度减小为原来的1/2.
(D) 将磁场B 减少1/4,线框中电流
强度减少1/4.
B c
b
A
A a d
I
图
图
I
B 1
l (1
c
d
b a I I B 2
l (2
图
(A)
m
B
m
B
(D)
m
B
(C)
m
B
(B)
m
B
(E)
B 2
1/
B。